]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
cpufreq: intel_pstate: report correct CPU frequencies during trace
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_fack __read_mostly;
80 int sysctl_tcp_max_reordering __read_mostly = 300;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 1;
84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
85
86 /* rfc5961 challenge ack rate limiting */
87 int sysctl_tcp_challenge_ack_limit = 1000;
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_early_retrans __read_mostly = 3;
96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
97
98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
104 #define FLAG_ECE 0x40 /* ECE in this ACK */
105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
111 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
112 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
113
114 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
115 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
116 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
117 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
118
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121
122 #define REXMIT_NONE 0 /* no loss recovery to do */
123 #define REXMIT_LOST 1 /* retransmit packets marked lost */
124 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
125
126 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
127 unsigned int len)
128 {
129 static bool __once __read_mostly;
130
131 if (!__once) {
132 struct net_device *dev;
133
134 __once = true;
135
136 rcu_read_lock();
137 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
138 if (!dev || len >= dev->mtu)
139 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
140 dev ? dev->name : "Unknown driver");
141 rcu_read_unlock();
142 }
143 }
144
145 /* Adapt the MSS value used to make delayed ack decision to the
146 * real world.
147 */
148 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
149 {
150 struct inet_connection_sock *icsk = inet_csk(sk);
151 const unsigned int lss = icsk->icsk_ack.last_seg_size;
152 unsigned int len;
153
154 icsk->icsk_ack.last_seg_size = 0;
155
156 /* skb->len may jitter because of SACKs, even if peer
157 * sends good full-sized frames.
158 */
159 len = skb_shinfo(skb)->gso_size ? : skb->len;
160 if (len >= icsk->icsk_ack.rcv_mss) {
161 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
162 tcp_sk(sk)->advmss);
163 /* Account for possibly-removed options */
164 if (unlikely(len > icsk->icsk_ack.rcv_mss +
165 MAX_TCP_OPTION_SPACE))
166 tcp_gro_dev_warn(sk, skb, len);
167 } else {
168 /* Otherwise, we make more careful check taking into account,
169 * that SACKs block is variable.
170 *
171 * "len" is invariant segment length, including TCP header.
172 */
173 len += skb->data - skb_transport_header(skb);
174 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
175 /* If PSH is not set, packet should be
176 * full sized, provided peer TCP is not badly broken.
177 * This observation (if it is correct 8)) allows
178 * to handle super-low mtu links fairly.
179 */
180 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
181 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
182 /* Subtract also invariant (if peer is RFC compliant),
183 * tcp header plus fixed timestamp option length.
184 * Resulting "len" is MSS free of SACK jitter.
185 */
186 len -= tcp_sk(sk)->tcp_header_len;
187 icsk->icsk_ack.last_seg_size = len;
188 if (len == lss) {
189 icsk->icsk_ack.rcv_mss = len;
190 return;
191 }
192 }
193 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
196 }
197 }
198
199 static void tcp_incr_quickack(struct sock *sk)
200 {
201 struct inet_connection_sock *icsk = inet_csk(sk);
202 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
203
204 if (quickacks == 0)
205 quickacks = 2;
206 if (quickacks > icsk->icsk_ack.quick)
207 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
208 }
209
210 static void tcp_enter_quickack_mode(struct sock *sk)
211 {
212 struct inet_connection_sock *icsk = inet_csk(sk);
213 tcp_incr_quickack(sk);
214 icsk->icsk_ack.pingpong = 0;
215 icsk->icsk_ack.ato = TCP_ATO_MIN;
216 }
217
218 /* Send ACKs quickly, if "quick" count is not exhausted
219 * and the session is not interactive.
220 */
221
222 static bool tcp_in_quickack_mode(struct sock *sk)
223 {
224 const struct inet_connection_sock *icsk = inet_csk(sk);
225 const struct dst_entry *dst = __sk_dst_get(sk);
226
227 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
228 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
229 }
230
231 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
232 {
233 if (tp->ecn_flags & TCP_ECN_OK)
234 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
235 }
236
237 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
238 {
239 if (tcp_hdr(skb)->cwr)
240 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
241 }
242
243 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
244 {
245 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
246 }
247
248 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
249 {
250 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
251 case INET_ECN_NOT_ECT:
252 /* Funny extension: if ECT is not set on a segment,
253 * and we already seen ECT on a previous segment,
254 * it is probably a retransmit.
255 */
256 if (tp->ecn_flags & TCP_ECN_SEEN)
257 tcp_enter_quickack_mode((struct sock *)tp);
258 break;
259 case INET_ECN_CE:
260 if (tcp_ca_needs_ecn((struct sock *)tp))
261 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
262
263 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
264 /* Better not delay acks, sender can have a very low cwnd */
265 tcp_enter_quickack_mode((struct sock *)tp);
266 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
267 }
268 tp->ecn_flags |= TCP_ECN_SEEN;
269 break;
270 default:
271 if (tcp_ca_needs_ecn((struct sock *)tp))
272 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
273 tp->ecn_flags |= TCP_ECN_SEEN;
274 break;
275 }
276 }
277
278 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
279 {
280 if (tp->ecn_flags & TCP_ECN_OK)
281 __tcp_ecn_check_ce(tp, skb);
282 }
283
284 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
285 {
286 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
287 tp->ecn_flags &= ~TCP_ECN_OK;
288 }
289
290 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
291 {
292 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
293 tp->ecn_flags &= ~TCP_ECN_OK;
294 }
295
296 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
297 {
298 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
299 return true;
300 return false;
301 }
302
303 /* Buffer size and advertised window tuning.
304 *
305 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
306 */
307
308 static void tcp_sndbuf_expand(struct sock *sk)
309 {
310 const struct tcp_sock *tp = tcp_sk(sk);
311 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
312 int sndmem, per_mss;
313 u32 nr_segs;
314
315 /* Worst case is non GSO/TSO : each frame consumes one skb
316 * and skb->head is kmalloced using power of two area of memory
317 */
318 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
319 MAX_TCP_HEADER +
320 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
321
322 per_mss = roundup_pow_of_two(per_mss) +
323 SKB_DATA_ALIGN(sizeof(struct sk_buff));
324
325 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
326 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
327
328 /* Fast Recovery (RFC 5681 3.2) :
329 * Cubic needs 1.7 factor, rounded to 2 to include
330 * extra cushion (application might react slowly to POLLOUT)
331 */
332 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
333 sndmem *= nr_segs * per_mss;
334
335 if (sk->sk_sndbuf < sndmem)
336 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
337 }
338
339 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
340 *
341 * All tcp_full_space() is split to two parts: "network" buffer, allocated
342 * forward and advertised in receiver window (tp->rcv_wnd) and
343 * "application buffer", required to isolate scheduling/application
344 * latencies from network.
345 * window_clamp is maximal advertised window. It can be less than
346 * tcp_full_space(), in this case tcp_full_space() - window_clamp
347 * is reserved for "application" buffer. The less window_clamp is
348 * the smoother our behaviour from viewpoint of network, but the lower
349 * throughput and the higher sensitivity of the connection to losses. 8)
350 *
351 * rcv_ssthresh is more strict window_clamp used at "slow start"
352 * phase to predict further behaviour of this connection.
353 * It is used for two goals:
354 * - to enforce header prediction at sender, even when application
355 * requires some significant "application buffer". It is check #1.
356 * - to prevent pruning of receive queue because of misprediction
357 * of receiver window. Check #2.
358 *
359 * The scheme does not work when sender sends good segments opening
360 * window and then starts to feed us spaghetti. But it should work
361 * in common situations. Otherwise, we have to rely on queue collapsing.
362 */
363
364 /* Slow part of check#2. */
365 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368 /* Optimize this! */
369 int truesize = tcp_win_from_space(skb->truesize) >> 1;
370 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
371
372 while (tp->rcv_ssthresh <= window) {
373 if (truesize <= skb->len)
374 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
375
376 truesize >>= 1;
377 window >>= 1;
378 }
379 return 0;
380 }
381
382 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
383 {
384 struct tcp_sock *tp = tcp_sk(sk);
385
386 /* Check #1 */
387 if (tp->rcv_ssthresh < tp->window_clamp &&
388 (int)tp->rcv_ssthresh < tcp_space(sk) &&
389 !tcp_under_memory_pressure(sk)) {
390 int incr;
391
392 /* Check #2. Increase window, if skb with such overhead
393 * will fit to rcvbuf in future.
394 */
395 if (tcp_win_from_space(skb->truesize) <= skb->len)
396 incr = 2 * tp->advmss;
397 else
398 incr = __tcp_grow_window(sk, skb);
399
400 if (incr) {
401 incr = max_t(int, incr, 2 * skb->len);
402 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
403 tp->window_clamp);
404 inet_csk(sk)->icsk_ack.quick |= 1;
405 }
406 }
407 }
408
409 /* 3. Tuning rcvbuf, when connection enters established state. */
410 static void tcp_fixup_rcvbuf(struct sock *sk)
411 {
412 u32 mss = tcp_sk(sk)->advmss;
413 int rcvmem;
414
415 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
416 tcp_default_init_rwnd(mss);
417
418 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
419 * Allow enough cushion so that sender is not limited by our window
420 */
421 if (sysctl_tcp_moderate_rcvbuf)
422 rcvmem <<= 2;
423
424 if (sk->sk_rcvbuf < rcvmem)
425 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
426 }
427
428 /* 4. Try to fixup all. It is made immediately after connection enters
429 * established state.
430 */
431 void tcp_init_buffer_space(struct sock *sk)
432 {
433 struct tcp_sock *tp = tcp_sk(sk);
434 int maxwin;
435
436 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
437 tcp_fixup_rcvbuf(sk);
438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 tcp_sndbuf_expand(sk);
440
441 tp->rcvq_space.space = tp->rcv_wnd;
442 tcp_mstamp_refresh(tp);
443 tp->rcvq_space.time = tp->tcp_mstamp;
444 tp->rcvq_space.seq = tp->copied_seq;
445
446 maxwin = tcp_full_space(sk);
447
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
450
451 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
452 tp->window_clamp = max(maxwin -
453 (maxwin >> sysctl_tcp_app_win),
454 4 * tp->advmss);
455 }
456
457 /* Force reservation of one segment. */
458 if (sysctl_tcp_app_win &&
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 tp->snd_cwnd_stamp = tcp_jiffies32;
465 }
466
467 /* 5. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
469 {
470 struct tcp_sock *tp = tcp_sk(sk);
471 struct inet_connection_sock *icsk = inet_csk(sk);
472
473 icsk->icsk_ack.quick = 0;
474
475 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
476 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
477 !tcp_under_memory_pressure(sk) &&
478 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
479 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
480 sysctl_tcp_rmem[2]);
481 }
482 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
483 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
484 }
485
486 /* Initialize RCV_MSS value.
487 * RCV_MSS is an our guess about MSS used by the peer.
488 * We haven't any direct information about the MSS.
489 * It's better to underestimate the RCV_MSS rather than overestimate.
490 * Overestimations make us ACKing less frequently than needed.
491 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
492 */
493 void tcp_initialize_rcv_mss(struct sock *sk)
494 {
495 const struct tcp_sock *tp = tcp_sk(sk);
496 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
497
498 hint = min(hint, tp->rcv_wnd / 2);
499 hint = min(hint, TCP_MSS_DEFAULT);
500 hint = max(hint, TCP_MIN_MSS);
501
502 inet_csk(sk)->icsk_ack.rcv_mss = hint;
503 }
504 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
505
506 /* Receiver "autotuning" code.
507 *
508 * The algorithm for RTT estimation w/o timestamps is based on
509 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
510 * <http://public.lanl.gov/radiant/pubs.html#DRS>
511 *
512 * More detail on this code can be found at
513 * <http://staff.psc.edu/jheffner/>,
514 * though this reference is out of date. A new paper
515 * is pending.
516 */
517 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
518 {
519 u32 new_sample = tp->rcv_rtt_est.rtt_us;
520 long m = sample;
521
522 if (m == 0)
523 m = 1;
524
525 if (new_sample != 0) {
526 /* If we sample in larger samples in the non-timestamp
527 * case, we could grossly overestimate the RTT especially
528 * with chatty applications or bulk transfer apps which
529 * are stalled on filesystem I/O.
530 *
531 * Also, since we are only going for a minimum in the
532 * non-timestamp case, we do not smooth things out
533 * else with timestamps disabled convergence takes too
534 * long.
535 */
536 if (!win_dep) {
537 m -= (new_sample >> 3);
538 new_sample += m;
539 } else {
540 m <<= 3;
541 if (m < new_sample)
542 new_sample = m;
543 }
544 } else {
545 /* No previous measure. */
546 new_sample = m << 3;
547 }
548
549 tp->rcv_rtt_est.rtt_us = new_sample;
550 }
551
552 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
553 {
554 u32 delta_us;
555
556 if (tp->rcv_rtt_est.time == 0)
557 goto new_measure;
558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
559 return;
560 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
561 tcp_rcv_rtt_update(tp, delta_us, 1);
562
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tp->tcp_mstamp;
566 }
567
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
570 {
571 struct tcp_sock *tp = tcp_sk(sk);
572
573 if (tp->rx_opt.rcv_tsecr &&
574 (TCP_SKB_CB(skb)->end_seq -
575 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
576 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
577 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
578
579 tcp_rcv_rtt_update(tp, delta_us, 0);
580 }
581 }
582
583 /*
584 * This function should be called every time data is copied to user space.
585 * It calculates the appropriate TCP receive buffer space.
586 */
587 void tcp_rcv_space_adjust(struct sock *sk)
588 {
589 struct tcp_sock *tp = tcp_sk(sk);
590 int time;
591 int copied;
592
593 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
595 return;
596
597 /* Number of bytes copied to user in last RTT */
598 copied = tp->copied_seq - tp->rcvq_space.seq;
599 if (copied <= tp->rcvq_space.space)
600 goto new_measure;
601
602 /* A bit of theory :
603 * copied = bytes received in previous RTT, our base window
604 * To cope with packet losses, we need a 2x factor
605 * To cope with slow start, and sender growing its cwin by 100 %
606 * every RTT, we need a 4x factor, because the ACK we are sending
607 * now is for the next RTT, not the current one :
608 * <prev RTT . ><current RTT .. ><next RTT .... >
609 */
610
611 if (sysctl_tcp_moderate_rcvbuf &&
612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
613 int rcvwin, rcvmem, rcvbuf;
614
615 /* minimal window to cope with packet losses, assuming
616 * steady state. Add some cushion because of small variations.
617 */
618 rcvwin = (copied << 1) + 16 * tp->advmss;
619
620 /* If rate increased by 25%,
621 * assume slow start, rcvwin = 3 * copied
622 * If rate increased by 50%,
623 * assume sender can use 2x growth, rcvwin = 4 * copied
624 */
625 if (copied >=
626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
627 if (copied >=
628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
629 rcvwin <<= 1;
630 else
631 rcvwin += (rcvwin >> 1);
632 }
633
634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
635 while (tcp_win_from_space(rcvmem) < tp->advmss)
636 rcvmem += 128;
637
638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
639 if (rcvbuf > sk->sk_rcvbuf) {
640 sk->sk_rcvbuf = rcvbuf;
641
642 /* Make the window clamp follow along. */
643 tp->window_clamp = rcvwin;
644 }
645 }
646 tp->rcvq_space.space = copied;
647
648 new_measure:
649 tp->rcvq_space.seq = tp->copied_seq;
650 tp->rcvq_space.time = tp->tcp_mstamp;
651 }
652
653 /* There is something which you must keep in mind when you analyze the
654 * behavior of the tp->ato delayed ack timeout interval. When a
655 * connection starts up, we want to ack as quickly as possible. The
656 * problem is that "good" TCP's do slow start at the beginning of data
657 * transmission. The means that until we send the first few ACK's the
658 * sender will sit on his end and only queue most of his data, because
659 * he can only send snd_cwnd unacked packets at any given time. For
660 * each ACK we send, he increments snd_cwnd and transmits more of his
661 * queue. -DaveM
662 */
663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
664 {
665 struct tcp_sock *tp = tcp_sk(sk);
666 struct inet_connection_sock *icsk = inet_csk(sk);
667 u32 now;
668
669 inet_csk_schedule_ack(sk);
670
671 tcp_measure_rcv_mss(sk, skb);
672
673 tcp_rcv_rtt_measure(tp);
674
675 now = tcp_jiffies32;
676
677 if (!icsk->icsk_ack.ato) {
678 /* The _first_ data packet received, initialize
679 * delayed ACK engine.
680 */
681 tcp_incr_quickack(sk);
682 icsk->icsk_ack.ato = TCP_ATO_MIN;
683 } else {
684 int m = now - icsk->icsk_ack.lrcvtime;
685
686 if (m <= TCP_ATO_MIN / 2) {
687 /* The fastest case is the first. */
688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
689 } else if (m < icsk->icsk_ack.ato) {
690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
691 if (icsk->icsk_ack.ato > icsk->icsk_rto)
692 icsk->icsk_ack.ato = icsk->icsk_rto;
693 } else if (m > icsk->icsk_rto) {
694 /* Too long gap. Apparently sender failed to
695 * restart window, so that we send ACKs quickly.
696 */
697 tcp_incr_quickack(sk);
698 sk_mem_reclaim(sk);
699 }
700 }
701 icsk->icsk_ack.lrcvtime = now;
702
703 tcp_ecn_check_ce(tp, skb);
704
705 if (skb->len >= 128)
706 tcp_grow_window(sk, skb);
707 }
708
709 /* Called to compute a smoothed rtt estimate. The data fed to this
710 * routine either comes from timestamps, or from segments that were
711 * known _not_ to have been retransmitted [see Karn/Partridge
712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713 * piece by Van Jacobson.
714 * NOTE: the next three routines used to be one big routine.
715 * To save cycles in the RFC 1323 implementation it was better to break
716 * it up into three procedures. -- erics
717 */
718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
719 {
720 struct tcp_sock *tp = tcp_sk(sk);
721 long m = mrtt_us; /* RTT */
722 u32 srtt = tp->srtt_us;
723
724 /* The following amusing code comes from Jacobson's
725 * article in SIGCOMM '88. Note that rtt and mdev
726 * are scaled versions of rtt and mean deviation.
727 * This is designed to be as fast as possible
728 * m stands for "measurement".
729 *
730 * On a 1990 paper the rto value is changed to:
731 * RTO = rtt + 4 * mdev
732 *
733 * Funny. This algorithm seems to be very broken.
734 * These formulae increase RTO, when it should be decreased, increase
735 * too slowly, when it should be increased quickly, decrease too quickly
736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 * does not matter how to _calculate_ it. Seems, it was trap
738 * that VJ failed to avoid. 8)
739 */
740 if (srtt != 0) {
741 m -= (srtt >> 3); /* m is now error in rtt est */
742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
743 if (m < 0) {
744 m = -m; /* m is now abs(error) */
745 m -= (tp->mdev_us >> 2); /* similar update on mdev */
746 /* This is similar to one of Eifel findings.
747 * Eifel blocks mdev updates when rtt decreases.
748 * This solution is a bit different: we use finer gain
749 * for mdev in this case (alpha*beta).
750 * Like Eifel it also prevents growth of rto,
751 * but also it limits too fast rto decreases,
752 * happening in pure Eifel.
753 */
754 if (m > 0)
755 m >>= 3;
756 } else {
757 m -= (tp->mdev_us >> 2); /* similar update on mdev */
758 }
759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
760 if (tp->mdev_us > tp->mdev_max_us) {
761 tp->mdev_max_us = tp->mdev_us;
762 if (tp->mdev_max_us > tp->rttvar_us)
763 tp->rttvar_us = tp->mdev_max_us;
764 }
765 if (after(tp->snd_una, tp->rtt_seq)) {
766 if (tp->mdev_max_us < tp->rttvar_us)
767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
768 tp->rtt_seq = tp->snd_nxt;
769 tp->mdev_max_us = tcp_rto_min_us(sk);
770 }
771 } else {
772 /* no previous measure. */
773 srtt = m << 3; /* take the measured time to be rtt */
774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
776 tp->mdev_max_us = tp->rttvar_us;
777 tp->rtt_seq = tp->snd_nxt;
778 }
779 tp->srtt_us = max(1U, srtt);
780 }
781
782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783 * Note: TCP stack does not yet implement pacing.
784 * FQ packet scheduler can be used to implement cheap but effective
785 * TCP pacing, to smooth the burst on large writes when packets
786 * in flight is significantly lower than cwnd (or rwin)
787 */
788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
790
791 static void tcp_update_pacing_rate(struct sock *sk)
792 {
793 const struct tcp_sock *tp = tcp_sk(sk);
794 u64 rate;
795
796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
798
799 /* current rate is (cwnd * mss) / srtt
800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 * In Congestion Avoidance phase, set it to 120 % the current rate.
802 *
803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 * end of slow start and should slow down.
806 */
807 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
808 rate *= sysctl_tcp_pacing_ss_ratio;
809 else
810 rate *= sysctl_tcp_pacing_ca_ratio;
811
812 rate *= max(tp->snd_cwnd, tp->packets_out);
813
814 if (likely(tp->srtt_us))
815 do_div(rate, tp->srtt_us);
816
817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 * without any lock. We want to make sure compiler wont store
819 * intermediate values in this location.
820 */
821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
822 sk->sk_max_pacing_rate);
823 }
824
825 /* Calculate rto without backoff. This is the second half of Van Jacobson's
826 * routine referred to above.
827 */
828 static void tcp_set_rto(struct sock *sk)
829 {
830 const struct tcp_sock *tp = tcp_sk(sk);
831 /* Old crap is replaced with new one. 8)
832 *
833 * More seriously:
834 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 * It cannot be less due to utterly erratic ACK generation made
836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 * to do with delayed acks, because at cwnd>2 true delack timeout
838 * is invisible. Actually, Linux-2.4 also generates erratic
839 * ACKs in some circumstances.
840 */
841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
842
843 /* 2. Fixups made earlier cannot be right.
844 * If we do not estimate RTO correctly without them,
845 * all the algo is pure shit and should be replaced
846 * with correct one. It is exactly, which we pretend to do.
847 */
848
849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 * guarantees that rto is higher.
851 */
852 tcp_bound_rto(sk);
853 }
854
855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
856 {
857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
858
859 if (!cwnd)
860 cwnd = TCP_INIT_CWND;
861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
862 }
863
864 /*
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
867 */
868 void tcp_disable_fack(struct tcp_sock *tp)
869 {
870 /* RFC3517 uses different metric in lost marker => reset on change */
871 if (tcp_is_fack(tp))
872 tp->lost_skb_hint = NULL;
873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881
882 static void tcp_update_reordering(struct sock *sk, const int metric,
883 const int ts)
884 {
885 struct tcp_sock *tp = tcp_sk(sk);
886 int mib_idx;
887
888 if (WARN_ON_ONCE(metric < 0))
889 return;
890
891 if (metric > tp->reordering) {
892 tp->reordering = min(sysctl_tcp_max_reordering, metric);
893
894 #if FASTRETRANS_DEBUG > 1
895 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
896 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
897 tp->reordering,
898 tp->fackets_out,
899 tp->sacked_out,
900 tp->undo_marker ? tp->undo_retrans : 0);
901 #endif
902 tcp_disable_fack(tp);
903 }
904
905 tp->rack.reord = 1;
906
907 /* This exciting event is worth to be remembered. 8) */
908 if (ts)
909 mib_idx = LINUX_MIB_TCPTSREORDER;
910 else if (tcp_is_reno(tp))
911 mib_idx = LINUX_MIB_TCPRENOREORDER;
912 else if (tcp_is_fack(tp))
913 mib_idx = LINUX_MIB_TCPFACKREORDER;
914 else
915 mib_idx = LINUX_MIB_TCPSACKREORDER;
916
917 NET_INC_STATS(sock_net(sk), mib_idx);
918 }
919
920 /* This must be called before lost_out is incremented */
921 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
922 {
923 if (!tp->retransmit_skb_hint ||
924 before(TCP_SKB_CB(skb)->seq,
925 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
926 tp->retransmit_skb_hint = skb;
927 }
928
929 /* Sum the number of packets on the wire we have marked as lost.
