]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
130 unsigned int len)
131 {
132 static bool __once __read_mostly;
133
134 if (!__once) {
135 struct net_device *dev;
136
137 __once = true;
138
139 rcu_read_lock();
140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
141 if (!dev || len >= dev->mtu)
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev ? dev->name : "Unknown driver");
144 rcu_read_unlock();
145 }
146 }
147
148 /* Adapt the MSS value used to make delayed ack decision to the
149 * real world.
150 */
151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
152 {
153 struct inet_connection_sock *icsk = inet_csk(sk);
154 const unsigned int lss = icsk->icsk_ack.last_seg_size;
155 unsigned int len;
156
157 icsk->icsk_ack.last_seg_size = 0;
158
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
161 */
162 len = skb_shinfo(skb)->gso_size ? : skb->len;
163 if (len >= icsk->icsk_ack.rcv_mss) {
164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 tcp_sk(sk)->advmss);
166 /* Account for possibly-removed options */
167 if (unlikely(len > icsk->icsk_ack.rcv_mss +
168 MAX_TCP_OPTION_SPACE))
169 tcp_gro_dev_warn(sk, skb, len);
170 } else {
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
173 *
174 * "len" is invariant segment length, including TCP header.
175 */
176 len += skb->data - skb_transport_header(skb);
177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
182 */
183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
188 */
189 len -= tcp_sk(sk)->tcp_header_len;
190 icsk->icsk_ack.last_seg_size = len;
191 if (len == lss) {
192 icsk->icsk_ack.rcv_mss = len;
193 return;
194 }
195 }
196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
199 }
200 }
201
202 static void tcp_incr_quickack(struct sock *sk)
203 {
204 struct inet_connection_sock *icsk = inet_csk(sk);
205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
206
207 if (quickacks == 0)
208 quickacks = 2;
209 if (quickacks > icsk->icsk_ack.quick)
210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
211 }
212
213 static void tcp_enter_quickack_mode(struct sock *sk)
214 {
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 tcp_incr_quickack(sk);
217 icsk->icsk_ack.pingpong = 0;
218 icsk->icsk_ack.ato = TCP_ATO_MIN;
219 }
220
221 /* Send ACKs quickly, if "quick" count is not exhausted
222 * and the session is not interactive.
223 */
224
225 static bool tcp_in_quickack_mode(struct sock *sk)
226 {
227 const struct inet_connection_sock *icsk = inet_csk(sk);
228 const struct dst_entry *dst = __sk_dst_get(sk);
229
230 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
232 }
233
234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
235 {
236 if (tp->ecn_flags & TCP_ECN_OK)
237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
238 }
239
240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
241 {
242 if (tcp_hdr(skb)->cwr)
243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244 }
245
246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
247 {
248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
249 }
250
251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 {
253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
254 case INET_ECN_NOT_ECT:
255 /* Funny extension: if ECT is not set on a segment,
256 * and we already seen ECT on a previous segment,
257 * it is probably a retransmit.
258 */
259 if (tp->ecn_flags & TCP_ECN_SEEN)
260 tcp_enter_quickack_mode((struct sock *)tp);
261 break;
262 case INET_ECN_CE:
263 if (tcp_ca_needs_ecn((struct sock *)tp))
264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265
266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 /* Better not delay acks, sender can have a very low cwnd */
268 tcp_enter_quickack_mode((struct sock *)tp);
269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 }
271 tp->ecn_flags |= TCP_ECN_SEEN;
272 break;
273 default:
274 if (tcp_ca_needs_ecn((struct sock *)tp))
275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
276 tp->ecn_flags |= TCP_ECN_SEEN;
277 break;
278 }
279 }
280
281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282 {
283 if (tp->ecn_flags & TCP_ECN_OK)
284 __tcp_ecn_check_ce(tp, skb);
285 }
286
287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
288 {
289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
290 tp->ecn_flags &= ~TCP_ECN_OK;
291 }
292
293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
294 {
295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
296 tp->ecn_flags &= ~TCP_ECN_OK;
297 }
298
299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
300 {
301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 return true;
303 return false;
304 }
305
306 /* Buffer size and advertised window tuning.
307 *
308 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309 */
310
311 static void tcp_sndbuf_expand(struct sock *sk)
312 {
313 const struct tcp_sock *tp = tcp_sk(sk);
314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
315 int sndmem, per_mss;
316 u32 nr_segs;
317
318 /* Worst case is non GSO/TSO : each frame consumes one skb
319 * and skb->head is kmalloced using power of two area of memory
320 */
321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 MAX_TCP_HEADER +
323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324
325 per_mss = roundup_pow_of_two(per_mss) +
326 SKB_DATA_ALIGN(sizeof(struct sk_buff));
327
328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330
331 /* Fast Recovery (RFC 5681 3.2) :
332 * Cubic needs 1.7 factor, rounded to 2 to include
333 * extra cushion (application might react slowly to POLLOUT)
334 */
335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 sndmem *= nr_segs * per_mss;
337
338 if (sk->sk_sndbuf < sndmem)
339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
340 }
341
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 *
344 * All tcp_full_space() is split to two parts: "network" buffer, allocated
345 * forward and advertised in receiver window (tp->rcv_wnd) and
346 * "application buffer", required to isolate scheduling/application
347 * latencies from network.
348 * window_clamp is maximal advertised window. It can be less than
349 * tcp_full_space(), in this case tcp_full_space() - window_clamp
350 * is reserved for "application" buffer. The less window_clamp is
351 * the smoother our behaviour from viewpoint of network, but the lower
352 * throughput and the higher sensitivity of the connection to losses. 8)
353 *
354 * rcv_ssthresh is more strict window_clamp used at "slow start"
355 * phase to predict further behaviour of this connection.
356 * It is used for two goals:
357 * - to enforce header prediction at sender, even when application
358 * requires some significant "application buffer". It is check #1.
359 * - to prevent pruning of receive queue because of misprediction
360 * of receiver window. Check #2.
361 *
362 * The scheme does not work when sender sends good segments opening
363 * window and then starts to feed us spaghetti. But it should work
364 * in common situations. Otherwise, we have to rely on queue collapsing.
365 */
366
367 /* Slow part of check#2. */
368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371 /* Optimize this! */
372 int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
374
375 while (tp->rcv_ssthresh <= window) {
376 if (truesize <= skb->len)
377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
378
379 truesize >>= 1;
380 window >>= 1;
381 }
382 return 0;
383 }
384
385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388
389 /* Check #1 */
390 if (tp->rcv_ssthresh < tp->window_clamp &&
391 (int)tp->rcv_ssthresh < tcp_space(sk) &&
392 !tcp_under_memory_pressure(sk)) {
393 int incr;
394
395 /* Check #2. Increase window, if skb with such overhead
396 * will fit to rcvbuf in future.
397 */
398 if (tcp_win_from_space(skb->truesize) <= skb->len)
399 incr = 2 * tp->advmss;
400 else
401 incr = __tcp_grow_window(sk, skb);
402
403 if (incr) {
404 incr = max_t(int, incr, 2 * skb->len);
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 tp->window_clamp);
407 inet_csk(sk)->icsk_ack.quick |= 1;
408 }
409 }
410 }
411
412 /* 3. Tuning rcvbuf, when connection enters established state. */
413 static void tcp_fixup_rcvbuf(struct sock *sk)
414 {
415 u32 mss = tcp_sk(sk)->advmss;
416 int rcvmem;
417
418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 tcp_default_init_rwnd(mss);
420
421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 * Allow enough cushion so that sender is not limited by our window
423 */
424 if (sysctl_tcp_moderate_rcvbuf)
425 rcvmem <<= 2;
426
427 if (sk->sk_rcvbuf < rcvmem)
428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
429 }
430
431 /* 4. Try to fixup all. It is made immediately after connection enters
432 * established state.
433 */
434 void tcp_init_buffer_space(struct sock *sk)
435 {
436 struct tcp_sock *tp = tcp_sk(sk);
437 int maxwin;
438
439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 tcp_fixup_rcvbuf(sk);
441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
442 tcp_sndbuf_expand(sk);
443
444 tp->rcvq_space.space = tp->rcv_wnd;
445 tp->rcvq_space.time = tcp_time_stamp;
446 tp->rcvq_space.seq = tp->copied_seq;
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
474
475 icsk->icsk_ack.quick = 0;
476
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
483 }
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507
508 /* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 *
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 u32 new_sample = tp->rcv_rtt_est.rtt;
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
546 } else {
547 /* No previous measure. */
548 new_sample = m << 3;
549 }
550
551 if (tp->rcv_rtt_est.rtt != new_sample)
552 tp->rcv_rtt_est.rtt = new_sample;
553 }
554
555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556 {
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
562
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tcp_time_stamp;
566 }
567
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
570 {
571 struct tcp_sock *tp = tcp_sk(sk);
572 if (tp->rx_opt.rcv_tsecr &&
573 (TCP_SKB_CB(skb)->end_seq -
574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
576 }
577
578 /*
579 * This function should be called every time data is copied to user space.
580 * It calculates the appropriate TCP receive buffer space.
581 */
582 void tcp_rcv_space_adjust(struct sock *sk)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 int time;
586 int copied;
587
588 time = tcp_time_stamp - tp->rcvq_space.time;
589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
590 return;
591
592 /* Number of bytes copied to user in last RTT */
593 copied = tp->copied_seq - tp->rcvq_space.seq;
594 if (copied <= tp->rcvq_space.space)
595 goto new_measure;
596
597 /* A bit of theory :
598 * copied = bytes received in previous RTT, our base window
599 * To cope with packet losses, we need a 2x factor
600 * To cope with slow start, and sender growing its cwin by 100 %
601 * every RTT, we need a 4x factor, because the ACK we are sending
602 * now is for the next RTT, not the current one :
603 * <prev RTT . ><current RTT .. ><next RTT .... >
604 */
605
606 if (sysctl_tcp_moderate_rcvbuf &&
607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 int rcvwin, rcvmem, rcvbuf;
609
610 /* minimal window to cope with packet losses, assuming
611 * steady state. Add some cushion because of small variations.
612 */
613 rcvwin = (copied << 1) + 16 * tp->advmss;
614
615 /* If rate increased by 25%,
616 * assume slow start, rcvwin = 3 * copied
617 * If rate increased by 50%,
618 * assume sender can use 2x growth, rcvwin = 4 * copied
619 */
620 if (copied >=
621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 if (copied >=
623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 rcvwin <<= 1;
625 else
626 rcvwin += (rcvwin >> 1);
627 }
628
629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 while (tcp_win_from_space(rcvmem) < tp->advmss)
631 rcvmem += 128;
632
633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 if (rcvbuf > sk->sk_rcvbuf) {
635 sk->sk_rcvbuf = rcvbuf;
636
637 /* Make the window clamp follow along. */
638 tp->window_clamp = rcvwin;
639 }
640 }
641 tp->rcvq_space.space = copied;
642
643 new_measure:
644 tp->rcvq_space.seq = tp->copied_seq;
645 tp->rcvq_space.time = tcp_time_stamp;
646 }
647
648 /* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
656 * queue. -DaveM
657 */
658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct inet_connection_sock *icsk = inet_csk(sk);
662 u32 now;
663
664 inet_csk_schedule_ack(sk);
665
666 tcp_measure_rcv_mss(sk, skb);
667
668 tcp_rcv_rtt_measure(tp);
669
670 now = tcp_time_stamp;
671
672 if (!icsk->icsk_ack.ato) {
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
675 */
676 tcp_incr_quickack(sk);
677 icsk->icsk_ack.ato = TCP_ATO_MIN;
678 } else {
679 int m = now - icsk->icsk_ack.lrcvtime;
680
681 if (m <= TCP_ATO_MIN / 2) {
682 /* The fastest case is the first. */
683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 } else if (m < icsk->icsk_ack.ato) {
685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 icsk->icsk_ack.ato = icsk->icsk_rto;
688 } else if (m > icsk->icsk_rto) {
689 /* Too long gap. Apparently sender failed to
690 * restart window, so that we send ACKs quickly.
691 */
692 tcp_incr_quickack(sk);
693 sk_mem_reclaim(sk);
694 }
695 }
696 icsk->icsk_ack.lrcvtime = now;
697
698 tcp_ecn_check_ce(tp, skb);
699
700 if (skb->len >= 128)
701 tcp_grow_window(sk, skb);
702 }
703
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
712 */
713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
714 {
715 struct tcp_sock *tp = tcp_sk(sk);
716 long m = mrtt_us; /* RTT */
717 u32 srtt = tp->srtt_us;
718
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
722 * This is designed to be as fast as possible
723 * m stands for "measurement".
724 *
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
727 *
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
730 * too slowly, when it should be increased quickly, decrease too quickly
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
734 */
735 if (srtt != 0) {
736 m -= (srtt >> 3); /* m is now error in rtt est */
737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
738 if (m < 0) {
739 m = -m; /* m is now abs(error) */
740 m -= (tp->mdev_us >> 2); /* similar update on mdev */
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
748 */
749 if (m > 0)
750 m >>= 3;
751 } else {
752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
753 }
754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp->mdev_us > tp->mdev_max_us) {
756 tp->mdev_max_us = tp->mdev_us;
757 if (tp->mdev_max_us > tp->rttvar_us)
758 tp->rttvar_us = tp->mdev_max_us;
759 }
760 if (after(tp->snd_una, tp->rtt_seq)) {
761 if (tp->mdev_max_us < tp->rttvar_us)
762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 tp->rtt_seq = tp->snd_nxt;
764 tp->mdev_max_us = tcp_rto_min_us(sk);
765 }
766 } else {
767 /* no previous measure. */
768 srtt = m << 3; /* take the measured time to be rtt */
769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 tp->mdev_max_us = tp->rttvar_us;
772 tp->rtt_seq = tp->snd_nxt;
773 }
774 tp->srtt_us = max(1U, srtt);
775 }
776
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778 * Note: TCP stack does not yet implement pacing.
779 * FQ packet scheduler can be used to implement cheap but effective
780 * TCP pacing, to smooth the burst on large writes when packets
781 * in flight is significantly lower than cwnd (or rwin)
782 */
783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
785
786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 const struct tcp_sock *tp = tcp_sk(sk);
789 u64 rate;
790
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 *
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
801 */
802 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 rate *= sysctl_tcp_pacing_ss_ratio;
804 else
805 rate *= sysctl_tcp_pacing_ca_ratio;
806
807 rate *= max(tp->snd_cwnd, tp->packets_out);
808
809 if (likely(tp->srtt_us))
810 do_div(rate, tp->srtt_us);
811
812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
815 */
816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 sk->sk_max_pacing_rate);
818 }
819
820 /* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
822 */
823 static void tcp_set_rto(struct sock *sk)
824 {
825 const struct tcp_sock *tp = tcp_sk(sk);
826 /* Old crap is replaced with new one. 8)
827 *
828 * More seriously:
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
834 * ACKs in some circumstances.
835 */
836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
841 * with correct one. It is exactly, which we pretend to do.
842 */
843
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
846 */
847 tcp_bound_rto(sk);
848 }
849
850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853
854 if (!cwnd)
855 cwnd = TCP_INIT_CWND;
856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858
859 /*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863 void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
875 }
876
877 static void tcp_update_reordering(struct sock *sk, const int metric,
878 const int ts)
879 {
880 struct tcp_sock *tp = tcp_sk(sk);
881 int mib_idx;
882
883 if (metric > tp->reordering) {
884 tp->reordering = min(sysctl_tcp_max_reordering, metric);
885
886 #if FASTRETRANS_DEBUG > 1
887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
888 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
889 tp->reordering,
890 tp->fackets_out,
891 tp->sacked_out,
892 tp->undo_marker ? tp->undo_retrans : 0);
893 #endif
894 tcp_disable_fack(tp);
895 }
896
897 tp->rack.reord = 1;
898
899 /* This exciting event is worth to be remembered. 8) */
900 if (ts)
901 mib_idx = LINUX_MIB_TCPTSREORDER;
902 else if (tcp_is_reno(tp))
903 mib_idx = LINUX_MIB_TCPRENOREORDER;
904 else if (tcp_is_fack(tp))
905 mib_idx = LINUX_MIB_TCPFACKREORDER;
906 else
907 mib_idx = LINUX_MIB_TCPSACKREORDER;
908
909 NET_INC_STATS(sock_net(sk), mib_idx);
910 }
911
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914 {
915 if (!tp->retransmit_skb_hint ||
916 before(TCP_SKB_CB(skb)->seq,
917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
918 tp->retransmit_skb_hint = skb;
919 }
920
921 /* Sum the number of packets on the wire we have marked as lost.
922 * There are two cases we care about here:
923 * a) Packet hasn't been marked lost (nor retransmitted),
924 * and this is the first loss.
925 * b) Packet has been marked both lost and retransmitted,
926 * and this means we think it was lost again.
927 */
928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 __u8 sacked = TCP_SKB_CB(skb)->sacked;
931
932 if (!(sacked & TCPCB_LOST) ||
933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
934 tp->lost += tcp_skb_pcount(skb);
935 }
936
937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 tcp_verify_retransmit_hint(tp, skb);
941
942 tp->lost_out += tcp_skb_pcount(skb);
943 tcp_sum_lost(tp, skb);
944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 }
946 }
947
948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
949 {
950 tcp_verify_retransmit_hint(tp, skb);
951
952 tcp_sum_lost(tp, skb);
953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
954 tp->lost_out += tcp_skb_pcount(skb);
955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
956 }
957 }
958
959 /* This procedure tags the retransmission queue when SACKs arrive.
960 *
961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962 * Packets in queue with these bits set are counted in variables
963 * sacked_out, retrans_out and lost_out, correspondingly.
964 *
965 * Valid combinations are:
966 * Tag InFlight Description
967 * 0 1 - orig segment is in flight.
968 * S 0 - nothing flies, orig reached receiver.
969 * L 0 - nothing flies, orig lost by net.
970 * R 2 - both orig and retransmit are in flight.
971 * L|R 1 - orig is lost, retransmit is in flight.
972 * S|R 1 - orig reached receiver, retrans is still in flight.
973 * (L|S|R is logically valid, it could occur when L|R is sacked,
974 * but it is equivalent to plain S and code short-curcuits it to S.
975 * L|S is logically invalid, it would mean -1 packet in flight 8))
976 *
977 * These 6 states form finite state machine, controlled by the following events:
978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
980 * 3. Loss detection event of two flavors:
981 * A. Scoreboard estimator decided the packet is lost.
982 * A'. Reno "three dupacks" marks head of queue lost.
983 * A''. Its FACK modification, head until snd.fack is lost.
984 * B. SACK arrives sacking SND.NXT at the moment, when the
985 * segment was retransmitted.
986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
987 *
988 * It is pleasant to note, that state diagram turns out to be commutative,
989 * so that we are allowed not to be bothered by order of our actions,
990 * when multiple events arrive simultaneously. (see the function below).
991 *
992 * Reordering detection.
993 * --------------------
994 * Reordering metric is maximal distance, which a packet can be displaced
995 * in packet stream. With SACKs we can estimate it:
996 *
997 * 1. SACK fills old hole and the corresponding segment was not
998 * ever retransmitted -> reordering. Alas, we cannot use it
999 * when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 * for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
1004 *
1005 * SACK block validation.
1006 * ----------------------
1007 *
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment. Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
1020 *
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025 * wrap (s_w):
1026 *
1027 * <- outs wnd -> <- wrapzone ->
1028 * u e n u_w e_w s n_w
1029 * | | | | | | |
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->| |<--------...
1032 * ...---- >2^31 ------>| |<--------...
