]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
Merge branches 'no-rebases', 'arch-avr32', 'arch-blackfin', 'arch-cris', 'arch-h8300...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99
100 int sysctl_tcp_thin_dupack __read_mostly;
101
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_abc __read_mostly;
104 int sysctl_tcp_early_retrans __read_mostly = 2;
105
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 struct inet_connection_sock *icsk = inet_csk(sk);
135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 unsigned int len;
137
138 icsk->icsk_ack.last_seg_size = 0;
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
143 len = skb_shinfo(skb)->gso_size ? : skb->len;
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
152 len += skb->data - skb_transport_header(skb);
153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
167 if (len == lss) {
168 icsk->icsk_ack.rcv_mss = len;
169 return;
170 }
171 }
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183 if (quickacks == 0)
184 quickacks = 2;
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201 static inline bool tcp_in_quickack_mode(const struct sock *sk)
202 {
203 const struct inet_connection_sock *icsk = inet_csk(sk);
204
205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 if (tp->ecn_flags & TCP_ECN_OK)
211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 if (tcp_hdr(skb)->cwr)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224
225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 if (!(tp->ecn_flags & TCP_ECN_OK))
228 return;
229
230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 case INET_ECN_NOT_ECT:
232 /* Funny extension: if ECT is not set on a segment,
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
235 */
236 if (tp->ecn_flags & TCP_ECN_SEEN)
237 tcp_enter_quickack_mode((struct sock *)tp);
238 break;
239 case INET_ECN_CE:
240 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
241 /* Better not delay acks, sender can have a very low cwnd */
242 tcp_enter_quickack_mode((struct sock *)tp);
243 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244 }
245 /* fallinto */
246 default:
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 }
249 }
250
251 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
252 {
253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
254 tp->ecn_flags &= ~TCP_ECN_OK;
255 }
256
257 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
258 {
259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
260 tp->ecn_flags &= ~TCP_ECN_OK;
261 }
262
263 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
266 return true;
267 return false;
268 }
269
270 /* Buffer size and advertised window tuning.
271 *
272 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
273 */
274
275 static void tcp_fixup_sndbuf(struct sock *sk)
276 {
277 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
278
279 sndmem *= TCP_INIT_CWND;
280 if (sk->sk_sndbuf < sndmem)
281 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
282 }
283
284 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
285 *
286 * All tcp_full_space() is split to two parts: "network" buffer, allocated
287 * forward and advertised in receiver window (tp->rcv_wnd) and
288 * "application buffer", required to isolate scheduling/application
289 * latencies from network.
290 * window_clamp is maximal advertised window. It can be less than
291 * tcp_full_space(), in this case tcp_full_space() - window_clamp
292 * is reserved for "application" buffer. The less window_clamp is
293 * the smoother our behaviour from viewpoint of network, but the lower
294 * throughput and the higher sensitivity of the connection to losses. 8)
295 *
296 * rcv_ssthresh is more strict window_clamp used at "slow start"
297 * phase to predict further behaviour of this connection.
298 * It is used for two goals:
299 * - to enforce header prediction at sender, even when application
300 * requires some significant "application buffer". It is check #1.
301 * - to prevent pruning of receive queue because of misprediction
302 * of receiver window. Check #2.
303 *
304 * The scheme does not work when sender sends good segments opening
305 * window and then starts to feed us spaghetti. But it should work
306 * in common situations. Otherwise, we have to rely on queue collapsing.
307 */
308
309 /* Slow part of check#2. */
310 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
311 {
312 struct tcp_sock *tp = tcp_sk(sk);
313 /* Optimize this! */
314 int truesize = tcp_win_from_space(skb->truesize) >> 1;
315 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
316
317 while (tp->rcv_ssthresh <= window) {
318 if (truesize <= skb->len)
319 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
320
321 truesize >>= 1;
322 window >>= 1;
323 }
324 return 0;
325 }
326
327 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
328 {
329 struct tcp_sock *tp = tcp_sk(sk);
330
331 /* Check #1 */
332 if (tp->rcv_ssthresh < tp->window_clamp &&
333 (int)tp->rcv_ssthresh < tcp_space(sk) &&
334 !sk_under_memory_pressure(sk)) {
335 int incr;
336
337 /* Check #2. Increase window, if skb with such overhead
338 * will fit to rcvbuf in future.
339 */
340 if (tcp_win_from_space(skb->truesize) <= skb->len)
341 incr = 2 * tp->advmss;
342 else
343 incr = __tcp_grow_window(sk, skb);
344
345 if (incr) {
346 incr = max_t(int, incr, 2 * skb->len);
347 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
348 tp->window_clamp);
349 inet_csk(sk)->icsk_ack.quick |= 1;
350 }
351 }
352 }
353
354 /* 3. Tuning rcvbuf, when connection enters established state. */
355
356 static void tcp_fixup_rcvbuf(struct sock *sk)
357 {
358 u32 mss = tcp_sk(sk)->advmss;
359 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
360 int rcvmem;
361
362 /* Limit to 10 segments if mss <= 1460,
363 * or 14600/mss segments, with a minimum of two segments.
364 */
365 if (mss > 1460)
366 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
367
368 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
369 while (tcp_win_from_space(rcvmem) < mss)
370 rcvmem += 128;
371
372 rcvmem *= icwnd;
373
374 if (sk->sk_rcvbuf < rcvmem)
375 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
376 }
377
378 /* 4. Try to fixup all. It is made immediately after connection enters
379 * established state.
380 */
381 void tcp_init_buffer_space(struct sock *sk)
382 {
383 struct tcp_sock *tp = tcp_sk(sk);
384 int maxwin;
385
386 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
387 tcp_fixup_rcvbuf(sk);
388 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
389 tcp_fixup_sndbuf(sk);
390
391 tp->rcvq_space.space = tp->rcv_wnd;
392
393 maxwin = tcp_full_space(sk);
394
395 if (tp->window_clamp >= maxwin) {
396 tp->window_clamp = maxwin;
397
398 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
399 tp->window_clamp = max(maxwin -
400 (maxwin >> sysctl_tcp_app_win),
401 4 * tp->advmss);
402 }
403
404 /* Force reservation of one segment. */
405 if (sysctl_tcp_app_win &&
406 tp->window_clamp > 2 * tp->advmss &&
407 tp->window_clamp + tp->advmss > maxwin)
408 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
409
410 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
411 tp->snd_cwnd_stamp = tcp_time_stamp;
412 }
413
414 /* 5. Recalculate window clamp after socket hit its memory bounds. */
415 static void tcp_clamp_window(struct sock *sk)
416 {
417 struct tcp_sock *tp = tcp_sk(sk);
418 struct inet_connection_sock *icsk = inet_csk(sk);
419
420 icsk->icsk_ack.quick = 0;
421
422 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
423 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
424 !sk_under_memory_pressure(sk) &&
425 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
426 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
427 sysctl_tcp_rmem[2]);
428 }
429 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
430 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
431 }
432
433 /* Initialize RCV_MSS value.
434 * RCV_MSS is an our guess about MSS used by the peer.
435 * We haven't any direct information about the MSS.
436 * It's better to underestimate the RCV_MSS rather than overestimate.
437 * Overestimations make us ACKing less frequently than needed.
438 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
439 */
440 void tcp_initialize_rcv_mss(struct sock *sk)
441 {
442 const struct tcp_sock *tp = tcp_sk(sk);
443 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
444
445 hint = min(hint, tp->rcv_wnd / 2);
446 hint = min(hint, TCP_MSS_DEFAULT);
447 hint = max(hint, TCP_MIN_MSS);
448
449 inet_csk(sk)->icsk_ack.rcv_mss = hint;
450 }
451 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
452
453 /* Receiver "autotuning" code.
454 *
455 * The algorithm for RTT estimation w/o timestamps is based on
456 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
457 * <http://public.lanl.gov/radiant/pubs.html#DRS>
458 *
459 * More detail on this code can be found at
460 * <http://staff.psc.edu/jheffner/>,
461 * though this reference is out of date. A new paper
462 * is pending.
463 */
464 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
465 {
466 u32 new_sample = tp->rcv_rtt_est.rtt;
467 long m = sample;
468
469 if (m == 0)
470 m = 1;
471
472 if (new_sample != 0) {
473 /* If we sample in larger samples in the non-timestamp
474 * case, we could grossly overestimate the RTT especially
475 * with chatty applications or bulk transfer apps which
476 * are stalled on filesystem I/O.
477 *
478 * Also, since we are only going for a minimum in the
479 * non-timestamp case, we do not smooth things out
480 * else with timestamps disabled convergence takes too
481 * long.
482 */
483 if (!win_dep) {
484 m -= (new_sample >> 3);
485 new_sample += m;
486 } else {
487 m <<= 3;
488 if (m < new_sample)
489 new_sample = m;
490 }
491 } else {
492 /* No previous measure. */
493 new_sample = m << 3;
494 }
495
496 if (tp->rcv_rtt_est.rtt != new_sample)
497 tp->rcv_rtt_est.rtt = new_sample;
498 }
499
500 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
501 {
502 if (tp->rcv_rtt_est.time == 0)
503 goto new_measure;
504 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
505 return;
506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
507
508 new_measure:
509 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
510 tp->rcv_rtt_est.time = tcp_time_stamp;
511 }
512
513 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
514 const struct sk_buff *skb)
515 {
516 struct tcp_sock *tp = tcp_sk(sk);
517 if (tp->rx_opt.rcv_tsecr &&
518 (TCP_SKB_CB(skb)->end_seq -
519 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
520 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521 }
522
523 /*
524 * This function should be called every time data is copied to user space.
525 * It calculates the appropriate TCP receive buffer space.
526 */
527 void tcp_rcv_space_adjust(struct sock *sk)
528 {
529 struct tcp_sock *tp = tcp_sk(sk);
530 int time;
531 int space;
532
533 if (tp->rcvq_space.time == 0)
534 goto new_measure;
535
536 time = tcp_time_stamp - tp->rcvq_space.time;
537 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
538 return;
539
540 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
541
542 space = max(tp->rcvq_space.space, space);
543
544 if (tp->rcvq_space.space != space) {
545 int rcvmem;
546
547 tp->rcvq_space.space = space;
548
549 if (sysctl_tcp_moderate_rcvbuf &&
550 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
551 int new_clamp = space;
552
553 /* Receive space grows, normalize in order to
554 * take into account packet headers and sk_buff
555 * structure overhead.
556 */
557 space /= tp->advmss;
558 if (!space)
559 space = 1;
560 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
561 while (tcp_win_from_space(rcvmem) < tp->advmss)
562 rcvmem += 128;
563 space *= rcvmem;
564 space = min(space, sysctl_tcp_rmem[2]);
565 if (space > sk->sk_rcvbuf) {
566 sk->sk_rcvbuf = space;
567
568 /* Make the window clamp follow along. */
569 tp->window_clamp = new_clamp;
570 }
571 }
572 }
573
574 new_measure:
575 tp->rcvq_space.seq = tp->copied_seq;
576 tp->rcvq_space.time = tcp_time_stamp;
577 }
578
579 /* There is something which you must keep in mind when you analyze the
580 * behavior of the tp->ato delayed ack timeout interval. When a
581 * connection starts up, we want to ack as quickly as possible. The
582 * problem is that "good" TCP's do slow start at the beginning of data
583 * transmission. The means that until we send the first few ACK's the
584 * sender will sit on his end and only queue most of his data, because
585 * he can only send snd_cwnd unacked packets at any given time. For
586 * each ACK we send, he increments snd_cwnd and transmits more of his
587 * queue. -DaveM
588 */
589 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
590 {
591 struct tcp_sock *tp = tcp_sk(sk);
592 struct inet_connection_sock *icsk = inet_csk(sk);
593 u32 now;
594
595 inet_csk_schedule_ack(sk);
596
597 tcp_measure_rcv_mss(sk, skb);
598
599 tcp_rcv_rtt_measure(tp);
600
601 now = tcp_time_stamp;
602
603 if (!icsk->icsk_ack.ato) {
604 /* The _first_ data packet received, initialize
605 * delayed ACK engine.
606 */
607 tcp_incr_quickack(sk);
608 icsk->icsk_ack.ato = TCP_ATO_MIN;
609 } else {
610 int m = now - icsk->icsk_ack.lrcvtime;
611
612 if (m <= TCP_ATO_MIN / 2) {
613 /* The fastest case is the first. */
614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
615 } else if (m < icsk->icsk_ack.ato) {
616 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
617 if (icsk->icsk_ack.ato > icsk->icsk_rto)
618 icsk->icsk_ack.ato = icsk->icsk_rto;
619 } else if (m > icsk->icsk_rto) {
620 /* Too long gap. Apparently sender failed to
621 * restart window, so that we send ACKs quickly.
622 */
623 tcp_incr_quickack(sk);
624 sk_mem_reclaim(sk);
625 }
626 }
627 icsk->icsk_ack.lrcvtime = now;
628
629 TCP_ECN_check_ce(tp, skb);
630
631 if (skb->len >= 128)
632 tcp_grow_window(sk, skb);
633 }
634
635 /* Called to compute a smoothed rtt estimate. The data fed to this
636 * routine either comes from timestamps, or from segments that were
637 * known _not_ to have been retransmitted [see Karn/Partridge
638 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639 * piece by Van Jacobson.
640 * NOTE: the next three routines used to be one big routine.
641 * To save cycles in the RFC 1323 implementation it was better to break
642 * it up into three procedures. -- erics
643 */
644 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
645 {
646 struct tcp_sock *tp = tcp_sk(sk);
647 long m = mrtt; /* RTT */
648
649 /* The following amusing code comes from Jacobson's
650 * article in SIGCOMM '88. Note that rtt and mdev
651 * are scaled versions of rtt and mean deviation.
652 * This is designed to be as fast as possible
653 * m stands for "measurement".
654 *
655 * On a 1990 paper the rto value is changed to:
656 * RTO = rtt + 4 * mdev
657 *
658 * Funny. This algorithm seems to be very broken.
659 * These formulae increase RTO, when it should be decreased, increase
660 * too slowly, when it should be increased quickly, decrease too quickly
661 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662 * does not matter how to _calculate_ it. Seems, it was trap
663 * that VJ failed to avoid. 8)
664 */
665 if (m == 0)
666 m = 1;
667 if (tp->srtt != 0) {
668 m -= (tp->srtt >> 3); /* m is now error in rtt est */
669 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
670 if (m < 0) {
671 m = -m; /* m is now abs(error) */
672 m -= (tp->mdev >> 2); /* similar update on mdev */
673 /* This is similar to one of Eifel findings.
674 * Eifel blocks mdev updates when rtt decreases.
675 * This solution is a bit different: we use finer gain
676 * for mdev in this case (alpha*beta).
677 * Like Eifel it also prevents growth of rto,
678 * but also it limits too fast rto decreases,
679 * happening in pure Eifel.
680 */
681 if (m > 0)
682 m >>= 3;
683 } else {
684 m -= (tp->mdev >> 2); /* similar update on mdev */
685 }
686 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
687 if (tp->mdev > tp->mdev_max) {
688 tp->mdev_max = tp->mdev;
689 if (tp->mdev_max > tp->rttvar)
690 tp->rttvar = tp->mdev_max;
691 }
692 if (after(tp->snd_una, tp->rtt_seq)) {
693 if (tp->mdev_max < tp->rttvar)
694 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
695 tp->rtt_seq = tp->snd_nxt;
696 tp->mdev_max = tcp_rto_min(sk);
697 }
698 } else {
699 /* no previous measure. */
700 tp->srtt = m << 3; /* take the measured time to be rtt */
701 tp->mdev = m << 1; /* make sure rto = 3*rtt */
702 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
703 tp->rtt_seq = tp->snd_nxt;
704 }
705 }
706
707 /* Calculate rto without backoff. This is the second half of Van Jacobson's
708 * routine referred to above.
709 */
710 void tcp_set_rto(struct sock *sk)
711 {
712 const struct tcp_sock *tp = tcp_sk(sk);
713 /* Old crap is replaced with new one. 8)
714 *
715 * More seriously:
716 * 1. If rtt variance happened to be less 50msec, it is hallucination.
717 * It cannot be less due to utterly erratic ACK generation made
718 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719 * to do with delayed acks, because at cwnd>2 true delack timeout
720 * is invisible. Actually, Linux-2.4 also generates erratic
721 * ACKs in some circumstances.
722 */
723 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
724
725 /* 2. Fixups made earlier cannot be right.
726 * If we do not estimate RTO correctly without them,
727 * all the algo is pure shit and should be replaced
728 * with correct one. It is exactly, which we pretend to do.
729 */
730
731 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732 * guarantees that rto is higher.
733 */
734 tcp_bound_rto(sk);
735 }
736
737 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
738 {
739 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
740
741 if (!cwnd)
742 cwnd = TCP_INIT_CWND;
743 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744 }
745
746 /*
747 * Packet counting of FACK is based on in-order assumptions, therefore TCP
748 * disables it when reordering is detected
749 */
750 void tcp_disable_fack(struct tcp_sock *tp)
751 {
752 /* RFC3517 uses different metric in lost marker => reset on change */
753 if (tcp_is_fack(tp))
754 tp->lost_skb_hint = NULL;
755 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
756 }
757
758 /* Take a notice that peer is sending D-SACKs */
759 static void tcp_dsack_seen(struct tcp_sock *tp)
760 {
761 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
762 }
763
764 static void tcp_update_reordering(struct sock *sk, const int metric,
765 const int ts)
766 {
767 struct tcp_sock *tp = tcp_sk(sk);
768 if (metric > tp->reordering) {
769 int mib_idx;
770
771 tp->reordering = min(TCP_MAX_REORDERING, metric);
772
773 /* This exciting event is worth to be remembered. 8) */
774 if (ts)
775 mib_idx = LINUX_MIB_TCPTSREORDER;
776 else if (tcp_is_reno(tp))
777 mib_idx = LINUX_MIB_TCPRENOREORDER;
778 else if (tcp_is_fack(tp))
779 mib_idx = LINUX_MIB_TCPFACKREORDER;
780 else
781 mib_idx = LINUX_MIB_TCPSACKREORDER;
782
783 NET_INC_STATS_BH(sock_net(sk), mib_idx);
784 #if FASTRETRANS_DEBUG > 1
785 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787 tp->reordering,
788 tp->fackets_out,
789 tp->sacked_out,
790 tp->undo_marker ? tp->undo_retrans : 0);
791 #endif
792 tcp_disable_fack(tp);
793 }
794
795 if (metric > 0)
796 tcp_disable_early_retrans(tp);
797 }
798
799 /* This must be called before lost_out is incremented */
800 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
801 {
802 if ((tp->retransmit_skb_hint == NULL) ||
803 before(TCP_SKB_CB(skb)->seq,
804 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
805 tp->retransmit_skb_hint = skb;
806
807 if (!tp->lost_out ||
808 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
809 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
810 }
811
812 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
815 tcp_verify_retransmit_hint(tp, skb);
816
817 tp->lost_out += tcp_skb_pcount(skb);
818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819 }
820 }
821
822 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
823 struct sk_buff *skb)
824 {
825 tcp_verify_retransmit_hint(tp, skb);
826
827 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
828 tp->lost_out += tcp_skb_pcount(skb);
829 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830 }
831 }
832
833 /* This procedure tags the retransmission queue when SACKs arrive.
834 *
835 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836 * Packets in queue with these bits set are counted in variables
837 * sacked_out, retrans_out and lost_out, correspondingly.
838 *
839 * Valid combinations are:
840 * Tag InFlight Description
841 * 0 1 - orig segment is in flight.
842 * S 0 - nothing flies, orig reached receiver.
843 * L 0 - nothing flies, orig lost by net.
844 * R 2 - both orig and retransmit are in flight.
845 * L|R 1 - orig is lost, retransmit is in flight.
846 * S|R 1 - orig reached receiver, retrans is still in flight.
847 * (L|S|R is logically valid, it could occur when L|R is sacked,
848 * but it is equivalent to plain S and code short-curcuits it to S.
849 * L|S is logically invalid, it would mean -1 packet in flight 8))
850 *
851 * These 6 states form finite state machine, controlled by the following events:
852 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
854 * 3. Loss detection event of two flavors:
855 * A. Scoreboard estimator decided the packet is lost.
856 * A'. Reno "three dupacks" marks head of queue lost.
857 * A''. Its FACK modification, head until snd.fack is lost.
858 * B. SACK arrives sacking SND.NXT at the moment, when the
859 * segment was retransmitted.
860 * 4. D-SACK added new rule: D-SACK changes any tag to S.
861 *
862 * It is pleasant to note, that state diagram turns out to be commutative,
863 * so that we are allowed not to be bothered by order of our actions,
864 * when multiple events arrive simultaneously. (see the function below).
865 *
866 * Reordering detection.
867 * --------------------
868 * Reordering metric is maximal distance, which a packet can be displaced
869 * in packet stream. With SACKs we can estimate it:
870 *
871 * 1. SACK fills old hole and the corresponding segment was not
872 * ever retransmitted -> reordering. Alas, we cannot use it
873 * when segment was retransmitted.
874 * 2. The last flaw is solved with D-SACK. D-SACK arrives
875 * for retransmitted and already SACKed segment -> reordering..
876 * Both of these heuristics are not used in Loss state, when we cannot
877 * account for retransmits accurately.
878 *
879 * SACK block validation.
880 * ----------------------
881 *
882 * SACK block range validation checks that the received SACK block fits to
883 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884 * Note that SND.UNA is not included to the range though being valid because
885 * it means that the receiver is rather inconsistent with itself reporting
886 * SACK reneging when it should advance SND.UNA. Such SACK block this is
887 * perfectly valid, however, in light of RFC2018 which explicitly states
888 * that "SACK block MUST reflect the newest segment. Even if the newest
889 * segment is going to be discarded ...", not that it looks very clever
890 * in case of head skb. Due to potentional receiver driven attacks, we
891 * choose to avoid immediate execution of a walk in write queue due to
892 * reneging and defer head skb's loss recovery to standard loss recovery
893 * procedure that will eventually trigger (nothing forbids us doing this).
894 *
895 * Implements also blockage to start_seq wrap-around. Problem lies in the
896 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897 * there's no guarantee that it will be before snd_nxt (n). The problem
898 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
899 * wrap (s_w):
900 *
901 * <- outs wnd -> <- wrapzone ->
902 * u e n u_w e_w s n_w
903 * | | | | | | |
904 * |<------------+------+----- TCP seqno space --------------+---------->|
905 * ...-- <2^31 ->| |<--------...