930 * There are two cases we care about here:
931 * a) Packet hasn't been marked lost (nor retransmitted),
932 * and this is the first loss.
933 * b) Packet has been marked both lost and retransmitted,
934 * and this means we think it was lost again.
935 */
936 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
937 {
938 __u8 sacked = TCP_SKB_CB(skb)->sacked;
939
940 if (!(sacked & TCPCB_LOST) ||
941 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
942 tp->lost += tcp_skb_pcount(skb);
943 }
944
945 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
946 {
947 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
948 tcp_verify_retransmit_hint(tp, skb);
949
950 tp->lost_out += tcp_skb_pcount(skb);
951 tcp_sum_lost(tp, skb);
952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 }
954 }
955
956 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
957 {
958 tcp_verify_retransmit_hint(tp, skb);
959
960 tcp_sum_lost(tp, skb);
961 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
962 tp->lost_out += tcp_skb_pcount(skb);
963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
964 }
965 }
966
967 /* This procedure tags the retransmission queue when SACKs arrive.
968 *
969 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
970 * Packets in queue with these bits set are counted in variables
971 * sacked_out, retrans_out and lost_out, correspondingly.
972 *
973 * Valid combinations are:
974 * Tag InFlight Description
975 * 0 1 - orig segment is in flight.
976 * S 0 - nothing flies, orig reached receiver.
977 * L 0 - nothing flies, orig lost by net.
978 * R 2 - both orig and retransmit are in flight.
979 * L|R 1 - orig is lost, retransmit is in flight.
980 * S|R 1 - orig reached receiver, retrans is still in flight.
981 * (L|S|R is logically valid, it could occur when L|R is sacked,
982 * but it is equivalent to plain S and code short-curcuits it to S.
983 * L|S is logically invalid, it would mean -1 packet in flight 8))
984 *
985 * These 6 states form finite state machine, controlled by the following events:
986 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
987 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
988 * 3. Loss detection event of two flavors:
989 * A. Scoreboard estimator decided the packet is lost.
990 * A'. Reno "three dupacks" marks head of queue lost.
991 * A''. Its FACK modification, head until snd.fack is lost.
992 * B. SACK arrives sacking SND.NXT at the moment, when the
993 * segment was retransmitted.
994 * 4. D-SACK added new rule: D-SACK changes any tag to S.
995 *
996 * It is pleasant to note, that state diagram turns out to be commutative,
997 * so that we are allowed not to be bothered by order of our actions,
998 * when multiple events arrive simultaneously. (see the function below).
999 *
1000 * Reordering detection.
1001 * --------------------
1002 * Reordering metric is maximal distance, which a packet can be displaced
1003 * in packet stream. With SACKs we can estimate it:
1004 *
1005 * 1. SACK fills old hole and the corresponding segment was not
1006 * ever retransmitted -> reordering. Alas, we cannot use it
1007 * when segment was retransmitted.
1008 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1009 * for retransmitted and already SACKed segment -> reordering..
1010 * Both of these heuristics are not used in Loss state, when we cannot
1011 * account for retransmits accurately.
1012 *
1013 * SACK block validation.
1014 * ----------------------
1015 *
1016 * SACK block range validation checks that the received SACK block fits to
1017 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1018 * Note that SND.UNA is not included to the range though being valid because
1019 * it means that the receiver is rather inconsistent with itself reporting
1020 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1021 * perfectly valid, however, in light of RFC2018 which explicitly states
1022 * that "SACK block MUST reflect the newest segment. Even if the newest
1023 * segment is going to be discarded ...", not that it looks very clever
1024 * in case of head skb. Due to potentional receiver driven attacks, we
1025 * choose to avoid immediate execution of a walk in write queue due to
1026 * reneging and defer head skb's loss recovery to standard loss recovery
1027 * procedure that will eventually trigger (nothing forbids us doing this).
1028 *
1029 * Implements also blockage to start_seq wrap-around. Problem lies in the
1030 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1031 * there's no guarantee that it will be before snd_nxt (n). The problem
1032 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1033 * wrap (s_w):
1034 *
1035 * <- outs wnd -> <- wrapzone ->
1036 * u e n u_w e_w s n_w
1037 * | | | | | | |
1038 * |<------------+------+----- TCP seqno space --------------+---------->|
1039 * ...-- <2^31 ->| |<--------...
1040 * ...---- >2^31 ------>| |<--------...
1041 *
1042 * Current code wouldn't be vulnerable but it's better still to discard such
1043 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1044 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1045 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1046 * equal to the ideal case (infinite seqno space without wrap caused issues).
1047 *
1048 * With D-SACK the lower bound is extended to cover sequence space below
1049 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1050 * again, D-SACK block must not to go across snd_una (for the same reason as
1051 * for the normal SACK blocks, explained above). But there all simplicity
1052 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1053 * fully below undo_marker they do not affect behavior in anyway and can
1054 * therefore be safely ignored. In rare cases (which are more or less
1055 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1056 * fragmentation and packet reordering past skb's retransmission. To consider
1057 * them correctly, the acceptable range must be extended even more though
1058 * the exact amount is rather hard to quantify. However, tp->max_window can
1059 * be used as an exaggerated estimate.
1060 */
1061 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1062 u32 start_seq, u32 end_seq)
1063 {
1064 /* Too far in future, or reversed (interpretation is ambiguous) */
1065 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1066 return false;
1067
1068 /* Nasty start_seq wrap-around check (see comments above) */
1069 if (!before(start_seq, tp->snd_nxt))
1070 return false;
1071
1072 /* In outstanding window? ...This is valid exit for D-SACKs too.
1073 * start_seq == snd_una is non-sensical (see comments above)
1074 */
1075 if (after(start_seq, tp->snd_una))
1076 return true;
1077
1078 if (!is_dsack || !tp->undo_marker)
1079 return false;
1080
1081 /* ...Then it's D-SACK, and must reside below snd_una completely */
1082 if (after(end_seq, tp->snd_una))
1083 return false;
1084
1085 if (!before(start_seq, tp->undo_marker))
1086 return true;
1087
1088 /* Too old */
1089 if (!after(end_seq, tp->undo_marker))
1090 return false;
1091
1092 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1093 * start_seq < undo_marker and end_seq >= undo_marker.
1094 */
1095 return !before(start_seq, end_seq - tp->max_window);
1096 }
1097
1098 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1099 struct tcp_sack_block_wire *sp, int num_sacks,
1100 u32 prior_snd_una)
1101 {
1102 struct tcp_sock *tp = tcp_sk(sk);
1103 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1104 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1105 bool dup_sack = false;
1106
1107 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1108 dup_sack = true;
1109 tcp_dsack_seen(tp);
1110 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1111 } else if (num_sacks > 1) {
1112 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1113 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1114
1115 if (!after(end_seq_0, end_seq_1) &&
1116 !before(start_seq_0, start_seq_1)) {
1117 dup_sack = true;
1118 tcp_dsack_seen(tp);
1119 NET_INC_STATS(sock_net(sk),
1120 LINUX_MIB_TCPDSACKOFORECV);
1121 }
1122 }
1123
1124 /* D-SACK for already forgotten data... Do dumb counting. */
1125 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1126 !after(end_seq_0, prior_snd_una) &&
1127 after(end_seq_0, tp->undo_marker))
1128 tp->undo_retrans--;
1129
1130 return dup_sack;
1131 }
1132
1133 struct tcp_sacktag_state {
1134 int reord;
1135 int fack_count;
1136 /* Timestamps for earliest and latest never-retransmitted segment
1137 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1138 * but congestion control should still get an accurate delay signal.
1139 */
1140 u64 first_sackt;
1141 u64 last_sackt;
1142 struct rate_sample *rate;
1143 int flag;
1144 };
1145
1146 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1147 * the incoming SACK may not exactly match but we can find smaller MSS
1148 * aligned portion of it that matches. Therefore we might need to fragment
1149 * which may fail and creates some hassle (caller must handle error case
1150 * returns).
1151 *
1152 * FIXME: this could be merged to shift decision code
1153 */
1154 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1155 u32 start_seq, u32 end_seq)
1156 {
1157 int err;
1158 bool in_sack;
1159 unsigned int pkt_len;
1160 unsigned int mss;
1161
1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1163 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1164
1165 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1166 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1167 mss = tcp_skb_mss(skb);
1168 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1169
1170 if (!in_sack) {
1171 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1172 if (pkt_len < mss)
1173 pkt_len = mss;
1174 } else {
1175 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1176 if (pkt_len < mss)
1177 return -EINVAL;
1178 }
1179
1180 /* Round if necessary so that SACKs cover only full MSSes
1181 * and/or the remaining small portion (if present)
1182 */
1183 if (pkt_len > mss) {
1184 unsigned int new_len = (pkt_len / mss) * mss;
1185 if (!in_sack && new_len < pkt_len)
1186 new_len += mss;
1187 pkt_len = new_len;
1188 }
1189
1190 if (pkt_len >= skb->len && !in_sack)
1191 return 0;
1192
1193 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1194 if (err < 0)
1195 return err;
1196 }
1197
1198 return in_sack;
1199 }
1200
1201 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1202 static u8 tcp_sacktag_one(struct sock *sk,
1203 struct tcp_sacktag_state *state, u8 sacked,
1204 u32 start_seq, u32 end_seq,
1205 int dup_sack, int pcount,
1206 u64 xmit_time)
1207 {
1208 struct tcp_sock *tp = tcp_sk(sk);
1209 int fack_count = state->fack_count;
1210
1211 /* Account D-SACK for retransmitted packet. */
1212 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1213 if (tp->undo_marker && tp->undo_retrans > 0 &&
1214 after(end_seq, tp->undo_marker))
1215 tp->undo_retrans--;
1216 if (sacked & TCPCB_SACKED_ACKED)
1217 state->reord = min(fack_count, state->reord);
1218 }
1219
1220 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1221 if (!after(end_seq, tp->snd_una))
1222 return sacked;
1223
1224 if (!(sacked & TCPCB_SACKED_ACKED)) {
1225 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1226
1227 if (sacked & TCPCB_SACKED_RETRANS) {
1228 /* If the segment is not tagged as lost,
1229 * we do not clear RETRANS, believing
1230 * that retransmission is still in flight.
1231 */
1232 if (sacked & TCPCB_LOST) {
1233 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1234 tp->lost_out -= pcount;
1235 tp->retrans_out -= pcount;
1236 }
1237 } else {
1238 if (!(sacked & TCPCB_RETRANS)) {
1239 /* New sack for not retransmitted frame,
1240 * which was in hole. It is reordering.
1241 */
1242 if (before(start_seq,
1243 tcp_highest_sack_seq(tp)))
1244 state->reord = min(fack_count,
1245 state->reord);
1246 if (!after(end_seq, tp->high_seq))
1247 state->flag |= FLAG_ORIG_SACK_ACKED;
1248 if (state->first_sackt == 0)
1249 state->first_sackt = xmit_time;
1250 state->last_sackt = xmit_time;
1251 }
1252
1253 if (sacked & TCPCB_LOST) {
1254 sacked &= ~TCPCB_LOST;
1255 tp->lost_out -= pcount;
1256 }
1257 }
1258
1259 sacked |= TCPCB_SACKED_ACKED;
1260 state->flag |= FLAG_DATA_SACKED;
1261 tp->sacked_out += pcount;
1262 tp->delivered += pcount; /* Out-of-order packets delivered */
1263
1264 fack_count += pcount;
1265
1266 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1267 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1268 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1269 tp->lost_cnt_hint += pcount;
1270
1271 if (fack_count > tp->fackets_out)
1272 tp->fackets_out = fack_count;
1273 }
1274
1275 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1276 * frames and clear it. undo_retrans is decreased above, L|R frames
1277 * are accounted above as well.
1278 */
1279 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1280 sacked &= ~TCPCB_SACKED_RETRANS;
1281 tp->retrans_out -= pcount;
1282 }
1283
1284 return sacked;
1285 }
1286
1287 /* Shift newly-SACKed bytes from this skb to the immediately previous
1288 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1289 */
1290 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1291 struct tcp_sacktag_state *state,
1292 unsigned int pcount, int shifted, int mss,
1293 bool dup_sack)
1294 {
1295 struct tcp_sock *tp = tcp_sk(sk);
1296 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1297 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1298 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1299
1300 BUG_ON(!pcount);
1301
1302 /* Adjust counters and hints for the newly sacked sequence
1303 * range but discard the return value since prev is already
1304 * marked. We must tag the range first because the seq
1305 * advancement below implicitly advances
1306 * tcp_highest_sack_seq() when skb is highest_sack.
1307 */
1308 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1309 start_seq, end_seq, dup_sack, pcount,
1310 skb->skb_mstamp);
1311 tcp_rate_skb_delivered(sk, skb, state->rate);
1312
1313 if (skb == tp->lost_skb_hint)
1314 tp->lost_cnt_hint += pcount;
1315
1316 TCP_SKB_CB(prev)->end_seq += shifted;
1317 TCP_SKB_CB(skb)->seq += shifted;
1318
1319 tcp_skb_pcount_add(prev, pcount);
1320 BUG_ON(tcp_skb_pcount(skb) < pcount);
1321 tcp_skb_pcount_add(skb, -pcount);
1322
1323 /* When we're adding to gso_segs == 1, gso_size will be zero,
1324 * in theory this shouldn't be necessary but as long as DSACK
1325 * code can come after this skb later on it's better to keep
1326 * setting gso_size to something.
1327 */
1328 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1329 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1330
1331 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1332 if (tcp_skb_pcount(skb) <= 1)
1333 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1334
1335 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1336 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1337
1338 if (skb->len > 0) {
1339 BUG_ON(!tcp_skb_pcount(skb));
1340 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1341 return false;
1342 }
1343
1344 /* Whole SKB was eaten :-) */
1345
1346 if (skb == tp->retransmit_skb_hint)
1347 tp->retransmit_skb_hint = prev;
1348 if (skb == tp->lost_skb_hint) {
1349 tp->lost_skb_hint = prev;
1350 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1351 }
1352
1353 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1354 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1355 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1356 TCP_SKB_CB(prev)->end_seq++;
1357
1358 if (skb == tcp_highest_sack(sk))
1359 tcp_advance_highest_sack(sk, skb);
1360
1361 tcp_skb_collapse_tstamp(prev, skb);
1362 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1363 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1364
1365 tcp_unlink_write_queue(skb, sk);
1366 sk_wmem_free_skb(sk, skb);
1367
1368 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1369
1370 return true;
1371 }
1372
1373 /* I wish gso_size would have a bit more sane initialization than
1374 * something-or-zero which complicates things
1375 */
1376 static int tcp_skb_seglen(const struct sk_buff *skb)
1377 {
1378 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1379 }
1380
1381 /* Shifting pages past head area doesn't work */
1382 static int skb_can_shift(const struct sk_buff *skb)
1383 {
1384 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1385 }
1386
1387 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1388 * skb.
1389 */
1390 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1391 struct tcp_sacktag_state *state,
1392 u32 start_seq, u32 end_seq,
1393 bool dup_sack)
1394 {
1395 struct tcp_sock *tp = tcp_sk(sk);
1396 struct sk_buff *prev;
1397 int mss;
1398 int pcount = 0;
1399 int len;
1400 int in_sack;
1401
1402 if (!sk_can_gso(sk))
1403 goto fallback;
1404
1405 /* Normally R but no L won't result in plain S */
1406 if (!dup_sack &&
1407 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1408 goto fallback;
1409 if (!skb_can_shift(skb))
1410 goto fallback;
1411 /* This frame is about to be dropped (was ACKed). */
1412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1413 goto fallback;
1414
1415 /* Can only happen with delayed DSACK + discard craziness */
1416 if (unlikely(skb == tcp_write_queue_head(sk)))
1417 goto fallback;
1418 prev = tcp_write_queue_prev(sk, skb);
1419
1420 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1421 goto fallback;
1422
1423 if (!tcp_skb_can_collapse_to(prev))
1424 goto fallback;
1425
1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1427 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1428
1429 if (in_sack) {
1430 len = skb->len;
1431 pcount = tcp_skb_pcount(skb);
1432 mss = tcp_skb_seglen(skb);
1433
1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 * drop this restriction as unnecessary
1436 */
1437 if (mss != tcp_skb_seglen(prev))
1438 goto fallback;
1439 } else {
1440 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1441 goto noop;
1442 /* CHECKME: This is non-MSS split case only?, this will
1443 * cause skipped skbs due to advancing loop btw, original
1444 * has that feature too
1445 */
1446 if (tcp_skb_pcount(skb) <= 1)
1447 goto noop;
1448
1449 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1450 if (!in_sack) {
1451 /* TODO: head merge to next could be attempted here
1452 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1453 * though it might not be worth of the additional hassle
1454 *
1455 * ...we can probably just fallback to what was done
1456 * previously. We could try merging non-SACKed ones
1457 * as well but it probably isn't going to buy off
1458 * because later SACKs might again split them, and
1459 * it would make skb timestamp tracking considerably
1460 * harder problem.
1461 */
1462 goto fallback;
1463 }
1464
1465 len = end_seq - TCP_SKB_CB(skb)->seq;
1466 BUG_ON(len < 0);
1467 BUG_ON(len > skb->len);
1468
1469 /* MSS boundaries should be honoured or else pcount will
1470 * severely break even though it makes things bit trickier.
1471 * Optimize common case to avoid most of the divides
1472 */
1473 mss = tcp_skb_mss(skb);
1474
1475 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1476 * drop this restriction as unnecessary
1477 */
1478 if (mss != tcp_skb_seglen(prev))
1479 goto fallback;
1480
1481 if (len == mss) {
1482 pcount = 1;
1483 } else if (len < mss) {
1484 goto noop;
1485 } else {
1486 pcount = len / mss;
1487 len = pcount * mss;
1488 }
1489 }
1490
1491 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1492 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1493 goto fallback;
1494
1495 if (!skb_shift(prev, skb, len))
1496 goto fallback;
1497 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1498 goto out;
1499
1500 /* Hole filled allows collapsing with the next as well, this is very
1501 * useful when hole on every nth skb pattern happens
1502 */
1503 if (prev == tcp_write_queue_tail(sk))
1504 goto out;
1505 skb = tcp_write_queue_next(sk, prev);
1506
1507 if (!skb_can_shift(skb) ||
1508 (skb == tcp_send_head(sk)) ||
1509 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1510 (mss != tcp_skb_seglen(skb)))
1511 goto out;
1512
1513 len = skb->len;
1514 if (skb_shift(prev, skb, len)) {
1515 pcount += tcp_skb_pcount(skb);
1516 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1517 }
1518
1519 out:
1520 state->fack_count += pcount;
1521 return prev;
1522
1523 noop:
1524 return skb;
1525
1526 fallback:
1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528 return NULL;
1529 }
1530
1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532 struct tcp_sack_block *next_dup,
1533 struct tcp_sacktag_state *state,
1534 u32 start_seq, u32 end_seq,
1535 bool dup_sack_in)
1536 {
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 struct sk_buff *tmp;
1539
1540 tcp_for_write_queue_from(skb, sk) {
1541 int in_sack = 0;
1542 bool dup_sack = dup_sack_in;
1543
1544 if (skb == tcp_send_head(sk))
1545 break;
1546
1547 /* queue is in-order => we can short-circuit the walk early */
1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1549 break;
1550
1551 if (next_dup &&
1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1553 in_sack = tcp_match_skb_to_sack(sk, skb,
1554 next_dup->start_seq,
1555 next_dup->end_seq);
1556 if (in_sack > 0)
1557 dup_sack = true;
1558 }
1559
1560 /* skb reference here is a bit tricky to get right, since
1561 * shifting can eat and free both this skb and the next,
1562 * so not even _safe variant of the loop is enough.
1563 */
1564 if (in_sack <= 0) {
1565 tmp = tcp_shift_skb_data(sk, skb, state,
1566 start_seq, end_seq, dup_sack);
1567 if (tmp) {
1568 if (tmp != skb) {
1569 skb = tmp;
1570 continue;
1571 }
1572
1573 in_sack = 0;
1574 } else {
1575 in_sack = tcp_match_skb_to_sack(sk, skb,
1576 start_seq,
1577 end_seq);
1578 }
1579 }
1580
1581 if (unlikely(in_sack < 0))
1582 break;
1583
1584 if (in_sack) {
1585 TCP_SKB_CB(skb)->sacked =
1586 tcp_sacktag_one(sk,
1587 state,
1588 TCP_SKB_CB(skb)->sacked,
1589 TCP_SKB_CB(skb)->seq,
1590 TCP_SKB_CB(skb)->end_seq,
1591 dup_sack,
1592 tcp_skb_pcount(skb),
1593 skb->skb_mstamp);
1594 tcp_rate_skb_delivered(sk, skb, state->rate);
1595
1596 if (!before(TCP_SKB_CB(skb)->seq,
1597 tcp_highest_sack_seq(tp)))
1598 tcp_advance_highest_sack(sk, skb);
1599 }
1600
1601 state->fack_count += tcp_skb_pcount(skb);
1602 }
1603 return skb;
1604 }
1605
1606 /* Avoid all extra work that is being done by sacktag while walking in
1607 * a normal way
1608 */
1609 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1610 struct tcp_sacktag_state *state,
1611 u32 skip_to_seq)
1612 {
1613 tcp_for_write_queue_from(skb, sk) {
1614 if (skb == tcp_send_head(sk))
1615 break;
1616
1617 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1618 break;
1619
1620 state->fack_count += tcp_skb_pcount(skb);
1621 }
1622 return skb;
1623 }
1624
1625 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1626 struct sock *sk,
1627 struct tcp_sack_block *next_dup,
1628 struct tcp_sacktag_state *state,
1629 u32 skip_to_seq)
1630 {
1631 if (!next_dup)
1632 return skb;
1633
1634 if (before(next_dup->start_seq, skip_to_seq)) {
1635 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1636 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1637 next_dup->start_seq, next_dup->end_seq,
1638 1);
1639 }
1640
1641 return skb;
1642 }
1643
1644 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1645 {
1646 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1647 }
1648
1649 static int
1650 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1651 u32 prior_snd_una, struct tcp_sacktag_state *state)
1652 {
1653 struct tcp_sock *tp = tcp_sk(sk);
1654 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1655 TCP_SKB_CB(ack_skb)->sacked);
1656 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1657 struct tcp_sack_block sp[TCP_NUM_SACKS];
1658 struct tcp_sack_block *cache;
1659 struct sk_buff *skb;
1660 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1661 int used_sacks;
1662 bool found_dup_sack = false;
1663 int i, j;
1664 int first_sack_index;
1665
1666 state->flag = 0;
1667 state->reord = tp->packets_out;
1668
1669 if (!tp->sacked_out) {
1670 if (WARN_ON(tp->fackets_out))
1671 tp->fackets_out = 0;
1672 tcp_highest_sack_reset(sk);
1673 }
1674
1675 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1676 num_sacks, prior_snd_una);
1677 if (found_dup_sack) {
1678 state->flag |= FLAG_DSACKING_ACK;
1679 tp->delivered++; /* A spurious retransmission is delivered */
1680 }
1681
1682 /* Eliminate too old ACKs, but take into
1683 * account more or less fresh ones, they can
1684 * contain valid SACK info.