1033 *
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1039 *
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042 * again, D-SACK block must not to go across snd_una (for the same reason as
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1052 */
1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 u32 start_seq, u32 end_seq)
1055 {
1056 /* Too far in future, or reversed (interpretation is ambiguous) */
1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058 return false;
1059
1060 /* Nasty start_seq wrap-around check (see comments above) */
1061 if (!before(start_seq, tp->snd_nxt))
1062 return false;
1063
1064 /* In outstanding window? ...This is valid exit for D-SACKs too.
1065 * start_seq == snd_una is non-sensical (see comments above)
1066 */
1067 if (after(start_seq, tp->snd_una))
1068 return true;
1069
1070 if (!is_dsack || !tp->undo_marker)
1071 return false;
1072
1073 /* ...Then it's D-SACK, and must reside below snd_una completely */
1074 if (after(end_seq, tp->snd_una))
1075 return false;
1076
1077 if (!before(start_seq, tp->undo_marker))
1078 return true;
1079
1080 /* Too old */
1081 if (!after(end_seq, tp->undo_marker))
1082 return false;
1083
1084 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 * start_seq < undo_marker and end_seq >= undo_marker.
1086 */
1087 return !before(start_seq, end_seq - tp->max_window);
1088 }
1089
1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 struct tcp_sack_block_wire *sp, int num_sacks,
1092 u32 prior_snd_una)
1093 {
1094 struct tcp_sock *tp = tcp_sk(sk);
1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097 bool dup_sack = false;
1098
1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100 dup_sack = true;
1101 tcp_dsack_seen(tp);
1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103 } else if (num_sacks > 1) {
1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106
1107 if (!after(end_seq_0, end_seq_1) &&
1108 !before(start_seq_0, start_seq_1)) {
1109 dup_sack = true;
1110 tcp_dsack_seen(tp);
1111 NET_INC_STATS(sock_net(sk),
1112 LINUX_MIB_TCPDSACKOFORECV);
1113 }
1114 }
1115
1116 /* D-SACK for already forgotten data... Do dumb counting. */
1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118 !after(end_seq_0, prior_snd_una) &&
1119 after(end_seq_0, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 return dup_sack;
1123 }
1124
1125 struct tcp_sacktag_state {
1126 int reord;
1127 int fack_count;
1128 /* Timestamps for earliest and latest never-retransmitted segment
1129 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1130 * but congestion control should still get an accurate delay signal.
1131 */
1132 struct skb_mstamp first_sackt;
1133 struct skb_mstamp last_sackt;
1134 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1135 struct rate_sample *rate;
1136 int flag;
1137 };
1138
1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1140 * the incoming SACK may not exactly match but we can find smaller MSS
1141 * aligned portion of it that matches. Therefore we might need to fragment
1142 * which may fail and creates some hassle (caller must handle error case
1143 * returns).
1144 *
1145 * FIXME: this could be merged to shift decision code
1146 */
1147 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1148 u32 start_seq, u32 end_seq)
1149 {
1150 int err;
1151 bool in_sack;
1152 unsigned int pkt_len;
1153 unsigned int mss;
1154
1155 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1156 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1157
1158 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1159 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1160 mss = tcp_skb_mss(skb);
1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1162
1163 if (!in_sack) {
1164 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1165 if (pkt_len < mss)
1166 pkt_len = mss;
1167 } else {
1168 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1169 if (pkt_len < mss)
1170 return -EINVAL;
1171 }
1172
1173 /* Round if necessary so that SACKs cover only full MSSes
1174 * and/or the remaining small portion (if present)
1175 */
1176 if (pkt_len > mss) {
1177 unsigned int new_len = (pkt_len / mss) * mss;
1178 if (!in_sack && new_len < pkt_len) {
1179 new_len += mss;
1180 if (new_len >= skb->len)
1181 return 0;
1182 }
1183 pkt_len = new_len;
1184 }
1185 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1186 if (err < 0)
1187 return err;
1188 }
1189
1190 return in_sack;
1191 }
1192
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8 tcp_sacktag_one(struct sock *sk,
1195 struct tcp_sacktag_state *state, u8 sacked,
1196 u32 start_seq, u32 end_seq,
1197 int dup_sack, int pcount,
1198 const struct skb_mstamp *xmit_time)
1199 {
1200 struct tcp_sock *tp = tcp_sk(sk);
1201 int fack_count = state->fack_count;
1202
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205 if (tp->undo_marker && tp->undo_retrans > 0 &&
1206 after(end_seq, tp->undo_marker))
1207 tp->undo_retrans--;
1208 if (sacked & TCPCB_SACKED_ACKED)
1209 state->reord = min(fack_count, state->reord);
1210 }
1211
1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 if (!after(end_seq, tp->snd_una))
1214 return sacked;
1215
1216 if (!(sacked & TCPCB_SACKED_ACKED)) {
1217 tcp_rack_advance(tp, sacked, end_seq,
1218 xmit_time, &state->ack_time);
1219
1220 if (sacked & TCPCB_SACKED_RETRANS) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1224 */
1225 if (sacked & TCPCB_LOST) {
1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 tp->lost_out -= pcount;
1228 tp->retrans_out -= pcount;
1229 }
1230 } else {
1231 if (!(sacked & TCPCB_RETRANS)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1234 */
1235 if (before(start_seq,
1236 tcp_highest_sack_seq(tp)))
1237 state->reord = min(fack_count,
1238 state->reord);
1239 if (!after(end_seq, tp->high_seq))
1240 state->flag |= FLAG_ORIG_SACK_ACKED;
1241 if (state->first_sackt.v64 == 0)
1242 state->first_sackt = *xmit_time;
1243 state->last_sackt = *xmit_time;
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1249 }
1250 }
1251
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255 tp->delivered += pcount; /* Out-of-order packets delivered */
1256
1257 fack_count += pcount;
1258
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1262 tp->lost_cnt_hint += pcount;
1263
1264 if (fack_count > tp->fackets_out)
1265 tp->fackets_out = fack_count;
1266 }
1267
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1271 */
1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 sacked &= ~TCPCB_SACKED_RETRANS;
1274 tp->retrans_out -= pcount;
1275 }
1276
1277 return sacked;
1278 }
1279
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282 */
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 unsigned int pcount, int shifted, int mss,
1286 bool dup_sack)
1287 {
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1292
1293 BUG_ON(!pcount);
1294
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1300 */
1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 start_seq, end_seq, dup_sack, pcount,
1303 &skb->skb_mstamp);
1304 tcp_rate_skb_delivered(sk, skb, state->rate);
1305
1306 if (skb == tp->lost_skb_hint)
1307 tp->lost_cnt_hint += pcount;
1308
1309 TCP_SKB_CB(prev)->end_seq += shifted;
1310 TCP_SKB_CB(skb)->seq += shifted;
1311
1312 tcp_skb_pcount_add(prev, pcount);
1313 BUG_ON(tcp_skb_pcount(skb) < pcount);
1314 tcp_skb_pcount_add(skb, -pcount);
1315
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1320 */
1321 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1)
1326 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1327
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330
1331 if (skb->len > 0) {
1332 BUG_ON(!tcp_skb_pcount(skb));
1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 return false;
1335 }
1336
1337 /* Whole SKB was eaten :-) */
1338
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 }
1345
1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1350
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1353
1354 tcp_skb_collapse_tstamp(prev, skb);
1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1356 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1357
1358 tcp_unlink_write_queue(skb, sk);
1359 sk_wmem_free_skb(sk, skb);
1360
1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1362
1363 return true;
1364 }
1365
1366 /* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1368 */
1369 static int tcp_skb_seglen(const struct sk_buff *skb)
1370 {
1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1372 }
1373
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff *skb)
1376 {
1377 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1378 }
1379
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1381 * skb.
1382 */
1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1384 struct tcp_sacktag_state *state,
1385 u32 start_seq, u32 end_seq,
1386 bool dup_sack)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev;
1390 int mss;
1391 int pcount = 0;
1392 int len;
1393 int in_sack;
1394
1395 if (!sk_can_gso(sk))
1396 goto fallback;
1397
1398 /* Normally R but no L won't result in plain S */
1399 if (!dup_sack &&
1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1401 goto fallback;
1402 if (!skb_can_shift(skb))
1403 goto fallback;
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1406 goto fallback;
1407
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 if (unlikely(skb == tcp_write_queue_head(sk)))
1410 goto fallback;
1411 prev = tcp_write_queue_prev(sk, skb);
1412
1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1414 goto fallback;
1415
1416 if (!tcp_skb_can_collapse_to(prev))
1417 goto fallback;
1418
1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1421
1422 if (in_sack) {
1423 len = skb->len;
1424 pcount = tcp_skb_pcount(skb);
1425 mss = tcp_skb_seglen(skb);
1426
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1429 */
1430 if (mss != tcp_skb_seglen(prev))
1431 goto fallback;
1432 } else {
1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1434 goto noop;
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1438 */
1439 if (tcp_skb_pcount(skb) <= 1)
1440 goto noop;
1441
1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1443 if (!in_sack) {
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1447 *
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1453 * harder problem.
1454 */
1455 goto fallback;
1456 }
1457
1458 len = end_seq - TCP_SKB_CB(skb)->seq;
1459 BUG_ON(len < 0);
1460 BUG_ON(len > skb->len);
1461
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1465 */
1466 mss = tcp_skb_mss(skb);
1467
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1470 */
1471 if (mss != tcp_skb_seglen(prev))
1472 goto fallback;
1473
1474 if (len == mss) {
1475 pcount = 1;
1476 } else if (len < mss) {
1477 goto noop;
1478 } else {
1479 pcount = len / mss;
1480 len = pcount * mss;
1481 }
1482 }
1483
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1486 goto fallback;
1487
1488 if (!skb_shift(prev, skb, len))
1489 goto fallback;
1490 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1491 goto out;
1492
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1495 */
1496 if (prev == tcp_write_queue_tail(sk))
1497 goto out;
1498 skb = tcp_write_queue_next(sk, prev);
1499
1500 if (!skb_can_shift(skb) ||
1501 (skb == tcp_send_head(sk)) ||
1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1503 (mss != tcp_skb_seglen(skb)))
1504 goto out;
1505
1506 len = skb->len;
1507 if (skb_shift(prev, skb, len)) {
1508 pcount += tcp_skb_pcount(skb);
1509 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1510 }
1511
1512 out:
1513 state->fack_count += pcount;
1514 return prev;
1515
1516 noop:
1517 return skb;
1518
1519 fallback:
1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1521 return NULL;
1522 }
1523
1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525 struct tcp_sack_block *next_dup,
1526 struct tcp_sacktag_state *state,
1527 u32 start_seq, u32 end_seq,
1528 bool dup_sack_in)
1529 {
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 struct sk_buff *tmp;
1532
1533 tcp_for_write_queue_from(skb, sk) {
1534 int in_sack = 0;
1535 bool dup_sack = dup_sack_in;
1536
1537 if (skb == tcp_send_head(sk))
1538 break;
1539
1540 /* queue is in-order => we can short-circuit the walk early */
1541 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1542 break;
1543
1544 if (next_dup &&
1545 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 next_dup->start_seq,
1548 next_dup->end_seq);
1549 if (in_sack > 0)
1550 dup_sack = true;
1551 }
1552
1553 /* skb reference here is a bit tricky to get right, since
1554 * shifting can eat and free both this skb and the next,
1555 * so not even _safe variant of the loop is enough.
1556 */
1557 if (in_sack <= 0) {
1558 tmp = tcp_shift_skb_data(sk, skb, state,
1559 start_seq, end_seq, dup_sack);
1560 if (tmp) {
1561 if (tmp != skb) {
1562 skb = tmp;
1563 continue;
1564 }
1565
1566 in_sack = 0;
1567 } else {
1568 in_sack = tcp_match_skb_to_sack(sk, skb,
1569 start_seq,
1570 end_seq);
1571 }
1572 }
1573
1574 if (unlikely(in_sack < 0))
1575 break;
1576
1577 if (in_sack) {
1578 TCP_SKB_CB(skb)->sacked =
1579 tcp_sacktag_one(sk,
1580 state,
1581 TCP_SKB_CB(skb)->sacked,
1582 TCP_SKB_CB(skb)->seq,
1583 TCP_SKB_CB(skb)->end_seq,
1584 dup_sack,
1585 tcp_skb_pcount(skb),
1586 &skb->skb_mstamp);
1587 tcp_rate_skb_delivered(sk, skb, state->rate);
1588
1589 if (!before(TCP_SKB_CB(skb)->seq,
1590 tcp_highest_sack_seq(tp)))
1591 tcp_advance_highest_sack(sk, skb);
1592 }
1593
1594 state->fack_count += tcp_skb_pcount(skb);
1595 }
1596 return skb;
1597 }
1598
1599 /* Avoid all extra work that is being done by sacktag while walking in
1600 * a normal way
1601 */
1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1603 struct tcp_sacktag_state *state,
1604 u32 skip_to_seq)
1605 {
1606 tcp_for_write_queue_from(skb, sk) {
1607 if (skb == tcp_send_head(sk))
1608 break;
1609
1610 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1611 break;
1612
1613 state->fack_count += tcp_skb_pcount(skb);
1614 }
1615 return skb;
1616 }
1617
1618 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1619 struct sock *sk,
1620 struct tcp_sack_block *next_dup,
1621 struct tcp_sacktag_state *state,
1622 u32 skip_to_seq)
1623 {
1624 if (!next_dup)
1625 return skb;
1626
1627 if (before(next_dup->start_seq, skip_to_seq)) {
1628 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1629 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1630 next_dup->start_seq, next_dup->end_seq,
1631 1);
1632 }
1633
1634 return skb;
1635 }
1636
1637 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1638 {
1639 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1640 }
1641
1642 static int
1643 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1644 u32 prior_snd_una, struct tcp_sacktag_state *state)
1645 {
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1648 TCP_SKB_CB(ack_skb)->sacked);
1649 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1650 struct tcp_sack_block sp[TCP_NUM_SACKS];
1651 struct tcp_sack_block *cache;
1652 struct sk_buff *skb;
1653 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1654 int used_sacks;
1655 bool found_dup_sack = false;
1656 int i, j;
1657 int first_sack_index;
1658
1659 state->flag = 0;
1660 state->reord = tp->packets_out;
1661
1662 if (!tp->sacked_out) {
1663 if (WARN_ON(tp->fackets_out))
1664 tp->fackets_out = 0;
1665 tcp_highest_sack_reset(sk);
1666 }
1667
1668 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1669 num_sacks, prior_snd_una);
1670 if (found_dup_sack) {
1671 state->flag |= FLAG_DSACKING_ACK;
1672 tp->delivered++; /* A spurious retransmission is delivered */
1673 }
1674
1675 /* Eliminate too old ACKs, but take into
1676 * account more or less fresh ones, they can
1677 * contain valid SACK info.
1678 */
1679 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1680 return 0;
1681
1682 if (!tp->packets_out)
1683 goto out;
1684
1685 used_sacks = 0;
1686 first_sack_index = 0;
1687 for (i = 0; i < num_sacks; i++) {
1688 bool dup_sack = !i && found_dup_sack;
1689
1690 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1691 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1692
1693 if (!tcp_is_sackblock_valid(tp, dup_sack,
1694 sp[used_sacks].start_seq,
1695 sp[used_sacks].end_seq)) {
1696 int mib_idx;
1697
1698 if (dup_sack) {
1699 if (!tp->undo_marker)
1700 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1701 else
1702 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1703 } else {
1704 /* Don't count olds caused by ACK reordering */
1705 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1706 !after(sp[used_sacks].end_seq, tp->snd_una))
1707 continue;
1708 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1709 }
1710
1711 NET_INC_STATS(sock_net(sk), mib_idx);
1712 if (i == 0)
1713 first_sack_index = -1;
1714 continue;
1715 }
1716
1717 /* Ignore very old stuff early */
1718 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1719 continue;
1720
1721 used_sacks++;
1722 }
1723
1724 /* order SACK blocks to allow in order walk of the retrans queue */
1725 for (i = used_sacks - 1; i > 0; i--) {
1726 for (j = 0; j < i; j++) {
1727 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1728 swap(sp[j], sp[j + 1]);
1729
1730 /* Track where the first SACK block goes to */
1731 if (j == first_sack_index)
1732 first_sack_index = j + 1;
1733 }
1734 }
1735 }
1736
1737 skb = tcp_write_queue_head(sk);
1738 state->fack_count = 0;
1739 i = 0;
1740
1741 if (!tp->sacked_out) {
1742 /* It's already past, so skip checking against it */
1743 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1744 } else {
1745 cache = tp->recv_sack_cache;
1746 /* Skip empty blocks in at head of the cache */
1747 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1748 !cache->end_seq)
1749 cache++;
1750 }
1751
1752 while (i < used_sacks) {
1753 u32 start_seq = sp[i].start_seq;
1754 u32 end_seq = sp[i].end_seq;
1755 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1756 struct tcp_sack_block *next_dup = NULL;
1757
1758 if (found_dup_sack && ((i + 1) == first_sack_index))
1759 next_dup = &sp[i + 1];
1760
1761 /* Skip too early cached blocks */
1762 while (tcp_sack_cache_ok(tp, cache) &&
1763 !before(start_seq, cache->end_seq))
1764 cache++;
1765
1766 /* Can skip some work by looking recv_sack_cache? */
1767 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1768 after(end_seq, cache->start_seq)) {
1769
1770 /* Head todo? */
1771 if (before(start_seq, cache->start_seq)) {
1772 skb = tcp_sacktag_skip(skb, sk, state,
1773 start_seq);
1774 skb = tcp_sacktag_walk(skb, sk, next_dup,
1775 state,
1776 start_seq,
1777 cache->start_seq,
1778 dup_sack);
1779 }
1780
1781 /* Rest of the block already fully processed? */
1782 if (!after(end_seq, cache->end_seq))
1783 goto advance_sp;
1784
1785 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1786 state,
1787 cache->end_seq);
1788
1789 /* ...tail remains todo... */
1790 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1791 /* ...but better entrypoint exists! */
1792 skb = tcp_highest_sack(sk);
1793 if (!skb)
1794 break;
1795 state->fack_count = tp->fackets_out;
1796 cache++;
1797 goto walk;
1798 }
1799
1800 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1801 /* Check overlap against next cached too (past this one already) */
1802 cache++;
1803 continue;
1804 }
1805
1806 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1807 skb = tcp_highest_sack(sk);
1808 if (!skb)
1809 break;
1810 state->fack_count = tp->fackets_out;
1811 }
1812 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1813
1814 walk:
1815 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1816 start_seq, end_seq, dup_sack);
1817
1818 advance_sp:
1819 i++;
1820 }
1821
1822 /* Clear the head of the cache sack blocks so we can skip it next time */
1823 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1824 tp->recv_sack_cache[i].start_seq = 0;
1825 tp->recv_sack_cache[i].end_seq = 0;
1826 }
1827 for (j = 0; j < used_sacks; j++)
1828 tp->recv_sack_cache[i++] = sp[j];
1829
1830 if ((state->reord < tp->fackets_out) &&
1831 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1832 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1833
1834 tcp_verify_left_out(tp);
1835 out:
1836
1837 #if FASTRETRANS_DEBUG > 0
1838 WARN_ON((int)tp->sacked_out < 0);
1839 WARN_ON((int)tp->lost_out < 0);
1840 WARN_ON((int)tp->retrans_out < 0);
1841 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1842 #endif
1843 return state->flag;
1844 }
1845
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1848 */
1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1850 {
1851 u32 holes;
1852
1853 holes = max(tp->lost_out, 1U);
1854 holes = min(holes, tp->packets_out);
1855
1856 if ((tp->sacked_out + holes) > tp->packets_out) {
1857 tp->sacked_out = tp->packets_out - holes;
1858 return true;
1859 }
1860 return false;
1861 }
1862
1863 /* If we receive more dupacks than we expected counting segments
1864 * in assumption of absent reordering, interpret this as reordering.