906 * ...---- >2^31 ------>| |<--------...
907 *
908 * Current code wouldn't be vulnerable but it's better still to discard such
909 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912 * equal to the ideal case (infinite seqno space without wrap caused issues).
913 *
914 * With D-SACK the lower bound is extended to cover sequence space below
915 * SND.UNA down to undo_marker, which is the last point of interest. Yet
916 * again, D-SACK block must not to go across snd_una (for the same reason as
917 * for the normal SACK blocks, explained above). But there all simplicity
918 * ends, TCP might receive valid D-SACKs below that. As long as they reside
919 * fully below undo_marker they do not affect behavior in anyway and can
920 * therefore be safely ignored. In rare cases (which are more or less
921 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922 * fragmentation and packet reordering past skb's retransmission. To consider
923 * them correctly, the acceptable range must be extended even more though
924 * the exact amount is rather hard to quantify. However, tp->max_window can
925 * be used as an exaggerated estimate.
926 */
927 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
928 u32 start_seq, u32 end_seq)
929 {
930 /* Too far in future, or reversed (interpretation is ambiguous) */
931 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
932 return false;
933
934 /* Nasty start_seq wrap-around check (see comments above) */
935 if (!before(start_seq, tp->snd_nxt))
936 return false;
937
938 /* In outstanding window? ...This is valid exit for D-SACKs too.
939 * start_seq == snd_una is non-sensical (see comments above)
940 */
941 if (after(start_seq, tp->snd_una))
942 return true;
943
944 if (!is_dsack || !tp->undo_marker)
945 return false;
946
947 /* ...Then it's D-SACK, and must reside below snd_una completely */
948 if (after(end_seq, tp->snd_una))
949 return false;
950
951 if (!before(start_seq, tp->undo_marker))
952 return true;
953
954 /* Too old */
955 if (!after(end_seq, tp->undo_marker))
956 return false;
957
958 /* Undo_marker boundary crossing (overestimates a lot). Known already:
959 * start_seq < undo_marker and end_seq >= undo_marker.
960 */
961 return !before(start_seq, end_seq - tp->max_window);
962 }
963
964 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
965 * Event "B". Later note: FACK people cheated me again 8), we have to account
966 * for reordering! Ugly, but should help.
967 *
968 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969 * less than what is now known to be received by the other end (derived from
970 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971 * retransmitted skbs to avoid some costly processing per ACKs.
972 */
973 static void tcp_mark_lost_retrans(struct sock *sk)
974 {
975 const struct inet_connection_sock *icsk = inet_csk(sk);
976 struct tcp_sock *tp = tcp_sk(sk);
977 struct sk_buff *skb;
978 int cnt = 0;
979 u32 new_low_seq = tp->snd_nxt;
980 u32 received_upto = tcp_highest_sack_seq(tp);
981
982 if (!tcp_is_fack(tp) || !tp->retrans_out ||
983 !after(received_upto, tp->lost_retrans_low) ||
984 icsk->icsk_ca_state != TCP_CA_Recovery)
985 return;
986
987 tcp_for_write_queue(skb, sk) {
988 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
989
990 if (skb == tcp_send_head(sk))
991 break;
992 if (cnt == tp->retrans_out)
993 break;
994 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
995 continue;
996
997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
998 continue;
999
1000 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1001 * constraint here (see above) but figuring out that at
1002 * least tp->reordering SACK blocks reside between ack_seq
1003 * and received_upto is not easy task to do cheaply with
1004 * the available datastructures.
1005 *
1006 * Whether FACK should check here for tp->reordering segs
1007 * in-between one could argue for either way (it would be
1008 * rather simple to implement as we could count fack_count
1009 * during the walk and do tp->fackets_out - fack_count).
1010 */
1011 if (after(received_upto, ack_seq)) {
1012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1013 tp->retrans_out -= tcp_skb_pcount(skb);
1014
1015 tcp_skb_mark_lost_uncond_verify(tp, skb);
1016 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1017 } else {
1018 if (before(ack_seq, new_low_seq))
1019 new_low_seq = ack_seq;
1020 cnt += tcp_skb_pcount(skb);
1021 }
1022 }
1023
1024 if (tp->retrans_out)
1025 tp->lost_retrans_low = new_low_seq;
1026 }
1027
1028 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1029 struct tcp_sack_block_wire *sp, int num_sacks,
1030 u32 prior_snd_una)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1034 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1035 bool dup_sack = false;
1036
1037 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1038 dup_sack = true;
1039 tcp_dsack_seen(tp);
1040 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1041 } else if (num_sacks > 1) {
1042 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1043 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1044
1045 if (!after(end_seq_0, end_seq_1) &&
1046 !before(start_seq_0, start_seq_1)) {
1047 dup_sack = true;
1048 tcp_dsack_seen(tp);
1049 NET_INC_STATS_BH(sock_net(sk),
1050 LINUX_MIB_TCPDSACKOFORECV);
1051 }
1052 }
1053
1054 /* D-SACK for already forgotten data... Do dumb counting. */
1055 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1056 !after(end_seq_0, prior_snd_una) &&
1057 after(end_seq_0, tp->undo_marker))
1058 tp->undo_retrans--;
1059
1060 return dup_sack;
1061 }
1062
1063 struct tcp_sacktag_state {
1064 int reord;
1065 int fack_count;
1066 int flag;
1067 };
1068
1069 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070 * the incoming SACK may not exactly match but we can find smaller MSS
1071 * aligned portion of it that matches. Therefore we might need to fragment
1072 * which may fail and creates some hassle (caller must handle error case
1073 * returns).
1074 *
1075 * FIXME: this could be merged to shift decision code
1076 */
1077 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1078 u32 start_seq, u32 end_seq)
1079 {
1080 int err;
1081 bool in_sack;
1082 unsigned int pkt_len;
1083 unsigned int mss;
1084
1085 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087
1088 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1089 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1090 mss = tcp_skb_mss(skb);
1091 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1092
1093 if (!in_sack) {
1094 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1095 if (pkt_len < mss)
1096 pkt_len = mss;
1097 } else {
1098 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1099 if (pkt_len < mss)
1100 return -EINVAL;
1101 }
1102
1103 /* Round if necessary so that SACKs cover only full MSSes
1104 * and/or the remaining small portion (if present)
1105 */
1106 if (pkt_len > mss) {
1107 unsigned int new_len = (pkt_len / mss) * mss;
1108 if (!in_sack && new_len < pkt_len) {
1109 new_len += mss;
1110 if (new_len > skb->len)
1111 return 0;
1112 }
1113 pkt_len = new_len;
1114 }
1115 err = tcp_fragment(sk, skb, pkt_len, mss);
1116 if (err < 0)
1117 return err;
1118 }
1119
1120 return in_sack;
1121 }
1122
1123 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124 static u8 tcp_sacktag_one(struct sock *sk,
1125 struct tcp_sacktag_state *state, u8 sacked,
1126 u32 start_seq, u32 end_seq,
1127 bool dup_sack, int pcount)
1128 {
1129 struct tcp_sock *tp = tcp_sk(sk);
1130 int fack_count = state->fack_count;
1131
1132 /* Account D-SACK for retransmitted packet. */
1133 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1134 if (tp->undo_marker && tp->undo_retrans &&
1135 after(end_seq, tp->undo_marker))
1136 tp->undo_retrans--;
1137 if (sacked & TCPCB_SACKED_ACKED)
1138 state->reord = min(fack_count, state->reord);
1139 }
1140
1141 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1142 if (!after(end_seq, tp->snd_una))
1143 return sacked;
1144
1145 if (!(sacked & TCPCB_SACKED_ACKED)) {
1146 if (sacked & TCPCB_SACKED_RETRANS) {
1147 /* If the segment is not tagged as lost,
1148 * we do not clear RETRANS, believing
1149 * that retransmission is still in flight.
1150 */
1151 if (sacked & TCPCB_LOST) {
1152 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1153 tp->lost_out -= pcount;
1154 tp->retrans_out -= pcount;
1155 }
1156 } else {
1157 if (!(sacked & TCPCB_RETRANS)) {
1158 /* New sack for not retransmitted frame,
1159 * which was in hole. It is reordering.
1160 */
1161 if (before(start_seq,
1162 tcp_highest_sack_seq(tp)))
1163 state->reord = min(fack_count,
1164 state->reord);
1165
1166 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1167 if (!after(end_seq, tp->frto_highmark))
1168 state->flag |= FLAG_ONLY_ORIG_SACKED;
1169 }
1170
1171 if (sacked & TCPCB_LOST) {
1172 sacked &= ~TCPCB_LOST;
1173 tp->lost_out -= pcount;
1174 }
1175 }
1176
1177 sacked |= TCPCB_SACKED_ACKED;
1178 state->flag |= FLAG_DATA_SACKED;
1179 tp->sacked_out += pcount;
1180
1181 fack_count += pcount;
1182
1183 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1185 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1186 tp->lost_cnt_hint += pcount;
1187
1188 if (fack_count > tp->fackets_out)
1189 tp->fackets_out = fack_count;
1190 }
1191
1192 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1193 * frames and clear it. undo_retrans is decreased above, L|R frames
1194 * are accounted above as well.
1195 */
1196 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1197 sacked &= ~TCPCB_SACKED_RETRANS;
1198 tp->retrans_out -= pcount;
1199 }
1200
1201 return sacked;
1202 }
1203
1204 /* Shift newly-SACKed bytes from this skb to the immediately previous
1205 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1206 */
1207 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1208 struct tcp_sacktag_state *state,
1209 unsigned int pcount, int shifted, int mss,
1210 bool dup_sack)
1211 {
1212 struct tcp_sock *tp = tcp_sk(sk);
1213 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1214 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1215 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1216
1217 BUG_ON(!pcount);
1218
1219 /* Adjust counters and hints for the newly sacked sequence
1220 * range but discard the return value since prev is already
1221 * marked. We must tag the range first because the seq
1222 * advancement below implicitly advances
1223 * tcp_highest_sack_seq() when skb is highest_sack.
1224 */
1225 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1226 start_seq, end_seq, dup_sack, pcount);
1227
1228 if (skb == tp->lost_skb_hint)
1229 tp->lost_cnt_hint += pcount;
1230
1231 TCP_SKB_CB(prev)->end_seq += shifted;
1232 TCP_SKB_CB(skb)->seq += shifted;
1233
1234 skb_shinfo(prev)->gso_segs += pcount;
1235 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1236 skb_shinfo(skb)->gso_segs -= pcount;
1237
1238 /* When we're adding to gso_segs == 1, gso_size will be zero,
1239 * in theory this shouldn't be necessary but as long as DSACK
1240 * code can come after this skb later on it's better to keep
1241 * setting gso_size to something.
1242 */
1243 if (!skb_shinfo(prev)->gso_size) {
1244 skb_shinfo(prev)->gso_size = mss;
1245 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1246 }
1247
1248 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249 if (skb_shinfo(skb)->gso_segs <= 1) {
1250 skb_shinfo(skb)->gso_size = 0;
1251 skb_shinfo(skb)->gso_type = 0;
1252 }
1253
1254 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1256
1257 if (skb->len > 0) {
1258 BUG_ON(!tcp_skb_pcount(skb));
1259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1260 return false;
1261 }
1262
1263 /* Whole SKB was eaten :-) */
1264
1265 if (skb == tp->retransmit_skb_hint)
1266 tp->retransmit_skb_hint = prev;
1267 if (skb == tp->scoreboard_skb_hint)
1268 tp->scoreboard_skb_hint = prev;
1269 if (skb == tp->lost_skb_hint) {
1270 tp->lost_skb_hint = prev;
1271 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1272 }
1273
1274 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1275 if (skb == tcp_highest_sack(sk))
1276 tcp_advance_highest_sack(sk, skb);
1277
1278 tcp_unlink_write_queue(skb, sk);
1279 sk_wmem_free_skb(sk, skb);
1280
1281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1282
1283 return true;
1284 }
1285
1286 /* I wish gso_size would have a bit more sane initialization than
1287 * something-or-zero which complicates things
1288 */
1289 static int tcp_skb_seglen(const struct sk_buff *skb)
1290 {
1291 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1292 }
1293
1294 /* Shifting pages past head area doesn't work */
1295 static int skb_can_shift(const struct sk_buff *skb)
1296 {
1297 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1298 }
1299
1300 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1301 * skb.
1302 */
1303 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1304 struct tcp_sacktag_state *state,
1305 u32 start_seq, u32 end_seq,
1306 bool dup_sack)
1307 {
1308 struct tcp_sock *tp = tcp_sk(sk);
1309 struct sk_buff *prev;
1310 int mss;
1311 int pcount = 0;
1312 int len;
1313 int in_sack;
1314
1315 if (!sk_can_gso(sk))
1316 goto fallback;
1317
1318 /* Normally R but no L won't result in plain S */
1319 if (!dup_sack &&
1320 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1321 goto fallback;
1322 if (!skb_can_shift(skb))
1323 goto fallback;
1324 /* This frame is about to be dropped (was ACKed). */
1325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326 goto fallback;
1327
1328 /* Can only happen with delayed DSACK + discard craziness */
1329 if (unlikely(skb == tcp_write_queue_head(sk)))
1330 goto fallback;
1331 prev = tcp_write_queue_prev(sk, skb);
1332
1333 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1334 goto fallback;
1335
1336 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338
1339 if (in_sack) {
1340 len = skb->len;
1341 pcount = tcp_skb_pcount(skb);
1342 mss = tcp_skb_seglen(skb);
1343
1344 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1345 * drop this restriction as unnecessary
1346 */
1347 if (mss != tcp_skb_seglen(prev))
1348 goto fallback;
1349 } else {
1350 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1351 goto noop;
1352 /* CHECKME: This is non-MSS split case only?, this will
1353 * cause skipped skbs due to advancing loop btw, original
1354 * has that feature too
1355 */
1356 if (tcp_skb_pcount(skb) <= 1)
1357 goto noop;
1358
1359 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360 if (!in_sack) {
1361 /* TODO: head merge to next could be attempted here
1362 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363 * though it might not be worth of the additional hassle
1364 *
1365 * ...we can probably just fallback to what was done
1366 * previously. We could try merging non-SACKed ones
1367 * as well but it probably isn't going to buy off
1368 * because later SACKs might again split them, and
1369 * it would make skb timestamp tracking considerably
1370 * harder problem.
1371 */
1372 goto fallback;
1373 }
1374
1375 len = end_seq - TCP_SKB_CB(skb)->seq;
1376 BUG_ON(len < 0);
1377 BUG_ON(len > skb->len);
1378
1379 /* MSS boundaries should be honoured or else pcount will
1380 * severely break even though it makes things bit trickier.
1381 * Optimize common case to avoid most of the divides
1382 */
1383 mss = tcp_skb_mss(skb);
1384
1385 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1386 * drop this restriction as unnecessary
1387 */
1388 if (mss != tcp_skb_seglen(prev))
1389 goto fallback;
1390
1391 if (len == mss) {
1392 pcount = 1;
1393 } else if (len < mss) {
1394 goto noop;
1395 } else {
1396 pcount = len / mss;
1397 len = pcount * mss;
1398 }
1399 }
1400
1401 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1403 goto fallback;
1404
1405 if (!skb_shift(prev, skb, len))
1406 goto fallback;
1407 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1408 goto out;
1409
1410 /* Hole filled allows collapsing with the next as well, this is very
1411 * useful when hole on every nth skb pattern happens
1412 */
1413 if (prev == tcp_write_queue_tail(sk))
1414 goto out;
1415 skb = tcp_write_queue_next(sk, prev);
1416
1417 if (!skb_can_shift(skb) ||
1418 (skb == tcp_send_head(sk)) ||
1419 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1420 (mss != tcp_skb_seglen(skb)))
1421 goto out;
1422
1423 len = skb->len;
1424 if (skb_shift(prev, skb, len)) {
1425 pcount += tcp_skb_pcount(skb);
1426 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1427 }
1428
1429 out:
1430 state->fack_count += pcount;
1431 return prev;
1432
1433 noop:
1434 return skb;
1435
1436 fallback:
1437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1438 return NULL;
1439 }
1440
1441 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1442 struct tcp_sack_block *next_dup,
1443 struct tcp_sacktag_state *state,
1444 u32 start_seq, u32 end_seq,
1445 bool dup_sack_in)
1446 {
1447 struct tcp_sock *tp = tcp_sk(sk);
1448 struct sk_buff *tmp;
1449
1450 tcp_for_write_queue_from(skb, sk) {
1451 int in_sack = 0;
1452 bool dup_sack = dup_sack_in;
1453
1454 if (skb == tcp_send_head(sk))
1455 break;
1456
1457 /* queue is in-order => we can short-circuit the walk early */
1458 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1459 break;
1460
1461 if ((next_dup != NULL) &&
1462 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1463 in_sack = tcp_match_skb_to_sack(sk, skb,
1464 next_dup->start_seq,
1465 next_dup->end_seq);
1466 if (in_sack > 0)
1467 dup_sack = true;
1468 }
1469
1470 /* skb reference here is a bit tricky to get right, since
1471 * shifting can eat and free both this skb and the next,
1472 * so not even _safe variant of the loop is enough.
1473 */
1474 if (in_sack <= 0) {
1475 tmp = tcp_shift_skb_data(sk, skb, state,
1476 start_seq, end_seq, dup_sack);
1477 if (tmp != NULL) {
1478 if (tmp != skb) {
1479 skb = tmp;
1480 continue;
1481 }
1482
1483 in_sack = 0;
1484 } else {
1485 in_sack = tcp_match_skb_to_sack(sk, skb,
1486 start_seq,
1487 end_seq);
1488 }
1489 }
1490
1491 if (unlikely(in_sack < 0))
1492 break;
1493
1494 if (in_sack) {
1495 TCP_SKB_CB(skb)->sacked =
1496 tcp_sacktag_one(sk,
1497 state,
1498 TCP_SKB_CB(skb)->sacked,
1499 TCP_SKB_CB(skb)->seq,
1500 TCP_SKB_CB(skb)->end_seq,
1501 dup_sack,
1502 tcp_skb_pcount(skb));
1503
1504 if (!before(TCP_SKB_CB(skb)->seq,
1505 tcp_highest_sack_seq(tp)))
1506 tcp_advance_highest_sack(sk, skb);
1507 }
1508
1509 state->fack_count += tcp_skb_pcount(skb);
1510 }
1511 return skb;
1512 }
1513
1514 /* Avoid all extra work that is being done by sacktag while walking in
1515 * a normal way
1516 */
1517 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1518 struct tcp_sacktag_state *state,
1519 u32 skip_to_seq)
1520 {
1521 tcp_for_write_queue_from(skb, sk) {
1522 if (skb == tcp_send_head(sk))
1523 break;
1524
1525 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1526 break;
1527
1528 state->fack_count += tcp_skb_pcount(skb);
1529 }
1530 return skb;
1531 }
1532
1533 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1534 struct sock *sk,
1535 struct tcp_sack_block *next_dup,
1536 struct tcp_sacktag_state *state,
1537 u32 skip_to_seq)
1538 {
1539 if (next_dup == NULL)
1540 return skb;
1541
1542 if (before(next_dup->start_seq, skip_to_seq)) {
1543 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1544 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1545 next_dup->start_seq, next_dup->end_seq,
1546 1);
1547 }
1548
1549 return skb;
1550 }
1551
1552 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1553 {
1554 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555 }
1556
1557 static int
1558 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1559 u32 prior_snd_una)
1560 {
1561 const struct inet_connection_sock *icsk = inet_csk(sk);
1562 struct tcp_sock *tp = tcp_sk(sk);
1563 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1564 TCP_SKB_CB(ack_skb)->sacked);
1565 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1566 struct tcp_sack_block sp[TCP_NUM_SACKS];
1567 struct tcp_sack_block *cache;
1568 struct tcp_sacktag_state state;
1569 struct sk_buff *skb;
1570 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1571 int used_sacks;
1572 bool found_dup_sack = false;
1573 int i, j;
1574 int first_sack_index;
1575
1576 state.flag = 0;
1577 state.reord = tp->packets_out;
1578
1579 if (!tp->sacked_out) {
1580 if (WARN_ON(tp->fackets_out))
1581 tp->fackets_out = 0;
1582 tcp_highest_sack_reset(sk);
1583 }
1584
1585 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1586 num_sacks, prior_snd_una);
1587 if (found_dup_sack)
1588 state.flag |= FLAG_DSACKING_ACK;
1589
1590 /* Eliminate too old ACKs, but take into
1591 * account more or less fresh ones, they can
1592 * contain valid SACK info.
