]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
ipv4: Return EINVAL when ping_group_range sysctl doesn't map to user ns
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83
84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
90 #define FLAG_ECE 0x40 /* ECE in this ACK */
91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
100
101 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
104 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
108
109 #define REXMIT_NONE 0 /* no loss recovery to do */
110 #define REXMIT_LOST 1 /* retransmit packets marked lost */
111 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
115 {
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
128 rcu_read_unlock();
129 }
130 }
131
132 /* Adapt the MSS value used to make delayed ack decision to the
133 * real world.
134 */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 struct inet_connection_sock *icsk = inet_csk(sk);
138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 unsigned int len;
140
141 icsk->icsk_ack.last_seg_size = 0;
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
146 len = skb_shinfo(skb)->gso_size ? : skb->len;
147 if (len >= icsk->icsk_ack.rcv_mss) {
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
160 len += skb->data - skb_transport_header(skb);
161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
175 if (len == lss) {
176 icsk->icsk_ack.rcv_mss = len;
177 return;
178 }
179 }
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
183 }
184 }
185
186 static void tcp_incr_quickack(struct sock *sk)
187 {
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
190
191 if (quickacks == 0)
192 quickacks = 2;
193 if (quickacks > icsk->icsk_ack.quick)
194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
195 }
196
197 static void tcp_enter_quickack_mode(struct sock *sk)
198 {
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 tcp_incr_quickack(sk);
201 icsk->icsk_ack.pingpong = 0;
202 icsk->icsk_ack.ato = TCP_ATO_MIN;
203 }
204
205 /* Send ACKs quickly, if "quick" count is not exhausted
206 * and the session is not interactive.
207 */
208
209 static bool tcp_in_quickack_mode(struct sock *sk)
210 {
211 const struct inet_connection_sock *icsk = inet_csk(sk);
212 const struct dst_entry *dst = __sk_dst_get(sk);
213
214 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
216 }
217
218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
219 {
220 if (tp->ecn_flags & TCP_ECN_OK)
221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222 }
223
224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226 if (tcp_hdr(skb)->cwr)
227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229
230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
231 {
232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233 }
234
235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
236 {
237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
238 case INET_ECN_NOT_ECT:
239 /* Funny extension: if ECT is not set on a segment,
240 * and we already seen ECT on a previous segment,
241 * it is probably a retransmit.
242 */
243 if (tp->ecn_flags & TCP_ECN_SEEN)
244 tcp_enter_quickack_mode((struct sock *)tp);
245 break;
246 case INET_ECN_CE:
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249
250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 /* Better not delay acks, sender can have a very low cwnd */
252 tcp_enter_quickack_mode((struct sock *)tp);
253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 }
255 tp->ecn_flags |= TCP_ECN_SEEN;
256 break;
257 default:
258 if (tcp_ca_needs_ecn((struct sock *)tp))
259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
260 tp->ecn_flags |= TCP_ECN_SEEN;
261 break;
262 }
263 }
264
265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266 {
267 if (tp->ecn_flags & TCP_ECN_OK)
268 __tcp_ecn_check_ce(tp, skb);
269 }
270
271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276
277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
280 tp->ecn_flags &= ~TCP_ECN_OK;
281 }
282
283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
286 return true;
287 return false;
288 }
289
290 /* Buffer size and advertised window tuning.
291 *
292 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 */
294
295 static void tcp_sndbuf_expand(struct sock *sk)
296 {
297 const struct tcp_sock *tp = tcp_sk(sk);
298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
299 int sndmem, per_mss;
300 u32 nr_segs;
301
302 /* Worst case is non GSO/TSO : each frame consumes one skb
303 * and skb->head is kmalloced using power of two area of memory
304 */
305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 MAX_TCP_HEADER +
307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 per_mss = roundup_pow_of_two(per_mss) +
310 SKB_DATA_ALIGN(sizeof(struct sk_buff));
311
312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314
315 /* Fast Recovery (RFC 5681 3.2) :
316 * Cubic needs 1.7 factor, rounded to 2 to include
317 * extra cushion (application might react slowly to POLLOUT)
318 */
319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 sndmem *= nr_segs * per_mss;
321
322 if (sk->sk_sndbuf < sndmem)
323 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
324 }
325
326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327 *
328 * All tcp_full_space() is split to two parts: "network" buffer, allocated
329 * forward and advertised in receiver window (tp->rcv_wnd) and
330 * "application buffer", required to isolate scheduling/application
331 * latencies from network.
332 * window_clamp is maximal advertised window. It can be less than
333 * tcp_full_space(), in this case tcp_full_space() - window_clamp
334 * is reserved for "application" buffer. The less window_clamp is
335 * the smoother our behaviour from viewpoint of network, but the lower
336 * throughput and the higher sensitivity of the connection to losses. 8)
337 *
338 * rcv_ssthresh is more strict window_clamp used at "slow start"
339 * phase to predict further behaviour of this connection.
340 * It is used for two goals:
341 * - to enforce header prediction at sender, even when application
342 * requires some significant "application buffer". It is check #1.
343 * - to prevent pruning of receive queue because of misprediction
344 * of receiver window. Check #2.
345 *
346 * The scheme does not work when sender sends good segments opening
347 * window and then starts to feed us spaghetti. But it should work
348 * in common situations. Otherwise, we have to rely on queue collapsing.
349 */
350
351 /* Slow part of check#2. */
352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355 /* Optimize this! */
356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
358
359 while (tp->rcv_ssthresh <= window) {
360 if (truesize <= skb->len)
361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
362
363 truesize >>= 1;
364 window >>= 1;
365 }
366 return 0;
367 }
368
369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
370 {
371 struct tcp_sock *tp = tcp_sk(sk);
372
373 /* Check #1 */
374 if (tp->rcv_ssthresh < tp->window_clamp &&
375 (int)tp->rcv_ssthresh < tcp_space(sk) &&
376 !tcp_under_memory_pressure(sk)) {
377 int incr;
378
379 /* Check #2. Increase window, if skb with such overhead
380 * will fit to rcvbuf in future.
381 */
382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
383 incr = 2 * tp->advmss;
384 else
385 incr = __tcp_grow_window(sk, skb);
386
387 if (incr) {
388 incr = max_t(int, incr, 2 * skb->len);
389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 tp->window_clamp);
391 inet_csk(sk)->icsk_ack.quick |= 1;
392 }
393 }
394 }
395
396 /* 3. Tuning rcvbuf, when connection enters established state. */
397 static void tcp_fixup_rcvbuf(struct sock *sk)
398 {
399 u32 mss = tcp_sk(sk)->advmss;
400 int rcvmem;
401
402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 tcp_default_init_rwnd(mss);
404
405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 * Allow enough cushion so that sender is not limited by our window
407 */
408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
409 rcvmem <<= 2;
410
411 if (sk->sk_rcvbuf < rcvmem)
412 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
413 }
414
415 /* 4. Try to fixup all. It is made immediately after connection enters
416 * established state.
417 */
418 void tcp_init_buffer_space(struct sock *sk)
419 {
420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
421 struct tcp_sock *tp = tcp_sk(sk);
422 int maxwin;
423
424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 tcp_fixup_rcvbuf(sk);
426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
427 tcp_sndbuf_expand(sk);
428
429 tp->rcvq_space.space = tp->rcv_wnd;
430 tcp_mstamp_refresh(tp);
431 tp->rcvq_space.time = tp->tcp_mstamp;
432 tp->rcvq_space.seq = tp->copied_seq;
433
434 maxwin = tcp_full_space(sk);
435
436 if (tp->window_clamp >= maxwin) {
437 tp->window_clamp = maxwin;
438
439 if (tcp_app_win && maxwin > 4 * tp->advmss)
440 tp->window_clamp = max(maxwin -
441 (maxwin >> tcp_app_win),
442 4 * tp->advmss);
443 }
444
445 /* Force reservation of one segment. */
446 if (tcp_app_win &&
447 tp->window_clamp > 2 * tp->advmss &&
448 tp->window_clamp + tp->advmss > maxwin)
449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450
451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
452 tp->snd_cwnd_stamp = tcp_jiffies32;
453 }
454
455 /* 5. Recalculate window clamp after socket hit its memory bounds. */
456 static void tcp_clamp_window(struct sock *sk)
457 {
458 struct tcp_sock *tp = tcp_sk(sk);
459 struct inet_connection_sock *icsk = inet_csk(sk);
460 struct net *net = sock_net(sk);
461
462 icsk->icsk_ack.quick = 0;
463
464 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
466 !tcp_under_memory_pressure(sk) &&
467 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
468 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
469 net->ipv4.sysctl_tcp_rmem[2]);
470 }
471 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
472 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
473 }
474
475 /* Initialize RCV_MSS value.
476 * RCV_MSS is an our guess about MSS used by the peer.
477 * We haven't any direct information about the MSS.
478 * It's better to underestimate the RCV_MSS rather than overestimate.
479 * Overestimations make us ACKing less frequently than needed.
480 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481 */
482 void tcp_initialize_rcv_mss(struct sock *sk)
483 {
484 const struct tcp_sock *tp = tcp_sk(sk);
485 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486
487 hint = min(hint, tp->rcv_wnd / 2);
488 hint = min(hint, TCP_MSS_DEFAULT);
489 hint = max(hint, TCP_MIN_MSS);
490
491 inet_csk(sk)->icsk_ack.rcv_mss = hint;
492 }
493 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
494
495 /* Receiver "autotuning" code.
496 *
497 * The algorithm for RTT estimation w/o timestamps is based on
498 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
499 * <http://public.lanl.gov/radiant/pubs.html#DRS>
500 *
501 * More detail on this code can be found at
502 * <http://staff.psc.edu/jheffner/>,
503 * though this reference is out of date. A new paper
504 * is pending.
505 */
506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507 {
508 u32 new_sample = tp->rcv_rtt_est.rtt_us;
509 long m = sample;
510
511 if (new_sample != 0) {
512 /* If we sample in larger samples in the non-timestamp
513 * case, we could grossly overestimate the RTT especially
514 * with chatty applications or bulk transfer apps which
515 * are stalled on filesystem I/O.
516 *
517 * Also, since we are only going for a minimum in the
518 * non-timestamp case, we do not smooth things out
519 * else with timestamps disabled convergence takes too
520 * long.
521 */
522 if (!win_dep) {
523 m -= (new_sample >> 3);
524 new_sample += m;
525 } else {
526 m <<= 3;
527 if (m < new_sample)
528 new_sample = m;
529 }
530 } else {
531 /* No previous measure. */
532 new_sample = m << 3;
533 }
534
535 tp->rcv_rtt_est.rtt_us = new_sample;
536 }
537
538 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
539 {
540 u32 delta_us;
541
542 if (tp->rcv_rtt_est.time == 0)
543 goto new_measure;
544 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
545 return;
546 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
547 if (!delta_us)
548 delta_us = 1;
549 tcp_rcv_rtt_update(tp, delta_us, 1);
550
551 new_measure:
552 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
553 tp->rcv_rtt_est.time = tp->tcp_mstamp;
554 }
555
556 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
557 const struct sk_buff *skb)
558 {
559 struct tcp_sock *tp = tcp_sk(sk);
560
561 if (tp->rx_opt.rcv_tsecr &&
562 (TCP_SKB_CB(skb)->end_seq -
563 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
564 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
565 u32 delta_us;
566
567 if (!delta)
568 delta = 1;
569 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
570 tcp_rcv_rtt_update(tp, delta_us, 0);
571 }
572 }
573
574 /*
575 * This function should be called every time data is copied to user space.
576 * It calculates the appropriate TCP receive buffer space.
577 */
578 void tcp_rcv_space_adjust(struct sock *sk)
579 {
580 struct tcp_sock *tp = tcp_sk(sk);
581 u32 copied;
582 int time;
583
584 tcp_mstamp_refresh(tp);
585 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
586 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
587 return;
588
589 /* Number of bytes copied to user in last RTT */
590 copied = tp->copied_seq - tp->rcvq_space.seq;
591 if (copied <= tp->rcvq_space.space)
592 goto new_measure;
593
594 /* A bit of theory :
595 * copied = bytes received in previous RTT, our base window
596 * To cope with packet losses, we need a 2x factor
597 * To cope with slow start, and sender growing its cwin by 100 %
598 * every RTT, we need a 4x factor, because the ACK we are sending
599 * now is for the next RTT, not the current one :
600 * <prev RTT . ><current RTT .. ><next RTT .... >
601 */
602
603 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
604 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
605 int rcvmem, rcvbuf;
606 u64 rcvwin;
607
608 /* minimal window to cope with packet losses, assuming
609 * steady state. Add some cushion because of small variations.
610 */
611 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
612
613 /* If rate increased by 25%,
614 * assume slow start, rcvwin = 3 * copied
615 * If rate increased by 50%,
616 * assume sender can use 2x growth, rcvwin = 4 * copied
617 */
618 if (copied >=
619 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
620 if (copied >=
621 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
622 rcvwin <<= 1;
623 else
624 rcvwin += (rcvwin >> 1);
625 }
626
627 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
628 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
629 rcvmem += 128;
630
631 do_div(rcvwin, tp->advmss);
632 rcvbuf = min_t(u64, rcvwin * rcvmem,
633 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
634 if (rcvbuf > sk->sk_rcvbuf) {
635 sk->sk_rcvbuf = rcvbuf;
636
637 /* Make the window clamp follow along. */
638 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
639 }
640 }
641 tp->rcvq_space.space = copied;
642
643 new_measure:
644 tp->rcvq_space.seq = tp->copied_seq;
645 tp->rcvq_space.time = tp->tcp_mstamp;
646 }
647
648 /* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
656 * queue. -DaveM
657 */
658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct inet_connection_sock *icsk = inet_csk(sk);
662 u32 now;
663
664 inet_csk_schedule_ack(sk);
665
666 tcp_measure_rcv_mss(sk, skb);
667
668 tcp_rcv_rtt_measure(tp);
669
670 now = tcp_jiffies32;
671
672 if (!icsk->icsk_ack.ato) {
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
675 */
676 tcp_incr_quickack(sk);
677 icsk->icsk_ack.ato = TCP_ATO_MIN;
678 } else {
679 int m = now - icsk->icsk_ack.lrcvtime;
680
681 if (m <= TCP_ATO_MIN / 2) {
682 /* The fastest case is the first. */
683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 } else if (m < icsk->icsk_ack.ato) {
685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 icsk->icsk_ack.ato = icsk->icsk_rto;
688 } else if (m > icsk->icsk_rto) {
689 /* Too long gap. Apparently sender failed to
690 * restart window, so that we send ACKs quickly.
691 */
692 tcp_incr_quickack(sk);
693 sk_mem_reclaim(sk);
694 }
695 }
696 icsk->icsk_ack.lrcvtime = now;
697
698 tcp_ecn_check_ce(tp, skb);
699
700 if (skb->len >= 128)
701 tcp_grow_window(sk, skb);
702 }
703
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
712 */
713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
714 {
715 struct tcp_sock *tp = tcp_sk(sk);
716 long m = mrtt_us; /* RTT */
717 u32 srtt = tp->srtt_us;
718
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
722 * This is designed to be as fast as possible
723 * m stands for "measurement".
724 *
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
727 *
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
730 * too slowly, when it should be increased quickly, decrease too quickly
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
734 */
735 if (srtt != 0) {
736 m -= (srtt >> 3); /* m is now error in rtt est */
737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
738 if (m < 0) {
739 m = -m; /* m is now abs(error) */
740 m -= (tp->mdev_us >> 2); /* similar update on mdev */
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
748 */
749 if (m > 0)
750 m >>= 3;
751 } else {
752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
753 }
754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp->mdev_us > tp->mdev_max_us) {
756 tp->mdev_max_us = tp->mdev_us;
757 if (tp->mdev_max_us > tp->rttvar_us)
758 tp->rttvar_us = tp->mdev_max_us;
759 }
760 if (after(tp->snd_una, tp->rtt_seq)) {
761 if (tp->mdev_max_us < tp->rttvar_us)
762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 tp->rtt_seq = tp->snd_nxt;
764 tp->mdev_max_us = tcp_rto_min_us(sk);
765 }
766 } else {
767 /* no previous measure. */
768 srtt = m << 3; /* take the measured time to be rtt */
769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 tp->mdev_max_us = tp->rttvar_us;
772 tp->rtt_seq = tp->snd_nxt;
773 }
774 tp->srtt_us = max(1U, srtt);
775 }
776
777 static void tcp_update_pacing_rate(struct sock *sk)
778 {
779 const struct tcp_sock *tp = tcp_sk(sk);
780 u64 rate;
781
782 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
783 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
784
785 /* current rate is (cwnd * mss) / srtt
786 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
787 * In Congestion Avoidance phase, set it to 120 % the current rate.
788 *
789 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
790 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
791 * end of slow start and should slow down.
792 */
793 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
794 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
795 else
796 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
797
798 rate *= max(tp->snd_cwnd, tp->packets_out);
799
800 if (likely(tp->srtt_us))
801 do_div(rate, tp->srtt_us);
802
803 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
804 * without any lock. We want to make sure compiler wont store
805 * intermediate values in this location.
806 */
807 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
808 sk->sk_max_pacing_rate));
809 }
810
811 /* Calculate rto without backoff. This is the second half of Van Jacobson's
812 * routine referred to above.
813 */
814 static void tcp_set_rto(struct sock *sk)
815 {
816 const struct tcp_sock *tp = tcp_sk(sk);
817 /* Old crap is replaced with new one. 8)
818 *
819 * More seriously:
820 * 1. If rtt variance happened to be less 50msec, it is hallucination.
821 * It cannot be less due to utterly erratic ACK generation made
822 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
823 * to do with delayed acks, because at cwnd>2 true delack timeout
824 * is invisible. Actually, Linux-2.4 also generates erratic
825 * ACKs in some circumstances.
826 */
827 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
828
829 /* 2. Fixups made earlier cannot be right.
830 * If we do not estimate RTO correctly without them,
831 * all the algo is pure shit and should be replaced
832 * with correct one. It is exactly, which we pretend to do.
833 */
834
835 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
836 * guarantees that rto is higher.
837 */
838 tcp_bound_rto(sk);
839 }
840
841 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
842 {
843 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
844
845 if (!cwnd)
846 cwnd = TCP_INIT_CWND;
847 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
848 }
849
850 /* Take a notice that peer is sending D-SACKs */
851 static void tcp_dsack_seen(struct tcp_sock *tp)
852 {
853 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
854 tp->rack.dsack_seen = 1;
855 }
856
857 /* It's reordering when higher sequence was delivered (i.e. sacked) before
858 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
859 * distance is approximated in full-mss packet distance ("reordering").
860 */
861 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
862 const int ts)
863 {
864 struct tcp_sock *tp = tcp_sk(sk);
865 const u32 mss = tp->mss_cache;
866 u32 fack, metric;
867
868 fack = tcp_highest_sack_seq(tp);
869 if (!before(low_seq, fack))
870 return;
871
872 metric = fack - low_seq;
873 if ((metric > tp->reordering * mss) && mss) {
874 #if FASTRETRANS_DEBUG > 1
875 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
876 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
877 tp->reordering,
878 0,
879 tp->sacked_out,
880 tp->undo_marker ? tp->undo_retrans : 0);
881 #endif
882 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
883 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
884 }
885
886 tp->rack.reord = 1;
887 /* This exciting event is worth to be remembered. 8) */
888 NET_INC_STATS(sock_net(sk),
889 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
890 }
891
892 /* This must be called before lost_out is incremented */
893 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
894 {
895 if (!tp->retransmit_skb_hint ||
896 before(TCP_SKB_CB(skb)->seq,
897 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
898 tp->retransmit_skb_hint = skb;
899 }
900
901 /* Sum the number of packets on the wire we have marked as lost.
902 * There are two cases we care about here:
903 * a) Packet hasn't been marked lost (nor retransmitted),
904 * and this is the first loss.
905 * b) Packet has been marked both lost and retransmitted,
906 * and this means we think it was lost again.
907 */
908 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
909 {
910 __u8 sacked = TCP_SKB_CB(skb)->sacked;
911
912 if (!(sacked & TCPCB_LOST) ||
913 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
914 tp->lost += tcp_skb_pcount(skb);
915 }
916
917 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
918 {
919 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
920 tcp_verify_retransmit_hint(tp, skb);
921
922 tp->lost_out += tcp_skb_pcount(skb);
923 tcp_sum_lost(tp, skb);
924 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
925 }
926 }
927
928 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 tcp_verify_retransmit_hint(tp, skb);
931
932 tcp_sum_lost(tp, skb);
933 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
934 tp->lost_out += tcp_skb_pcount(skb);
935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 }
937 }
938
939 /* This procedure tags the retransmission queue when SACKs arrive.
940 *
941 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
942 * Packets in queue with these bits set are counted in variables
943 * sacked_out, retrans_out and lost_out, correspondingly.
944 *
945 * Valid combinations are:
946 * Tag InFlight Description
947 * 0 1 - orig segment is in flight.
948 * S 0 - nothing flies, orig reached receiver.
949 * L 0 - nothing flies, orig lost by net.
950 * R 2 - both orig and retransmit are in flight.
951 * L|R 1 - orig is lost, retransmit is in flight.
952 * S|R 1 - orig reached receiver, retrans is still in flight.
953 * (L|S|R is logically valid, it could occur when L|R is sacked,
954 * but it is equivalent to plain S and code short-curcuits it to S.
955 * L|S is logically invalid, it would mean -1 packet in flight 8))
956 *
957 * These 6 states form finite state machine, controlled by the following events:
958 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
959 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
960 * 3. Loss detection event of two flavors:
961 * A. Scoreboard estimator decided the packet is lost.
962 * A'. Reno "three dupacks" marks head of queue lost.
963 * B. SACK arrives sacking SND.NXT at the moment, when the
964 * segment was retransmitted.
965 * 4. D-SACK added new rule: D-SACK changes any tag to S.
966 *
967 * It is pleasant to note, that state diagram turns out to be commutative,
968 * so that we are allowed not to be bothered by order of our actions,
969 * when multiple events arrive simultaneously. (see the function below).
970 *
971 * Reordering detection.
972 * --------------------
973 * Reordering metric is maximal distance, which a packet can be displaced
974 * in packet stream. With SACKs we can estimate it:
975 *
976 * 1. SACK fills old hole and the corresponding segment was not
977 * ever retransmitted -> reordering. Alas, we cannot use it
978 * when segment was retransmitted.
979 * 2. The last flaw is solved with D-SACK. D-SACK arrives
980 * for retransmitted and already SACKed segment -> reordering..
981 * Both of these heuristics are not used in Loss state, when we cannot
982 * account for retransmits accurately.
983 *
984 * SACK block validation.
985 * ----------------------
986 *
987 * SACK block range validation checks that the received SACK block fits to
988 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
989 * Note that SND.UNA is not included to the range though being valid because
990 * it means that the receiver is rather inconsistent with itself reporting
991 * SACK reneging when it should advance SND.UNA. Such SACK block this is
992 * perfectly valid, however, in light of RFC2018 which explicitly states
993 * that "SACK block MUST reflect the newest segment. Even if the newest
994 * segment is going to be discarded ...", not that it looks very clever
995 * in case of head skb. Due to potentional receiver driven attacks, we
996 * choose to avoid immediate execution of a walk in write queue due to
997 * reneging and defer head skb's loss recovery to standard loss recovery
998 * procedure that will eventually trigger (nothing forbids us doing this).