1865 * The only another reason could be bug in receiver TCP.
1866 */
1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1868 {
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 if (tcp_limit_reno_sacked(tp))
1871 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1872 }
1873
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1875
1876 static void tcp_add_reno_sack(struct sock *sk)
1877 {
1878 struct tcp_sock *tp = tcp_sk(sk);
1879 u32 prior_sacked = tp->sacked_out;
1880
1881 tp->sacked_out++;
1882 tcp_check_reno_reordering(sk, 0);
1883 if (tp->sacked_out > prior_sacked)
1884 tp->delivered++; /* Some out-of-order packet is delivered */
1885 tcp_verify_left_out(tp);
1886 }
1887
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1889
1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1891 {
1892 struct tcp_sock *tp = tcp_sk(sk);
1893
1894 if (acked > 0) {
1895 /* One ACK acked hole. The rest eat duplicate ACKs. */
1896 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1897 if (acked - 1 >= tp->sacked_out)
1898 tp->sacked_out = 0;
1899 else
1900 tp->sacked_out -= acked - 1;
1901 }
1902 tcp_check_reno_reordering(sk, acked);
1903 tcp_verify_left_out(tp);
1904 }
1905
1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1907 {
1908 tp->sacked_out = 0;
1909 }
1910
1911 void tcp_clear_retrans(struct tcp_sock *tp)
1912 {
1913 tp->retrans_out = 0;
1914 tp->lost_out = 0;
1915 tp->undo_marker = 0;
1916 tp->undo_retrans = -1;
1917 tp->fackets_out = 0;
1918 tp->sacked_out = 0;
1919 }
1920
1921 static inline void tcp_init_undo(struct tcp_sock *tp)
1922 {
1923 tp->undo_marker = tp->snd_una;
1924 /* Retransmission still in flight may cause DSACKs later. */
1925 tp->undo_retrans = tp->retrans_out ? : -1;
1926 }
1927
1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1929 * and reset tags completely, otherwise preserve SACKs. If receiver
1930 * dropped its ofo queue, we will know this due to reneging detection.
1931 */
1932 void tcp_enter_loss(struct sock *sk)
1933 {
1934 const struct inet_connection_sock *icsk = inet_csk(sk);
1935 struct tcp_sock *tp = tcp_sk(sk);
1936 struct net *net = sock_net(sk);
1937 struct sk_buff *skb;
1938 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1939 bool is_reneg; /* is receiver reneging on SACKs? */
1940 bool mark_lost;
1941
1942 /* Reduce ssthresh if it has not yet been made inside this window. */
1943 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1944 !after(tp->high_seq, tp->snd_una) ||
1945 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1946 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1947 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1948 tcp_ca_event(sk, CA_EVENT_LOSS);
1949 tcp_init_undo(tp);
1950 }
1951 tp->snd_cwnd = 1;
1952 tp->snd_cwnd_cnt = 0;
1953 tp->snd_cwnd_stamp = tcp_time_stamp;
1954
1955 tp->retrans_out = 0;
1956 tp->lost_out = 0;
1957
1958 if (tcp_is_reno(tp))
1959 tcp_reset_reno_sack(tp);
1960
1961 skb = tcp_write_queue_head(sk);
1962 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1963 if (is_reneg) {
1964 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1965 tp->sacked_out = 0;
1966 tp->fackets_out = 0;
1967 }
1968 tcp_clear_all_retrans_hints(tp);
1969
1970 tcp_for_write_queue(skb, sk) {
1971 if (skb == tcp_send_head(sk))
1972 break;
1973
1974 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1975 is_reneg);
1976 if (mark_lost)
1977 tcp_sum_lost(tp, skb);
1978 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1979 if (mark_lost) {
1980 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1981 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1982 tp->lost_out += tcp_skb_pcount(skb);
1983 }
1984 }
1985 tcp_verify_left_out(tp);
1986
1987 /* Timeout in disordered state after receiving substantial DUPACKs
1988 * suggests that the degree of reordering is over-estimated.
1989 */
1990 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1991 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1992 tp->reordering = min_t(unsigned int, tp->reordering,
1993 net->ipv4.sysctl_tcp_reordering);
1994 tcp_set_ca_state(sk, TCP_CA_Loss);
1995 tp->high_seq = tp->snd_nxt;
1996 tcp_ecn_queue_cwr(tp);
1997
1998 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1999 * loss recovery is underway except recurring timeout(s) on
2000 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2001 *
2002 * In theory F-RTO can be used repeatedly during loss recovery.
2003 * In practice this interacts badly with broken middle-boxes that
2004 * falsely raise the receive window, which results in repeated
2005 * timeouts and stop-and-go behavior.
2006 */
2007 tp->frto = sysctl_tcp_frto &&
2008 (new_recovery || icsk->icsk_retransmits) &&
2009 !inet_csk(sk)->icsk_mtup.probe_size;
2010 }
2011
2012 /* If ACK arrived pointing to a remembered SACK, it means that our
2013 * remembered SACKs do not reflect real state of receiver i.e.
2014 * receiver _host_ is heavily congested (or buggy).
2015 *
2016 * To avoid big spurious retransmission bursts due to transient SACK
2017 * scoreboard oddities that look like reneging, we give the receiver a
2018 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2019 * restore sanity to the SACK scoreboard. If the apparent reneging
2020 * persists until this RTO then we'll clear the SACK scoreboard.
2021 */
2022 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2023 {
2024 if (flag & FLAG_SACK_RENEGING) {
2025 struct tcp_sock *tp = tcp_sk(sk);
2026 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2027 msecs_to_jiffies(10));
2028
2029 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2030 delay, TCP_RTO_MAX);
2031 return true;
2032 }
2033 return false;
2034 }
2035
2036 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2037 {
2038 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2039 }
2040
2041 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2042 * counter when SACK is enabled (without SACK, sacked_out is used for
2043 * that purpose).
2044 *
2045 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2046 * segments up to the highest received SACK block so far and holes in
2047 * between them.
2048 *
2049 * With reordering, holes may still be in flight, so RFC3517 recovery
2050 * uses pure sacked_out (total number of SACKed segments) even though
2051 * it violates the RFC that uses duplicate ACKs, often these are equal
2052 * but when e.g. out-of-window ACKs or packet duplication occurs,
2053 * they differ. Since neither occurs due to loss, TCP should really
2054 * ignore them.
2055 */
2056 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2057 {
2058 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2059 }
2060
2061 /* Linux NewReno/SACK/FACK/ECN state machine.
2062 * --------------------------------------
2063 *
2064 * "Open" Normal state, no dubious events, fast path.
2065 * "Disorder" In all the respects it is "Open",
2066 * but requires a bit more attention. It is entered when
2067 * we see some SACKs or dupacks. It is split of "Open"
2068 * mainly to move some processing from fast path to slow one.
2069 * "CWR" CWND was reduced due to some Congestion Notification event.
2070 * It can be ECN, ICMP source quench, local device congestion.
2071 * "Recovery" CWND was reduced, we are fast-retransmitting.
2072 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2073 *
2074 * tcp_fastretrans_alert() is entered:
2075 * - each incoming ACK, if state is not "Open"
2076 * - when arrived ACK is unusual, namely:
2077 * * SACK
2078 * * Duplicate ACK.
2079 * * ECN ECE.
2080 *
2081 * Counting packets in flight is pretty simple.
2082 *
2083 * in_flight = packets_out - left_out + retrans_out
2084 *
2085 * packets_out is SND.NXT-SND.UNA counted in packets.
2086 *
2087 * retrans_out is number of retransmitted segments.
2088 *
2089 * left_out is number of segments left network, but not ACKed yet.
2090 *
2091 * left_out = sacked_out + lost_out
2092 *
2093 * sacked_out: Packets, which arrived to receiver out of order
2094 * and hence not ACKed. With SACKs this number is simply
2095 * amount of SACKed data. Even without SACKs
2096 * it is easy to give pretty reliable estimate of this number,
2097 * counting duplicate ACKs.
2098 *
2099 * lost_out: Packets lost by network. TCP has no explicit
2100 * "loss notification" feedback from network (for now).
2101 * It means that this number can be only _guessed_.
2102 * Actually, it is the heuristics to predict lossage that
2103 * distinguishes different algorithms.
2104 *
2105 * F.e. after RTO, when all the queue is considered as lost,
2106 * lost_out = packets_out and in_flight = retrans_out.
2107 *
2108 * Essentially, we have now a few algorithms detecting
2109 * lost packets.
2110 *
2111 * If the receiver supports SACK:
2112 *
2113 * RFC6675/3517: It is the conventional algorithm. A packet is
2114 * considered lost if the number of higher sequence packets
2115 * SACKed is greater than or equal the DUPACK thoreshold
2116 * (reordering). This is implemented in tcp_mark_head_lost and
2117 * tcp_update_scoreboard.
2118 *
2119 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2120 * (2017-) that checks timing instead of counting DUPACKs.
2121 * Essentially a packet is considered lost if it's not S/ACKed
2122 * after RTT + reordering_window, where both metrics are
2123 * dynamically measured and adjusted. This is implemented in
2124 * tcp_rack_mark_lost.
2125 *
2126 * FACK (Disabled by default. Subsumbed by RACK):
2127 * It is the simplest heuristics. As soon as we decided
2128 * that something is lost, we decide that _all_ not SACKed
2129 * packets until the most forward SACK are lost. I.e.
2130 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2131 * It is absolutely correct estimate, if network does not reorder
2132 * packets. And it loses any connection to reality when reordering
2133 * takes place. We use FACK by default until reordering
2134 * is suspected on the path to this destination.
2135 *
2136 * If the receiver does not support SACK:
2137 *
2138 * NewReno (RFC6582): in Recovery we assume that one segment
2139 * is lost (classic Reno). While we are in Recovery and
2140 * a partial ACK arrives, we assume that one more packet
2141 * is lost (NewReno). This heuristics are the same in NewReno
2142 * and SACK.
2143 *
2144 * Really tricky (and requiring careful tuning) part of algorithm
2145 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2146 * The first determines the moment _when_ we should reduce CWND and,
2147 * hence, slow down forward transmission. In fact, it determines the moment
2148 * when we decide that hole is caused by loss, rather than by a reorder.
2149 *
2150 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2151 * holes, caused by lost packets.
2152 *
2153 * And the most logically complicated part of algorithm is undo
2154 * heuristics. We detect false retransmits due to both too early
2155 * fast retransmit (reordering) and underestimated RTO, analyzing
2156 * timestamps and D-SACKs. When we detect that some segments were
2157 * retransmitted by mistake and CWND reduction was wrong, we undo
2158 * window reduction and abort recovery phase. This logic is hidden
2159 * inside several functions named tcp_try_undo_<something>.
2160 */
2161
2162 /* This function decides, when we should leave Disordered state
2163 * and enter Recovery phase, reducing congestion window.
2164 *
2165 * Main question: may we further continue forward transmission
2166 * with the same cwnd?
2167 */
2168 static bool tcp_time_to_recover(struct sock *sk, int flag)
2169 {
2170 struct tcp_sock *tp = tcp_sk(sk);
2171
2172 /* Trick#1: The loss is proven. */
2173 if (tp->lost_out)
2174 return true;
2175
2176 /* Not-A-Trick#2 : Classic rule... */
2177 if (tcp_dupack_heuristics(tp) > tp->reordering)
2178 return true;
2179
2180 return false;
2181 }
2182
2183 /* Detect loss in event "A" above by marking head of queue up as lost.
2184 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2185 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2186 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2187 * the maximum SACKed segments to pass before reaching this limit.
2188 */
2189 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2190 {
2191 struct tcp_sock *tp = tcp_sk(sk);
2192 struct sk_buff *skb;
2193 int cnt, oldcnt, lost;
2194 unsigned int mss;
2195 /* Use SACK to deduce losses of new sequences sent during recovery */
2196 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2197
2198 WARN_ON(packets > tp->packets_out);
2199 if (tp->lost_skb_hint) {
2200 skb = tp->lost_skb_hint;
2201 cnt = tp->lost_cnt_hint;
2202 /* Head already handled? */
2203 if (mark_head && skb != tcp_write_queue_head(sk))
2204 return;
2205 } else {
2206 skb = tcp_write_queue_head(sk);
2207 cnt = 0;
2208 }
2209
2210 tcp_for_write_queue_from(skb, sk) {
2211 if (skb == tcp_send_head(sk))
2212 break;
2213 /* TODO: do this better */
2214 /* this is not the most efficient way to do this... */
2215 tp->lost_skb_hint = skb;
2216 tp->lost_cnt_hint = cnt;
2217
2218 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2219 break;
2220
2221 oldcnt = cnt;
2222 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2224 cnt += tcp_skb_pcount(skb);
2225
2226 if (cnt > packets) {
2227 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2228 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2229 (oldcnt >= packets))
2230 break;
2231
2232 mss = tcp_skb_mss(skb);
2233 /* If needed, chop off the prefix to mark as lost. */
2234 lost = (packets - oldcnt) * mss;
2235 if (lost < skb->len &&
2236 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2237 break;
2238 cnt = packets;
2239 }
2240
2241 tcp_skb_mark_lost(tp, skb);
2242
2243 if (mark_head)
2244 break;
2245 }
2246 tcp_verify_left_out(tp);
2247 }
2248
2249 /* Account newly detected lost packet(s) */
2250
2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2252 {
2253 struct tcp_sock *tp = tcp_sk(sk);
2254
2255 if (tcp_is_reno(tp)) {
2256 tcp_mark_head_lost(sk, 1, 1);
2257 } else if (tcp_is_fack(tp)) {
2258 int lost = tp->fackets_out - tp->reordering;
2259 if (lost <= 0)
2260 lost = 1;
2261 tcp_mark_head_lost(sk, lost, 0);
2262 } else {
2263 int sacked_upto = tp->sacked_out - tp->reordering;
2264 if (sacked_upto >= 0)
2265 tcp_mark_head_lost(sk, sacked_upto, 0);
2266 else if (fast_rexmit)
2267 tcp_mark_head_lost(sk, 1, 1);
2268 }
2269 }
2270
2271 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2272 {
2273 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2274 before(tp->rx_opt.rcv_tsecr, when);
2275 }
2276
2277 /* skb is spurious retransmitted if the returned timestamp echo
2278 * reply is prior to the skb transmission time
2279 */
2280 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2281 const struct sk_buff *skb)
2282 {
2283 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2284 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2285 }
2286
2287 /* Nothing was retransmitted or returned timestamp is less
2288 * than timestamp of the first retransmission.
2289 */
2290 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2291 {
2292 return !tp->retrans_stamp ||
2293 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2294 }
2295
2296 /* Undo procedures. */
2297
2298 /* We can clear retrans_stamp when there are no retransmissions in the
2299 * window. It would seem that it is trivially available for us in
2300 * tp->retrans_out, however, that kind of assumptions doesn't consider
2301 * what will happen if errors occur when sending retransmission for the
2302 * second time. ...It could the that such segment has only
2303 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2304 * the head skb is enough except for some reneging corner cases that
2305 * are not worth the effort.
2306 *
2307 * Main reason for all this complexity is the fact that connection dying
2308 * time now depends on the validity of the retrans_stamp, in particular,
2309 * that successive retransmissions of a segment must not advance
2310 * retrans_stamp under any conditions.
2311 */
2312 static bool tcp_any_retrans_done(const struct sock *sk)
2313 {
2314 const struct tcp_sock *tp = tcp_sk(sk);
2315 struct sk_buff *skb;
2316
2317 if (tp->retrans_out)
2318 return true;
2319
2320 skb = tcp_write_queue_head(sk);
2321 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2322 return true;
2323
2324 return false;
2325 }
2326
2327 #if FASTRETRANS_DEBUG > 1
2328 static void DBGUNDO(struct sock *sk, const char *msg)
2329 {
2330 struct tcp_sock *tp = tcp_sk(sk);
2331 struct inet_sock *inet = inet_sk(sk);
2332
2333 if (sk->sk_family == AF_INET) {
2334 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2335 msg,
2336 &inet->inet_daddr, ntohs(inet->inet_dport),
2337 tp->snd_cwnd, tcp_left_out(tp),
2338 tp->snd_ssthresh, tp->prior_ssthresh,
2339 tp->packets_out);
2340 }
2341 #if IS_ENABLED(CONFIG_IPV6)
2342 else if (sk->sk_family == AF_INET6) {
2343 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2344 msg,
2345 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2346 tp->snd_cwnd, tcp_left_out(tp),
2347 tp->snd_ssthresh, tp->prior_ssthresh,
2348 tp->packets_out);
2349 }
2350 #endif
2351 }
2352 #else
2353 #define DBGUNDO(x...) do { } while (0)
2354 #endif
2355
2356 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2357 {
2358 struct tcp_sock *tp = tcp_sk(sk);
2359
2360 if (unmark_loss) {
2361 struct sk_buff *skb;
2362
2363 tcp_for_write_queue(skb, sk) {
2364 if (skb == tcp_send_head(sk))
2365 break;
2366 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2367 }
2368 tp->lost_out = 0;
2369 tcp_clear_all_retrans_hints(tp);
2370 }
2371
2372 if (tp->prior_ssthresh) {
2373 const struct inet_connection_sock *icsk = inet_csk(sk);
2374
2375 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2376
2377 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2378 tp->snd_ssthresh = tp->prior_ssthresh;
2379 tcp_ecn_withdraw_cwr(tp);
2380 }
2381 }
2382 tp->snd_cwnd_stamp = tcp_time_stamp;
2383 tp->undo_marker = 0;
2384 }
2385
2386 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2387 {
2388 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2389 }
2390
2391 /* People celebrate: "We love our President!" */
2392 static bool tcp_try_undo_recovery(struct sock *sk)
2393 {
2394 struct tcp_sock *tp = tcp_sk(sk);
2395
2396 if (tcp_may_undo(tp)) {
2397 int mib_idx;
2398
2399 /* Happy end! We did not retransmit anything
2400 * or our original transmission succeeded.
2401 */
2402 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2403 tcp_undo_cwnd_reduction(sk, false);
2404 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2405 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2406 else
2407 mib_idx = LINUX_MIB_TCPFULLUNDO;
2408
2409 NET_INC_STATS(sock_net(sk), mib_idx);
2410 }
2411 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2412 /* Hold old state until something *above* high_seq
2413 * is ACKed. For Reno it is MUST to prevent false
2414 * fast retransmits (RFC2582). SACK TCP is safe. */
2415 if (!tcp_any_retrans_done(sk))
2416 tp->retrans_stamp = 0;
2417 return true;
2418 }
2419 tcp_set_ca_state(sk, TCP_CA_Open);
2420 return false;
2421 }
2422
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock *sk)
2425 {
2426 struct tcp_sock *tp = tcp_sk(sk);
2427
2428 if (tp->undo_marker && !tp->undo_retrans) {
2429 DBGUNDO(sk, "D-SACK");
2430 tcp_undo_cwnd_reduction(sk, false);
2431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432 return true;
2433 }
2434 return false;
2435 }
2436
2437 /* Undo during loss recovery after partial ACK or using F-RTO. */
2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439 {
2440 struct tcp_sock *tp = tcp_sk(sk);
2441
2442 if (frto_undo || tcp_may_undo(tp)) {
2443 tcp_undo_cwnd_reduction(sk, true);
2444
2445 DBGUNDO(sk, "partial loss");
2446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447 if (frto_undo)
2448 NET_INC_STATS(sock_net(sk),
2449 LINUX_MIB_TCPSPURIOUSRTOS);
2450 inet_csk(sk)->icsk_retransmits = 0;
2451 if (frto_undo || tcp_is_sack(tp))
2452 tcp_set_ca_state(sk, TCP_CA_Open);
2453 return true;
2454 }
2455 return false;
2456 }
2457
2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 * cwnd reductions across a full RTT.