1593 */
1594 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1595 return 0;
1596
1597 if (!tp->packets_out)
1598 goto out;
1599
1600 used_sacks = 0;
1601 first_sack_index = 0;
1602 for (i = 0; i < num_sacks; i++) {
1603 bool dup_sack = !i && found_dup_sack;
1604
1605 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1606 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1607
1608 if (!tcp_is_sackblock_valid(tp, dup_sack,
1609 sp[used_sacks].start_seq,
1610 sp[used_sacks].end_seq)) {
1611 int mib_idx;
1612
1613 if (dup_sack) {
1614 if (!tp->undo_marker)
1615 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1616 else
1617 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1618 } else {
1619 /* Don't count olds caused by ACK reordering */
1620 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1621 !after(sp[used_sacks].end_seq, tp->snd_una))
1622 continue;
1623 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1624 }
1625
1626 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1627 if (i == 0)
1628 first_sack_index = -1;
1629 continue;
1630 }
1631
1632 /* Ignore very old stuff early */
1633 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1634 continue;
1635
1636 used_sacks++;
1637 }
1638
1639 /* order SACK blocks to allow in order walk of the retrans queue */
1640 for (i = used_sacks - 1; i > 0; i--) {
1641 for (j = 0; j < i; j++) {
1642 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1643 swap(sp[j], sp[j + 1]);
1644
1645 /* Track where the first SACK block goes to */
1646 if (j == first_sack_index)
1647 first_sack_index = j + 1;
1648 }
1649 }
1650 }
1651
1652 skb = tcp_write_queue_head(sk);
1653 state.fack_count = 0;
1654 i = 0;
1655
1656 if (!tp->sacked_out) {
1657 /* It's already past, so skip checking against it */
1658 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1659 } else {
1660 cache = tp->recv_sack_cache;
1661 /* Skip empty blocks in at head of the cache */
1662 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1663 !cache->end_seq)
1664 cache++;
1665 }
1666
1667 while (i < used_sacks) {
1668 u32 start_seq = sp[i].start_seq;
1669 u32 end_seq = sp[i].end_seq;
1670 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1671 struct tcp_sack_block *next_dup = NULL;
1672
1673 if (found_dup_sack && ((i + 1) == first_sack_index))
1674 next_dup = &sp[i + 1];
1675
1676 /* Skip too early cached blocks */
1677 while (tcp_sack_cache_ok(tp, cache) &&
1678 !before(start_seq, cache->end_seq))
1679 cache++;
1680
1681 /* Can skip some work by looking recv_sack_cache? */
1682 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1683 after(end_seq, cache->start_seq)) {
1684
1685 /* Head todo? */
1686 if (before(start_seq, cache->start_seq)) {
1687 skb = tcp_sacktag_skip(skb, sk, &state,
1688 start_seq);
1689 skb = tcp_sacktag_walk(skb, sk, next_dup,
1690 &state,
1691 start_seq,
1692 cache->start_seq,
1693 dup_sack);
1694 }
1695
1696 /* Rest of the block already fully processed? */
1697 if (!after(end_seq, cache->end_seq))
1698 goto advance_sp;
1699
1700 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1701 &state,
1702 cache->end_seq);
1703
1704 /* ...tail remains todo... */
1705 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1706 /* ...but better entrypoint exists! */
1707 skb = tcp_highest_sack(sk);
1708 if (skb == NULL)
1709 break;
1710 state.fack_count = tp->fackets_out;
1711 cache++;
1712 goto walk;
1713 }
1714
1715 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1716 /* Check overlap against next cached too (past this one already) */
1717 cache++;
1718 continue;
1719 }
1720
1721 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1722 skb = tcp_highest_sack(sk);
1723 if (skb == NULL)
1724 break;
1725 state.fack_count = tp->fackets_out;
1726 }
1727 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1728
1729 walk:
1730 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1731 start_seq, end_seq, dup_sack);
1732
1733 advance_sp:
1734 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1735 * due to in-order walk
1736 */
1737 if (after(end_seq, tp->frto_highmark))
1738 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1739
1740 i++;
1741 }
1742
1743 /* Clear the head of the cache sack blocks so we can skip it next time */
1744 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1745 tp->recv_sack_cache[i].start_seq = 0;
1746 tp->recv_sack_cache[i].end_seq = 0;
1747 }
1748 for (j = 0; j < used_sacks; j++)
1749 tp->recv_sack_cache[i++] = sp[j];
1750
1751 tcp_mark_lost_retrans(sk);
1752
1753 tcp_verify_left_out(tp);
1754
1755 if ((state.reord < tp->fackets_out) &&
1756 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1757 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1758 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1759
1760 out:
1761
1762 #if FASTRETRANS_DEBUG > 0
1763 WARN_ON((int)tp->sacked_out < 0);
1764 WARN_ON((int)tp->lost_out < 0);
1765 WARN_ON((int)tp->retrans_out < 0);
1766 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1767 #endif
1768 return state.flag;
1769 }
1770
1771 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1772 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1773 */
1774 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1775 {
1776 u32 holes;
1777
1778 holes = max(tp->lost_out, 1U);
1779 holes = min(holes, tp->packets_out);
1780
1781 if ((tp->sacked_out + holes) > tp->packets_out) {
1782 tp->sacked_out = tp->packets_out - holes;
1783 return true;
1784 }
1785 return false;
1786 }
1787
1788 /* If we receive more dupacks than we expected counting segments
1789 * in assumption of absent reordering, interpret this as reordering.
1790 * The only another reason could be bug in receiver TCP.
1791 */
1792 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1793 {
1794 struct tcp_sock *tp = tcp_sk(sk);
1795 if (tcp_limit_reno_sacked(tp))
1796 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1797 }
1798
1799 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1800
1801 static void tcp_add_reno_sack(struct sock *sk)
1802 {
1803 struct tcp_sock *tp = tcp_sk(sk);
1804 tp->sacked_out++;
1805 tcp_check_reno_reordering(sk, 0);
1806 tcp_verify_left_out(tp);
1807 }
1808
1809 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1810
1811 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814
1815 if (acked > 0) {
1816 /* One ACK acked hole. The rest eat duplicate ACKs. */
1817 if (acked - 1 >= tp->sacked_out)
1818 tp->sacked_out = 0;
1819 else
1820 tp->sacked_out -= acked - 1;
1821 }
1822 tcp_check_reno_reordering(sk, acked);
1823 tcp_verify_left_out(tp);
1824 }
1825
1826 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1827 {
1828 tp->sacked_out = 0;
1829 }
1830
1831 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1832 {
1833 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1834 }
1835
1836 /* F-RTO can only be used if TCP has never retransmitted anything other than
1837 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1838 */
1839 bool tcp_use_frto(struct sock *sk)
1840 {
1841 const struct tcp_sock *tp = tcp_sk(sk);
1842 const struct inet_connection_sock *icsk = inet_csk(sk);
1843 struct sk_buff *skb;
1844
1845 if (!sysctl_tcp_frto)
1846 return false;
1847
1848 /* MTU probe and F-RTO won't really play nicely along currently */
1849 if (icsk->icsk_mtup.probe_size)
1850 return false;
1851
1852 if (tcp_is_sackfrto(tp))
1853 return true;
1854
1855 /* Avoid expensive walking of rexmit queue if possible */
1856 if (tp->retrans_out > 1)
1857 return false;
1858
1859 skb = tcp_write_queue_head(sk);
1860 if (tcp_skb_is_last(sk, skb))
1861 return true;
1862 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1863 tcp_for_write_queue_from(skb, sk) {
1864 if (skb == tcp_send_head(sk))
1865 break;
1866 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1867 return false;
1868 /* Short-circuit when first non-SACKed skb has been checked */
1869 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1870 break;
1871 }
1872 return true;
1873 }
1874
1875 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1876 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1877 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1878 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1879 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1880 * bits are handled if the Loss state is really to be entered (in
1881 * tcp_enter_frto_loss).
1882 *
1883 * Do like tcp_enter_loss() would; when RTO expires the second time it
1884 * does:
1885 * "Reduce ssthresh if it has not yet been made inside this window."
1886 */
1887 void tcp_enter_frto(struct sock *sk)
1888 {
1889 const struct inet_connection_sock *icsk = inet_csk(sk);
1890 struct tcp_sock *tp = tcp_sk(sk);
1891 struct sk_buff *skb;
1892
1893 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1894 tp->snd_una == tp->high_seq ||
1895 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1896 !icsk->icsk_retransmits)) {
1897 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1898 /* Our state is too optimistic in ssthresh() call because cwnd
1899 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1900 * recovery has not yet completed. Pattern would be this: RTO,
1901 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1902 * up here twice).
1903 * RFC4138 should be more specific on what to do, even though
1904 * RTO is quite unlikely to occur after the first Cumulative ACK
1905 * due to back-off and complexity of triggering events ...
1906 */
1907 if (tp->frto_counter) {
1908 u32 stored_cwnd;
1909 stored_cwnd = tp->snd_cwnd;
1910 tp->snd_cwnd = 2;
1911 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912 tp->snd_cwnd = stored_cwnd;
1913 } else {
1914 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1915 }
1916 /* ... in theory, cong.control module could do "any tricks" in
1917 * ssthresh(), which means that ca_state, lost bits and lost_out
1918 * counter would have to be faked before the call occurs. We
1919 * consider that too expensive, unlikely and hacky, so modules
1920 * using these in ssthresh() must deal these incompatibility
1921 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1922 */
1923 tcp_ca_event(sk, CA_EVENT_FRTO);
1924 }
1925
1926 tp->undo_marker = tp->snd_una;
1927 tp->undo_retrans = 0;
1928
1929 skb = tcp_write_queue_head(sk);
1930 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1931 tp->undo_marker = 0;
1932 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1933 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1934 tp->retrans_out -= tcp_skb_pcount(skb);
1935 }
1936 tcp_verify_left_out(tp);
1937
1938 /* Too bad if TCP was application limited */
1939 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1940
1941 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1942 * The last condition is necessary at least in tp->frto_counter case.
1943 */
1944 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1945 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1946 after(tp->high_seq, tp->snd_una)) {
1947 tp->frto_highmark = tp->high_seq;
1948 } else {
1949 tp->frto_highmark = tp->snd_nxt;
1950 }
1951 tcp_set_ca_state(sk, TCP_CA_Disorder);
1952 tp->high_seq = tp->snd_nxt;
1953 tp->frto_counter = 1;
1954 }
1955
1956 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1957 * which indicates that we should follow the traditional RTO recovery,
1958 * i.e. mark everything lost and do go-back-N retransmission.
1959 */
1960 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1961 {
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 struct sk_buff *skb;
1964
1965 tp->lost_out = 0;
1966 tp->retrans_out = 0;
1967 if (tcp_is_reno(tp))
1968 tcp_reset_reno_sack(tp);
1969
1970 tcp_for_write_queue(skb, sk) {
1971 if (skb == tcp_send_head(sk))
1972 break;
1973
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1975 /*
1976 * Count the retransmission made on RTO correctly (only when
1977 * waiting for the first ACK and did not get it)...
1978 */
1979 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1980 /* For some reason this R-bit might get cleared? */
1981 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1982 tp->retrans_out += tcp_skb_pcount(skb);
1983 /* ...enter this if branch just for the first segment */
1984 flag |= FLAG_DATA_ACKED;
1985 } else {
1986 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1987 tp->undo_marker = 0;
1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1989 }
1990
1991 /* Marking forward transmissions that were made after RTO lost
1992 * can cause unnecessary retransmissions in some scenarios,
1993 * SACK blocks will mitigate that in some but not in all cases.
1994 * We used to not mark them but it was causing break-ups with
1995 * receivers that do only in-order receival.
1996 *
1997 * TODO: we could detect presence of such receiver and select
1998 * different behavior per flow.
1999 */
2000 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2002 tp->lost_out += tcp_skb_pcount(skb);
2003 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2004 }
2005 }
2006 tcp_verify_left_out(tp);
2007
2008 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2009 tp->snd_cwnd_cnt = 0;
2010 tp->snd_cwnd_stamp = tcp_time_stamp;
2011 tp->frto_counter = 0;
2012 tp->bytes_acked = 0;
2013
2014 tp->reordering = min_t(unsigned int, tp->reordering,
2015 sysctl_tcp_reordering);
2016 tcp_set_ca_state(sk, TCP_CA_Loss);
2017 tp->high_seq = tp->snd_nxt;
2018 TCP_ECN_queue_cwr(tp);
2019
2020 tcp_clear_all_retrans_hints(tp);
2021 }
2022
2023 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2024 {
2025 tp->retrans_out = 0;
2026 tp->lost_out = 0;
2027
2028 tp->undo_marker = 0;
2029 tp->undo_retrans = 0;
2030 }
2031
2032 void tcp_clear_retrans(struct tcp_sock *tp)
2033 {
2034 tcp_clear_retrans_partial(tp);
2035
2036 tp->fackets_out = 0;
2037 tp->sacked_out = 0;
2038 }
2039
2040 /* Enter Loss state. If "how" is not zero, forget all SACK information
2041 * and reset tags completely, otherwise preserve SACKs. If receiver
2042 * dropped its ofo queue, we will know this due to reneging detection.
2043 */
2044 void tcp_enter_loss(struct sock *sk, int how)
2045 {
2046 const struct inet_connection_sock *icsk = inet_csk(sk);
2047 struct tcp_sock *tp = tcp_sk(sk);
2048 struct sk_buff *skb;
2049
2050 /* Reduce ssthresh if it has not yet been made inside this window. */
2051 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2052 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2053 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2055 tcp_ca_event(sk, CA_EVENT_LOSS);
2056 }
2057 tp->snd_cwnd = 1;
2058 tp->snd_cwnd_cnt = 0;
2059 tp->snd_cwnd_stamp = tcp_time_stamp;
2060
2061 tp->bytes_acked = 0;
2062 tcp_clear_retrans_partial(tp);
2063
2064 if (tcp_is_reno(tp))
2065 tcp_reset_reno_sack(tp);
2066
2067 if (!how) {
2068 /* Push undo marker, if it was plain RTO and nothing
2069 * was retransmitted. */
2070 tp->undo_marker = tp->snd_una;
2071 } else {
2072 tp->sacked_out = 0;
2073 tp->fackets_out = 0;
2074 }
2075 tcp_clear_all_retrans_hints(tp);
2076
2077 tcp_for_write_queue(skb, sk) {
2078 if (skb == tcp_send_head(sk))
2079 break;
2080
2081 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2082 tp->undo_marker = 0;
2083 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2084 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2085 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2086 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087 tp->lost_out += tcp_skb_pcount(skb);
2088 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2089 }
2090 }
2091 tcp_verify_left_out(tp);
2092
2093 tp->reordering = min_t(unsigned int, tp->reordering,
2094 sysctl_tcp_reordering);
2095 tcp_set_ca_state(sk, TCP_CA_Loss);
2096 tp->high_seq = tp->snd_nxt;
2097 TCP_ECN_queue_cwr(tp);
2098 /* Abort F-RTO algorithm if one is in progress */
2099 tp->frto_counter = 0;
2100 }
2101
2102 /* If ACK arrived pointing to a remembered SACK, it means that our
2103 * remembered SACKs do not reflect real state of receiver i.e.
2104 * receiver _host_ is heavily congested (or buggy).
2105 *
2106 * Do processing similar to RTO timeout.
2107 */
2108 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2109 {
2110 if (flag & FLAG_SACK_RENEGING) {
2111 struct inet_connection_sock *icsk = inet_csk(sk);
2112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2113
2114 tcp_enter_loss(sk, 1);
2115 icsk->icsk_retransmits++;
2116 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2117 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2118 icsk->icsk_rto, TCP_RTO_MAX);
2119 return true;
2120 }
2121 return false;
2122 }
2123
2124 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2125 {
2126 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2127 }
2128
2129 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2130 * counter when SACK is enabled (without SACK, sacked_out is used for
2131 * that purpose).
2132 *
2133 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2134 * segments up to the highest received SACK block so far and holes in
2135 * between them.
2136 *
2137 * With reordering, holes may still be in flight, so RFC3517 recovery
2138 * uses pure sacked_out (total number of SACKed segments) even though
2139 * it violates the RFC that uses duplicate ACKs, often these are equal
2140 * but when e.g. out-of-window ACKs or packet duplication occurs,
2141 * they differ. Since neither occurs due to loss, TCP should really
2142 * ignore them.
2143 */
2144 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2145 {
2146 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2147 }
2148
2149 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2150 {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152 unsigned long delay;
2153
2154 /* Delay early retransmit and entering fast recovery for
2155 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2156 * available, or RTO is scheduled to fire first.
2157 */
2158 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2159 return false;
2160
2161 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2162 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2163 return false;
2164
2165 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2166 tp->early_retrans_delayed = 1;
2167 return true;
2168 }
2169
2170 static inline int tcp_skb_timedout(const struct sock *sk,
2171 const struct sk_buff *skb)
2172 {
2173 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2174 }
2175
2176 static inline int tcp_head_timedout(const struct sock *sk)
2177 {
2178 const struct tcp_sock *tp = tcp_sk(sk);
2179
2180 return tp->packets_out &&
2181 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2182 }
2183
2184 /* Linux NewReno/SACK/FACK/ECN state machine.
2185 * --------------------------------------
2186 *
2187 * "Open" Normal state, no dubious events, fast path.
2188 * "Disorder" In all the respects it is "Open",
2189 * but requires a bit more attention. It is entered when
2190 * we see some SACKs or dupacks. It is split of "Open"
2191 * mainly to move some processing from fast path to slow one.
2192 * "CWR" CWND was reduced due to some Congestion Notification event.
2193 * It can be ECN, ICMP source quench, local device congestion.
2194 * "Recovery" CWND was reduced, we are fast-retransmitting.
2195 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2196 *
2197 * tcp_fastretrans_alert() is entered:
2198 * - each incoming ACK, if state is not "Open"
2199 * - when arrived ACK is unusual, namely:
2200 * * SACK
2201 * * Duplicate ACK.
2202 * * ECN ECE.
2203 *
2204 * Counting packets in flight is pretty simple.
2205 *
2206 * in_flight = packets_out - left_out + retrans_out
2207 *
2208 * packets_out is SND.NXT-SND.UNA counted in packets.
2209 *
2210 * retrans_out is number of retransmitted segments.
2211 *
2212 * left_out is number of segments left network, but not ACKed yet.
2213 *
2214 * left_out = sacked_out + lost_out
2215 *
2216 * sacked_out: Packets, which arrived to receiver out of order
2217 * and hence not ACKed. With SACKs this number is simply
2218 * amount of SACKed data. Even without SACKs
2219 * it is easy to give pretty reliable estimate of this number,
2220 * counting duplicate ACKs.
2221 *
2222 * lost_out: Packets lost by network. TCP has no explicit
2223 * "loss notification" feedback from network (for now).
2224 * It means that this number can be only _guessed_.
2225 * Actually, it is the heuristics to predict lossage that
2226 * distinguishes different algorithms.
2227 *
2228 * F.e. after RTO, when all the queue is considered as lost,
2229 * lost_out = packets_out and in_flight = retrans_out.
2230 *
2231 * Essentially, we have now two algorithms counting
2232 * lost packets.
2233 *
2234 * FACK: It is the simplest heuristics. As soon as we decided
2235 * that something is lost, we decide that _all_ not SACKed
2236 * packets until the most forward SACK are lost. I.e.
2237 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2238 * It is absolutely correct estimate, if network does not reorder
2239 * packets. And it loses any connection to reality when reordering
2240 * takes place. We use FACK by default until reordering
2241 * is suspected on the path to this destination.
2242 *
2243 * NewReno: when Recovery is entered, we assume that one segment
2244 * is lost (classic Reno). While we are in Recovery and
2245 * a partial ACK arrives, we assume that one more packet
2246 * is lost (NewReno). This heuristics are the same in NewReno
2247 * and SACK.
2248 *
2249 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2250 * deflation etc. CWND is real congestion window, never inflated, changes
2251 * only according to classic VJ rules.
2252 *
2253 * Really tricky (and requiring careful tuning) part of algorithm
2254 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2255 * The first determines the moment _when_ we should reduce CWND and,
2256 * hence, slow down forward transmission. In fact, it determines the moment
2257 * when we decide that hole is caused by loss, rather than by a reorder.
2258 *
2259 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2260 * holes, caused by lost packets.
2261 *
2262 * And the most logically complicated part of algorithm is undo
2263 * heuristics. We detect false retransmits due to both too early
2264 * fast retransmit (reordering) and underestimated RTO, analyzing
2265 * timestamps and D-SACKs. When we detect that some segments were
2266 * retransmitted by mistake and CWND reduction was wrong, we undo
2267 * window reduction and abort recovery phase. This logic is hidden
2268 * inside several functions named tcp_try_undo_<something>.
2269 */
2270
2271 /* This function decides, when we should leave Disordered state
2272 * and enter Recovery phase, reducing congestion window.
2273 *
2274 * Main question: may we further continue forward transmission
2275 * with the same cwnd?
2276 */
2277 static bool tcp_time_to_recover(struct sock *sk, int flag)
2278 {
2279 struct tcp_sock *tp = tcp_sk(sk);
2280 __u32 packets_out;
2281
2282 /* Do not perform any recovery during F-RTO algorithm */
2283 if (tp->frto_counter)
2284 return false;
2285
2286 /* Trick#1: The loss is proven. */
2287 if (tp->lost_out)
2288 return true;
2289
2290 /* Not-A-Trick#2 : Classic rule... */
2291 if (tcp_dupack_heuristics(tp) > tp->reordering)
2292 return true;
2293
2294 /* Trick#3 : when we use RFC2988 timer restart, fast
2295 * retransmit can be triggered by timeout of queue head.
2296 */
2297 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2298 return true;
2299
2300 /* Trick#4: It is still not OK... But will it be useful to delay
2301 * recovery more?
2302 */
2303 packets_out = tp->packets_out;
2304 if (packets_out <= tp->reordering &&
2305 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2306 !tcp_may_send_now(sk)) {
2307 /* We have nothing to send. This connection is limited
2308 * either by receiver window or by application.
2309 */
2310 return true;
2311 }
2312
2313 /* If a thin stream is detected, retransmit after first
2314 * received dupack. Employ only if SACK is supported in order
2315 * to avoid possible corner-case series of spurious retransmissions
2316 * Use only if there are no unsent data.
2317 */
2318 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2319 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2320 tcp_is_sack(tp) && !tcp_send_head(sk))
2321 return true;
2322
2323 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2324 * retransmissions due to small network reorderings, we implement
2325 * Mitigation A.3 in the RFC and delay the retransmission for a short
2326 * interval if appropriate.
2327 */
2328 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2329 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2330 !tcp_may_send_now(sk))
2331 return !tcp_pause_early_retransmit(sk, flag);
2332
2333 return false;
2334 }
2335
2336 /* New heuristics: it is possible only after we switched to restart timer
2337 * each time when something is ACKed. Hence, we can detect timed out packets
2338 * during fast retransmit without falling to slow start.
2339 *
2340 * Usefulness of this as is very questionable, since we should know which of
2341 * the segments is the next to timeout which is relatively expensive to find
2342 * in general case unless we add some data structure just for that. The
2343 * current approach certainly won't find the right one too often and when it
2344 * finally does find _something_ it usually marks large part of the window
2345 * right away (because a retransmission with a larger timestamp blocks the
2346 * loop from advancing). -ij
2347 */
2348 static void tcp_timeout_skbs(struct sock *sk)
2349 {
2350 struct tcp_sock *tp = tcp_sk(sk);
2351 struct sk_buff *skb;
2352
2353 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2354 return;
2355
2356 skb = tp->scoreboard_skb_hint;
2357 if (tp->scoreboard_skb_hint == NULL)
2358 skb = tcp_write_queue_head(sk);
2359
2360 tcp_for_write_queue_from(skb, sk) {
2361 if (skb == tcp_send_head(sk))
2362 break;
2363 if (!tcp_skb_timedout(sk, skb))
2364 break;
2365
2366 tcp_skb_mark_lost(tp, skb);
2367 }
2368
2369 tp->scoreboard_skb_hint = skb;
2370
2371 tcp_verify_left_out(tp);
2372 }
2373
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2376 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2377 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2378 * the maximum SACKed segments to pass before reaching this limit.