999 *
1000 * Implements also blockage to start_seq wrap-around. Problem lies in the
1001 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1002 * there's no guarantee that it will be before snd_nxt (n). The problem
1003 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1004 * wrap (s_w):
1005 *
1006 * <- outs wnd -> <- wrapzone ->
1007 * u e n u_w e_w s n_w
1008 * | | | | | | |
1009 * |<------------+------+----- TCP seqno space --------------+---------->|
1010 * ...-- <2^31 ->| |<--------...
1011 * ...---- >2^31 ------>| |<--------...
1012 *
1013 * Current code wouldn't be vulnerable but it's better still to discard such
1014 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1015 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1016 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1017 * equal to the ideal case (infinite seqno space without wrap caused issues).
1018 *
1019 * With D-SACK the lower bound is extended to cover sequence space below
1020 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1021 * again, D-SACK block must not to go across snd_una (for the same reason as
1022 * for the normal SACK blocks, explained above). But there all simplicity
1023 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1024 * fully below undo_marker they do not affect behavior in anyway and can
1025 * therefore be safely ignored. In rare cases (which are more or less
1026 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1027 * fragmentation and packet reordering past skb's retransmission. To consider
1028 * them correctly, the acceptable range must be extended even more though
1029 * the exact amount is rather hard to quantify. However, tp->max_window can
1030 * be used as an exaggerated estimate.
1031 */
1032 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1033 u32 start_seq, u32 end_seq)
1034 {
1035 /* Too far in future, or reversed (interpretation is ambiguous) */
1036 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1037 return false;
1038
1039 /* Nasty start_seq wrap-around check (see comments above) */
1040 if (!before(start_seq, tp->snd_nxt))
1041 return false;
1042
1043 /* In outstanding window? ...This is valid exit for D-SACKs too.
1044 * start_seq == snd_una is non-sensical (see comments above)
1045 */
1046 if (after(start_seq, tp->snd_una))
1047 return true;
1048
1049 if (!is_dsack || !tp->undo_marker)
1050 return false;
1051
1052 /* ...Then it's D-SACK, and must reside below snd_una completely */
1053 if (after(end_seq, tp->snd_una))
1054 return false;
1055
1056 if (!before(start_seq, tp->undo_marker))
1057 return true;
1058
1059 /* Too old */
1060 if (!after(end_seq, tp->undo_marker))
1061 return false;
1062
1063 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1064 * start_seq < undo_marker and end_seq >= undo_marker.
1065 */
1066 return !before(start_seq, end_seq - tp->max_window);
1067 }
1068
1069 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1070 struct tcp_sack_block_wire *sp, int num_sacks,
1071 u32 prior_snd_una)
1072 {
1073 struct tcp_sock *tp = tcp_sk(sk);
1074 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1075 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1076 bool dup_sack = false;
1077
1078 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1079 dup_sack = true;
1080 tcp_dsack_seen(tp);
1081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1082 } else if (num_sacks > 1) {
1083 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1084 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1085
1086 if (!after(end_seq_0, end_seq_1) &&
1087 !before(start_seq_0, start_seq_1)) {
1088 dup_sack = true;
1089 tcp_dsack_seen(tp);
1090 NET_INC_STATS(sock_net(sk),
1091 LINUX_MIB_TCPDSACKOFORECV);
1092 }
1093 }
1094
1095 /* D-SACK for already forgotten data... Do dumb counting. */
1096 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1097 !after(end_seq_0, prior_snd_una) &&
1098 after(end_seq_0, tp->undo_marker))
1099 tp->undo_retrans--;
1100
1101 return dup_sack;
1102 }
1103
1104 struct tcp_sacktag_state {
1105 u32 reord;
1106 /* Timestamps for earliest and latest never-retransmitted segment
1107 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1108 * but congestion control should still get an accurate delay signal.
1109 */
1110 u64 first_sackt;
1111 u64 last_sackt;
1112 struct rate_sample *rate;
1113 int flag;
1114 unsigned int mss_now;
1115 };
1116
1117 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1118 * the incoming SACK may not exactly match but we can find smaller MSS
1119 * aligned portion of it that matches. Therefore we might need to fragment
1120 * which may fail and creates some hassle (caller must handle error case
1121 * returns).
1122 *
1123 * FIXME: this could be merged to shift decision code
1124 */
1125 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1126 u32 start_seq, u32 end_seq)
1127 {
1128 int err;
1129 bool in_sack;
1130 unsigned int pkt_len;
1131 unsigned int mss;
1132
1133 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1134 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1135
1136 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1137 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1138 mss = tcp_skb_mss(skb);
1139 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1140
1141 if (!in_sack) {
1142 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1143 if (pkt_len < mss)
1144 pkt_len = mss;
1145 } else {
1146 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1147 if (pkt_len < mss)
1148 return -EINVAL;
1149 }
1150
1151 /* Round if necessary so that SACKs cover only full MSSes
1152 * and/or the remaining small portion (if present)
1153 */
1154 if (pkt_len > mss) {
1155 unsigned int new_len = (pkt_len / mss) * mss;
1156 if (!in_sack && new_len < pkt_len)
1157 new_len += mss;
1158 pkt_len = new_len;
1159 }
1160
1161 if (pkt_len >= skb->len && !in_sack)
1162 return 0;
1163
1164 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1165 pkt_len, mss, GFP_ATOMIC);
1166 if (err < 0)
1167 return err;
1168 }
1169
1170 return in_sack;
1171 }
1172
1173 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1174 static u8 tcp_sacktag_one(struct sock *sk,
1175 struct tcp_sacktag_state *state, u8 sacked,
1176 u32 start_seq, u32 end_seq,
1177 int dup_sack, int pcount,
1178 u64 xmit_time)
1179 {
1180 struct tcp_sock *tp = tcp_sk(sk);
1181
1182 /* Account D-SACK for retransmitted packet. */
1183 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1184 if (tp->undo_marker && tp->undo_retrans > 0 &&
1185 after(end_seq, tp->undo_marker))
1186 tp->undo_retrans--;
1187 if ((sacked & TCPCB_SACKED_ACKED) &&
1188 before(start_seq, state->reord))
1189 state->reord = start_seq;
1190 }
1191
1192 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1193 if (!after(end_seq, tp->snd_una))
1194 return sacked;
1195
1196 if (!(sacked & TCPCB_SACKED_ACKED)) {
1197 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1198
1199 if (sacked & TCPCB_SACKED_RETRANS) {
1200 /* If the segment is not tagged as lost,
1201 * we do not clear RETRANS, believing
1202 * that retransmission is still in flight.
1203 */
1204 if (sacked & TCPCB_LOST) {
1205 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1206 tp->lost_out -= pcount;
1207 tp->retrans_out -= pcount;
1208 }
1209 } else {
1210 if (!(sacked & TCPCB_RETRANS)) {
1211 /* New sack for not retransmitted frame,
1212 * which was in hole. It is reordering.
1213 */
1214 if (before(start_seq,
1215 tcp_highest_sack_seq(tp)) &&
1216 before(start_seq, state->reord))
1217 state->reord = start_seq;
1218
1219 if (!after(end_seq, tp->high_seq))
1220 state->flag |= FLAG_ORIG_SACK_ACKED;
1221 if (state->first_sackt == 0)
1222 state->first_sackt = xmit_time;
1223 state->last_sackt = xmit_time;
1224 }
1225
1226 if (sacked & TCPCB_LOST) {
1227 sacked &= ~TCPCB_LOST;
1228 tp->lost_out -= pcount;
1229 }
1230 }
1231
1232 sacked |= TCPCB_SACKED_ACKED;
1233 state->flag |= FLAG_DATA_SACKED;
1234 tp->sacked_out += pcount;
1235 tp->delivered += pcount; /* Out-of-order packets delivered */
1236
1237 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1238 if (tp->lost_skb_hint &&
1239 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1240 tp->lost_cnt_hint += pcount;
1241 }
1242
1243 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1244 * frames and clear it. undo_retrans is decreased above, L|R frames
1245 * are accounted above as well.
1246 */
1247 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1248 sacked &= ~TCPCB_SACKED_RETRANS;
1249 tp->retrans_out -= pcount;
1250 }
1251
1252 return sacked;
1253 }
1254
1255 /* Shift newly-SACKed bytes from this skb to the immediately previous
1256 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1257 */
1258 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1259 struct sk_buff *skb,
1260 struct tcp_sacktag_state *state,
1261 unsigned int pcount, int shifted, int mss,
1262 bool dup_sack)
1263 {
1264 struct tcp_sock *tp = tcp_sk(sk);
1265 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1266 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1267
1268 BUG_ON(!pcount);
1269
1270 /* Adjust counters and hints for the newly sacked sequence
1271 * range but discard the return value since prev is already
1272 * marked. We must tag the range first because the seq
1273 * advancement below implicitly advances
1274 * tcp_highest_sack_seq() when skb is highest_sack.
1275 */
1276 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1277 start_seq, end_seq, dup_sack, pcount,
1278 skb->skb_mstamp);
1279 tcp_rate_skb_delivered(sk, skb, state->rate);
1280
1281 if (skb == tp->lost_skb_hint)
1282 tp->lost_cnt_hint += pcount;
1283
1284 TCP_SKB_CB(prev)->end_seq += shifted;
1285 TCP_SKB_CB(skb)->seq += shifted;
1286
1287 tcp_skb_pcount_add(prev, pcount);
1288 BUG_ON(tcp_skb_pcount(skb) < pcount);
1289 tcp_skb_pcount_add(skb, -pcount);
1290
1291 /* When we're adding to gso_segs == 1, gso_size will be zero,
1292 * in theory this shouldn't be necessary but as long as DSACK
1293 * code can come after this skb later on it's better to keep
1294 * setting gso_size to something.
1295 */
1296 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1297 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1298
1299 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1300 if (tcp_skb_pcount(skb) <= 1)
1301 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1302
1303 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1304 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1305
1306 if (skb->len > 0) {
1307 BUG_ON(!tcp_skb_pcount(skb));
1308 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1309 return false;
1310 }
1311
1312 /* Whole SKB was eaten :-) */
1313
1314 if (skb == tp->retransmit_skb_hint)
1315 tp->retransmit_skb_hint = prev;
1316 if (skb == tp->lost_skb_hint) {
1317 tp->lost_skb_hint = prev;
1318 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1319 }
1320
1321 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1322 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1323 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1324 TCP_SKB_CB(prev)->end_seq++;
1325
1326 if (skb == tcp_highest_sack(sk))
1327 tcp_advance_highest_sack(sk, skb);
1328
1329 tcp_skb_collapse_tstamp(prev, skb);
1330 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1331 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1332
1333 tcp_rtx_queue_unlink_and_free(skb, sk);
1334
1335 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1336
1337 return true;
1338 }
1339
1340 /* I wish gso_size would have a bit more sane initialization than
1341 * something-or-zero which complicates things
1342 */
1343 static int tcp_skb_seglen(const struct sk_buff *skb)
1344 {
1345 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1346 }
1347
1348 /* Shifting pages past head area doesn't work */
1349 static int skb_can_shift(const struct sk_buff *skb)
1350 {
1351 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1352 }
1353
1354 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1355 * skb.
1356 */
1357 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1358 struct tcp_sacktag_state *state,
1359 u32 start_seq, u32 end_seq,
1360 bool dup_sack)
1361 {
1362 struct tcp_sock *tp = tcp_sk(sk);
1363 struct sk_buff *prev;
1364 int mss;
1365 int pcount = 0;
1366 int len;
1367 int in_sack;
1368
1369 if (!sk_can_gso(sk))
1370 goto fallback;
1371
1372 /* Normally R but no L won't result in plain S */
1373 if (!dup_sack &&
1374 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1375 goto fallback;
1376 if (!skb_can_shift(skb))
1377 goto fallback;
1378 /* This frame is about to be dropped (was ACKed). */
1379 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1380 goto fallback;
1381
1382 /* Can only happen with delayed DSACK + discard craziness */
1383 prev = skb_rb_prev(skb);
1384 if (!prev)
1385 goto fallback;
1386
1387 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1388 goto fallback;
1389
1390 if (!tcp_skb_can_collapse_to(prev))
1391 goto fallback;
1392
1393 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1394 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1395
1396 if (in_sack) {
1397 len = skb->len;
1398 pcount = tcp_skb_pcount(skb);
1399 mss = tcp_skb_seglen(skb);
1400
1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1402 * drop this restriction as unnecessary
1403 */
1404 if (mss != tcp_skb_seglen(prev))
1405 goto fallback;
1406 } else {
1407 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1408 goto noop;
1409 /* CHECKME: This is non-MSS split case only?, this will
1410 * cause skipped skbs due to advancing loop btw, original
1411 * has that feature too
1412 */
1413 if (tcp_skb_pcount(skb) <= 1)
1414 goto noop;
1415
1416 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1417 if (!in_sack) {
1418 /* TODO: head merge to next could be attempted here
1419 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1420 * though it might not be worth of the additional hassle
1421 *
1422 * ...we can probably just fallback to what was done
1423 * previously. We could try merging non-SACKed ones
1424 * as well but it probably isn't going to buy off
1425 * because later SACKs might again split them, and
1426 * it would make skb timestamp tracking considerably
1427 * harder problem.
1428 */
1429 goto fallback;
1430 }
1431
1432 len = end_seq - TCP_SKB_CB(skb)->seq;
1433 BUG_ON(len < 0);
1434 BUG_ON(len > skb->len);
1435
1436 /* MSS boundaries should be honoured or else pcount will
1437 * severely break even though it makes things bit trickier.
1438 * Optimize common case to avoid most of the divides
1439 */
1440 mss = tcp_skb_mss(skb);
1441
1442 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1443 * drop this restriction as unnecessary
1444 */
1445 if (mss != tcp_skb_seglen(prev))
1446 goto fallback;
1447
1448 if (len == mss) {
1449 pcount = 1;
1450 } else if (len < mss) {
1451 goto noop;
1452 } else {
1453 pcount = len / mss;
1454 len = pcount * mss;
1455 }
1456 }
1457
1458 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1459 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1460 goto fallback;
1461
1462 if (!skb_shift(prev, skb, len))
1463 goto fallback;
1464 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1465 goto out;
1466
1467 /* Hole filled allows collapsing with the next as well, this is very
1468 * useful when hole on every nth skb pattern happens
1469 */
1470 skb = skb_rb_next(prev);
1471 if (!skb)
1472 goto out;
1473
1474 if (!skb_can_shift(skb) ||
1475 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1476 (mss != tcp_skb_seglen(skb)))
1477 goto out;
1478
1479 len = skb->len;
1480 if (skb_shift(prev, skb, len)) {
1481 pcount += tcp_skb_pcount(skb);
1482 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1483 len, mss, 0);
1484 }
1485
1486 out:
1487 return prev;
1488
1489 noop:
1490 return skb;
1491
1492 fallback:
1493 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1494 return NULL;
1495 }
1496
1497 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1498 struct tcp_sack_block *next_dup,
1499 struct tcp_sacktag_state *state,
1500 u32 start_seq, u32 end_seq,
1501 bool dup_sack_in)
1502 {
1503 struct tcp_sock *tp = tcp_sk(sk);
1504 struct sk_buff *tmp;
1505
1506 skb_rbtree_walk_from(skb) {
1507 int in_sack = 0;
1508 bool dup_sack = dup_sack_in;
1509
1510 /* queue is in-order => we can short-circuit the walk early */
1511 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1512 break;
1513
1514 if (next_dup &&
1515 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1516 in_sack = tcp_match_skb_to_sack(sk, skb,
1517 next_dup->start_seq,
1518 next_dup->end_seq);
1519 if (in_sack > 0)
1520 dup_sack = true;
1521 }
1522
1523 /* skb reference here is a bit tricky to get right, since
1524 * shifting can eat and free both this skb and the next,
1525 * so not even _safe variant of the loop is enough.
1526 */
1527 if (in_sack <= 0) {
1528 tmp = tcp_shift_skb_data(sk, skb, state,
1529 start_seq, end_seq, dup_sack);
1530 if (tmp) {
1531 if (tmp != skb) {
1532 skb = tmp;
1533 continue;
1534 }
1535
1536 in_sack = 0;
1537 } else {
1538 in_sack = tcp_match_skb_to_sack(sk, skb,
1539 start_seq,
1540 end_seq);
1541 }
1542 }
1543
1544 if (unlikely(in_sack < 0))
1545 break;
1546
1547 if (in_sack) {
1548 TCP_SKB_CB(skb)->sacked =
1549 tcp_sacktag_one(sk,
1550 state,
1551 TCP_SKB_CB(skb)->sacked,
1552 TCP_SKB_CB(skb)->seq,
1553 TCP_SKB_CB(skb)->end_seq,
1554 dup_sack,
1555 tcp_skb_pcount(skb),
1556 skb->skb_mstamp);
1557 tcp_rate_skb_delivered(sk, skb, state->rate);
1558 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1559 list_del_init(&skb->tcp_tsorted_anchor);
1560
1561 if (!before(TCP_SKB_CB(skb)->seq,
1562 tcp_highest_sack_seq(tp)))
1563 tcp_advance_highest_sack(sk, skb);
1564 }
1565 }
1566 return skb;
1567 }
1568
1569 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1570 struct tcp_sacktag_state *state,
1571 u32 seq)
1572 {
1573 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1574 struct sk_buff *skb;
1575
1576 while (*p) {
1577 parent = *p;
1578 skb = rb_to_skb(parent);
1579 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1580 p = &parent->rb_left;
1581 continue;
1582 }
1583 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1584 p = &parent->rb_right;
1585 continue;
1586 }
1587 return skb;
1588 }
1589 return NULL;
1590 }
1591
1592 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1593 struct tcp_sacktag_state *state,
1594 u32 skip_to_seq)
1595 {
1596 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1597 return skb;
1598
1599 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1600 }
1601
1602 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1603 struct sock *sk,
1604 struct tcp_sack_block *next_dup,
1605 struct tcp_sacktag_state *state,
1606 u32 skip_to_seq)
1607 {
1608 if (!next_dup)
1609 return skb;
1610
1611 if (before(next_dup->start_seq, skip_to_seq)) {
1612 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1613 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1614 next_dup->start_seq, next_dup->end_seq,
1615 1);
1616 }
1617
1618 return skb;
1619 }
1620
1621 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1622 {
1623 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1624 }
1625
1626 static int
1627 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1628 u32 prior_snd_una, struct tcp_sacktag_state *state)
1629 {
1630 struct tcp_sock *tp = tcp_sk(sk);
1631 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1632 TCP_SKB_CB(ack_skb)->sacked);
1633 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1634 struct tcp_sack_block sp[TCP_NUM_SACKS];
1635 struct tcp_sack_block *cache;
1636 struct sk_buff *skb;
1637 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1638 int used_sacks;
1639 bool found_dup_sack = false;
1640 int i, j;
1641 int first_sack_index;
1642
1643 state->flag = 0;
1644 state->reord = tp->snd_nxt;
1645
1646 if (!tp->sacked_out)
1647 tcp_highest_sack_reset(sk);
1648
1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 num_sacks, prior_snd_una);
1651 if (found_dup_sack) {
1652 state->flag |= FLAG_DSACKING_ACK;
1653 tp->delivered++; /* A spurious retransmission is delivered */
1654 }
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662
1663 if (!tp->packets_out)
1664 goto out;
1665
1666 used_sacks = 0;
1667 first_sack_index = 0;
1668 for (i = 0; i < num_sacks; i++) {
1669 bool dup_sack = !i && found_dup_sack;
1670
1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673
1674 if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 sp[used_sacks].start_seq,
1676 sp[used_sacks].end_seq)) {
1677 int mib_idx;
1678
1679 if (dup_sack) {
1680 if (!tp->undo_marker)
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 else
1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 } else {
1685 /* Don't count olds caused by ACK reordering */
1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 !after(sp[used_sacks].end_seq, tp->snd_una))
1688 continue;
1689 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 }
1691
1692 NET_INC_STATS(sock_net(sk), mib_idx);
1693 if (i == 0)
1694 first_sack_index = -1;
1695 continue;
1696 }
1697
1698 /* Ignore very old stuff early */
1699 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 continue;
1701
1702 used_sacks++;
1703 }
1704
1705 /* order SACK blocks to allow in order walk of the retrans queue */
1706 for (i = used_sacks - 1; i > 0; i--) {
1707 for (j = 0; j < i; j++) {
1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 swap(sp[j], sp[j + 1]);
1710
1711 /* Track where the first SACK block goes to */
1712 if (j == first_sack_index)
1713 first_sack_index = j + 1;
1714 }
1715 }
1716 }
1717
1718 state->mss_now = tcp_current_mss(sk);
1719 skb = NULL;
1720 i = 0;
1721
1722 if (!tp->sacked_out) {
1723 /* It's already past, so skip checking against it */
1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 } else {
1726 cache = tp->recv_sack_cache;
1727 /* Skip empty blocks in at head of the cache */
1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 !cache->end_seq)
1730 cache++;
1731 }
1732
1733 while (i < used_sacks) {
1734 u32 start_seq = sp[i].start_seq;
1735 u32 end_seq = sp[i].end_seq;
1736 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 struct tcp_sack_block *next_dup = NULL;
1738
1739 if (found_dup_sack && ((i + 1) == first_sack_index))
1740 next_dup = &sp[i + 1];
1741
1742 /* Skip too early cached blocks */
1743 while (tcp_sack_cache_ok(tp, cache) &&
1744 !before(start_seq, cache->end_seq))
1745 cache++;
1746
1747 /* Can skip some work by looking recv_sack_cache? */
1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 after(end_seq, cache->start_seq)) {
1750
1751 /* Head todo? */
1752 if (before(start_seq, cache->start_seq)) {
1753 skb = tcp_sacktag_skip(skb, sk, state,
1754 start_seq);
1755 skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 state,
1757 start_seq,
1758 cache->start_seq,
1759 dup_sack);
1760 }
1761
1762 /* Rest of the block already fully processed? */
1763 if (!after(end_seq, cache->end_seq))
1764 goto advance_sp;
1765
1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 state,
1768 cache->end_seq);
1769
1770 /* ...tail remains todo... */
1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 /* ...but better entrypoint exists! */
1773 skb = tcp_highest_sack(sk);
1774 if (!skb)
1775 break;
1776 cache++;
1777 goto walk;
1778 }
1779
1780 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1781 /* Check overlap against next cached too (past this one already) */
1782 cache++;
1783 continue;
1784 }
1785
1786 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787 skb = tcp_highest_sack(sk);
1788 if (!skb)
1789 break;
1790 }
1791 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1792
1793 walk:
1794 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1795 start_seq, end_seq, dup_sack);
1796
1797 advance_sp:
1798 i++;
1799 }
1800
1801 /* Clear the head of the cache sack blocks so we can skip it next time */
1802 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1803 tp->recv_sack_cache[i].start_seq = 0;
1804 tp->recv_sack_cache[i].end_seq = 0;
1805 }
1806 for (j = 0; j < used_sacks; j++)
1807 tp->recv_sack_cache[i++] = sp[j];
1808
1809 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1810 tcp_check_sack_reordering(sk, state->reord, 0);
1811
1812 tcp_verify_left_out(tp);
1813 out:
1814
1815 #if FASTRETRANS_DEBUG > 0
1816 WARN_ON((int)tp->sacked_out < 0);
1817 WARN_ON((int)tp->lost_out < 0);
1818 WARN_ON((int)tp->retrans_out < 0);
1819 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1820 #endif
1821 return state->flag;
1822 }
1823
1824 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1825 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1826 */
1827 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1828 {
1829 u32 holes;
1830
1831 holes = max(tp->lost_out, 1U);
1832 holes = min(holes, tp->packets_out);
1833
1834 if ((tp->sacked_out + holes) > tp->packets_out) {
1835 tp->sacked_out = tp->packets_out - holes;
1836 return true;
1837 }
1838 return false;
1839 }
1840
1841 /* If we receive more dupacks than we expected counting segments
1842 * in assumption of absent reordering, interpret this as reordering.