1685 */
1686 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1687 return 0;
1688
1689 if (!tp->packets_out)
1690 goto out;
1691
1692 used_sacks = 0;
1693 first_sack_index = 0;
1694 for (i = 0; i < num_sacks; i++) {
1695 bool dup_sack = !i && found_dup_sack;
1696
1697 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1698 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1699
1700 if (!tcp_is_sackblock_valid(tp, dup_sack,
1701 sp[used_sacks].start_seq,
1702 sp[used_sacks].end_seq)) {
1703 int mib_idx;
1704
1705 if (dup_sack) {
1706 if (!tp->undo_marker)
1707 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1708 else
1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1710 } else {
1711 /* Don't count olds caused by ACK reordering */
1712 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1713 !after(sp[used_sacks].end_seq, tp->snd_una))
1714 continue;
1715 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1716 }
1717
1718 NET_INC_STATS(sock_net(sk), mib_idx);
1719 if (i == 0)
1720 first_sack_index = -1;
1721 continue;
1722 }
1723
1724 /* Ignore very old stuff early */
1725 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1726 continue;
1727
1728 used_sacks++;
1729 }
1730
1731 /* order SACK blocks to allow in order walk of the retrans queue */
1732 for (i = used_sacks - 1; i > 0; i--) {
1733 for (j = 0; j < i; j++) {
1734 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1735 swap(sp[j], sp[j + 1]);
1736
1737 /* Track where the first SACK block goes to */
1738 if (j == first_sack_index)
1739 first_sack_index = j + 1;
1740 }
1741 }
1742 }
1743
1744 skb = tcp_write_queue_head(sk);
1745 state->fack_count = 0;
1746 i = 0;
1747
1748 if (!tp->sacked_out) {
1749 /* It's already past, so skip checking against it */
1750 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1751 } else {
1752 cache = tp->recv_sack_cache;
1753 /* Skip empty blocks in at head of the cache */
1754 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1755 !cache->end_seq)
1756 cache++;
1757 }
1758
1759 while (i < used_sacks) {
1760 u32 start_seq = sp[i].start_seq;
1761 u32 end_seq = sp[i].end_seq;
1762 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1763 struct tcp_sack_block *next_dup = NULL;
1764
1765 if (found_dup_sack && ((i + 1) == first_sack_index))
1766 next_dup = &sp[i + 1];
1767
1768 /* Skip too early cached blocks */
1769 while (tcp_sack_cache_ok(tp, cache) &&
1770 !before(start_seq, cache->end_seq))
1771 cache++;
1772
1773 /* Can skip some work by looking recv_sack_cache? */
1774 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1775 after(end_seq, cache->start_seq)) {
1776
1777 /* Head todo? */
1778 if (before(start_seq, cache->start_seq)) {
1779 skb = tcp_sacktag_skip(skb, sk, state,
1780 start_seq);
1781 skb = tcp_sacktag_walk(skb, sk, next_dup,
1782 state,
1783 start_seq,
1784 cache->start_seq,
1785 dup_sack);
1786 }
1787
1788 /* Rest of the block already fully processed? */
1789 if (!after(end_seq, cache->end_seq))
1790 goto advance_sp;
1791
1792 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1793 state,
1794 cache->end_seq);
1795
1796 /* ...tail remains todo... */
1797 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1798 /* ...but better entrypoint exists! */
1799 skb = tcp_highest_sack(sk);
1800 if (!skb)
1801 break;
1802 state->fack_count = tp->fackets_out;
1803 cache++;
1804 goto walk;
1805 }
1806
1807 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1808 /* Check overlap against next cached too (past this one already) */
1809 cache++;
1810 continue;
1811 }
1812
1813 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1814 skb = tcp_highest_sack(sk);
1815 if (!skb)
1816 break;
1817 state->fack_count = tp->fackets_out;
1818 }
1819 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1820
1821 walk:
1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1823 start_seq, end_seq, dup_sack);
1824
1825 advance_sp:
1826 i++;
1827 }
1828
1829 /* Clear the head of the cache sack blocks so we can skip it next time */
1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1831 tp->recv_sack_cache[i].start_seq = 0;
1832 tp->recv_sack_cache[i].end_seq = 0;
1833 }
1834 for (j = 0; j < used_sacks; j++)
1835 tp->recv_sack_cache[i++] = sp[j];
1836
1837 if ((state->reord < tp->fackets_out) &&
1838 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1839 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1840
1841 tcp_verify_left_out(tp);
1842 out:
1843
1844 #if FASTRETRANS_DEBUG > 0
1845 WARN_ON((int)tp->sacked_out < 0);
1846 WARN_ON((int)tp->lost_out < 0);
1847 WARN_ON((int)tp->retrans_out < 0);
1848 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1849 #endif
1850 return state->flag;
1851 }
1852
1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1854 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1855 */
1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1857 {
1858 u32 holes;
1859
1860 holes = max(tp->lost_out, 1U);
1861 holes = min(holes, tp->packets_out);
1862
1863 if ((tp->sacked_out + holes) > tp->packets_out) {
1864 tp->sacked_out = tp->packets_out - holes;
1865 return true;
1866 }
1867 return false;
1868 }
1869
1870 /* If we receive more dupacks than we expected counting segments
1871 * in assumption of absent reordering, interpret this as reordering.
1872 * The only another reason could be bug in receiver TCP.
1873 */
1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1875 {
1876 struct tcp_sock *tp = tcp_sk(sk);
1877 if (tcp_limit_reno_sacked(tp))
1878 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1879 }
1880
1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1882
1883 static void tcp_add_reno_sack(struct sock *sk)
1884 {
1885 struct tcp_sock *tp = tcp_sk(sk);
1886 u32 prior_sacked = tp->sacked_out;
1887
1888 tp->sacked_out++;
1889 tcp_check_reno_reordering(sk, 0);
1890 if (tp->sacked_out > prior_sacked)
1891 tp->delivered++; /* Some out-of-order packet is delivered */
1892 tcp_verify_left_out(tp);
1893 }
1894
1895 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1896
1897 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1898 {
1899 struct tcp_sock *tp = tcp_sk(sk);
1900
1901 if (acked > 0) {
1902 /* One ACK acked hole. The rest eat duplicate ACKs. */
1903 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1904 if (acked - 1 >= tp->sacked_out)
1905 tp->sacked_out = 0;
1906 else
1907 tp->sacked_out -= acked - 1;
1908 }
1909 tcp_check_reno_reordering(sk, acked);
1910 tcp_verify_left_out(tp);
1911 }
1912
1913 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1914 {
1915 tp->sacked_out = 0;
1916 }
1917
1918 void tcp_clear_retrans(struct tcp_sock *tp)
1919 {
1920 tp->retrans_out = 0;
1921 tp->lost_out = 0;
1922 tp->undo_marker = 0;
1923 tp->undo_retrans = -1;
1924 tp->fackets_out = 0;
1925 tp->sacked_out = 0;
1926 }
1927
1928 static inline void tcp_init_undo(struct tcp_sock *tp)
1929 {
1930 tp->undo_marker = tp->snd_una;
1931 /* Retransmission still in flight may cause DSACKs later. */
1932 tp->undo_retrans = tp->retrans_out ? : -1;
1933 }
1934
1935 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1936 * and reset tags completely, otherwise preserve SACKs. If receiver
1937 * dropped its ofo queue, we will know this due to reneging detection.
1938 */
1939 void tcp_enter_loss(struct sock *sk)
1940 {
1941 const struct inet_connection_sock *icsk = inet_csk(sk);
1942 struct tcp_sock *tp = tcp_sk(sk);
1943 struct net *net = sock_net(sk);
1944 struct sk_buff *skb;
1945 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1946 bool is_reneg; /* is receiver reneging on SACKs? */
1947 bool mark_lost;
1948
1949 /* Reduce ssthresh if it has not yet been made inside this window. */
1950 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1951 !after(tp->high_seq, tp->snd_una) ||
1952 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1953 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1954 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1955 tcp_ca_event(sk, CA_EVENT_LOSS);
1956 tcp_init_undo(tp);
1957 }
1958 tp->snd_cwnd = 1;
1959 tp->snd_cwnd_cnt = 0;
1960 tp->snd_cwnd_stamp = tcp_jiffies32;
1961
1962 tp->retrans_out = 0;
1963 tp->lost_out = 0;
1964
1965 if (tcp_is_reno(tp))
1966 tcp_reset_reno_sack(tp);
1967
1968 skb = tcp_write_queue_head(sk);
1969 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1970 if (is_reneg) {
1971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1972 tp->sacked_out = 0;
1973 tp->fackets_out = 0;
1974 }
1975 tcp_clear_all_retrans_hints(tp);
1976
1977 tcp_for_write_queue(skb, sk) {
1978 if (skb == tcp_send_head(sk))
1979 break;
1980
1981 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1982 is_reneg);
1983 if (mark_lost)
1984 tcp_sum_lost(tp, skb);
1985 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1986 if (mark_lost) {
1987 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1988 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1989 tp->lost_out += tcp_skb_pcount(skb);
1990 }
1991 }
1992 tcp_verify_left_out(tp);
1993
1994 /* Timeout in disordered state after receiving substantial DUPACKs
1995 * suggests that the degree of reordering is over-estimated.
1996 */
1997 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1998 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1999 tp->reordering = min_t(unsigned int, tp->reordering,
2000 net->ipv4.sysctl_tcp_reordering);
2001 tcp_set_ca_state(sk, TCP_CA_Loss);
2002 tp->high_seq = tp->snd_nxt;
2003 tcp_ecn_queue_cwr(tp);
2004
2005 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2006 * loss recovery is underway except recurring timeout(s) on
2007 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2008 *
2009 * In theory F-RTO can be used repeatedly during loss recovery.
2010 * In practice this interacts badly with broken middle-boxes that
2011 * falsely raise the receive window, which results in repeated
2012 * timeouts and stop-and-go behavior.
2013 */
2014 tp->frto = sysctl_tcp_frto &&
2015 (new_recovery || icsk->icsk_retransmits) &&
2016 !inet_csk(sk)->icsk_mtup.probe_size;
2017 }
2018
2019 /* If ACK arrived pointing to a remembered SACK, it means that our
2020 * remembered SACKs do not reflect real state of receiver i.e.
2021 * receiver _host_ is heavily congested (or buggy).
2022 *
2023 * To avoid big spurious retransmission bursts due to transient SACK
2024 * scoreboard oddities that look like reneging, we give the receiver a
2025 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2026 * restore sanity to the SACK scoreboard. If the apparent reneging
2027 * persists until this RTO then we'll clear the SACK scoreboard.
2028 */
2029 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2030 {
2031 if (flag & FLAG_SACK_RENEGING) {
2032 struct tcp_sock *tp = tcp_sk(sk);
2033 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2034 msecs_to_jiffies(10));
2035
2036 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2037 delay, TCP_RTO_MAX);
2038 return true;
2039 }
2040 return false;
2041 }
2042
2043 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2044 {
2045 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2046 }
2047
2048 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2049 * counter when SACK is enabled (without SACK, sacked_out is used for
2050 * that purpose).
2051 *
2052 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2053 * segments up to the highest received SACK block so far and holes in
2054 * between them.
2055 *
2056 * With reordering, holes may still be in flight, so RFC3517 recovery
2057 * uses pure sacked_out (total number of SACKed segments) even though
2058 * it violates the RFC that uses duplicate ACKs, often these are equal
2059 * but when e.g. out-of-window ACKs or packet duplication occurs,
2060 * they differ. Since neither occurs due to loss, TCP should really
2061 * ignore them.
2062 */
2063 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2064 {
2065 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2066 }
2067
2068 /* Linux NewReno/SACK/FACK/ECN state machine.
2069 * --------------------------------------
2070 *
2071 * "Open" Normal state, no dubious events, fast path.
2072 * "Disorder" In all the respects it is "Open",
2073 * but requires a bit more attention. It is entered when
2074 * we see some SACKs or dupacks. It is split of "Open"
2075 * mainly to move some processing from fast path to slow one.
2076 * "CWR" CWND was reduced due to some Congestion Notification event.
2077 * It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery" CWND was reduced, we are fast-retransmitting.
2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 * * SACK
2085 * * Duplicate ACK.
2086 * * ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 * in_flight = packets_out - left_out + retrans_out
2091 *
2092 * packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 * retrans_out is number of retransmitted segments.
2095 *
2096 * left_out is number of segments left network, but not ACKed yet.
2097 *
2098 * left_out = sacked_out + lost_out
2099 *
2100 * sacked_out: Packets, which arrived to receiver out of order
2101 * and hence not ACKed. With SACKs this number is simply
2102 * amount of SACKed data. Even without SACKs
2103 * it is easy to give pretty reliable estimate of this number,
2104 * counting duplicate ACKs.
2105 *
2106 * lost_out: Packets lost by network. TCP has no explicit
2107 * "loss notification" feedback from network (for now).
2108 * It means that this number can be only _guessed_.
2109 * Actually, it is the heuristics to predict lossage that
2110 * distinguishes different algorithms.
2111 *
2112 * F.e. after RTO, when all the queue is considered as lost,
2113 * lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 * Essentially, we have now a few algorithms detecting
2116 * lost packets.
2117 *
2118 * If the receiver supports SACK:
2119 *
2120 * RFC6675/3517: It is the conventional algorithm. A packet is
2121 * considered lost if the number of higher sequence packets
2122 * SACKed is greater than or equal the DUPACK thoreshold
2123 * (reordering). This is implemented in tcp_mark_head_lost and
2124 * tcp_update_scoreboard.
2125 *
2126 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2127 * (2017-) that checks timing instead of counting DUPACKs.
2128 * Essentially a packet is considered lost if it's not S/ACKed
2129 * after RTT + reordering_window, where both metrics are
2130 * dynamically measured and adjusted. This is implemented in
2131 * tcp_rack_mark_lost.
2132 *
2133 * FACK (Disabled by default. Subsumbed by RACK):
2134 * It is the simplest heuristics. As soon as we decided
2135 * that something is lost, we decide that _all_ not SACKed
2136 * packets until the most forward SACK are lost. I.e.
2137 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2138 * It is absolutely correct estimate, if network does not reorder
2139 * packets. And it loses any connection to reality when reordering
2140 * takes place. We use FACK by default until reordering
2141 * is suspected on the path to this destination.
2142 *
2143 * If the receiver does not support SACK:
2144 *
2145 * NewReno (RFC6582): in Recovery we assume that one segment
2146 * is lost (classic Reno). While we are in Recovery and
2147 * a partial ACK arrives, we assume that one more packet
2148 * is lost (NewReno). This heuristics are the same in NewReno
2149 * and SACK.
2150 *
2151 * Really tricky (and requiring careful tuning) part of algorithm
2152 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2153 * The first determines the moment _when_ we should reduce CWND and,
2154 * hence, slow down forward transmission. In fact, it determines the moment
2155 * when we decide that hole is caused by loss, rather than by a reorder.
2156 *
2157 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2158 * holes, caused by lost packets.
2159 *
2160 * And the most logically complicated part of algorithm is undo
2161 * heuristics. We detect false retransmits due to both too early
2162 * fast retransmit (reordering) and underestimated RTO, analyzing
2163 * timestamps and D-SACKs. When we detect that some segments were
2164 * retransmitted by mistake and CWND reduction was wrong, we undo
2165 * window reduction and abort recovery phase. This logic is hidden
2166 * inside several functions named tcp_try_undo_<something>.
2167 */
2168
2169 /* This function decides, when we should leave Disordered state
2170 * and enter Recovery phase, reducing congestion window.
2171 *
2172 * Main question: may we further continue forward transmission
2173 * with the same cwnd?
2174 */
2175 static bool tcp_time_to_recover(struct sock *sk, int flag)
2176 {
2177 struct tcp_sock *tp = tcp_sk(sk);
2178
2179 /* Trick#1: The loss is proven. */
2180 if (tp->lost_out)
2181 return true;
2182
2183 /* Not-A-Trick#2 : Classic rule... */
2184 if (tcp_dupack_heuristics(tp) > tp->reordering)
2185 return true;
2186
2187 return false;
2188 }
2189
2190 /* Detect loss in event "A" above by marking head of queue up as lost.
2191 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2192 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2193 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2194 * the maximum SACKed segments to pass before reaching this limit.
2195 */
2196 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2197 {
2198 struct tcp_sock *tp = tcp_sk(sk);
2199 struct sk_buff *skb;
2200 int cnt, oldcnt, lost;
2201 unsigned int mss;
2202 /* Use SACK to deduce losses of new sequences sent during recovery */
2203 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2204
2205 WARN_ON(packets > tp->packets_out);
2206 if (tp->lost_skb_hint) {
2207 skb = tp->lost_skb_hint;
2208 cnt = tp->lost_cnt_hint;
2209 /* Head already handled? */
2210 if (mark_head && skb != tcp_write_queue_head(sk))
2211 return;
2212 } else {
2213 skb = tcp_write_queue_head(sk);
2214 cnt = 0;
2215 }
2216
2217 tcp_for_write_queue_from(skb, sk) {
2218 if (skb == tcp_send_head(sk))
2219 break;
2220 /* TODO: do this better */
2221 /* this is not the most efficient way to do this... */
2222 tp->lost_skb_hint = skb;
2223 tp->lost_cnt_hint = cnt;
2224
2225 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2226 break;
2227
2228 oldcnt = cnt;
2229 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2231 cnt += tcp_skb_pcount(skb);
2232
2233 if (cnt > packets) {
2234 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2235 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2236 (oldcnt >= packets))
2237 break;
2238
2239 mss = tcp_skb_mss(skb);
2240 /* If needed, chop off the prefix to mark as lost. */
2241 lost = (packets - oldcnt) * mss;
2242 if (lost < skb->len &&
2243 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2244 break;
2245 cnt = packets;
2246 }
2247
2248 tcp_skb_mark_lost(tp, skb);
2249
2250 if (mark_head)
2251 break;
2252 }
2253 tcp_verify_left_out(tp);
2254 }
2255
2256 /* Account newly detected lost packet(s) */
2257
2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2259 {
2260 struct tcp_sock *tp = tcp_sk(sk);
2261
2262 if (tcp_is_reno(tp)) {
2263 tcp_mark_head_lost(sk, 1, 1);
2264 } else if (tcp_is_fack(tp)) {
2265 int lost = tp->fackets_out - tp->reordering;
2266 if (lost <= 0)
2267 lost = 1;
2268 tcp_mark_head_lost(sk, lost, 0);
2269 } else {
2270 int sacked_upto = tp->sacked_out - tp->reordering;
2271 if (sacked_upto >= 0)
2272 tcp_mark_head_lost(sk, sacked_upto, 0);
2273 else if (fast_rexmit)
2274 tcp_mark_head_lost(sk, 1, 1);
2275 }
2276 }
2277
2278 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2279 {
2280 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2281 before(tp->rx_opt.rcv_tsecr, when);
2282 }
2283
2284 /* skb is spurious retransmitted if the returned timestamp echo
2285 * reply is prior to the skb transmission time
2286 */
2287 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2288 const struct sk_buff *skb)
2289 {
2290 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2291 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2292 }
2293
2294 /* Nothing was retransmitted or returned timestamp is less
2295 * than timestamp of the first retransmission.
2296 */
2297 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2298 {
2299 return !tp->retrans_stamp ||
2300 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2301 }
2302
2303 /* Undo procedures. */
2304
2305 /* We can clear retrans_stamp when there are no retransmissions in the
2306 * window. It would seem that it is trivially available for us in
2307 * tp->retrans_out, however, that kind of assumptions doesn't consider
2308 * what will happen if errors occur when sending retransmission for the
2309 * second time. ...It could the that such segment has only
2310 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2311 * the head skb is enough except for some reneging corner cases that
2312 * are not worth the effort.
2313 *
2314 * Main reason for all this complexity is the fact that connection dying
2315 * time now depends on the validity of the retrans_stamp, in particular,
2316 * that successive retransmissions of a segment must not advance
2317 * retrans_stamp under any conditions.
2318 */
2319 static bool tcp_any_retrans_done(const struct sock *sk)
2320 {
2321 const struct tcp_sock *tp = tcp_sk(sk);
2322 struct sk_buff *skb;
2323
2324 if (tp->retrans_out)
2325 return true;
2326
2327 skb = tcp_write_queue_head(sk);
2328 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2329 return true;
2330
2331 return false;
2332 }
2333
2334 #if FASTRETRANS_DEBUG > 1
2335 static void DBGUNDO(struct sock *sk, const char *msg)
2336 {
2337 struct tcp_sock *tp = tcp_sk(sk);
2338 struct inet_sock *inet = inet_sk(sk);
2339
2340 if (sk->sk_family == AF_INET) {
2341 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2342 msg,
2343 &inet->inet_daddr, ntohs(inet->inet_dport),
2344 tp->snd_cwnd, tcp_left_out(tp),
2345 tp->snd_ssthresh, tp->prior_ssthresh,
2346 tp->packets_out);
2347 }
2348 #if IS_ENABLED(CONFIG_IPV6)
2349 else if (sk->sk_family == AF_INET6) {
2350 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2351 msg,
2352 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2353 tp->snd_cwnd, tcp_left_out(tp),
2354 tp->snd_ssthresh, tp->prior_ssthresh,
2355 tp->packets_out);
2356 }
2357 #endif
2358 }
2359 #else
2360 #define DBGUNDO(x...) do { } while (0)
2361 #endif
2362
2363 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2364 {
2365 struct tcp_sock *tp = tcp_sk(sk);
2366
2367 if (unmark_loss) {
2368 struct sk_buff *skb;
2369
2370 tcp_for_write_queue(skb, sk) {
2371 if (skb == tcp_send_head(sk))
2372 break;
2373 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2374 }
2375 tp->lost_out = 0;
2376 tcp_clear_all_retrans_hints(tp);
2377 }
2378
2379 if (tp->prior_ssthresh) {
2380 const struct inet_connection_sock *icsk = inet_csk(sk);
2381
2382 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2383
2384 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2385 tp->snd_ssthresh = tp->prior_ssthresh;
2386 tcp_ecn_withdraw_cwr(tp);
2387 }
2388 }
2389 tp->snd_cwnd_stamp = tcp_jiffies32;
2390 tp->undo_marker = 0;
2391 }
2392
2393 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2394 {
2395 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2396 }
2397
2398 /* People celebrate: "We love our President!" */
2399 static bool tcp_try_undo_recovery(struct sock *sk)
2400 {
2401 struct tcp_sock *tp = tcp_sk(sk);
2402
2403 if (tcp_may_undo(tp)) {
2404 int mib_idx;
2405
2406 /* Happy end! We did not retransmit anything
2407 * or our original transmission succeeded.
2408 */
2409 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2410 tcp_undo_cwnd_reduction(sk, false);
2411 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2412 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2413 else
2414 mib_idx = LINUX_MIB_TCPFULLUNDO;
2415
2416 NET_INC_STATS(sock_net(sk), mib_idx);
2417 }
2418 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2419 /* Hold old state until something *above* high_seq
2420 * is ACKed. For Reno it is MUST to prevent false
2421 * fast retransmits (RFC2582). SACK TCP is safe. */
2422 if (!tcp_any_retrans_done(sk))
2423 tp->retrans_stamp = 0;
2424 return true;
2425 }
2426 tcp_set_ca_state(sk, TCP_CA_Open);
2427 return false;
2428 }
2429
2430 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2431 static bool tcp_try_undo_dsack(struct sock *sk)
2432 {
2433 struct tcp_sock *tp = tcp_sk(sk);
2434
2435 if (tp->undo_marker && !tp->undo_retrans) {
2436 DBGUNDO(sk, "D-SACK");
2437 tcp_undo_cwnd_reduction(sk, false);
2438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2439 return true;
2440 }
2441 return false;
2442 }
2443
2444 /* Undo during loss recovery after partial ACK or using F-RTO. */
2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2446 {
2447 struct tcp_sock *tp = tcp_sk(sk);
2448
2449 if (frto_undo || tcp_may_undo(tp)) {
2450 tcp_undo_cwnd_reduction(sk, true);
2451
2452 DBGUNDO(sk, "partial loss");
2453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2454 if (frto_undo)
2455 NET_INC_STATS(sock_net(sk),
2456 LINUX_MIB_TCPSPURIOUSRTOS);
2457 inet_csk(sk)->icsk_retransmits = 0;
2458 if (frto_undo || tcp_is_sack(tp))
2459 tcp_set_ca_state(sk, TCP_CA_Open);
2460 return true;
2461 }
2462 return false;
2463 }
2464
2465 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2466 * It computes the number of packets to send (sndcnt) based on packets newly
2467 * delivered:
2468 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2469 * cwnd reductions across a full RTT.