2379 */
2380 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2381 {
2382 struct tcp_sock *tp = tcp_sk(sk);
2383 struct sk_buff *skb;
2384 int cnt, oldcnt;
2385 int err;
2386 unsigned int mss;
2387 /* Use SACK to deduce losses of new sequences sent during recovery */
2388 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2389
2390 WARN_ON(packets > tp->packets_out);
2391 if (tp->lost_skb_hint) {
2392 skb = tp->lost_skb_hint;
2393 cnt = tp->lost_cnt_hint;
2394 /* Head already handled? */
2395 if (mark_head && skb != tcp_write_queue_head(sk))
2396 return;
2397 } else {
2398 skb = tcp_write_queue_head(sk);
2399 cnt = 0;
2400 }
2401
2402 tcp_for_write_queue_from(skb, sk) {
2403 if (skb == tcp_send_head(sk))
2404 break;
2405 /* TODO: do this better */
2406 /* this is not the most efficient way to do this... */
2407 tp->lost_skb_hint = skb;
2408 tp->lost_cnt_hint = cnt;
2409
2410 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411 break;
2412
2413 oldcnt = cnt;
2414 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2415 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2416 cnt += tcp_skb_pcount(skb);
2417
2418 if (cnt > packets) {
2419 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2420 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2421 (oldcnt >= packets))
2422 break;
2423
2424 mss = skb_shinfo(skb)->gso_size;
2425 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2426 if (err < 0)
2427 break;
2428 cnt = packets;
2429 }
2430
2431 tcp_skb_mark_lost(tp, skb);
2432
2433 if (mark_head)
2434 break;
2435 }
2436 tcp_verify_left_out(tp);
2437 }
2438
2439 /* Account newly detected lost packet(s) */
2440
2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2442 {
2443 struct tcp_sock *tp = tcp_sk(sk);
2444
2445 if (tcp_is_reno(tp)) {
2446 tcp_mark_head_lost(sk, 1, 1);
2447 } else if (tcp_is_fack(tp)) {
2448 int lost = tp->fackets_out - tp->reordering;
2449 if (lost <= 0)
2450 lost = 1;
2451 tcp_mark_head_lost(sk, lost, 0);
2452 } else {
2453 int sacked_upto = tp->sacked_out - tp->reordering;
2454 if (sacked_upto >= 0)
2455 tcp_mark_head_lost(sk, sacked_upto, 0);
2456 else if (fast_rexmit)
2457 tcp_mark_head_lost(sk, 1, 1);
2458 }
2459
2460 tcp_timeout_skbs(sk);
2461 }
2462
2463 /* CWND moderation, preventing bursts due to too big ACKs
2464 * in dubious situations.
2465 */
2466 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2467 {
2468 tp->snd_cwnd = min(tp->snd_cwnd,
2469 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2470 tp->snd_cwnd_stamp = tcp_time_stamp;
2471 }
2472
2473 /* Nothing was retransmitted or returned timestamp is less
2474 * than timestamp of the first retransmission.
2475 */
2476 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2477 {
2478 return !tp->retrans_stamp ||
2479 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2480 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2481 }
2482
2483 /* Undo procedures. */
2484
2485 #if FASTRETRANS_DEBUG > 1
2486 static void DBGUNDO(struct sock *sk, const char *msg)
2487 {
2488 struct tcp_sock *tp = tcp_sk(sk);
2489 struct inet_sock *inet = inet_sk(sk);
2490
2491 if (sk->sk_family == AF_INET) {
2492 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2493 msg,
2494 &inet->inet_daddr, ntohs(inet->inet_dport),
2495 tp->snd_cwnd, tcp_left_out(tp),
2496 tp->snd_ssthresh, tp->prior_ssthresh,
2497 tp->packets_out);
2498 }
2499 #if IS_ENABLED(CONFIG_IPV6)
2500 else if (sk->sk_family == AF_INET6) {
2501 struct ipv6_pinfo *np = inet6_sk(sk);
2502 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2503 msg,
2504 &np->daddr, ntohs(inet->inet_dport),
2505 tp->snd_cwnd, tcp_left_out(tp),
2506 tp->snd_ssthresh, tp->prior_ssthresh,
2507 tp->packets_out);
2508 }
2509 #endif
2510 }
2511 #else
2512 #define DBGUNDO(x...) do { } while (0)
2513 #endif
2514
2515 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2516 {
2517 struct tcp_sock *tp = tcp_sk(sk);
2518
2519 if (tp->prior_ssthresh) {
2520 const struct inet_connection_sock *icsk = inet_csk(sk);
2521
2522 if (icsk->icsk_ca_ops->undo_cwnd)
2523 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2524 else
2525 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2526
2527 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2528 tp->snd_ssthresh = tp->prior_ssthresh;
2529 TCP_ECN_withdraw_cwr(tp);
2530 }
2531 } else {
2532 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2533 }
2534 tp->snd_cwnd_stamp = tcp_time_stamp;
2535 }
2536
2537 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2538 {
2539 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2540 }
2541
2542 /* People celebrate: "We love our President!" */
2543 static bool tcp_try_undo_recovery(struct sock *sk)
2544 {
2545 struct tcp_sock *tp = tcp_sk(sk);
2546
2547 if (tcp_may_undo(tp)) {
2548 int mib_idx;
2549
2550 /* Happy end! We did not retransmit anything
2551 * or our original transmission succeeded.
2552 */
2553 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2554 tcp_undo_cwr(sk, true);
2555 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2556 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2557 else
2558 mib_idx = LINUX_MIB_TCPFULLUNDO;
2559
2560 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2561 tp->undo_marker = 0;
2562 }
2563 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2564 /* Hold old state until something *above* high_seq
2565 * is ACKed. For Reno it is MUST to prevent false
2566 * fast retransmits (RFC2582). SACK TCP is safe. */
2567 tcp_moderate_cwnd(tp);
2568 return true;
2569 }
2570 tcp_set_ca_state(sk, TCP_CA_Open);
2571 return false;
2572 }
2573
2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2575 static void tcp_try_undo_dsack(struct sock *sk)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578
2579 if (tp->undo_marker && !tp->undo_retrans) {
2580 DBGUNDO(sk, "D-SACK");
2581 tcp_undo_cwr(sk, true);
2582 tp->undo_marker = 0;
2583 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2584 }
2585 }
2586
2587 /* We can clear retrans_stamp when there are no retransmissions in the
2588 * window. It would seem that it is trivially available for us in
2589 * tp->retrans_out, however, that kind of assumptions doesn't consider
2590 * what will happen if errors occur when sending retransmission for the
2591 * second time. ...It could the that such segment has only
2592 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2593 * the head skb is enough except for some reneging corner cases that
2594 * are not worth the effort.
2595 *
2596 * Main reason for all this complexity is the fact that connection dying
2597 * time now depends on the validity of the retrans_stamp, in particular,
2598 * that successive retransmissions of a segment must not advance
2599 * retrans_stamp under any conditions.
2600 */
2601 static bool tcp_any_retrans_done(const struct sock *sk)
2602 {
2603 const struct tcp_sock *tp = tcp_sk(sk);
2604 struct sk_buff *skb;
2605
2606 if (tp->retrans_out)
2607 return true;
2608
2609 skb = tcp_write_queue_head(sk);
2610 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2611 return true;
2612
2613 return false;
2614 }
2615
2616 /* Undo during fast recovery after partial ACK. */
2617
2618 static int tcp_try_undo_partial(struct sock *sk, int acked)
2619 {
2620 struct tcp_sock *tp = tcp_sk(sk);
2621 /* Partial ACK arrived. Force Hoe's retransmit. */
2622 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2623
2624 if (tcp_may_undo(tp)) {
2625 /* Plain luck! Hole if filled with delayed
2626 * packet, rather than with a retransmit.
2627 */
2628 if (!tcp_any_retrans_done(sk))
2629 tp->retrans_stamp = 0;
2630
2631 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2632
2633 DBGUNDO(sk, "Hoe");
2634 tcp_undo_cwr(sk, false);
2635 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2636
2637 /* So... Do not make Hoe's retransmit yet.
2638 * If the first packet was delayed, the rest
2639 * ones are most probably delayed as well.
2640 */
2641 failed = 0;
2642 }
2643 return failed;
2644 }
2645
2646 /* Undo during loss recovery after partial ACK. */
2647 static bool tcp_try_undo_loss(struct sock *sk)
2648 {
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 if (tcp_may_undo(tp)) {
2652 struct sk_buff *skb;
2653 tcp_for_write_queue(skb, sk) {
2654 if (skb == tcp_send_head(sk))
2655 break;
2656 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2657 }
2658
2659 tcp_clear_all_retrans_hints(tp);
2660
2661 DBGUNDO(sk, "partial loss");
2662 tp->lost_out = 0;
2663 tcp_undo_cwr(sk, true);
2664 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2665 inet_csk(sk)->icsk_retransmits = 0;
2666 tp->undo_marker = 0;
2667 if (tcp_is_sack(tp))
2668 tcp_set_ca_state(sk, TCP_CA_Open);
2669 return true;
2670 }
2671 return false;
2672 }
2673
2674 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2675 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2676 * It computes the number of packets to send (sndcnt) based on packets newly
2677 * delivered:
2678 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2679 * cwnd reductions across a full RTT.
2680 * 2) If packets in flight is lower than ssthresh (such as due to excess
2681 * losses and/or application stalls), do not perform any further cwnd
2682 * reductions, but instead slow start up to ssthresh.
2683 */
2684 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687
2688 tp->high_seq = tp->snd_nxt;
2689 tp->bytes_acked = 0;
2690 tp->snd_cwnd_cnt = 0;
2691 tp->prior_cwnd = tp->snd_cwnd;
2692 tp->prr_delivered = 0;
2693 tp->prr_out = 0;
2694 if (set_ssthresh)
2695 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2696 TCP_ECN_queue_cwr(tp);
2697 }
2698
2699 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2700 int fast_rexmit)
2701 {
2702 struct tcp_sock *tp = tcp_sk(sk);
2703 int sndcnt = 0;
2704 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2705
2706 tp->prr_delivered += newly_acked_sacked;
2707 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2708 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2709 tp->prior_cwnd - 1;
2710 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2711 } else {
2712 sndcnt = min_t(int, delta,
2713 max_t(int, tp->prr_delivered - tp->prr_out,
2714 newly_acked_sacked) + 1);
2715 }
2716
2717 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2718 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2719 }
2720
2721 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724
2725 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2726 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2727 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2728 tp->snd_cwnd = tp->snd_ssthresh;
2729 tp->snd_cwnd_stamp = tcp_time_stamp;
2730 }
2731 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2732 }
2733
2734 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2735 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2736 {
2737 struct tcp_sock *tp = tcp_sk(sk);
2738
2739 tp->prior_ssthresh = 0;
2740 tp->bytes_acked = 0;
2741 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742 tp->undo_marker = 0;
2743 tcp_init_cwnd_reduction(sk, set_ssthresh);
2744 tcp_set_ca_state(sk, TCP_CA_CWR);
2745 }
2746 }
2747
2748 static void tcp_try_keep_open(struct sock *sk)
2749 {
2750 struct tcp_sock *tp = tcp_sk(sk);
2751 int state = TCP_CA_Open;
2752
2753 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2754 state = TCP_CA_Disorder;
2755
2756 if (inet_csk(sk)->icsk_ca_state != state) {
2757 tcp_set_ca_state(sk, state);
2758 tp->high_seq = tp->snd_nxt;
2759 }
2760 }
2761
2762 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2763 {
2764 struct tcp_sock *tp = tcp_sk(sk);
2765
2766 tcp_verify_left_out(tp);
2767
2768 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2769 tp->retrans_stamp = 0;
2770
2771 if (flag & FLAG_ECE)
2772 tcp_enter_cwr(sk, 1);
2773
2774 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2775 tcp_try_keep_open(sk);
2776 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2777 tcp_moderate_cwnd(tp);
2778 } else {
2779 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2780 }
2781 }
2782
2783 static void tcp_mtup_probe_failed(struct sock *sk)
2784 {
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786
2787 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2788 icsk->icsk_mtup.probe_size = 0;
2789 }
2790
2791 static void tcp_mtup_probe_success(struct sock *sk)
2792 {
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 struct inet_connection_sock *icsk = inet_csk(sk);
2795
2796 /* FIXME: breaks with very large cwnd */
2797 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2798 tp->snd_cwnd = tp->snd_cwnd *
2799 tcp_mss_to_mtu(sk, tp->mss_cache) /
2800 icsk->icsk_mtup.probe_size;
2801 tp->snd_cwnd_cnt = 0;
2802 tp->snd_cwnd_stamp = tcp_time_stamp;
2803 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2804
2805 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2806 icsk->icsk_mtup.probe_size = 0;
2807 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2808 }
2809
2810 /* Do a simple retransmit without using the backoff mechanisms in
2811 * tcp_timer. This is used for path mtu discovery.
2812 * The socket is already locked here.
2813 */
2814 void tcp_simple_retransmit(struct sock *sk)
2815 {
2816 const struct inet_connection_sock *icsk = inet_csk(sk);
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 struct sk_buff *skb;
2819 unsigned int mss = tcp_current_mss(sk);
2820 u32 prior_lost = tp->lost_out;
2821
2822 tcp_for_write_queue(skb, sk) {
2823 if (skb == tcp_send_head(sk))
2824 break;
2825 if (tcp_skb_seglen(skb) > mss &&
2826 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2827 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2828 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2829 tp->retrans_out -= tcp_skb_pcount(skb);
2830 }
2831 tcp_skb_mark_lost_uncond_verify(tp, skb);
2832 }
2833 }
2834
2835 tcp_clear_retrans_hints_partial(tp);
2836
2837 if (prior_lost == tp->lost_out)
2838 return;
2839
2840 if (tcp_is_reno(tp))
2841 tcp_limit_reno_sacked(tp);
2842
2843 tcp_verify_left_out(tp);
2844
2845 /* Don't muck with the congestion window here.
2846 * Reason is that we do not increase amount of _data_
2847 * in network, but units changed and effective
2848 * cwnd/ssthresh really reduced now.
2849 */
2850 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2851 tp->high_seq = tp->snd_nxt;
2852 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2853 tp->prior_ssthresh = 0;
2854 tp->undo_marker = 0;
2855 tcp_set_ca_state(sk, TCP_CA_Loss);
2856 }
2857 tcp_xmit_retransmit_queue(sk);
2858 }
2859 EXPORT_SYMBOL(tcp_simple_retransmit);
2860
2861 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2862 {
2863 struct tcp_sock *tp = tcp_sk(sk);
2864 int mib_idx;
2865
2866 if (tcp_is_reno(tp))
2867 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2868 else
2869 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2870
2871 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2872
2873 tp->prior_ssthresh = 0;
2874 tp->undo_marker = tp->snd_una;
2875 tp->undo_retrans = tp->retrans_out;
2876
2877 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2878 if (!ece_ack)
2879 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880 tcp_init_cwnd_reduction(sk, true);
2881 }
2882 tcp_set_ca_state(sk, TCP_CA_Recovery);
2883 }
2884
2885 /* Process an event, which can update packets-in-flight not trivially.
2886 * Main goal of this function is to calculate new estimate for left_out,
2887 * taking into account both packets sitting in receiver's buffer and
2888 * packets lost by network.
2889 *
2890 * Besides that it does CWND reduction, when packet loss is detected
2891 * and changes state of machine.
2892 *
2893 * It does _not_ decide what to send, it is made in function
2894 * tcp_xmit_retransmit_queue().
2895 */
2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2897 int prior_sacked, bool is_dupack,
2898 int flag)
2899 {
2900 struct inet_connection_sock *icsk = inet_csk(sk);
2901 struct tcp_sock *tp = tcp_sk(sk);
2902 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2903 (tcp_fackets_out(tp) > tp->reordering));
2904 int newly_acked_sacked = 0;
2905 int fast_rexmit = 0;
2906
2907 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2908 tp->sacked_out = 0;
2909 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2910 tp->fackets_out = 0;
2911
2912 /* Now state machine starts.
2913 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2914 if (flag & FLAG_ECE)
2915 tp->prior_ssthresh = 0;
2916
2917 /* B. In all the states check for reneging SACKs. */
2918 if (tcp_check_sack_reneging(sk, flag))
2919 return;
2920
2921 /* C. Check consistency of the current state. */
2922 tcp_verify_left_out(tp);
2923
2924 /* D. Check state exit conditions. State can be terminated
2925 * when high_seq is ACKed. */
2926 if (icsk->icsk_ca_state == TCP_CA_Open) {
2927 WARN_ON(tp->retrans_out != 0);
2928 tp->retrans_stamp = 0;
2929 } else if (!before(tp->snd_una, tp->high_seq)) {
2930 switch (icsk->icsk_ca_state) {
2931 case TCP_CA_Loss:
2932 icsk->icsk_retransmits = 0;
2933 if (tcp_try_undo_recovery(sk))
2934 return;
2935 break;
2936
2937 case TCP_CA_CWR:
2938 /* CWR is to be held something *above* high_seq
2939 * is ACKed for CWR bit to reach receiver. */
2940 if (tp->snd_una != tp->high_seq) {
2941 tcp_end_cwnd_reduction(sk);
2942 tcp_set_ca_state(sk, TCP_CA_Open);
2943 }
2944 break;
2945
2946 case TCP_CA_Recovery:
2947 if (tcp_is_reno(tp))
2948 tcp_reset_reno_sack(tp);
2949 if (tcp_try_undo_recovery(sk))
2950 return;
2951 tcp_end_cwnd_reduction(sk);
2952 break;
2953 }
2954 }
2955
2956 /* E. Process state. */
2957 switch (icsk->icsk_ca_state) {
2958 case TCP_CA_Recovery:
2959 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2960 if (tcp_is_reno(tp) && is_dupack)
2961 tcp_add_reno_sack(sk);
2962 } else
2963 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2964 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2965 break;
2966 case TCP_CA_Loss:
2967 if (flag & FLAG_DATA_ACKED)
2968 icsk->icsk_retransmits = 0;
2969 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2970 tcp_reset_reno_sack(tp);
2971 if (!tcp_try_undo_loss(sk)) {
2972 tcp_moderate_cwnd(tp);
2973 tcp_xmit_retransmit_queue(sk);
2974 return;
2975 }
2976 if (icsk->icsk_ca_state != TCP_CA_Open)
2977 return;
2978 /* Loss is undone; fall through to processing in Open state. */
2979 default:
2980 if (tcp_is_reno(tp)) {
2981 if (flag & FLAG_SND_UNA_ADVANCED)
2982 tcp_reset_reno_sack(tp);
2983 if (is_dupack)
2984 tcp_add_reno_sack(sk);
2985 }
2986 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2987
2988 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2989 tcp_try_undo_dsack(sk);
2990
2991 if (!tcp_time_to_recover(sk, flag)) {
2992 tcp_try_to_open(sk, flag, newly_acked_sacked);
2993 return;
2994 }
2995
2996 /* MTU probe failure: don't reduce cwnd */
2997 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2998 icsk->icsk_mtup.probe_size &&
2999 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3000 tcp_mtup_probe_failed(sk);
3001 /* Restores the reduction we did in tcp_mtup_probe() */
3002 tp->snd_cwnd++;
3003 tcp_simple_retransmit(sk);
3004 return;
3005 }
3006
3007 /* Otherwise enter Recovery state */
3008 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3009 fast_rexmit = 1;
3010 }
3011
3012 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3013 tcp_update_scoreboard(sk, fast_rexmit);
3014 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3015 tcp_xmit_retransmit_queue(sk);
3016 }
3017
3018 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3019 {
3020 tcp_rtt_estimator(sk, seq_rtt);
3021 tcp_set_rto(sk);
3022 inet_csk(sk)->icsk_backoff = 0;
3023 }
3024 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3025
3026 /* Read draft-ietf-tcplw-high-performance before mucking
3027 * with this code. (Supersedes RFC1323)
3028 */
3029 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3030 {
3031 /* RTTM Rule: A TSecr value received in a segment is used to
3032 * update the averaged RTT measurement only if the segment
3033 * acknowledges some new data, i.e., only if it advances the
3034 * left edge of the send window.
3035 *
3036 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3037 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3038 *
3039 * Changed: reset backoff as soon as we see the first valid sample.
3040 * If we do not, we get strongly overestimated rto. With timestamps
3041 * samples are accepted even from very old segments: f.e., when rtt=1
3042 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3043 * answer arrives rto becomes 120 seconds! If at least one of segments
3044 * in window is lost... Voila. --ANK (010210)
3045 */
3046 struct tcp_sock *tp = tcp_sk(sk);
3047
3048 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3049 }
3050
3051 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3052 {
3053 /* We don't have a timestamp. Can only use
3054 * packets that are not retransmitted to determine
3055 * rtt estimates. Also, we must not reset the
3056 * backoff for rto until we get a non-retransmitted
3057 * packet. This allows us to deal with a situation
3058 * where the network delay has increased suddenly.
3059 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3060 */
3061
3062 if (flag & FLAG_RETRANS_DATA_ACKED)
3063 return;
3064
3065 tcp_valid_rtt_meas(sk, seq_rtt);
3066 }
3067
3068 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3069 const s32 seq_rtt)
3070 {
3071 const struct tcp_sock *tp = tcp_sk(sk);
3072 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3073 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3074 tcp_ack_saw_tstamp(sk, flag);
3075 else if (seq_rtt >= 0)
3076 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3077 }
3078
3079 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3080 {
3081 const struct inet_connection_sock *icsk = inet_csk(sk);
3082 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3083 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3084 }
3085
3086 /* Restart timer after forward progress on connection.
3087 * RFC2988 recommends to restart timer to now+rto.
3088 */
3089 void tcp_rearm_rto(struct sock *sk)
3090 {
3091 struct tcp_sock *tp = tcp_sk(sk);
3092
3093 /* If the retrans timer is currently being used by Fast Open
3094 * for SYN-ACK retrans purpose, stay put.
3095 */
3096 if (tp->fastopen_rsk)
3097 return;
3098
3099 if (!tp->packets_out) {
3100 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3101 } else {
3102 u32 rto = inet_csk(sk)->icsk_rto;
3103 /* Offset the time elapsed after installing regular RTO */
3104 if (tp->early_retrans_delayed) {
3105 struct sk_buff *skb = tcp_write_queue_head(sk);
3106 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3107 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3108 /* delta may not be positive if the socket is locked
3109 * when the delayed ER timer fires and is rescheduled.