1843 * The only another reason could be bug in receiver TCP.
1844 */
1845 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1846 {
1847 struct tcp_sock *tp = tcp_sk(sk);
1848
1849 if (!tcp_limit_reno_sacked(tp))
1850 return;
1851
1852 tp->reordering = min_t(u32, tp->packets_out + addend,
1853 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1854 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1855 }
1856
1857 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1858
1859 static void tcp_add_reno_sack(struct sock *sk)
1860 {
1861 struct tcp_sock *tp = tcp_sk(sk);
1862 u32 prior_sacked = tp->sacked_out;
1863
1864 tp->sacked_out++;
1865 tcp_check_reno_reordering(sk, 0);
1866 if (tp->sacked_out > prior_sacked)
1867 tp->delivered++; /* Some out-of-order packet is delivered */
1868 tcp_verify_left_out(tp);
1869 }
1870
1871 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1872
1873 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1874 {
1875 struct tcp_sock *tp = tcp_sk(sk);
1876
1877 if (acked > 0) {
1878 /* One ACK acked hole. The rest eat duplicate ACKs. */
1879 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1880 if (acked - 1 >= tp->sacked_out)
1881 tp->sacked_out = 0;
1882 else
1883 tp->sacked_out -= acked - 1;
1884 }
1885 tcp_check_reno_reordering(sk, acked);
1886 tcp_verify_left_out(tp);
1887 }
1888
1889 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1890 {
1891 tp->sacked_out = 0;
1892 }
1893
1894 void tcp_clear_retrans(struct tcp_sock *tp)
1895 {
1896 tp->retrans_out = 0;
1897 tp->lost_out = 0;
1898 tp->undo_marker = 0;
1899 tp->undo_retrans = -1;
1900 tp->sacked_out = 0;
1901 }
1902
1903 static inline void tcp_init_undo(struct tcp_sock *tp)
1904 {
1905 tp->undo_marker = tp->snd_una;
1906 /* Retransmission still in flight may cause DSACKs later. */
1907 tp->undo_retrans = tp->retrans_out ? : -1;
1908 }
1909
1910 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1911 * and reset tags completely, otherwise preserve SACKs. If receiver
1912 * dropped its ofo queue, we will know this due to reneging detection.
1913 */
1914 void tcp_enter_loss(struct sock *sk)
1915 {
1916 const struct inet_connection_sock *icsk = inet_csk(sk);
1917 struct tcp_sock *tp = tcp_sk(sk);
1918 struct net *net = sock_net(sk);
1919 struct sk_buff *skb;
1920 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1921 bool is_reneg; /* is receiver reneging on SACKs? */
1922 bool mark_lost;
1923
1924 /* Reduce ssthresh if it has not yet been made inside this window. */
1925 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1926 !after(tp->high_seq, tp->snd_una) ||
1927 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1928 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1929 tp->prior_cwnd = tp->snd_cwnd;
1930 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1931 tcp_ca_event(sk, CA_EVENT_LOSS);
1932 tcp_init_undo(tp);
1933 }
1934 tp->snd_cwnd = 1;
1935 tp->snd_cwnd_cnt = 0;
1936 tp->snd_cwnd_stamp = tcp_jiffies32;
1937
1938 tp->retrans_out = 0;
1939 tp->lost_out = 0;
1940
1941 if (tcp_is_reno(tp))
1942 tcp_reset_reno_sack(tp);
1943
1944 skb = tcp_rtx_queue_head(sk);
1945 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1946 if (is_reneg) {
1947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1948 tp->sacked_out = 0;
1949 /* Mark SACK reneging until we recover from this loss event. */
1950 tp->is_sack_reneg = 1;
1951 }
1952 tcp_clear_all_retrans_hints(tp);
1953
1954 skb_rbtree_walk_from(skb) {
1955 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1956 is_reneg);
1957 if (mark_lost)
1958 tcp_sum_lost(tp, skb);
1959 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1960 if (mark_lost) {
1961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1962 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1963 tp->lost_out += tcp_skb_pcount(skb);
1964 }
1965 }
1966 tcp_verify_left_out(tp);
1967
1968 /* Timeout in disordered state after receiving substantial DUPACKs
1969 * suggests that the degree of reordering is over-estimated.
1970 */
1971 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1972 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1973 tp->reordering = min_t(unsigned int, tp->reordering,
1974 net->ipv4.sysctl_tcp_reordering);
1975 tcp_set_ca_state(sk, TCP_CA_Loss);
1976 tp->high_seq = tp->snd_nxt;
1977 tcp_ecn_queue_cwr(tp);
1978
1979 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1980 * loss recovery is underway except recurring timeout(s) on
1981 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1982 */
1983 tp->frto = net->ipv4.sysctl_tcp_frto &&
1984 (new_recovery || icsk->icsk_retransmits) &&
1985 !inet_csk(sk)->icsk_mtup.probe_size;
1986 }
1987
1988 /* If ACK arrived pointing to a remembered SACK, it means that our
1989 * remembered SACKs do not reflect real state of receiver i.e.
1990 * receiver _host_ is heavily congested (or buggy).
1991 *
1992 * To avoid big spurious retransmission bursts due to transient SACK
1993 * scoreboard oddities that look like reneging, we give the receiver a
1994 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1995 * restore sanity to the SACK scoreboard. If the apparent reneging
1996 * persists until this RTO then we'll clear the SACK scoreboard.
1997 */
1998 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1999 {
2000 if (flag & FLAG_SACK_RENEGING) {
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2003 msecs_to_jiffies(10));
2004
2005 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2006 delay, TCP_RTO_MAX);
2007 return true;
2008 }
2009 return false;
2010 }
2011
2012 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2013 * counter when SACK is enabled (without SACK, sacked_out is used for
2014 * that purpose).
2015 *
2016 * With reordering, holes may still be in flight, so RFC3517 recovery
2017 * uses pure sacked_out (total number of SACKed segments) even though
2018 * it violates the RFC that uses duplicate ACKs, often these are equal
2019 * but when e.g. out-of-window ACKs or packet duplication occurs,
2020 * they differ. Since neither occurs due to loss, TCP should really
2021 * ignore them.
2022 */
2023 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2024 {
2025 return tp->sacked_out + 1;
2026 }
2027
2028 /* Linux NewReno/SACK/ECN state machine.
2029 * --------------------------------------
2030 *
2031 * "Open" Normal state, no dubious events, fast path.
2032 * "Disorder" In all the respects it is "Open",
2033 * but requires a bit more attention. It is entered when
2034 * we see some SACKs or dupacks. It is split of "Open"
2035 * mainly to move some processing from fast path to slow one.
2036 * "CWR" CWND was reduced due to some Congestion Notification event.
2037 * It can be ECN, ICMP source quench, local device congestion.
2038 * "Recovery" CWND was reduced, we are fast-retransmitting.
2039 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2040 *
2041 * tcp_fastretrans_alert() is entered:
2042 * - each incoming ACK, if state is not "Open"
2043 * - when arrived ACK is unusual, namely:
2044 * * SACK
2045 * * Duplicate ACK.
2046 * * ECN ECE.
2047 *
2048 * Counting packets in flight is pretty simple.
2049 *
2050 * in_flight = packets_out - left_out + retrans_out
2051 *
2052 * packets_out is SND.NXT-SND.UNA counted in packets.
2053 *
2054 * retrans_out is number of retransmitted segments.
2055 *
2056 * left_out is number of segments left network, but not ACKed yet.
2057 *
2058 * left_out = sacked_out + lost_out
2059 *
2060 * sacked_out: Packets, which arrived to receiver out of order
2061 * and hence not ACKed. With SACKs this number is simply
2062 * amount of SACKed data. Even without SACKs
2063 * it is easy to give pretty reliable estimate of this number,
2064 * counting duplicate ACKs.
2065 *
2066 * lost_out: Packets lost by network. TCP has no explicit
2067 * "loss notification" feedback from network (for now).
2068 * It means that this number can be only _guessed_.
2069 * Actually, it is the heuristics to predict lossage that
2070 * distinguishes different algorithms.
2071 *
2072 * F.e. after RTO, when all the queue is considered as lost,
2073 * lost_out = packets_out and in_flight = retrans_out.
2074 *
2075 * Essentially, we have now a few algorithms detecting
2076 * lost packets.
2077 *
2078 * If the receiver supports SACK:
2079 *
2080 * RFC6675/3517: It is the conventional algorithm. A packet is
2081 * considered lost if the number of higher sequence packets
2082 * SACKed is greater than or equal the DUPACK thoreshold
2083 * (reordering). This is implemented in tcp_mark_head_lost and
2084 * tcp_update_scoreboard.
2085 *
2086 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2087 * (2017-) that checks timing instead of counting DUPACKs.
2088 * Essentially a packet is considered lost if it's not S/ACKed
2089 * after RTT + reordering_window, where both metrics are
2090 * dynamically measured and adjusted. This is implemented in
2091 * tcp_rack_mark_lost.
2092 *
2093 * If the receiver does not support SACK:
2094 *
2095 * NewReno (RFC6582): in Recovery we assume that one segment
2096 * is lost (classic Reno). While we are in Recovery and
2097 * a partial ACK arrives, we assume that one more packet
2098 * is lost (NewReno). This heuristics are the same in NewReno
2099 * and SACK.
2100 *
2101 * Really tricky (and requiring careful tuning) part of algorithm
2102 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2103 * The first determines the moment _when_ we should reduce CWND and,
2104 * hence, slow down forward transmission. In fact, it determines the moment
2105 * when we decide that hole is caused by loss, rather than by a reorder.
2106 *
2107 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2108 * holes, caused by lost packets.
2109 *
2110 * And the most logically complicated part of algorithm is undo
2111 * heuristics. We detect false retransmits due to both too early
2112 * fast retransmit (reordering) and underestimated RTO, analyzing
2113 * timestamps and D-SACKs. When we detect that some segments were
2114 * retransmitted by mistake and CWND reduction was wrong, we undo
2115 * window reduction and abort recovery phase. This logic is hidden
2116 * inside several functions named tcp_try_undo_<something>.
2117 */
2118
2119 /* This function decides, when we should leave Disordered state
2120 * and enter Recovery phase, reducing congestion window.
2121 *
2122 * Main question: may we further continue forward transmission
2123 * with the same cwnd?
2124 */
2125 static bool tcp_time_to_recover(struct sock *sk, int flag)
2126 {
2127 struct tcp_sock *tp = tcp_sk(sk);
2128
2129 /* Trick#1: The loss is proven. */
2130 if (tp->lost_out)
2131 return true;
2132
2133 /* Not-A-Trick#2 : Classic rule... */
2134 if (tcp_dupack_heuristics(tp) > tp->reordering)
2135 return true;
2136
2137 return false;
2138 }
2139
2140 /* Detect loss in event "A" above by marking head of queue up as lost.
2141 * For non-SACK(Reno) senders, the first "packets" number of segments
2142 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2143 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2144 * the maximum SACKed segments to pass before reaching this limit.
2145 */
2146 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2147 {
2148 struct tcp_sock *tp = tcp_sk(sk);
2149 struct sk_buff *skb;
2150 int cnt, oldcnt, lost;
2151 unsigned int mss;
2152 /* Use SACK to deduce losses of new sequences sent during recovery */
2153 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2154
2155 WARN_ON(packets > tp->packets_out);
2156 skb = tp->lost_skb_hint;
2157 if (skb) {
2158 /* Head already handled? */
2159 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2160 return;
2161 cnt = tp->lost_cnt_hint;
2162 } else {
2163 skb = tcp_rtx_queue_head(sk);
2164 cnt = 0;
2165 }
2166
2167 skb_rbtree_walk_from(skb) {
2168 /* TODO: do this better */
2169 /* this is not the most efficient way to do this... */
2170 tp->lost_skb_hint = skb;
2171 tp->lost_cnt_hint = cnt;
2172
2173 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2174 break;
2175
2176 oldcnt = cnt;
2177 if (tcp_is_reno(tp) ||
2178 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2179 cnt += tcp_skb_pcount(skb);
2180
2181 if (cnt > packets) {
2182 if (tcp_is_sack(tp) ||
2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2184 (oldcnt >= packets))
2185 break;
2186
2187 mss = tcp_skb_mss(skb);
2188 /* If needed, chop off the prefix to mark as lost. */
2189 lost = (packets - oldcnt) * mss;
2190 if (lost < skb->len &&
2191 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2192 lost, mss, GFP_ATOMIC) < 0)
2193 break;
2194 cnt = packets;
2195 }
2196
2197 tcp_skb_mark_lost(tp, skb);
2198
2199 if (mark_head)
2200 break;
2201 }
2202 tcp_verify_left_out(tp);
2203 }
2204
2205 /* Account newly detected lost packet(s) */
2206
2207 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2208 {
2209 struct tcp_sock *tp = tcp_sk(sk);
2210
2211 if (tcp_is_reno(tp)) {
2212 tcp_mark_head_lost(sk, 1, 1);
2213 } else {
2214 int sacked_upto = tp->sacked_out - tp->reordering;
2215 if (sacked_upto >= 0)
2216 tcp_mark_head_lost(sk, sacked_upto, 0);
2217 else if (fast_rexmit)
2218 tcp_mark_head_lost(sk, 1, 1);
2219 }
2220 }
2221
2222 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2223 {
2224 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2225 before(tp->rx_opt.rcv_tsecr, when);
2226 }
2227
2228 /* skb is spurious retransmitted if the returned timestamp echo
2229 * reply is prior to the skb transmission time
2230 */
2231 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2232 const struct sk_buff *skb)
2233 {
2234 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2235 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2236 }
2237
2238 /* Nothing was retransmitted or returned timestamp is less
2239 * than timestamp of the first retransmission.
2240 */
2241 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2242 {
2243 return !tp->retrans_stamp ||
2244 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2245 }
2246
2247 /* Undo procedures. */
2248
2249 /* We can clear retrans_stamp when there are no retransmissions in the
2250 * window. It would seem that it is trivially available for us in
2251 * tp->retrans_out, however, that kind of assumptions doesn't consider
2252 * what will happen if errors occur when sending retransmission for the
2253 * second time. ...It could the that such segment has only
2254 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2255 * the head skb is enough except for some reneging corner cases that
2256 * are not worth the effort.
2257 *
2258 * Main reason for all this complexity is the fact that connection dying
2259 * time now depends on the validity of the retrans_stamp, in particular,
2260 * that successive retransmissions of a segment must not advance
2261 * retrans_stamp under any conditions.
2262 */
2263 static bool tcp_any_retrans_done(const struct sock *sk)
2264 {
2265 const struct tcp_sock *tp = tcp_sk(sk);
2266 struct sk_buff *skb;
2267
2268 if (tp->retrans_out)
2269 return true;
2270
2271 skb = tcp_rtx_queue_head(sk);
2272 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2273 return true;
2274
2275 return false;
2276 }
2277
2278 static void DBGUNDO(struct sock *sk, const char *msg)
2279 {
2280 #if FASTRETRANS_DEBUG > 1
2281 struct tcp_sock *tp = tcp_sk(sk);
2282 struct inet_sock *inet = inet_sk(sk);
2283
2284 if (sk->sk_family == AF_INET) {
2285 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2286 msg,
2287 &inet->inet_daddr, ntohs(inet->inet_dport),
2288 tp->snd_cwnd, tcp_left_out(tp),
2289 tp->snd_ssthresh, tp->prior_ssthresh,
2290 tp->packets_out);
2291 }
2292 #if IS_ENABLED(CONFIG_IPV6)
2293 else if (sk->sk_family == AF_INET6) {
2294 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2295 msg,
2296 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2297 tp->snd_cwnd, tcp_left_out(tp),
2298 tp->snd_ssthresh, tp->prior_ssthresh,
2299 tp->packets_out);
2300 }
2301 #endif
2302 #endif
2303 }
2304
2305 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2306 {
2307 struct tcp_sock *tp = tcp_sk(sk);
2308
2309 if (unmark_loss) {
2310 struct sk_buff *skb;
2311
2312 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2313 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2314 }
2315 tp->lost_out = 0;
2316 tcp_clear_all_retrans_hints(tp);
2317 }
2318
2319 if (tp->prior_ssthresh) {
2320 const struct inet_connection_sock *icsk = inet_csk(sk);
2321
2322 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2323
2324 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2325 tp->snd_ssthresh = tp->prior_ssthresh;
2326 tcp_ecn_withdraw_cwr(tp);
2327 }
2328 }
2329 tp->snd_cwnd_stamp = tcp_jiffies32;
2330 tp->undo_marker = 0;
2331 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2332 }
2333
2334 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2335 {
2336 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2337 }
2338
2339 /* People celebrate: "We love our President!" */
2340 static bool tcp_try_undo_recovery(struct sock *sk)
2341 {
2342 struct tcp_sock *tp = tcp_sk(sk);
2343
2344 if (tcp_may_undo(tp)) {
2345 int mib_idx;
2346
2347 /* Happy end! We did not retransmit anything
2348 * or our original transmission succeeded.
2349 */
2350 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2351 tcp_undo_cwnd_reduction(sk, false);
2352 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2353 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2354 else
2355 mib_idx = LINUX_MIB_TCPFULLUNDO;
2356
2357 NET_INC_STATS(sock_net(sk), mib_idx);
2358 } else if (tp->rack.reo_wnd_persist) {
2359 tp->rack.reo_wnd_persist--;
2360 }
2361 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2362 /* Hold old state until something *above* high_seq
2363 * is ACKed. For Reno it is MUST to prevent false
2364 * fast retransmits (RFC2582). SACK TCP is safe. */
2365 if (!tcp_any_retrans_done(sk))
2366 tp->retrans_stamp = 0;
2367 return true;
2368 }
2369 tcp_set_ca_state(sk, TCP_CA_Open);
2370 tp->is_sack_reneg = 0;
2371 return false;
2372 }
2373
2374 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2375 static bool tcp_try_undo_dsack(struct sock *sk)
2376 {
2377 struct tcp_sock *tp = tcp_sk(sk);
2378
2379 if (tp->undo_marker && !tp->undo_retrans) {
2380 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2381 tp->rack.reo_wnd_persist + 1);
2382 DBGUNDO(sk, "D-SACK");
2383 tcp_undo_cwnd_reduction(sk, false);
2384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2385 return true;
2386 }
2387 return false;
2388 }
2389
2390 /* Undo during loss recovery after partial ACK or using F-RTO. */
2391 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2392 {
2393 struct tcp_sock *tp = tcp_sk(sk);
2394
2395 if (frto_undo || tcp_may_undo(tp)) {
2396 tcp_undo_cwnd_reduction(sk, true);
2397
2398 DBGUNDO(sk, "partial loss");
2399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2400 if (frto_undo)
2401 NET_INC_STATS(sock_net(sk),
2402 LINUX_MIB_TCPSPURIOUSRTOS);
2403 inet_csk(sk)->icsk_retransmits = 0;
2404 if (frto_undo || tcp_is_sack(tp)) {
2405 tcp_set_ca_state(sk, TCP_CA_Open);
2406 tp->is_sack_reneg = 0;
2407 }
2408 return true;
2409 }
2410 return false;
2411 }
2412
2413 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2414 * It computes the number of packets to send (sndcnt) based on packets newly
2415 * delivered:
2416 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2417 * cwnd reductions across a full RTT.
2418 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2419 * But when the retransmits are acked without further losses, PRR
2420 * slow starts cwnd up to ssthresh to speed up the recovery.
2421 */
2422 static void tcp_init_cwnd_reduction(struct sock *sk)
2423 {
2424 struct tcp_sock *tp = tcp_sk(sk);
2425
2426 tp->high_seq = tp->snd_nxt;
2427 tp->tlp_high_seq = 0;
2428 tp->snd_cwnd_cnt = 0;
2429 tp->prior_cwnd = tp->snd_cwnd;
2430 tp->prr_delivered = 0;
2431 tp->prr_out = 0;
2432 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2433 tcp_ecn_queue_cwr(tp);
2434 }
2435
2436 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2437 {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439 int sndcnt = 0;
2440 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2441
2442 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2443 return;
2444
2445 tp->prr_delivered += newly_acked_sacked;
2446 if (delta < 0) {
2447 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2448 tp->prior_cwnd - 1;
2449 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2450 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2451 !(flag & FLAG_LOST_RETRANS)) {
2452 sndcnt = min_t(int, delta,
2453 max_t(int, tp->prr_delivered - tp->prr_out,
2454 newly_acked_sacked) + 1);
2455 } else {
2456 sndcnt = min(delta, newly_acked_sacked);
2457 }
2458 /* Force a fast retransmit upon entering fast recovery */
2459 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2460 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2461 }
2462
2463 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2464 {
2465 struct tcp_sock *tp = tcp_sk(sk);
2466
2467 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2468 return;
2469
2470 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2471 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2472 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2473 tp->snd_cwnd = tp->snd_ssthresh;
2474 tp->snd_cwnd_stamp = tcp_jiffies32;
2475 }
2476 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2477 }
2478
2479 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2480 void tcp_enter_cwr(struct sock *sk)
2481 {
2482 struct tcp_sock *tp = tcp_sk(sk);
2483
2484 tp->prior_ssthresh = 0;
2485 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2486 tp->undo_marker = 0;
2487 tcp_init_cwnd_reduction(sk);
2488 tcp_set_ca_state(sk, TCP_CA_CWR);
2489 }
2490 }
2491 EXPORT_SYMBOL(tcp_enter_cwr);
2492
2493 static void tcp_try_keep_open(struct sock *sk)
2494 {
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 int state = TCP_CA_Open;
2497
2498 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2499 state = TCP_CA_Disorder;
2500
2501 if (inet_csk(sk)->icsk_ca_state != state) {
2502 tcp_set_ca_state(sk, state);
2503 tp->high_seq = tp->snd_nxt;
2504 }
2505 }
2506
2507 static void tcp_try_to_open(struct sock *sk, int flag)
2508 {
2509 struct tcp_sock *tp = tcp_sk(sk);
2510
2511 tcp_verify_left_out(tp);
2512
2513 if (!tcp_any_retrans_done(sk))
2514 tp->retrans_stamp = 0;
2515
2516 if (flag & FLAG_ECE)
2517 tcp_enter_cwr(sk);
2518
2519 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2520 tcp_try_keep_open(sk);
2521 }
2522 }
2523
2524 static void tcp_mtup_probe_failed(struct sock *sk)
2525 {
2526 struct inet_connection_sock *icsk = inet_csk(sk);
2527
2528 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2529 icsk->icsk_mtup.probe_size = 0;
2530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2531 }
2532
2533 static void tcp_mtup_probe_success(struct sock *sk)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536 struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538 /* FIXME: breaks with very large cwnd */
2539 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2540 tp->snd_cwnd = tp->snd_cwnd *
2541 tcp_mss_to_mtu(sk, tp->mss_cache) /
2542 icsk->icsk_mtup.probe_size;
2543 tp->snd_cwnd_cnt = 0;
2544 tp->snd_cwnd_stamp = tcp_jiffies32;
2545 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2546
2547 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2548 icsk->icsk_mtup.probe_size = 0;
2549 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2550 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2551 }
2552
2553 /* Do a simple retransmit without using the backoff mechanisms in
2554 * tcp_timer. This is used for path mtu discovery.