2470 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2471 * But when the retransmits are acked without further losses, PRR
2472 * slow starts cwnd up to ssthresh to speed up the recovery.
2473 */
2474 static void tcp_init_cwnd_reduction(struct sock *sk)
2475 {
2476 struct tcp_sock *tp = tcp_sk(sk);
2477
2478 tp->high_seq = tp->snd_nxt;
2479 tp->tlp_high_seq = 0;
2480 tp->snd_cwnd_cnt = 0;
2481 tp->prior_cwnd = tp->snd_cwnd;
2482 tp->prr_delivered = 0;
2483 tp->prr_out = 0;
2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2485 tcp_ecn_queue_cwr(tp);
2486 }
2487
2488 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2489 {
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 int sndcnt = 0;
2492 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2493
2494 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2495 return;
2496
2497 tp->prr_delivered += newly_acked_sacked;
2498 if (delta < 0) {
2499 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2500 tp->prior_cwnd - 1;
2501 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2502 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2503 !(flag & FLAG_LOST_RETRANS)) {
2504 sndcnt = min_t(int, delta,
2505 max_t(int, tp->prr_delivered - tp->prr_out,
2506 newly_acked_sacked) + 1);
2507 } else {
2508 sndcnt = min(delta, newly_acked_sacked);
2509 }
2510 /* Force a fast retransmit upon entering fast recovery */
2511 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2512 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2513 }
2514
2515 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2516 {
2517 struct tcp_sock *tp = tcp_sk(sk);
2518
2519 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2520 return;
2521
2522 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2523 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2524 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2525 tp->snd_cwnd = tp->snd_ssthresh;
2526 tp->snd_cwnd_stamp = tcp_jiffies32;
2527 }
2528 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2529 }
2530
2531 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2532 void tcp_enter_cwr(struct sock *sk)
2533 {
2534 struct tcp_sock *tp = tcp_sk(sk);
2535
2536 tp->prior_ssthresh = 0;
2537 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2538 tp->undo_marker = 0;
2539 tcp_init_cwnd_reduction(sk);
2540 tcp_set_ca_state(sk, TCP_CA_CWR);
2541 }
2542 }
2543 EXPORT_SYMBOL(tcp_enter_cwr);
2544
2545 static void tcp_try_keep_open(struct sock *sk)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 int state = TCP_CA_Open;
2549
2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2551 state = TCP_CA_Disorder;
2552
2553 if (inet_csk(sk)->icsk_ca_state != state) {
2554 tcp_set_ca_state(sk, state);
2555 tp->high_seq = tp->snd_nxt;
2556 }
2557 }
2558
2559 static void tcp_try_to_open(struct sock *sk, int flag)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562
2563 tcp_verify_left_out(tp);
2564
2565 if (!tcp_any_retrans_done(sk))
2566 tp->retrans_stamp = 0;
2567
2568 if (flag & FLAG_ECE)
2569 tcp_enter_cwr(sk);
2570
2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2572 tcp_try_keep_open(sk);
2573 }
2574 }
2575
2576 static void tcp_mtup_probe_failed(struct sock *sk)
2577 {
2578 struct inet_connection_sock *icsk = inet_csk(sk);
2579
2580 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2581 icsk->icsk_mtup.probe_size = 0;
2582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2583 }
2584
2585 static void tcp_mtup_probe_success(struct sock *sk)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588 struct inet_connection_sock *icsk = inet_csk(sk);
2589
2590 /* FIXME: breaks with very large cwnd */
2591 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2592 tp->snd_cwnd = tp->snd_cwnd *
2593 tcp_mss_to_mtu(sk, tp->mss_cache) /
2594 icsk->icsk_mtup.probe_size;
2595 tp->snd_cwnd_cnt = 0;
2596 tp->snd_cwnd_stamp = tcp_jiffies32;
2597 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2598
2599 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2600 icsk->icsk_mtup.probe_size = 0;
2601 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2603 }
2604
2605 /* Do a simple retransmit without using the backoff mechanisms in
2606 * tcp_timer. This is used for path mtu discovery.
2607 * The socket is already locked here.
2608 */
2609 void tcp_simple_retransmit(struct sock *sk)
2610 {
2611 const struct inet_connection_sock *icsk = inet_csk(sk);
2612 struct tcp_sock *tp = tcp_sk(sk);
2613 struct sk_buff *skb;
2614 unsigned int mss = tcp_current_mss(sk);
2615 u32 prior_lost = tp->lost_out;
2616
2617 tcp_for_write_queue(skb, sk) {
2618 if (skb == tcp_send_head(sk))
2619 break;
2620 if (tcp_skb_seglen(skb) > mss &&
2621 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2622 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2624 tp->retrans_out -= tcp_skb_pcount(skb);
2625 }
2626 tcp_skb_mark_lost_uncond_verify(tp, skb);
2627 }
2628 }
2629
2630 tcp_clear_retrans_hints_partial(tp);
2631
2632 if (prior_lost == tp->lost_out)
2633 return;
2634
2635 if (tcp_is_reno(tp))
2636 tcp_limit_reno_sacked(tp);
2637
2638 tcp_verify_left_out(tp);
2639
2640 /* Don't muck with the congestion window here.
2641 * Reason is that we do not increase amount of _data_
2642 * in network, but units changed and effective
2643 * cwnd/ssthresh really reduced now.
2644 */
2645 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2646 tp->high_seq = tp->snd_nxt;
2647 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2648 tp->prior_ssthresh = 0;
2649 tp->undo_marker = 0;
2650 tcp_set_ca_state(sk, TCP_CA_Loss);
2651 }
2652 tcp_xmit_retransmit_queue(sk);
2653 }
2654 EXPORT_SYMBOL(tcp_simple_retransmit);
2655
2656 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2657 {
2658 struct tcp_sock *tp = tcp_sk(sk);
2659 int mib_idx;
2660
2661 if (tcp_is_reno(tp))
2662 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2663 else
2664 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2665
2666 NET_INC_STATS(sock_net(sk), mib_idx);
2667
2668 tp->prior_ssthresh = 0;
2669 tcp_init_undo(tp);
2670
2671 if (!tcp_in_cwnd_reduction(sk)) {
2672 if (!ece_ack)
2673 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2674 tcp_init_cwnd_reduction(sk);
2675 }
2676 tcp_set_ca_state(sk, TCP_CA_Recovery);
2677 }
2678
2679 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2680 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2681 */
2682 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2683 int *rexmit)
2684 {
2685 struct tcp_sock *tp = tcp_sk(sk);
2686 bool recovered = !before(tp->snd_una, tp->high_seq);
2687
2688 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2689 tcp_try_undo_loss(sk, false))
2690 return;
2691
2692 /* The ACK (s)acks some never-retransmitted data meaning not all
2693 * the data packets before the timeout were lost. Therefore we
2694 * undo the congestion window and state. This is essentially
2695 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2696 * a retransmitted skb is permantly marked, we can apply such an
2697 * operation even if F-RTO was not used.
2698 */
2699 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2700 tcp_try_undo_loss(sk, tp->undo_marker))
2701 return;
2702
2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2704 if (after(tp->snd_nxt, tp->high_seq)) {
2705 if (flag & FLAG_DATA_SACKED || is_dupack)
2706 tp->frto = 0; /* Step 3.a. loss was real */
2707 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2708 tp->high_seq = tp->snd_nxt;
2709 /* Step 2.b. Try send new data (but deferred until cwnd
2710 * is updated in tcp_ack()). Otherwise fall back to
2711 * the conventional recovery.
2712 */
2713 if (tcp_send_head(sk) &&
2714 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2715 *rexmit = REXMIT_NEW;
2716 return;
2717 }
2718 tp->frto = 0;
2719 }
2720 }
2721
2722 if (recovered) {
2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 tcp_try_undo_recovery(sk);
2725 return;
2726 }
2727 if (tcp_is_reno(tp)) {
2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 * delivered. Lower inflight to clock out (re)tranmissions.
2730 */
2731 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2732 tcp_add_reno_sack(sk);
2733 else if (flag & FLAG_SND_UNA_ADVANCED)
2734 tcp_reset_reno_sack(tp);
2735 }
2736 *rexmit = REXMIT_LOST;
2737 }
2738
2739 /* Undo during fast recovery after partial ACK. */
2740 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2741 {
2742 struct tcp_sock *tp = tcp_sk(sk);
2743
2744 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2745 /* Plain luck! Hole if filled with delayed
2746 * packet, rather than with a retransmit.
2747 */
2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2749
2750 /* We are getting evidence that the reordering degree is higher
2751 * than we realized. If there are no retransmits out then we
2752 * can undo. Otherwise we clock out new packets but do not
2753 * mark more packets lost or retransmit more.
2754 */
2755 if (tp->retrans_out)
2756 return true;
2757
2758 if (!tcp_any_retrans_done(sk))
2759 tp->retrans_stamp = 0;
2760
2761 DBGUNDO(sk, "partial recovery");
2762 tcp_undo_cwnd_reduction(sk, true);
2763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2764 tcp_try_keep_open(sk);
2765 return true;
2766 }
2767 return false;
2768 }
2769
2770 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773
2774 /* Use RACK to detect loss */
2775 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2776 u32 prior_retrans = tp->retrans_out;
2777
2778 tcp_rack_mark_lost(sk);
2779 if (prior_retrans > tp->retrans_out)
2780 *ack_flag |= FLAG_LOST_RETRANS;
2781 }
2782 }
2783
2784 /* Process an event, which can update packets-in-flight not trivially.
2785 * Main goal of this function is to calculate new estimate for left_out,
2786 * taking into account both packets sitting in receiver's buffer and
2787 * packets lost by network.
2788 *
2789 * Besides that it updates the congestion state when packet loss or ECN
2790 * is detected. But it does not reduce the cwnd, it is done by the
2791 * congestion control later.
2792 *
2793 * It does _not_ decide what to send, it is made in function
2794 * tcp_xmit_retransmit_queue().
2795 */
2796 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2797 bool is_dupack, int *ack_flag, int *rexmit)
2798 {
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 int fast_rexmit = 0, flag = *ack_flag;
2802 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2803 (tcp_fackets_out(tp) > tp->reordering));
2804
2805 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2806 tp->sacked_out = 0;
2807 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2808 tp->fackets_out = 0;
2809
2810 /* Now state machine starts.
2811 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2812 if (flag & FLAG_ECE)
2813 tp->prior_ssthresh = 0;
2814
2815 /* B. In all the states check for reneging SACKs. */
2816 if (tcp_check_sack_reneging(sk, flag))
2817 return;
2818
2819 /* C. Check consistency of the current state. */
2820 tcp_verify_left_out(tp);
2821
2822 /* D. Check state exit conditions. State can be terminated
2823 * when high_seq is ACKed. */
2824 if (icsk->icsk_ca_state == TCP_CA_Open) {
2825 WARN_ON(tp->retrans_out != 0);
2826 tp->retrans_stamp = 0;
2827 } else if (!before(tp->snd_una, tp->high_seq)) {
2828 switch (icsk->icsk_ca_state) {
2829 case TCP_CA_CWR:
2830 /* CWR is to be held something *above* high_seq
2831 * is ACKed for CWR bit to reach receiver. */
2832 if (tp->snd_una != tp->high_seq) {
2833 tcp_end_cwnd_reduction(sk);
2834 tcp_set_ca_state(sk, TCP_CA_Open);
2835 }
2836 break;
2837
2838 case TCP_CA_Recovery:
2839 if (tcp_is_reno(tp))
2840 tcp_reset_reno_sack(tp);
2841 if (tcp_try_undo_recovery(sk))
2842 return;
2843 tcp_end_cwnd_reduction(sk);
2844 break;
2845 }
2846 }
2847
2848 /* E. Process state. */
2849 switch (icsk->icsk_ca_state) {
2850 case TCP_CA_Recovery:
2851 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2852 if (tcp_is_reno(tp) && is_dupack)
2853 tcp_add_reno_sack(sk);
2854 } else {
2855 if (tcp_try_undo_partial(sk, acked))
2856 return;
2857 /* Partial ACK arrived. Force fast retransmit. */
2858 do_lost = tcp_is_reno(tp) ||
2859 tcp_fackets_out(tp) > tp->reordering;
2860 }
2861 if (tcp_try_undo_dsack(sk)) {
2862 tcp_try_keep_open(sk);
2863 return;
2864 }
2865 tcp_rack_identify_loss(sk, ack_flag);
2866 break;
2867 case TCP_CA_Loss:
2868 tcp_process_loss(sk, flag, is_dupack, rexmit);
2869 tcp_rack_identify_loss(sk, ack_flag);
2870 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2871 (*ack_flag & FLAG_LOST_RETRANS)))
2872 return;
2873 /* Change state if cwnd is undone or retransmits are lost */
2874 default:
2875 if (tcp_is_reno(tp)) {
2876 if (flag & FLAG_SND_UNA_ADVANCED)
2877 tcp_reset_reno_sack(tp);
2878 if (is_dupack)
2879 tcp_add_reno_sack(sk);
2880 }
2881
2882 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2883 tcp_try_undo_dsack(sk);
2884
2885 tcp_rack_identify_loss(sk, ack_flag);
2886 if (!tcp_time_to_recover(sk, flag)) {
2887 tcp_try_to_open(sk, flag);
2888 return;
2889 }
2890
2891 /* MTU probe failure: don't reduce cwnd */
2892 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2893 icsk->icsk_mtup.probe_size &&
2894 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2895 tcp_mtup_probe_failed(sk);
2896 /* Restores the reduction we did in tcp_mtup_probe() */
2897 tp->snd_cwnd++;
2898 tcp_simple_retransmit(sk);
2899 return;
2900 }
2901
2902 /* Otherwise enter Recovery state */
2903 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2904 fast_rexmit = 1;
2905 }
2906
2907 if (do_lost)
2908 tcp_update_scoreboard(sk, fast_rexmit);
2909 *rexmit = REXMIT_LOST;
2910 }
2911
2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2913 {
2914 struct tcp_sock *tp = tcp_sk(sk);
2915 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2916
2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2918 rtt_us ? : jiffies_to_usecs(1));
2919 }
2920
2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2922 long seq_rtt_us, long sack_rtt_us,
2923 long ca_rtt_us, struct rate_sample *rs)
2924 {
2925 const struct tcp_sock *tp = tcp_sk(sk);
2926
2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2929 * Karn's algorithm forbids taking RTT if some retransmitted data
2930 * is acked (RFC6298).
2931 */
2932 if (seq_rtt_us < 0)
2933 seq_rtt_us = sack_rtt_us;
2934
2935 /* RTTM Rule: A TSecr value received in a segment is used to
2936 * update the averaged RTT measurement only if the segment
2937 * acknowledges some new data, i.e., only if it advances the
2938 * left edge of the send window.
2939 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 */
2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2942 flag & FLAG_ACKED) {
2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2944 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2945
2946 seq_rtt_us = ca_rtt_us = delta_us;
2947 }
2948 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2949 if (seq_rtt_us < 0)
2950 return false;
2951
2952 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2953 * always taken together with ACK, SACK, or TS-opts. Any negative
2954 * values will be skipped with the seq_rtt_us < 0 check above.
2955 */
2956 tcp_update_rtt_min(sk, ca_rtt_us);
2957 tcp_rtt_estimator(sk, seq_rtt_us);
2958 tcp_set_rto(sk);
2959
2960 /* RFC6298: only reset backoff on valid RTT measurement. */
2961 inet_csk(sk)->icsk_backoff = 0;
2962 return true;
2963 }
2964
2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2967 {
2968 struct rate_sample rs;
2969 long rtt_us = -1L;
2970
2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2972 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2973
2974 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2975 }
2976
2977
2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2979 {
2980 const struct inet_connection_sock *icsk = inet_csk(sk);
2981
2982 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2983 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2984 }
2985
2986 /* Restart timer after forward progress on connection.
2987 * RFC2988 recommends to restart timer to now+rto.
2988 */
2989 void tcp_rearm_rto(struct sock *sk)
2990 {
2991 const struct inet_connection_sock *icsk = inet_csk(sk);
2992 struct tcp_sock *tp = tcp_sk(sk);
2993
2994 /* If the retrans timer is currently being used by Fast Open
2995 * for SYN-ACK retrans purpose, stay put.
2996 */
2997 if (tp->fastopen_rsk)
2998 return;
2999
3000 if (!tp->packets_out) {
3001 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3002 } else {
3003 u32 rto = inet_csk(sk)->icsk_rto;
3004 /* Offset the time elapsed after installing regular RTO */
3005 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3006 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3007 struct sk_buff *skb = tcp_write_queue_head(sk);
3008 u64 rto_time_stamp = skb->skb_mstamp +
3009 jiffies_to_usecs(rto);
3010 s64 delta_us = rto_time_stamp - tp->tcp_mstamp;
3011 /* delta_us may not be positive if the socket is locked
3012 * when the retrans timer fires and is rescheduled.
3013 */
3014 if (delta_us > 0)
3015 rto = usecs_to_jiffies(delta_us);
3016 }
3017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3018 TCP_RTO_MAX);
3019 }
3020 }
3021
3022 /* If we get here, the whole TSO packet has not been acked. */
3023 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3024 {
3025 struct tcp_sock *tp = tcp_sk(sk);
3026 u32 packets_acked;
3027
3028 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3029
3030 packets_acked = tcp_skb_pcount(skb);
3031 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3032 return 0;
3033 packets_acked -= tcp_skb_pcount(skb);
3034
3035 if (packets_acked) {
3036 BUG_ON(tcp_skb_pcount(skb) == 0);
3037 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3038 }
3039
3040 return packets_acked;
3041 }
3042
3043 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3044 u32 prior_snd_una)
3045 {
3046 const struct skb_shared_info *shinfo;
3047
3048 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3049 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3050 return;
3051
3052 shinfo = skb_shinfo(skb);
3053 if (!before(shinfo->tskey, prior_snd_una) &&
3054 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3055 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3056 }
3057
3058 /* Remove acknowledged frames from the retransmission queue. If our packet
3059 * is before the ack sequence we can discard it as it's confirmed to have
3060 * arrived at the other end.
3061 */
3062 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3063 u32 prior_snd_una, int *acked,
3064 struct tcp_sacktag_state *sack)
3065 {
3066 const struct inet_connection_sock *icsk = inet_csk(sk);
3067 u64 first_ackt, last_ackt;
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 u32 prior_sacked = tp->sacked_out;
3070 u32 reord = tp->packets_out;
3071 bool fully_acked = true;
3072 long sack_rtt_us = -1L;
3073 long seq_rtt_us = -1L;
3074 long ca_rtt_us = -1L;
3075 struct sk_buff *skb;
3076 u32 pkts_acked = 0;
3077 u32 last_in_flight = 0;
3078 bool rtt_update;
3079 int flag = 0;
3080
3081 first_ackt = 0;
3082
3083 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3084 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3085 u8 sacked = scb->sacked;
3086 u32 acked_pcount;
3087
3088 tcp_ack_tstamp(sk, skb, prior_snd_una);
3089
3090 /* Determine how many packets and what bytes were acked, tso and else */
3091 if (after(scb->end_seq, tp->snd_una)) {
3092 if (tcp_skb_pcount(skb) == 1 ||
3093 !after(tp->snd_una, scb->seq))
3094 break;
3095
3096 acked_pcount = tcp_tso_acked(sk, skb);
3097 if (!acked_pcount)
3098 break;
3099 fully_acked = false;
3100 } else {
3101 /* Speedup tcp_unlink_write_queue() and next loop */
3102 prefetchw(skb->next);
3103 acked_pcount = tcp_skb_pcount(skb);
3104 }
3105
3106 if (unlikely(sacked & TCPCB_RETRANS)) {
3107 if (sacked & TCPCB_SACKED_RETRANS)
3108 tp->retrans_out -= acked_pcount;
3109 flag |= FLAG_RETRANS_DATA_ACKED;
3110 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3111 last_ackt = skb->skb_mstamp;
3112 WARN_ON_ONCE(last_ackt == 0);
3113 if (!first_ackt)
3114 first_ackt = last_ackt;
3115
3116 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3117 reord = min(pkts_acked, reord);
3118 if (!after(scb->end_seq, tp->high_seq))
3119 flag |= FLAG_ORIG_SACK_ACKED;
3120 }
3121
3122 if (sacked & TCPCB_SACKED_ACKED) {
3123 tp->sacked_out -= acked_pcount;
3124 } else if (tcp_is_sack(tp)) {
3125 tp->delivered += acked_pcount;
3126 if (!tcp_skb_spurious_retrans(tp, skb))
3127 tcp_rack_advance(tp, sacked, scb->end_seq,
3128 skb->skb_mstamp);
3129 }
3130 if (sacked & TCPCB_LOST)
3131 tp->lost_out -= acked_pcount;
3132
3133 tp->packets_out -= acked_pcount;
3134 pkts_acked += acked_pcount;
3135 tcp_rate_skb_delivered(sk, skb, sack->rate);
3136
3137 /* Initial outgoing SYN's get put onto the write_queue
3138 * just like anything else we transmit. It is not
3139 * true data, and if we misinform our callers that
3140 * this ACK acks real data, we will erroneously exit
3141 * connection startup slow start one packet too
3142 * quickly. This is severely frowned upon behavior.
3143 */
3144 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3145 flag |= FLAG_DATA_ACKED;
3146 } else {
3147 flag |= FLAG_SYN_ACKED;
3148 tp->retrans_stamp = 0;
3149 }
3150
3151 if (!fully_acked)
3152 break;
3153
3154 tcp_unlink_write_queue(skb, sk);
3155 sk_wmem_free_skb(sk, skb);
3156 if (unlikely(skb == tp->retransmit_skb_hint))
3157 tp->retransmit_skb_hint = NULL;
3158 if (unlikely(skb == tp->lost_skb_hint))
3159 tp->lost_skb_hint = NULL;
3160 }
3161
3162 if (!skb)
3163 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3164
3165 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3166 tp->snd_up = tp->snd_una;
3167
3168 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3169 flag |= FLAG_SACK_RENEGING;
3170
3171 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3172 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3173 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3174 }
3175 if (sack->first_sackt) {
3176 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3178 }
3179 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3180 ca_rtt_us, sack->rate);
3181
3182 if (flag & FLAG_ACKED) {
3183 tcp_rearm_rto(sk);
3184 if (unlikely(icsk->icsk_mtup.probe_size &&
3185 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3186 tcp_mtup_probe_success(sk);
3187 }
3188
3189 if (tcp_is_reno(tp)) {
3190 tcp_remove_reno_sacks(sk, pkts_acked);
3191 } else {
3192 int delta;
3193
3194 /* Non-retransmitted hole got filled? That's reordering */
3195 if (reord < prior_fackets && reord <= tp->fackets_out)
3196 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3197
3198 delta = tcp_is_fack(tp) ? pkts_acked :
3199 prior_sacked - tp->sacked_out;
3200 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3201 }
3202
3203 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3204
3205 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3206 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3207 /* Do not re-arm RTO if the sack RTT is measured from data sent
3208 * after when the head was last (re)transmitted. Otherwise the
3209 * timeout may continue to extend in loss recovery.