2463 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 * But when the retransmits are acked without further losses, PRR
2465 * slow starts cwnd up to ssthresh to speed up the recovery.
2466 */
2467 static void tcp_init_cwnd_reduction(struct sock *sk)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 tp->high_seq = tp->snd_nxt;
2472 tp->tlp_high_seq = 0;
2473 tp->snd_cwnd_cnt = 0;
2474 tp->prior_cwnd = tp->snd_cwnd;
2475 tp->prr_delivered = 0;
2476 tp->prr_out = 0;
2477 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478 tcp_ecn_queue_cwr(tp);
2479 }
2480
2481 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 int sndcnt = 0;
2485 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2486
2487 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2488 return;
2489
2490 tp->prr_delivered += newly_acked_sacked;
2491 if (delta < 0) {
2492 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2493 tp->prior_cwnd - 1;
2494 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2495 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2496 !(flag & FLAG_LOST_RETRANS)) {
2497 sndcnt = min_t(int, delta,
2498 max_t(int, tp->prr_delivered - tp->prr_out,
2499 newly_acked_sacked) + 1);
2500 } else {
2501 sndcnt = min(delta, newly_acked_sacked);
2502 }
2503 /* Force a fast retransmit upon entering fast recovery */
2504 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2505 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2506 }
2507
2508 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2509 {
2510 struct tcp_sock *tp = tcp_sk(sk);
2511
2512 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2513 return;
2514
2515 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2516 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2517 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2518 tp->snd_cwnd = tp->snd_ssthresh;
2519 tp->snd_cwnd_stamp = tcp_time_stamp;
2520 }
2521 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2522 }
2523
2524 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2525 void tcp_enter_cwr(struct sock *sk)
2526 {
2527 struct tcp_sock *tp = tcp_sk(sk);
2528
2529 tp->prior_ssthresh = 0;
2530 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2531 tp->undo_marker = 0;
2532 tcp_init_cwnd_reduction(sk);
2533 tcp_set_ca_state(sk, TCP_CA_CWR);
2534 }
2535 }
2536 EXPORT_SYMBOL(tcp_enter_cwr);
2537
2538 static void tcp_try_keep_open(struct sock *sk)
2539 {
2540 struct tcp_sock *tp = tcp_sk(sk);
2541 int state = TCP_CA_Open;
2542
2543 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2544 state = TCP_CA_Disorder;
2545
2546 if (inet_csk(sk)->icsk_ca_state != state) {
2547 tcp_set_ca_state(sk, state);
2548 tp->high_seq = tp->snd_nxt;
2549 }
2550 }
2551
2552 static void tcp_try_to_open(struct sock *sk, int flag)
2553 {
2554 struct tcp_sock *tp = tcp_sk(sk);
2555
2556 tcp_verify_left_out(tp);
2557
2558 if (!tcp_any_retrans_done(sk))
2559 tp->retrans_stamp = 0;
2560
2561 if (flag & FLAG_ECE)
2562 tcp_enter_cwr(sk);
2563
2564 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2565 tcp_try_keep_open(sk);
2566 }
2567 }
2568
2569 static void tcp_mtup_probe_failed(struct sock *sk)
2570 {
2571 struct inet_connection_sock *icsk = inet_csk(sk);
2572
2573 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2574 icsk->icsk_mtup.probe_size = 0;
2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2576 }
2577
2578 static void tcp_mtup_probe_success(struct sock *sk)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581 struct inet_connection_sock *icsk = inet_csk(sk);
2582
2583 /* FIXME: breaks with very large cwnd */
2584 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2585 tp->snd_cwnd = tp->snd_cwnd *
2586 tcp_mss_to_mtu(sk, tp->mss_cache) /
2587 icsk->icsk_mtup.probe_size;
2588 tp->snd_cwnd_cnt = 0;
2589 tp->snd_cwnd_stamp = tcp_time_stamp;
2590 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2591
2592 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2593 icsk->icsk_mtup.probe_size = 0;
2594 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2596 }
2597
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599 * tcp_timer. This is used for path mtu discovery.
2600 * The socket is already locked here.
2601 */
2602 void tcp_simple_retransmit(struct sock *sk)
2603 {
2604 const struct inet_connection_sock *icsk = inet_csk(sk);
2605 struct tcp_sock *tp = tcp_sk(sk);
2606 struct sk_buff *skb;
2607 unsigned int mss = tcp_current_mss(sk);
2608 u32 prior_lost = tp->lost_out;
2609
2610 tcp_for_write_queue(skb, sk) {
2611 if (skb == tcp_send_head(sk))
2612 break;
2613 if (tcp_skb_seglen(skb) > mss &&
2614 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2615 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2616 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2617 tp->retrans_out -= tcp_skb_pcount(skb);
2618 }
2619 tcp_skb_mark_lost_uncond_verify(tp, skb);
2620 }
2621 }
2622
2623 tcp_clear_retrans_hints_partial(tp);
2624
2625 if (prior_lost == tp->lost_out)
2626 return;
2627
2628 if (tcp_is_reno(tp))
2629 tcp_limit_reno_sacked(tp);
2630
2631 tcp_verify_left_out(tp);
2632
2633 /* Don't muck with the congestion window here.
2634 * Reason is that we do not increase amount of _data_
2635 * in network, but units changed and effective
2636 * cwnd/ssthresh really reduced now.
2637 */
2638 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2639 tp->high_seq = tp->snd_nxt;
2640 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2641 tp->prior_ssthresh = 0;
2642 tp->undo_marker = 0;
2643 tcp_set_ca_state(sk, TCP_CA_Loss);
2644 }
2645 tcp_xmit_retransmit_queue(sk);
2646 }
2647 EXPORT_SYMBOL(tcp_simple_retransmit);
2648
2649 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2650 {
2651 struct tcp_sock *tp = tcp_sk(sk);
2652 int mib_idx;
2653
2654 if (tcp_is_reno(tp))
2655 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2656 else
2657 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2658
2659 NET_INC_STATS(sock_net(sk), mib_idx);
2660
2661 tp->prior_ssthresh = 0;
2662 tcp_init_undo(tp);
2663
2664 if (!tcp_in_cwnd_reduction(sk)) {
2665 if (!ece_ack)
2666 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2667 tcp_init_cwnd_reduction(sk);
2668 }
2669 tcp_set_ca_state(sk, TCP_CA_Recovery);
2670 }
2671
2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2673 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2674 */
2675 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2676 int *rexmit)
2677 {
2678 struct tcp_sock *tp = tcp_sk(sk);
2679 bool recovered = !before(tp->snd_una, tp->high_seq);
2680
2681 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2682 tcp_try_undo_loss(sk, false))
2683 return;
2684
2685 /* The ACK (s)acks some never-retransmitted data meaning not all
2686 * the data packets before the timeout were lost. Therefore we
2687 * undo the congestion window and state. This is essentially
2688 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2689 * a retransmitted skb is permantly marked, we can apply such an
2690 * operation even if F-RTO was not used.
2691 */
2692 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2693 tcp_try_undo_loss(sk, tp->undo_marker))
2694 return;
2695
2696 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2697 if (after(tp->snd_nxt, tp->high_seq)) {
2698 if (flag & FLAG_DATA_SACKED || is_dupack)
2699 tp->frto = 0; /* Step 3.a. loss was real */
2700 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2701 tp->high_seq = tp->snd_nxt;
2702 /* Step 2.b. Try send new data (but deferred until cwnd
2703 * is updated in tcp_ack()). Otherwise fall back to
2704 * the conventional recovery.
2705 */
2706 if (tcp_send_head(sk) &&
2707 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2708 *rexmit = REXMIT_NEW;
2709 return;
2710 }
2711 tp->frto = 0;
2712 }
2713 }
2714
2715 if (recovered) {
2716 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2717 tcp_try_undo_recovery(sk);
2718 return;
2719 }
2720 if (tcp_is_reno(tp)) {
2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2722 * delivered. Lower inflight to clock out (re)tranmissions.
2723 */
2724 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2725 tcp_add_reno_sack(sk);
2726 else if (flag & FLAG_SND_UNA_ADVANCED)
2727 tcp_reset_reno_sack(tp);
2728 }
2729 *rexmit = REXMIT_LOST;
2730 }
2731
2732 /* Undo during fast recovery after partial ACK. */
2733 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2734 {
2735 struct tcp_sock *tp = tcp_sk(sk);
2736
2737 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2738 /* Plain luck! Hole if filled with delayed
2739 * packet, rather than with a retransmit.
2740 */
2741 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2742
2743 /* We are getting evidence that the reordering degree is higher
2744 * than we realized. If there are no retransmits out then we
2745 * can undo. Otherwise we clock out new packets but do not
2746 * mark more packets lost or retransmit more.
2747 */
2748 if (tp->retrans_out)
2749 return true;
2750
2751 if (!tcp_any_retrans_done(sk))
2752 tp->retrans_stamp = 0;
2753
2754 DBGUNDO(sk, "partial recovery");
2755 tcp_undo_cwnd_reduction(sk, true);
2756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2757 tcp_try_keep_open(sk);
2758 return true;
2759 }
2760 return false;
2761 }
2762
2763 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2764 const struct skb_mstamp *ack_time)
2765 {
2766 struct tcp_sock *tp = tcp_sk(sk);
2767
2768 /* Use RACK to detect loss */
2769 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2770 u32 prior_retrans = tp->retrans_out;
2771
2772 tcp_rack_mark_lost(sk, ack_time);
2773 if (prior_retrans > tp->retrans_out)
2774 *ack_flag |= FLAG_LOST_RETRANS;
2775 }
2776 }
2777
2778 /* Process an event, which can update packets-in-flight not trivially.
2779 * Main goal of this function is to calculate new estimate for left_out,
2780 * taking into account both packets sitting in receiver's buffer and
2781 * packets lost by network.
2782 *
2783 * Besides that it updates the congestion state when packet loss or ECN
2784 * is detected. But it does not reduce the cwnd, it is done by the
2785 * congestion control later.
2786 *
2787 * It does _not_ decide what to send, it is made in function
2788 * tcp_xmit_retransmit_queue().
2789 */
2790 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2791 bool is_dupack, int *ack_flag, int *rexmit,
2792 const struct skb_mstamp *ack_time)
2793 {
2794 struct inet_connection_sock *icsk = inet_csk(sk);
2795 struct tcp_sock *tp = tcp_sk(sk);
2796 int fast_rexmit = 0, flag = *ack_flag;
2797 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2798 (tcp_fackets_out(tp) > tp->reordering));
2799
2800 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2801 tp->sacked_out = 0;
2802 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2803 tp->fackets_out = 0;
2804
2805 /* Now state machine starts.
2806 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2807 if (flag & FLAG_ECE)
2808 tp->prior_ssthresh = 0;
2809
2810 /* B. In all the states check for reneging SACKs. */
2811 if (tcp_check_sack_reneging(sk, flag))
2812 return;
2813
2814 /* C. Check consistency of the current state. */
2815 tcp_verify_left_out(tp);
2816
2817 /* D. Check state exit conditions. State can be terminated
2818 * when high_seq is ACKed. */
2819 if (icsk->icsk_ca_state == TCP_CA_Open) {
2820 WARN_ON(tp->retrans_out != 0);
2821 tp->retrans_stamp = 0;
2822 } else if (!before(tp->snd_una, tp->high_seq)) {
2823 switch (icsk->icsk_ca_state) {
2824 case TCP_CA_CWR:
2825 /* CWR is to be held something *above* high_seq
2826 * is ACKed for CWR bit to reach receiver. */
2827 if (tp->snd_una != tp->high_seq) {
2828 tcp_end_cwnd_reduction(sk);
2829 tcp_set_ca_state(sk, TCP_CA_Open);
2830 }
2831 break;
2832
2833 case TCP_CA_Recovery:
2834 if (tcp_is_reno(tp))
2835 tcp_reset_reno_sack(tp);
2836 if (tcp_try_undo_recovery(sk))
2837 return;
2838 tcp_end_cwnd_reduction(sk);
2839 break;
2840 }
2841 }
2842
2843 /* E. Process state. */
2844 switch (icsk->icsk_ca_state) {
2845 case TCP_CA_Recovery:
2846 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2847 if (tcp_is_reno(tp) && is_dupack)
2848 tcp_add_reno_sack(sk);
2849 } else {
2850 if (tcp_try_undo_partial(sk, acked))
2851 return;
2852 /* Partial ACK arrived. Force fast retransmit. */
2853 do_lost = tcp_is_reno(tp) ||
2854 tcp_fackets_out(tp) > tp->reordering;
2855 }
2856 if (tcp_try_undo_dsack(sk)) {
2857 tcp_try_keep_open(sk);
2858 return;
2859 }
2860 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2861 break;
2862 case TCP_CA_Loss:
2863 tcp_process_loss(sk, flag, is_dupack, rexmit);
2864 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2865 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2866 (*ack_flag & FLAG_LOST_RETRANS)))
2867 return;
2868 /* Change state if cwnd is undone or retransmits are lost */
2869 default:
2870 if (tcp_is_reno(tp)) {
2871 if (flag & FLAG_SND_UNA_ADVANCED)
2872 tcp_reset_reno_sack(tp);
2873 if (is_dupack)
2874 tcp_add_reno_sack(sk);
2875 }
2876
2877 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2878 tcp_try_undo_dsack(sk);
2879
2880 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2881 if (!tcp_time_to_recover(sk, flag)) {
2882 tcp_try_to_open(sk, flag);
2883 return;
2884 }
2885
2886 /* MTU probe failure: don't reduce cwnd */
2887 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2888 icsk->icsk_mtup.probe_size &&
2889 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2890 tcp_mtup_probe_failed(sk);
2891 /* Restores the reduction we did in tcp_mtup_probe() */
2892 tp->snd_cwnd++;
2893 tcp_simple_retransmit(sk);
2894 return;
2895 }
2896
2897 /* Otherwise enter Recovery state */
2898 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2899 fast_rexmit = 1;
2900 }
2901
2902 if (do_lost)
2903 tcp_update_scoreboard(sk, fast_rexmit);
2904 *rexmit = REXMIT_LOST;
2905 }
2906
2907 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908 {
2909 struct tcp_sock *tp = tcp_sk(sk);
2910 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2911
2912 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2913 rtt_us ? : jiffies_to_usecs(1));
2914 }
2915
2916 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2917 long seq_rtt_us, long sack_rtt_us,
2918 long ca_rtt_us)
2919 {
2920 const struct tcp_sock *tp = tcp_sk(sk);
2921
2922 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2923 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2924 * Karn's algorithm forbids taking RTT if some retransmitted data
2925 * is acked (RFC6298).
2926 */
2927 if (seq_rtt_us < 0)
2928 seq_rtt_us = sack_rtt_us;
2929
2930 /* RTTM Rule: A TSecr value received in a segment is used to
2931 * update the averaged RTT measurement only if the segment
2932 * acknowledges some new data, i.e., only if it advances the
2933 * left edge of the send window.
2934 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2935 */
2936 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2937 flag & FLAG_ACKED)
2938 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2939 tp->rx_opt.rcv_tsecr);
2940 if (seq_rtt_us < 0)
2941 return false;
2942
2943 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2944 * always taken together with ACK, SACK, or TS-opts. Any negative
2945 * values will be skipped with the seq_rtt_us < 0 check above.
2946 */
2947 tcp_update_rtt_min(sk, ca_rtt_us);
2948 tcp_rtt_estimator(sk, seq_rtt_us);
2949 tcp_set_rto(sk);
2950
2951 /* RFC6298: only reset backoff on valid RTT measurement. */
2952 inet_csk(sk)->icsk_backoff = 0;
2953 return true;
2954 }
2955
2956 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2957 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2958 {
2959 long rtt_us = -1L;
2960
2961 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2962 struct skb_mstamp now;
2963
2964 skb_mstamp_get(&now);
2965 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2966 }
2967
2968 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2969 }
2970
2971
2972 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2973 {
2974 const struct inet_connection_sock *icsk = inet_csk(sk);
2975
2976 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2977 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2978 }
2979
2980 /* Restart timer after forward progress on connection.
2981 * RFC2988 recommends to restart timer to now+rto.
2982 */
2983 void tcp_rearm_rto(struct sock *sk)
2984 {
2985 const struct inet_connection_sock *icsk = inet_csk(sk);
2986 struct tcp_sock *tp = tcp_sk(sk);
2987
2988 /* If the retrans timer is currently being used by Fast Open
2989 * for SYN-ACK retrans purpose, stay put.
2990 */
2991 if (tp->fastopen_rsk)
2992 return;
2993
2994 if (!tp->packets_out) {
2995 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2996 } else {
2997 u32 rto = inet_csk(sk)->icsk_rto;
2998 /* Offset the time elapsed after installing regular RTO */
2999 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3000 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3001 struct sk_buff *skb = tcp_write_queue_head(sk);
3002 const u32 rto_time_stamp =
3003 tcp_skb_timestamp(skb) + rto;
3004 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3005 /* delta may not be positive if the socket is locked
3006 * when the retrans timer fires and is rescheduled.
3007 */
3008 if (delta > 0)
3009 rto = delta;
3010 }
3011 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012 TCP_RTO_MAX);
3013 }
3014 }
3015
3016 /* If we get here, the whole TSO packet has not been acked. */
3017 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3018 {
3019 struct tcp_sock *tp = tcp_sk(sk);
3020 u32 packets_acked;
3021
3022 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3023
3024 packets_acked = tcp_skb_pcount(skb);
3025 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3026 return 0;
3027 packets_acked -= tcp_skb_pcount(skb);
3028
3029 if (packets_acked) {
3030 BUG_ON(tcp_skb_pcount(skb) == 0);
3031 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3032 }
3033
3034 return packets_acked;
3035 }
3036
3037 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3038 u32 prior_snd_una)
3039 {
3040 const struct skb_shared_info *shinfo;
3041
3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3043 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3044 return;
3045
3046 shinfo = skb_shinfo(skb);
3047 if (!before(shinfo->tskey, prior_snd_una) &&
3048 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3050 }
3051
3052 /* Remove acknowledged frames from the retransmission queue. If our packet
3053 * is before the ack sequence we can discard it as it's confirmed to have
3054 * arrived at the other end.