2555 * The socket is already locked here.
2556 */
2557 void tcp_simple_retransmit(struct sock *sk)
2558 {
2559 const struct inet_connection_sock *icsk = inet_csk(sk);
2560 struct tcp_sock *tp = tcp_sk(sk);
2561 struct sk_buff *skb;
2562 unsigned int mss = tcp_current_mss(sk);
2563
2564 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2565 if (tcp_skb_seglen(skb) > mss &&
2566 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2567 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2568 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2569 tp->retrans_out -= tcp_skb_pcount(skb);
2570 }
2571 tcp_skb_mark_lost_uncond_verify(tp, skb);
2572 }
2573 }
2574
2575 tcp_clear_retrans_hints_partial(tp);
2576
2577 if (!tp->lost_out)
2578 return;
2579
2580 if (tcp_is_reno(tp))
2581 tcp_limit_reno_sacked(tp);
2582
2583 tcp_verify_left_out(tp);
2584
2585 /* Don't muck with the congestion window here.
2586 * Reason is that we do not increase amount of _data_
2587 * in network, but units changed and effective
2588 * cwnd/ssthresh really reduced now.
2589 */
2590 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2591 tp->high_seq = tp->snd_nxt;
2592 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2593 tp->prior_ssthresh = 0;
2594 tp->undo_marker = 0;
2595 tcp_set_ca_state(sk, TCP_CA_Loss);
2596 }
2597 tcp_xmit_retransmit_queue(sk);
2598 }
2599 EXPORT_SYMBOL(tcp_simple_retransmit);
2600
2601 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2602 {
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 int mib_idx;
2605
2606 if (tcp_is_reno(tp))
2607 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2608 else
2609 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2610
2611 NET_INC_STATS(sock_net(sk), mib_idx);
2612
2613 tp->prior_ssthresh = 0;
2614 tcp_init_undo(tp);
2615
2616 if (!tcp_in_cwnd_reduction(sk)) {
2617 if (!ece_ack)
2618 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2619 tcp_init_cwnd_reduction(sk);
2620 }
2621 tcp_set_ca_state(sk, TCP_CA_Recovery);
2622 }
2623
2624 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2625 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2626 */
2627 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2628 int *rexmit)
2629 {
2630 struct tcp_sock *tp = tcp_sk(sk);
2631 bool recovered = !before(tp->snd_una, tp->high_seq);
2632
2633 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2634 tcp_try_undo_loss(sk, false))
2635 return;
2636
2637 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2638 /* Step 3.b. A timeout is spurious if not all data are
2639 * lost, i.e., never-retransmitted data are (s)acked.
2640 */
2641 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2642 tcp_try_undo_loss(sk, true))
2643 return;
2644
2645 if (after(tp->snd_nxt, tp->high_seq)) {
2646 if (flag & FLAG_DATA_SACKED || is_dupack)
2647 tp->frto = 0; /* Step 3.a. loss was real */
2648 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2649 tp->high_seq = tp->snd_nxt;
2650 /* Step 2.b. Try send new data (but deferred until cwnd
2651 * is updated in tcp_ack()). Otherwise fall back to
2652 * the conventional recovery.
2653 */
2654 if (!tcp_write_queue_empty(sk) &&
2655 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2656 *rexmit = REXMIT_NEW;
2657 return;
2658 }
2659 tp->frto = 0;
2660 }
2661 }
2662
2663 if (recovered) {
2664 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2665 tcp_try_undo_recovery(sk);
2666 return;
2667 }
2668 if (tcp_is_reno(tp)) {
2669 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2670 * delivered. Lower inflight to clock out (re)tranmissions.
2671 */
2672 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2673 tcp_add_reno_sack(sk);
2674 else if (flag & FLAG_SND_UNA_ADVANCED)
2675 tcp_reset_reno_sack(tp);
2676 }
2677 *rexmit = REXMIT_LOST;
2678 }
2679
2680 /* Undo during fast recovery after partial ACK. */
2681 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684
2685 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2686 /* Plain luck! Hole if filled with delayed
2687 * packet, rather than with a retransmit. Check reordering.
2688 */
2689 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2690
2691 /* We are getting evidence that the reordering degree is higher
2692 * than we realized. If there are no retransmits out then we
2693 * can undo. Otherwise we clock out new packets but do not
2694 * mark more packets lost or retransmit more.
2695 */
2696 if (tp->retrans_out)
2697 return true;
2698
2699 if (!tcp_any_retrans_done(sk))
2700 tp->retrans_stamp = 0;
2701
2702 DBGUNDO(sk, "partial recovery");
2703 tcp_undo_cwnd_reduction(sk, true);
2704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2705 tcp_try_keep_open(sk);
2706 return true;
2707 }
2708 return false;
2709 }
2710
2711 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2712 {
2713 struct tcp_sock *tp = tcp_sk(sk);
2714
2715 /* Use RACK to detect loss */
2716 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2717 u32 prior_retrans = tp->retrans_out;
2718
2719 tcp_rack_mark_lost(sk);
2720 if (prior_retrans > tp->retrans_out)
2721 *ack_flag |= FLAG_LOST_RETRANS;
2722 }
2723 }
2724
2725 static bool tcp_force_fast_retransmit(struct sock *sk)
2726 {
2727 struct tcp_sock *tp = tcp_sk(sk);
2728
2729 return after(tcp_highest_sack_seq(tp),
2730 tp->snd_una + tp->reordering * tp->mss_cache);
2731 }
2732
2733 /* Process an event, which can update packets-in-flight not trivially.
2734 * Main goal of this function is to calculate new estimate for left_out,
2735 * taking into account both packets sitting in receiver's buffer and
2736 * packets lost by network.
2737 *
2738 * Besides that it updates the congestion state when packet loss or ECN
2739 * is detected. But it does not reduce the cwnd, it is done by the
2740 * congestion control later.
2741 *
2742 * It does _not_ decide what to send, it is made in function
2743 * tcp_xmit_retransmit_queue().
2744 */
2745 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2746 bool is_dupack, int *ack_flag, int *rexmit)
2747 {
2748 struct inet_connection_sock *icsk = inet_csk(sk);
2749 struct tcp_sock *tp = tcp_sk(sk);
2750 int fast_rexmit = 0, flag = *ack_flag;
2751 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752 tcp_force_fast_retransmit(sk));
2753
2754 if (!tp->packets_out && tp->sacked_out)
2755 tp->sacked_out = 0;
2756
2757 /* Now state machine starts.
2758 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2759 if (flag & FLAG_ECE)
2760 tp->prior_ssthresh = 0;
2761
2762 /* B. In all the states check for reneging SACKs. */
2763 if (tcp_check_sack_reneging(sk, flag))
2764 return;
2765
2766 /* C. Check consistency of the current state. */
2767 tcp_verify_left_out(tp);
2768
2769 /* D. Check state exit conditions. State can be terminated
2770 * when high_seq is ACKed. */
2771 if (icsk->icsk_ca_state == TCP_CA_Open) {
2772 WARN_ON(tp->retrans_out != 0);
2773 tp->retrans_stamp = 0;
2774 } else if (!before(tp->snd_una, tp->high_seq)) {
2775 switch (icsk->icsk_ca_state) {
2776 case TCP_CA_CWR:
2777 /* CWR is to be held something *above* high_seq
2778 * is ACKed for CWR bit to reach receiver. */
2779 if (tp->snd_una != tp->high_seq) {
2780 tcp_end_cwnd_reduction(sk);
2781 tcp_set_ca_state(sk, TCP_CA_Open);
2782 }
2783 break;
2784
2785 case TCP_CA_Recovery:
2786 if (tcp_is_reno(tp))
2787 tcp_reset_reno_sack(tp);
2788 if (tcp_try_undo_recovery(sk))
2789 return;
2790 tcp_end_cwnd_reduction(sk);
2791 break;
2792 }
2793 }
2794
2795 /* E. Process state. */
2796 switch (icsk->icsk_ca_state) {
2797 case TCP_CA_Recovery:
2798 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2799 if (tcp_is_reno(tp) && is_dupack)
2800 tcp_add_reno_sack(sk);
2801 } else {
2802 if (tcp_try_undo_partial(sk, prior_snd_una))
2803 return;
2804 /* Partial ACK arrived. Force fast retransmit. */
2805 do_lost = tcp_is_reno(tp) ||
2806 tcp_force_fast_retransmit(sk);
2807 }
2808 if (tcp_try_undo_dsack(sk)) {
2809 tcp_try_keep_open(sk);
2810 return;
2811 }
2812 tcp_rack_identify_loss(sk, ack_flag);
2813 break;
2814 case TCP_CA_Loss:
2815 tcp_process_loss(sk, flag, is_dupack, rexmit);
2816 tcp_rack_identify_loss(sk, ack_flag);
2817 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2818 (*ack_flag & FLAG_LOST_RETRANS)))
2819 return;
2820 /* Change state if cwnd is undone or retransmits are lost */
2821 /* fall through */
2822 default:
2823 if (tcp_is_reno(tp)) {
2824 if (flag & FLAG_SND_UNA_ADVANCED)
2825 tcp_reset_reno_sack(tp);
2826 if (is_dupack)
2827 tcp_add_reno_sack(sk);
2828 }
2829
2830 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2831 tcp_try_undo_dsack(sk);
2832
2833 tcp_rack_identify_loss(sk, ack_flag);
2834 if (!tcp_time_to_recover(sk, flag)) {
2835 tcp_try_to_open(sk, flag);
2836 return;
2837 }
2838
2839 /* MTU probe failure: don't reduce cwnd */
2840 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2841 icsk->icsk_mtup.probe_size &&
2842 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2843 tcp_mtup_probe_failed(sk);
2844 /* Restores the reduction we did in tcp_mtup_probe() */
2845 tp->snd_cwnd++;
2846 tcp_simple_retransmit(sk);
2847 return;
2848 }
2849
2850 /* Otherwise enter Recovery state */
2851 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2852 fast_rexmit = 1;
2853 }
2854
2855 if (do_lost)
2856 tcp_update_scoreboard(sk, fast_rexmit);
2857 *rexmit = REXMIT_LOST;
2858 }
2859
2860 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2861 {
2862 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
2865 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2866 rtt_us ? : jiffies_to_usecs(1));
2867 }
2868
2869 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2870 long seq_rtt_us, long sack_rtt_us,
2871 long ca_rtt_us, struct rate_sample *rs)
2872 {
2873 const struct tcp_sock *tp = tcp_sk(sk);
2874
2875 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2876 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2877 * Karn's algorithm forbids taking RTT if some retransmitted data
2878 * is acked (RFC6298).
2879 */
2880 if (seq_rtt_us < 0)
2881 seq_rtt_us = sack_rtt_us;
2882
2883 /* RTTM Rule: A TSecr value received in a segment is used to
2884 * update the averaged RTT measurement only if the segment
2885 * acknowledges some new data, i.e., only if it advances the
2886 * left edge of the send window.
2887 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2888 */
2889 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2890 flag & FLAG_ACKED) {
2891 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2892 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2893
2894 seq_rtt_us = ca_rtt_us = delta_us;
2895 }
2896 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2897 if (seq_rtt_us < 0)
2898 return false;
2899
2900 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2901 * always taken together with ACK, SACK, or TS-opts. Any negative
2902 * values will be skipped with the seq_rtt_us < 0 check above.
2903 */
2904 tcp_update_rtt_min(sk, ca_rtt_us);
2905 tcp_rtt_estimator(sk, seq_rtt_us);
2906 tcp_set_rto(sk);
2907
2908 /* RFC6298: only reset backoff on valid RTT measurement. */
2909 inet_csk(sk)->icsk_backoff = 0;
2910 return true;
2911 }
2912
2913 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2914 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2915 {
2916 struct rate_sample rs;
2917 long rtt_us = -1L;
2918
2919 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2920 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2921
2922 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2923 }
2924
2925
2926 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2927 {
2928 const struct inet_connection_sock *icsk = inet_csk(sk);
2929
2930 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2931 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2932 }
2933
2934 /* Restart timer after forward progress on connection.
2935 * RFC2988 recommends to restart timer to now+rto.
2936 */
2937 void tcp_rearm_rto(struct sock *sk)
2938 {
2939 const struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2941
2942 /* If the retrans timer is currently being used by Fast Open
2943 * for SYN-ACK retrans purpose, stay put.
2944 */
2945 if (tp->fastopen_rsk)
2946 return;
2947
2948 if (!tp->packets_out) {
2949 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2950 } else {
2951 u32 rto = inet_csk(sk)->icsk_rto;
2952 /* Offset the time elapsed after installing regular RTO */
2953 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2954 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2955 s64 delta_us = tcp_rto_delta_us(sk);
2956 /* delta_us may not be positive if the socket is locked
2957 * when the retrans timer fires and is rescheduled.
2958 */
2959 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2960 }
2961 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2962 TCP_RTO_MAX);
2963 }
2964 }
2965
2966 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2967 static void tcp_set_xmit_timer(struct sock *sk)
2968 {
2969 if (!tcp_schedule_loss_probe(sk, true))
2970 tcp_rearm_rto(sk);
2971 }
2972
2973 /* If we get here, the whole TSO packet has not been acked. */
2974 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2975 {
2976 struct tcp_sock *tp = tcp_sk(sk);
2977 u32 packets_acked;
2978
2979 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2980
2981 packets_acked = tcp_skb_pcount(skb);
2982 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2983 return 0;
2984 packets_acked -= tcp_skb_pcount(skb);
2985
2986 if (packets_acked) {
2987 BUG_ON(tcp_skb_pcount(skb) == 0);
2988 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2989 }
2990
2991 return packets_acked;
2992 }
2993
2994 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2995 u32 prior_snd_una)
2996 {
2997 const struct skb_shared_info *shinfo;
2998
2999 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3000 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3001 return;
3002
3003 shinfo = skb_shinfo(skb);
3004 if (!before(shinfo->tskey, prior_snd_una) &&
3005 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3006 tcp_skb_tsorted_save(skb) {
3007 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3008 } tcp_skb_tsorted_restore(skb);
3009 }
3010 }
3011
3012 /* Remove acknowledged frames from the retransmission queue. If our packet
3013 * is before the ack sequence we can discard it as it's confirmed to have
3014 * arrived at the other end.
3015 */
3016 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3017 u32 prior_snd_una,
3018 struct tcp_sacktag_state *sack)
3019 {
3020 const struct inet_connection_sock *icsk = inet_csk(sk);
3021 u64 first_ackt, last_ackt;
3022 struct tcp_sock *tp = tcp_sk(sk);
3023 u32 prior_sacked = tp->sacked_out;
3024 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3025 struct sk_buff *skb, *next;
3026 bool fully_acked = true;
3027 long sack_rtt_us = -1L;
3028 long seq_rtt_us = -1L;
3029 long ca_rtt_us = -1L;
3030 u32 pkts_acked = 0;
3031 u32 last_in_flight = 0;
3032 bool rtt_update;
3033 int flag = 0;
3034
3035 first_ackt = 0;
3036
3037 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3038 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3039 const u32 start_seq = scb->seq;
3040 u8 sacked = scb->sacked;
3041 u32 acked_pcount;
3042
3043 tcp_ack_tstamp(sk, skb, prior_snd_una);
3044
3045 /* Determine how many packets and what bytes were acked, tso and else */
3046 if (after(scb->end_seq, tp->snd_una)) {
3047 if (tcp_skb_pcount(skb) == 1 ||
3048 !after(tp->snd_una, scb->seq))
3049 break;
3050
3051 acked_pcount = tcp_tso_acked(sk, skb);
3052 if (!acked_pcount)
3053 break;
3054 fully_acked = false;
3055 } else {
3056 acked_pcount = tcp_skb_pcount(skb);
3057 }
3058
3059 if (unlikely(sacked & TCPCB_RETRANS)) {
3060 if (sacked & TCPCB_SACKED_RETRANS)
3061 tp->retrans_out -= acked_pcount;
3062 flag |= FLAG_RETRANS_DATA_ACKED;
3063 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3064 last_ackt = skb->skb_mstamp;
3065 WARN_ON_ONCE(last_ackt == 0);
3066 if (!first_ackt)
3067 first_ackt = last_ackt;
3068
3069 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3070 if (before(start_seq, reord))
3071 reord = start_seq;
3072 if (!after(scb->end_seq, tp->high_seq))
3073 flag |= FLAG_ORIG_SACK_ACKED;
3074 }
3075
3076 if (sacked & TCPCB_SACKED_ACKED) {
3077 tp->sacked_out -= acked_pcount;
3078 } else if (tcp_is_sack(tp)) {
3079 tp->delivered += acked_pcount;
3080 if (!tcp_skb_spurious_retrans(tp, skb))
3081 tcp_rack_advance(tp, sacked, scb->end_seq,
3082 skb->skb_mstamp);
3083 }
3084 if (sacked & TCPCB_LOST)
3085 tp->lost_out -= acked_pcount;
3086
3087 tp->packets_out -= acked_pcount;
3088 pkts_acked += acked_pcount;
3089 tcp_rate_skb_delivered(sk, skb, sack->rate);
3090
3091 /* Initial outgoing SYN's get put onto the write_queue
3092 * just like anything else we transmit. It is not
3093 * true data, and if we misinform our callers that
3094 * this ACK acks real data, we will erroneously exit
3095 * connection startup slow start one packet too
3096 * quickly. This is severely frowned upon behavior.
3097 */
3098 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3099 flag |= FLAG_DATA_ACKED;
3100 } else {
3101 flag |= FLAG_SYN_ACKED;
3102 tp->retrans_stamp = 0;
3103 }
3104
3105 if (!fully_acked)
3106 break;
3107
3108 next = skb_rb_next(skb);
3109 if (unlikely(skb == tp->retransmit_skb_hint))
3110 tp->retransmit_skb_hint = NULL;
3111 if (unlikely(skb == tp->lost_skb_hint))
3112 tp->lost_skb_hint = NULL;
3113 tcp_rtx_queue_unlink_and_free(skb, sk);
3114 }
3115
3116 if (!skb)
3117 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3118
3119 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3120 tp->snd_up = tp->snd_una;
3121
3122 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3123 flag |= FLAG_SACK_RENEGING;
3124
3125 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3126 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3127 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3128 }
3129 if (sack->first_sackt) {
3130 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3131 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3132 }
3133 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3134 ca_rtt_us, sack->rate);
3135
3136 if (flag & FLAG_ACKED) {
3137 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3138 if (unlikely(icsk->icsk_mtup.probe_size &&
3139 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3140 tcp_mtup_probe_success(sk);
3141 }
3142
3143 if (tcp_is_reno(tp)) {
3144 tcp_remove_reno_sacks(sk, pkts_acked);
3145
3146 /* If any of the cumulatively ACKed segments was
3147 * retransmitted, non-SACK case cannot confirm that
3148 * progress was due to original transmission due to
3149 * lack of TCPCB_SACKED_ACKED bits even if some of
3150 * the packets may have been never retransmitted.
3151 */
3152 if (flag & FLAG_RETRANS_DATA_ACKED)
3153 flag &= ~FLAG_ORIG_SACK_ACKED;
3154 } else {
3155 int delta;
3156
3157 /* Non-retransmitted hole got filled? That's reordering */
3158 if (before(reord, prior_fack))
3159 tcp_check_sack_reordering(sk, reord, 0);
3160
3161 delta = prior_sacked - tp->sacked_out;
3162 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3163 }
3164 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3165 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3166 /* Do not re-arm RTO if the sack RTT is measured from data sent
3167 * after when the head was last (re)transmitted. Otherwise the
3168 * timeout may continue to extend in loss recovery.
3169 */
3170 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3171 }
3172
3173 if (icsk->icsk_ca_ops->pkts_acked) {
3174 struct ack_sample sample = { .pkts_acked = pkts_acked,
3175 .rtt_us = sack->rate->rtt_us,
3176 .in_flight = last_in_flight };
3177
3178 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3179 }
3180
3181 #if FASTRETRANS_DEBUG > 0
3182 WARN_ON((int)tp->sacked_out < 0);
3183 WARN_ON((int)tp->lost_out < 0);
3184 WARN_ON((int)tp->retrans_out < 0);
3185 if (!tp->packets_out && tcp_is_sack(tp)) {
3186 icsk = inet_csk(sk);
3187 if (tp->lost_out) {
3188 pr_debug("Leak l=%u %d\n",
3189 tp->lost_out, icsk->icsk_ca_state);
3190 tp->lost_out = 0;
3191 }
3192 if (tp->sacked_out) {
3193 pr_debug("Leak s=%u %d\n",
3194 tp->sacked_out, icsk->icsk_ca_state);
3195 tp->sacked_out = 0;
3196 }
3197 if (tp->retrans_out) {
3198 pr_debug("Leak r=%u %d\n",
3199 tp->retrans_out, icsk->icsk_ca_state);
3200 tp->retrans_out = 0;
3201 }
3202 }
3203 #endif
3204 return flag;
3205 }
3206
3207 static void tcp_ack_probe(struct sock *sk)
3208 {
3209 struct inet_connection_sock *icsk = inet_csk(sk);
3210 struct sk_buff *head = tcp_send_head(sk);
3211 const struct tcp_sock *tp = tcp_sk(sk);
3212
3213 /* Was it a usable window open? */
3214 if (!head)
3215 return;
3216 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3217 icsk->icsk_backoff = 0;
3218 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3219 /* Socket must be waked up by subsequent tcp_data_snd_check().
3220 * This function is not for random using!
3221 */
3222 } else {
3223 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3224
3225 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3226 when, TCP_RTO_MAX);
3227 }
3228 }
3229
3230 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3231 {
3232 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3233 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3234 }
3235
3236 /* Decide wheather to run the increase function of congestion control. */
3237 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3238 {
3239 /* If reordering is high then always grow cwnd whenever data is
3240 * delivered regardless of its ordering. Otherwise stay conservative
3241 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3242 * new SACK or ECE mark may first advance cwnd here and later reduce
3243 * cwnd in tcp_fastretrans_alert() based on more states.
3244 */
3245 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3246 return flag & FLAG_FORWARD_PROGRESS;
3247
3248 return flag & FLAG_DATA_ACKED;
3249 }
3250
3251 /* The "ultimate" congestion control function that aims to replace the rigid
3252 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3253 * It's called toward the end of processing an ACK with precise rate
3254 * information. All transmission or retransmission are delayed afterwards.
3255 */
3256 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3257 int flag, const struct rate_sample *rs)
3258 {
3259 const struct inet_connection_sock *icsk = inet_csk(sk);
3260
3261 if (icsk->icsk_ca_ops->cong_control) {
3262 icsk->icsk_ca_ops->cong_control(sk, rs);
3263 return;
3264 }
3265
3266 if (tcp_in_cwnd_reduction(sk)) {
3267 /* Reduce cwnd if state mandates */
3268 tcp_cwnd_reduction(sk, acked_sacked, flag);
3269 } else if (tcp_may_raise_cwnd(sk, flag)) {
3270 /* Advance cwnd if state allows */
3271 tcp_cong_avoid(sk, ack, acked_sacked);
3272 }
3273 tcp_update_pacing_rate(sk);
3274 }
3275
3276 /* Check that window update is acceptable.