3210 */
3211 tcp_rearm_rto(sk);
3212 }
3213
3214 if (icsk->icsk_ca_ops->pkts_acked) {
3215 struct ack_sample sample = { .pkts_acked = pkts_acked,
3216 .rtt_us = sack->rate->rtt_us,
3217 .in_flight = last_in_flight };
3218
3219 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3220 }
3221
3222 #if FASTRETRANS_DEBUG > 0
3223 WARN_ON((int)tp->sacked_out < 0);
3224 WARN_ON((int)tp->lost_out < 0);
3225 WARN_ON((int)tp->retrans_out < 0);
3226 if (!tp->packets_out && tcp_is_sack(tp)) {
3227 icsk = inet_csk(sk);
3228 if (tp->lost_out) {
3229 pr_debug("Leak l=%u %d\n",
3230 tp->lost_out, icsk->icsk_ca_state);
3231 tp->lost_out = 0;
3232 }
3233 if (tp->sacked_out) {
3234 pr_debug("Leak s=%u %d\n",
3235 tp->sacked_out, icsk->icsk_ca_state);
3236 tp->sacked_out = 0;
3237 }
3238 if (tp->retrans_out) {
3239 pr_debug("Leak r=%u %d\n",
3240 tp->retrans_out, icsk->icsk_ca_state);
3241 tp->retrans_out = 0;
3242 }
3243 }
3244 #endif
3245 *acked = pkts_acked;
3246 return flag;
3247 }
3248
3249 static void tcp_ack_probe(struct sock *sk)
3250 {
3251 const struct tcp_sock *tp = tcp_sk(sk);
3252 struct inet_connection_sock *icsk = inet_csk(sk);
3253
3254 /* Was it a usable window open? */
3255
3256 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3257 icsk->icsk_backoff = 0;
3258 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3259 /* Socket must be waked up by subsequent tcp_data_snd_check().
3260 * This function is not for random using!
3261 */
3262 } else {
3263 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3264
3265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3266 when, TCP_RTO_MAX);
3267 }
3268 }
3269
3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3271 {
3272 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3273 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3274 }
3275
3276 /* Decide wheather to run the increase function of congestion control. */
3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3278 {
3279 /* If reordering is high then always grow cwnd whenever data is
3280 * delivered regardless of its ordering. Otherwise stay conservative
3281 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3282 * new SACK or ECE mark may first advance cwnd here and later reduce
3283 * cwnd in tcp_fastretrans_alert() based on more states.
3284 */
3285 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3286 return flag & FLAG_FORWARD_PROGRESS;
3287
3288 return flag & FLAG_DATA_ACKED;
3289 }
3290
3291 /* The "ultimate" congestion control function that aims to replace the rigid
3292 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3293 * It's called toward the end of processing an ACK with precise rate
3294 * information. All transmission or retransmission are delayed afterwards.
3295 */
3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3297 int flag, const struct rate_sample *rs)
3298 {
3299 const struct inet_connection_sock *icsk = inet_csk(sk);
3300
3301 if (icsk->icsk_ca_ops->cong_control) {
3302 icsk->icsk_ca_ops->cong_control(sk, rs);
3303 return;
3304 }
3305
3306 if (tcp_in_cwnd_reduction(sk)) {
3307 /* Reduce cwnd if state mandates */
3308 tcp_cwnd_reduction(sk, acked_sacked, flag);
3309 } else if (tcp_may_raise_cwnd(sk, flag)) {
3310 /* Advance cwnd if state allows */
3311 tcp_cong_avoid(sk, ack, acked_sacked);
3312 }
3313 tcp_update_pacing_rate(sk);
3314 }
3315
3316 /* Check that window update is acceptable.
3317 * The function assumes that snd_una<=ack<=snd_next.
3318 */
3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3320 const u32 ack, const u32 ack_seq,
3321 const u32 nwin)
3322 {
3323 return after(ack, tp->snd_una) ||
3324 after(ack_seq, tp->snd_wl1) ||
3325 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3326 }
3327
3328 /* If we update tp->snd_una, also update tp->bytes_acked */
3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3330 {
3331 u32 delta = ack - tp->snd_una;
3332
3333 sock_owned_by_me((struct sock *)tp);
3334 tp->bytes_acked += delta;
3335 tp->snd_una = ack;
3336 }
3337
3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3340 {
3341 u32 delta = seq - tp->rcv_nxt;
3342
3343 sock_owned_by_me((struct sock *)tp);
3344 tp->bytes_received += delta;
3345 tp->rcv_nxt = seq;
3346 }
3347
3348 /* Update our send window.
3349 *
3350 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3351 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3352 */
3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3354 u32 ack_seq)
3355 {
3356 struct tcp_sock *tp = tcp_sk(sk);
3357 int flag = 0;
3358 u32 nwin = ntohs(tcp_hdr(skb)->window);
3359
3360 if (likely(!tcp_hdr(skb)->syn))
3361 nwin <<= tp->rx_opt.snd_wscale;
3362
3363 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3364 flag |= FLAG_WIN_UPDATE;
3365 tcp_update_wl(tp, ack_seq);
3366
3367 if (tp->snd_wnd != nwin) {
3368 tp->snd_wnd = nwin;
3369
3370 /* Note, it is the only place, where
3371 * fast path is recovered for sending TCP.
3372 */
3373 tp->pred_flags = 0;
3374 tcp_fast_path_check(sk);
3375
3376 if (tcp_send_head(sk))
3377 tcp_slow_start_after_idle_check(sk);
3378
3379 if (nwin > tp->max_window) {
3380 tp->max_window = nwin;
3381 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3382 }
3383 }
3384 }
3385
3386 tcp_snd_una_update(tp, ack);
3387
3388 return flag;
3389 }
3390
3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3392 u32 *last_oow_ack_time)
3393 {
3394 if (*last_oow_ack_time) {
3395 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3396
3397 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3398 NET_INC_STATS(net, mib_idx);
3399 return true; /* rate-limited: don't send yet! */
3400 }
3401 }
3402
3403 *last_oow_ack_time = tcp_jiffies32;
3404
3405 return false; /* not rate-limited: go ahead, send dupack now! */
3406 }
3407
3408 /* Return true if we're currently rate-limiting out-of-window ACKs and
3409 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3410 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3411 * attacks that send repeated SYNs or ACKs for the same connection. To
3412 * do this, we do not send a duplicate SYNACK or ACK if the remote
3413 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3414 */
3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3416 int mib_idx, u32 *last_oow_ack_time)
3417 {
3418 /* Data packets without SYNs are not likely part of an ACK loop. */
3419 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3420 !tcp_hdr(skb)->syn)
3421 return false;
3422
3423 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3424 }
3425
3426 /* RFC 5961 7 [ACK Throttling] */
3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3428 {
3429 /* unprotected vars, we dont care of overwrites */
3430 static u32 challenge_timestamp;
3431 static unsigned int challenge_count;
3432 struct tcp_sock *tp = tcp_sk(sk);
3433 u32 count, now;
3434
3435 /* First check our per-socket dupack rate limit. */
3436 if (__tcp_oow_rate_limited(sock_net(sk),
3437 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3438 &tp->last_oow_ack_time))
3439 return;
3440
3441 /* Then check host-wide RFC 5961 rate limit. */
3442 now = jiffies / HZ;
3443 if (now != challenge_timestamp) {
3444 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3445
3446 challenge_timestamp = now;
3447 WRITE_ONCE(challenge_count, half +
3448 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3449 }
3450 count = READ_ONCE(challenge_count);
3451 if (count > 0) {
3452 WRITE_ONCE(challenge_count, count - 1);
3453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3454 tcp_send_ack(sk);
3455 }
3456 }
3457
3458 static void tcp_store_ts_recent(struct tcp_sock *tp)
3459 {
3460 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3461 tp->rx_opt.ts_recent_stamp = get_seconds();
3462 }
3463
3464 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3465 {
3466 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3467 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3468 * extra check below makes sure this can only happen
3469 * for pure ACK frames. -DaveM
3470 *
3471 * Not only, also it occurs for expired timestamps.
3472 */
3473
3474 if (tcp_paws_check(&tp->rx_opt, 0))
3475 tcp_store_ts_recent(tp);
3476 }
3477 }
3478
3479 /* This routine deals with acks during a TLP episode.
3480 * We mark the end of a TLP episode on receiving TLP dupack or when
3481 * ack is after tlp_high_seq.
3482 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3483 */
3484 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3485 {
3486 struct tcp_sock *tp = tcp_sk(sk);
3487
3488 if (before(ack, tp->tlp_high_seq))
3489 return;
3490
3491 if (flag & FLAG_DSACKING_ACK) {
3492 /* This DSACK means original and TLP probe arrived; no loss */
3493 tp->tlp_high_seq = 0;
3494 } else if (after(ack, tp->tlp_high_seq)) {
3495 /* ACK advances: there was a loss, so reduce cwnd. Reset
3496 * tlp_high_seq in tcp_init_cwnd_reduction()
3497 */
3498 tcp_init_cwnd_reduction(sk);
3499 tcp_set_ca_state(sk, TCP_CA_CWR);
3500 tcp_end_cwnd_reduction(sk);
3501 tcp_try_keep_open(sk);
3502 NET_INC_STATS(sock_net(sk),
3503 LINUX_MIB_TCPLOSSPROBERECOVERY);
3504 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3505 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3506 /* Pure dupack: original and TLP probe arrived; no loss */
3507 tp->tlp_high_seq = 0;
3508 }
3509 }
3510
3511 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3512 {
3513 const struct inet_connection_sock *icsk = inet_csk(sk);
3514
3515 if (icsk->icsk_ca_ops->in_ack_event)
3516 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3517 }
3518
3519 /* Congestion control has updated the cwnd already. So if we're in
3520 * loss recovery then now we do any new sends (for FRTO) or
3521 * retransmits (for CA_Loss or CA_recovery) that make sense.
3522 */
3523 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3524 {
3525 struct tcp_sock *tp = tcp_sk(sk);
3526
3527 if (rexmit == REXMIT_NONE)
3528 return;
3529
3530 if (unlikely(rexmit == 2)) {
3531 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3532 TCP_NAGLE_OFF);
3533 if (after(tp->snd_nxt, tp->high_seq))
3534 return;
3535 tp->frto = 0;
3536 }
3537 tcp_xmit_retransmit_queue(sk);
3538 }
3539
3540 /* This routine deals with incoming acks, but not outgoing ones. */
3541 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3542 {
3543 struct inet_connection_sock *icsk = inet_csk(sk);
3544 struct tcp_sock *tp = tcp_sk(sk);
3545 struct tcp_sacktag_state sack_state;
3546 struct rate_sample rs = { .prior_delivered = 0 };
3547 u32 prior_snd_una = tp->snd_una;
3548 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3549 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3550 bool is_dupack = false;
3551 u32 prior_fackets;
3552 int prior_packets = tp->packets_out;
3553 u32 delivered = tp->delivered;
3554 u32 lost = tp->lost;
3555 int acked = 0; /* Number of packets newly acked */
3556 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3557
3558 sack_state.first_sackt = 0;
3559 sack_state.rate = &rs;
3560
3561 /* We very likely will need to access write queue head. */
3562 prefetchw(sk->sk_write_queue.next);
3563
3564 /* If the ack is older than previous acks
3565 * then we can probably ignore it.
3566 */
3567 if (before(ack, prior_snd_una)) {
3568 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3569 if (before(ack, prior_snd_una - tp->max_window)) {
3570 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3571 tcp_send_challenge_ack(sk, skb);
3572 return -1;
3573 }
3574 goto old_ack;
3575 }
3576
3577 /* If the ack includes data we haven't sent yet, discard
3578 * this segment (RFC793 Section 3.9).
3579 */
3580 if (after(ack, tp->snd_nxt))
3581 goto invalid_ack;
3582
3583 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3584 tcp_rearm_rto(sk);
3585
3586 if (after(ack, prior_snd_una)) {
3587 flag |= FLAG_SND_UNA_ADVANCED;
3588 icsk->icsk_retransmits = 0;
3589 }
3590
3591 prior_fackets = tp->fackets_out;
3592 rs.prior_in_flight = tcp_packets_in_flight(tp);
3593
3594 /* ts_recent update must be made after we are sure that the packet
3595 * is in window.
3596 */
3597 if (flag & FLAG_UPDATE_TS_RECENT)
3598 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3599
3600 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3601 /* Window is constant, pure forward advance.
3602 * No more checks are required.
3603 * Note, we use the fact that SND.UNA>=SND.WL2.
3604 */
3605 tcp_update_wl(tp, ack_seq);
3606 tcp_snd_una_update(tp, ack);
3607 flag |= FLAG_WIN_UPDATE;
3608
3609 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3610
3611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3612 } else {
3613 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3614
3615 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3616 flag |= FLAG_DATA;
3617 else
3618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3619
3620 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3621
3622 if (TCP_SKB_CB(skb)->sacked)
3623 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3624 &sack_state);
3625
3626 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3627 flag |= FLAG_ECE;
3628 ack_ev_flags |= CA_ACK_ECE;
3629 }
3630
3631 if (flag & FLAG_WIN_UPDATE)
3632 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3633
3634 tcp_in_ack_event(sk, ack_ev_flags);
3635 }
3636
3637 /* We passed data and got it acked, remove any soft error
3638 * log. Something worked...
3639 */
3640 sk->sk_err_soft = 0;
3641 icsk->icsk_probes_out = 0;
3642 tp->rcv_tstamp = tcp_jiffies32;
3643 if (!prior_packets)
3644 goto no_queue;
3645
3646 /* See if we can take anything off of the retransmit queue. */
3647 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3648 &sack_state);
3649
3650 if (tcp_ack_is_dubious(sk, flag)) {
3651 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3652 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3653 }
3654 if (tp->tlp_high_seq)
3655 tcp_process_tlp_ack(sk, ack, flag);
3656
3657 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3658 sk_dst_confirm(sk);
3659
3660 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3661 tcp_schedule_loss_probe(sk);
3662 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3663 lost = tp->lost - lost; /* freshly marked lost */
3664 tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3665 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3666 tcp_xmit_recovery(sk, rexmit);
3667 return 1;
3668
3669 no_queue:
3670 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3671 if (flag & FLAG_DSACKING_ACK)
3672 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3673 /* If this ack opens up a zero window, clear backoff. It was
3674 * being used to time the probes, and is probably far higher than
3675 * it needs to be for normal retransmission.
3676 */
3677 if (tcp_send_head(sk))
3678 tcp_ack_probe(sk);
3679
3680 if (tp->tlp_high_seq)
3681 tcp_process_tlp_ack(sk, ack, flag);
3682 return 1;
3683
3684 invalid_ack:
3685 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3686 return -1;
3687
3688 old_ack:
3689 /* If data was SACKed, tag it and see if we should send more data.
3690 * If data was DSACKed, see if we can undo a cwnd reduction.
3691 */
3692 if (TCP_SKB_CB(skb)->sacked) {
3693 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3694 &sack_state);
3695 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3696 tcp_xmit_recovery(sk, rexmit);
3697 }
3698
3699 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3700 return 0;
3701 }
3702
3703 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3704 bool syn, struct tcp_fastopen_cookie *foc,
3705 bool exp_opt)
3706 {
3707 /* Valid only in SYN or SYN-ACK with an even length. */
3708 if (!foc || !syn || len < 0 || (len & 1))
3709 return;
3710
3711 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3712 len <= TCP_FASTOPEN_COOKIE_MAX)
3713 memcpy(foc->val, cookie, len);
3714 else if (len != 0)
3715 len = -1;
3716 foc->len = len;
3717 foc->exp = exp_opt;
3718 }
3719
3720 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3721 * But, this can also be called on packets in the established flow when
3722 * the fast version below fails.
3723 */
3724 void tcp_parse_options(const struct net *net,
3725 const struct sk_buff *skb,
3726 struct tcp_options_received *opt_rx, int estab,
3727 struct tcp_fastopen_cookie *foc)
3728 {
3729 const unsigned char *ptr;
3730 const struct tcphdr *th = tcp_hdr(skb);
3731 int length = (th->doff * 4) - sizeof(struct tcphdr);
3732
3733 ptr = (const unsigned char *)(th + 1);
3734 opt_rx->saw_tstamp = 0;
3735
3736 while (length > 0) {
3737 int opcode = *ptr++;
3738 int opsize;
3739
3740 switch (opcode) {
3741 case TCPOPT_EOL:
3742 return;
3743 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3744 length--;
3745 continue;
3746 default:
3747 opsize = *ptr++;
3748 if (opsize < 2) /* "silly options" */
3749 return;
3750 if (opsize > length)
3751 return; /* don't parse partial options */
3752 switch (opcode) {
3753 case TCPOPT_MSS:
3754 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3755 u16 in_mss = get_unaligned_be16(ptr);
3756 if (in_mss) {
3757 if (opt_rx->user_mss &&
3758 opt_rx->user_mss < in_mss)
3759 in_mss = opt_rx->user_mss;
3760 opt_rx->mss_clamp = in_mss;
3761 }
3762 }
3763 break;
3764 case TCPOPT_WINDOW:
3765 if (opsize == TCPOLEN_WINDOW && th->syn &&
3766 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3767 __u8 snd_wscale = *(__u8 *)ptr;
3768 opt_rx->wscale_ok = 1;
3769 if (snd_wscale > TCP_MAX_WSCALE) {
3770 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3771 __func__,
3772 snd_wscale,
3773 TCP_MAX_WSCALE);
3774 snd_wscale = TCP_MAX_WSCALE;
3775 }
3776 opt_rx->snd_wscale = snd_wscale;
3777 }
3778 break;
3779 case TCPOPT_TIMESTAMP:
3780 if ((opsize == TCPOLEN_TIMESTAMP) &&
3781 ((estab && opt_rx->tstamp_ok) ||
3782 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3783 opt_rx->saw_tstamp = 1;
3784 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3785 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3786 }
3787 break;
3788 case TCPOPT_SACK_PERM:
3789 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3790 !estab && net->ipv4.sysctl_tcp_sack) {
3791 opt_rx->sack_ok = TCP_SACK_SEEN;
3792 tcp_sack_reset(opt_rx);
3793 }
3794 break;
3795
3796 case TCPOPT_SACK:
3797 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3798 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3799 opt_rx->sack_ok) {
3800 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3801 }
3802 break;
3803 #ifdef CONFIG_TCP_MD5SIG
3804 case TCPOPT_MD5SIG:
3805 /*
3806 * The MD5 Hash has already been
3807 * checked (see tcp_v{4,6}_do_rcv()).
3808 */
3809 break;
3810 #endif
3811 case TCPOPT_FASTOPEN:
3812 tcp_parse_fastopen_option(
3813 opsize - TCPOLEN_FASTOPEN_BASE,
3814 ptr, th->syn, foc, false);
3815 break;
3816
3817 case TCPOPT_EXP:
3818 /* Fast Open option shares code 254 using a
3819 * 16 bits magic number.
3820 */
3821 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3822 get_unaligned_be16(ptr) ==
3823 TCPOPT_FASTOPEN_MAGIC)
3824 tcp_parse_fastopen_option(opsize -
3825 TCPOLEN_EXP_FASTOPEN_BASE,
3826 ptr + 2, th->syn, foc, true);
3827 break;
3828
3829 }
3830 ptr += opsize-2;
3831 length -= opsize;
3832 }
3833 }
3834 }
3835 EXPORT_SYMBOL(tcp_parse_options);
3836
3837 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3838 {
3839 const __be32 *ptr = (const __be32 *)(th + 1);
3840
3841 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3842 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3843 tp->rx_opt.saw_tstamp = 1;
3844 ++ptr;
3845 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3846 ++ptr;
3847 if (*ptr)
3848 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3849 else
3850 tp->rx_opt.rcv_tsecr = 0;
3851 return true;
3852 }
3853 return false;
3854 }
3855
3856 /* Fast parse options. This hopes to only see timestamps.
3857 * If it is wrong it falls back on tcp_parse_options().
3858 */
3859 static bool tcp_fast_parse_options(const struct net *net,
3860 const struct sk_buff *skb,
3861 const struct tcphdr *th, struct tcp_sock *tp)
3862 {
3863 /* In the spirit of fast parsing, compare doff directly to constant
3864 * values. Because equality is used, short doff can be ignored here.
3865 */
3866 if (th->doff == (sizeof(*th) / 4)) {
3867 tp->rx_opt.saw_tstamp = 0;
3868 return false;
3869 } else if (tp->rx_opt.tstamp_ok &&
3870 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3871 if (tcp_parse_aligned_timestamp(tp, th))
3872 return true;
3873 }
3874
3875 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3876 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3877 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3878
3879 return true;
3880 }
3881
3882 #ifdef CONFIG_TCP_MD5SIG
3883 /*
3884 * Parse MD5 Signature option
3885 */
3886 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3887 {
3888 int length = (th->doff << 2) - sizeof(*th);
3889 const u8 *ptr = (const u8 *)(th + 1);
3890
3891 /* If the TCP option is too short, we can short cut */
3892 if (length < TCPOLEN_MD5SIG)
3893 return NULL;
3894
3895 while (length > 0) {
3896 int opcode = *ptr++;
3897 int opsize;
3898
3899 switch (opcode) {
3900 case TCPOPT_EOL:
3901 return NULL;
3902 case TCPOPT_NOP:
3903 length--;
3904 continue;
3905 default:
3906 opsize = *ptr++;
3907 if (opsize < 2 || opsize > length)
3908 return NULL;
3909 if (opcode == TCPOPT_MD5SIG)
3910 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3911 }
3912 ptr += opsize - 2;
3913 length -= opsize;
3914 }
3915 return NULL;
3916 }
3917 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3918 #endif
3919
3920 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3921 *
3922 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3923 * it can pass through stack. So, the following predicate verifies that
3924 * this segment is not used for anything but congestion avoidance or
3925 * fast retransmit. Moreover, we even are able to eliminate most of such
3926 * second order effects, if we apply some small "replay" window (~RTO)
3927 * to timestamp space.
3928 *
3929 * All these measures still do not guarantee that we reject wrapped ACKs
3930 * on networks with high bandwidth, when sequence space is recycled fastly,
3931 * but it guarantees that such events will be very rare and do not affect
3932 * connection seriously. This doesn't look nice, but alas, PAWS is really
3933 * buggy extension.
3934 *
3935 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3936 * states that events when retransmit arrives after original data are rare.
3937 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3938 * the biggest problem on large power networks even with minor reordering.
3939 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3940 * up to bandwidth of 18Gigabit/sec. 8) ]
3941 */
3942
3943 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3944 {
3945 const struct tcp_sock *tp = tcp_sk(sk);
3946 const struct tcphdr *th = tcp_hdr(skb);
3947 u32 seq = TCP_SKB_CB(skb)->seq;
3948 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3949
3950 return (/* 1. Pure ACK with correct sequence number. */
3951 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3952
3953 /* 2. ... and duplicate ACK. */
3954 ack == tp->snd_una &&
3955
3956 /* 3. ... and does not update window. */
3957 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3958
3959 /* 4. ... and sits in replay window. */
3960 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3961 }
3962
3963 static inline bool tcp_paws_discard(const struct sock *sk,
3964 const struct sk_buff *skb)
3965 {
3966 const struct tcp_sock *tp = tcp_sk(sk);
3967
3968 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3969 !tcp_disordered_ack(sk, skb);
3970 }
3971
3972 /* Check segment sequence number for validity.
3973 *
3974 * Segment controls are considered valid, if the segment
3975 * fits to the window after truncation to the window. Acceptability
3976 * of data (and SYN, FIN, of course) is checked separately.
3977 * See tcp_data_queue(), for example.
3978 *
3979 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3980 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3981 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3982 * (borrowed from freebsd)
3983 */
3984
3985 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3986 {
3987 return !before(end_seq, tp->rcv_wup) &&
3988 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3989 }
3990
3991 /* When we get a reset we do this. */
3992 void tcp_reset(struct sock *sk)
3993 {
3994 /* We want the right error as BSD sees it (and indeed as we do). */
3995 switch (sk->sk_state) {
3996 case TCP_SYN_SENT:
3997 sk->sk_err = ECONNREFUSED;
3998 break;
3999 case TCP_CLOSE_WAIT:
4000 sk->sk_err = EPIPE;
4001 break;
4002 case TCP_CLOSE:
4003 return;
4004 default:
4005 sk->sk_err = ECONNRESET;
4006 }
4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4008 smp_wmb();
4009
4010 tcp_done(sk);
4011
4012 if (!sock_flag(sk, SOCK_DEAD))
4013 sk->sk_error_report(sk);
4014 }
4015
4016 /*
4017 * Process the FIN bit. This now behaves as it is supposed to work
4018 * and the FIN takes effect when it is validly part of sequence
4019 * space. Not before when we get holes.