3055 */
3056 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3057 u32 prior_snd_una, int *acked,
3058 struct tcp_sacktag_state *sack)
3059 {
3060 const struct inet_connection_sock *icsk = inet_csk(sk);
3061 struct skb_mstamp first_ackt, last_ackt;
3062 struct skb_mstamp *now = &sack->ack_time;
3063 struct tcp_sock *tp = tcp_sk(sk);
3064 u32 prior_sacked = tp->sacked_out;
3065 u32 reord = tp->packets_out;
3066 bool fully_acked = true;
3067 long sack_rtt_us = -1L;
3068 long seq_rtt_us = -1L;
3069 long ca_rtt_us = -1L;
3070 struct sk_buff *skb;
3071 u32 pkts_acked = 0;
3072 u32 last_in_flight = 0;
3073 bool rtt_update;
3074 int flag = 0;
3075
3076 first_ackt.v64 = 0;
3077
3078 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3079 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3080 u8 sacked = scb->sacked;
3081 u32 acked_pcount;
3082
3083 tcp_ack_tstamp(sk, skb, prior_snd_una);
3084
3085 /* Determine how many packets and what bytes were acked, tso and else */
3086 if (after(scb->end_seq, tp->snd_una)) {
3087 if (tcp_skb_pcount(skb) == 1 ||
3088 !after(tp->snd_una, scb->seq))
3089 break;
3090
3091 acked_pcount = tcp_tso_acked(sk, skb);
3092 if (!acked_pcount)
3093 break;
3094 fully_acked = false;
3095 } else {
3096 /* Speedup tcp_unlink_write_queue() and next loop */
3097 prefetchw(skb->next);
3098 acked_pcount = tcp_skb_pcount(skb);
3099 }
3100
3101 if (unlikely(sacked & TCPCB_RETRANS)) {
3102 if (sacked & TCPCB_SACKED_RETRANS)
3103 tp->retrans_out -= acked_pcount;
3104 flag |= FLAG_RETRANS_DATA_ACKED;
3105 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3106 last_ackt = skb->skb_mstamp;
3107 WARN_ON_ONCE(last_ackt.v64 == 0);
3108 if (!first_ackt.v64)
3109 first_ackt = last_ackt;
3110
3111 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3112 reord = min(pkts_acked, reord);
3113 if (!after(scb->end_seq, tp->high_seq))
3114 flag |= FLAG_ORIG_SACK_ACKED;
3115 }
3116
3117 if (sacked & TCPCB_SACKED_ACKED) {
3118 tp->sacked_out -= acked_pcount;
3119 } else if (tcp_is_sack(tp)) {
3120 tp->delivered += acked_pcount;
3121 if (!tcp_skb_spurious_retrans(tp, skb))
3122 tcp_rack_advance(tp, sacked, scb->end_seq,
3123 &skb->skb_mstamp,
3124 &sack->ack_time);
3125 }
3126 if (sacked & TCPCB_LOST)
3127 tp->lost_out -= acked_pcount;
3128
3129 tp->packets_out -= acked_pcount;
3130 pkts_acked += acked_pcount;
3131 tcp_rate_skb_delivered(sk, skb, sack->rate);
3132
3133 /* Initial outgoing SYN's get put onto the write_queue
3134 * just like anything else we transmit. It is not
3135 * true data, and if we misinform our callers that
3136 * this ACK acks real data, we will erroneously exit
3137 * connection startup slow start one packet too
3138 * quickly. This is severely frowned upon behavior.
3139 */
3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141 flag |= FLAG_DATA_ACKED;
3142 } else {
3143 flag |= FLAG_SYN_ACKED;
3144 tp->retrans_stamp = 0;
3145 }
3146
3147 if (!fully_acked)
3148 break;
3149
3150 tcp_unlink_write_queue(skb, sk);
3151 sk_wmem_free_skb(sk, skb);
3152 if (unlikely(skb == tp->retransmit_skb_hint))
3153 tp->retransmit_skb_hint = NULL;
3154 if (unlikely(skb == tp->lost_skb_hint))
3155 tp->lost_skb_hint = NULL;
3156 }
3157
3158 if (!skb)
3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3160
3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 tp->snd_up = tp->snd_una;
3163
3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 flag |= FLAG_SACK_RENEGING;
3166
3167 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3169 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3170 }
3171 if (sack->first_sackt.v64) {
3172 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3173 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3174 }
3175 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3176 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3177 ca_rtt_us);
3178
3179 if (flag & FLAG_ACKED) {
3180 tcp_rearm_rto(sk);
3181 if (unlikely(icsk->icsk_mtup.probe_size &&
3182 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3183 tcp_mtup_probe_success(sk);
3184 }
3185
3186 if (tcp_is_reno(tp)) {
3187 tcp_remove_reno_sacks(sk, pkts_acked);
3188 } else {
3189 int delta;
3190
3191 /* Non-retransmitted hole got filled? That's reordering */
3192 if (reord < prior_fackets)
3193 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3194
3195 delta = tcp_is_fack(tp) ? pkts_acked :
3196 prior_sacked - tp->sacked_out;
3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3198 }
3199
3200 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3201
3202 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3203 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3204 /* Do not re-arm RTO if the sack RTT is measured from data sent
3205 * after when the head was last (re)transmitted. Otherwise the
3206 * timeout may continue to extend in loss recovery.
3207 */
3208 tcp_rearm_rto(sk);
3209 }
3210
3211 if (icsk->icsk_ca_ops->pkts_acked) {
3212 struct ack_sample sample = { .pkts_acked = pkts_acked,
3213 .rtt_us = ca_rtt_us,
3214 .in_flight = last_in_flight };
3215
3216 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3217 }
3218
3219 #if FASTRETRANS_DEBUG > 0
3220 WARN_ON((int)tp->sacked_out < 0);
3221 WARN_ON((int)tp->lost_out < 0);
3222 WARN_ON((int)tp->retrans_out < 0);
3223 if (!tp->packets_out && tcp_is_sack(tp)) {
3224 icsk = inet_csk(sk);
3225 if (tp->lost_out) {
3226 pr_debug("Leak l=%u %d\n",
3227 tp->lost_out, icsk->icsk_ca_state);
3228 tp->lost_out = 0;
3229 }
3230 if (tp->sacked_out) {
3231 pr_debug("Leak s=%u %d\n",
3232 tp->sacked_out, icsk->icsk_ca_state);
3233 tp->sacked_out = 0;
3234 }
3235 if (tp->retrans_out) {
3236 pr_debug("Leak r=%u %d\n",
3237 tp->retrans_out, icsk->icsk_ca_state);
3238 tp->retrans_out = 0;
3239 }
3240 }
3241 #endif
3242 *acked = pkts_acked;
3243 return flag;
3244 }
3245
3246 static void tcp_ack_probe(struct sock *sk)
3247 {
3248 const struct tcp_sock *tp = tcp_sk(sk);
3249 struct inet_connection_sock *icsk = inet_csk(sk);
3250
3251 /* Was it a usable window open? */
3252
3253 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3254 icsk->icsk_backoff = 0;
3255 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3256 /* Socket must be waked up by subsequent tcp_data_snd_check().
3257 * This function is not for random using!
3258 */
3259 } else {
3260 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3261
3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3263 when, TCP_RTO_MAX);
3264 }
3265 }
3266
3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3268 {
3269 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3270 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3271 }
3272
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3275 {
3276 /* If reordering is high then always grow cwnd whenever data is
3277 * delivered regardless of its ordering. Otherwise stay conservative
3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 * cwnd in tcp_fastretrans_alert() based on more states.
3281 */
3282 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3283 return flag & FLAG_FORWARD_PROGRESS;
3284
3285 return flag & FLAG_DATA_ACKED;
3286 }
3287
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290 * It's called toward the end of processing an ACK with precise rate
3291 * information. All transmission or retransmission are delayed afterwards.
3292 */
3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3294 int flag, const struct rate_sample *rs)
3295 {
3296 const struct inet_connection_sock *icsk = inet_csk(sk);
3297
3298 if (icsk->icsk_ca_ops->cong_control) {
3299 icsk->icsk_ca_ops->cong_control(sk, rs);
3300 return;
3301 }
3302
3303 if (tcp_in_cwnd_reduction(sk)) {
3304 /* Reduce cwnd if state mandates */
3305 tcp_cwnd_reduction(sk, acked_sacked, flag);
3306 } else if (tcp_may_raise_cwnd(sk, flag)) {
3307 /* Advance cwnd if state allows */
3308 tcp_cong_avoid(sk, ack, acked_sacked);
3309 }
3310 tcp_update_pacing_rate(sk);
3311 }
3312
3313 /* Check that window update is acceptable.
3314 * The function assumes that snd_una<=ack<=snd_next.
3315 */
3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3317 const u32 ack, const u32 ack_seq,
3318 const u32 nwin)
3319 {
3320 return after(ack, tp->snd_una) ||
3321 after(ack_seq, tp->snd_wl1) ||
3322 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3323 }
3324
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3327 {
3328 u32 delta = ack - tp->snd_una;
3329
3330 sock_owned_by_me((struct sock *)tp);
3331 tp->bytes_acked += delta;
3332 tp->snd_una = ack;
3333 }
3334
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3337 {
3338 u32 delta = seq - tp->rcv_nxt;
3339
3340 sock_owned_by_me((struct sock *)tp);
3341 tp->bytes_received += delta;
3342 tp->rcv_nxt = seq;
3343 }
3344
3345 /* Update our send window.
3346 *
3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3349 */
3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3351 u32 ack_seq)
3352 {
3353 struct tcp_sock *tp = tcp_sk(sk);
3354 int flag = 0;
3355 u32 nwin = ntohs(tcp_hdr(skb)->window);
3356
3357 if (likely(!tcp_hdr(skb)->syn))
3358 nwin <<= tp->rx_opt.snd_wscale;
3359
3360 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3361 flag |= FLAG_WIN_UPDATE;
3362 tcp_update_wl(tp, ack_seq);
3363
3364 if (tp->snd_wnd != nwin) {
3365 tp->snd_wnd = nwin;
3366
3367 /* Note, it is the only place, where
3368 * fast path is recovered for sending TCP.
3369 */
3370 tp->pred_flags = 0;
3371 tcp_fast_path_check(sk);
3372
3373 if (tcp_send_head(sk))
3374 tcp_slow_start_after_idle_check(sk);
3375
3376 if (nwin > tp->max_window) {
3377 tp->max_window = nwin;
3378 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3379 }
3380 }
3381 }
3382
3383 tcp_snd_una_update(tp, ack);
3384
3385 return flag;
3386 }
3387
3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3389 u32 *last_oow_ack_time)
3390 {
3391 if (*last_oow_ack_time) {
3392 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3393
3394 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3395 NET_INC_STATS(net, mib_idx);
3396 return true; /* rate-limited: don't send yet! */
3397 }
3398 }
3399
3400 *last_oow_ack_time = tcp_time_stamp;
3401
3402 return false; /* not rate-limited: go ahead, send dupack now! */
3403 }
3404
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408 * attacks that send repeated SYNs or ACKs for the same connection. To
3409 * do this, we do not send a duplicate SYNACK or ACK if the remote
3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3411 */
3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3413 int mib_idx, u32 *last_oow_ack_time)
3414 {
3415 /* Data packets without SYNs are not likely part of an ACK loop. */
3416 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3417 !tcp_hdr(skb)->syn)
3418 return false;
3419
3420 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3421 }
3422
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3425 {
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp;
3428 static unsigned int challenge_count;
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 u32 count, now;
3431
3432 /* First check our per-socket dupack rate limit. */
3433 if (__tcp_oow_rate_limited(sock_net(sk),
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 &tp->last_oow_ack_time))
3436 return;
3437
3438 /* Then check host-wide RFC 5961 rate limit. */
3439 now = jiffies / HZ;
3440 if (now != challenge_timestamp) {
3441 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3442
3443 challenge_timestamp = now;
3444 WRITE_ONCE(challenge_count, half +
3445 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3446 }
3447 count = READ_ONCE(challenge_count);
3448 if (count > 0) {
3449 WRITE_ONCE(challenge_count, count - 1);
3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3451 tcp_send_ack(sk);
3452 }
3453 }
3454
3455 static void tcp_store_ts_recent(struct tcp_sock *tp)
3456 {
3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3458 tp->rx_opt.ts_recent_stamp = get_seconds();
3459 }
3460
3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3462 {
3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 * extra check below makes sure this can only happen
3466 * for pure ACK frames. -DaveM
3467 *
3468 * Not only, also it occurs for expired timestamps.
3469 */
3470
3471 if (tcp_paws_check(&tp->rx_opt, 0))
3472 tcp_store_ts_recent(tp);
3473 }
3474 }
3475
3476 /* This routine deals with acks during a TLP episode.
3477 * We mark the end of a TLP episode on receiving TLP dupack or when
3478 * ack is after tlp_high_seq.
3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3480 */
3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3482 {
3483 struct tcp_sock *tp = tcp_sk(sk);
3484
3485 if (before(ack, tp->tlp_high_seq))
3486 return;
3487
3488 if (flag & FLAG_DSACKING_ACK) {
3489 /* This DSACK means original and TLP probe arrived; no loss */
3490 tp->tlp_high_seq = 0;
3491 } else if (after(ack, tp->tlp_high_seq)) {
3492 /* ACK advances: there was a loss, so reduce cwnd. Reset
3493 * tlp_high_seq in tcp_init_cwnd_reduction()
3494 */
3495 tcp_init_cwnd_reduction(sk);
3496 tcp_set_ca_state(sk, TCP_CA_CWR);
3497 tcp_end_cwnd_reduction(sk);
3498 tcp_try_keep_open(sk);
3499 NET_INC_STATS(sock_net(sk),
3500 LINUX_MIB_TCPLOSSPROBERECOVERY);
3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3503 /* Pure dupack: original and TLP probe arrived; no loss */
3504 tp->tlp_high_seq = 0;
3505 }
3506 }
3507
3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3509 {
3510 const struct inet_connection_sock *icsk = inet_csk(sk);
3511
3512 if (icsk->icsk_ca_ops->in_ack_event)
3513 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3514 }
3515
3516 /* Congestion control has updated the cwnd already. So if we're in
3517 * loss recovery then now we do any new sends (for FRTO) or
3518 * retransmits (for CA_Loss or CA_recovery) that make sense.
3519 */
3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3521 {
3522 struct tcp_sock *tp = tcp_sk(sk);
3523
3524 if (rexmit == REXMIT_NONE)
3525 return;
3526
3527 if (unlikely(rexmit == 2)) {
3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3529 TCP_NAGLE_OFF);
3530 if (after(tp->snd_nxt, tp->high_seq))
3531 return;
3532 tp->frto = 0;
3533 }
3534 tcp_xmit_retransmit_queue(sk);
3535 }
3536
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3539 {
3540 struct inet_connection_sock *icsk = inet_csk(sk);
3541 struct tcp_sock *tp = tcp_sk(sk);
3542 struct tcp_sacktag_state sack_state;
3543 struct rate_sample rs = { .prior_delivered = 0 };
3544 u32 prior_snd_una = tp->snd_una;
3545 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3546 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3547 bool is_dupack = false;
3548 u32 prior_fackets;
3549 int prior_packets = tp->packets_out;
3550 u32 delivered = tp->delivered;
3551 u32 lost = tp->lost;
3552 int acked = 0; /* Number of packets newly acked */
3553 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3554
3555 sack_state.first_sackt.v64 = 0;
3556 sack_state.rate = &rs;
3557
3558 /* We very likely will need to access write queue head. */
3559 prefetchw(sk->sk_write_queue.next);
3560
3561 /* If the ack is older than previous acks
3562 * then we can probably ignore it.
3563 */
3564 if (before(ack, prior_snd_una)) {
3565 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3566 if (before(ack, prior_snd_una - tp->max_window)) {
3567 tcp_send_challenge_ack(sk, skb);
3568 return -1;
3569 }
3570 goto old_ack;
3571 }
3572
3573 /* If the ack includes data we haven't sent yet, discard
3574 * this segment (RFC793 Section 3.9).
3575 */
3576 if (after(ack, tp->snd_nxt))
3577 goto invalid_ack;
3578
3579 skb_mstamp_get(&sack_state.ack_time);
3580
3581 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3582 tcp_rearm_rto(sk);
3583
3584 if (after(ack, prior_snd_una)) {
3585 flag |= FLAG_SND_UNA_ADVANCED;
3586 icsk->icsk_retransmits = 0;
3587 }
3588
3589 prior_fackets = tp->fackets_out;
3590 rs.prior_in_flight = tcp_packets_in_flight(tp);
3591
3592 /* ts_recent update must be made after we are sure that the packet
3593 * is in window.
3594 */
3595 if (flag & FLAG_UPDATE_TS_RECENT)
3596 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3597
3598 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3599 /* Window is constant, pure forward advance.
3600 * No more checks are required.
3601 * Note, we use the fact that SND.UNA>=SND.WL2.
3602 */
3603 tcp_update_wl(tp, ack_seq);
3604 tcp_snd_una_update(tp, ack);
3605 flag |= FLAG_WIN_UPDATE;
3606
3607 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3608
3609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3610 } else {
3611 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3612
3613 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3614 flag |= FLAG_DATA;
3615 else
3616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3617
3618 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3619
3620 if (TCP_SKB_CB(skb)->sacked)
3621 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3622 &sack_state);
3623
3624 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3625 flag |= FLAG_ECE;
3626 ack_ev_flags |= CA_ACK_ECE;
3627 }
3628
3629 if (flag & FLAG_WIN_UPDATE)
3630 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3631
3632 tcp_in_ack_event(sk, ack_ev_flags);
3633 }
3634
3635 /* We passed data and got it acked, remove any soft error
3636 * log. Something worked...
3637 */
3638 sk->sk_err_soft = 0;
3639 icsk->icsk_probes_out = 0;
3640 tp->rcv_tstamp = tcp_time_stamp;
3641 if (!prior_packets)
3642 goto no_queue;
3643
3644 /* See if we can take anything off of the retransmit queue. */
3645 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3646 &sack_state);
3647
3648 if (tcp_ack_is_dubious(sk, flag)) {
3649 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3650 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3651 &sack_state.ack_time);
3652 }
3653 if (tp->tlp_high_seq)
3654 tcp_process_tlp_ack(sk, ack, flag);
3655
3656 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3657 sk_dst_confirm(sk);
3658
3659 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3660 tcp_schedule_loss_probe(sk);
3661 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3662 lost = tp->lost - lost; /* freshly marked lost */
3663 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3664 sack_state.rate);
3665 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3666 tcp_xmit_recovery(sk, rexmit);
3667 return 1;
3668
3669 no_queue:
3670 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3671 if (flag & FLAG_DSACKING_ACK)
3672 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3673 &sack_state.ack_time);
3674 /* If this ack opens up a zero window, clear backoff. It was
3675 * being used to time the probes, and is probably far higher than
3676 * it needs to be for normal retransmission.
3677 */
3678 if (tcp_send_head(sk))
3679 tcp_ack_probe(sk);
3680
3681 if (tp->tlp_high_seq)
3682 tcp_process_tlp_ack(sk, ack, flag);
3683 return 1;
3684
3685 invalid_ack:
3686 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3687 return -1;
3688
3689 old_ack:
3690 /* If data was SACKed, tag it and see if we should send more data.
3691 * If data was DSACKed, see if we can undo a cwnd reduction.
3692 */
3693 if (TCP_SKB_CB(skb)->sacked) {
3694 skb_mstamp_get(&sack_state.ack_time);
3695 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3696 &sack_state);
3697 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3698 &sack_state.ack_time);
3699 tcp_xmit_recovery(sk, rexmit);
3700 }
3701
3702 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3703 return 0;
3704 }
3705
3706 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3707 bool syn, struct tcp_fastopen_cookie *foc,
3708 bool exp_opt)
3709 {
3710 /* Valid only in SYN or SYN-ACK with an even length. */
3711 if (!foc || !syn || len < 0 || (len & 1))
3712 return;
3713
3714 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3715 len <= TCP_FASTOPEN_COOKIE_MAX)
3716 memcpy(foc->val, cookie, len);
3717 else if (len != 0)
3718 len = -1;
3719 foc->len = len;
3720 foc->exp = exp_opt;
3721 }
3722
3723 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3724 * But, this can also be called on packets in the established flow when
3725 * the fast version below fails.