3277 * The function assumes that snd_una<=ack<=snd_next.
3278 */
3279 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3280 const u32 ack, const u32 ack_seq,
3281 const u32 nwin)
3282 {
3283 return after(ack, tp->snd_una) ||
3284 after(ack_seq, tp->snd_wl1) ||
3285 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3286 }
3287
3288 /* If we update tp->snd_una, also update tp->bytes_acked */
3289 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3290 {
3291 u32 delta = ack - tp->snd_una;
3292
3293 sock_owned_by_me((struct sock *)tp);
3294 tp->bytes_acked += delta;
3295 tp->snd_una = ack;
3296 }
3297
3298 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3299 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3300 {
3301 u32 delta = seq - tp->rcv_nxt;
3302
3303 sock_owned_by_me((struct sock *)tp);
3304 tp->bytes_received += delta;
3305 tp->rcv_nxt = seq;
3306 }
3307
3308 /* Update our send window.
3309 *
3310 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3311 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3312 */
3313 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3314 u32 ack_seq)
3315 {
3316 struct tcp_sock *tp = tcp_sk(sk);
3317 int flag = 0;
3318 u32 nwin = ntohs(tcp_hdr(skb)->window);
3319
3320 if (likely(!tcp_hdr(skb)->syn))
3321 nwin <<= tp->rx_opt.snd_wscale;
3322
3323 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3324 flag |= FLAG_WIN_UPDATE;
3325 tcp_update_wl(tp, ack_seq);
3326
3327 if (tp->snd_wnd != nwin) {
3328 tp->snd_wnd = nwin;
3329
3330 /* Note, it is the only place, where
3331 * fast path is recovered for sending TCP.
3332 */
3333 tp->pred_flags = 0;
3334 tcp_fast_path_check(sk);
3335
3336 if (!tcp_write_queue_empty(sk))
3337 tcp_slow_start_after_idle_check(sk);
3338
3339 if (nwin > tp->max_window) {
3340 tp->max_window = nwin;
3341 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3342 }
3343 }
3344 }
3345
3346 tcp_snd_una_update(tp, ack);
3347
3348 return flag;
3349 }
3350
3351 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3352 u32 *last_oow_ack_time)
3353 {
3354 if (*last_oow_ack_time) {
3355 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3356
3357 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3358 NET_INC_STATS(net, mib_idx);
3359 return true; /* rate-limited: don't send yet! */
3360 }
3361 }
3362
3363 *last_oow_ack_time = tcp_jiffies32;
3364
3365 return false; /* not rate-limited: go ahead, send dupack now! */
3366 }
3367
3368 /* Return true if we're currently rate-limiting out-of-window ACKs and
3369 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3370 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3371 * attacks that send repeated SYNs or ACKs for the same connection. To
3372 * do this, we do not send a duplicate SYNACK or ACK if the remote
3373 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3374 */
3375 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3376 int mib_idx, u32 *last_oow_ack_time)
3377 {
3378 /* Data packets without SYNs are not likely part of an ACK loop. */
3379 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3380 !tcp_hdr(skb)->syn)
3381 return false;
3382
3383 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3384 }
3385
3386 /* RFC 5961 7 [ACK Throttling] */
3387 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3388 {
3389 /* unprotected vars, we dont care of overwrites */
3390 static u32 challenge_timestamp;
3391 static unsigned int challenge_count;
3392 struct tcp_sock *tp = tcp_sk(sk);
3393 struct net *net = sock_net(sk);
3394 u32 count, now;
3395
3396 /* First check our per-socket dupack rate limit. */
3397 if (__tcp_oow_rate_limited(net,
3398 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3399 &tp->last_oow_ack_time))
3400 return;
3401
3402 /* Then check host-wide RFC 5961 rate limit. */
3403 now = jiffies / HZ;
3404 if (now != challenge_timestamp) {
3405 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3406 u32 half = (ack_limit + 1) >> 1;
3407
3408 challenge_timestamp = now;
3409 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3410 }
3411 count = READ_ONCE(challenge_count);
3412 if (count > 0) {
3413 WRITE_ONCE(challenge_count, count - 1);
3414 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3415 tcp_send_ack(sk);
3416 }
3417 }
3418
3419 static void tcp_store_ts_recent(struct tcp_sock *tp)
3420 {
3421 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3422 tp->rx_opt.ts_recent_stamp = get_seconds();
3423 }
3424
3425 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3426 {
3427 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3428 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3429 * extra check below makes sure this can only happen
3430 * for pure ACK frames. -DaveM
3431 *
3432 * Not only, also it occurs for expired timestamps.
3433 */
3434
3435 if (tcp_paws_check(&tp->rx_opt, 0))
3436 tcp_store_ts_recent(tp);
3437 }
3438 }
3439
3440 /* This routine deals with acks during a TLP episode.
3441 * We mark the end of a TLP episode on receiving TLP dupack or when
3442 * ack is after tlp_high_seq.
3443 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3444 */
3445 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3446 {
3447 struct tcp_sock *tp = tcp_sk(sk);
3448
3449 if (before(ack, tp->tlp_high_seq))
3450 return;
3451
3452 if (flag & FLAG_DSACKING_ACK) {
3453 /* This DSACK means original and TLP probe arrived; no loss */
3454 tp->tlp_high_seq = 0;
3455 } else if (after(ack, tp->tlp_high_seq)) {
3456 /* ACK advances: there was a loss, so reduce cwnd. Reset
3457 * tlp_high_seq in tcp_init_cwnd_reduction()
3458 */
3459 tcp_init_cwnd_reduction(sk);
3460 tcp_set_ca_state(sk, TCP_CA_CWR);
3461 tcp_end_cwnd_reduction(sk);
3462 tcp_try_keep_open(sk);
3463 NET_INC_STATS(sock_net(sk),
3464 LINUX_MIB_TCPLOSSPROBERECOVERY);
3465 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3466 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3467 /* Pure dupack: original and TLP probe arrived; no loss */
3468 tp->tlp_high_seq = 0;
3469 }
3470 }
3471
3472 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3473 {
3474 const struct inet_connection_sock *icsk = inet_csk(sk);
3475
3476 if (icsk->icsk_ca_ops->in_ack_event)
3477 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3478 }
3479
3480 /* Congestion control has updated the cwnd already. So if we're in
3481 * loss recovery then now we do any new sends (for FRTO) or
3482 * retransmits (for CA_Loss or CA_recovery) that make sense.
3483 */
3484 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3485 {
3486 struct tcp_sock *tp = tcp_sk(sk);
3487
3488 if (rexmit == REXMIT_NONE)
3489 return;
3490
3491 if (unlikely(rexmit == 2)) {
3492 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3493 TCP_NAGLE_OFF);
3494 if (after(tp->snd_nxt, tp->high_seq))
3495 return;
3496 tp->frto = 0;
3497 }
3498 tcp_xmit_retransmit_queue(sk);
3499 }
3500
3501 /* This routine deals with incoming acks, but not outgoing ones. */
3502 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3503 {
3504 struct inet_connection_sock *icsk = inet_csk(sk);
3505 struct tcp_sock *tp = tcp_sk(sk);
3506 struct tcp_sacktag_state sack_state;
3507 struct rate_sample rs = { .prior_delivered = 0 };
3508 u32 prior_snd_una = tp->snd_una;
3509 bool is_sack_reneg = tp->is_sack_reneg;
3510 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3511 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3512 bool is_dupack = false;
3513 int prior_packets = tp->packets_out;
3514 u32 delivered = tp->delivered;
3515 u32 lost = tp->lost;
3516 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3517 u32 prior_fack;
3518
3519 sack_state.first_sackt = 0;
3520 sack_state.rate = &rs;
3521
3522 /* We very likely will need to access rtx queue. */
3523 prefetch(sk->tcp_rtx_queue.rb_node);
3524
3525 /* If the ack is older than previous acks
3526 * then we can probably ignore it.
3527 */
3528 if (before(ack, prior_snd_una)) {
3529 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3530 if (before(ack, prior_snd_una - tp->max_window)) {
3531 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3532 tcp_send_challenge_ack(sk, skb);
3533 return -1;
3534 }
3535 goto old_ack;
3536 }
3537
3538 /* If the ack includes data we haven't sent yet, discard
3539 * this segment (RFC793 Section 3.9).
3540 */
3541 if (after(ack, tp->snd_nxt))
3542 goto invalid_ack;
3543
3544 if (after(ack, prior_snd_una)) {
3545 flag |= FLAG_SND_UNA_ADVANCED;
3546 icsk->icsk_retransmits = 0;
3547 }
3548
3549 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3550 rs.prior_in_flight = tcp_packets_in_flight(tp);
3551
3552 /* ts_recent update must be made after we are sure that the packet
3553 * is in window.
3554 */
3555 if (flag & FLAG_UPDATE_TS_RECENT)
3556 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3557
3558 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3559 /* Window is constant, pure forward advance.
3560 * No more checks are required.
3561 * Note, we use the fact that SND.UNA>=SND.WL2.
3562 */
3563 tcp_update_wl(tp, ack_seq);
3564 tcp_snd_una_update(tp, ack);
3565 flag |= FLAG_WIN_UPDATE;
3566
3567 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3568
3569 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3570 } else {
3571 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3572
3573 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3574 flag |= FLAG_DATA;
3575 else
3576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3577
3578 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3579
3580 if (TCP_SKB_CB(skb)->sacked)
3581 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3582 &sack_state);
3583
3584 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3585 flag |= FLAG_ECE;
3586 ack_ev_flags |= CA_ACK_ECE;
3587 }
3588
3589 if (flag & FLAG_WIN_UPDATE)
3590 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3591
3592 tcp_in_ack_event(sk, ack_ev_flags);
3593 }
3594
3595 /* We passed data and got it acked, remove any soft error
3596 * log. Something worked...
3597 */
3598 sk->sk_err_soft = 0;
3599 icsk->icsk_probes_out = 0;
3600 tp->rcv_tstamp = tcp_jiffies32;
3601 if (!prior_packets)
3602 goto no_queue;
3603
3604 /* See if we can take anything off of the retransmit queue. */
3605 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3606
3607 tcp_rack_update_reo_wnd(sk, &rs);
3608
3609 if (tp->tlp_high_seq)
3610 tcp_process_tlp_ack(sk, ack, flag);
3611 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3612 if (flag & FLAG_SET_XMIT_TIMER)
3613 tcp_set_xmit_timer(sk);
3614
3615 if (tcp_ack_is_dubious(sk, flag)) {
3616 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3617 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3618 &rexmit);
3619 }
3620
3621 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3622 sk_dst_confirm(sk);
3623
3624 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3625 lost = tp->lost - lost; /* freshly marked lost */
3626 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3627 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3628 tcp_xmit_recovery(sk, rexmit);
3629 return 1;
3630
3631 no_queue:
3632 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3633 if (flag & FLAG_DSACKING_ACK)
3634 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3635 &rexmit);
3636 /* If this ack opens up a zero window, clear backoff. It was
3637 * being used to time the probes, and is probably far higher than
3638 * it needs to be for normal retransmission.
3639 */
3640 tcp_ack_probe(sk);
3641
3642 if (tp->tlp_high_seq)
3643 tcp_process_tlp_ack(sk, ack, flag);
3644 return 1;
3645
3646 invalid_ack:
3647 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3648 return -1;
3649
3650 old_ack:
3651 /* If data was SACKed, tag it and see if we should send more data.
3652 * If data was DSACKed, see if we can undo a cwnd reduction.
3653 */
3654 if (TCP_SKB_CB(skb)->sacked) {
3655 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3656 &sack_state);
3657 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3658 &rexmit);
3659 tcp_xmit_recovery(sk, rexmit);
3660 }
3661
3662 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3663 return 0;
3664 }
3665
3666 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3667 bool syn, struct tcp_fastopen_cookie *foc,
3668 bool exp_opt)
3669 {
3670 /* Valid only in SYN or SYN-ACK with an even length. */
3671 if (!foc || !syn || len < 0 || (len & 1))
3672 return;
3673
3674 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3675 len <= TCP_FASTOPEN_COOKIE_MAX)
3676 memcpy(foc->val, cookie, len);
3677 else if (len != 0)
3678 len = -1;
3679 foc->len = len;
3680 foc->exp = exp_opt;
3681 }
3682
3683 static void smc_parse_options(const struct tcphdr *th,
3684 struct tcp_options_received *opt_rx,
3685 const unsigned char *ptr,
3686 int opsize)
3687 {
3688 #if IS_ENABLED(CONFIG_SMC)
3689 if (static_branch_unlikely(&tcp_have_smc)) {
3690 if (th->syn && !(opsize & 1) &&
3691 opsize >= TCPOLEN_EXP_SMC_BASE &&
3692 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3693 opt_rx->smc_ok = 1;
3694 }
3695 #endif
3696 }
3697
3698 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3699 * But, this can also be called on packets in the established flow when
3700 * the fast version below fails.
3701 */
3702 void tcp_parse_options(const struct net *net,
3703 const struct sk_buff *skb,
3704 struct tcp_options_received *opt_rx, int estab,
3705 struct tcp_fastopen_cookie *foc)
3706 {
3707 const unsigned char *ptr;
3708 const struct tcphdr *th = tcp_hdr(skb);
3709 int length = (th->doff * 4) - sizeof(struct tcphdr);
3710
3711 ptr = (const unsigned char *)(th + 1);
3712 opt_rx->saw_tstamp = 0;
3713
3714 while (length > 0) {
3715 int opcode = *ptr++;
3716 int opsize;
3717
3718 switch (opcode) {
3719 case TCPOPT_EOL:
3720 return;
3721 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3722 length--;
3723 continue;
3724 default:
3725 opsize = *ptr++;
3726 if (opsize < 2) /* "silly options" */
3727 return;
3728 if (opsize > length)
3729 return; /* don't parse partial options */
3730 switch (opcode) {
3731 case TCPOPT_MSS:
3732 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3733 u16 in_mss = get_unaligned_be16(ptr);
3734 if (in_mss) {
3735 if (opt_rx->user_mss &&
3736 opt_rx->user_mss < in_mss)
3737 in_mss = opt_rx->user_mss;
3738 opt_rx->mss_clamp = in_mss;
3739 }
3740 }
3741 break;
3742 case TCPOPT_WINDOW:
3743 if (opsize == TCPOLEN_WINDOW && th->syn &&
3744 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3745 __u8 snd_wscale = *(__u8 *)ptr;
3746 opt_rx->wscale_ok = 1;
3747 if (snd_wscale > TCP_MAX_WSCALE) {
3748 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3749 __func__,
3750 snd_wscale,
3751 TCP_MAX_WSCALE);
3752 snd_wscale = TCP_MAX_WSCALE;
3753 }
3754 opt_rx->snd_wscale = snd_wscale;
3755 }
3756 break;
3757 case TCPOPT_TIMESTAMP:
3758 if ((opsize == TCPOLEN_TIMESTAMP) &&
3759 ((estab && opt_rx->tstamp_ok) ||
3760 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3761 opt_rx->saw_tstamp = 1;
3762 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3763 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3764 }
3765 break;
3766 case TCPOPT_SACK_PERM:
3767 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3768 !estab && net->ipv4.sysctl_tcp_sack) {
3769 opt_rx->sack_ok = TCP_SACK_SEEN;
3770 tcp_sack_reset(opt_rx);
3771 }
3772 break;
3773
3774 case TCPOPT_SACK:
3775 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3776 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3777 opt_rx->sack_ok) {
3778 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3779 }
3780 break;
3781 #ifdef CONFIG_TCP_MD5SIG
3782 case TCPOPT_MD5SIG:
3783 /*
3784 * The MD5 Hash has already been
3785 * checked (see tcp_v{4,6}_do_rcv()).
3786 */
3787 break;
3788 #endif
3789 case TCPOPT_FASTOPEN:
3790 tcp_parse_fastopen_option(
3791 opsize - TCPOLEN_FASTOPEN_BASE,
3792 ptr, th->syn, foc, false);
3793 break;
3794
3795 case TCPOPT_EXP:
3796 /* Fast Open option shares code 254 using a
3797 * 16 bits magic number.
3798 */
3799 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3800 get_unaligned_be16(ptr) ==
3801 TCPOPT_FASTOPEN_MAGIC)
3802 tcp_parse_fastopen_option(opsize -
3803 TCPOLEN_EXP_FASTOPEN_BASE,
3804 ptr + 2, th->syn, foc, true);
3805 else
3806 smc_parse_options(th, opt_rx, ptr,
3807 opsize);
3808 break;
3809
3810 }
3811 ptr += opsize-2;
3812 length -= opsize;
3813 }
3814 }
3815 }
3816 EXPORT_SYMBOL(tcp_parse_options);
3817
3818 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3819 {
3820 const __be32 *ptr = (const __be32 *)(th + 1);
3821
3822 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3823 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3824 tp->rx_opt.saw_tstamp = 1;
3825 ++ptr;
3826 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3827 ++ptr;
3828 if (*ptr)
3829 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3830 else
3831 tp->rx_opt.rcv_tsecr = 0;
3832 return true;
3833 }
3834 return false;
3835 }
3836
3837 /* Fast parse options. This hopes to only see timestamps.
3838 * If it is wrong it falls back on tcp_parse_options().
3839 */
3840 static bool tcp_fast_parse_options(const struct net *net,
3841 const struct sk_buff *skb,
3842 const struct tcphdr *th, struct tcp_sock *tp)
3843 {
3844 /* In the spirit of fast parsing, compare doff directly to constant
3845 * values. Because equality is used, short doff can be ignored here.
3846 */
3847 if (th->doff == (sizeof(*th) / 4)) {
3848 tp->rx_opt.saw_tstamp = 0;
3849 return false;
3850 } else if (tp->rx_opt.tstamp_ok &&
3851 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3852 if (tcp_parse_aligned_timestamp(tp, th))
3853 return true;
3854 }
3855
3856 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3857 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3858 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3859
3860 return true;
3861 }
3862
3863 #ifdef CONFIG_TCP_MD5SIG
3864 /*
3865 * Parse MD5 Signature option
3866 */
3867 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3868 {
3869 int length = (th->doff << 2) - sizeof(*th);
3870 const u8 *ptr = (const u8 *)(th + 1);
3871
3872 /* If not enough data remaining, we can short cut */
3873 while (length >= TCPOLEN_MD5SIG) {
3874 int opcode = *ptr++;
3875 int opsize;
3876
3877 switch (opcode) {
3878 case TCPOPT_EOL:
3879 return NULL;
3880 case TCPOPT_NOP:
3881 length--;
3882 continue;
3883 default:
3884 opsize = *ptr++;
3885 if (opsize < 2 || opsize > length)
3886 return NULL;
3887 if (opcode == TCPOPT_MD5SIG)
3888 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3889 }
3890 ptr += opsize - 2;
3891 length -= opsize;
3892 }
3893 return NULL;
3894 }
3895 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3896 #endif
3897
3898 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3899 *
3900 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3901 * it can pass through stack. So, the following predicate verifies that
3902 * this segment is not used for anything but congestion avoidance or
3903 * fast retransmit. Moreover, we even are able to eliminate most of such
3904 * second order effects, if we apply some small "replay" window (~RTO)
3905 * to timestamp space.
3906 *
3907 * All these measures still do not guarantee that we reject wrapped ACKs
3908 * on networks with high bandwidth, when sequence space is recycled fastly,
3909 * but it guarantees that such events will be very rare and do not affect
3910 * connection seriously. This doesn't look nice, but alas, PAWS is really
3911 * buggy extension.
3912 *
3913 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3914 * states that events when retransmit arrives after original data are rare.
3915 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3916 * the biggest problem on large power networks even with minor reordering.
3917 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3918 * up to bandwidth of 18Gigabit/sec. 8) ]
3919 */
3920
3921 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3922 {
3923 const struct tcp_sock *tp = tcp_sk(sk);
3924 const struct tcphdr *th = tcp_hdr(skb);
3925 u32 seq = TCP_SKB_CB(skb)->seq;
3926 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3927
3928 return (/* 1. Pure ACK with correct sequence number. */
3929 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3930
3931 /* 2. ... and duplicate ACK. */
3932 ack == tp->snd_una &&
3933
3934 /* 3. ... and does not update window. */
3935 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3936
3937 /* 4. ... and sits in replay window. */
3938 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3939 }
3940
3941 static inline bool tcp_paws_discard(const struct sock *sk,
3942 const struct sk_buff *skb)
3943 {
3944 const struct tcp_sock *tp = tcp_sk(sk);
3945
3946 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3947 !tcp_disordered_ack(sk, skb);
3948 }
3949
3950 /* Check segment sequence number for validity.
3951 *
3952 * Segment controls are considered valid, if the segment
3953 * fits to the window after truncation to the window. Acceptability
3954 * of data (and SYN, FIN, of course) is checked separately.
3955 * See tcp_data_queue(), for example.
3956 *
3957 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3958 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3959 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3960 * (borrowed from freebsd)
3961 */
3962
3963 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3964 {
3965 return !before(end_seq, tp->rcv_wup) &&
3966 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3967 }
3968
3969 /* When we get a reset we do this. */
3970 void tcp_reset(struct sock *sk)
3971 {
3972 trace_tcp_receive_reset(sk);
3973
3974 /* We want the right error as BSD sees it (and indeed as we do). */
3975 switch (sk->sk_state) {
3976 case TCP_SYN_SENT:
3977 sk->sk_err = ECONNREFUSED;
3978 break;
3979 case TCP_CLOSE_WAIT:
3980 sk->sk_err = EPIPE;
3981 break;
3982 case TCP_CLOSE:
3983 return;
3984 default:
3985 sk->sk_err = ECONNRESET;
3986 }
3987 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3988 smp_wmb();
3989
3990 tcp_write_queue_purge(sk);
3991 tcp_done(sk);
3992
3993 if (!sock_flag(sk, SOCK_DEAD))
3994 sk->sk_error_report(sk);
3995 }
3996
3997 /*
3998 * Process the FIN bit. This now behaves as it is supposed to work
3999 * and the FIN takes effect when it is validly part of sequence
4000 * space. Not before when we get holes.
4001 *
4002 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4003 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4004 * TIME-WAIT)
4005 *
4006 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4007 * close and we go into CLOSING (and later onto TIME-WAIT)
4008 *
4009 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4010 */
4011 void tcp_fin(struct sock *sk)
4012 {
4013 struct tcp_sock *tp = tcp_sk(sk);
4014
4015 inet_csk_schedule_ack(sk);
4016
4017 sk->sk_shutdown |= RCV_SHUTDOWN;
4018 sock_set_flag(sk, SOCK_DONE);
4019
4020 switch (sk->sk_state) {
4021 case TCP_SYN_RECV:
4022 case TCP_ESTABLISHED:
4023 /* Move to CLOSE_WAIT */
4024 tcp_set_state(sk, TCP_CLOSE_WAIT);
4025 inet_csk(sk)->icsk_ack.pingpong = 1;
4026 break;
4027
4028 case TCP_CLOSE_WAIT:
4029 case TCP_CLOSING:
4030 /* Received a retransmission of the FIN, do
4031 * nothing.