3110 */
3111 if (delta > 0)
3112 rto = delta;
3113 }
3114 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3115 TCP_RTO_MAX);
3116 }
3117 tp->early_retrans_delayed = 0;
3118 }
3119
3120 /* This function is called when the delayed ER timer fires. TCP enters
3121 * fast recovery and performs fast-retransmit.
3122 */
3123 void tcp_resume_early_retransmit(struct sock *sk)
3124 {
3125 struct tcp_sock *tp = tcp_sk(sk);
3126
3127 tcp_rearm_rto(sk);
3128
3129 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3130 if (!tp->do_early_retrans)
3131 return;
3132
3133 tcp_enter_recovery(sk, false);
3134 tcp_update_scoreboard(sk, 1);
3135 tcp_xmit_retransmit_queue(sk);
3136 }
3137
3138 /* If we get here, the whole TSO packet has not been acked. */
3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3140 {
3141 struct tcp_sock *tp = tcp_sk(sk);
3142 u32 packets_acked;
3143
3144 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3145
3146 packets_acked = tcp_skb_pcount(skb);
3147 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3148 return 0;
3149 packets_acked -= tcp_skb_pcount(skb);
3150
3151 if (packets_acked) {
3152 BUG_ON(tcp_skb_pcount(skb) == 0);
3153 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3154 }
3155
3156 return packets_acked;
3157 }
3158
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160 * is before the ack sequence we can discard it as it's confirmed to have
3161 * arrived at the other end.
3162 */
3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3164 u32 prior_snd_una)
3165 {
3166 struct tcp_sock *tp = tcp_sk(sk);
3167 const struct inet_connection_sock *icsk = inet_csk(sk);
3168 struct sk_buff *skb;
3169 u32 now = tcp_time_stamp;
3170 int fully_acked = true;
3171 int flag = 0;
3172 u32 pkts_acked = 0;
3173 u32 reord = tp->packets_out;
3174 u32 prior_sacked = tp->sacked_out;
3175 s32 seq_rtt = -1;
3176 s32 ca_seq_rtt = -1;
3177 ktime_t last_ackt = net_invalid_timestamp();
3178
3179 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3180 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3181 u32 acked_pcount;
3182 u8 sacked = scb->sacked;
3183
3184 /* Determine how many packets and what bytes were acked, tso and else */
3185 if (after(scb->end_seq, tp->snd_una)) {
3186 if (tcp_skb_pcount(skb) == 1 ||
3187 !after(tp->snd_una, scb->seq))
3188 break;
3189
3190 acked_pcount = tcp_tso_acked(sk, skb);
3191 if (!acked_pcount)
3192 break;
3193
3194 fully_acked = false;
3195 } else {
3196 acked_pcount = tcp_skb_pcount(skb);
3197 }
3198
3199 if (sacked & TCPCB_RETRANS) {
3200 if (sacked & TCPCB_SACKED_RETRANS)
3201 tp->retrans_out -= acked_pcount;
3202 flag |= FLAG_RETRANS_DATA_ACKED;
3203 ca_seq_rtt = -1;
3204 seq_rtt = -1;
3205 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3206 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3207 } else {
3208 ca_seq_rtt = now - scb->when;
3209 last_ackt = skb->tstamp;
3210 if (seq_rtt < 0) {
3211 seq_rtt = ca_seq_rtt;
3212 }
3213 if (!(sacked & TCPCB_SACKED_ACKED))
3214 reord = min(pkts_acked, reord);
3215 }
3216
3217 if (sacked & TCPCB_SACKED_ACKED)
3218 tp->sacked_out -= acked_pcount;
3219 if (sacked & TCPCB_LOST)
3220 tp->lost_out -= acked_pcount;
3221
3222 tp->packets_out -= acked_pcount;
3223 pkts_acked += acked_pcount;
3224
3225 /* Initial outgoing SYN's get put onto the write_queue
3226 * just like anything else we transmit. It is not
3227 * true data, and if we misinform our callers that
3228 * this ACK acks real data, we will erroneously exit
3229 * connection startup slow start one packet too
3230 * quickly. This is severely frowned upon behavior.
3231 */
3232 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3233 flag |= FLAG_DATA_ACKED;
3234 } else {
3235 flag |= FLAG_SYN_ACKED;
3236 tp->retrans_stamp = 0;
3237 }
3238
3239 if (!fully_acked)
3240 break;
3241
3242 tcp_unlink_write_queue(skb, sk);
3243 sk_wmem_free_skb(sk, skb);
3244 tp->scoreboard_skb_hint = NULL;
3245 if (skb == tp->retransmit_skb_hint)
3246 tp->retransmit_skb_hint = NULL;
3247 if (skb == tp->lost_skb_hint)
3248 tp->lost_skb_hint = NULL;
3249 }
3250
3251 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3252 tp->snd_up = tp->snd_una;
3253
3254 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3255 flag |= FLAG_SACK_RENEGING;
3256
3257 if (flag & FLAG_ACKED) {
3258 const struct tcp_congestion_ops *ca_ops
3259 = inet_csk(sk)->icsk_ca_ops;
3260
3261 if (unlikely(icsk->icsk_mtup.probe_size &&
3262 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3263 tcp_mtup_probe_success(sk);
3264 }
3265
3266 tcp_ack_update_rtt(sk, flag, seq_rtt);
3267 tcp_rearm_rto(sk);
3268
3269 if (tcp_is_reno(tp)) {
3270 tcp_remove_reno_sacks(sk, pkts_acked);
3271 } else {
3272 int delta;
3273
3274 /* Non-retransmitted hole got filled? That's reordering */
3275 if (reord < prior_fackets)
3276 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3277
3278 delta = tcp_is_fack(tp) ? pkts_acked :
3279 prior_sacked - tp->sacked_out;
3280 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3281 }
3282
3283 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3284
3285 if (ca_ops->pkts_acked) {
3286 s32 rtt_us = -1;
3287
3288 /* Is the ACK triggering packet unambiguous? */
3289 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3290 /* High resolution needed and available? */
3291 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3292 !ktime_equal(last_ackt,
3293 net_invalid_timestamp()))
3294 rtt_us = ktime_us_delta(ktime_get_real(),
3295 last_ackt);
3296 else if (ca_seq_rtt >= 0)
3297 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3298 }
3299
3300 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3301 }
3302 }
3303
3304 #if FASTRETRANS_DEBUG > 0
3305 WARN_ON((int)tp->sacked_out < 0);
3306 WARN_ON((int)tp->lost_out < 0);
3307 WARN_ON((int)tp->retrans_out < 0);
3308 if (!tp->packets_out && tcp_is_sack(tp)) {
3309 icsk = inet_csk(sk);
3310 if (tp->lost_out) {
3311 pr_debug("Leak l=%u %d\n",
3312 tp->lost_out, icsk->icsk_ca_state);
3313 tp->lost_out = 0;
3314 }
3315 if (tp->sacked_out) {
3316 pr_debug("Leak s=%u %d\n",
3317 tp->sacked_out, icsk->icsk_ca_state);
3318 tp->sacked_out = 0;
3319 }
3320 if (tp->retrans_out) {
3321 pr_debug("Leak r=%u %d\n",
3322 tp->retrans_out, icsk->icsk_ca_state);
3323 tp->retrans_out = 0;
3324 }
3325 }
3326 #endif
3327 return flag;
3328 }
3329
3330 static void tcp_ack_probe(struct sock *sk)
3331 {
3332 const struct tcp_sock *tp = tcp_sk(sk);
3333 struct inet_connection_sock *icsk = inet_csk(sk);
3334
3335 /* Was it a usable window open? */
3336
3337 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3338 icsk->icsk_backoff = 0;
3339 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3340 /* Socket must be waked up by subsequent tcp_data_snd_check().
3341 * This function is not for random using!
3342 */
3343 } else {
3344 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3345 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3346 TCP_RTO_MAX);
3347 }
3348 }
3349
3350 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3351 {
3352 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3353 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3354 }
3355
3356 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3357 {
3358 const struct tcp_sock *tp = tcp_sk(sk);
3359 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3360 !tcp_in_cwnd_reduction(sk);
3361 }
3362
3363 /* Check that window update is acceptable.
3364 * The function assumes that snd_una<=ack<=snd_next.
3365 */
3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367 const u32 ack, const u32 ack_seq,
3368 const u32 nwin)
3369 {
3370 return after(ack, tp->snd_una) ||
3371 after(ack_seq, tp->snd_wl1) ||
3372 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373 }
3374
3375 /* Update our send window.
3376 *
3377 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379 */
3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381 u32 ack_seq)
3382 {
3383 struct tcp_sock *tp = tcp_sk(sk);
3384 int flag = 0;
3385 u32 nwin = ntohs(tcp_hdr(skb)->window);
3386
3387 if (likely(!tcp_hdr(skb)->syn))
3388 nwin <<= tp->rx_opt.snd_wscale;
3389
3390 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391 flag |= FLAG_WIN_UPDATE;
3392 tcp_update_wl(tp, ack_seq);
3393
3394 if (tp->snd_wnd != nwin) {
3395 tp->snd_wnd = nwin;
3396
3397 /* Note, it is the only place, where
3398 * fast path is recovered for sending TCP.
3399 */
3400 tp->pred_flags = 0;
3401 tcp_fast_path_check(sk);
3402
3403 if (nwin > tp->max_window) {
3404 tp->max_window = nwin;
3405 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406 }
3407 }
3408 }
3409
3410 tp->snd_una = ack;
3411
3412 return flag;
3413 }
3414
3415 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3416 * continue in congestion avoidance.
3417 */
3418 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3419 {
3420 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3421 tp->snd_cwnd_cnt = 0;
3422 tp->bytes_acked = 0;
3423 TCP_ECN_queue_cwr(tp);
3424 tcp_moderate_cwnd(tp);
3425 }
3426
3427 /* A conservative spurious RTO response algorithm: reduce cwnd using
3428 * PRR and continue in congestion avoidance.
3429 */
3430 static void tcp_cwr_spur_to_response(struct sock *sk)
3431 {
3432 tcp_enter_cwr(sk, 0);
3433 }
3434
3435 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3436 {
3437 if (flag & FLAG_ECE)
3438 tcp_cwr_spur_to_response(sk);
3439 else
3440 tcp_undo_cwr(sk, true);
3441 }
3442
3443 /* F-RTO spurious RTO detection algorithm (RFC4138)
3444 *
3445 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3446 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3447 * window (but not to or beyond highest sequence sent before RTO):
3448 * On First ACK, send two new segments out.
3449 * On Second ACK, RTO was likely spurious. Do spurious response (response
3450 * algorithm is not part of the F-RTO detection algorithm
3451 * given in RFC4138 but can be selected separately).
3452 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3453 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3454 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3455 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3456 *
3457 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3458 * original window even after we transmit two new data segments.
3459 *
3460 * SACK version:
3461 * on first step, wait until first cumulative ACK arrives, then move to
3462 * the second step. In second step, the next ACK decides.
3463 *
3464 * F-RTO is implemented (mainly) in four functions:
3465 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3466 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3467 * called when tcp_use_frto() showed green light
3468 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3469 * - tcp_enter_frto_loss() is called if there is not enough evidence
3470 * to prove that the RTO is indeed spurious. It transfers the control
3471 * from F-RTO to the conventional RTO recovery
3472 */
3473 static bool tcp_process_frto(struct sock *sk, int flag)
3474 {
3475 struct tcp_sock *tp = tcp_sk(sk);
3476
3477 tcp_verify_left_out(tp);
3478
3479 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3480 if (flag & FLAG_DATA_ACKED)
3481 inet_csk(sk)->icsk_retransmits = 0;
3482
3483 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3484 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3485 tp->undo_marker = 0;
3486
3487 if (!before(tp->snd_una, tp->frto_highmark)) {
3488 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3489 return true;
3490 }
3491
3492 if (!tcp_is_sackfrto(tp)) {
3493 /* RFC4138 shortcoming in step 2; should also have case c):
3494 * ACK isn't duplicate nor advances window, e.g., opposite dir
3495 * data, winupdate
3496 */
3497 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3498 return true;
3499
3500 if (!(flag & FLAG_DATA_ACKED)) {
3501 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3502 flag);
3503 return true;
3504 }
3505 } else {
3506 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3507 /* Prevent sending of new data. */
3508 tp->snd_cwnd = min(tp->snd_cwnd,
3509 tcp_packets_in_flight(tp));
3510 return true;
3511 }
3512
3513 if ((tp->frto_counter >= 2) &&
3514 (!(flag & FLAG_FORWARD_PROGRESS) ||
3515 ((flag & FLAG_DATA_SACKED) &&
3516 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3517 /* RFC4138 shortcoming (see comment above) */
3518 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3519 (flag & FLAG_NOT_DUP))
3520 return true;
3521
3522 tcp_enter_frto_loss(sk, 3, flag);
3523 return true;
3524 }
3525 }
3526
3527 if (tp->frto_counter == 1) {
3528 /* tcp_may_send_now needs to see updated state */
3529 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3530 tp->frto_counter = 2;
3531
3532 if (!tcp_may_send_now(sk))
3533 tcp_enter_frto_loss(sk, 2, flag);
3534
3535 return true;
3536 } else {
3537 switch (sysctl_tcp_frto_response) {
3538 case 2:
3539 tcp_undo_spur_to_response(sk, flag);
3540 break;
3541 case 1:
3542 tcp_conservative_spur_to_response(tp);
3543 break;
3544 default:
3545 tcp_cwr_spur_to_response(sk);
3546 break;
3547 }
3548 tp->frto_counter = 0;
3549 tp->undo_marker = 0;
3550 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3551 }
3552 return false;
3553 }
3554
3555 /* This routine deals with incoming acks, but not outgoing ones. */
3556 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3557 {
3558 struct inet_connection_sock *icsk = inet_csk(sk);
3559 struct tcp_sock *tp = tcp_sk(sk);
3560 u32 prior_snd_una = tp->snd_una;
3561 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3562 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3563 bool is_dupack = false;
3564 u32 prior_in_flight;
3565 u32 prior_fackets;
3566 int prior_packets;
3567 int prior_sacked = tp->sacked_out;
3568 int pkts_acked = 0;
3569 bool frto_cwnd = false;
3570
3571 /* If the ack is older than previous acks
3572 * then we can probably ignore it.
3573 */
3574 if (before(ack, prior_snd_una))
3575 goto old_ack;
3576
3577 /* If the ack includes data we haven't sent yet, discard
3578 * this segment (RFC793 Section 3.9).
3579 */
3580 if (after(ack, tp->snd_nxt))
3581 goto invalid_ack;
3582
3583 if (tp->early_retrans_delayed)
3584 tcp_rearm_rto(sk);
3585
3586 if (after(ack, prior_snd_una))
3587 flag |= FLAG_SND_UNA_ADVANCED;
3588
3589 if (sysctl_tcp_abc) {
3590 if (icsk->icsk_ca_state < TCP_CA_CWR)
3591 tp->bytes_acked += ack - prior_snd_una;
3592 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3593 /* we assume just one segment left network */
3594 tp->bytes_acked += min(ack - prior_snd_una,
3595 tp->mss_cache);
3596 }
3597
3598 prior_fackets = tp->fackets_out;
3599 prior_in_flight = tcp_packets_in_flight(tp);
3600
3601 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3602 /* Window is constant, pure forward advance.
3603 * No more checks are required.
3604 * Note, we use the fact that SND.UNA>=SND.WL2.
3605 */
3606 tcp_update_wl(tp, ack_seq);
3607 tp->snd_una = ack;
3608 flag |= FLAG_WIN_UPDATE;
3609
3610 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3611
3612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3613 } else {
3614 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3615 flag |= FLAG_DATA;
3616 else
3617 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3618
3619 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3620
3621 if (TCP_SKB_CB(skb)->sacked)
3622 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3623
3624 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3625 flag |= FLAG_ECE;
3626
3627 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3628 }
3629
3630 /* We passed data and got it acked, remove any soft error
3631 * log. Something worked...
3632 */
3633 sk->sk_err_soft = 0;
3634 icsk->icsk_probes_out = 0;
3635 tp->rcv_tstamp = tcp_time_stamp;
3636 prior_packets = tp->packets_out;
3637 if (!prior_packets)
3638 goto no_queue;
3639
3640 /* See if we can take anything off of the retransmit queue. */
3641 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3642
3643 pkts_acked = prior_packets - tp->packets_out;
3644
3645 if (tp->frto_counter)
3646 frto_cwnd = tcp_process_frto(sk, flag);
3647 /* Guarantee sacktag reordering detection against wrap-arounds */
3648 if (before(tp->frto_highmark, tp->snd_una))
3649 tp->frto_highmark = 0;
3650
3651 if (tcp_ack_is_dubious(sk, flag)) {
3652 /* Advance CWND, if state allows this. */
3653 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3654 tcp_may_raise_cwnd(sk, flag))
3655 tcp_cong_avoid(sk, ack, prior_in_flight);
3656 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3657 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3658 is_dupack, flag);
3659 } else {
3660 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3661 tcp_cong_avoid(sk, ack, prior_in_flight);
3662 }
3663
3664 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3665 struct dst_entry *dst = __sk_dst_get(sk);
3666 if (dst)
3667 dst_confirm(dst);
3668 }
3669 return 1;
3670
3671 no_queue:
3672 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3673 if (flag & FLAG_DSACKING_ACK)
3674 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3675 is_dupack, flag);
3676 /* If this ack opens up a zero window, clear backoff. It was
3677 * being used to time the probes, and is probably far higher than
3678 * it needs to be for normal retransmission.
3679 */
3680 if (tcp_send_head(sk))
3681 tcp_ack_probe(sk);
3682 return 1;
3683
3684 invalid_ack:
3685 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3686 return -1;
3687
3688 old_ack:
3689 /* If data was SACKed, tag it and see if we should send more data.
3690 * If data was DSACKed, see if we can undo a cwnd reduction.
3691 */
3692 if (TCP_SKB_CB(skb)->sacked) {
3693 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3694 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3695 is_dupack, flag);
3696 }
3697
3698 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699 return 0;
3700 }
3701
3702 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3703 * But, this can also be called on packets in the established flow when
3704 * the fast version below fails.
3705 */
3706 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3707 const u8 **hvpp, int estab,
3708 struct tcp_fastopen_cookie *foc)
3709 {
3710 const unsigned char *ptr;
3711 const struct tcphdr *th = tcp_hdr(skb);
3712 int length = (th->doff * 4) - sizeof(struct tcphdr);
3713
3714 ptr = (const unsigned char *)(th + 1);
3715 opt_rx->saw_tstamp = 0;
3716
3717 while (length > 0) {
3718 int opcode = *ptr++;
3719 int opsize;
3720
3721 switch (opcode) {
3722 case TCPOPT_EOL:
3723 return;
3724 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3725 length--;
3726 continue;
3727 default:
3728 opsize = *ptr++;
3729 if (opsize < 2) /* "silly options" */
3730 return;
3731 if (opsize > length)
3732 return; /* don't parse partial options */
3733 switch (opcode) {
3734 case TCPOPT_MSS:
3735 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3736 u16 in_mss = get_unaligned_be16(ptr);
3737 if (in_mss) {
3738 if (opt_rx->user_mss &&
3739 opt_rx->user_mss < in_mss)
3740 in_mss = opt_rx->user_mss;
3741 opt_rx->mss_clamp = in_mss;
3742 }
3743 }
3744 break;
3745 case TCPOPT_WINDOW:
3746 if (opsize == TCPOLEN_WINDOW && th->syn &&
3747 !estab && sysctl_tcp_window_scaling) {
3748 __u8 snd_wscale = *(__u8 *)ptr;
3749 opt_rx->wscale_ok = 1;
3750 if (snd_wscale > 14) {
3751 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3752 __func__,
3753 snd_wscale);
3754 snd_wscale = 14;
3755 }
3756 opt_rx->snd_wscale = snd_wscale;
3757 }
3758 break;
3759 case TCPOPT_TIMESTAMP:
3760 if ((opsize == TCPOLEN_TIMESTAMP) &&
3761 ((estab && opt_rx->tstamp_ok) ||
3762 (!estab && sysctl_tcp_timestamps))) {
3763 opt_rx->saw_tstamp = 1;
3764 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3765 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3766 }
3767 break;
3768 case TCPOPT_SACK_PERM:
3769 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3770 !estab && sysctl_tcp_sack) {
3771 opt_rx->sack_ok = TCP_SACK_SEEN;
3772 tcp_sack_reset(opt_rx);
3773 }
3774 break;
3775
3776 case TCPOPT_SACK:
3777 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3778 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3779 opt_rx->sack_ok) {
3780 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3781 }
3782 break;
3783 #ifdef CONFIG_TCP_MD5SIG
3784 case TCPOPT_MD5SIG:
3785 /*
3786 * The MD5 Hash has already been
3787 * checked (see tcp_v{4,6}_do_rcv()).
3788 */
3789 break;
3790 #endif
3791 case TCPOPT_COOKIE:
3792 /* This option is variable length.
3793 */
3794 switch (opsize) {
3795 case TCPOLEN_COOKIE_BASE:
3796 /* not yet implemented */
3797 break;
3798 case TCPOLEN_COOKIE_PAIR:
3799 /* not yet implemented */
3800 break;
3801 case TCPOLEN_COOKIE_MIN+0:
3802 case TCPOLEN_COOKIE_MIN+2:
3803 case TCPOLEN_COOKIE_MIN+4:
3804 case TCPOLEN_COOKIE_MIN+6:
3805 case TCPOLEN_COOKIE_MAX:
3806 /* 16-bit multiple */
3807 opt_rx->cookie_plus = opsize;
3808 *hvpp = ptr;
3809 break;
3810 default:
3811 /* ignore option */
3812 break;
3813 }
3814 break;
3815
3816 case TCPOPT_EXP:
3817 /* Fast Open option shares code 254 using a
3818 * 16 bits magic number. It's valid only in
3819 * SYN or SYN-ACK with an even size.
3820 */
3821 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3822 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3823 foc == NULL || !th->syn || (opsize & 1))
3824 break;
3825 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3826 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3827 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3828 memcpy(foc->val, ptr + 2, foc->len);
3829 else if (foc->len != 0)
3830 foc->len = -1;
3831 break;
3832
3833 }
3834 ptr += opsize-2;
3835 length -= opsize;
3836 }
3837 }
3838 }
3839 EXPORT_SYMBOL(tcp_parse_options);
3840
3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3842 {
3843 const __be32 *ptr = (const __be32 *)(th + 1);
3844
3845 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3846 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3847 tp->rx_opt.saw_tstamp = 1;
3848 ++ptr;
3849 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3850 ++ptr;
3851 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3852 return true;
3853 }
3854 return false;
3855 }
3856
3857 /* Fast parse options. This hopes to only see timestamps.