3726 */
3727 void tcp_parse_options(const struct sk_buff *skb,
3728 struct tcp_options_received *opt_rx, int estab,
3729 struct tcp_fastopen_cookie *foc)
3730 {
3731 const unsigned char *ptr;
3732 const struct tcphdr *th = tcp_hdr(skb);
3733 int length = (th->doff * 4) - sizeof(struct tcphdr);
3734
3735 ptr = (const unsigned char *)(th + 1);
3736 opt_rx->saw_tstamp = 0;
3737
3738 while (length > 0) {
3739 int opcode = *ptr++;
3740 int opsize;
3741
3742 switch (opcode) {
3743 case TCPOPT_EOL:
3744 return;
3745 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3746 length--;
3747 continue;
3748 default:
3749 opsize = *ptr++;
3750 if (opsize < 2) /* "silly options" */
3751 return;
3752 if (opsize > length)
3753 return; /* don't parse partial options */
3754 switch (opcode) {
3755 case TCPOPT_MSS:
3756 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3757 u16 in_mss = get_unaligned_be16(ptr);
3758 if (in_mss) {
3759 if (opt_rx->user_mss &&
3760 opt_rx->user_mss < in_mss)
3761 in_mss = opt_rx->user_mss;
3762 opt_rx->mss_clamp = in_mss;
3763 }
3764 }
3765 break;
3766 case TCPOPT_WINDOW:
3767 if (opsize == TCPOLEN_WINDOW && th->syn &&
3768 !estab && sysctl_tcp_window_scaling) {
3769 __u8 snd_wscale = *(__u8 *)ptr;
3770 opt_rx->wscale_ok = 1;
3771 if (snd_wscale > 14) {
3772 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3773 __func__,
3774 snd_wscale);
3775 snd_wscale = 14;
3776 }
3777 opt_rx->snd_wscale = snd_wscale;
3778 }
3779 break;
3780 case TCPOPT_TIMESTAMP:
3781 if ((opsize == TCPOLEN_TIMESTAMP) &&
3782 ((estab && opt_rx->tstamp_ok) ||
3783 (!estab && sysctl_tcp_timestamps))) {
3784 opt_rx->saw_tstamp = 1;
3785 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3786 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3787 }
3788 break;
3789 case TCPOPT_SACK_PERM:
3790 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3791 !estab && sysctl_tcp_sack) {
3792 opt_rx->sack_ok = TCP_SACK_SEEN;
3793 tcp_sack_reset(opt_rx);
3794 }
3795 break;
3796
3797 case TCPOPT_SACK:
3798 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3799 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3800 opt_rx->sack_ok) {
3801 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3802 }
3803 break;
3804 #ifdef CONFIG_TCP_MD5SIG
3805 case TCPOPT_MD5SIG:
3806 /*
3807 * The MD5 Hash has already been
3808 * checked (see tcp_v{4,6}_do_rcv()).
3809 */
3810 break;
3811 #endif
3812 case TCPOPT_FASTOPEN:
3813 tcp_parse_fastopen_option(
3814 opsize - TCPOLEN_FASTOPEN_BASE,
3815 ptr, th->syn, foc, false);
3816 break;
3817
3818 case TCPOPT_EXP:
3819 /* Fast Open option shares code 254 using a
3820 * 16 bits magic number.
3821 */
3822 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3823 get_unaligned_be16(ptr) ==
3824 TCPOPT_FASTOPEN_MAGIC)
3825 tcp_parse_fastopen_option(opsize -
3826 TCPOLEN_EXP_FASTOPEN_BASE,
3827 ptr + 2, th->syn, foc, true);
3828 break;
3829
3830 }
3831 ptr += opsize-2;
3832 length -= opsize;
3833 }
3834 }
3835 }
3836 EXPORT_SYMBOL(tcp_parse_options);
3837
3838 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3839 {
3840 const __be32 *ptr = (const __be32 *)(th + 1);
3841
3842 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3843 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3844 tp->rx_opt.saw_tstamp = 1;
3845 ++ptr;
3846 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3847 ++ptr;
3848 if (*ptr)
3849 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3850 else
3851 tp->rx_opt.rcv_tsecr = 0;
3852 return true;
3853 }
3854 return false;
3855 }
3856
3857 /* Fast parse options. This hopes to only see timestamps.
3858 * If it is wrong it falls back on tcp_parse_options().
3859 */
3860 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3861 const struct tcphdr *th, struct tcp_sock *tp)
3862 {
3863 /* In the spirit of fast parsing, compare doff directly to constant
3864 * values. Because equality is used, short doff can be ignored here.
3865 */
3866 if (th->doff == (sizeof(*th) / 4)) {
3867 tp->rx_opt.saw_tstamp = 0;
3868 return false;
3869 } else if (tp->rx_opt.tstamp_ok &&
3870 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3871 if (tcp_parse_aligned_timestamp(tp, th))
3872 return true;
3873 }
3874
3875 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3876 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3877 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3878
3879 return true;
3880 }
3881
3882 #ifdef CONFIG_TCP_MD5SIG
3883 /*
3884 * Parse MD5 Signature option
3885 */
3886 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3887 {
3888 int length = (th->doff << 2) - sizeof(*th);
3889 const u8 *ptr = (const u8 *)(th + 1);
3890
3891 /* If the TCP option is too short, we can short cut */
3892 if (length < TCPOLEN_MD5SIG)
3893 return NULL;
3894
3895 while (length > 0) {
3896 int opcode = *ptr++;
3897 int opsize;
3898
3899 switch (opcode) {
3900 case TCPOPT_EOL:
3901 return NULL;
3902 case TCPOPT_NOP:
3903 length--;
3904 continue;
3905 default:
3906 opsize = *ptr++;
3907 if (opsize < 2 || opsize > length)
3908 return NULL;
3909 if (opcode == TCPOPT_MD5SIG)
3910 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3911 }
3912 ptr += opsize - 2;
3913 length -= opsize;
3914 }
3915 return NULL;
3916 }
3917 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3918 #endif
3919
3920 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3921 *
3922 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3923 * it can pass through stack. So, the following predicate verifies that
3924 * this segment is not used for anything but congestion avoidance or
3925 * fast retransmit. Moreover, we even are able to eliminate most of such
3926 * second order effects, if we apply some small "replay" window (~RTO)
3927 * to timestamp space.
3928 *
3929 * All these measures still do not guarantee that we reject wrapped ACKs
3930 * on networks with high bandwidth, when sequence space is recycled fastly,
3931 * but it guarantees that such events will be very rare and do not affect
3932 * connection seriously. This doesn't look nice, but alas, PAWS is really
3933 * buggy extension.
3934 *
3935 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3936 * states that events when retransmit arrives after original data are rare.
3937 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3938 * the biggest problem on large power networks even with minor reordering.
3939 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3940 * up to bandwidth of 18Gigabit/sec. 8) ]
3941 */
3942
3943 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3944 {
3945 const struct tcp_sock *tp = tcp_sk(sk);
3946 const struct tcphdr *th = tcp_hdr(skb);
3947 u32 seq = TCP_SKB_CB(skb)->seq;
3948 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3949
3950 return (/* 1. Pure ACK with correct sequence number. */
3951 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3952
3953 /* 2. ... and duplicate ACK. */
3954 ack == tp->snd_una &&
3955
3956 /* 3. ... and does not update window. */
3957 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3958
3959 /* 4. ... and sits in replay window. */
3960 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3961 }
3962
3963 static inline bool tcp_paws_discard(const struct sock *sk,
3964 const struct sk_buff *skb)
3965 {
3966 const struct tcp_sock *tp = tcp_sk(sk);
3967
3968 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3969 !tcp_disordered_ack(sk, skb);
3970 }
3971
3972 /* Check segment sequence number for validity.
3973 *
3974 * Segment controls are considered valid, if the segment
3975 * fits to the window after truncation to the window. Acceptability
3976 * of data (and SYN, FIN, of course) is checked separately.
3977 * See tcp_data_queue(), for example.
3978 *
3979 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3980 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3981 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3982 * (borrowed from freebsd)
3983 */
3984
3985 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3986 {
3987 return !before(end_seq, tp->rcv_wup) &&
3988 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3989 }
3990
3991 /* When we get a reset we do this. */
3992 void tcp_reset(struct sock *sk)
3993 {
3994 /* We want the right error as BSD sees it (and indeed as we do). */
3995 switch (sk->sk_state) {
3996 case TCP_SYN_SENT:
3997 sk->sk_err = ECONNREFUSED;
3998 break;
3999 case TCP_CLOSE_WAIT:
4000 sk->sk_err = EPIPE;
4001 break;
4002 case TCP_CLOSE:
4003 return;
4004 default:
4005 sk->sk_err = ECONNRESET;
4006 }
4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4008 smp_wmb();
4009
4010 if (!sock_flag(sk, SOCK_DEAD))
4011 sk->sk_error_report(sk);
4012
4013 tcp_done(sk);
4014 }
4015
4016 /*
4017 * Process the FIN bit. This now behaves as it is supposed to work
4018 * and the FIN takes effect when it is validly part of sequence
4019 * space. Not before when we get holes.
4020 *
4021 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4022 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4023 * TIME-WAIT)
4024 *
4025 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4026 * close and we go into CLOSING (and later onto TIME-WAIT)
4027 *
4028 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4029 */
4030 void tcp_fin(struct sock *sk)
4031 {
4032 struct tcp_sock *tp = tcp_sk(sk);
4033
4034 inet_csk_schedule_ack(sk);
4035
4036 sk->sk_shutdown |= RCV_SHUTDOWN;
4037 sock_set_flag(sk, SOCK_DONE);
4038
4039 switch (sk->sk_state) {
4040 case TCP_SYN_RECV:
4041 case TCP_ESTABLISHED:
4042 /* Move to CLOSE_WAIT */
4043 tcp_set_state(sk, TCP_CLOSE_WAIT);
4044 inet_csk(sk)->icsk_ack.pingpong = 1;
4045 break;
4046
4047 case TCP_CLOSE_WAIT:
4048 case TCP_CLOSING:
4049 /* Received a retransmission of the FIN, do
4050 * nothing.
4051 */
4052 break;
4053 case TCP_LAST_ACK:
4054 /* RFC793: Remain in the LAST-ACK state. */
4055 break;
4056
4057 case TCP_FIN_WAIT1:
4058 /* This case occurs when a simultaneous close
4059 * happens, we must ack the received FIN and
4060 * enter the CLOSING state.
4061 */
4062 tcp_send_ack(sk);
4063 tcp_set_state(sk, TCP_CLOSING);
4064 break;
4065 case TCP_FIN_WAIT2:
4066 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4067 tcp_send_ack(sk);
4068 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4069 break;
4070 default:
4071 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4072 * cases we should never reach this piece of code.
4073 */
4074 pr_err("%s: Impossible, sk->sk_state=%d\n",
4075 __func__, sk->sk_state);
4076 break;
4077 }
4078
4079 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4080 * Probably, we should reset in this case. For now drop them.
4081 */
4082 skb_rbtree_purge(&tp->out_of_order_queue);
4083 if (tcp_is_sack(tp))
4084 tcp_sack_reset(&tp->rx_opt);
4085 sk_mem_reclaim(sk);
4086
4087 if (!sock_flag(sk, SOCK_DEAD)) {
4088 sk->sk_state_change(sk);
4089
4090 /* Do not send POLL_HUP for half duplex close. */
4091 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4092 sk->sk_state == TCP_CLOSE)
4093 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4094 else
4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4096 }
4097 }
4098
4099 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4100 u32 end_seq)
4101 {
4102 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4103 if (before(seq, sp->start_seq))
4104 sp->start_seq = seq;
4105 if (after(end_seq, sp->end_seq))
4106 sp->end_seq = end_seq;
4107 return true;
4108 }
4109 return false;
4110 }
4111
4112 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4113 {
4114 struct tcp_sock *tp = tcp_sk(sk);
4115
4116 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4117 int mib_idx;
4118
4119 if (before(seq, tp->rcv_nxt))
4120 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4121 else
4122 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4123
4124 NET_INC_STATS(sock_net(sk), mib_idx);
4125
4126 tp->rx_opt.dsack = 1;
4127 tp->duplicate_sack[0].start_seq = seq;
4128 tp->duplicate_sack[0].end_seq = end_seq;
4129 }
4130 }
4131
4132 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4133 {
4134 struct tcp_sock *tp = tcp_sk(sk);
4135
4136 if (!tp->rx_opt.dsack)
4137 tcp_dsack_set(sk, seq, end_seq);
4138 else
4139 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4140 }
4141
4142 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4143 {
4144 struct tcp_sock *tp = tcp_sk(sk);
4145
4146 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4147 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4148 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4149 tcp_enter_quickack_mode(sk);
4150
4151 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4152 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4153
4154 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4155 end_seq = tp->rcv_nxt;
4156 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4157 }
4158 }
4159
4160 tcp_send_ack(sk);
4161 }
4162
4163 /* These routines update the SACK block as out-of-order packets arrive or
4164 * in-order packets close up the sequence space.
4165 */
4166 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4167 {
4168 int this_sack;
4169 struct tcp_sack_block *sp = &tp->selective_acks[0];
4170 struct tcp_sack_block *swalk = sp + 1;
4171
4172 /* See if the recent change to the first SACK eats into
4173 * or hits the sequence space of other SACK blocks, if so coalesce.
4174 */
4175 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4176 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4177 int i;
4178
4179 /* Zap SWALK, by moving every further SACK up by one slot.
4180 * Decrease num_sacks.
4181 */
4182 tp->rx_opt.num_sacks--;
4183 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4184 sp[i] = sp[i + 1];
4185 continue;
4186 }
4187 this_sack++, swalk++;
4188 }
4189 }
4190
4191 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4192 {
4193 struct tcp_sock *tp = tcp_sk(sk);
4194 struct tcp_sack_block *sp = &tp->selective_acks[0];
4195 int cur_sacks = tp->rx_opt.num_sacks;
4196 int this_sack;
4197
4198 if (!cur_sacks)
4199 goto new_sack;
4200
4201 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4202 if (tcp_sack_extend(sp, seq, end_seq)) {
4203 /* Rotate this_sack to the first one. */
4204 for (; this_sack > 0; this_sack--, sp--)
4205 swap(*sp, *(sp - 1));
4206 if (cur_sacks > 1)
4207 tcp_sack_maybe_coalesce(tp);
4208 return;
4209 }
4210 }
4211
4212 /* Could not find an adjacent existing SACK, build a new one,
4213 * put it at the front, and shift everyone else down. We
4214 * always know there is at least one SACK present already here.
4215 *
4216 * If the sack array is full, forget about the last one.
4217 */
4218 if (this_sack >= TCP_NUM_SACKS) {
4219 this_sack--;
4220 tp->rx_opt.num_sacks--;
4221 sp--;
4222 }
4223 for (; this_sack > 0; this_sack--, sp--)
4224 *sp = *(sp - 1);
4225
4226 new_sack:
4227 /* Build the new head SACK, and we're done. */
4228 sp->start_seq = seq;
4229 sp->end_seq = end_seq;
4230 tp->rx_opt.num_sacks++;
4231 }
4232
4233 /* RCV.NXT advances, some SACKs should be eaten. */
4234
4235 static void tcp_sack_remove(struct tcp_sock *tp)
4236 {
4237 struct tcp_sack_block *sp = &tp->selective_acks[0];
4238 int num_sacks = tp->rx_opt.num_sacks;
4239 int this_sack;
4240
4241 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4242 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4243 tp->rx_opt.num_sacks = 0;
4244 return;
4245 }
4246
4247 for (this_sack = 0; this_sack < num_sacks;) {
4248 /* Check if the start of the sack is covered by RCV.NXT. */
4249 if (!before(tp->rcv_nxt, sp->start_seq)) {
4250 int i;
4251
4252 /* RCV.NXT must cover all the block! */
4253 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4254
4255 /* Zap this SACK, by moving forward any other SACKS. */
4256 for (i = this_sack+1; i < num_sacks; i++)
4257 tp->selective_acks[i-1] = tp->selective_acks[i];
4258 num_sacks--;
4259 continue;
4260 }
4261 this_sack++;
4262 sp++;
4263 }
4264 tp->rx_opt.num_sacks = num_sacks;
4265 }
4266
4267 /**
4268 * tcp_try_coalesce - try to merge skb to prior one
4269 * @sk: socket
4270 * @to: prior buffer
4271 * @from: buffer to add in queue
4272 * @fragstolen: pointer to boolean
4273 *
4274 * Before queueing skb @from after @to, try to merge them
4275 * to reduce overall memory use and queue lengths, if cost is small.
4276 * Packets in ofo or receive queues can stay a long time.
4277 * Better try to coalesce them right now to avoid future collapses.
4278 * Returns true if caller should free @from instead of queueing it
4279 */
4280 static bool tcp_try_coalesce(struct sock *sk,
4281 struct sk_buff *to,
4282 struct sk_buff *from,
4283 bool *fragstolen)
4284 {
4285 int delta;
4286
4287 *fragstolen = false;
4288
4289 /* Its possible this segment overlaps with prior segment in queue */
4290 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4291 return false;
4292
4293 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4294 return false;
4295
4296 atomic_add(delta, &sk->sk_rmem_alloc);
4297 sk_mem_charge(sk, delta);
4298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4299 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4300 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4301 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4302 return true;
4303 }
4304
4305 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4306 {
4307 sk_drops_add(sk, skb);
4308 __kfree_skb(skb);
4309 }
4310
4311 /* This one checks to see if we can put data from the
4312 * out_of_order queue into the receive_queue.
4313 */
4314 static void tcp_ofo_queue(struct sock *sk)
4315 {
4316 struct tcp_sock *tp = tcp_sk(sk);
4317 __u32 dsack_high = tp->rcv_nxt;
4318 bool fin, fragstolen, eaten;
4319 struct sk_buff *skb, *tail;
4320 struct rb_node *p;
4321
4322 p = rb_first(&tp->out_of_order_queue);
4323 while (p) {
4324 skb = rb_entry(p, struct sk_buff, rbnode);
4325 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4326 break;
4327
4328 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4329 __u32 dsack = dsack_high;
4330 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4331 dsack_high = TCP_SKB_CB(skb)->end_seq;
4332 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4333 }
4334 p = rb_next(p);
4335 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4336
4337 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4338 SOCK_DEBUG(sk, "ofo packet was already received\n");
4339 tcp_drop(sk, skb);
4340 continue;
4341 }
4342 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4344 TCP_SKB_CB(skb)->end_seq);
4345
4346 tail = skb_peek_tail(&sk->sk_receive_queue);
4347 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4348 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4349 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4350 if (!eaten)
4351 __skb_queue_tail(&sk->sk_receive_queue, skb);
4352 else
4353 kfree_skb_partial(skb, fragstolen);
4354
4355 if (unlikely(fin)) {
4356 tcp_fin(sk);
4357 /* tcp_fin() purges tp->out_of_order_queue,
4358 * so we must end this loop right now.