4032 */
4033 break;
4034 case TCP_LAST_ACK:
4035 /* RFC793: Remain in the LAST-ACK state. */
4036 break;
4037
4038 case TCP_FIN_WAIT1:
4039 /* This case occurs when a simultaneous close
4040 * happens, we must ack the received FIN and
4041 * enter the CLOSING state.
4042 */
4043 tcp_send_ack(sk);
4044 tcp_set_state(sk, TCP_CLOSING);
4045 break;
4046 case TCP_FIN_WAIT2:
4047 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4048 tcp_send_ack(sk);
4049 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4050 break;
4051 default:
4052 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4053 * cases we should never reach this piece of code.
4054 */
4055 pr_err("%s: Impossible, sk->sk_state=%d\n",
4056 __func__, sk->sk_state);
4057 break;
4058 }
4059
4060 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4061 * Probably, we should reset in this case. For now drop them.
4062 */
4063 skb_rbtree_purge(&tp->out_of_order_queue);
4064 if (tcp_is_sack(tp))
4065 tcp_sack_reset(&tp->rx_opt);
4066 sk_mem_reclaim(sk);
4067
4068 if (!sock_flag(sk, SOCK_DEAD)) {
4069 sk->sk_state_change(sk);
4070
4071 /* Do not send POLL_HUP for half duplex close. */
4072 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4073 sk->sk_state == TCP_CLOSE)
4074 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4075 else
4076 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4077 }
4078 }
4079
4080 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4081 u32 end_seq)
4082 {
4083 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4084 if (before(seq, sp->start_seq))
4085 sp->start_seq = seq;
4086 if (after(end_seq, sp->end_seq))
4087 sp->end_seq = end_seq;
4088 return true;
4089 }
4090 return false;
4091 }
4092
4093 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4094 {
4095 struct tcp_sock *tp = tcp_sk(sk);
4096
4097 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4098 int mib_idx;
4099
4100 if (before(seq, tp->rcv_nxt))
4101 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4102 else
4103 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4104
4105 NET_INC_STATS(sock_net(sk), mib_idx);
4106
4107 tp->rx_opt.dsack = 1;
4108 tp->duplicate_sack[0].start_seq = seq;
4109 tp->duplicate_sack[0].end_seq = end_seq;
4110 }
4111 }
4112
4113 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4114 {
4115 struct tcp_sock *tp = tcp_sk(sk);
4116
4117 if (!tp->rx_opt.dsack)
4118 tcp_dsack_set(sk, seq, end_seq);
4119 else
4120 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4121 }
4122
4123 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4124 {
4125 struct tcp_sock *tp = tcp_sk(sk);
4126
4127 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4128 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4129 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4130 tcp_enter_quickack_mode(sk);
4131
4132 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4133 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4134
4135 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4136 end_seq = tp->rcv_nxt;
4137 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4138 }
4139 }
4140
4141 tcp_send_ack(sk);
4142 }
4143
4144 /* These routines update the SACK block as out-of-order packets arrive or
4145 * in-order packets close up the sequence space.
4146 */
4147 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4148 {
4149 int this_sack;
4150 struct tcp_sack_block *sp = &tp->selective_acks[0];
4151 struct tcp_sack_block *swalk = sp + 1;
4152
4153 /* See if the recent change to the first SACK eats into
4154 * or hits the sequence space of other SACK blocks, if so coalesce.
4155 */
4156 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4157 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4158 int i;
4159
4160 /* Zap SWALK, by moving every further SACK up by one slot.
4161 * Decrease num_sacks.
4162 */
4163 tp->rx_opt.num_sacks--;
4164 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4165 sp[i] = sp[i + 1];
4166 continue;
4167 }
4168 this_sack++, swalk++;
4169 }
4170 }
4171
4172 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 struct tcp_sock *tp = tcp_sk(sk);
4175 struct tcp_sack_block *sp = &tp->selective_acks[0];
4176 int cur_sacks = tp->rx_opt.num_sacks;
4177 int this_sack;
4178
4179 if (!cur_sacks)
4180 goto new_sack;
4181
4182 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4183 if (tcp_sack_extend(sp, seq, end_seq)) {
4184 /* Rotate this_sack to the first one. */
4185 for (; this_sack > 0; this_sack--, sp--)
4186 swap(*sp, *(sp - 1));
4187 if (cur_sacks > 1)
4188 tcp_sack_maybe_coalesce(tp);
4189 return;
4190 }
4191 }
4192
4193 /* Could not find an adjacent existing SACK, build a new one,
4194 * put it at the front, and shift everyone else down. We
4195 * always know there is at least one SACK present already here.
4196 *
4197 * If the sack array is full, forget about the last one.
4198 */
4199 if (this_sack >= TCP_NUM_SACKS) {
4200 this_sack--;
4201 tp->rx_opt.num_sacks--;
4202 sp--;
4203 }
4204 for (; this_sack > 0; this_sack--, sp--)
4205 *sp = *(sp - 1);
4206
4207 new_sack:
4208 /* Build the new head SACK, and we're done. */
4209 sp->start_seq = seq;
4210 sp->end_seq = end_seq;
4211 tp->rx_opt.num_sacks++;
4212 }
4213
4214 /* RCV.NXT advances, some SACKs should be eaten. */
4215
4216 static void tcp_sack_remove(struct tcp_sock *tp)
4217 {
4218 struct tcp_sack_block *sp = &tp->selective_acks[0];
4219 int num_sacks = tp->rx_opt.num_sacks;
4220 int this_sack;
4221
4222 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4223 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4224 tp->rx_opt.num_sacks = 0;
4225 return;
4226 }
4227
4228 for (this_sack = 0; this_sack < num_sacks;) {
4229 /* Check if the start of the sack is covered by RCV.NXT. */
4230 if (!before(tp->rcv_nxt, sp->start_seq)) {
4231 int i;
4232
4233 /* RCV.NXT must cover all the block! */
4234 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4235
4236 /* Zap this SACK, by moving forward any other SACKS. */
4237 for (i = this_sack+1; i < num_sacks; i++)
4238 tp->selective_acks[i-1] = tp->selective_acks[i];
4239 num_sacks--;
4240 continue;
4241 }
4242 this_sack++;
4243 sp++;
4244 }
4245 tp->rx_opt.num_sacks = num_sacks;
4246 }
4247
4248 /**
4249 * tcp_try_coalesce - try to merge skb to prior one
4250 * @sk: socket
4251 * @dest: destination queue
4252 * @to: prior buffer
4253 * @from: buffer to add in queue
4254 * @fragstolen: pointer to boolean
4255 *
4256 * Before queueing skb @from after @to, try to merge them
4257 * to reduce overall memory use and queue lengths, if cost is small.
4258 * Packets in ofo or receive queues can stay a long time.
4259 * Better try to coalesce them right now to avoid future collapses.
4260 * Returns true if caller should free @from instead of queueing it
4261 */
4262 static bool tcp_try_coalesce(struct sock *sk,
4263 struct sk_buff *to,
4264 struct sk_buff *from,
4265 bool *fragstolen)
4266 {
4267 int delta;
4268
4269 *fragstolen = false;
4270
4271 /* Its possible this segment overlaps with prior segment in queue */
4272 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4273 return false;
4274
4275 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4276 return false;
4277
4278 atomic_add(delta, &sk->sk_rmem_alloc);
4279 sk_mem_charge(sk, delta);
4280 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4281 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4282 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4283 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4284
4285 if (TCP_SKB_CB(from)->has_rxtstamp) {
4286 TCP_SKB_CB(to)->has_rxtstamp = true;
4287 to->tstamp = from->tstamp;
4288 }
4289
4290 return true;
4291 }
4292
4293 static bool tcp_ooo_try_coalesce(struct sock *sk,
4294 struct sk_buff *to,
4295 struct sk_buff *from,
4296 bool *fragstolen)
4297 {
4298 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4299
4300 /* In case tcp_drop() is called later, update to->gso_segs */
4301 if (res) {
4302 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4303 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4304
4305 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4306 }
4307 return res;
4308 }
4309
4310 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4311 {
4312 sk_drops_add(sk, skb);
4313 __kfree_skb(skb);
4314 }
4315
4316 /* This one checks to see if we can put data from the
4317 * out_of_order queue into the receive_queue.
4318 */
4319 static void tcp_ofo_queue(struct sock *sk)
4320 {
4321 struct tcp_sock *tp = tcp_sk(sk);
4322 __u32 dsack_high = tp->rcv_nxt;
4323 bool fin, fragstolen, eaten;
4324 struct sk_buff *skb, *tail;
4325 struct rb_node *p;
4326
4327 p = rb_first(&tp->out_of_order_queue);
4328 while (p) {
4329 skb = rb_to_skb(p);
4330 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4331 break;
4332
4333 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4334 __u32 dsack = dsack_high;
4335 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4336 dsack_high = TCP_SKB_CB(skb)->end_seq;
4337 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4338 }
4339 p = rb_next(p);
4340 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4341
4342 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4343 SOCK_DEBUG(sk, "ofo packet was already received\n");
4344 tcp_drop(sk, skb);
4345 continue;
4346 }
4347 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4348 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4349 TCP_SKB_CB(skb)->end_seq);
4350
4351 tail = skb_peek_tail(&sk->sk_receive_queue);
4352 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4353 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4354 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4355 if (!eaten)
4356 __skb_queue_tail(&sk->sk_receive_queue, skb);
4357 else
4358 kfree_skb_partial(skb, fragstolen);
4359
4360 if (unlikely(fin)) {
4361 tcp_fin(sk);
4362 /* tcp_fin() purges tp->out_of_order_queue,
4363 * so we must end this loop right now.
4364 */
4365 break;
4366 }
4367 }
4368 }
4369
4370 static bool tcp_prune_ofo_queue(struct sock *sk);
4371 static int tcp_prune_queue(struct sock *sk);
4372
4373 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4374 unsigned int size)
4375 {
4376 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4377 !sk_rmem_schedule(sk, skb, size)) {
4378
4379 if (tcp_prune_queue(sk) < 0)
4380 return -1;
4381
4382 while (!sk_rmem_schedule(sk, skb, size)) {
4383 if (!tcp_prune_ofo_queue(sk))
4384 return -1;
4385 }
4386 }
4387 return 0;
4388 }
4389
4390 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4391 {
4392 struct tcp_sock *tp = tcp_sk(sk);
4393 struct rb_node **p, *parent;
4394 struct sk_buff *skb1;
4395 u32 seq, end_seq;
4396 bool fragstolen;
4397
4398 tcp_ecn_check_ce(tp, skb);
4399
4400 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4402 tcp_drop(sk, skb);
4403 return;
4404 }
4405
4406 /* Disable header prediction. */
4407 tp->pred_flags = 0;
4408 inet_csk_schedule_ack(sk);
4409
4410 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4411 seq = TCP_SKB_CB(skb)->seq;
4412 end_seq = TCP_SKB_CB(skb)->end_seq;
4413 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4414 tp->rcv_nxt, seq, end_seq);
4415
4416 p = &tp->out_of_order_queue.rb_node;
4417 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4418 /* Initial out of order segment, build 1 SACK. */
4419 if (tcp_is_sack(tp)) {
4420 tp->rx_opt.num_sacks = 1;
4421 tp->selective_acks[0].start_seq = seq;
4422 tp->selective_acks[0].end_seq = end_seq;
4423 }
4424 rb_link_node(&skb->rbnode, NULL, p);
4425 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4426 tp->ooo_last_skb = skb;
4427 goto end;
4428 }
4429
4430 /* In the typical case, we are adding an skb to the end of the list.
4431 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4432 */
4433 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4434 skb, &fragstolen)) {
4435 coalesce_done:
4436 tcp_grow_window(sk, skb);
4437 kfree_skb_partial(skb, fragstolen);
4438 skb = NULL;
4439 goto add_sack;
4440 }
4441 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4442 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4443 parent = &tp->ooo_last_skb->rbnode;
4444 p = &parent->rb_right;
4445 goto insert;
4446 }
4447
4448 /* Find place to insert this segment. Handle overlaps on the way. */
4449 parent = NULL;
4450 while (*p) {
4451 parent = *p;
4452 skb1 = rb_to_skb(parent);
4453 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4454 p = &parent->rb_left;
4455 continue;
4456 }
4457 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4458 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4459 /* All the bits are present. Drop. */
4460 NET_INC_STATS(sock_net(sk),
4461 LINUX_MIB_TCPOFOMERGE);
4462 tcp_drop(sk, skb);
4463 skb = NULL;
4464 tcp_dsack_set(sk, seq, end_seq);
4465 goto add_sack;
4466 }
4467 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4468 /* Partial overlap. */
4469 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4470 } else {
4471 /* skb's seq == skb1's seq and skb covers skb1.
4472 * Replace skb1 with skb.
4473 */
4474 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4475 &tp->out_of_order_queue);
4476 tcp_dsack_extend(sk,
4477 TCP_SKB_CB(skb1)->seq,
4478 TCP_SKB_CB(skb1)->end_seq);
4479 NET_INC_STATS(sock_net(sk),
4480 LINUX_MIB_TCPOFOMERGE);
4481 tcp_drop(sk, skb1);
4482 goto merge_right;
4483 }
4484 } else if (tcp_ooo_try_coalesce(sk, skb1,
4485 skb, &fragstolen)) {
4486 goto coalesce_done;
4487 }
4488 p = &parent->rb_right;
4489 }
4490 insert:
4491 /* Insert segment into RB tree. */
4492 rb_link_node(&skb->rbnode, parent, p);
4493 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4494
4495 merge_right:
4496 /* Remove other segments covered by skb. */
4497 while ((skb1 = skb_rb_next(skb)) != NULL) {
4498 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4499 break;
4500 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4501 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4502 end_seq);
4503 break;
4504 }
4505 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4506 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4507 TCP_SKB_CB(skb1)->end_seq);
4508 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4509 tcp_drop(sk, skb1);
4510 }
4511 /* If there is no skb after us, we are the last_skb ! */
4512 if (!skb1)
4513 tp->ooo_last_skb = skb;
4514
4515 add_sack:
4516 if (tcp_is_sack(tp))
4517 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4518 end:
4519 if (skb) {
4520 tcp_grow_window(sk, skb);
4521 skb_condense(skb);
4522 skb_set_owner_r(skb, sk);
4523 }
4524 }
4525
4526 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4527 bool *fragstolen)
4528 {
4529 int eaten;
4530 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4531
4532 __skb_pull(skb, hdrlen);
4533 eaten = (tail &&
4534 tcp_try_coalesce(sk, tail,
4535 skb, fragstolen)) ? 1 : 0;
4536 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4537 if (!eaten) {
4538 __skb_queue_tail(&sk->sk_receive_queue, skb);
4539 skb_set_owner_r(skb, sk);
4540 }
4541 return eaten;
4542 }
4543
4544 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4545 {
4546 struct sk_buff *skb;
4547 int err = -ENOMEM;
4548 int data_len = 0;
4549 bool fragstolen;
4550
4551 if (size == 0)
4552 return 0;
4553
4554 if (size > PAGE_SIZE) {
4555 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4556
4557 data_len = npages << PAGE_SHIFT;
4558 size = data_len + (size & ~PAGE_MASK);
4559 }
4560 skb = alloc_skb_with_frags(size - data_len, data_len,
4561 PAGE_ALLOC_COSTLY_ORDER,
4562 &err, sk->sk_allocation);
4563 if (!skb)
4564 goto err;
4565
4566 skb_put(skb, size - data_len);
4567 skb->data_len = data_len;
4568 skb->len = size;
4569
4570 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4571 goto err_free;
4572
4573 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4574 if (err)
4575 goto err_free;
4576
4577 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4578 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4579 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4580
4581 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4582 WARN_ON_ONCE(fragstolen); /* should not happen */
4583 __kfree_skb(skb);
4584 }
4585 return size;
4586
4587 err_free:
4588 kfree_skb(skb);
4589 err:
4590 return err;
4591
4592 }
4593
4594 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4595 {
4596 struct tcp_sock *tp = tcp_sk(sk);
4597 bool fragstolen;
4598 int eaten;
4599
4600 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4601 __kfree_skb(skb);
4602 return;
4603 }
4604 skb_dst_drop(skb);
4605 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4606
4607 tcp_ecn_accept_cwr(tp, skb);
4608
4609 tp->rx_opt.dsack = 0;
4610
4611 /* Queue data for delivery to the user.
4612 * Packets in sequence go to the receive queue.
4613 * Out of sequence packets to the out_of_order_queue.
4614 */
4615 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4616 if (tcp_receive_window(tp) == 0)
4617 goto out_of_window;
4618
4619 /* Ok. In sequence. In window. */
4620 queue_and_out:
4621 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4622 sk_forced_mem_schedule(sk, skb->truesize);
4623 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4624 goto drop;
4625
4626 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4627 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4628 if (skb->len)
4629 tcp_event_data_recv(sk, skb);
4630 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4631 tcp_fin(sk);
4632
4633 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4634 tcp_ofo_queue(sk);
4635
4636 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4637 * gap in queue is filled.
4638 */
4639 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4640 inet_csk(sk)->icsk_ack.pingpong = 0;
4641 }
4642
4643 if (tp->rx_opt.num_sacks)
4644 tcp_sack_remove(tp);
4645
4646 tcp_fast_path_check(sk);
4647
4648 if (eaten > 0)
4649 kfree_skb_partial(skb, fragstolen);
4650 if (!sock_flag(sk, SOCK_DEAD))
4651 sk->sk_data_ready(sk);
4652 return;
4653 }
4654
4655 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4656 /* A retransmit, 2nd most common case. Force an immediate ack. */
4657 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4658 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4659
4660 out_of_window:
4661 tcp_enter_quickack_mode(sk);
4662 inet_csk_schedule_ack(sk);
4663 drop:
4664 tcp_drop(sk, skb);
4665 return;
4666 }
4667
4668 /* Out of window. F.e. zero window probe. */
4669 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4670 goto out_of_window;
4671
4672 tcp_enter_quickack_mode(sk);
4673
4674 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4675 /* Partial packet, seq < rcv_next < end_seq */
4676 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4677 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4678 TCP_SKB_CB(skb)->end_seq);
4679
4680 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4681
4682 /* If window is closed, drop tail of packet. But after
4683 * remembering D-SACK for its head made in previous line.
4684 */
4685 if (!tcp_receive_window(tp))
4686 goto out_of_window;
4687 goto queue_and_out;
4688 }
4689
4690 tcp_data_queue_ofo(sk, skb);
4691 }
4692
4693 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4694 {
4695 if (list)
4696 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4697
4698 return skb_rb_next(skb);
4699 }
4700
4701 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702 struct sk_buff_head *list,
4703 struct rb_root *root)
4704 {
4705 struct sk_buff *next = tcp_skb_next(skb, list);
4706
4707 if (list)
4708 __skb_unlink(skb, list);
4709 else
4710 rb_erase(&skb->rbnode, root);
4711
4712 __kfree_skb(skb);
4713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4714
4715 return next;
4716 }
4717
4718 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4719 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4720 {
4721 struct rb_node **p = &root->rb_node;
4722 struct rb_node *parent = NULL;
4723 struct sk_buff *skb1;
4724
4725 while (*p) {
4726 parent = *p;
4727 skb1 = rb_to_skb(parent);
4728 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4729 p = &parent->rb_left;
4730 else
4731 p = &parent->rb_right;
4732 }
4733 rb_link_node(&skb->rbnode, parent, p);
4734 rb_insert_color(&skb->rbnode, root);
4735 }
4736
4737 /* Collapse contiguous sequence of skbs head..tail with
4738 * sequence numbers start..end.
4739 *
4740 * If tail is NULL, this means until the end of the queue.
4741 *
4742 * Segments with FIN/SYN are not collapsed (only because this
4743 * simplifies code)
4744 */
4745 static void
4746 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4747 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4748 {
4749 struct sk_buff *skb = head, *n;
4750 struct sk_buff_head tmp;
4751 bool end_of_skbs;
4752
4753 /* First, check that queue is collapsible and find
4754 * the point where collapsing can be useful.
4755 */
4756 restart:
4757 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4758 n = tcp_skb_next(skb, list);
4759
4760 /* No new bits? It is possible on ofo queue. */
4761 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4762 skb = tcp_collapse_one(sk, skb, list, root);
4763 if (!skb)
4764 break;
4765 goto restart;
4766 }
4767
4768 /* The first skb to collapse is:
4769 * - not SYN/FIN and
4770 * - bloated or contains data before "start" or
4771 * overlaps to the next one.
4772 */
4773 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4774 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4775 before(TCP_SKB_CB(skb)->seq, start))) {
4776 end_of_skbs = false;
4777 break;
4778 }
4779
4780 if (n && n != tail &&
4781 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4782 end_of_skbs = false;
4783 break;
4784 }
4785
4786 /* Decided to skip this, advance start seq. */
4787 start = TCP_SKB_CB(skb)->end_seq;
4788 }
4789 if (end_of_skbs ||
4790 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4791 return;
4792
4793 __skb_queue_head_init(&tmp);
4794
4795 while (before(start, end)) {
4796 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4797 struct sk_buff *nskb;
4798
4799 nskb = alloc_skb(copy, GFP_ATOMIC);
4800 if (!nskb)
4801 break;
4802
4803 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4804 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4805 if (list)
4806 __skb_queue_before(list, skb, nskb);
4807 else
4808 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4809 skb_set_owner_r(nskb, sk);
4810
4811 /* Copy data, releasing collapsed skbs. */
4812 while (copy > 0) {
4813 int offset = start - TCP_SKB_CB(skb)->seq;
4814 int size = TCP_SKB_CB(skb)->end_seq - start;
4815
4816 BUG_ON(offset < 0);
4817 if (size > 0) {
4818 size = min(copy, size);
4819 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4820 BUG();
4821 TCP_SKB_CB(nskb)->end_seq += size;
4822 copy -= size;
4823 start += size;
4824 }
4825 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4826 skb = tcp_collapse_one(sk, skb, list, root);
4827 if (!skb ||
4828 skb == tail ||
4829 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4830 goto end;
4831 }
4832 }
4833 }
4834 end:
4835 skb_queue_walk_safe(&tmp, skb, n)
4836 tcp_rbtree_insert(root, skb);
4837 }
4838
4839 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4840 * and tcp_collapse() them until all the queue is collapsed.
4841 */
4842 static void tcp_collapse_ofo_queue(struct sock *sk)
4843 {
4844 struct tcp_sock *tp = tcp_sk(sk);
4845 u32 range_truesize, sum_tiny = 0;
4846 struct sk_buff *skb, *head;
4847 u32 start, end;
4848
4849 skb = skb_rb_first(&tp->out_of_order_queue);
4850 new_range:
4851 if (!skb) {
4852 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4853 return;
4854 }
4855 start = TCP_SKB_CB(skb)->seq;
4856 end = TCP_SKB_CB(skb)->end_seq;
4857 range_truesize = skb->truesize;
4858
4859 for (head = skb;;) {
4860 skb = skb_rb_next(skb);
4861
4862 /* Range is terminated when we see a gap or when
4863 * we are at the queue end.