3858 * If it is wrong it falls back on tcp_parse_options().
3859 */
3860 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3861 const struct tcphdr *th,
3862 struct tcp_sock *tp, const u8 **hvpp)
3863 {
3864 /* In the spirit of fast parsing, compare doff directly to constant
3865 * values. Because equality is used, short doff can be ignored here.
3866 */
3867 if (th->doff == (sizeof(*th) / 4)) {
3868 tp->rx_opt.saw_tstamp = 0;
3869 return false;
3870 } else if (tp->rx_opt.tstamp_ok &&
3871 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3872 if (tcp_parse_aligned_timestamp(tp, th))
3873 return true;
3874 }
3875 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3876 return true;
3877 }
3878
3879 #ifdef CONFIG_TCP_MD5SIG
3880 /*
3881 * Parse MD5 Signature option
3882 */
3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3884 {
3885 int length = (th->doff << 2) - sizeof(*th);
3886 const u8 *ptr = (const u8 *)(th + 1);
3887
3888 /* If the TCP option is too short, we can short cut */
3889 if (length < TCPOLEN_MD5SIG)
3890 return NULL;
3891
3892 while (length > 0) {
3893 int opcode = *ptr++;
3894 int opsize;
3895
3896 switch(opcode) {
3897 case TCPOPT_EOL:
3898 return NULL;
3899 case TCPOPT_NOP:
3900 length--;
3901 continue;
3902 default:
3903 opsize = *ptr++;
3904 if (opsize < 2 || opsize > length)
3905 return NULL;
3906 if (opcode == TCPOPT_MD5SIG)
3907 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3908 }
3909 ptr += opsize - 2;
3910 length -= opsize;
3911 }
3912 return NULL;
3913 }
3914 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3915 #endif
3916
3917 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3918 {
3919 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3920 tp->rx_opt.ts_recent_stamp = get_seconds();
3921 }
3922
3923 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3924 {
3925 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3926 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3927 * extra check below makes sure this can only happen
3928 * for pure ACK frames. -DaveM
3929 *
3930 * Not only, also it occurs for expired timestamps.
3931 */
3932
3933 if (tcp_paws_check(&tp->rx_opt, 0))
3934 tcp_store_ts_recent(tp);
3935 }
3936 }
3937
3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962 {
3963 const struct tcp_sock *tp = tcp_sk(sk);
3964 const struct tcphdr *th = tcp_hdr(skb);
3965 u32 seq = TCP_SKB_CB(skb)->seq;
3966 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968 return (/* 1. Pure ACK with correct sequence number. */
3969 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971 /* 2. ... and duplicate ACK. */
3972 ack == tp->snd_una &&
3973
3974 /* 3. ... and does not update window. */
3975 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977 /* 4. ... and sits in replay window. */
3978 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979 }
3980
3981 static inline bool tcp_paws_discard(const struct sock *sk,
3982 const struct sk_buff *skb)
3983 {
3984 const struct tcp_sock *tp = tcp_sk(sk);
3985
3986 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987 !tcp_disordered_ack(sk, skb);
3988 }
3989
3990 /* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004 {
4005 return !before(end_seq, tp->rcv_wup) &&
4006 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007 }
4008
4009 /* When we get a reset we do this. */
4010 void tcp_reset(struct sock *sk)
4011 {
4012 /* We want the right error as BSD sees it (and indeed as we do). */
4013 switch (sk->sk_state) {
4014 case TCP_SYN_SENT:
4015 sk->sk_err = ECONNREFUSED;
4016 break;
4017 case TCP_CLOSE_WAIT:
4018 sk->sk_err = EPIPE;
4019 break;
4020 case TCP_CLOSE:
4021 return;
4022 default:
4023 sk->sk_err = ECONNRESET;
4024 }
4025 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4026 smp_wmb();
4027
4028 if (!sock_flag(sk, SOCK_DEAD))
4029 sk->sk_error_report(sk);
4030
4031 tcp_done(sk);
4032 }
4033
4034 /*
4035 * Process the FIN bit. This now behaves as it is supposed to work
4036 * and the FIN takes effect when it is validly part of sequence
4037 * space. Not before when we get holes.
4038 *
4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 * TIME-WAIT)
4042 *
4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 * close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048 static void tcp_fin(struct sock *sk)
4049 {
4050 struct tcp_sock *tp = tcp_sk(sk);
4051
4052 inet_csk_schedule_ack(sk);
4053
4054 sk->sk_shutdown |= RCV_SHUTDOWN;
4055 sock_set_flag(sk, SOCK_DONE);
4056
4057 switch (sk->sk_state) {
4058 case TCP_SYN_RECV:
4059 case TCP_ESTABLISHED:
4060 /* Move to CLOSE_WAIT */
4061 tcp_set_state(sk, TCP_CLOSE_WAIT);
4062 inet_csk(sk)->icsk_ack.pingpong = 1;
4063 break;
4064
4065 case TCP_CLOSE_WAIT:
4066 case TCP_CLOSING:
4067 /* Received a retransmission of the FIN, do
4068 * nothing.
4069 */
4070 break;
4071 case TCP_LAST_ACK:
4072 /* RFC793: Remain in the LAST-ACK state. */
4073 break;
4074
4075 case TCP_FIN_WAIT1:
4076 /* This case occurs when a simultaneous close
4077 * happens, we must ack the received FIN and
4078 * enter the CLOSING state.
4079 */
4080 tcp_send_ack(sk);
4081 tcp_set_state(sk, TCP_CLOSING);
4082 break;
4083 case TCP_FIN_WAIT2:
4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085 tcp_send_ack(sk);
4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087 break;
4088 default:
4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 * cases we should never reach this piece of code.
4091 */
4092 pr_err("%s: Impossible, sk->sk_state=%d\n",
4093 __func__, sk->sk_state);
4094 break;
4095 }
4096
4097 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 * Probably, we should reset in this case. For now drop them.
4099 */
4100 __skb_queue_purge(&tp->out_of_order_queue);
4101 if (tcp_is_sack(tp))
4102 tcp_sack_reset(&tp->rx_opt);
4103 sk_mem_reclaim(sk);
4104
4105 if (!sock_flag(sk, SOCK_DEAD)) {
4106 sk->sk_state_change(sk);
4107
4108 /* Do not send POLL_HUP for half duplex close. */
4109 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110 sk->sk_state == TCP_CLOSE)
4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112 else
4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114 }
4115 }
4116
4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118 u32 end_seq)
4119 {
4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121 if (before(seq, sp->start_seq))
4122 sp->start_seq = seq;
4123 if (after(end_seq, sp->end_seq))
4124 sp->end_seq = end_seq;
4125 return true;
4126 }
4127 return false;
4128 }
4129
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131 {
4132 struct tcp_sock *tp = tcp_sk(sk);
4133
4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135 int mib_idx;
4136
4137 if (before(seq, tp->rcv_nxt))
4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139 else
4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144 tp->rx_opt.dsack = 1;
4145 tp->duplicate_sack[0].start_seq = seq;
4146 tp->duplicate_sack[0].end_seq = end_seq;
4147 }
4148 }
4149
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 struct tcp_sock *tp = tcp_sk(sk);
4153
4154 if (!tp->rx_opt.dsack)
4155 tcp_dsack_set(sk, seq, end_seq);
4156 else
4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158 }
4159
4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161 {
4162 struct tcp_sock *tp = tcp_sk(sk);
4163
4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167 tcp_enter_quickack_mode(sk);
4168
4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173 end_seq = tp->rcv_nxt;
4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175 }
4176 }
4177
4178 tcp_send_ack(sk);
4179 }
4180
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185 {
4186 int this_sack;
4187 struct tcp_sack_block *sp = &tp->selective_acks[0];
4188 struct tcp_sack_block *swalk = sp + 1;
4189
4190 /* See if the recent change to the first SACK eats into
4191 * or hits the sequence space of other SACK blocks, if so coalesce.
4192 */
4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195 int i;
4196
4197 /* Zap SWALK, by moving every further SACK up by one slot.
4198 * Decrease num_sacks.
4199 */
4200 tp->rx_opt.num_sacks--;
4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202 sp[i] = sp[i + 1];
4203 continue;
4204 }
4205 this_sack++, swalk++;
4206 }
4207 }
4208
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210 {
4211 struct tcp_sock *tp = tcp_sk(sk);
4212 struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 int cur_sacks = tp->rx_opt.num_sacks;
4214 int this_sack;
4215
4216 if (!cur_sacks)
4217 goto new_sack;
4218
4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220 if (tcp_sack_extend(sp, seq, end_seq)) {
4221 /* Rotate this_sack to the first one. */
4222 for (; this_sack > 0; this_sack--, sp--)
4223 swap(*sp, *(sp - 1));
4224 if (cur_sacks > 1)
4225 tcp_sack_maybe_coalesce(tp);
4226 return;
4227 }
4228 }
4229
4230 /* Could not find an adjacent existing SACK, build a new one,
4231 * put it at the front, and shift everyone else down. We
4232 * always know there is at least one SACK present already here.
4233 *
4234 * If the sack array is full, forget about the last one.
4235 */
4236 if (this_sack >= TCP_NUM_SACKS) {
4237 this_sack--;
4238 tp->rx_opt.num_sacks--;
4239 sp--;
4240 }
4241 for (; this_sack > 0; this_sack--, sp--)
4242 *sp = *(sp - 1);
4243
4244 new_sack:
4245 /* Build the new head SACK, and we're done. */
4246 sp->start_seq = seq;
4247 sp->end_seq = end_seq;
4248 tp->rx_opt.num_sacks++;
4249 }
4250
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4252
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4254 {
4255 struct tcp_sack_block *sp = &tp->selective_acks[0];
4256 int num_sacks = tp->rx_opt.num_sacks;
4257 int this_sack;
4258
4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 if (skb_queue_empty(&tp->out_of_order_queue)) {
4261 tp->rx_opt.num_sacks = 0;
4262 return;
4263 }
4264
4265 for (this_sack = 0; this_sack < num_sacks;) {
4266 /* Check if the start of the sack is covered by RCV.NXT. */
4267 if (!before(tp->rcv_nxt, sp->start_seq)) {
4268 int i;
4269
4270 /* RCV.NXT must cover all the block! */
4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273 /* Zap this SACK, by moving forward any other SACKS. */
4274 for (i=this_sack+1; i < num_sacks; i++)
4275 tp->selective_acks[i-1] = tp->selective_acks[i];
4276 num_sacks--;
4277 continue;
4278 }
4279 this_sack++;
4280 sp++;
4281 }
4282 tp->rx_opt.num_sacks = num_sacks;
4283 }
4284
4285 /* This one checks to see if we can put data from the
4286 * out_of_order queue into the receive_queue.
4287 */
4288 static void tcp_ofo_queue(struct sock *sk)
4289 {
4290 struct tcp_sock *tp = tcp_sk(sk);
4291 __u32 dsack_high = tp->rcv_nxt;
4292 struct sk_buff *skb;
4293
4294 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4295 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4296 break;
4297
4298 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4299 __u32 dsack = dsack_high;
4300 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4301 dsack_high = TCP_SKB_CB(skb)->end_seq;
4302 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4303 }
4304
4305 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4306 SOCK_DEBUG(sk, "ofo packet was already received\n");
4307 __skb_unlink(skb, &tp->out_of_order_queue);
4308 __kfree_skb(skb);
4309 continue;
4310 }
4311 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4312 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4313 TCP_SKB_CB(skb)->end_seq);
4314
4315 __skb_unlink(skb, &tp->out_of_order_queue);
4316 __skb_queue_tail(&sk->sk_receive_queue, skb);
4317 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4318 if (tcp_hdr(skb)->fin)
4319 tcp_fin(sk);
4320 }
4321 }
4322
4323 static bool tcp_prune_ofo_queue(struct sock *sk);
4324 static int tcp_prune_queue(struct sock *sk);
4325
4326 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4327 unsigned int size)
4328 {
4329 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4330 !sk_rmem_schedule(sk, skb, size)) {
4331
4332 if (tcp_prune_queue(sk) < 0)
4333 return -1;
4334
4335 if (!sk_rmem_schedule(sk, skb, size)) {
4336 if (!tcp_prune_ofo_queue(sk))
4337 return -1;
4338
4339 if (!sk_rmem_schedule(sk, skb, size))
4340 return -1;
4341 }
4342 }
4343 return 0;
4344 }
4345
4346 /**
4347 * tcp_try_coalesce - try to merge skb to prior one
4348 * @sk: socket
4349 * @to: prior buffer
4350 * @from: buffer to add in queue
4351 * @fragstolen: pointer to boolean
4352 *
4353 * Before queueing skb @from after @to, try to merge them
4354 * to reduce overall memory use and queue lengths, if cost is small.
4355 * Packets in ofo or receive queues can stay a long time.
4356 * Better try to coalesce them right now to avoid future collapses.
4357 * Returns true if caller should free @from instead of queueing it
4358 */
4359 static bool tcp_try_coalesce(struct sock *sk,
4360 struct sk_buff *to,
4361 struct sk_buff *from,
4362 bool *fragstolen)
4363 {
4364 int delta;
4365
4366 *fragstolen = false;
4367
4368 if (tcp_hdr(from)->fin)
4369 return false;
4370
4371 /* Its possible this segment overlaps with prior segment in queue */
4372 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4373 return false;
4374
4375 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4376 return false;
4377
4378 atomic_add(delta, &sk->sk_rmem_alloc);
4379 sk_mem_charge(sk, delta);
4380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4381 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4382 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4383 return true;
4384 }
4385
4386 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4387 {
4388 struct tcp_sock *tp = tcp_sk(sk);
4389 struct sk_buff *skb1;
4390 u32 seq, end_seq;
4391
4392 TCP_ECN_check_ce(tp, skb);
4393
4394 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4396 __kfree_skb(skb);
4397 return;
4398 }
4399
4400 /* Disable header prediction. */
4401 tp->pred_flags = 0;
4402 inet_csk_schedule_ack(sk);
4403
4404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4405 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4406 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4407
4408 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4409 if (!skb1) {
4410 /* Initial out of order segment, build 1 SACK. */
4411 if (tcp_is_sack(tp)) {
4412 tp->rx_opt.num_sacks = 1;
4413 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4414 tp->selective_acks[0].end_seq =
4415 TCP_SKB_CB(skb)->end_seq;
4416 }
4417 __skb_queue_head(&tp->out_of_order_queue, skb);
4418 goto end;
4419 }
4420
4421 seq = TCP_SKB_CB(skb)->seq;
4422 end_seq = TCP_SKB_CB(skb)->end_seq;
4423
4424 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4425 bool fragstolen;
4426
4427 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4428 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4429 } else {
4430 kfree_skb_partial(skb, fragstolen);
4431 skb = NULL;
4432 }
4433
4434 if (!tp->rx_opt.num_sacks ||
4435 tp->selective_acks[0].end_seq != seq)
4436 goto add_sack;
4437
4438 /* Common case: data arrive in order after hole. */
4439 tp->selective_acks[0].end_seq = end_seq;
4440 goto end;
4441 }
4442
4443 /* Find place to insert this segment. */
4444 while (1) {
4445 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4446 break;
4447 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4448 skb1 = NULL;
4449 break;
4450 }
4451 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4452 }
4453
4454 /* Do skb overlap to previous one? */
4455 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4456 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4457 /* All the bits are present. Drop. */
4458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4459 __kfree_skb(skb);
4460 skb = NULL;
4461 tcp_dsack_set(sk, seq, end_seq);
4462 goto add_sack;
4463 }
4464 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4465 /* Partial overlap. */
4466 tcp_dsack_set(sk, seq,
4467 TCP_SKB_CB(skb1)->end_seq);
4468 } else {
4469 if (skb_queue_is_first(&tp->out_of_order_queue,
4470 skb1))
4471 skb1 = NULL;
4472 else
4473 skb1 = skb_queue_prev(
4474 &tp->out_of_order_queue,
4475 skb1);
4476 }
4477 }
4478 if (!skb1)
4479 __skb_queue_head(&tp->out_of_order_queue, skb);
4480 else
4481 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4482
4483 /* And clean segments covered by new one as whole. */
4484 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4485 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4486
4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4488 break;
4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4491 end_seq);
4492 break;
4493 }
4494 __skb_unlink(skb1, &tp->out_of_order_queue);
4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496 TCP_SKB_CB(skb1)->end_seq);
4497 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4498 __kfree_skb(skb1);
4499 }
4500
4501 add_sack:
4502 if (tcp_is_sack(tp))
4503 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4504 end:
4505 if (skb)
4506 skb_set_owner_r(skb, sk);
4507 }
4508
4509 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4510 bool *fragstolen)
4511 {
4512 int eaten;
4513 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4514
4515 __skb_pull(skb, hdrlen);
4516 eaten = (tail &&
4517 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4518 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4519 if (!eaten) {
4520 __skb_queue_tail(&sk->sk_receive_queue, skb);
4521 skb_set_owner_r(skb, sk);
4522 }
4523 return eaten;
4524 }
4525
4526 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527 {
4528 struct sk_buff *skb = NULL;
4529 struct tcphdr *th;
4530 bool fragstolen;
4531
4532 if (size == 0)
4533 return 0;
4534
4535 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4536 if (!skb)
4537 goto err;
4538
4539 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4540 goto err_free;
4541
4542 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4543 skb_reset_transport_header(skb);
4544 memset(th, 0, sizeof(*th));
4545
4546 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4547 goto err_free;
4548
4549 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4550 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4551 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4552
4553 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4554 WARN_ON_ONCE(fragstolen); /* should not happen */
4555 __kfree_skb(skb);
4556 }
4557 return size;
4558
4559 err_free:
4560 kfree_skb(skb);
4561 err:
4562 return -ENOMEM;
4563 }
4564
4565 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4566 {
4567 const struct tcphdr *th = tcp_hdr(skb);
4568 struct tcp_sock *tp = tcp_sk(sk);
4569 int eaten = -1;
4570 bool fragstolen = false;
4571
4572 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4573 goto drop;
4574
4575 skb_dst_drop(skb);
4576 __skb_pull(skb, th->doff * 4);
4577
4578 TCP_ECN_accept_cwr(tp, skb);
4579
4580 tp->rx_opt.dsack = 0;
4581
4582 /* Queue data for delivery to the user.
4583 * Packets in sequence go to the receive queue.
4584 * Out of sequence packets to the out_of_order_queue.
4585 */
4586 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4587 if (tcp_receive_window(tp) == 0)
4588 goto out_of_window;
4589
4590 /* Ok. In sequence. In window. */
4591 if (tp->ucopy.task == current &&
4592 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4593 sock_owned_by_user(sk) && !tp->urg_data) {
4594 int chunk = min_t(unsigned int, skb->len,
4595 tp->ucopy.len);
4596
4597 __set_current_state(TASK_RUNNING);
4598
4599 local_bh_enable();
4600 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4601 tp->ucopy.len -= chunk;
4602 tp->copied_seq += chunk;
4603 eaten = (chunk == skb->len);
4604 tcp_rcv_space_adjust(sk);
4605 }
4606 local_bh_disable();
4607 }
4608
4609 if (eaten <= 0) {
4610 queue_and_out:
4611 if (eaten < 0 &&
4612 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4613 goto drop;
4614
4615 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4616 }
4617 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4618 if (skb->len)
4619 tcp_event_data_recv(sk, skb);
4620 if (th->fin)
4621 tcp_fin(sk);
4622
4623 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4624 tcp_ofo_queue(sk);
4625
4626 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4627 * gap in queue is filled.
4628 */
4629 if (skb_queue_empty(&tp->out_of_order_queue))
4630 inet_csk(sk)->icsk_ack.pingpong = 0;
4631 }
4632
4633 if (tp->rx_opt.num_sacks)
4634 tcp_sack_remove(tp);
4635
4636 tcp_fast_path_check(sk);
4637
4638 if (eaten > 0)
4639 kfree_skb_partial(skb, fragstolen);
4640 if (!sock_flag(sk, SOCK_DEAD))
4641 sk->sk_data_ready(sk, 0);
4642 return;
4643 }
4644
4645 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4646 /* A retransmit, 2nd most common case. Force an immediate ack. */
4647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4648 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4649
4650 out_of_window:
4651 tcp_enter_quickack_mode(sk);
4652 inet_csk_schedule_ack(sk);
4653 drop:
4654 __kfree_skb(skb);
4655 return;
4656 }
4657
4658 /* Out of window. F.e. zero window probe. */
4659 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4660 goto out_of_window;
4661
4662 tcp_enter_quickack_mode(sk);
4663
4664 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4665 /* Partial packet, seq < rcv_next < end_seq */
4666 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4667 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4668 TCP_SKB_CB(skb)->end_seq);
4669
4670 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4671
4672 /* If window is closed, drop tail of packet. But after
4673 * remembering D-SACK for its head made in previous line.
4674 */
4675 if (!tcp_receive_window(tp))
4676 goto out_of_window;
4677 goto queue_and_out;
4678 }
4679
4680 tcp_data_queue_ofo(sk, skb);
4681 }
4682
4683 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4684 struct sk_buff_head *list)
4685 {
4686 struct sk_buff *next = NULL;
4687
4688 if (!skb_queue_is_last(list, skb))
4689 next = skb_queue_next(list, skb);
4690
4691 __skb_unlink(skb, list);
4692 __kfree_skb(skb);
4693 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4694
4695 return next;
4696 }
4697
4698 /* Collapse contiguous sequence of skbs head..tail with
4699 * sequence numbers start..end.
4700 *
4701 * If tail is NULL, this means until the end of the list.
4702 *
4703 * Segments with FIN/SYN are not collapsed (only because this
4704 * simplifies code)
4705 */
4706 static void
4707 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4708 struct sk_buff *head, struct sk_buff *tail,
4709 u32 start, u32 end)
4710 {
4711 struct sk_buff *skb, *n;
4712 bool end_of_skbs;
4713
4714 /* First, check that queue is collapsible and find
4715 * the point where collapsing can be useful. */
4716 skb = head;
4717 restart:
4718 end_of_skbs = true;
4719 skb_queue_walk_from_safe(list, skb, n) {
4720 if (skb == tail)
4721 break;
4722 /* No new bits? It is possible on ofo queue. */
4723 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4724 skb = tcp_collapse_one(sk, skb, list);
4725 if (!skb)
4726 break;
4727 goto restart;
4728 }
4729
4730 /* The first skb to collapse is:
4731 * - not SYN/FIN and
4732 * - bloated or contains data before "start" or
4733 * overlaps to the next one.