4359 */
4360 break;
4361 }
4362 }
4363 }
4364
4365 static bool tcp_prune_ofo_queue(struct sock *sk);
4366 static int tcp_prune_queue(struct sock *sk);
4367
4368 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4369 unsigned int size)
4370 {
4371 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4372 !sk_rmem_schedule(sk, skb, size)) {
4373
4374 if (tcp_prune_queue(sk) < 0)
4375 return -1;
4376
4377 while (!sk_rmem_schedule(sk, skb, size)) {
4378 if (!tcp_prune_ofo_queue(sk))
4379 return -1;
4380 }
4381 }
4382 return 0;
4383 }
4384
4385 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4386 {
4387 struct tcp_sock *tp = tcp_sk(sk);
4388 struct rb_node **p, *q, *parent;
4389 struct sk_buff *skb1;
4390 u32 seq, end_seq;
4391 bool fragstolen;
4392
4393 tcp_ecn_check_ce(tp, skb);
4394
4395 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4397 tcp_drop(sk, skb);
4398 return;
4399 }
4400
4401 /* Disable header prediction. */
4402 tp->pred_flags = 0;
4403 inet_csk_schedule_ack(sk);
4404
4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4406 seq = TCP_SKB_CB(skb)->seq;
4407 end_seq = TCP_SKB_CB(skb)->end_seq;
4408 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409 tp->rcv_nxt, seq, end_seq);
4410
4411 p = &tp->out_of_order_queue.rb_node;
4412 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4413 /* Initial out of order segment, build 1 SACK. */
4414 if (tcp_is_sack(tp)) {
4415 tp->rx_opt.num_sacks = 1;
4416 tp->selective_acks[0].start_seq = seq;
4417 tp->selective_acks[0].end_seq = end_seq;
4418 }
4419 rb_link_node(&skb->rbnode, NULL, p);
4420 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4421 tp->ooo_last_skb = skb;
4422 goto end;
4423 }
4424
4425 /* In the typical case, we are adding an skb to the end of the list.
4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4427 */
4428 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4429 coalesce_done:
4430 tcp_grow_window(sk, skb);
4431 kfree_skb_partial(skb, fragstolen);
4432 skb = NULL;
4433 goto add_sack;
4434 }
4435 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4436 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4437 parent = &tp->ooo_last_skb->rbnode;
4438 p = &parent->rb_right;
4439 goto insert;
4440 }
4441
4442 /* Find place to insert this segment. Handle overlaps on the way. */
4443 parent = NULL;
4444 while (*p) {
4445 parent = *p;
4446 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4447 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4448 p = &parent->rb_left;
4449 continue;
4450 }
4451 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4452 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4453 /* All the bits are present. Drop. */
4454 NET_INC_STATS(sock_net(sk),
4455 LINUX_MIB_TCPOFOMERGE);
4456 __kfree_skb(skb);
4457 skb = NULL;
4458 tcp_dsack_set(sk, seq, end_seq);
4459 goto add_sack;
4460 }
4461 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4462 /* Partial overlap. */
4463 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4464 } else {
4465 /* skb's seq == skb1's seq and skb covers skb1.
4466 * Replace skb1 with skb.
4467 */
4468 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4469 &tp->out_of_order_queue);
4470 tcp_dsack_extend(sk,
4471 TCP_SKB_CB(skb1)->seq,
4472 TCP_SKB_CB(skb1)->end_seq);
4473 NET_INC_STATS(sock_net(sk),
4474 LINUX_MIB_TCPOFOMERGE);
4475 __kfree_skb(skb1);
4476 goto merge_right;
4477 }
4478 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4479 goto coalesce_done;
4480 }
4481 p = &parent->rb_right;
4482 }
4483 insert:
4484 /* Insert segment into RB tree. */
4485 rb_link_node(&skb->rbnode, parent, p);
4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4487
4488 merge_right:
4489 /* Remove other segments covered by skb. */
4490 while ((q = rb_next(&skb->rbnode)) != NULL) {
4491 skb1 = rb_entry(q, struct sk_buff, rbnode);
4492
4493 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4494 break;
4495 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4497 end_seq);
4498 break;
4499 }
4500 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4501 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4502 TCP_SKB_CB(skb1)->end_seq);
4503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4504 tcp_drop(sk, skb1);
4505 }
4506 /* If there is no skb after us, we are the last_skb ! */
4507 if (!q)
4508 tp->ooo_last_skb = skb;
4509
4510 add_sack:
4511 if (tcp_is_sack(tp))
4512 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4513 end:
4514 if (skb) {
4515 tcp_grow_window(sk, skb);
4516 skb_condense(skb);
4517 skb_set_owner_r(skb, sk);
4518 }
4519 }
4520
4521 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4522 bool *fragstolen)
4523 {
4524 int eaten;
4525 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4526
4527 __skb_pull(skb, hdrlen);
4528 eaten = (tail &&
4529 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4530 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4531 if (!eaten) {
4532 __skb_queue_tail(&sk->sk_receive_queue, skb);
4533 skb_set_owner_r(skb, sk);
4534 }
4535 return eaten;
4536 }
4537
4538 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4539 {
4540 struct sk_buff *skb;
4541 int err = -ENOMEM;
4542 int data_len = 0;
4543 bool fragstolen;
4544
4545 if (size == 0)
4546 return 0;
4547
4548 if (size > PAGE_SIZE) {
4549 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4550
4551 data_len = npages << PAGE_SHIFT;
4552 size = data_len + (size & ~PAGE_MASK);
4553 }
4554 skb = alloc_skb_with_frags(size - data_len, data_len,
4555 PAGE_ALLOC_COSTLY_ORDER,
4556 &err, sk->sk_allocation);
4557 if (!skb)
4558 goto err;
4559
4560 skb_put(skb, size - data_len);
4561 skb->data_len = data_len;
4562 skb->len = size;
4563
4564 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4565 goto err_free;
4566
4567 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4568 if (err)
4569 goto err_free;
4570
4571 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4572 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4573 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4574
4575 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4576 WARN_ON_ONCE(fragstolen); /* should not happen */
4577 __kfree_skb(skb);
4578 }
4579 return size;
4580
4581 err_free:
4582 kfree_skb(skb);
4583 err:
4584 return err;
4585
4586 }
4587
4588 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4589 {
4590 struct tcp_sock *tp = tcp_sk(sk);
4591 bool fragstolen = false;
4592 int eaten = -1;
4593
4594 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4595 __kfree_skb(skb);
4596 return;
4597 }
4598 skb_dst_drop(skb);
4599 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4600
4601 tcp_ecn_accept_cwr(tp, skb);
4602
4603 tp->rx_opt.dsack = 0;
4604
4605 /* Queue data for delivery to the user.
4606 * Packets in sequence go to the receive queue.
4607 * Out of sequence packets to the out_of_order_queue.
4608 */
4609 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4610 if (tcp_receive_window(tp) == 0)
4611 goto out_of_window;
4612
4613 /* Ok. In sequence. In window. */
4614 if (tp->ucopy.task == current &&
4615 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4616 sock_owned_by_user(sk) && !tp->urg_data) {
4617 int chunk = min_t(unsigned int, skb->len,
4618 tp->ucopy.len);
4619
4620 __set_current_state(TASK_RUNNING);
4621
4622 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4623 tp->ucopy.len -= chunk;
4624 tp->copied_seq += chunk;
4625 eaten = (chunk == skb->len);
4626 tcp_rcv_space_adjust(sk);
4627 }
4628 }
4629
4630 if (eaten <= 0) {
4631 queue_and_out:
4632 if (eaten < 0) {
4633 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4634 sk_forced_mem_schedule(sk, skb->truesize);
4635 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4636 goto drop;
4637 }
4638 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4639 }
4640 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4641 if (skb->len)
4642 tcp_event_data_recv(sk, skb);
4643 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4644 tcp_fin(sk);
4645
4646 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4647 tcp_ofo_queue(sk);
4648
4649 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4650 * gap in queue is filled.
4651 */
4652 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4653 inet_csk(sk)->icsk_ack.pingpong = 0;
4654 }
4655
4656 if (tp->rx_opt.num_sacks)
4657 tcp_sack_remove(tp);
4658
4659 tcp_fast_path_check(sk);
4660
4661 if (eaten > 0)
4662 kfree_skb_partial(skb, fragstolen);
4663 if (!sock_flag(sk, SOCK_DEAD))
4664 sk->sk_data_ready(sk);
4665 return;
4666 }
4667
4668 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4669 /* A retransmit, 2nd most common case. Force an immediate ack. */
4670 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4671 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4672
4673 out_of_window:
4674 tcp_enter_quickack_mode(sk);
4675 inet_csk_schedule_ack(sk);
4676 drop:
4677 tcp_drop(sk, skb);
4678 return;
4679 }
4680
4681 /* Out of window. F.e. zero window probe. */
4682 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4683 goto out_of_window;
4684
4685 tcp_enter_quickack_mode(sk);
4686
4687 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4688 /* Partial packet, seq < rcv_next < end_seq */
4689 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4690 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4691 TCP_SKB_CB(skb)->end_seq);
4692
4693 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4694
4695 /* If window is closed, drop tail of packet. But after
4696 * remembering D-SACK for its head made in previous line.
4697 */
4698 if (!tcp_receive_window(tp))
4699 goto out_of_window;
4700 goto queue_and_out;
4701 }
4702
4703 tcp_data_queue_ofo(sk, skb);
4704 }
4705
4706 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4707 {
4708 if (list)
4709 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4710
4711 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4712 }
4713
4714 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4715 struct sk_buff_head *list,
4716 struct rb_root *root)
4717 {
4718 struct sk_buff *next = tcp_skb_next(skb, list);
4719
4720 if (list)
4721 __skb_unlink(skb, list);
4722 else
4723 rb_erase(&skb->rbnode, root);
4724
4725 __kfree_skb(skb);
4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4727
4728 return next;
4729 }
4730
4731 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4732 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4733 {
4734 struct rb_node **p = &root->rb_node;
4735 struct rb_node *parent = NULL;
4736 struct sk_buff *skb1;
4737
4738 while (*p) {
4739 parent = *p;
4740 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4741 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4742 p = &parent->rb_left;
4743 else
4744 p = &parent->rb_right;
4745 }
4746 rb_link_node(&skb->rbnode, parent, p);
4747 rb_insert_color(&skb->rbnode, root);
4748 }
4749
4750 /* Collapse contiguous sequence of skbs head..tail with
4751 * sequence numbers start..end.
4752 *
4753 * If tail is NULL, this means until the end of the queue.
4754 *
4755 * Segments with FIN/SYN are not collapsed (only because this
4756 * simplifies code)
4757 */
4758 static void
4759 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4760 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4761 {
4762 struct sk_buff *skb = head, *n;
4763 struct sk_buff_head tmp;
4764 bool end_of_skbs;
4765
4766 /* First, check that queue is collapsible and find
4767 * the point where collapsing can be useful.
4768 */
4769 restart:
4770 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4771 n = tcp_skb_next(skb, list);
4772
4773 /* No new bits? It is possible on ofo queue. */
4774 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4775 skb = tcp_collapse_one(sk, skb, list, root);
4776 if (!skb)
4777 break;
4778 goto restart;
4779 }
4780
4781 /* The first skb to collapse is:
4782 * - not SYN/FIN and
4783 * - bloated or contains data before "start" or
4784 * overlaps to the next one.
4785 */
4786 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4787 (tcp_win_from_space(skb->truesize) > skb->len ||
4788 before(TCP_SKB_CB(skb)->seq, start))) {
4789 end_of_skbs = false;
4790 break;
4791 }
4792
4793 if (n && n != tail &&
4794 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4795 end_of_skbs = false;
4796 break;
4797 }
4798
4799 /* Decided to skip this, advance start seq. */
4800 start = TCP_SKB_CB(skb)->end_seq;
4801 }
4802 if (end_of_skbs ||
4803 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4804 return;
4805
4806 __skb_queue_head_init(&tmp);
4807
4808 while (before(start, end)) {
4809 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4810 struct sk_buff *nskb;
4811
4812 nskb = alloc_skb(copy, GFP_ATOMIC);
4813 if (!nskb)
4814 break;
4815
4816 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4817 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4818 if (list)
4819 __skb_queue_before(list, skb, nskb);
4820 else
4821 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4822 skb_set_owner_r(nskb, sk);
4823
4824 /* Copy data, releasing collapsed skbs. */
4825 while (copy > 0) {
4826 int offset = start - TCP_SKB_CB(skb)->seq;
4827 int size = TCP_SKB_CB(skb)->end_seq - start;
4828
4829 BUG_ON(offset < 0);
4830 if (size > 0) {
4831 size = min(copy, size);
4832 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4833 BUG();
4834 TCP_SKB_CB(nskb)->end_seq += size;
4835 copy -= size;
4836 start += size;
4837 }
4838 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4839 skb = tcp_collapse_one(sk, skb, list, root);
4840 if (!skb ||
4841 skb == tail ||
4842 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4843 goto end;
4844 }
4845 }
4846 }
4847 end:
4848 skb_queue_walk_safe(&tmp, skb, n)
4849 tcp_rbtree_insert(root, skb);
4850 }
4851
4852 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4853 * and tcp_collapse() them until all the queue is collapsed.
4854 */
4855 static void tcp_collapse_ofo_queue(struct sock *sk)
4856 {
4857 struct tcp_sock *tp = tcp_sk(sk);
4858 struct sk_buff *skb, *head;
4859 struct rb_node *p;
4860 u32 start, end;
4861
4862 p = rb_first(&tp->out_of_order_queue);
4863 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4864 new_range:
4865 if (!skb) {
4866 p = rb_last(&tp->out_of_order_queue);
4867 /* Note: This is possible p is NULL here. We do not
4868 * use rb_entry_safe(), as ooo_last_skb is valid only
4869 * if rbtree is not empty.
4870 */
4871 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4872 return;
4873 }
4874 start = TCP_SKB_CB(skb)->seq;
4875 end = TCP_SKB_CB(skb)->end_seq;
4876
4877 for (head = skb;;) {
4878 skb = tcp_skb_next(skb, NULL);
4879
4880 /* Range is terminated when we see a gap or when
4881 * we are at the queue end.
4882 */
4883 if (!skb ||
4884 after(TCP_SKB_CB(skb)->seq, end) ||
4885 before(TCP_SKB_CB(skb)->end_seq, start)) {
4886 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4887 head, skb, start, end);
4888 goto new_range;
4889 }
4890
4891 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4892 start = TCP_SKB_CB(skb)->seq;
4893 if (after(TCP_SKB_CB(skb)->end_seq, end))
4894 end = TCP_SKB_CB(skb)->end_seq;
4895 }
4896 }
4897
4898 /*
4899 * Clean the out-of-order queue to make room.
4900 * We drop high sequences packets to :
4901 * 1) Let a chance for holes to be filled.
4902 * 2) not add too big latencies if thousands of packets sit there.
4903 * (But if application shrinks SO_RCVBUF, we could still end up
4904 * freeing whole queue here)
4905 *
4906 * Return true if queue has shrunk.
4907 */
4908 static bool tcp_prune_ofo_queue(struct sock *sk)
4909 {
4910 struct tcp_sock *tp = tcp_sk(sk);
4911 struct rb_node *node, *prev;
4912
4913 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4914 return false;
4915
4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4917 node = &tp->ooo_last_skb->rbnode;
4918 do {
4919 prev = rb_prev(node);
4920 rb_erase(node, &tp->out_of_order_queue);
4921 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4922 sk_mem_reclaim(sk);
4923 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4924 !tcp_under_memory_pressure(sk))
4925 break;
4926 node = prev;
4927 } while (node);
4928 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4929
4930 /* Reset SACK state. A conforming SACK implementation will
4931 * do the same at a timeout based retransmit. When a connection
4932 * is in a sad state like this, we care only about integrity
4933 * of the connection not performance.
4934 */
4935 if (tp->rx_opt.sack_ok)
4936 tcp_sack_reset(&tp->rx_opt);
4937 return true;
4938 }
4939
4940 /* Reduce allocated memory if we can, trying to get
4941 * the socket within its memory limits again.
4942 *
4943 * Return less than zero if we should start dropping frames
4944 * until the socket owning process reads some of the data
4945 * to stabilize the situation.
4946 */
4947 static int tcp_prune_queue(struct sock *sk)
4948 {
4949 struct tcp_sock *tp = tcp_sk(sk);
4950
4951 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4952
4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4954
4955 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4956 tcp_clamp_window(sk);
4957 else if (tcp_under_memory_pressure(sk))
4958 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4959
4960 tcp_collapse_ofo_queue(sk);
4961 if (!skb_queue_empty(&sk->sk_receive_queue))
4962 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4963 skb_peek(&sk->sk_receive_queue),
4964 NULL,
4965 tp->copied_seq, tp->rcv_nxt);
4966 sk_mem_reclaim(sk);
4967
4968 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4969 return 0;
4970
4971 /* Collapsing did not help, destructive actions follow.
4972 * This must not ever occur. */
4973
4974 tcp_prune_ofo_queue(sk);
4975
4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4977 return 0;
4978
4979 /* If we are really being abused, tell the caller to silently
4980 * drop receive data on the floor. It will get retransmitted
4981 * and hopefully then we'll have sufficient space.
4982 */
4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4984
4985 /* Massive buffer overcommit. */
4986 tp->pred_flags = 0;
4987 return -1;
4988 }
4989
4990 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4991 {
4992 const struct tcp_sock *tp = tcp_sk(sk);
4993
4994 /* If the user specified a specific send buffer setting, do
4995 * not modify it.
4996 */
4997 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4998 return false;
4999
5000 /* If we are under global TCP memory pressure, do not expand. */
5001 if (tcp_under_memory_pressure(sk))
5002 return false;
5003
5004 /* If we are under soft global TCP memory pressure, do not expand. */
5005 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5006 return false;
5007
5008 /* If we filled the congestion window, do not expand. */
5009 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5010 return false;
5011
5012 return true;
5013 }
5014
5015 /* When incoming ACK allowed to free some skb from write_queue,
5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5017 * on the exit from tcp input handler.
5018 *
5019 * PROBLEM: sndbuf expansion does not work well with largesend.
5020 */
5021 static void tcp_new_space(struct sock *sk)
5022 {
5023 struct tcp_sock *tp = tcp_sk(sk);
5024
5025 if (tcp_should_expand_sndbuf(sk)) {
5026 tcp_sndbuf_expand(sk);
5027 tp->snd_cwnd_stamp = tcp_time_stamp;
5028 }
5029
5030 sk->sk_write_space(sk);
5031 }
5032
5033 static void tcp_check_space(struct sock *sk)
5034 {
5035 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5036 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5037 /* pairs with tcp_poll() */
5038 smp_mb();
5039 if (sk->sk_socket &&
5040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5041 tcp_new_space(sk);
5042 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5043 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5044 }
5045 }
5046 }
5047
5048 static inline void tcp_data_snd_check(struct sock *sk)
5049 {
5050 tcp_push_pending_frames(sk);
5051 tcp_check_space(sk);
5052 }
5053
5054 /*
5055 * Check if sending an ack is needed.
5056 */
5057 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5058 {
5059 struct tcp_sock *tp = tcp_sk(sk);
5060
5061 /* More than one full frame received... */
5062 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5063 /* ... and right edge of window advances far enough.
5064 * (tcp_recvmsg() will send ACK otherwise). Or...
5065 */
5066 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5067 /* We ACK each frame or... */
5068 tcp_in_quickack_mode(sk) ||
5069 /* We have out of order data. */
5070 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5071 /* Then ack it now */
5072 tcp_send_ack(sk);
5073 } else {
5074 /* Else, send delayed ack. */
5075 tcp_send_delayed_ack(sk);
5076 }
5077 }
5078
5079 static inline void tcp_ack_snd_check(struct sock *sk)
5080 {
5081 if (!inet_csk_ack_scheduled(sk)) {
5082 /* We sent a data segment already. */
5083 return;
5084 }
5085 __tcp_ack_snd_check(sk, 1);
5086 }
5087
5088 /*
5089 * This routine is only called when we have urgent data
5090 * signaled. Its the 'slow' part of tcp_urg. It could be
5091 * moved inline now as tcp_urg is only called from one
5092 * place. We handle URGent data wrong. We have to - as
5093 * BSD still doesn't use the correction from RFC961.