4864 */
4865 if (!skb ||
4866 after(TCP_SKB_CB(skb)->seq, end) ||
4867 before(TCP_SKB_CB(skb)->end_seq, start)) {
4868 /* Do not attempt collapsing tiny skbs */
4869 if (range_truesize != head->truesize ||
4870 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4871 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4872 head, skb, start, end);
4873 } else {
4874 sum_tiny += range_truesize;
4875 if (sum_tiny > sk->sk_rcvbuf >> 3)
4876 return;
4877 }
4878 goto new_range;
4879 }
4880
4881 range_truesize += skb->truesize;
4882 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4883 start = TCP_SKB_CB(skb)->seq;
4884 if (after(TCP_SKB_CB(skb)->end_seq, end))
4885 end = TCP_SKB_CB(skb)->end_seq;
4886 }
4887 }
4888
4889 /*
4890 * Clean the out-of-order queue to make room.
4891 * We drop high sequences packets to :
4892 * 1) Let a chance for holes to be filled.
4893 * 2) not add too big latencies if thousands of packets sit there.
4894 * (But if application shrinks SO_RCVBUF, we could still end up
4895 * freeing whole queue here)
4896 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4897 *
4898 * Return true if queue has shrunk.
4899 */
4900 static bool tcp_prune_ofo_queue(struct sock *sk)
4901 {
4902 struct tcp_sock *tp = tcp_sk(sk);
4903 struct rb_node *node, *prev;
4904 int goal;
4905
4906 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4907 return false;
4908
4909 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4910 goal = sk->sk_rcvbuf >> 3;
4911 node = &tp->ooo_last_skb->rbnode;
4912 do {
4913 prev = rb_prev(node);
4914 rb_erase(node, &tp->out_of_order_queue);
4915 goal -= rb_to_skb(node)->truesize;
4916 tcp_drop(sk, rb_to_skb(node));
4917 if (!prev || goal <= 0) {
4918 sk_mem_reclaim(sk);
4919 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4920 !tcp_under_memory_pressure(sk))
4921 break;
4922 goal = sk->sk_rcvbuf >> 3;
4923 }
4924 node = prev;
4925 } while (node);
4926 tp->ooo_last_skb = rb_to_skb(prev);
4927
4928 /* Reset SACK state. A conforming SACK implementation will
4929 * do the same at a timeout based retransmit. When a connection
4930 * is in a sad state like this, we care only about integrity
4931 * of the connection not performance.
4932 */
4933 if (tp->rx_opt.sack_ok)
4934 tcp_sack_reset(&tp->rx_opt);
4935 return true;
4936 }
4937
4938 /* Reduce allocated memory if we can, trying to get
4939 * the socket within its memory limits again.
4940 *
4941 * Return less than zero if we should start dropping frames
4942 * until the socket owning process reads some of the data
4943 * to stabilize the situation.
4944 */
4945 static int tcp_prune_queue(struct sock *sk)
4946 {
4947 struct tcp_sock *tp = tcp_sk(sk);
4948
4949 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4950
4951 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4952
4953 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4954 tcp_clamp_window(sk);
4955 else if (tcp_under_memory_pressure(sk))
4956 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4957
4958 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4959 return 0;
4960
4961 tcp_collapse_ofo_queue(sk);
4962 if (!skb_queue_empty(&sk->sk_receive_queue))
4963 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4964 skb_peek(&sk->sk_receive_queue),
4965 NULL,
4966 tp->copied_seq, tp->rcv_nxt);
4967 sk_mem_reclaim(sk);
4968
4969 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4970 return 0;
4971
4972 /* Collapsing did not help, destructive actions follow.
4973 * This must not ever occur. */
4974
4975 tcp_prune_ofo_queue(sk);
4976
4977 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4978 return 0;
4979
4980 /* If we are really being abused, tell the caller to silently
4981 * drop receive data on the floor. It will get retransmitted
4982 * and hopefully then we'll have sufficient space.
4983 */
4984 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4985
4986 /* Massive buffer overcommit. */
4987 tp->pred_flags = 0;
4988 return -1;
4989 }
4990
4991 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4992 {
4993 const struct tcp_sock *tp = tcp_sk(sk);
4994
4995 /* If the user specified a specific send buffer setting, do
4996 * not modify it.
4997 */
4998 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4999 return false;
5000
5001 /* If we are under global TCP memory pressure, do not expand. */
5002 if (tcp_under_memory_pressure(sk))
5003 return false;
5004
5005 /* If we are under soft global TCP memory pressure, do not expand. */
5006 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5007 return false;
5008
5009 /* If we filled the congestion window, do not expand. */
5010 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5011 return false;
5012
5013 return true;
5014 }
5015
5016 /* When incoming ACK allowed to free some skb from write_queue,
5017 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5018 * on the exit from tcp input handler.
5019 *
5020 * PROBLEM: sndbuf expansion does not work well with largesend.
5021 */
5022 static void tcp_new_space(struct sock *sk)
5023 {
5024 struct tcp_sock *tp = tcp_sk(sk);
5025
5026 if (tcp_should_expand_sndbuf(sk)) {
5027 tcp_sndbuf_expand(sk);
5028 tp->snd_cwnd_stamp = tcp_jiffies32;
5029 }
5030
5031 sk->sk_write_space(sk);
5032 }
5033
5034 static void tcp_check_space(struct sock *sk)
5035 {
5036 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5037 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5038 /* pairs with tcp_poll() */
5039 smp_mb();
5040 if (sk->sk_socket &&
5041 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5042 tcp_new_space(sk);
5043 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5044 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5045 }
5046 }
5047 }
5048
5049 static inline void tcp_data_snd_check(struct sock *sk)
5050 {
5051 tcp_push_pending_frames(sk);
5052 tcp_check_space(sk);
5053 }
5054
5055 /*
5056 * Check if sending an ack is needed.
5057 */
5058 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5059 {
5060 struct tcp_sock *tp = tcp_sk(sk);
5061
5062 /* More than one full frame received... */
5063 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5064 /* ... and right edge of window advances far enough.
5065 * (tcp_recvmsg() will send ACK otherwise). Or...
5066 */
5067 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5068 /* We ACK each frame or... */
5069 tcp_in_quickack_mode(sk) ||
5070 /* We have out of order data. */
5071 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5072 /* Then ack it now */
5073 tcp_send_ack(sk);
5074 } else {
5075 /* Else, send delayed ack. */
5076 tcp_send_delayed_ack(sk);
5077 }
5078 }
5079
5080 static inline void tcp_ack_snd_check(struct sock *sk)
5081 {
5082 if (!inet_csk_ack_scheduled(sk)) {
5083 /* We sent a data segment already. */
5084 return;
5085 }
5086 __tcp_ack_snd_check(sk, 1);
5087 }
5088
5089 /*
5090 * This routine is only called when we have urgent data
5091 * signaled. Its the 'slow' part of tcp_urg. It could be
5092 * moved inline now as tcp_urg is only called from one
5093 * place. We handle URGent data wrong. We have to - as
5094 * BSD still doesn't use the correction from RFC961.
5095 * For 1003.1g we should support a new option TCP_STDURG to permit
5096 * either form (or just set the sysctl tcp_stdurg).
5097 */
5098
5099 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5100 {
5101 struct tcp_sock *tp = tcp_sk(sk);
5102 u32 ptr = ntohs(th->urg_ptr);
5103
5104 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5105 ptr--;
5106 ptr += ntohl(th->seq);
5107
5108 /* Ignore urgent data that we've already seen and read. */
5109 if (after(tp->copied_seq, ptr))
5110 return;
5111
5112 /* Do not replay urg ptr.
5113 *
5114 * NOTE: interesting situation not covered by specs.
5115 * Misbehaving sender may send urg ptr, pointing to segment,
5116 * which we already have in ofo queue. We are not able to fetch
5117 * such data and will stay in TCP_URG_NOTYET until will be eaten
5118 * by recvmsg(). Seems, we are not obliged to handle such wicked
5119 * situations. But it is worth to think about possibility of some
5120 * DoSes using some hypothetical application level deadlock.
5121 */
5122 if (before(ptr, tp->rcv_nxt))
5123 return;
5124
5125 /* Do we already have a newer (or duplicate) urgent pointer? */
5126 if (tp->urg_data && !after(ptr, tp->urg_seq))
5127 return;
5128
5129 /* Tell the world about our new urgent pointer. */
5130 sk_send_sigurg(sk);
5131
5132 /* We may be adding urgent data when the last byte read was
5133 * urgent. To do this requires some care. We cannot just ignore
5134 * tp->copied_seq since we would read the last urgent byte again
5135 * as data, nor can we alter copied_seq until this data arrives
5136 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5137 *
5138 * NOTE. Double Dutch. Rendering to plain English: author of comment
5139 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5140 * and expect that both A and B disappear from stream. This is _wrong_.
5141 * Though this happens in BSD with high probability, this is occasional.
5142 * Any application relying on this is buggy. Note also, that fix "works"
5143 * only in this artificial test. Insert some normal data between A and B and we will
5144 * decline of BSD again. Verdict: it is better to remove to trap
5145 * buggy users.
5146 */
5147 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5148 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5149 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5150 tp->copied_seq++;
5151 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5152 __skb_unlink(skb, &sk->sk_receive_queue);
5153 __kfree_skb(skb);
5154 }
5155 }
5156
5157 tp->urg_data = TCP_URG_NOTYET;
5158 tp->urg_seq = ptr;
5159
5160 /* Disable header prediction. */
5161 tp->pred_flags = 0;
5162 }
5163
5164 /* This is the 'fast' part of urgent handling. */
5165 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5166 {
5167 struct tcp_sock *tp = tcp_sk(sk);
5168
5169 /* Check if we get a new urgent pointer - normally not. */
5170 if (th->urg)
5171 tcp_check_urg(sk, th);
5172
5173 /* Do we wait for any urgent data? - normally not... */
5174 if (tp->urg_data == TCP_URG_NOTYET) {
5175 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5176 th->syn;
5177
5178 /* Is the urgent pointer pointing into this packet? */
5179 if (ptr < skb->len) {
5180 u8 tmp;
5181 if (skb_copy_bits(skb, ptr, &tmp, 1))
5182 BUG();
5183 tp->urg_data = TCP_URG_VALID | tmp;
5184 if (!sock_flag(sk, SOCK_DEAD))
5185 sk->sk_data_ready(sk);
5186 }
5187 }
5188 }
5189
5190 /* Accept RST for rcv_nxt - 1 after a FIN.
5191 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5192 * FIN is sent followed by a RST packet. The RST is sent with the same
5193 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5194 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5195 * ACKs on the closed socket. In addition middleboxes can drop either the
5196 * challenge ACK or a subsequent RST.
5197 */
5198 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5199 {
5200 struct tcp_sock *tp = tcp_sk(sk);
5201
5202 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5203 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5204 TCPF_CLOSING));
5205 }
5206
5207 /* Does PAWS and seqno based validation of an incoming segment, flags will
5208 * play significant role here.
5209 */
5210 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5211 const struct tcphdr *th, int syn_inerr)
5212 {
5213 struct tcp_sock *tp = tcp_sk(sk);
5214 bool rst_seq_match = false;
5215
5216 /* RFC1323: H1. Apply PAWS check first. */
5217 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5218 tp->rx_opt.saw_tstamp &&
5219 tcp_paws_discard(sk, skb)) {
5220 if (!th->rst) {
5221 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5222 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5223 LINUX_MIB_TCPACKSKIPPEDPAWS,
5224 &tp->last_oow_ack_time))
5225 tcp_send_dupack(sk, skb);
5226 goto discard;
5227 }
5228 /* Reset is accepted even if it did not pass PAWS. */
5229 }
5230
5231 /* Step 1: check sequence number */
5232 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5233 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5234 * (RST) segments are validated by checking their SEQ-fields."
5235 * And page 69: "If an incoming segment is not acceptable,
5236 * an acknowledgment should be sent in reply (unless the RST
5237 * bit is set, if so drop the segment and return)".
5238 */
5239 if (!th->rst) {
5240 if (th->syn)
5241 goto syn_challenge;
5242 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5243 LINUX_MIB_TCPACKSKIPPEDSEQ,
5244 &tp->last_oow_ack_time))
5245 tcp_send_dupack(sk, skb);
5246 } else if (tcp_reset_check(sk, skb)) {
5247 tcp_reset(sk);
5248 }
5249 goto discard;
5250 }
5251
5252 /* Step 2: check RST bit */
5253 if (th->rst) {
5254 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5255 * FIN and SACK too if available):
5256 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5257 * the right-most SACK block,
5258 * then
5259 * RESET the connection
5260 * else
5261 * Send a challenge ACK
5262 */
5263 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5264 tcp_reset_check(sk, skb)) {
5265 rst_seq_match = true;
5266 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5267 struct tcp_sack_block *sp = &tp->selective_acks[0];
5268 int max_sack = sp[0].end_seq;
5269 int this_sack;
5270
5271 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5272 ++this_sack) {
5273 max_sack = after(sp[this_sack].end_seq,
5274 max_sack) ?
5275 sp[this_sack].end_seq : max_sack;
5276 }
5277
5278 if (TCP_SKB_CB(skb)->seq == max_sack)
5279 rst_seq_match = true;
5280 }
5281
5282 if (rst_seq_match)
5283 tcp_reset(sk);
5284 else {
5285 /* Disable TFO if RST is out-of-order
5286 * and no data has been received
5287 * for current active TFO socket
5288 */
5289 if (tp->syn_fastopen && !tp->data_segs_in &&
5290 sk->sk_state == TCP_ESTABLISHED)
5291 tcp_fastopen_active_disable(sk);
5292 tcp_send_challenge_ack(sk, skb);
5293 }
5294 goto discard;
5295 }
5296
5297 /* step 3: check security and precedence [ignored] */
5298
5299 /* step 4: Check for a SYN
5300 * RFC 5961 4.2 : Send a challenge ack
5301 */
5302 if (th->syn) {
5303 syn_challenge:
5304 if (syn_inerr)
5305 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5307 tcp_send_challenge_ack(sk, skb);
5308 goto discard;
5309 }
5310
5311 return true;
5312
5313 discard:
5314 tcp_drop(sk, skb);
5315 return false;
5316 }
5317
5318 /*
5319 * TCP receive function for the ESTABLISHED state.
5320 *
5321 * It is split into a fast path and a slow path. The fast path is
5322 * disabled when:
5323 * - A zero window was announced from us - zero window probing
5324 * is only handled properly in the slow path.
5325 * - Out of order segments arrived.
5326 * - Urgent data is expected.
5327 * - There is no buffer space left
5328 * - Unexpected TCP flags/window values/header lengths are received
5329 * (detected by checking the TCP header against pred_flags)
5330 * - Data is sent in both directions. Fast path only supports pure senders
5331 * or pure receivers (this means either the sequence number or the ack
5332 * value must stay constant)
5333 * - Unexpected TCP option.
5334 *
5335 * When these conditions are not satisfied it drops into a standard
5336 * receive procedure patterned after RFC793 to handle all cases.
5337 * The first three cases are guaranteed by proper pred_flags setting,
5338 * the rest is checked inline. Fast processing is turned on in
5339 * tcp_data_queue when everything is OK.
5340 */
5341 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5342 const struct tcphdr *th)
5343 {
5344 unsigned int len = skb->len;
5345 struct tcp_sock *tp = tcp_sk(sk);
5346
5347 tcp_mstamp_refresh(tp);
5348 if (unlikely(!sk->sk_rx_dst))
5349 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5350 /*
5351 * Header prediction.
5352 * The code loosely follows the one in the famous
5353 * "30 instruction TCP receive" Van Jacobson mail.
5354 *
5355 * Van's trick is to deposit buffers into socket queue
5356 * on a device interrupt, to call tcp_recv function
5357 * on the receive process context and checksum and copy
5358 * the buffer to user space. smart...
5359 *
5360 * Our current scheme is not silly either but we take the
5361 * extra cost of the net_bh soft interrupt processing...
5362 * We do checksum and copy also but from device to kernel.
5363 */
5364
5365 tp->rx_opt.saw_tstamp = 0;
5366
5367 /* pred_flags is 0xS?10 << 16 + snd_wnd
5368 * if header_prediction is to be made
5369 * 'S' will always be tp->tcp_header_len >> 2
5370 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5371 * turn it off (when there are holes in the receive
5372 * space for instance)
5373 * PSH flag is ignored.
5374 */
5375
5376 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5377 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5378 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5379 int tcp_header_len = tp->tcp_header_len;
5380
5381 /* Timestamp header prediction: tcp_header_len
5382 * is automatically equal to th->doff*4 due to pred_flags
5383 * match.
5384 */
5385
5386 /* Check timestamp */
5387 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5388 /* No? Slow path! */
5389 if (!tcp_parse_aligned_timestamp(tp, th))
5390 goto slow_path;
5391
5392 /* If PAWS failed, check it more carefully in slow path */
5393 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5394 goto slow_path;
5395
5396 /* DO NOT update ts_recent here, if checksum fails
5397 * and timestamp was corrupted part, it will result
5398 * in a hung connection since we will drop all
5399 * future packets due to the PAWS test.
5400 */
5401 }
5402
5403 if (len <= tcp_header_len) {
5404 /* Bulk data transfer: sender */
5405 if (len == tcp_header_len) {
5406 /* Predicted packet is in window by definition.
5407 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5408 * Hence, check seq<=rcv_wup reduces to:
5409 */
5410 if (tcp_header_len ==
5411 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5412 tp->rcv_nxt == tp->rcv_wup)
5413 tcp_store_ts_recent(tp);
5414
5415 /* We know that such packets are checksummed
5416 * on entry.
5417 */
5418 tcp_ack(sk, skb, 0);
5419 __kfree_skb(skb);
5420 tcp_data_snd_check(sk);
5421 return;
5422 } else { /* Header too small */
5423 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5424 goto discard;
5425 }
5426 } else {
5427 int eaten = 0;
5428 bool fragstolen = false;
5429
5430 if (tcp_checksum_complete(skb))
5431 goto csum_error;
5432
5433 if ((int)skb->truesize > sk->sk_forward_alloc)
5434 goto step5;
5435
5436 /* Predicted packet is in window by definition.
5437 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5438 * Hence, check seq<=rcv_wup reduces to:
5439 */
5440 if (tcp_header_len ==
5441 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5442 tp->rcv_nxt == tp->rcv_wup)
5443 tcp_store_ts_recent(tp);
5444
5445 tcp_rcv_rtt_measure_ts(sk, skb);
5446
5447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5448
5449 /* Bulk data transfer: receiver */
5450 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5451 &fragstolen);
5452
5453 tcp_event_data_recv(sk, skb);
5454
5455 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5456 /* Well, only one small jumplet in fast path... */
5457 tcp_ack(sk, skb, FLAG_DATA);
5458 tcp_data_snd_check(sk);
5459 if (!inet_csk_ack_scheduled(sk))
5460 goto no_ack;
5461 }
5462
5463 __tcp_ack_snd_check(sk, 0);
5464 no_ack:
5465 if (eaten)
5466 kfree_skb_partial(skb, fragstolen);
5467 sk->sk_data_ready(sk);
5468 return;
5469 }
5470 }
5471
5472 slow_path:
5473 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5474 goto csum_error;
5475
5476 if (!th->ack && !th->rst && !th->syn)
5477 goto discard;
5478
5479 /*
5480 * Standard slow path.
5481 */
5482
5483 if (!tcp_validate_incoming(sk, skb, th, 1))
5484 return;
5485
5486 step5:
5487 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5488 goto discard;
5489
5490 tcp_rcv_rtt_measure_ts(sk, skb);
5491
5492 /* Process urgent data. */
5493 tcp_urg(sk, skb, th);
5494
5495 /* step 7: process the segment text */
5496 tcp_data_queue(sk, skb);
5497
5498 tcp_data_snd_check(sk);
5499 tcp_ack_snd_check(sk);
5500 return;
5501
5502 csum_error:
5503 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5504 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5505
5506 discard:
5507 tcp_drop(sk, skb);
5508 }
5509 EXPORT_SYMBOL(tcp_rcv_established);
5510
5511 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5512 {
5513 struct tcp_sock *tp = tcp_sk(sk);
5514 struct inet_connection_sock *icsk = inet_csk(sk);
5515
5516 tcp_set_state(sk, TCP_ESTABLISHED);
5517 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5518
5519 if (skb) {
5520 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5521 security_inet_conn_established(sk, skb);
5522 }
5523
5524 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5525
5526 /* Prevent spurious tcp_cwnd_restart() on first data
5527 * packet.
5528 */
5529 tp->lsndtime = tcp_jiffies32;
5530
5531 if (sock_flag(sk, SOCK_KEEPOPEN))
5532 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5533
5534 if (!tp->rx_opt.snd_wscale)
5535 __tcp_fast_path_on(tp, tp->snd_wnd);
5536 else
5537 tp->pred_flags = 0;
5538 }
5539
5540 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5541 struct tcp_fastopen_cookie *cookie)
5542 {
5543 struct tcp_sock *tp = tcp_sk(sk);
5544 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5545 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5546 bool syn_drop = false;
5547
5548 if (mss == tp->rx_opt.user_mss) {
5549 struct tcp_options_received opt;
5550
5551 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5552 tcp_clear_options(&opt);
5553 opt.user_mss = opt.mss_clamp = 0;
5554 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5555 mss = opt.mss_clamp;
5556 }
5557
5558 if (!tp->syn_fastopen) {
5559 /* Ignore an unsolicited cookie */
5560 cookie->len = -1;
5561 } else if (tp->total_retrans) {
5562 /* SYN timed out and the SYN-ACK neither has a cookie nor
5563 * acknowledges data. Presumably the remote received only
5564 * the retransmitted (regular) SYNs: either the original
5565 * SYN-data or the corresponding SYN-ACK was dropped.
5566 */
5567 syn_drop = (cookie->len < 0 && data);
5568 } else if (cookie->len < 0 && !tp->syn_data) {
5569 /* We requested a cookie but didn't get it. If we did not use
5570 * the (old) exp opt format then try so next time (try_exp=1).
5571 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5572 */
5573 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5574 }
5575
5576 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5577
5578 if (data) { /* Retransmit unacked data in SYN */
5579 skb_rbtree_walk_from(data) {
5580 if (__tcp_retransmit_skb(sk, data, 1))
5581 break;
5582 }
5583 tcp_rearm_rto(sk);
5584 NET_INC_STATS(sock_net(sk),
5585 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5586 return true;
5587 }
5588 tp->syn_data_acked = tp->syn_data;
5589 if (tp->syn_data_acked)
5590 NET_INC_STATS(sock_net(sk),
5591 LINUX_MIB_TCPFASTOPENACTIVE);
5592
5593 tcp_fastopen_add_skb(sk, synack);
5594
5595 return false;
5596 }
5597
5598 static void smc_check_reset_syn(struct tcp_sock *tp)
5599 {
5600 #if IS_ENABLED(CONFIG_SMC)
5601 if (static_branch_unlikely(&tcp_have_smc)) {
5602 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5603 tp->syn_smc = 0;
5604 }
5605 #endif
5606 }
5607
5608 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5609 const struct tcphdr *th)
5610 {
5611 struct inet_connection_sock *icsk = inet_csk(sk);
5612 struct tcp_sock *tp = tcp_sk(sk);
5613 struct tcp_fastopen_cookie foc = { .len = -1 };
5614 int saved_clamp = tp->rx_opt.mss_clamp;
5615 bool fastopen_fail;
5616
5617 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5618 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5619 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5620
5621 if (th->ack) {
5622 /* rfc793:
5623 * "If the state is SYN-SENT then
5624 * first check the ACK bit
5625 * If the ACK bit is set
5626 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5627 * a reset (unless the RST bit is set, if so drop
5628 * the segment and return)"
5629 */
5630 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5631 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5632 goto reset_and_undo;
5633
5634 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5635 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5636 tcp_time_stamp(tp))) {
5637 NET_INC_STATS(sock_net(sk),
5638 LINUX_MIB_PAWSACTIVEREJECTED);
5639 goto reset_and_undo;
5640 }
5641
5642 /* Now ACK is acceptable.