4734 */
4735 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4736 (tcp_win_from_space(skb->truesize) > skb->len ||
4737 before(TCP_SKB_CB(skb)->seq, start))) {
4738 end_of_skbs = false;
4739 break;
4740 }
4741
4742 if (!skb_queue_is_last(list, skb)) {
4743 struct sk_buff *next = skb_queue_next(list, skb);
4744 if (next != tail &&
4745 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4746 end_of_skbs = false;
4747 break;
4748 }
4749 }
4750
4751 /* Decided to skip this, advance start seq. */
4752 start = TCP_SKB_CB(skb)->end_seq;
4753 }
4754 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4755 return;
4756
4757 while (before(start, end)) {
4758 struct sk_buff *nskb;
4759 unsigned int header = skb_headroom(skb);
4760 int copy = SKB_MAX_ORDER(header, 0);
4761
4762 /* Too big header? This can happen with IPv6. */
4763 if (copy < 0)
4764 return;
4765 if (end - start < copy)
4766 copy = end - start;
4767 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4768 if (!nskb)
4769 return;
4770
4771 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4772 skb_set_network_header(nskb, (skb_network_header(skb) -
4773 skb->head));
4774 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4775 skb->head));
4776 skb_reserve(nskb, header);
4777 memcpy(nskb->head, skb->head, header);
4778 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4779 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4780 __skb_queue_before(list, skb, nskb);
4781 skb_set_owner_r(nskb, sk);
4782
4783 /* Copy data, releasing collapsed skbs. */
4784 while (copy > 0) {
4785 int offset = start - TCP_SKB_CB(skb)->seq;
4786 int size = TCP_SKB_CB(skb)->end_seq - start;
4787
4788 BUG_ON(offset < 0);
4789 if (size > 0) {
4790 size = min(copy, size);
4791 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4792 BUG();
4793 TCP_SKB_CB(nskb)->end_seq += size;
4794 copy -= size;
4795 start += size;
4796 }
4797 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4798 skb = tcp_collapse_one(sk, skb, list);
4799 if (!skb ||
4800 skb == tail ||
4801 tcp_hdr(skb)->syn ||
4802 tcp_hdr(skb)->fin)
4803 return;
4804 }
4805 }
4806 }
4807 }
4808
4809 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4810 * and tcp_collapse() them until all the queue is collapsed.
4811 */
4812 static void tcp_collapse_ofo_queue(struct sock *sk)
4813 {
4814 struct tcp_sock *tp = tcp_sk(sk);
4815 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4816 struct sk_buff *head;
4817 u32 start, end;
4818
4819 if (skb == NULL)
4820 return;
4821
4822 start = TCP_SKB_CB(skb)->seq;
4823 end = TCP_SKB_CB(skb)->end_seq;
4824 head = skb;
4825
4826 for (;;) {
4827 struct sk_buff *next = NULL;
4828
4829 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4830 next = skb_queue_next(&tp->out_of_order_queue, skb);
4831 skb = next;
4832
4833 /* Segment is terminated when we see gap or when
4834 * we are at the end of all the queue. */
4835 if (!skb ||
4836 after(TCP_SKB_CB(skb)->seq, end) ||
4837 before(TCP_SKB_CB(skb)->end_seq, start)) {
4838 tcp_collapse(sk, &tp->out_of_order_queue,
4839 head, skb, start, end);
4840 head = skb;
4841 if (!skb)
4842 break;
4843 /* Start new segment */
4844 start = TCP_SKB_CB(skb)->seq;
4845 end = TCP_SKB_CB(skb)->end_seq;
4846 } else {
4847 if (before(TCP_SKB_CB(skb)->seq, start))
4848 start = TCP_SKB_CB(skb)->seq;
4849 if (after(TCP_SKB_CB(skb)->end_seq, end))
4850 end = TCP_SKB_CB(skb)->end_seq;
4851 }
4852 }
4853 }
4854
4855 /*
4856 * Purge the out-of-order queue.
4857 * Return true if queue was pruned.
4858 */
4859 static bool tcp_prune_ofo_queue(struct sock *sk)
4860 {
4861 struct tcp_sock *tp = tcp_sk(sk);
4862 bool res = false;
4863
4864 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4865 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4866 __skb_queue_purge(&tp->out_of_order_queue);
4867
4868 /* Reset SACK state. A conforming SACK implementation will
4869 * do the same at a timeout based retransmit. When a connection
4870 * is in a sad state like this, we care only about integrity
4871 * of the connection not performance.
4872 */
4873 if (tp->rx_opt.sack_ok)
4874 tcp_sack_reset(&tp->rx_opt);
4875 sk_mem_reclaim(sk);
4876 res = true;
4877 }
4878 return res;
4879 }
4880
4881 /* Reduce allocated memory if we can, trying to get
4882 * the socket within its memory limits again.
4883 *
4884 * Return less than zero if we should start dropping frames
4885 * until the socket owning process reads some of the data
4886 * to stabilize the situation.
4887 */
4888 static int tcp_prune_queue(struct sock *sk)
4889 {
4890 struct tcp_sock *tp = tcp_sk(sk);
4891
4892 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4893
4894 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4895
4896 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4897 tcp_clamp_window(sk);
4898 else if (sk_under_memory_pressure(sk))
4899 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4900
4901 tcp_collapse_ofo_queue(sk);
4902 if (!skb_queue_empty(&sk->sk_receive_queue))
4903 tcp_collapse(sk, &sk->sk_receive_queue,
4904 skb_peek(&sk->sk_receive_queue),
4905 NULL,
4906 tp->copied_seq, tp->rcv_nxt);
4907 sk_mem_reclaim(sk);
4908
4909 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4910 return 0;
4911
4912 /* Collapsing did not help, destructive actions follow.
4913 * This must not ever occur. */
4914
4915 tcp_prune_ofo_queue(sk);
4916
4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4918 return 0;
4919
4920 /* If we are really being abused, tell the caller to silently
4921 * drop receive data on the floor. It will get retransmitted
4922 * and hopefully then we'll have sufficient space.
4923 */
4924 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4925
4926 /* Massive buffer overcommit. */
4927 tp->pred_flags = 0;
4928 return -1;
4929 }
4930
4931 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4932 * As additional protections, we do not touch cwnd in retransmission phases,
4933 * and if application hit its sndbuf limit recently.
4934 */
4935 void tcp_cwnd_application_limited(struct sock *sk)
4936 {
4937 struct tcp_sock *tp = tcp_sk(sk);
4938
4939 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4940 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4941 /* Limited by application or receiver window. */
4942 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4943 u32 win_used = max(tp->snd_cwnd_used, init_win);
4944 if (win_used < tp->snd_cwnd) {
4945 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4946 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4947 }
4948 tp->snd_cwnd_used = 0;
4949 }
4950 tp->snd_cwnd_stamp = tcp_time_stamp;
4951 }
4952
4953 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4954 {
4955 const struct tcp_sock *tp = tcp_sk(sk);
4956
4957 /* If the user specified a specific send buffer setting, do
4958 * not modify it.
4959 */
4960 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4961 return false;
4962
4963 /* If we are under global TCP memory pressure, do not expand. */
4964 if (sk_under_memory_pressure(sk))
4965 return false;
4966
4967 /* If we are under soft global TCP memory pressure, do not expand. */
4968 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4969 return false;
4970
4971 /* If we filled the congestion window, do not expand. */
4972 if (tp->packets_out >= tp->snd_cwnd)
4973 return false;
4974
4975 return true;
4976 }
4977
4978 /* When incoming ACK allowed to free some skb from write_queue,
4979 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4980 * on the exit from tcp input handler.
4981 *
4982 * PROBLEM: sndbuf expansion does not work well with largesend.
4983 */
4984 static void tcp_new_space(struct sock *sk)
4985 {
4986 struct tcp_sock *tp = tcp_sk(sk);
4987
4988 if (tcp_should_expand_sndbuf(sk)) {
4989 int sndmem = SKB_TRUESIZE(max_t(u32,
4990 tp->rx_opt.mss_clamp,
4991 tp->mss_cache) +
4992 MAX_TCP_HEADER);
4993 int demanded = max_t(unsigned int, tp->snd_cwnd,
4994 tp->reordering + 1);
4995 sndmem *= 2 * demanded;
4996 if (sndmem > sk->sk_sndbuf)
4997 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4998 tp->snd_cwnd_stamp = tcp_time_stamp;
4999 }
5000
5001 sk->sk_write_space(sk);
5002 }
5003
5004 static void tcp_check_space(struct sock *sk)
5005 {
5006 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5007 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5008 if (sk->sk_socket &&
5009 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5010 tcp_new_space(sk);
5011 }
5012 }
5013
5014 static inline void tcp_data_snd_check(struct sock *sk)
5015 {
5016 tcp_push_pending_frames(sk);
5017 tcp_check_space(sk);
5018 }
5019
5020 /*
5021 * Check if sending an ack is needed.
5022 */
5023 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5024 {
5025 struct tcp_sock *tp = tcp_sk(sk);
5026
5027 /* More than one full frame received... */
5028 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5029 /* ... and right edge of window advances far enough.
5030 * (tcp_recvmsg() will send ACK otherwise). Or...
5031 */
5032 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5033 /* We ACK each frame or... */
5034 tcp_in_quickack_mode(sk) ||
5035 /* We have out of order data. */
5036 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5037 /* Then ack it now */
5038 tcp_send_ack(sk);
5039 } else {
5040 /* Else, send delayed ack. */
5041 tcp_send_delayed_ack(sk);
5042 }
5043 }
5044
5045 static inline void tcp_ack_snd_check(struct sock *sk)
5046 {
5047 if (!inet_csk_ack_scheduled(sk)) {
5048 /* We sent a data segment already. */
5049 return;
5050 }
5051 __tcp_ack_snd_check(sk, 1);
5052 }
5053
5054 /*
5055 * This routine is only called when we have urgent data
5056 * signaled. Its the 'slow' part of tcp_urg. It could be
5057 * moved inline now as tcp_urg is only called from one
5058 * place. We handle URGent data wrong. We have to - as
5059 * BSD still doesn't use the correction from RFC961.
5060 * For 1003.1g we should support a new option TCP_STDURG to permit
5061 * either form (or just set the sysctl tcp_stdurg).
5062 */
5063
5064 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5065 {
5066 struct tcp_sock *tp = tcp_sk(sk);
5067 u32 ptr = ntohs(th->urg_ptr);
5068
5069 if (ptr && !sysctl_tcp_stdurg)
5070 ptr--;
5071 ptr += ntohl(th->seq);
5072
5073 /* Ignore urgent data that we've already seen and read. */
5074 if (after(tp->copied_seq, ptr))
5075 return;
5076
5077 /* Do not replay urg ptr.
5078 *
5079 * NOTE: interesting situation not covered by specs.
5080 * Misbehaving sender may send urg ptr, pointing to segment,
5081 * which we already have in ofo queue. We are not able to fetch
5082 * such data and will stay in TCP_URG_NOTYET until will be eaten
5083 * by recvmsg(). Seems, we are not obliged to handle such wicked
5084 * situations. But it is worth to think about possibility of some
5085 * DoSes using some hypothetical application level deadlock.
5086 */
5087 if (before(ptr, tp->rcv_nxt))
5088 return;
5089
5090 /* Do we already have a newer (or duplicate) urgent pointer? */
5091 if (tp->urg_data && !after(ptr, tp->urg_seq))
5092 return;
5093
5094 /* Tell the world about our new urgent pointer. */
5095 sk_send_sigurg(sk);
5096
5097 /* We may be adding urgent data when the last byte read was
5098 * urgent. To do this requires some care. We cannot just ignore
5099 * tp->copied_seq since we would read the last urgent byte again
5100 * as data, nor can we alter copied_seq until this data arrives
5101 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5102 *
5103 * NOTE. Double Dutch. Rendering to plain English: author of comment
5104 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5105 * and expect that both A and B disappear from stream. This is _wrong_.
5106 * Though this happens in BSD with high probability, this is occasional.
5107 * Any application relying on this is buggy. Note also, that fix "works"
5108 * only in this artificial test. Insert some normal data between A and B and we will
5109 * decline of BSD again. Verdict: it is better to remove to trap
5110 * buggy users.
5111 */
5112 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5113 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5114 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5115 tp->copied_seq++;
5116 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5117 __skb_unlink(skb, &sk->sk_receive_queue);
5118 __kfree_skb(skb);
5119 }
5120 }
5121
5122 tp->urg_data = TCP_URG_NOTYET;
5123 tp->urg_seq = ptr;
5124
5125 /* Disable header prediction. */
5126 tp->pred_flags = 0;
5127 }
5128
5129 /* This is the 'fast' part of urgent handling. */
5130 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5131 {
5132 struct tcp_sock *tp = tcp_sk(sk);
5133
5134 /* Check if we get a new urgent pointer - normally not. */
5135 if (th->urg)
5136 tcp_check_urg(sk, th);
5137
5138 /* Do we wait for any urgent data? - normally not... */
5139 if (tp->urg_data == TCP_URG_NOTYET) {
5140 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5141 th->syn;
5142
5143 /* Is the urgent pointer pointing into this packet? */
5144 if (ptr < skb->len) {
5145 u8 tmp;
5146 if (skb_copy_bits(skb, ptr, &tmp, 1))
5147 BUG();
5148 tp->urg_data = TCP_URG_VALID | tmp;
5149 if (!sock_flag(sk, SOCK_DEAD))
5150 sk->sk_data_ready(sk, 0);
5151 }
5152 }
5153 }
5154
5155 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5156 {
5157 struct tcp_sock *tp = tcp_sk(sk);
5158 int chunk = skb->len - hlen;
5159 int err;
5160
5161 local_bh_enable();
5162 if (skb_csum_unnecessary(skb))
5163 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5164 else
5165 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5166 tp->ucopy.iov);
5167
5168 if (!err) {
5169 tp->ucopy.len -= chunk;
5170 tp->copied_seq += chunk;
5171 tcp_rcv_space_adjust(sk);
5172 }
5173
5174 local_bh_disable();
5175 return err;
5176 }
5177
5178 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5179 struct sk_buff *skb)
5180 {
5181 __sum16 result;
5182
5183 if (sock_owned_by_user(sk)) {
5184 local_bh_enable();
5185 result = __tcp_checksum_complete(skb);
5186 local_bh_disable();
5187 } else {
5188 result = __tcp_checksum_complete(skb);
5189 }
5190 return result;
5191 }
5192
5193 static inline bool tcp_checksum_complete_user(struct sock *sk,
5194 struct sk_buff *skb)
5195 {
5196 return !skb_csum_unnecessary(skb) &&
5197 __tcp_checksum_complete_user(sk, skb);
5198 }
5199
5200 #ifdef CONFIG_NET_DMA
5201 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5202 int hlen)
5203 {
5204 struct tcp_sock *tp = tcp_sk(sk);
5205 int chunk = skb->len - hlen;
5206 int dma_cookie;
5207 bool copied_early = false;
5208
5209 if (tp->ucopy.wakeup)
5210 return false;
5211
5212 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5213 tp->ucopy.dma_chan = net_dma_find_channel();
5214
5215 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5216
5217 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5218 skb, hlen,
5219 tp->ucopy.iov, chunk,
5220 tp->ucopy.pinned_list);
5221
5222 if (dma_cookie < 0)
5223 goto out;
5224
5225 tp->ucopy.dma_cookie = dma_cookie;
5226 copied_early = true;
5227
5228 tp->ucopy.len -= chunk;
5229 tp->copied_seq += chunk;
5230 tcp_rcv_space_adjust(sk);
5231
5232 if ((tp->ucopy.len == 0) ||
5233 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5234 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5235 tp->ucopy.wakeup = 1;
5236 sk->sk_data_ready(sk, 0);
5237 }
5238 } else if (chunk > 0) {
5239 tp->ucopy.wakeup = 1;
5240 sk->sk_data_ready(sk, 0);
5241 }
5242 out:
5243 return copied_early;
5244 }
5245 #endif /* CONFIG_NET_DMA */
5246
5247 static void tcp_send_challenge_ack(struct sock *sk)
5248 {
5249 /* unprotected vars, we dont care of overwrites */
5250 static u32 challenge_timestamp;
5251 static unsigned int challenge_count;
5252 u32 now = jiffies / HZ;
5253
5254 if (now != challenge_timestamp) {
5255 challenge_timestamp = now;
5256 challenge_count = 0;
5257 }
5258 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
5259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
5260 tcp_send_ack(sk);
5261 }
5262 }
5263
5264 /* Does PAWS and seqno based validation of an incoming segment, flags will
5265 * play significant role here.
5266 */
5267 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5268 const struct tcphdr *th, int syn_inerr)
5269 {
5270 const u8 *hash_location;
5271 struct tcp_sock *tp = tcp_sk(sk);
5272
5273 /* RFC1323: H1. Apply PAWS check first. */
5274 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5275 tp->rx_opt.saw_tstamp &&
5276 tcp_paws_discard(sk, skb)) {
5277 if (!th->rst) {
5278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5279 tcp_send_dupack(sk, skb);
5280 goto discard;
5281 }
5282 /* Reset is accepted even if it did not pass PAWS. */
5283 }
5284
5285 /* Step 1: check sequence number */
5286 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5287 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5288 * (RST) segments are validated by checking their SEQ-fields."
5289 * And page 69: "If an incoming segment is not acceptable,
5290 * an acknowledgment should be sent in reply (unless the RST
5291 * bit is set, if so drop the segment and return)".
5292 */
5293 if (!th->rst) {
5294 if (th->syn)
5295 goto syn_challenge;
5296 tcp_send_dupack(sk, skb);
5297 }
5298 goto discard;
5299 }
5300
5301 /* Step 2: check RST bit */
5302 if (th->rst) {
5303 /* RFC 5961 3.2 :
5304 * If sequence number exactly matches RCV.NXT, then
5305 * RESET the connection
5306 * else
5307 * Send a challenge ACK
5308 */
5309 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5310 tcp_reset(sk);
5311 else
5312 tcp_send_challenge_ack(sk);
5313 goto discard;
5314 }
5315
5316 /* step 3: check security and precedence [ignored] */
5317
5318 /* step 4: Check for a SYN
5319 * RFC 5691 4.2 : Send a challenge ack
5320 */
5321 if (th->syn) {
5322 syn_challenge:
5323 if (syn_inerr)
5324 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5325 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5326 tcp_send_challenge_ack(sk);
5327 goto discard;
5328 }
5329
5330 return true;
5331
5332 discard:
5333 __kfree_skb(skb);
5334 return false;
5335 }
5336
5337 /*
5338 * TCP receive function for the ESTABLISHED state.
5339 *
5340 * It is split into a fast path and a slow path. The fast path is
5341 * disabled when:
5342 * - A zero window was announced from us - zero window probing
5343 * is only handled properly in the slow path.
5344 * - Out of order segments arrived.
5345 * - Urgent data is expected.
5346 * - There is no buffer space left
5347 * - Unexpected TCP flags/window values/header lengths are received
5348 * (detected by checking the TCP header against pred_flags)
5349 * - Data is sent in both directions. Fast path only supports pure senders
5350 * or pure receivers (this means either the sequence number or the ack
5351 * value must stay constant)
5352 * - Unexpected TCP option.
5353 *
5354 * When these conditions are not satisfied it drops into a standard
5355 * receive procedure patterned after RFC793 to handle all cases.
5356 * The first three cases are guaranteed by proper pred_flags setting,
5357 * the rest is checked inline. Fast processing is turned on in
5358 * tcp_data_queue when everything is OK.
5359 */
5360 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5361 const struct tcphdr *th, unsigned int len)
5362 {
5363 struct tcp_sock *tp = tcp_sk(sk);
5364
5365 if (unlikely(sk->sk_rx_dst == NULL))
5366 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5367 /*
5368 * Header prediction.
5369 * The code loosely follows the one in the famous
5370 * "30 instruction TCP receive" Van Jacobson mail.
5371 *
5372 * Van's trick is to deposit buffers into socket queue
5373 * on a device interrupt, to call tcp_recv function
5374 * on the receive process context and checksum and copy
5375 * the buffer to user space. smart...
5376 *
5377 * Our current scheme is not silly either but we take the
5378 * extra cost of the net_bh soft interrupt processing...
5379 * We do checksum and copy also but from device to kernel.
5380 */
5381
5382 tp->rx_opt.saw_tstamp = 0;
5383
5384 /* pred_flags is 0xS?10 << 16 + snd_wnd
5385 * if header_prediction is to be made
5386 * 'S' will always be tp->tcp_header_len >> 2
5387 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5388 * turn it off (when there are holes in the receive
5389 * space for instance)
5390 * PSH flag is ignored.
5391 */
5392
5393 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5394 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5395 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5396 int tcp_header_len = tp->tcp_header_len;
5397
5398 /* Timestamp header prediction: tcp_header_len
5399 * is automatically equal to th->doff*4 due to pred_flags
5400 * match.
5401 */
5402
5403 /* Check timestamp */
5404 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5405 /* No? Slow path! */
5406 if (!tcp_parse_aligned_timestamp(tp, th))
5407 goto slow_path;
5408
5409 /* If PAWS failed, check it more carefully in slow path */
5410 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5411 goto slow_path;
5412
5413 /* DO NOT update ts_recent here, if checksum fails
5414 * and timestamp was corrupted part, it will result
5415 * in a hung connection since we will drop all
5416 * future packets due to the PAWS test.
5417 */
5418 }
5419
5420 if (len <= tcp_header_len) {
5421 /* Bulk data transfer: sender */
5422 if (len == tcp_header_len) {
5423 /* Predicted packet is in window by definition.
5424 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5425 * Hence, check seq<=rcv_wup reduces to:
5426 */
5427 if (tcp_header_len ==
5428 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5429 tp->rcv_nxt == tp->rcv_wup)
5430 tcp_store_ts_recent(tp);
5431
5432 /* We know that such packets are checksummed
5433 * on entry.