4020 *
4021 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4022 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4023 * TIME-WAIT)
4024 *
4025 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4026 * close and we go into CLOSING (and later onto TIME-WAIT)
4027 *
4028 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4029 */
4030 void tcp_fin(struct sock *sk)
4031 {
4032 struct tcp_sock *tp = tcp_sk(sk);
4033
4034 inet_csk_schedule_ack(sk);
4035
4036 sk->sk_shutdown |= RCV_SHUTDOWN;
4037 sock_set_flag(sk, SOCK_DONE);
4038
4039 switch (sk->sk_state) {
4040 case TCP_SYN_RECV:
4041 case TCP_ESTABLISHED:
4042 /* Move to CLOSE_WAIT */
4043 tcp_set_state(sk, TCP_CLOSE_WAIT);
4044 inet_csk(sk)->icsk_ack.pingpong = 1;
4045 break;
4046
4047 case TCP_CLOSE_WAIT:
4048 case TCP_CLOSING:
4049 /* Received a retransmission of the FIN, do
4050 * nothing.
4051 */
4052 break;
4053 case TCP_LAST_ACK:
4054 /* RFC793: Remain in the LAST-ACK state. */
4055 break;
4056
4057 case TCP_FIN_WAIT1:
4058 /* This case occurs when a simultaneous close
4059 * happens, we must ack the received FIN and
4060 * enter the CLOSING state.
4061 */
4062 tcp_send_ack(sk);
4063 tcp_set_state(sk, TCP_CLOSING);
4064 break;
4065 case TCP_FIN_WAIT2:
4066 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4067 tcp_send_ack(sk);
4068 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4069 break;
4070 default:
4071 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4072 * cases we should never reach this piece of code.
4073 */
4074 pr_err("%s: Impossible, sk->sk_state=%d\n",
4075 __func__, sk->sk_state);
4076 break;
4077 }
4078
4079 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4080 * Probably, we should reset in this case. For now drop them.
4081 */
4082 skb_rbtree_purge(&tp->out_of_order_queue);
4083 if (tcp_is_sack(tp))
4084 tcp_sack_reset(&tp->rx_opt);
4085 sk_mem_reclaim(sk);
4086
4087 if (!sock_flag(sk, SOCK_DEAD)) {
4088 sk->sk_state_change(sk);
4089
4090 /* Do not send POLL_HUP for half duplex close. */
4091 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4092 sk->sk_state == TCP_CLOSE)
4093 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4094 else
4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4096 }
4097 }
4098
4099 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4100 u32 end_seq)
4101 {
4102 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4103 if (before(seq, sp->start_seq))
4104 sp->start_seq = seq;
4105 if (after(end_seq, sp->end_seq))
4106 sp->end_seq = end_seq;
4107 return true;
4108 }
4109 return false;
4110 }
4111
4112 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4113 {
4114 struct tcp_sock *tp = tcp_sk(sk);
4115
4116 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4117 int mib_idx;
4118
4119 if (before(seq, tp->rcv_nxt))
4120 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4121 else
4122 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4123
4124 NET_INC_STATS(sock_net(sk), mib_idx);
4125
4126 tp->rx_opt.dsack = 1;
4127 tp->duplicate_sack[0].start_seq = seq;
4128 tp->duplicate_sack[0].end_seq = end_seq;
4129 }
4130 }
4131
4132 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4133 {
4134 struct tcp_sock *tp = tcp_sk(sk);
4135
4136 if (!tp->rx_opt.dsack)
4137 tcp_dsack_set(sk, seq, end_seq);
4138 else
4139 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4140 }
4141
4142 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4143 {
4144 struct tcp_sock *tp = tcp_sk(sk);
4145
4146 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4147 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4148 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4149 tcp_enter_quickack_mode(sk);
4150
4151 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4152 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4153
4154 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4155 end_seq = tp->rcv_nxt;
4156 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4157 }
4158 }
4159
4160 tcp_send_ack(sk);
4161 }
4162
4163 /* These routines update the SACK block as out-of-order packets arrive or
4164 * in-order packets close up the sequence space.
4165 */
4166 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4167 {
4168 int this_sack;
4169 struct tcp_sack_block *sp = &tp->selective_acks[0];
4170 struct tcp_sack_block *swalk = sp + 1;
4171
4172 /* See if the recent change to the first SACK eats into
4173 * or hits the sequence space of other SACK blocks, if so coalesce.
4174 */
4175 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4176 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4177 int i;
4178
4179 /* Zap SWALK, by moving every further SACK up by one slot.
4180 * Decrease num_sacks.
4181 */
4182 tp->rx_opt.num_sacks--;
4183 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4184 sp[i] = sp[i + 1];
4185 continue;
4186 }
4187 this_sack++, swalk++;
4188 }
4189 }
4190
4191 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4192 {
4193 struct tcp_sock *tp = tcp_sk(sk);
4194 struct tcp_sack_block *sp = &tp->selective_acks[0];
4195 int cur_sacks = tp->rx_opt.num_sacks;
4196 int this_sack;
4197
4198 if (!cur_sacks)
4199 goto new_sack;
4200
4201 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4202 if (tcp_sack_extend(sp, seq, end_seq)) {
4203 /* Rotate this_sack to the first one. */
4204 for (; this_sack > 0; this_sack--, sp--)
4205 swap(*sp, *(sp - 1));
4206 if (cur_sacks > 1)
4207 tcp_sack_maybe_coalesce(tp);
4208 return;
4209 }
4210 }
4211
4212 /* Could not find an adjacent existing SACK, build a new one,
4213 * put it at the front, and shift everyone else down. We
4214 * always know there is at least one SACK present already here.
4215 *
4216 * If the sack array is full, forget about the last one.
4217 */
4218 if (this_sack >= TCP_NUM_SACKS) {
4219 this_sack--;
4220 tp->rx_opt.num_sacks--;
4221 sp--;
4222 }
4223 for (; this_sack > 0; this_sack--, sp--)
4224 *sp = *(sp - 1);
4225
4226 new_sack:
4227 /* Build the new head SACK, and we're done. */
4228 sp->start_seq = seq;
4229 sp->end_seq = end_seq;
4230 tp->rx_opt.num_sacks++;
4231 }
4232
4233 /* RCV.NXT advances, some SACKs should be eaten. */
4234
4235 static void tcp_sack_remove(struct tcp_sock *tp)
4236 {
4237 struct tcp_sack_block *sp = &tp->selective_acks[0];
4238 int num_sacks = tp->rx_opt.num_sacks;
4239 int this_sack;
4240
4241 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4242 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4243 tp->rx_opt.num_sacks = 0;
4244 return;
4245 }
4246
4247 for (this_sack = 0; this_sack < num_sacks;) {
4248 /* Check if the start of the sack is covered by RCV.NXT. */
4249 if (!before(tp->rcv_nxt, sp->start_seq)) {
4250 int i;
4251
4252 /* RCV.NXT must cover all the block! */
4253 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4254
4255 /* Zap this SACK, by moving forward any other SACKS. */
4256 for (i = this_sack+1; i < num_sacks; i++)
4257 tp->selective_acks[i-1] = tp->selective_acks[i];
4258 num_sacks--;
4259 continue;
4260 }
4261 this_sack++;
4262 sp++;
4263 }
4264 tp->rx_opt.num_sacks = num_sacks;
4265 }
4266
4267 /**
4268 * tcp_try_coalesce - try to merge skb to prior one
4269 * @sk: socket
4270 * @to: prior buffer
4271 * @from: buffer to add in queue
4272 * @fragstolen: pointer to boolean
4273 *
4274 * Before queueing skb @from after @to, try to merge them
4275 * to reduce overall memory use and queue lengths, if cost is small.
4276 * Packets in ofo or receive queues can stay a long time.
4277 * Better try to coalesce them right now to avoid future collapses.
4278 * Returns true if caller should free @from instead of queueing it
4279 */
4280 static bool tcp_try_coalesce(struct sock *sk,
4281 struct sk_buff *to,
4282 struct sk_buff *from,
4283 bool *fragstolen)
4284 {
4285 int delta;
4286
4287 *fragstolen = false;
4288
4289 /* Its possible this segment overlaps with prior segment in queue */
4290 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4291 return false;
4292
4293 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4294 return false;
4295
4296 atomic_add(delta, &sk->sk_rmem_alloc);
4297 sk_mem_charge(sk, delta);
4298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4299 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4300 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4301 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4302 return true;
4303 }
4304
4305 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4306 {
4307 sk_drops_add(sk, skb);
4308 __kfree_skb(skb);
4309 }
4310
4311 /* This one checks to see if we can put data from the
4312 * out_of_order queue into the receive_queue.
4313 */
4314 static void tcp_ofo_queue(struct sock *sk)
4315 {
4316 struct tcp_sock *tp = tcp_sk(sk);
4317 __u32 dsack_high = tp->rcv_nxt;
4318 bool fin, fragstolen, eaten;
4319 struct sk_buff *skb, *tail;
4320 struct rb_node *p;
4321
4322 p = rb_first(&tp->out_of_order_queue);
4323 while (p) {
4324 skb = rb_entry(p, struct sk_buff, rbnode);
4325 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4326 break;
4327
4328 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4329 __u32 dsack = dsack_high;
4330 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4331 dsack_high = TCP_SKB_CB(skb)->end_seq;
4332 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4333 }
4334 p = rb_next(p);
4335 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4336
4337 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4338 SOCK_DEBUG(sk, "ofo packet was already received\n");
4339 tcp_drop(sk, skb);
4340 continue;
4341 }
4342 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4344 TCP_SKB_CB(skb)->end_seq);
4345
4346 tail = skb_peek_tail(&sk->sk_receive_queue);
4347 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4348 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4349 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4350 if (!eaten)
4351 __skb_queue_tail(&sk->sk_receive_queue, skb);
4352 else
4353 kfree_skb_partial(skb, fragstolen);
4354
4355 if (unlikely(fin)) {
4356 tcp_fin(sk);
4357 /* tcp_fin() purges tp->out_of_order_queue,
4358 * so we must end this loop right now.
4359 */
4360 break;
4361 }
4362 }
4363 }
4364
4365 static bool tcp_prune_ofo_queue(struct sock *sk);
4366 static int tcp_prune_queue(struct sock *sk);
4367
4368 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4369 unsigned int size)
4370 {
4371 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4372 !sk_rmem_schedule(sk, skb, size)) {
4373
4374 if (tcp_prune_queue(sk) < 0)
4375 return -1;
4376
4377 while (!sk_rmem_schedule(sk, skb, size)) {
4378 if (!tcp_prune_ofo_queue(sk))
4379 return -1;
4380 }
4381 }
4382 return 0;
4383 }
4384
4385 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4386 {
4387 struct tcp_sock *tp = tcp_sk(sk);
4388 struct rb_node **p, *q, *parent;
4389 struct sk_buff *skb1;
4390 u32 seq, end_seq;
4391 bool fragstolen;
4392
4393 tcp_ecn_check_ce(tp, skb);
4394
4395 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4397 tcp_drop(sk, skb);
4398 return;
4399 }
4400
4401 /* Disable header prediction. */
4402 tp->pred_flags = 0;
4403 inet_csk_schedule_ack(sk);
4404
4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4406 seq = TCP_SKB_CB(skb)->seq;
4407 end_seq = TCP_SKB_CB(skb)->end_seq;
4408 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409 tp->rcv_nxt, seq, end_seq);
4410
4411 p = &tp->out_of_order_queue.rb_node;
4412 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4413 /* Initial out of order segment, build 1 SACK. */
4414 if (tcp_is_sack(tp)) {
4415 tp->rx_opt.num_sacks = 1;
4416 tp->selective_acks[0].start_seq = seq;
4417 tp->selective_acks[0].end_seq = end_seq;
4418 }
4419 rb_link_node(&skb->rbnode, NULL, p);
4420 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4421 tp->ooo_last_skb = skb;
4422 goto end;
4423 }
4424
4425 /* In the typical case, we are adding an skb to the end of the list.
4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4427 */
4428 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4429 coalesce_done:
4430 tcp_grow_window(sk, skb);
4431 kfree_skb_partial(skb, fragstolen);
4432 skb = NULL;
4433 goto add_sack;
4434 }
4435 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4436 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4437 parent = &tp->ooo_last_skb->rbnode;
4438 p = &parent->rb_right;
4439 goto insert;
4440 }
4441
4442 /* Find place to insert this segment. Handle overlaps on the way. */
4443 parent = NULL;
4444 while (*p) {
4445 parent = *p;
4446 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4447 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4448 p = &parent->rb_left;
4449 continue;
4450 }
4451 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4452 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4453 /* All the bits are present. Drop. */
4454 NET_INC_STATS(sock_net(sk),
4455 LINUX_MIB_TCPOFOMERGE);
4456 __kfree_skb(skb);
4457 skb = NULL;
4458 tcp_dsack_set(sk, seq, end_seq);
4459 goto add_sack;
4460 }
4461 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4462 /* Partial overlap. */
4463 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4464 } else {
4465 /* skb's seq == skb1's seq and skb covers skb1.
4466 * Replace skb1 with skb.
4467 */
4468 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4469 &tp->out_of_order_queue);
4470 tcp_dsack_extend(sk,
4471 TCP_SKB_CB(skb1)->seq,
4472 TCP_SKB_CB(skb1)->end_seq);
4473 NET_INC_STATS(sock_net(sk),
4474 LINUX_MIB_TCPOFOMERGE);
4475 __kfree_skb(skb1);
4476 goto merge_right;
4477 }
4478 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4479 goto coalesce_done;
4480 }
4481 p = &parent->rb_right;
4482 }
4483 insert:
4484 /* Insert segment into RB tree. */
4485 rb_link_node(&skb->rbnode, parent, p);
4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4487
4488 merge_right:
4489 /* Remove other segments covered by skb. */
4490 while ((q = rb_next(&skb->rbnode)) != NULL) {
4491 skb1 = rb_entry(q, struct sk_buff, rbnode);
4492
4493 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4494 break;
4495 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4497 end_seq);
4498 break;
4499 }
4500 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4501 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4502 TCP_SKB_CB(skb1)->end_seq);
4503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4504 tcp_drop(sk, skb1);
4505 }
4506 /* If there is no skb after us, we are the last_skb ! */
4507 if (!q)
4508 tp->ooo_last_skb = skb;
4509
4510 add_sack:
4511 if (tcp_is_sack(tp))
4512 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4513 end:
4514 if (skb) {
4515 tcp_grow_window(sk, skb);
4516 skb_condense(skb);
4517 skb_set_owner_r(skb, sk);
4518 }
4519 }
4520
4521 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4522 bool *fragstolen)
4523 {
4524 int eaten;
4525 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4526
4527 __skb_pull(skb, hdrlen);
4528 eaten = (tail &&
4529 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4530 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4531 if (!eaten) {
4532 __skb_queue_tail(&sk->sk_receive_queue, skb);
4533 skb_set_owner_r(skb, sk);
4534 }
4535 return eaten;
4536 }
4537
4538 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4539 {
4540 struct sk_buff *skb;
4541 int err = -ENOMEM;
4542 int data_len = 0;
4543 bool fragstolen;
4544
4545 if (size == 0)
4546 return 0;
4547
4548 if (size > PAGE_SIZE) {
4549 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4550
4551 data_len = npages << PAGE_SHIFT;
4552 size = data_len + (size & ~PAGE_MASK);
4553 }
4554 skb = alloc_skb_with_frags(size - data_len, data_len,
4555 PAGE_ALLOC_COSTLY_ORDER,
4556 &err, sk->sk_allocation);
4557 if (!skb)
4558 goto err;
4559
4560 skb_put(skb, size - data_len);
4561 skb->data_len = data_len;
4562 skb->len = size;
4563
4564 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4565 goto err_free;
4566
4567 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4568 if (err)
4569 goto err_free;
4570
4571 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4572 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4573 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4574
4575 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4576 WARN_ON_ONCE(fragstolen); /* should not happen */
4577 __kfree_skb(skb);
4578 }
4579 return size;
4580
4581 err_free:
4582 kfree_skb(skb);
4583 err:
4584 return err;
4585
4586 }
4587
4588 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4589 {
4590 struct tcp_sock *tp = tcp_sk(sk);
4591 bool fragstolen = false;
4592 int eaten = -1;
4593
4594 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4595 __kfree_skb(skb);
4596 return;
4597 }
4598 skb_dst_drop(skb);
4599 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4600
4601 tcp_ecn_accept_cwr(tp, skb);
4602
4603 tp->rx_opt.dsack = 0;
4604
4605 /* Queue data for delivery to the user.
4606 * Packets in sequence go to the receive queue.
4607 * Out of sequence packets to the out_of_order_queue.
4608 */
4609 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4610 if (tcp_receive_window(tp) == 0)
4611 goto out_of_window;
4612
4613 /* Ok. In sequence. In window. */
4614 if (tp->ucopy.task == current &&
4615 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4616 sock_owned_by_user(sk) && !tp->urg_data) {
4617 int chunk = min_t(unsigned int, skb->len,
4618 tp->ucopy.len);
4619
4620 __set_current_state(TASK_RUNNING);
4621
4622 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4623 tp->ucopy.len -= chunk;
4624 tp->copied_seq += chunk;
4625 eaten = (chunk == skb->len);
4626 tcp_rcv_space_adjust(sk);
4627 }
4628 }
4629
4630 if (eaten <= 0) {
4631 queue_and_out:
4632 if (eaten < 0) {
4633 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4634 sk_forced_mem_schedule(sk, skb->truesize);
4635 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4636 goto drop;
4637 }
4638 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4639 }
4640 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4641 if (skb->len)
4642 tcp_event_data_recv(sk, skb);
4643 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4644 tcp_fin(sk);
4645
4646 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4647 tcp_ofo_queue(sk);
4648
4649 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4650 * gap in queue is filled.
4651 */
4652 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4653 inet_csk(sk)->icsk_ack.pingpong = 0;
4654 }
4655
4656 if (tp->rx_opt.num_sacks)
4657 tcp_sack_remove(tp);
4658
4659 tcp_fast_path_check(sk);
4660
4661 if (eaten > 0)
4662 kfree_skb_partial(skb, fragstolen);
4663 if (!sock_flag(sk, SOCK_DEAD))
4664 sk->sk_data_ready(sk);
4665 return;
4666 }
4667
4668 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4669 /* A retransmit, 2nd most common case. Force an immediate ack. */
4670 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4671 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4672
4673 out_of_window:
4674 tcp_enter_quickack_mode(sk);
4675 inet_csk_schedule_ack(sk);
4676 drop:
4677 tcp_drop(sk, skb);
4678 return;
4679 }
4680
4681 /* Out of window. F.e. zero window probe. */
4682 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4683 goto out_of_window;
4684
4685 tcp_enter_quickack_mode(sk);
4686
4687 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4688 /* Partial packet, seq < rcv_next < end_seq */
4689 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4690 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4691 TCP_SKB_CB(skb)->end_seq);
4692
4693 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4694
4695 /* If window is closed, drop tail of packet. But after
4696 * remembering D-SACK for its head made in previous line.
4697 */
4698 if (!tcp_receive_window(tp))
4699 goto out_of_window;
4700 goto queue_and_out;
4701 }
4702
4703 tcp_data_queue_ofo(sk, skb);
4704 }
4705
4706 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4707 {
4708 if (list)
4709 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4710
4711 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4712 }
4713
4714 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4715 struct sk_buff_head *list,
4716 struct rb_root *root)
4717 {
4718 struct sk_buff *next = tcp_skb_next(skb, list);
4719
4720 if (list)
4721 __skb_unlink(skb, list);
4722 else
4723 rb_erase(&skb->rbnode, root);
4724
4725 __kfree_skb(skb);
4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4727
4728 return next;
4729 }
4730
4731 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4732 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4733 {
4734 struct rb_node **p = &root->rb_node;
4735 struct rb_node *parent = NULL;
4736 struct sk_buff *skb1;
4737
4738 while (*p) {
4739 parent = *p;
4740 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4741 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4742 p = &parent->rb_left;
4743 else
4744 p = &parent->rb_right;
4745 }
4746 rb_link_node(&skb->rbnode, parent, p);
4747 rb_insert_color(&skb->rbnode, root);
4748 }
4749
4750 /* Collapse contiguous sequence of skbs head..tail with
4751 * sequence numbers start..end.
4752 *
4753 * If tail is NULL, this means until the end of the queue.
4754 *
4755 * Segments with FIN/SYN are not collapsed (only because this
4756 * simplifies code)
4757 */
4758 static void
4759 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4760 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4761 {
4762 struct sk_buff *skb = head, *n;
4763 struct sk_buff_head tmp;
4764 bool end_of_skbs;
4765
4766 /* First, check that queue is collapsible and find
4767 * the point where collapsing can be useful.
4768 */
4769 restart:
4770 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4771 n = tcp_skb_next(skb, list);
4772
4773 /* No new bits? It is possible on ofo queue. */
4774 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4775 skb = tcp_collapse_one(sk, skb, list, root);
4776 if (!skb)
4777 break;
4778 goto restart;
4779 }
4780
4781 /* The first skb to collapse is:
4782 * - not SYN/FIN and
4783 * - bloated or contains data before "start" or
4784 * overlaps to the next one.
4785 */
4786 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4787 (tcp_win_from_space(skb->truesize) > skb->len ||
4788 before(TCP_SKB_CB(skb)->seq, start))) {
4789 end_of_skbs = false;
4790 break;
4791 }
4792
4793 if (n && n != tail &&
4794 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4795 end_of_skbs = false;
4796 break;
4797 }
4798
4799 /* Decided to skip this, advance start seq. */
4800 start = TCP_SKB_CB(skb)->end_seq;
4801 }
4802 if (end_of_skbs ||
4803 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4804 return;
4805
4806 __skb_queue_head_init(&tmp);
4807
4808 while (before(start, end)) {
4809 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4810 struct sk_buff *nskb;
4811
4812 nskb = alloc_skb(copy, GFP_ATOMIC);
4813 if (!nskb)
4814 break;
4815
4816 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4817 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4818 if (list)
4819 __skb_queue_before(list, skb, nskb);
4820 else
4821 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4822 skb_set_owner_r(nskb, sk);
4823
4824 /* Copy data, releasing collapsed skbs. */
4825 while (copy > 0) {
4826 int offset = start - TCP_SKB_CB(skb)->seq;
4827 int size = TCP_SKB_CB(skb)->end_seq - start;
4828
4829 BUG_ON(offset < 0);
4830 if (size > 0) {
4831 size = min(copy, size);
4832 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4833 BUG();
4834 TCP_SKB_CB(nskb)->end_seq += size;
4835 copy -= size;
4836 start += size;
4837 }
4838 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4839 skb = tcp_collapse_one(sk, skb, list, root);
4840 if (!skb ||
4841 skb == tail ||
4842 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4843 goto end;
4844 }
4845 }
4846 }
4847 end:
4848 skb_queue_walk_safe(&tmp, skb, n)
4849 tcp_rbtree_insert(root, skb);
4850 }
4851
4852 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4853 * and tcp_collapse() them until all the queue is collapsed.
4854 */
4855 static void tcp_collapse_ofo_queue(struct sock *sk)
4856 {
4857 struct tcp_sock *tp = tcp_sk(sk);
4858 struct sk_buff *skb, *head;
4859 struct rb_node *p;
4860 u32 start, end;
4861
4862 p = rb_first(&tp->out_of_order_queue);
4863 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4864 new_range:
4865 if (!skb) {
4866 p = rb_last(&tp->out_of_order_queue);
4867 /* Note: This is possible p is NULL here. We do not
4868 * use rb_entry_safe(), as ooo_last_skb is valid only
4869 * if rbtree is not empty.
4870 */
4871 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4872 return;
4873 }
4874 start = TCP_SKB_CB(skb)->seq;
4875 end = TCP_SKB_CB(skb)->end_seq;
4876
4877 for (head = skb;;) {
4878 skb = tcp_skb_next(skb, NULL);
4879
4880 /* Range is terminated when we see a gap or when
4881 * we are at the queue end.