5643 *
5644 * "If the RST bit is set
5645 * If the ACK was acceptable then signal the user "error:
5646 * connection reset", drop the segment, enter CLOSED state,
5647 * delete TCB, and return."
5648 */
5649
5650 if (th->rst) {
5651 tcp_reset(sk);
5652 goto discard;
5653 }
5654
5655 /* rfc793:
5656 * "fifth, if neither of the SYN or RST bits is set then
5657 * drop the segment and return."
5658 *
5659 * See note below!
5660 * --ANK(990513)
5661 */
5662 if (!th->syn)
5663 goto discard_and_undo;
5664
5665 /* rfc793:
5666 * "If the SYN bit is on ...
5667 * are acceptable then ...
5668 * (our SYN has been ACKed), change the connection
5669 * state to ESTABLISHED..."
5670 */
5671
5672 tcp_ecn_rcv_synack(tp, th);
5673
5674 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5675 tcp_ack(sk, skb, FLAG_SLOWPATH);
5676
5677 /* Ok.. it's good. Set up sequence numbers and
5678 * move to established.
5679 */
5680 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5681 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5682
5683 /* RFC1323: The window in SYN & SYN/ACK segments is
5684 * never scaled.
5685 */
5686 tp->snd_wnd = ntohs(th->window);
5687
5688 if (!tp->rx_opt.wscale_ok) {
5689 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5690 tp->window_clamp = min(tp->window_clamp, 65535U);
5691 }
5692
5693 if (tp->rx_opt.saw_tstamp) {
5694 tp->rx_opt.tstamp_ok = 1;
5695 tp->tcp_header_len =
5696 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5697 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5698 tcp_store_ts_recent(tp);
5699 } else {
5700 tp->tcp_header_len = sizeof(struct tcphdr);
5701 }
5702
5703 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5704 tcp_initialize_rcv_mss(sk);
5705
5706 /* Remember, tcp_poll() does not lock socket!
5707 * Change state from SYN-SENT only after copied_seq
5708 * is initialized. */
5709 tp->copied_seq = tp->rcv_nxt;
5710
5711 smc_check_reset_syn(tp);
5712
5713 smp_mb();
5714
5715 tcp_finish_connect(sk, skb);
5716
5717 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5718 tcp_rcv_fastopen_synack(sk, skb, &foc);
5719
5720 if (!sock_flag(sk, SOCK_DEAD)) {
5721 sk->sk_state_change(sk);
5722 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5723 }
5724 if (fastopen_fail)
5725 return -1;
5726 if (sk->sk_write_pending ||
5727 icsk->icsk_accept_queue.rskq_defer_accept ||
5728 icsk->icsk_ack.pingpong) {
5729 /* Save one ACK. Data will be ready after
5730 * several ticks, if write_pending is set.
5731 *
5732 * It may be deleted, but with this feature tcpdumps
5733 * look so _wonderfully_ clever, that I was not able
5734 * to stand against the temptation 8) --ANK
5735 */
5736 inet_csk_schedule_ack(sk);
5737 tcp_enter_quickack_mode(sk);
5738 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5739 TCP_DELACK_MAX, TCP_RTO_MAX);
5740
5741 discard:
5742 tcp_drop(sk, skb);
5743 return 0;
5744 } else {
5745 tcp_send_ack(sk);
5746 }
5747 return -1;
5748 }
5749
5750 /* No ACK in the segment */
5751
5752 if (th->rst) {
5753 /* rfc793:
5754 * "If the RST bit is set
5755 *
5756 * Otherwise (no ACK) drop the segment and return."
5757 */
5758
5759 goto discard_and_undo;
5760 }
5761
5762 /* PAWS check. */
5763 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5764 tcp_paws_reject(&tp->rx_opt, 0))
5765 goto discard_and_undo;
5766
5767 if (th->syn) {
5768 /* We see SYN without ACK. It is attempt of
5769 * simultaneous connect with crossed SYNs.
5770 * Particularly, it can be connect to self.
5771 */
5772 tcp_set_state(sk, TCP_SYN_RECV);
5773
5774 if (tp->rx_opt.saw_tstamp) {
5775 tp->rx_opt.tstamp_ok = 1;
5776 tcp_store_ts_recent(tp);
5777 tp->tcp_header_len =
5778 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5779 } else {
5780 tp->tcp_header_len = sizeof(struct tcphdr);
5781 }
5782
5783 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5784 tp->copied_seq = tp->rcv_nxt;
5785 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5786
5787 /* RFC1323: The window in SYN & SYN/ACK segments is
5788 * never scaled.
5789 */
5790 tp->snd_wnd = ntohs(th->window);
5791 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5792 tp->max_window = tp->snd_wnd;
5793
5794 tcp_ecn_rcv_syn(tp, th);
5795
5796 tcp_mtup_init(sk);
5797 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5798 tcp_initialize_rcv_mss(sk);
5799
5800 tcp_send_synack(sk);
5801 #if 0
5802 /* Note, we could accept data and URG from this segment.
5803 * There are no obstacles to make this (except that we must
5804 * either change tcp_recvmsg() to prevent it from returning data
5805 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5806 *
5807 * However, if we ignore data in ACKless segments sometimes,
5808 * we have no reasons to accept it sometimes.
5809 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5810 * is not flawless. So, discard packet for sanity.
5811 * Uncomment this return to process the data.
5812 */
5813 return -1;
5814 #else
5815 goto discard;
5816 #endif
5817 }
5818 /* "fifth, if neither of the SYN or RST bits is set then
5819 * drop the segment and return."
5820 */
5821
5822 discard_and_undo:
5823 tcp_clear_options(&tp->rx_opt);
5824 tp->rx_opt.mss_clamp = saved_clamp;
5825 goto discard;
5826
5827 reset_and_undo:
5828 tcp_clear_options(&tp->rx_opt);
5829 tp->rx_opt.mss_clamp = saved_clamp;
5830 return 1;
5831 }
5832
5833 /*
5834 * This function implements the receiving procedure of RFC 793 for
5835 * all states except ESTABLISHED and TIME_WAIT.
5836 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5837 * address independent.
5838 */
5839
5840 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5841 {
5842 struct tcp_sock *tp = tcp_sk(sk);
5843 struct inet_connection_sock *icsk = inet_csk(sk);
5844 const struct tcphdr *th = tcp_hdr(skb);
5845 struct request_sock *req;
5846 int queued = 0;
5847 bool acceptable;
5848
5849 switch (sk->sk_state) {
5850 case TCP_CLOSE:
5851 goto discard;
5852
5853 case TCP_LISTEN:
5854 if (th->ack)
5855 return 1;
5856
5857 if (th->rst)
5858 goto discard;
5859
5860 if (th->syn) {
5861 if (th->fin)
5862 goto discard;
5863 /* It is possible that we process SYN packets from backlog,
5864 * so we need to make sure to disable BH right there.
5865 */
5866 local_bh_disable();
5867 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5868 local_bh_enable();
5869
5870 if (!acceptable)
5871 return 1;
5872 consume_skb(skb);
5873 return 0;
5874 }
5875 goto discard;
5876
5877 case TCP_SYN_SENT:
5878 tp->rx_opt.saw_tstamp = 0;
5879 tcp_mstamp_refresh(tp);
5880 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5881 if (queued >= 0)
5882 return queued;
5883
5884 /* Do step6 onward by hand. */
5885 tcp_urg(sk, skb, th);
5886 __kfree_skb(skb);
5887 tcp_data_snd_check(sk);
5888 return 0;
5889 }
5890
5891 tcp_mstamp_refresh(tp);
5892 tp->rx_opt.saw_tstamp = 0;
5893 req = tp->fastopen_rsk;
5894 if (req) {
5895 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5896 sk->sk_state != TCP_FIN_WAIT1);
5897
5898 if (!tcp_check_req(sk, skb, req, true))
5899 goto discard;
5900 }
5901
5902 if (!th->ack && !th->rst && !th->syn)
5903 goto discard;
5904
5905 if (!tcp_validate_incoming(sk, skb, th, 0))
5906 return 0;
5907
5908 /* step 5: check the ACK field */
5909 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5910 FLAG_UPDATE_TS_RECENT |
5911 FLAG_NO_CHALLENGE_ACK) > 0;
5912
5913 if (!acceptable) {
5914 if (sk->sk_state == TCP_SYN_RECV)
5915 return 1; /* send one RST */
5916 tcp_send_challenge_ack(sk, skb);
5917 goto discard;
5918 }
5919 switch (sk->sk_state) {
5920 case TCP_SYN_RECV:
5921 if (!tp->srtt_us)
5922 tcp_synack_rtt_meas(sk, req);
5923
5924 /* Once we leave TCP_SYN_RECV, we no longer need req
5925 * so release it.
5926 */
5927 if (req) {
5928 inet_csk(sk)->icsk_retransmits = 0;
5929 reqsk_fastopen_remove(sk, req, false);
5930 /* Re-arm the timer because data may have been sent out.
5931 * This is similar to the regular data transmission case
5932 * when new data has just been ack'ed.
5933 *
5934 * (TFO) - we could try to be more aggressive and
5935 * retransmitting any data sooner based on when they
5936 * are sent out.
5937 */
5938 tcp_rearm_rto(sk);
5939 } else {
5940 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5941 tp->copied_seq = tp->rcv_nxt;
5942 }
5943 smp_mb();
5944 tcp_set_state(sk, TCP_ESTABLISHED);
5945 sk->sk_state_change(sk);
5946
5947 /* Note, that this wakeup is only for marginal crossed SYN case.
5948 * Passively open sockets are not waked up, because
5949 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5950 */
5951 if (sk->sk_socket)
5952 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5953
5954 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5955 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5956 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5957
5958 if (tp->rx_opt.tstamp_ok)
5959 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5960
5961 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5962 tcp_update_pacing_rate(sk);
5963
5964 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5965 tp->lsndtime = tcp_jiffies32;
5966
5967 tcp_initialize_rcv_mss(sk);
5968 tcp_fast_path_on(tp);
5969 break;
5970
5971 case TCP_FIN_WAIT1: {
5972 int tmo;
5973
5974 /* If we enter the TCP_FIN_WAIT1 state and we are a
5975 * Fast Open socket and this is the first acceptable
5976 * ACK we have received, this would have acknowledged
5977 * our SYNACK so stop the SYNACK timer.
5978 */
5979 if (req) {
5980 /* We no longer need the request sock. */
5981 reqsk_fastopen_remove(sk, req, false);
5982 tcp_rearm_rto(sk);
5983 }
5984 if (tp->snd_una != tp->write_seq)
5985 break;
5986
5987 tcp_set_state(sk, TCP_FIN_WAIT2);
5988 sk->sk_shutdown |= SEND_SHUTDOWN;
5989
5990 sk_dst_confirm(sk);
5991
5992 if (!sock_flag(sk, SOCK_DEAD)) {
5993 /* Wake up lingering close() */
5994 sk->sk_state_change(sk);
5995 break;
5996 }
5997
5998 if (tp->linger2 < 0) {
5999 tcp_done(sk);
6000 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6001 return 1;
6002 }
6003 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6004 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6005 /* Receive out of order FIN after close() */
6006 if (tp->syn_fastopen && th->fin)
6007 tcp_fastopen_active_disable(sk);
6008 tcp_done(sk);
6009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6010 return 1;
6011 }
6012
6013 tmo = tcp_fin_time(sk);
6014 if (tmo > TCP_TIMEWAIT_LEN) {
6015 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6016 } else if (th->fin || sock_owned_by_user(sk)) {
6017 /* Bad case. We could lose such FIN otherwise.
6018 * It is not a big problem, but it looks confusing
6019 * and not so rare event. We still can lose it now,
6020 * if it spins in bh_lock_sock(), but it is really
6021 * marginal case.
6022 */
6023 inet_csk_reset_keepalive_timer(sk, tmo);
6024 } else {
6025 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6026 goto discard;
6027 }
6028 break;
6029 }
6030
6031 case TCP_CLOSING:
6032 if (tp->snd_una == tp->write_seq) {
6033 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6034 goto discard;
6035 }
6036 break;
6037
6038 case TCP_LAST_ACK:
6039 if (tp->snd_una == tp->write_seq) {
6040 tcp_update_metrics(sk);
6041 tcp_done(sk);
6042 goto discard;
6043 }
6044 break;
6045 }
6046
6047 /* step 6: check the URG bit */
6048 tcp_urg(sk, skb, th);
6049
6050 /* step 7: process the segment text */
6051 switch (sk->sk_state) {
6052 case TCP_CLOSE_WAIT:
6053 case TCP_CLOSING:
6054 case TCP_LAST_ACK:
6055 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6056 break;
6057 /* fall through */
6058 case TCP_FIN_WAIT1:
6059 case TCP_FIN_WAIT2:
6060 /* RFC 793 says to queue data in these states,
6061 * RFC 1122 says we MUST send a reset.
6062 * BSD 4.4 also does reset.
6063 */
6064 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6065 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6066 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6067 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6068 tcp_reset(sk);
6069 return 1;
6070 }
6071 }
6072 /* Fall through */
6073 case TCP_ESTABLISHED:
6074 tcp_data_queue(sk, skb);
6075 queued = 1;
6076 break;
6077 }
6078
6079 /* tcp_data could move socket to TIME-WAIT */
6080 if (sk->sk_state != TCP_CLOSE) {
6081 tcp_data_snd_check(sk);
6082 tcp_ack_snd_check(sk);
6083 }
6084
6085 if (!queued) {
6086 discard:
6087 tcp_drop(sk, skb);
6088 }
6089 return 0;
6090 }
6091 EXPORT_SYMBOL(tcp_rcv_state_process);
6092
6093 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6094 {
6095 struct inet_request_sock *ireq = inet_rsk(req);
6096
6097 if (family == AF_INET)
6098 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6099 &ireq->ir_rmt_addr, port);
6100 #if IS_ENABLED(CONFIG_IPV6)
6101 else if (family == AF_INET6)
6102 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6103 &ireq->ir_v6_rmt_addr, port);
6104 #endif
6105 }
6106
6107 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6108 *
6109 * If we receive a SYN packet with these bits set, it means a
6110 * network is playing bad games with TOS bits. In order to
6111 * avoid possible false congestion notifications, we disable
6112 * TCP ECN negotiation.
6113 *
6114 * Exception: tcp_ca wants ECN. This is required for DCTCP
6115 * congestion control: Linux DCTCP asserts ECT on all packets,
6116 * including SYN, which is most optimal solution; however,
6117 * others, such as FreeBSD do not.
6118 */
6119 static void tcp_ecn_create_request(struct request_sock *req,
6120 const struct sk_buff *skb,
6121 const struct sock *listen_sk,
6122 const struct dst_entry *dst)
6123 {
6124 const struct tcphdr *th = tcp_hdr(skb);
6125 const struct net *net = sock_net(listen_sk);
6126 bool th_ecn = th->ece && th->cwr;
6127 bool ect, ecn_ok;
6128 u32 ecn_ok_dst;
6129
6130 if (!th_ecn)
6131 return;
6132
6133 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6134 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6135 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6136
6137 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6138 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6139 tcp_bpf_ca_needs_ecn((struct sock *)req))
6140 inet_rsk(req)->ecn_ok = 1;
6141 }
6142
6143 static void tcp_openreq_init(struct request_sock *req,
6144 const struct tcp_options_received *rx_opt,
6145 struct sk_buff *skb, const struct sock *sk)
6146 {
6147 struct inet_request_sock *ireq = inet_rsk(req);
6148
6149 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6150 req->cookie_ts = 0;
6151 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6152 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6153 tcp_rsk(req)->snt_synack = tcp_clock_us();
6154 tcp_rsk(req)->last_oow_ack_time = 0;
6155 req->mss = rx_opt->mss_clamp;
6156 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6157 ireq->tstamp_ok = rx_opt->tstamp_ok;
6158 ireq->sack_ok = rx_opt->sack_ok;
6159 ireq->snd_wscale = rx_opt->snd_wscale;
6160 ireq->wscale_ok = rx_opt->wscale_ok;
6161 ireq->acked = 0;
6162 ireq->ecn_ok = 0;
6163 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6164 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6165 ireq->ir_mark = inet_request_mark(sk, skb);
6166 #if IS_ENABLED(CONFIG_SMC)
6167 ireq->smc_ok = rx_opt->smc_ok;
6168 #endif
6169 }
6170
6171 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6172 struct sock *sk_listener,
6173 bool attach_listener)
6174 {
6175 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6176 attach_listener);
6177
6178 if (req) {
6179 struct inet_request_sock *ireq = inet_rsk(req);
6180
6181 ireq->ireq_opt = NULL;
6182 #if IS_ENABLED(CONFIG_IPV6)
6183 ireq->pktopts = NULL;
6184 #endif
6185 atomic64_set(&ireq->ir_cookie, 0);
6186 ireq->ireq_state = TCP_NEW_SYN_RECV;
6187 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6188 ireq->ireq_family = sk_listener->sk_family;
6189 }
6190
6191 return req;
6192 }
6193 EXPORT_SYMBOL(inet_reqsk_alloc);
6194
6195 /*
6196 * Return true if a syncookie should be sent
6197 */
6198 static bool tcp_syn_flood_action(const struct sock *sk,
6199 const struct sk_buff *skb,
6200 const char *proto)
6201 {
6202 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6203 const char *msg = "Dropping request";
6204 bool want_cookie = false;
6205 struct net *net = sock_net(sk);
6206
6207 #ifdef CONFIG_SYN_COOKIES
6208 if (net->ipv4.sysctl_tcp_syncookies) {
6209 msg = "Sending cookies";
6210 want_cookie = true;
6211 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6212 } else
6213 #endif
6214 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6215
6216 if (!queue->synflood_warned &&
6217 net->ipv4.sysctl_tcp_syncookies != 2 &&
6218 xchg(&queue->synflood_warned, 1) == 0)
6219 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6220 proto, ntohs(tcp_hdr(skb)->dest), msg);
6221
6222 return want_cookie;
6223 }
6224
6225 static void tcp_reqsk_record_syn(const struct sock *sk,
6226 struct request_sock *req,
6227 const struct sk_buff *skb)
6228 {
6229 if (tcp_sk(sk)->save_syn) {
6230 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6231 u32 *copy;
6232
6233 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6234 if (copy) {
6235 copy[0] = len;
6236 memcpy(&copy[1], skb_network_header(skb), len);
6237 req->saved_syn = copy;
6238 }
6239 }
6240 }
6241
6242 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6243 const struct tcp_request_sock_ops *af_ops,
6244 struct sock *sk, struct sk_buff *skb)
6245 {
6246 struct tcp_fastopen_cookie foc = { .len = -1 };
6247 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6248 struct tcp_options_received tmp_opt;
6249 struct tcp_sock *tp = tcp_sk(sk);
6250 struct net *net = sock_net(sk);
6251 struct sock *fastopen_sk = NULL;
6252 struct request_sock *req;
6253 bool want_cookie = false;
6254 struct dst_entry *dst;
6255 struct flowi fl;
6256
6257 /* TW buckets are converted to open requests without
6258 * limitations, they conserve resources and peer is
6259 * evidently real one.
6260 */
6261 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6262 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6263 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6264 if (!want_cookie)
6265 goto drop;
6266 }
6267
6268 if (sk_acceptq_is_full(sk)) {
6269 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6270 goto drop;
6271 }
6272
6273 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6274 if (!req)
6275 goto drop;
6276
6277 tcp_rsk(req)->af_specific = af_ops;
6278 tcp_rsk(req)->ts_off = 0;
6279
6280 tcp_clear_options(&tmp_opt);
6281 tmp_opt.mss_clamp = af_ops->mss_clamp;
6282 tmp_opt.user_mss = tp->rx_opt.user_mss;
6283 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6284 want_cookie ? NULL : &foc);
6285
6286 if (want_cookie && !tmp_opt.saw_tstamp)
6287 tcp_clear_options(&tmp_opt);
6288
6289 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6290 tcp_openreq_init(req, &tmp_opt, skb, sk);
6291 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6292
6293 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6294 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6295
6296 af_ops->init_req(req, sk, skb);
6297
6298 if (security_inet_conn_request(sk, skb, req))
6299 goto drop_and_free;
6300
6301 if (tmp_opt.tstamp_ok)
6302 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6303
6304 dst = af_ops->route_req(sk, &fl, req);
6305 if (!dst)
6306 goto drop_and_free;
6307
6308 if (!want_cookie && !isn) {
6309 /* Kill the following clause, if you dislike this way. */
6310 if (!net->ipv4.sysctl_tcp_syncookies &&
6311 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6312 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6313 !tcp_peer_is_proven(req, dst)) {
6314 /* Without syncookies last quarter of
6315 * backlog is filled with destinations,
6316 * proven to be alive.
6317 * It means that we continue to communicate
6318 * to destinations, already remembered
6319 * to the moment of synflood.
6320 */
6321 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6322 rsk_ops->family);
6323 goto drop_and_release;
6324 }
6325
6326 isn = af_ops->init_seq(skb);
6327 }
6328
6329 tcp_ecn_create_request(req, skb, sk, dst);
6330
6331 if (want_cookie) {
6332 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6333 req->cookie_ts = tmp_opt.tstamp_ok;
6334 if (!tmp_opt.tstamp_ok)
6335 inet_rsk(req)->ecn_ok = 0;
6336 }
6337
6338 tcp_rsk(req)->snt_isn = isn;
6339 tcp_rsk(req)->txhash = net_tx_rndhash();
6340 tcp_openreq_init_rwin(req, sk, dst);
6341 if (!want_cookie) {
6342 tcp_reqsk_record_syn(sk, req, skb);
6343 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6344 }
6345 if (fastopen_sk) {
6346 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6347 &foc, TCP_SYNACK_FASTOPEN);
6348 /* Add the child socket directly into the accept queue */
6349 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6350 sk->sk_data_ready(sk);
6351 bh_unlock_sock(fastopen_sk);
6352 sock_put(fastopen_sk);
6353 } else {
6354 tcp_rsk(req)->tfo_listener = false;
6355 if (!want_cookie)
6356 inet_csk_reqsk_queue_hash_add(sk, req,
6357 tcp_timeout_init((struct sock *)req));
6358 af_ops->send_synack(sk, dst, &fl, req, &foc,
6359 !want_cookie ? TCP_SYNACK_NORMAL :
6360 TCP_SYNACK_COOKIE);
6361 if (want_cookie) {
6362 reqsk_free(req);
6363 return 0;
6364 }
6365 }
6366 reqsk_put(req);
6367 return 0;
6368
6369 drop_and_release:
6370 dst_release(dst);
6371 drop_and_free:
6372 reqsk_free(req);
6373 drop:
6374 tcp_listendrop(sk);
6375 return 0;
6376 }
6377 EXPORT_SYMBOL(tcp_conn_request);