5434 */
5435 tcp_ack(sk, skb, 0);
5436 __kfree_skb(skb);
5437 tcp_data_snd_check(sk);
5438 return 0;
5439 } else { /* Header too small */
5440 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5441 goto discard;
5442 }
5443 } else {
5444 int eaten = 0;
5445 int copied_early = 0;
5446 bool fragstolen = false;
5447
5448 if (tp->copied_seq == tp->rcv_nxt &&
5449 len - tcp_header_len <= tp->ucopy.len) {
5450 #ifdef CONFIG_NET_DMA
5451 if (tp->ucopy.task == current &&
5452 sock_owned_by_user(sk) &&
5453 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5454 copied_early = 1;
5455 eaten = 1;
5456 }
5457 #endif
5458 if (tp->ucopy.task == current &&
5459 sock_owned_by_user(sk) && !copied_early) {
5460 __set_current_state(TASK_RUNNING);
5461
5462 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5463 eaten = 1;
5464 }
5465 if (eaten) {
5466 /* Predicted packet is in window by definition.
5467 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5468 * Hence, check seq<=rcv_wup reduces to:
5469 */
5470 if (tcp_header_len ==
5471 (sizeof(struct tcphdr) +
5472 TCPOLEN_TSTAMP_ALIGNED) &&
5473 tp->rcv_nxt == tp->rcv_wup)
5474 tcp_store_ts_recent(tp);
5475
5476 tcp_rcv_rtt_measure_ts(sk, skb);
5477
5478 __skb_pull(skb, tcp_header_len);
5479 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5480 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5481 }
5482 if (copied_early)
5483 tcp_cleanup_rbuf(sk, skb->len);
5484 }
5485 if (!eaten) {
5486 if (tcp_checksum_complete_user(sk, skb))
5487 goto csum_error;
5488
5489 /* Predicted packet is in window by definition.
5490 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5491 * Hence, check seq<=rcv_wup reduces to:
5492 */
5493 if (tcp_header_len ==
5494 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5495 tp->rcv_nxt == tp->rcv_wup)
5496 tcp_store_ts_recent(tp);
5497
5498 tcp_rcv_rtt_measure_ts(sk, skb);
5499
5500 if ((int)skb->truesize > sk->sk_forward_alloc)
5501 goto step5;
5502
5503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5504
5505 /* Bulk data transfer: receiver */
5506 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5507 &fragstolen);
5508 }
5509
5510 tcp_event_data_recv(sk, skb);
5511
5512 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5513 /* Well, only one small jumplet in fast path... */
5514 tcp_ack(sk, skb, FLAG_DATA);
5515 tcp_data_snd_check(sk);
5516 if (!inet_csk_ack_scheduled(sk))
5517 goto no_ack;
5518 }
5519
5520 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5521 __tcp_ack_snd_check(sk, 0);
5522 no_ack:
5523 #ifdef CONFIG_NET_DMA
5524 if (copied_early)
5525 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5526 else
5527 #endif
5528 if (eaten)
5529 kfree_skb_partial(skb, fragstolen);
5530 sk->sk_data_ready(sk, 0);
5531 return 0;
5532 }
5533 }
5534
5535 slow_path:
5536 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5537 goto csum_error;
5538
5539 /*
5540 * Standard slow path.
5541 */
5542
5543 if (!tcp_validate_incoming(sk, skb, th, 1))
5544 return 0;
5545
5546 step5:
5547 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5548 goto discard;
5549
5550 /* ts_recent update must be made after we are sure that the packet
5551 * is in window.
5552 */
5553 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5554
5555 tcp_rcv_rtt_measure_ts(sk, skb);
5556
5557 /* Process urgent data. */
5558 tcp_urg(sk, skb, th);
5559
5560 /* step 7: process the segment text */
5561 tcp_data_queue(sk, skb);
5562
5563 tcp_data_snd_check(sk);
5564 tcp_ack_snd_check(sk);
5565 return 0;
5566
5567 csum_error:
5568 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5569
5570 discard:
5571 __kfree_skb(skb);
5572 return 0;
5573 }
5574 EXPORT_SYMBOL(tcp_rcv_established);
5575
5576 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5577 {
5578 struct tcp_sock *tp = tcp_sk(sk);
5579 struct inet_connection_sock *icsk = inet_csk(sk);
5580
5581 tcp_set_state(sk, TCP_ESTABLISHED);
5582
5583 if (skb != NULL) {
5584 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5585 security_inet_conn_established(sk, skb);
5586 }
5587
5588 /* Make sure socket is routed, for correct metrics. */
5589 icsk->icsk_af_ops->rebuild_header(sk);
5590
5591 tcp_init_metrics(sk);
5592
5593 tcp_init_congestion_control(sk);
5594
5595 /* Prevent spurious tcp_cwnd_restart() on first data
5596 * packet.
5597 */
5598 tp->lsndtime = tcp_time_stamp;
5599
5600 tcp_init_buffer_space(sk);
5601
5602 if (sock_flag(sk, SOCK_KEEPOPEN))
5603 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5604
5605 if (!tp->rx_opt.snd_wscale)
5606 __tcp_fast_path_on(tp, tp->snd_wnd);
5607 else
5608 tp->pred_flags = 0;
5609
5610 if (!sock_flag(sk, SOCK_DEAD)) {
5611 sk->sk_state_change(sk);
5612 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5613 }
5614 }
5615
5616 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5617 struct tcp_fastopen_cookie *cookie)
5618 {
5619 struct tcp_sock *tp = tcp_sk(sk);
5620 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5621 u16 mss = tp->rx_opt.mss_clamp;
5622 bool syn_drop;
5623
5624 if (mss == tp->rx_opt.user_mss) {
5625 struct tcp_options_received opt;
5626 const u8 *hash_location;
5627
5628 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5629 tcp_clear_options(&opt);
5630 opt.user_mss = opt.mss_clamp = 0;
5631 tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5632 mss = opt.mss_clamp;
5633 }
5634
5635 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5636 cookie->len = -1;
5637
5638 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5639 * the remote receives only the retransmitted (regular) SYNs: either
5640 * the original SYN-data or the corresponding SYN-ACK is lost.
5641 */
5642 syn_drop = (cookie->len <= 0 && data &&
5643 inet_csk(sk)->icsk_retransmits);
5644
5645 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5646
5647 if (data) { /* Retransmit unacked data in SYN */
5648 tcp_retransmit_skb(sk, data);
5649 tcp_rearm_rto(sk);
5650 return true;
5651 }
5652 tp->syn_data_acked = tp->syn_data;
5653 return false;
5654 }
5655
5656 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5657 const struct tcphdr *th, unsigned int len)
5658 {
5659 const u8 *hash_location;
5660 struct inet_connection_sock *icsk = inet_csk(sk);
5661 struct tcp_sock *tp = tcp_sk(sk);
5662 struct tcp_cookie_values *cvp = tp->cookie_values;
5663 struct tcp_fastopen_cookie foc = { .len = -1 };
5664 int saved_clamp = tp->rx_opt.mss_clamp;
5665
5666 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5667
5668 if (th->ack) {
5669 /* rfc793:
5670 * "If the state is SYN-SENT then
5671 * first check the ACK bit
5672 * If the ACK bit is set
5673 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5674 * a reset (unless the RST bit is set, if so drop
5675 * the segment and return)"
5676 */
5677 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5678 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5679 goto reset_and_undo;
5680
5681 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5682 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5683 tcp_time_stamp)) {
5684 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5685 goto reset_and_undo;
5686 }
5687
5688 /* Now ACK is acceptable.
5689 *
5690 * "If the RST bit is set
5691 * If the ACK was acceptable then signal the user "error:
5692 * connection reset", drop the segment, enter CLOSED state,
5693 * delete TCB, and return."
5694 */
5695
5696 if (th->rst) {
5697 tcp_reset(sk);
5698 goto discard;
5699 }
5700
5701 /* rfc793:
5702 * "fifth, if neither of the SYN or RST bits is set then
5703 * drop the segment and return."
5704 *
5705 * See note below!
5706 * --ANK(990513)
5707 */
5708 if (!th->syn)
5709 goto discard_and_undo;
5710
5711 /* rfc793:
5712 * "If the SYN bit is on ...
5713 * are acceptable then ...
5714 * (our SYN has been ACKed), change the connection
5715 * state to ESTABLISHED..."
5716 */
5717
5718 TCP_ECN_rcv_synack(tp, th);
5719
5720 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5721 tcp_ack(sk, skb, FLAG_SLOWPATH);
5722
5723 /* Ok.. it's good. Set up sequence numbers and
5724 * move to established.
5725 */
5726 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5727 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5728
5729 /* RFC1323: The window in SYN & SYN/ACK segments is
5730 * never scaled.
5731 */
5732 tp->snd_wnd = ntohs(th->window);
5733
5734 if (!tp->rx_opt.wscale_ok) {
5735 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5736 tp->window_clamp = min(tp->window_clamp, 65535U);
5737 }
5738
5739 if (tp->rx_opt.saw_tstamp) {
5740 tp->rx_opt.tstamp_ok = 1;
5741 tp->tcp_header_len =
5742 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5744 tcp_store_ts_recent(tp);
5745 } else {
5746 tp->tcp_header_len = sizeof(struct tcphdr);
5747 }
5748
5749 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5750 tcp_enable_fack(tp);
5751
5752 tcp_mtup_init(sk);
5753 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754 tcp_initialize_rcv_mss(sk);
5755
5756 /* Remember, tcp_poll() does not lock socket!
5757 * Change state from SYN-SENT only after copied_seq
5758 * is initialized. */
5759 tp->copied_seq = tp->rcv_nxt;
5760
5761 if (cvp != NULL &&
5762 cvp->cookie_pair_size > 0 &&
5763 tp->rx_opt.cookie_plus > 0) {
5764 int cookie_size = tp->rx_opt.cookie_plus
5765 - TCPOLEN_COOKIE_BASE;
5766 int cookie_pair_size = cookie_size
5767 + cvp->cookie_desired;
5768
5769 /* A cookie extension option was sent and returned.
5770 * Note that each incoming SYNACK replaces the
5771 * Responder cookie. The initial exchange is most
5772 * fragile, as protection against spoofing relies
5773 * entirely upon the sequence and timestamp (above).
5774 * This replacement strategy allows the correct pair to
5775 * pass through, while any others will be filtered via
5776 * Responder verification later.
5777 */
5778 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5779 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5780 hash_location, cookie_size);
5781 cvp->cookie_pair_size = cookie_pair_size;
5782 }
5783 }
5784
5785 smp_mb();
5786
5787 tcp_finish_connect(sk, skb);
5788
5789 if ((tp->syn_fastopen || tp->syn_data) &&
5790 tcp_rcv_fastopen_synack(sk, skb, &foc))
5791 return -1;
5792
5793 if (sk->sk_write_pending ||
5794 icsk->icsk_accept_queue.rskq_defer_accept ||
5795 icsk->icsk_ack.pingpong) {
5796 /* Save one ACK. Data will be ready after
5797 * several ticks, if write_pending is set.
5798 *
5799 * It may be deleted, but with this feature tcpdumps
5800 * look so _wonderfully_ clever, that I was not able
5801 * to stand against the temptation 8) --ANK
5802 */
5803 inet_csk_schedule_ack(sk);
5804 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5805 tcp_enter_quickack_mode(sk);
5806 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5807 TCP_DELACK_MAX, TCP_RTO_MAX);
5808
5809 discard:
5810 __kfree_skb(skb);
5811 return 0;
5812 } else {
5813 tcp_send_ack(sk);
5814 }
5815 return -1;
5816 }
5817
5818 /* No ACK in the segment */
5819
5820 if (th->rst) {
5821 /* rfc793:
5822 * "If the RST bit is set
5823 *
5824 * Otherwise (no ACK) drop the segment and return."
5825 */
5826
5827 goto discard_and_undo;
5828 }
5829
5830 /* PAWS check. */
5831 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5832 tcp_paws_reject(&tp->rx_opt, 0))
5833 goto discard_and_undo;
5834
5835 if (th->syn) {
5836 /* We see SYN without ACK. It is attempt of
5837 * simultaneous connect with crossed SYNs.
5838 * Particularly, it can be connect to self.
5839 */
5840 tcp_set_state(sk, TCP_SYN_RECV);
5841
5842 if (tp->rx_opt.saw_tstamp) {
5843 tp->rx_opt.tstamp_ok = 1;
5844 tcp_store_ts_recent(tp);
5845 tp->tcp_header_len =
5846 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5847 } else {
5848 tp->tcp_header_len = sizeof(struct tcphdr);
5849 }
5850
5851 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5852 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5853
5854 /* RFC1323: The window in SYN & SYN/ACK segments is
5855 * never scaled.
5856 */
5857 tp->snd_wnd = ntohs(th->window);
5858 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5859 tp->max_window = tp->snd_wnd;
5860
5861 TCP_ECN_rcv_syn(tp, th);
5862
5863 tcp_mtup_init(sk);
5864 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5865 tcp_initialize_rcv_mss(sk);
5866
5867 tcp_send_synack(sk);
5868 #if 0
5869 /* Note, we could accept data and URG from this segment.
5870 * There are no obstacles to make this (except that we must
5871 * either change tcp_recvmsg() to prevent it from returning data
5872 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5873 *
5874 * However, if we ignore data in ACKless segments sometimes,
5875 * we have no reasons to accept it sometimes.
5876 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5877 * is not flawless. So, discard packet for sanity.
5878 * Uncomment this return to process the data.
5879 */
5880 return -1;
5881 #else
5882 goto discard;
5883 #endif
5884 }
5885 /* "fifth, if neither of the SYN or RST bits is set then
5886 * drop the segment and return."
5887 */
5888
5889 discard_and_undo:
5890 tcp_clear_options(&tp->rx_opt);
5891 tp->rx_opt.mss_clamp = saved_clamp;
5892 goto discard;
5893
5894 reset_and_undo:
5895 tcp_clear_options(&tp->rx_opt);
5896 tp->rx_opt.mss_clamp = saved_clamp;
5897 return 1;
5898 }
5899
5900 /*
5901 * This function implements the receiving procedure of RFC 793 for
5902 * all states except ESTABLISHED and TIME_WAIT.
5903 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5904 * address independent.
5905 */
5906
5907 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5908 const struct tcphdr *th, unsigned int len)
5909 {
5910 struct tcp_sock *tp = tcp_sk(sk);
5911 struct inet_connection_sock *icsk = inet_csk(sk);
5912 struct request_sock *req;
5913 int queued = 0;
5914
5915 tp->rx_opt.saw_tstamp = 0;
5916
5917 switch (sk->sk_state) {
5918 case TCP_CLOSE:
5919 goto discard;
5920
5921 case TCP_LISTEN:
5922 if (th->ack)
5923 return 1;
5924
5925 if (th->rst)
5926 goto discard;
5927
5928 if (th->syn) {
5929 if (th->fin)
5930 goto discard;
5931 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5932 return 1;
5933
5934 /* Now we have several options: In theory there is
5935 * nothing else in the frame. KA9Q has an option to
5936 * send data with the syn, BSD accepts data with the
5937 * syn up to the [to be] advertised window and
5938 * Solaris 2.1 gives you a protocol error. For now
5939 * we just ignore it, that fits the spec precisely
5940 * and avoids incompatibilities. It would be nice in
5941 * future to drop through and process the data.
5942 *
5943 * Now that TTCP is starting to be used we ought to
5944 * queue this data.
5945 * But, this leaves one open to an easy denial of
5946 * service attack, and SYN cookies can't defend
5947 * against this problem. So, we drop the data
5948 * in the interest of security over speed unless
5949 * it's still in use.
5950 */
5951 kfree_skb(skb);
5952 return 0;
5953 }
5954 goto discard;
5955
5956 case TCP_SYN_SENT:
5957 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5958 if (queued >= 0)
5959 return queued;
5960
5961 /* Do step6 onward by hand. */
5962 tcp_urg(sk, skb, th);
5963 __kfree_skb(skb);
5964 tcp_data_snd_check(sk);
5965 return 0;
5966 }
5967
5968 req = tp->fastopen_rsk;
5969 if (req != NULL) {
5970 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5971 sk->sk_state != TCP_FIN_WAIT1);
5972
5973 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5974 goto discard;
5975 }
5976 if (!tcp_validate_incoming(sk, skb, th, 0))
5977 return 0;
5978
5979 /* step 5: check the ACK field */
5980 if (th->ack) {
5981 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5982
5983 switch (sk->sk_state) {
5984 case TCP_SYN_RECV:
5985 if (acceptable) {
5986 /* Once we leave TCP_SYN_RECV, we no longer
5987 * need req so release it.
5988 */
5989 if (req) {
5990 tcp_synack_rtt_meas(sk, req);
5991 tp->total_retrans = req->retrans;
5992
5993 reqsk_fastopen_remove(sk, req, false);
5994 } else {
5995 /* Make sure socket is routed, for
5996 * correct metrics.
5997 */
5998 icsk->icsk_af_ops->rebuild_header(sk);
5999 tcp_init_congestion_control(sk);
6000
6001 tcp_mtup_init(sk);
6002 tcp_init_buffer_space(sk);
6003 tp->copied_seq = tp->rcv_nxt;
6004 }
6005 smp_mb();
6006 tcp_set_state(sk, TCP_ESTABLISHED);
6007 sk->sk_state_change(sk);
6008
6009 /* Note, that this wakeup is only for marginal
6010 * crossed SYN case. Passively open sockets
6011 * are not waked up, because sk->sk_sleep ==
6012 * NULL and sk->sk_socket == NULL.
6013 */
6014 if (sk->sk_socket)
6015 sk_wake_async(sk,
6016 SOCK_WAKE_IO, POLL_OUT);
6017
6018 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6019 tp->snd_wnd = ntohs(th->window) <<
6020 tp->rx_opt.snd_wscale;
6021 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6022
6023 if (tp->rx_opt.tstamp_ok)
6024 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6025
6026 if (req) {
6027 /* Re-arm the timer because data may
6028 * have been sent out. This is similar
6029 * to the regular data transmission case
6030 * when new data has just been ack'ed.
6031 *
6032 * (TFO) - we could try to be more
6033 * aggressive and retranmitting any data
6034 * sooner based on when they were sent
6035 * out.
6036 */
6037 tcp_rearm_rto(sk);
6038 } else
6039 tcp_init_metrics(sk);
6040
6041 /* Prevent spurious tcp_cwnd_restart() on
6042 * first data packet.
6043 */
6044 tp->lsndtime = tcp_time_stamp;
6045
6046 tcp_initialize_rcv_mss(sk);
6047 tcp_fast_path_on(tp);
6048 } else {
6049 return 1;
6050 }
6051 break;
6052
6053 case TCP_FIN_WAIT1:
6054 /* If we enter the TCP_FIN_WAIT1 state and we are a
6055 * Fast Open socket and this is the first acceptable
6056 * ACK we have received, this would have acknowledged
6057 * our SYNACK so stop the SYNACK timer.
6058 */
6059 if (req != NULL) {
6060 /* Return RST if ack_seq is invalid.
6061 * Note that RFC793 only says to generate a
6062 * DUPACK for it but for TCP Fast Open it seems
6063 * better to treat this case like TCP_SYN_RECV
6064 * above.
6065 */
6066 if (!acceptable)
6067 return 1;
6068 /* We no longer need the request sock. */
6069 reqsk_fastopen_remove(sk, req, false);
6070 tcp_rearm_rto(sk);
6071 }
6072 if (tp->snd_una == tp->write_seq) {
6073 struct dst_entry *dst;
6074
6075 tcp_set_state(sk, TCP_FIN_WAIT2);
6076 sk->sk_shutdown |= SEND_SHUTDOWN;
6077
6078 dst = __sk_dst_get(sk);
6079 if (dst)
6080 dst_confirm(dst);
6081
6082 if (!sock_flag(sk, SOCK_DEAD))
6083 /* Wake up lingering close() */
6084 sk->sk_state_change(sk);
6085 else {
6086 int tmo;
6087
6088 if (tp->linger2 < 0 ||
6089 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6090 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6091 tcp_done(sk);
6092 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6093 return 1;
6094 }
6095
6096 tmo = tcp_fin_time(sk);
6097 if (tmo > TCP_TIMEWAIT_LEN) {
6098 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6099 } else if (th->fin || sock_owned_by_user(sk)) {
6100 /* Bad case. We could lose such FIN otherwise.
6101 * It is not a big problem, but it looks confusing
6102 * and not so rare event. We still can lose it now,
6103 * if it spins in bh_lock_sock(), but it is really
6104 * marginal case.
6105 */
6106 inet_csk_reset_keepalive_timer(sk, tmo);
6107 } else {
6108 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6109 goto discard;
6110 }
6111 }
6112 }
6113 break;
6114
6115 case TCP_CLOSING:
6116 if (tp->snd_una == tp->write_seq) {
6117 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6118 goto discard;
6119 }
6120 break;
6121
6122 case TCP_LAST_ACK:
6123 if (tp->snd_una == tp->write_seq) {
6124 tcp_update_metrics(sk);
6125 tcp_done(sk);
6126 goto discard;
6127 }
6128 break;
6129 }
6130 } else
6131 goto discard;
6132
6133 /* ts_recent update must be made after we are sure that the packet
6134 * is in window.
6135 */
6136 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
6137
6138 /* step 6: check the URG bit */
6139 tcp_urg(sk, skb, th);
6140
6141 /* step 7: process the segment text */
6142 switch (sk->sk_state) {
6143 case TCP_CLOSE_WAIT:
6144 case TCP_CLOSING:
6145 case TCP_LAST_ACK:
6146 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6147 break;
6148 case TCP_FIN_WAIT1:
6149 case TCP_FIN_WAIT2:
6150 /* RFC 793 says to queue data in these states,
6151 * RFC 1122 says we MUST send a reset.
6152 * BSD 4.4 also does reset.
6153 */
6154 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6155 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6156 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6158 tcp_reset(sk);
6159 return 1;
6160 }
6161 }
6162 /* Fall through */
6163 case TCP_ESTABLISHED:
6164 tcp_data_queue(sk, skb);
6165 queued = 1;
6166 break;
6167 }
6168
6169 /* tcp_data could move socket to TIME-WAIT */
6170 if (sk->sk_state != TCP_CLOSE) {
6171 tcp_data_snd_check(sk);
6172 tcp_ack_snd_check(sk);
6173 }
6174
6175 if (!queued) {
6176 discard:
6177 __kfree_skb(skb);
6178 }
6179 return 0;
6180 }
6181 EXPORT_SYMBOL(tcp_rcv_state_process);