4882 */
4883 if (!skb ||
4884 after(TCP_SKB_CB(skb)->seq, end) ||
4885 before(TCP_SKB_CB(skb)->end_seq, start)) {
4886 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4887 head, skb, start, end);
4888 goto new_range;
4889 }
4890
4891 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4892 start = TCP_SKB_CB(skb)->seq;
4893 if (after(TCP_SKB_CB(skb)->end_seq, end))
4894 end = TCP_SKB_CB(skb)->end_seq;
4895 }
4896 }
4897
4898 /*
4899 * Clean the out-of-order queue to make room.
4900 * We drop high sequences packets to :
4901 * 1) Let a chance for holes to be filled.
4902 * 2) not add too big latencies if thousands of packets sit there.
4903 * (But if application shrinks SO_RCVBUF, we could still end up
4904 * freeing whole queue here)
4905 *
4906 * Return true if queue has shrunk.
4907 */
4908 static bool tcp_prune_ofo_queue(struct sock *sk)
4909 {
4910 struct tcp_sock *tp = tcp_sk(sk);
4911 struct rb_node *node, *prev;
4912
4913 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4914 return false;
4915
4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4917 node = &tp->ooo_last_skb->rbnode;
4918 do {
4919 prev = rb_prev(node);
4920 rb_erase(node, &tp->out_of_order_queue);
4921 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4922 sk_mem_reclaim(sk);
4923 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4924 !tcp_under_memory_pressure(sk))
4925 break;
4926 node = prev;
4927 } while (node);
4928 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4929
4930 /* Reset SACK state. A conforming SACK implementation will
4931 * do the same at a timeout based retransmit. When a connection
4932 * is in a sad state like this, we care only about integrity
4933 * of the connection not performance.
4934 */
4935 if (tp->rx_opt.sack_ok)
4936 tcp_sack_reset(&tp->rx_opt);
4937 return true;
4938 }
4939
4940 /* Reduce allocated memory if we can, trying to get
4941 * the socket within its memory limits again.
4942 *
4943 * Return less than zero if we should start dropping frames
4944 * until the socket owning process reads some of the data
4945 * to stabilize the situation.
4946 */
4947 static int tcp_prune_queue(struct sock *sk)
4948 {
4949 struct tcp_sock *tp = tcp_sk(sk);
4950
4951 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4952
4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4954
4955 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4956 tcp_clamp_window(sk);
4957 else if (tcp_under_memory_pressure(sk))
4958 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4959
4960 tcp_collapse_ofo_queue(sk);
4961 if (!skb_queue_empty(&sk->sk_receive_queue))
4962 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4963 skb_peek(&sk->sk_receive_queue),
4964 NULL,
4965 tp->copied_seq, tp->rcv_nxt);
4966 sk_mem_reclaim(sk);
4967
4968 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4969 return 0;
4970
4971 /* Collapsing did not help, destructive actions follow.
4972 * This must not ever occur. */
4973
4974 tcp_prune_ofo_queue(sk);
4975
4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4977 return 0;
4978
4979 /* If we are really being abused, tell the caller to silently
4980 * drop receive data on the floor. It will get retransmitted
4981 * and hopefully then we'll have sufficient space.
4982 */
4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4984
4985 /* Massive buffer overcommit. */
4986 tp->pred_flags = 0;
4987 return -1;
4988 }
4989
4990 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4991 {
4992 const struct tcp_sock *tp = tcp_sk(sk);
4993
4994 /* If the user specified a specific send buffer setting, do
4995 * not modify it.
4996 */
4997 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4998 return false;
4999
5000 /* If we are under global TCP memory pressure, do not expand. */
5001 if (tcp_under_memory_pressure(sk))
5002 return false;
5003
5004 /* If we are under soft global TCP memory pressure, do not expand. */
5005 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5006 return false;
5007
5008 /* If we filled the congestion window, do not expand. */
5009 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5010 return false;
5011
5012 return true;
5013 }
5014
5015 /* When incoming ACK allowed to free some skb from write_queue,
5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5017 * on the exit from tcp input handler.
5018 *
5019 * PROBLEM: sndbuf expansion does not work well with largesend.
5020 */
5021 static void tcp_new_space(struct sock *sk)
5022 {
5023 struct tcp_sock *tp = tcp_sk(sk);
5024
5025 if (tcp_should_expand_sndbuf(sk)) {
5026 tcp_sndbuf_expand(sk);
5027 tp->snd_cwnd_stamp = tcp_jiffies32;
5028 }
5029
5030 sk->sk_write_space(sk);
5031 }
5032
5033 static void tcp_check_space(struct sock *sk)
5034 {
5035 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5036 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5037 /* pairs with tcp_poll() */
5038 smp_mb();
5039 if (sk->sk_socket &&
5040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5041 tcp_new_space(sk);
5042 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5043 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5044 }
5045 }
5046 }
5047
5048 static inline void tcp_data_snd_check(struct sock *sk)
5049 {
5050 tcp_push_pending_frames(sk);
5051 tcp_check_space(sk);
5052 }
5053
5054 /*
5055 * Check if sending an ack is needed.
5056 */
5057 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5058 {
5059 struct tcp_sock *tp = tcp_sk(sk);
5060
5061 /* More than one full frame received... */
5062 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5063 /* ... and right edge of window advances far enough.
5064 * (tcp_recvmsg() will send ACK otherwise). Or...
5065 */
5066 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5067 /* We ACK each frame or... */
5068 tcp_in_quickack_mode(sk) ||
5069 /* We have out of order data. */
5070 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5071 /* Then ack it now */
5072 tcp_send_ack(sk);
5073 } else {
5074 /* Else, send delayed ack. */
5075 tcp_send_delayed_ack(sk);
5076 }
5077 }
5078
5079 static inline void tcp_ack_snd_check(struct sock *sk)
5080 {
5081 if (!inet_csk_ack_scheduled(sk)) {
5082 /* We sent a data segment already. */
5083 return;
5084 }
5085 __tcp_ack_snd_check(sk, 1);
5086 }
5087
5088 /*
5089 * This routine is only called when we have urgent data
5090 * signaled. Its the 'slow' part of tcp_urg. It could be
5091 * moved inline now as tcp_urg is only called from one
5092 * place. We handle URGent data wrong. We have to - as
5093 * BSD still doesn't use the correction from RFC961.
5094 * For 1003.1g we should support a new option TCP_STDURG to permit
5095 * either form (or just set the sysctl tcp_stdurg).
5096 */
5097
5098 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5099 {
5100 struct tcp_sock *tp = tcp_sk(sk);
5101 u32 ptr = ntohs(th->urg_ptr);
5102
5103 if (ptr && !sysctl_tcp_stdurg)
5104 ptr--;
5105 ptr += ntohl(th->seq);
5106
5107 /* Ignore urgent data that we've already seen and read. */
5108 if (after(tp->copied_seq, ptr))
5109 return;
5110
5111 /* Do not replay urg ptr.
5112 *
5113 * NOTE: interesting situation not covered by specs.
5114 * Misbehaving sender may send urg ptr, pointing to segment,
5115 * which we already have in ofo queue. We are not able to fetch
5116 * such data and will stay in TCP_URG_NOTYET until will be eaten
5117 * by recvmsg(). Seems, we are not obliged to handle such wicked
5118 * situations. But it is worth to think about possibility of some
5119 * DoSes using some hypothetical application level deadlock.
5120 */
5121 if (before(ptr, tp->rcv_nxt))
5122 return;
5123
5124 /* Do we already have a newer (or duplicate) urgent pointer? */
5125 if (tp->urg_data && !after(ptr, tp->urg_seq))
5126 return;
5127
5128 /* Tell the world about our new urgent pointer. */
5129 sk_send_sigurg(sk);
5130
5131 /* We may be adding urgent data when the last byte read was
5132 * urgent. To do this requires some care. We cannot just ignore
5133 * tp->copied_seq since we would read the last urgent byte again
5134 * as data, nor can we alter copied_seq until this data arrives
5135 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5136 *
5137 * NOTE. Double Dutch. Rendering to plain English: author of comment
5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5139 * and expect that both A and B disappear from stream. This is _wrong_.
5140 * Though this happens in BSD with high probability, this is occasional.
5141 * Any application relying on this is buggy. Note also, that fix "works"
5142 * only in this artificial test. Insert some normal data between A and B and we will
5143 * decline of BSD again. Verdict: it is better to remove to trap
5144 * buggy users.
5145 */
5146 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5147 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5148 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5149 tp->copied_seq++;
5150 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5151 __skb_unlink(skb, &sk->sk_receive_queue);
5152 __kfree_skb(skb);
5153 }
5154 }
5155
5156 tp->urg_data = TCP_URG_NOTYET;
5157 tp->urg_seq = ptr;
5158
5159 /* Disable header prediction. */
5160 tp->pred_flags = 0;
5161 }
5162
5163 /* This is the 'fast' part of urgent handling. */
5164 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5165 {
5166 struct tcp_sock *tp = tcp_sk(sk);
5167
5168 /* Check if we get a new urgent pointer - normally not. */
5169 if (th->urg)
5170 tcp_check_urg(sk, th);
5171
5172 /* Do we wait for any urgent data? - normally not... */
5173 if (tp->urg_data == TCP_URG_NOTYET) {
5174 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5175 th->syn;
5176
5177 /* Is the urgent pointer pointing into this packet? */
5178 if (ptr < skb->len) {
5179 u8 tmp;
5180 if (skb_copy_bits(skb, ptr, &tmp, 1))
5181 BUG();
5182 tp->urg_data = TCP_URG_VALID | tmp;
5183 if (!sock_flag(sk, SOCK_DEAD))
5184 sk->sk_data_ready(sk);
5185 }
5186 }
5187 }
5188
5189 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5190 {
5191 struct tcp_sock *tp = tcp_sk(sk);
5192 int chunk = skb->len - hlen;
5193 int err;
5194
5195 if (skb_csum_unnecessary(skb))
5196 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5197 else
5198 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5199
5200 if (!err) {
5201 tp->ucopy.len -= chunk;
5202 tp->copied_seq += chunk;
5203 tcp_rcv_space_adjust(sk);
5204 }
5205
5206 return err;
5207 }
5208
5209 /* Accept RST for rcv_nxt - 1 after a FIN.
5210 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5211 * FIN is sent followed by a RST packet. The RST is sent with the same
5212 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5213 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5214 * ACKs on the closed socket. In addition middleboxes can drop either the
5215 * challenge ACK or a subsequent RST.
5216 */
5217 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5218 {
5219 struct tcp_sock *tp = tcp_sk(sk);
5220
5221 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5222 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5223 TCPF_CLOSING));
5224 }
5225
5226 /* Does PAWS and seqno based validation of an incoming segment, flags will
5227 * play significant role here.
5228 */
5229 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5230 const struct tcphdr *th, int syn_inerr)
5231 {
5232 struct tcp_sock *tp = tcp_sk(sk);
5233 bool rst_seq_match = false;
5234
5235 /* RFC1323: H1. Apply PAWS check first. */
5236 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5237 tp->rx_opt.saw_tstamp &&
5238 tcp_paws_discard(sk, skb)) {
5239 if (!th->rst) {
5240 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5241 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5242 LINUX_MIB_TCPACKSKIPPEDPAWS,
5243 &tp->last_oow_ack_time))
5244 tcp_send_dupack(sk, skb);
5245 goto discard;
5246 }
5247 /* Reset is accepted even if it did not pass PAWS. */
5248 }
5249
5250 /* Step 1: check sequence number */
5251 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5252 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5253 * (RST) segments are validated by checking their SEQ-fields."
5254 * And page 69: "If an incoming segment is not acceptable,
5255 * an acknowledgment should be sent in reply (unless the RST
5256 * bit is set, if so drop the segment and return)".
5257 */
5258 if (!th->rst) {
5259 if (th->syn)
5260 goto syn_challenge;
5261 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5262 LINUX_MIB_TCPACKSKIPPEDSEQ,
5263 &tp->last_oow_ack_time))
5264 tcp_send_dupack(sk, skb);
5265 } else if (tcp_reset_check(sk, skb)) {
5266 tcp_reset(sk);
5267 }
5268 goto discard;
5269 }
5270
5271 /* Step 2: check RST bit */
5272 if (th->rst) {
5273 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5274 * FIN and SACK too if available):
5275 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5276 * the right-most SACK block,
5277 * then
5278 * RESET the connection
5279 * else
5280 * Send a challenge ACK
5281 */
5282 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5283 tcp_reset_check(sk, skb)) {
5284 rst_seq_match = true;
5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5286 struct tcp_sack_block *sp = &tp->selective_acks[0];
5287 int max_sack = sp[0].end_seq;
5288 int this_sack;
5289
5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5291 ++this_sack) {
5292 max_sack = after(sp[this_sack].end_seq,
5293 max_sack) ?
5294 sp[this_sack].end_seq : max_sack;
5295 }
5296
5297 if (TCP_SKB_CB(skb)->seq == max_sack)
5298 rst_seq_match = true;
5299 }
5300
5301 if (rst_seq_match)
5302 tcp_reset(sk);
5303 else {
5304 /* Disable TFO if RST is out-of-order
5305 * and no data has been received
5306 * for current active TFO socket
5307 */
5308 if (tp->syn_fastopen && !tp->data_segs_in &&
5309 sk->sk_state == TCP_ESTABLISHED)
5310 tcp_fastopen_active_disable(sk);
5311 tcp_send_challenge_ack(sk, skb);
5312 }
5313 goto discard;
5314 }
5315
5316 /* step 3: check security and precedence [ignored] */
5317
5318 /* step 4: Check for a SYN
5319 * RFC 5961 4.2 : Send a challenge ack
5320 */
5321 if (th->syn) {
5322 syn_challenge:
5323 if (syn_inerr)
5324 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5326 tcp_send_challenge_ack(sk, skb);
5327 goto discard;
5328 }
5329
5330 return true;
5331
5332 discard:
5333 tcp_drop(sk, skb);
5334 return false;
5335 }
5336
5337 /*
5338 * TCP receive function for the ESTABLISHED state.
5339 *
5340 * It is split into a fast path and a slow path. The fast path is
5341 * disabled when:
5342 * - A zero window was announced from us - zero window probing
5343 * is only handled properly in the slow path.
5344 * - Out of order segments arrived.
5345 * - Urgent data is expected.
5346 * - There is no buffer space left
5347 * - Unexpected TCP flags/window values/header lengths are received
5348 * (detected by checking the TCP header against pred_flags)
5349 * - Data is sent in both directions. Fast path only supports pure senders
5350 * or pure receivers (this means either the sequence number or the ack
5351 * value must stay constant)
5352 * - Unexpected TCP option.
5353 *
5354 * When these conditions are not satisfied it drops into a standard
5355 * receive procedure patterned after RFC793 to handle all cases.
5356 * The first three cases are guaranteed by proper pred_flags setting,
5357 * the rest is checked inline. Fast processing is turned on in
5358 * tcp_data_queue when everything is OK.
5359 */
5360 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5361 const struct tcphdr *th, unsigned int len)
5362 {
5363 struct tcp_sock *tp = tcp_sk(sk);
5364
5365 tcp_mstamp_refresh(tp);
5366 if (unlikely(!sk->sk_rx_dst))
5367 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5368 /*
5369 * Header prediction.
5370 * The code loosely follows the one in the famous
5371 * "30 instruction TCP receive" Van Jacobson mail.
5372 *
5373 * Van's trick is to deposit buffers into socket queue
5374 * on a device interrupt, to call tcp_recv function
5375 * on the receive process context and checksum and copy
5376 * the buffer to user space. smart...
5377 *
5378 * Our current scheme is not silly either but we take the
5379 * extra cost of the net_bh soft interrupt processing...
5380 * We do checksum and copy also but from device to kernel.
5381 */
5382
5383 tp->rx_opt.saw_tstamp = 0;
5384
5385 /* pred_flags is 0xS?10 << 16 + snd_wnd
5386 * if header_prediction is to be made
5387 * 'S' will always be tp->tcp_header_len >> 2
5388 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5389 * turn it off (when there are holes in the receive
5390 * space for instance)
5391 * PSH flag is ignored.
5392 */
5393
5394 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5395 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5396 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5397 int tcp_header_len = tp->tcp_header_len;
5398
5399 /* Timestamp header prediction: tcp_header_len
5400 * is automatically equal to th->doff*4 due to pred_flags
5401 * match.
5402 */
5403
5404 /* Check timestamp */
5405 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5406 /* No? Slow path! */
5407 if (!tcp_parse_aligned_timestamp(tp, th))
5408 goto slow_path;
5409
5410 /* If PAWS failed, check it more carefully in slow path */
5411 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5412 goto slow_path;
5413
5414 /* DO NOT update ts_recent here, if checksum fails
5415 * and timestamp was corrupted part, it will result
5416 * in a hung connection since we will drop all
5417 * future packets due to the PAWS test.
5418 */
5419 }
5420
5421 if (len <= tcp_header_len) {
5422 /* Bulk data transfer: sender */
5423 if (len == tcp_header_len) {
5424 /* Predicted packet is in window by definition.
5425 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5426 * Hence, check seq<=rcv_wup reduces to:
5427 */
5428 if (tcp_header_len ==
5429 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5430 tp->rcv_nxt == tp->rcv_wup)
5431 tcp_store_ts_recent(tp);
5432
5433 /* We know that such packets are checksummed
5434 * on entry.
5435 */
5436 tcp_ack(sk, skb, 0);
5437 __kfree_skb(skb);
5438 tcp_data_snd_check(sk);
5439 return;
5440 } else { /* Header too small */
5441 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5442 goto discard;
5443 }
5444 } else {
5445 int eaten = 0;
5446 bool fragstolen = false;
5447
5448 if (tp->ucopy.task == current &&
5449 tp->copied_seq == tp->rcv_nxt &&
5450 len - tcp_header_len <= tp->ucopy.len &&
5451 sock_owned_by_user(sk)) {
5452 __set_current_state(TASK_RUNNING);
5453
5454 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5455 /* Predicted packet is in window by definition.
5456 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5457 * Hence, check seq<=rcv_wup reduces to:
5458 */
5459 if (tcp_header_len ==
5460 (sizeof(struct tcphdr) +
5461 TCPOLEN_TSTAMP_ALIGNED) &&
5462 tp->rcv_nxt == tp->rcv_wup)
5463 tcp_store_ts_recent(tp);
5464
5465 tcp_rcv_rtt_measure_ts(sk, skb);
5466
5467 __skb_pull(skb, tcp_header_len);
5468 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5469 NET_INC_STATS(sock_net(sk),
5470 LINUX_MIB_TCPHPHITSTOUSER);
5471 eaten = 1;
5472 }
5473 }
5474 if (!eaten) {
5475 if (tcp_checksum_complete(skb))
5476 goto csum_error;
5477
5478 if ((int)skb->truesize > sk->sk_forward_alloc)
5479 goto step5;
5480
5481 /* Predicted packet is in window by definition.
5482 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5483 * Hence, check seq<=rcv_wup reduces to:
5484 */
5485 if (tcp_header_len ==
5486 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5487 tp->rcv_nxt == tp->rcv_wup)
5488 tcp_store_ts_recent(tp);
5489
5490 tcp_rcv_rtt_measure_ts(sk, skb);
5491
5492 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5493
5494 /* Bulk data transfer: receiver */
5495 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5496 &fragstolen);
5497 }
5498
5499 tcp_event_data_recv(sk, skb);
5500
5501 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5502 /* Well, only one small jumplet in fast path... */
5503 tcp_ack(sk, skb, FLAG_DATA);
5504 tcp_data_snd_check(sk);
5505 if (!inet_csk_ack_scheduled(sk))
5506 goto no_ack;
5507 }
5508
5509 __tcp_ack_snd_check(sk, 0);
5510 no_ack:
5511 if (eaten)
5512 kfree_skb_partial(skb, fragstolen);
5513 sk->sk_data_ready(sk);
5514 return;
5515 }
5516 }
5517
5518 slow_path:
5519 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5520 goto csum_error;
5521
5522 if (!th->ack && !th->rst && !th->syn)
5523 goto discard;
5524
5525 /*
5526 * Standard slow path.
5527 */
5528
5529 if (!tcp_validate_incoming(sk, skb, th, 1))
5530 return;
5531
5532 step5:
5533 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5534 goto discard;
5535
5536 tcp_rcv_rtt_measure_ts(sk, skb);
5537
5538 /* Process urgent data. */
5539 tcp_urg(sk, skb, th);
5540
5541 /* step 7: process the segment text */
5542 tcp_data_queue(sk, skb);
5543
5544 tcp_data_snd_check(sk);
5545 tcp_ack_snd_check(sk);
5546 return;
5547
5548 csum_error:
5549 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5550 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5551
5552 discard:
5553 tcp_drop(sk, skb);
5554 }
5555 EXPORT_SYMBOL(tcp_rcv_established);
5556
5557 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5558 {
5559 struct tcp_sock *tp = tcp_sk(sk);
5560 struct inet_connection_sock *icsk = inet_csk(sk);
5561
5562 tcp_set_state(sk, TCP_ESTABLISHED);
5563 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5564
5565 if (skb) {
5566 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5567 security_inet_conn_established(sk, skb);
5568 }
5569
5570 /* Make sure socket is routed, for correct metrics. */
5571 icsk->icsk_af_ops->rebuild_header(sk);
5572
5573 tcp_init_metrics(sk);
5574 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5575 tcp_init_congestion_control(sk);
5576
5577 /* Prevent spurious tcp_cwnd_restart() on first data
5578 * packet.
5579 */
5580 tp->lsndtime = tcp_jiffies32;
5581
5582 tcp_init_buffer_space(sk);
5583
5584 if (sock_flag(sk, SOCK_KEEPOPEN))
5585 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5586
5587 if (!tp->rx_opt.snd_wscale)
5588 __tcp_fast_path_on(tp, tp->snd_wnd);
5589 else
5590 tp->pred_flags = 0;
5591
5592 }
5593
5594 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5595 struct tcp_fastopen_cookie *cookie)
5596 {
5597 struct tcp_sock *tp = tcp_sk(sk);
5598 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5599 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5600 bool syn_drop = false;
5601
5602 if (mss == tp->rx_opt.user_mss) {
5603 struct tcp_options_received opt;
5604
5605 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5606 tcp_clear_options(&opt);
5607 opt.user_mss = opt.mss_clamp = 0;
5608 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5609 mss = opt.mss_clamp;
5610 }
5611
5612 if (!tp->syn_fastopen) {
5613 /* Ignore an unsolicited cookie */
5614 cookie->len = -1;
5615 } else if (tp->total_retrans) {
5616 /* SYN timed out and the SYN-ACK neither has a cookie nor
5617 * acknowledges data. Presumably the remote received only
5618 * the retransmitted (regular) SYNs: either the original
5619 * SYN-data or the corresponding SYN-ACK was dropped.
5620 */
5621 syn_drop = (cookie->len < 0 && data);
5622 } else if (cookie->len < 0 && !tp->syn_data) {
5623 /* We requested a cookie but didn't get it. If we did not use
5624 * the (old) exp opt format then try so next time (try_exp=1).
5625 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5626 */
5627 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5628 }
5629
5630 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5631
5632 if (data) { /* Retransmit unacked data in SYN */
5633 tcp_for_write_queue_from(data, sk) {
5634 if (data == tcp_send_head(sk) ||
5635 __tcp_retransmit_skb(sk, data, 1))
5636 break;
5637 }
5638 tcp_rearm_rto(sk);
5639 NET_INC_STATS(sock_net(sk),
5640 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5641 return true;
5642 }
5643 tp->syn_data_acked = tp->syn_data;
5644 if (tp->syn_data_acked)
5645 NET_INC_STATS(sock_net(sk),
5646 LINUX_MIB_TCPFASTOPENACTIVE);
5647
5648 tcp_fastopen_add_skb(sk, synack);
5649
5650 return false;
5651 }
5652
5653 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5654 const struct tcphdr *th)
5655 {
5656 struct inet_connection_sock *icsk = inet_csk(sk);
5657 struct tcp_sock *tp = tcp_sk(sk);
5658 struct tcp_fastopen_cookie foc = { .len = -1 };
5659 int saved_clamp = tp->rx_opt.mss_clamp;
5660 bool fastopen_fail;
5661
5662 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5663 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5664 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5665
5666 if (th->ack) {
5667 /* rfc793:
5668 * "If the state is SYN-SENT then
5669 * first check the ACK bit
5670 * If the ACK bit is set
5671 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5672 * a reset (unless the RST bit is set, if so drop
5673 * the segment and return)"
5674 */
5675 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5676 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5677 goto reset_and_undo;
5678
5679 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5680 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5681 tcp_time_stamp(tp))) {
5682 NET_INC_STATS(sock_net(sk),
5683 LINUX_MIB_PAWSACTIVEREJECTED);
5684 goto reset_and_undo;
5685 }
5686
5687 /* Now ACK is acceptable.
5688 *
5689 * "If the RST bit is set
5690 * If the ACK was acceptable then signal the user "error:
5691 * connection reset", drop the segment, enter CLOSED state,
5692 * delete TCB, and return."
5693 */
5694
5695 if (th->rst) {
5696 tcp_reset(sk);
5697 goto discard;
5698 }
5699
5700 /* rfc793:
5701 * "fifth, if neither of the SYN or RST bits is set then
5702 * drop the segment and return."
5703 *
5704 * See note below!
5705 * --ANK(990513)
5706 */
5707 if (!th->syn)
5708 goto discard_and_undo;
5709
5710 /* rfc793:
5711 * "If the SYN bit is on ...
5712 * are acceptable then ...
5713 * (our SYN has been ACKed), change the connection
5714 * state to ESTABLISHED..."
5715 */
5716
5717 tcp_ecn_rcv_synack(tp, th);
5718
5719 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5720 tcp_ack(sk, skb, FLAG_SLOWPATH);
5721
5722 /* Ok.. it's good. Set up sequence numbers and
5723 * move to established.
5724 */
5725 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5726 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5727
5728 /* RFC1323: The window in SYN & SYN/ACK segments is
5729 * never scaled.
5730 */
5731 tp->snd_wnd = ntohs(th->window);
5732
5733 if (!tp->rx_opt.wscale_ok) {
5734 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5735 tp->window_clamp = min(tp->window_clamp, 65535U);
5736 }
5737
5738 if (tp->rx_opt.saw_tstamp) {
5739 tp->rx_opt.tstamp_ok = 1;
5740 tp->tcp_header_len =
5741 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5742 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5743 tcp_store_ts_recent(tp);
5744 } else {
5745 tp->tcp_header_len = sizeof(struct tcphdr);
5746 }
5747
5748 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5749 tcp_enable_fack(tp);
5750
5751 tcp_mtup_init(sk);
5752 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5753 tcp_initialize_rcv_mss(sk);
5754
5755 /* Remember, tcp_poll() does not lock socket!
5756 * Change state from SYN-SENT only after copied_seq
5757 * is initialized. */
5758 tp->copied_seq = tp->rcv_nxt;
5759
5760 smp_mb();
5761
5762 tcp_finish_connect(sk, skb);
5763
5764 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5765 tcp_rcv_fastopen_synack(sk, skb, &foc);
5766
5767 if (!sock_flag(sk, SOCK_DEAD)) {
5768 sk->sk_state_change(sk);
5769 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5770 }
5771 if (fastopen_fail)
5772 return -1;
5773 if (sk->sk_write_pending ||
5774 icsk->icsk_accept_queue.rskq_defer_accept ||
5775 icsk->icsk_ack.pingpong) {
5776 /* Save one ACK. Data will be ready after
5777 * several ticks, if write_pending is set.
5778 *
5779 * It may be deleted, but with this feature tcpdumps
5780 * look so _wonderfully_ clever, that I was not able
5781 * to stand against the temptation 8) --ANK
5782 */
5783 inet_csk_schedule_ack(sk);
5784 tcp_enter_quickack_mode(sk);
5785 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5786 TCP_DELACK_MAX, TCP_RTO_MAX);
5787
5788 discard:
5789 tcp_drop(sk, skb);
5790 return 0;
5791 } else {
5792 tcp_send_ack(sk);
5793 }
5794 return -1;
5795 }
5796
5797 /* No ACK in the segment */
5798
5799 if (th->rst) {
5800 /* rfc793:
5801 * "If the RST bit is set
5802 *
5803 * Otherwise (no ACK) drop the segment and return."
5804 */
5805
5806 goto discard_and_undo;
5807 }
5808
5809 /* PAWS check. */
5810 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5811 tcp_paws_reject(&tp->rx_opt, 0))
5812 goto discard_and_undo;
5813
5814 if (th->syn) {
5815 /* We see SYN without ACK. It is attempt of
5816 * simultaneous connect with crossed SYNs.
5817 * Particularly, it can be connect to self.
5818 */
5819 tcp_set_state(sk, TCP_SYN_RECV);
5820
5821 if (tp->rx_opt.saw_tstamp) {
5822 tp->rx_opt.tstamp_ok = 1;
5823 tcp_store_ts_recent(tp);
5824 tp->tcp_header_len =
5825 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5826 } else {
5827 tp->tcp_header_len = sizeof(struct tcphdr);
5828 }
5829
5830 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5831 tp->copied_seq = tp->rcv_nxt;
5832 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5833
5834 /* RFC1323: The window in SYN & SYN/ACK segments is
5835 * never scaled.
5836 */
5837 tp->snd_wnd = ntohs(th->window);
5838 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5839 tp->max_window = tp->snd_wnd;
5840
5841 tcp_ecn_rcv_syn(tp, th);
5842
5843 tcp_mtup_init(sk);
5844 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5845 tcp_initialize_rcv_mss(sk);
5846
5847 tcp_send_synack(sk);
5848 #if 0
5849 /* Note, we could accept data and URG from this segment.
5850 * There are no obstacles to make this (except that we must
5851 * either change tcp_recvmsg() to prevent it from returning data
5852 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5853 *
5854 * However, if we ignore data in ACKless segments sometimes,
5855 * we have no reasons to accept it sometimes.
5856 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5857 * is not flawless. So, discard packet for sanity.
5858 * Uncomment this return to process the data.
5859 */
5860 return -1;
5861 #else
5862 goto discard;
5863 #endif
5864 }
5865 /* "fifth, if neither of the SYN or RST bits is set then
5866 * drop the segment and return."
5867 */
5868
5869 discard_and_undo:
5870 tcp_clear_options(&tp->rx_opt);
5871 tp->rx_opt.mss_clamp = saved_clamp;
5872 goto discard;
5873
5874 reset_and_undo:
5875 tcp_clear_options(&tp->rx_opt);
5876 tp->rx_opt.mss_clamp = saved_clamp;
5877 return 1;
5878 }
5879
5880 /*
5881 * This function implements the receiving procedure of RFC 793 for
5882 * all states except ESTABLISHED and TIME_WAIT.
5883 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5884 * address independent.
5885 */
5886
5887 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5888 {
5889 struct tcp_sock *tp = tcp_sk(sk);
5890 struct inet_connection_sock *icsk = inet_csk(sk);
5891 const struct tcphdr *th = tcp_hdr(skb);
5892 struct request_sock *req;
5893 int queued = 0;
5894 bool acceptable;
5895
5896 switch (sk->sk_state) {
5897 case TCP_CLOSE:
5898 goto discard;
5899
5900 case TCP_LISTEN:
5901 if (th->ack)
5902 return 1;
5903
5904 if (th->rst)
5905 goto discard;
5906
5907 if (th->syn) {
5908 if (th->fin)
5909 goto discard;
5910 /* It is possible that we process SYN packets from backlog,
5911 * so we need to make sure to disable BH right there.
5912 */
5913 local_bh_disable();
5914 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5915 local_bh_enable();
5916
5917 if (!acceptable)
5918 return 1;
5919 consume_skb(skb);
5920 return 0;
5921 }
5922 goto discard;
5923
5924 case TCP_SYN_SENT:
5925 tp->rx_opt.saw_tstamp = 0;
5926 tcp_mstamp_refresh(tp);
5927 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5928 if (queued >= 0)
5929 return queued;
5930
5931 /* Do step6 onward by hand. */
5932 tcp_urg(sk, skb, th);
5933 __kfree_skb(skb);
5934 tcp_data_snd_check(sk);
5935 return 0;
5936 }
5937
5938 tcp_mstamp_refresh(tp);
5939 tp->rx_opt.saw_tstamp = 0;
5940 req = tp->fastopen_rsk;
5941 if (req) {
5942 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5943 sk->sk_state != TCP_FIN_WAIT1);
5944
5945 if (!tcp_check_req(sk, skb, req, true))
5946 goto discard;
5947 }
5948
5949 if (!th->ack && !th->rst && !th->syn)
5950 goto discard;
5951
5952 if (!tcp_validate_incoming(sk, skb, th, 0))
5953 return 0;
5954
5955 /* step 5: check the ACK field */
5956 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5957 FLAG_UPDATE_TS_RECENT |
5958 FLAG_NO_CHALLENGE_ACK) > 0;
5959
5960 if (!acceptable) {
5961 if (sk->sk_state == TCP_SYN_RECV)
5962 return 1; /* send one RST */
5963 tcp_send_challenge_ack(sk, skb);
5964 goto discard;
5965 }
5966 switch (sk->sk_state) {
5967 case TCP_SYN_RECV:
5968 if (!tp->srtt_us)
5969 tcp_synack_rtt_meas(sk, req);
5970
5971 /* Once we leave TCP_SYN_RECV, we no longer need req
5972 * so release it.
5973 */
5974 if (req) {
5975 inet_csk(sk)->icsk_retransmits = 0;
5976 reqsk_fastopen_remove(sk, req, false);
5977 } else {
5978 /* Make sure socket is routed, for correct metrics. */
5979 icsk->icsk_af_ops->rebuild_header(sk);
5980 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5981 tcp_init_congestion_control(sk);
5982
5983 tcp_mtup_init(sk);
5984 tp->copied_seq = tp->rcv_nxt;
5985 tcp_init_buffer_space(sk);
5986 }
5987 smp_mb();
5988 tcp_set_state(sk, TCP_ESTABLISHED);
5989 sk->sk_state_change(sk);
5990
5991 /* Note, that this wakeup is only for marginal crossed SYN case.
5992 * Passively open sockets are not waked up, because
5993 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5994 */
5995 if (sk->sk_socket)
5996 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5997
5998 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5999 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6000 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6001
6002 if (tp->rx_opt.tstamp_ok)
6003 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6004
6005 if (req) {
6006 /* Re-arm the timer because data may have been sent out.
6007 * This is similar to the regular data transmission case
6008 * when new data has just been ack'ed.
6009 *
6010 * (TFO) - we could try to be more aggressive and
6011 * retransmitting any data sooner based on when they
6012 * are sent out.
6013 */
6014 tcp_rearm_rto(sk);
6015 } else
6016 tcp_init_metrics(sk);
6017
6018 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6019 tcp_update_pacing_rate(sk);
6020
6021 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6022 tp->lsndtime = tcp_jiffies32;
6023
6024 tcp_initialize_rcv_mss(sk);
6025 tcp_fast_path_on(tp);
6026 break;
6027
6028 case TCP_FIN_WAIT1: {
6029 int tmo;
6030
6031 /* If we enter the TCP_FIN_WAIT1 state and we are a
6032 * Fast Open socket and this is the first acceptable
6033 * ACK we have received, this would have acknowledged
6034 * our SYNACK so stop the SYNACK timer.
6035 */
6036 if (req) {
6037 /* We no longer need the request sock. */
6038 reqsk_fastopen_remove(sk, req, false);
6039 tcp_rearm_rto(sk);
6040 }
6041 if (tp->snd_una != tp->write_seq)
6042 break;
6043
6044 tcp_set_state(sk, TCP_FIN_WAIT2);
6045 sk->sk_shutdown |= SEND_SHUTDOWN;
6046
6047 sk_dst_confirm(sk);
6048
6049 if (!sock_flag(sk, SOCK_DEAD)) {
6050 /* Wake up lingering close() */
6051 sk->sk_state_change(sk);
6052 break;
6053 }
6054
6055 if (tp->linger2 < 0) {
6056 tcp_done(sk);
6057 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6058 return 1;
6059 }
6060 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6061 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6062 /* Receive out of order FIN after close() */
6063 if (tp->syn_fastopen && th->fin)
6064 tcp_fastopen_active_disable(sk);
6065 tcp_done(sk);
6066 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6067 return 1;
6068 }
6069
6070 tmo = tcp_fin_time(sk);
6071 if (tmo > TCP_TIMEWAIT_LEN) {
6072 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6073 } else if (th->fin || sock_owned_by_user(sk)) {
6074 /* Bad case. We could lose such FIN otherwise.
6075 * It is not a big problem, but it looks confusing
6076 * and not so rare event. We still can lose it now,
6077 * if it spins in bh_lock_sock(), but it is really
6078 * marginal case.
6079 */
6080 inet_csk_reset_keepalive_timer(sk, tmo);
6081 } else {
6082 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6083 goto discard;
6084 }
6085 break;
6086 }
6087
6088 case TCP_CLOSING:
6089 if (tp->snd_una == tp->write_seq) {
6090 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6091 goto discard;
6092 }
6093 break;
6094
6095 case TCP_LAST_ACK:
6096 if (tp->snd_una == tp->write_seq) {
6097 tcp_update_metrics(sk);
6098 tcp_done(sk);
6099 goto discard;
6100 }
6101 break;
6102 }
6103
6104 /* step 6: check the URG bit */
6105 tcp_urg(sk, skb, th);
6106
6107 /* step 7: process the segment text */
6108 switch (sk->sk_state) {
6109 case TCP_CLOSE_WAIT:
6110 case TCP_CLOSING:
6111 case TCP_LAST_ACK:
6112 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6113 break;
6114 case TCP_FIN_WAIT1:
6115 case TCP_FIN_WAIT2:
6116 /* RFC 793 says to queue data in these states,
6117 * RFC 1122 says we MUST send a reset.
6118 * BSD 4.4 also does reset.
6119 */
6120 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6124 tcp_reset(sk);
6125 return 1;
6126 }
6127 }
6128 /* Fall through */
6129 case TCP_ESTABLISHED:
6130 tcp_data_queue(sk, skb);
6131 queued = 1;
6132 break;
6133 }
6134
6135 /* tcp_data could move socket to TIME-WAIT */
6136 if (sk->sk_state != TCP_CLOSE) {
6137 tcp_data_snd_check(sk);
6138 tcp_ack_snd_check(sk);
6139 }
6140
6141 if (!queued) {
6142 discard:
6143 tcp_drop(sk, skb);
6144 }
6145 return 0;
6146 }
6147 EXPORT_SYMBOL(tcp_rcv_state_process);
6148
6149 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6150 {
6151 struct inet_request_sock *ireq = inet_rsk(req);
6152
6153 if (family == AF_INET)
6154 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6155 &ireq->ir_rmt_addr, port);
6156 #if IS_ENABLED(CONFIG_IPV6)
6157 else if (family == AF_INET6)
6158 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6159 &ireq->ir_v6_rmt_addr, port);
6160 #endif
6161 }
6162
6163 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6164 *
6165 * If we receive a SYN packet with these bits set, it means a
6166 * network is playing bad games with TOS bits. In order to
6167 * avoid possible false congestion notifications, we disable
6168 * TCP ECN negotiation.
6169 *
6170 * Exception: tcp_ca wants ECN. This is required for DCTCP
6171 * congestion control: Linux DCTCP asserts ECT on all packets,
6172 * including SYN, which is most optimal solution; however,
6173 * others, such as FreeBSD do not.
6174 */
6175 static void tcp_ecn_create_request(struct request_sock *req,
6176 const struct sk_buff *skb,
6177 const struct sock *listen_sk,
6178 const struct dst_entry *dst)
6179 {
6180 const struct tcphdr *th = tcp_hdr(skb);
6181 const struct net *net = sock_net(listen_sk);
6182 bool th_ecn = th->ece && th->cwr;
6183 bool ect, ecn_ok;
6184 u32 ecn_ok_dst;
6185
6186 if (!th_ecn)
6187 return;
6188
6189 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6190 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6191 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6192
6193 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6194 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6195 tcp_bpf_ca_needs_ecn((struct sock *)req))
6196 inet_rsk(req)->ecn_ok = 1;
6197 }
6198
6199 static void tcp_openreq_init(struct request_sock *req,
6200 const struct tcp_options_received *rx_opt,
6201 struct sk_buff *skb, const struct sock *sk)
6202 {
6203 struct inet_request_sock *ireq = inet_rsk(req);
6204
6205 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6206 req->cookie_ts = 0;
6207 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6208 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6209 tcp_rsk(req)->snt_synack = tcp_clock_us();
6210 tcp_rsk(req)->last_oow_ack_time = 0;
6211 req->mss = rx_opt->mss_clamp;
6212 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6213 ireq->tstamp_ok = rx_opt->tstamp_ok;
6214 ireq->sack_ok = rx_opt->sack_ok;
6215 ireq->snd_wscale = rx_opt->snd_wscale;
6216 ireq->wscale_ok = rx_opt->wscale_ok;
6217 ireq->acked = 0;
6218 ireq->ecn_ok = 0;
6219 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6220 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6221 ireq->ir_mark = inet_request_mark(sk, skb);
6222 }
6223
6224 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6225 struct sock *sk_listener,
6226 bool attach_listener)
6227 {
6228 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6229 attach_listener);
6230
6231 if (req) {
6232 struct inet_request_sock *ireq = inet_rsk(req);
6233
6234 kmemcheck_annotate_bitfield(ireq, flags);
6235 ireq->opt = NULL;
6236 #if IS_ENABLED(CONFIG_IPV6)
6237 ireq->pktopts = NULL;
6238 #endif
6239 atomic64_set(&ireq->ir_cookie, 0);
6240 ireq->ireq_state = TCP_NEW_SYN_RECV;
6241 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6242 ireq->ireq_family = sk_listener->sk_family;
6243 }
6244
6245 return req;
6246 }
6247 EXPORT_SYMBOL(inet_reqsk_alloc);
6248
6249 /*
6250 * Return true if a syncookie should be sent
6251 */
6252 static bool tcp_syn_flood_action(const struct sock *sk,
6253 const struct sk_buff *skb,
6254 const char *proto)
6255 {
6256 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6257 const char *msg = "Dropping request";
6258 bool want_cookie = false;
6259 struct net *net = sock_net(sk);
6260
6261 #ifdef CONFIG_SYN_COOKIES
6262 if (net->ipv4.sysctl_tcp_syncookies) {
6263 msg = "Sending cookies";
6264 want_cookie = true;
6265 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6266 } else
6267 #endif
6268 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6269
6270 if (!queue->synflood_warned &&
6271 net->ipv4.sysctl_tcp_syncookies != 2 &&
6272 xchg(&queue->synflood_warned, 1) == 0)
6273 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6274 proto, ntohs(tcp_hdr(skb)->dest), msg);
6275
6276 return want_cookie;
6277 }
6278
6279 static void tcp_reqsk_record_syn(const struct sock *sk,
6280 struct request_sock *req,
6281 const struct sk_buff *skb)
6282 {
6283 if (tcp_sk(sk)->save_syn) {
6284 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6285 u32 *copy;
6286
6287 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6288 if (copy) {
6289 copy[0] = len;
6290 memcpy(&copy[1], skb_network_header(skb), len);
6291 req->saved_syn = copy;
6292 }
6293 }
6294 }
6295
6296 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6297 const struct tcp_request_sock_ops *af_ops,
6298 struct sock *sk, struct sk_buff *skb)
6299 {
6300 struct tcp_fastopen_cookie foc = { .len = -1 };
6301 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6302 struct tcp_options_received tmp_opt;
6303 struct tcp_sock *tp = tcp_sk(sk);
6304 struct net *net = sock_net(sk);
6305 struct sock *fastopen_sk = NULL;
6306 struct dst_entry *dst = NULL;
6307 struct request_sock *req;
6308 bool want_cookie = false;
6309 struct flowi fl;
6310
6311 /* TW buckets are converted to open requests without
6312 * limitations, they conserve resources and peer is
6313 * evidently real one.
6314 */
6315 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6316 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6317 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6318 if (!want_cookie)
6319 goto drop;
6320 }
6321
6322 if (sk_acceptq_is_full(sk)) {
6323 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6324 goto drop;
6325 }
6326
6327 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6328 if (!req)
6329 goto drop;
6330
6331 tcp_rsk(req)->af_specific = af_ops;
6332 tcp_rsk(req)->ts_off = 0;
6333
6334 tcp_clear_options(&tmp_opt);
6335 tmp_opt.mss_clamp = af_ops->mss_clamp;
6336 tmp_opt.user_mss = tp->rx_opt.user_mss;
6337 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6338 want_cookie ? NULL : &foc);
6339
6340 if (want_cookie && !tmp_opt.saw_tstamp)
6341 tcp_clear_options(&tmp_opt);
6342
6343 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6344 tcp_openreq_init(req, &tmp_opt, skb, sk);
6345 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6346
6347 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6348 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6349
6350 af_ops->init_req(req, sk, skb);
6351
6352 if (security_inet_conn_request(sk, skb, req))
6353 goto drop_and_free;
6354
6355 if (tmp_opt.tstamp_ok)
6356 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6357
6358 if (!want_cookie && !isn) {
6359 /* Kill the following clause, if you dislike this way. */
6360 if (!net->ipv4.sysctl_tcp_syncookies &&
6361 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6362 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6363 !tcp_peer_is_proven(req, dst)) {
6364 /* Without syncookies last quarter of
6365 * backlog is filled with destinations,
6366 * proven to be alive.
6367 * It means that we continue to communicate
6368 * to destinations, already remembered
6369 * to the moment of synflood.
6370 */
6371 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6372 rsk_ops->family);
6373 goto drop_and_release;
6374 }
6375
6376 isn = af_ops->init_seq(skb);
6377 }
6378 if (!dst) {
6379 dst = af_ops->route_req(sk, &fl, req);
6380 if (!dst)
6381 goto drop_and_free;
6382 }
6383
6384 tcp_ecn_create_request(req, skb, sk, dst);
6385
6386 if (want_cookie) {
6387 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6388 req->cookie_ts = tmp_opt.tstamp_ok;
6389 if (!tmp_opt.tstamp_ok)
6390 inet_rsk(req)->ecn_ok = 0;
6391 }
6392
6393 tcp_rsk(req)->snt_isn = isn;
6394 tcp_rsk(req)->txhash = net_tx_rndhash();
6395 tcp_openreq_init_rwin(req, sk, dst);
6396 if (!want_cookie) {
6397 tcp_reqsk_record_syn(sk, req, skb);
6398 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6399 }
6400 if (fastopen_sk) {
6401 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6402 &foc, TCP_SYNACK_FASTOPEN);
6403 /* Add the child socket directly into the accept queue */
6404 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6405 sk->sk_data_ready(sk);
6406 bh_unlock_sock(fastopen_sk);
6407 sock_put(fastopen_sk);
6408 } else {
6409 tcp_rsk(req)->tfo_listener = false;
6410 if (!want_cookie)
6411 inet_csk_reqsk_queue_hash_add(sk, req,
6412 tcp_timeout_init((struct sock *)req));
6413 af_ops->send_synack(sk, dst, &fl, req, &foc,
6414 !want_cookie ? TCP_SYNACK_NORMAL :
6415 TCP_SYNACK_COOKIE);
6416 if (want_cookie) {
6417 reqsk_free(req);
6418 return 0;
6419 }
6420 }
6421 reqsk_put(req);
6422 return 0;
6423
6424 drop_and_release:
6425 dst_release(dst);
6426 drop_and_free:
6427 reqsk_free(req);
6428 drop:
6429 tcp_listendrop(sk);
6430 return 0;
6431 }
6432 EXPORT_SYMBOL(tcp_conn_request);