5094 * For 1003.1g we should support a new option TCP_STDURG to permit
5095 * either form (or just set the sysctl tcp_stdurg).
5096 */
5097
5098 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5099 {
5100 struct tcp_sock *tp = tcp_sk(sk);
5101 u32 ptr = ntohs(th->urg_ptr);
5102
5103 if (ptr && !sysctl_tcp_stdurg)
5104 ptr--;
5105 ptr += ntohl(th->seq);
5106
5107 /* Ignore urgent data that we've already seen and read. */
5108 if (after(tp->copied_seq, ptr))
5109 return;
5110
5111 /* Do not replay urg ptr.
5112 *
5113 * NOTE: interesting situation not covered by specs.
5114 * Misbehaving sender may send urg ptr, pointing to segment,
5115 * which we already have in ofo queue. We are not able to fetch
5116 * such data and will stay in TCP_URG_NOTYET until will be eaten
5117 * by recvmsg(). Seems, we are not obliged to handle such wicked
5118 * situations. But it is worth to think about possibility of some
5119 * DoSes using some hypothetical application level deadlock.
5120 */
5121 if (before(ptr, tp->rcv_nxt))
5122 return;
5123
5124 /* Do we already have a newer (or duplicate) urgent pointer? */
5125 if (tp->urg_data && !after(ptr, tp->urg_seq))
5126 return;
5127
5128 /* Tell the world about our new urgent pointer. */
5129 sk_send_sigurg(sk);
5130
5131 /* We may be adding urgent data when the last byte read was
5132 * urgent. To do this requires some care. We cannot just ignore
5133 * tp->copied_seq since we would read the last urgent byte again
5134 * as data, nor can we alter copied_seq until this data arrives
5135 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5136 *
5137 * NOTE. Double Dutch. Rendering to plain English: author of comment
5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5139 * and expect that both A and B disappear from stream. This is _wrong_.
5140 * Though this happens in BSD with high probability, this is occasional.
5141 * Any application relying on this is buggy. Note also, that fix "works"
5142 * only in this artificial test. Insert some normal data between A and B and we will
5143 * decline of BSD again. Verdict: it is better to remove to trap
5144 * buggy users.
5145 */
5146 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5147 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5148 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5149 tp->copied_seq++;
5150 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5151 __skb_unlink(skb, &sk->sk_receive_queue);
5152 __kfree_skb(skb);
5153 }
5154 }
5155
5156 tp->urg_data = TCP_URG_NOTYET;
5157 tp->urg_seq = ptr;
5158
5159 /* Disable header prediction. */
5160 tp->pred_flags = 0;
5161 }
5162
5163 /* This is the 'fast' part of urgent handling. */
5164 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5165 {
5166 struct tcp_sock *tp = tcp_sk(sk);
5167
5168 /* Check if we get a new urgent pointer - normally not. */
5169 if (th->urg)
5170 tcp_check_urg(sk, th);
5171
5172 /* Do we wait for any urgent data? - normally not... */
5173 if (tp->urg_data == TCP_URG_NOTYET) {
5174 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5175 th->syn;
5176
5177 /* Is the urgent pointer pointing into this packet? */
5178 if (ptr < skb->len) {
5179 u8 tmp;
5180 if (skb_copy_bits(skb, ptr, &tmp, 1))
5181 BUG();
5182 tp->urg_data = TCP_URG_VALID | tmp;
5183 if (!sock_flag(sk, SOCK_DEAD))
5184 sk->sk_data_ready(sk);
5185 }
5186 }
5187 }
5188
5189 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5190 {
5191 struct tcp_sock *tp = tcp_sk(sk);
5192 int chunk = skb->len - hlen;
5193 int err;
5194
5195 if (skb_csum_unnecessary(skb))
5196 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5197 else
5198 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5199
5200 if (!err) {
5201 tp->ucopy.len -= chunk;
5202 tp->copied_seq += chunk;
5203 tcp_rcv_space_adjust(sk);
5204 }
5205
5206 return err;
5207 }
5208
5209 /* Accept RST for rcv_nxt - 1 after a FIN.
5210 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5211 * FIN is sent followed by a RST packet. The RST is sent with the same
5212 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5213 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5214 * ACKs on the closed socket. In addition middleboxes can drop either the
5215 * challenge ACK or a subsequent RST.
5216 */
5217 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5218 {
5219 struct tcp_sock *tp = tcp_sk(sk);
5220
5221 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5222 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5223 TCPF_CLOSING));
5224 }
5225
5226 /* Does PAWS and seqno based validation of an incoming segment, flags will
5227 * play significant role here.
5228 */
5229 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5230 const struct tcphdr *th, int syn_inerr)
5231 {
5232 struct tcp_sock *tp = tcp_sk(sk);
5233 bool rst_seq_match = false;
5234
5235 /* RFC1323: H1. Apply PAWS check first. */
5236 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5237 tcp_paws_discard(sk, skb)) {
5238 if (!th->rst) {
5239 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5240 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5241 LINUX_MIB_TCPACKSKIPPEDPAWS,
5242 &tp->last_oow_ack_time))
5243 tcp_send_dupack(sk, skb);
5244 goto discard;
5245 }
5246 /* Reset is accepted even if it did not pass PAWS. */
5247 }
5248
5249 /* Step 1: check sequence number */
5250 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5251 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5252 * (RST) segments are validated by checking their SEQ-fields."
5253 * And page 69: "If an incoming segment is not acceptable,
5254 * an acknowledgment should be sent in reply (unless the RST
5255 * bit is set, if so drop the segment and return)".
5256 */
5257 if (!th->rst) {
5258 if (th->syn)
5259 goto syn_challenge;
5260 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5261 LINUX_MIB_TCPACKSKIPPEDSEQ,
5262 &tp->last_oow_ack_time))
5263 tcp_send_dupack(sk, skb);
5264 } else if (tcp_reset_check(sk, skb)) {
5265 tcp_reset(sk);
5266 }
5267 goto discard;
5268 }
5269
5270 /* Step 2: check RST bit */
5271 if (th->rst) {
5272 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5273 * FIN and SACK too if available):
5274 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5275 * the right-most SACK block,
5276 * then
5277 * RESET the connection
5278 * else
5279 * Send a challenge ACK
5280 */
5281 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5282 tcp_reset_check(sk, skb)) {
5283 rst_seq_match = true;
5284 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5285 struct tcp_sack_block *sp = &tp->selective_acks[0];
5286 int max_sack = sp[0].end_seq;
5287 int this_sack;
5288
5289 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5290 ++this_sack) {
5291 max_sack = after(sp[this_sack].end_seq,
5292 max_sack) ?
5293 sp[this_sack].end_seq : max_sack;
5294 }
5295
5296 if (TCP_SKB_CB(skb)->seq == max_sack)
5297 rst_seq_match = true;
5298 }
5299
5300 if (rst_seq_match)
5301 tcp_reset(sk);
5302 else
5303 tcp_send_challenge_ack(sk, skb);
5304 goto discard;
5305 }
5306
5307 /* step 3: check security and precedence [ignored] */
5308
5309 /* step 4: Check for a SYN
5310 * RFC 5961 4.2 : Send a challenge ack
5311 */
5312 if (th->syn) {
5313 syn_challenge:
5314 if (syn_inerr)
5315 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5316 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5317 tcp_send_challenge_ack(sk, skb);
5318 goto discard;
5319 }
5320
5321 return true;
5322
5323 discard:
5324 tcp_drop(sk, skb);
5325 return false;
5326 }
5327
5328 /*
5329 * TCP receive function for the ESTABLISHED state.
5330 *
5331 * It is split into a fast path and a slow path. The fast path is
5332 * disabled when:
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5344 *
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5350 */
5351 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5352 const struct tcphdr *th, unsigned int len)
5353 {
5354 struct tcp_sock *tp = tcp_sk(sk);
5355
5356 if (unlikely(!sk->sk_rx_dst))
5357 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5358 /*
5359 * Header prediction.
5360 * The code loosely follows the one in the famous
5361 * "30 instruction TCP receive" Van Jacobson mail.
5362 *
5363 * Van's trick is to deposit buffers into socket queue
5364 * on a device interrupt, to call tcp_recv function
5365 * on the receive process context and checksum and copy
5366 * the buffer to user space. smart...
5367 *
5368 * Our current scheme is not silly either but we take the
5369 * extra cost of the net_bh soft interrupt processing...
5370 * We do checksum and copy also but from device to kernel.
5371 */
5372
5373 tp->rx_opt.saw_tstamp = 0;
5374
5375 /* pred_flags is 0xS?10 << 16 + snd_wnd
5376 * if header_prediction is to be made
5377 * 'S' will always be tp->tcp_header_len >> 2
5378 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379 * turn it off (when there are holes in the receive
5380 * space for instance)
5381 * PSH flag is ignored.
5382 */
5383
5384 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5385 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5386 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5387 int tcp_header_len = tp->tcp_header_len;
5388
5389 /* Timestamp header prediction: tcp_header_len
5390 * is automatically equal to th->doff*4 due to pred_flags
5391 * match.
5392 */
5393
5394 /* Check timestamp */
5395 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5396 /* No? Slow path! */
5397 if (!tcp_parse_aligned_timestamp(tp, th))
5398 goto slow_path;
5399
5400 /* If PAWS failed, check it more carefully in slow path */
5401 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5402 goto slow_path;
5403
5404 /* DO NOT update ts_recent here, if checksum fails
5405 * and timestamp was corrupted part, it will result
5406 * in a hung connection since we will drop all
5407 * future packets due to the PAWS test.
5408 */
5409 }
5410
5411 if (len <= tcp_header_len) {
5412 /* Bulk data transfer: sender */
5413 if (len == tcp_header_len) {
5414 /* Predicted packet is in window by definition.
5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 * Hence, check seq<=rcv_wup reduces to:
5417 */
5418 if (tcp_header_len ==
5419 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420 tp->rcv_nxt == tp->rcv_wup)
5421 tcp_store_ts_recent(tp);
5422
5423 /* We know that such packets are checksummed
5424 * on entry.
5425 */
5426 tcp_ack(sk, skb, 0);
5427 __kfree_skb(skb);
5428 tcp_data_snd_check(sk);
5429 return;
5430 } else { /* Header too small */
5431 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5432 goto discard;
5433 }
5434 } else {
5435 int eaten = 0;
5436 bool fragstolen = false;
5437
5438 if (tp->ucopy.task == current &&
5439 tp->copied_seq == tp->rcv_nxt &&
5440 len - tcp_header_len <= tp->ucopy.len &&
5441 sock_owned_by_user(sk)) {
5442 __set_current_state(TASK_RUNNING);
5443
5444 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5445 /* Predicted packet is in window by definition.
5446 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5447 * Hence, check seq<=rcv_wup reduces to:
5448 */
5449 if (tcp_header_len ==
5450 (sizeof(struct tcphdr) +
5451 TCPOLEN_TSTAMP_ALIGNED) &&
5452 tp->rcv_nxt == tp->rcv_wup)
5453 tcp_store_ts_recent(tp);
5454
5455 tcp_rcv_rtt_measure_ts(sk, skb);
5456
5457 __skb_pull(skb, tcp_header_len);
5458 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5459 NET_INC_STATS(sock_net(sk),
5460 LINUX_MIB_TCPHPHITSTOUSER);
5461 eaten = 1;
5462 }
5463 }
5464 if (!eaten) {
5465 if (tcp_checksum_complete(skb))
5466 goto csum_error;
5467
5468 if ((int)skb->truesize > sk->sk_forward_alloc)
5469 goto step5;
5470
5471 /* Predicted packet is in window by definition.
5472 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5473 * Hence, check seq<=rcv_wup reduces to:
5474 */
5475 if (tcp_header_len ==
5476 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5477 tp->rcv_nxt == tp->rcv_wup)
5478 tcp_store_ts_recent(tp);
5479
5480 tcp_rcv_rtt_measure_ts(sk, skb);
5481
5482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5483
5484 /* Bulk data transfer: receiver */
5485 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5486 &fragstolen);
5487 }
5488
5489 tcp_event_data_recv(sk, skb);
5490
5491 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5492 /* Well, only one small jumplet in fast path... */
5493 tcp_ack(sk, skb, FLAG_DATA);
5494 tcp_data_snd_check(sk);
5495 if (!inet_csk_ack_scheduled(sk))
5496 goto no_ack;
5497 }
5498
5499 __tcp_ack_snd_check(sk, 0);
5500 no_ack:
5501 if (eaten)
5502 kfree_skb_partial(skb, fragstolen);
5503 sk->sk_data_ready(sk);
5504 return;
5505 }
5506 }
5507
5508 slow_path:
5509 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5510 goto csum_error;
5511
5512 if (!th->ack && !th->rst && !th->syn)
5513 goto discard;
5514
5515 /*
5516 * Standard slow path.
5517 */
5518
5519 if (!tcp_validate_incoming(sk, skb, th, 1))
5520 return;
5521
5522 step5:
5523 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5524 goto discard;
5525
5526 tcp_rcv_rtt_measure_ts(sk, skb);
5527
5528 /* Process urgent data. */
5529 tcp_urg(sk, skb, th);
5530
5531 /* step 7: process the segment text */
5532 tcp_data_queue(sk, skb);
5533
5534 tcp_data_snd_check(sk);
5535 tcp_ack_snd_check(sk);
5536 return;
5537
5538 csum_error:
5539 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5541
5542 discard:
5543 tcp_drop(sk, skb);
5544 }
5545 EXPORT_SYMBOL(tcp_rcv_established);
5546
5547 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5548 {
5549 struct tcp_sock *tp = tcp_sk(sk);
5550 struct inet_connection_sock *icsk = inet_csk(sk);
5551
5552 tcp_set_state(sk, TCP_ESTABLISHED);
5553 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5554
5555 if (skb) {
5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5557 security_inet_conn_established(sk, skb);
5558 }
5559
5560 /* Make sure socket is routed, for correct metrics. */
5561 icsk->icsk_af_ops->rebuild_header(sk);
5562
5563 tcp_init_metrics(sk);
5564
5565 tcp_init_congestion_control(sk);
5566
5567 /* Prevent spurious tcp_cwnd_restart() on first data
5568 * packet.
5569 */
5570 tp->lsndtime = tcp_time_stamp;
5571
5572 tcp_init_buffer_space(sk);
5573
5574 if (sock_flag(sk, SOCK_KEEPOPEN))
5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5576
5577 if (!tp->rx_opt.snd_wscale)
5578 __tcp_fast_path_on(tp, tp->snd_wnd);
5579 else
5580 tp->pred_flags = 0;
5581
5582 if (!sock_flag(sk, SOCK_DEAD)) {
5583 sk->sk_state_change(sk);
5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5585 }
5586 }
5587
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 struct tcp_fastopen_cookie *cookie)
5590 {
5591 struct tcp_sock *tp = tcp_sk(sk);
5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 bool syn_drop = false;
5595
5596 if (mss == tp->rx_opt.user_mss) {
5597 struct tcp_options_received opt;
5598
5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 tcp_clear_options(&opt);
5601 opt.user_mss = opt.mss_clamp = 0;
5602 tcp_parse_options(synack, &opt, 0, NULL);
5603 mss = opt.mss_clamp;
5604 }
5605
5606 if (!tp->syn_fastopen) {
5607 /* Ignore an unsolicited cookie */
5608 cookie->len = -1;
5609 } else if (tp->total_retrans) {
5610 /* SYN timed out and the SYN-ACK neither has a cookie nor
5611 * acknowledges data. Presumably the remote received only
5612 * the retransmitted (regular) SYNs: either the original
5613 * SYN-data or the corresponding SYN-ACK was dropped.
5614 */
5615 syn_drop = (cookie->len < 0 && data);
5616 } else if (cookie->len < 0 && !tp->syn_data) {
5617 /* We requested a cookie but didn't get it. If we did not use
5618 * the (old) exp opt format then try so next time (try_exp=1).
5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 */
5621 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 }
5623
5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625
5626 if (data) { /* Retransmit unacked data in SYN */
5627 tcp_for_write_queue_from(data, sk) {
5628 if (data == tcp_send_head(sk) ||
5629 __tcp_retransmit_skb(sk, data, 1))
5630 break;
5631 }
5632 tcp_rearm_rto(sk);
5633 NET_INC_STATS(sock_net(sk),
5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 return true;
5636 }
5637 tp->syn_data_acked = tp->syn_data;
5638 if (tp->syn_data_acked)
5639 NET_INC_STATS(sock_net(sk),
5640 LINUX_MIB_TCPFASTOPENACTIVE);
5641
5642 tcp_fastopen_add_skb(sk, synack);
5643
5644 return false;
5645 }
5646
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 const struct tcphdr *th)
5649 {
5650 struct inet_connection_sock *icsk = inet_csk(sk);
5651 struct tcp_sock *tp = tcp_sk(sk);
5652 struct tcp_fastopen_cookie foc = { .len = -1 };
5653 int saved_clamp = tp->rx_opt.mss_clamp;
5654
5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658
5659 if (th->ack) {
5660 /* rfc793:
5661 * "If the state is SYN-SENT then
5662 * first check the ACK bit
5663 * If the ACK bit is set
5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 * a reset (unless the RST bit is set, if so drop
5666 * the segment and return)"
5667 */
5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 goto reset_and_undo;
5671
5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 tcp_time_stamp)) {
5675 NET_INC_STATS(sock_net(sk),
5676 LINUX_MIB_PAWSACTIVEREJECTED);
5677 goto reset_and_undo;
5678 }
5679
5680 /* Now ACK is acceptable.
5681 *
5682 * "If the RST bit is set
5683 * If the ACK was acceptable then signal the user "error:
5684 * connection reset", drop the segment, enter CLOSED state,
5685 * delete TCB, and return."
5686 */
5687
5688 if (th->rst) {
5689 tcp_reset(sk);
5690 goto discard;
5691 }
5692
5693 /* rfc793:
5694 * "fifth, if neither of the SYN or RST bits is set then
5695 * drop the segment and return."
5696 *
5697 * See note below!
5698 * --ANK(990513)
5699 */
5700 if (!th->syn)
5701 goto discard_and_undo;
5702
5703 /* rfc793:
5704 * "If the SYN bit is on ...
5705 * are acceptable then ...
5706 * (our SYN has been ACKed), change the connection
5707 * state to ESTABLISHED..."
5708 */
5709
5710 tcp_ecn_rcv_synack(tp, th);
5711
5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 tcp_ack(sk, skb, FLAG_SLOWPATH);
5714
5715 /* Ok.. it's good. Set up sequence numbers and
5716 * move to established.
5717 */
5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720
5721 /* RFC1323: The window in SYN & SYN/ACK segments is
5722 * never scaled.
5723 */
5724 tp->snd_wnd = ntohs(th->window);
5725
5726 if (!tp->rx_opt.wscale_ok) {
5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 tp->window_clamp = min(tp->window_clamp, 65535U);
5729 }
5730
5731 if (tp->rx_opt.saw_tstamp) {
5732 tp->rx_opt.tstamp_ok = 1;
5733 tp->tcp_header_len =
5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5736 tcp_store_ts_recent(tp);
5737 } else {
5738 tp->tcp_header_len = sizeof(struct tcphdr);
5739 }
5740
5741 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 tcp_enable_fack(tp);
5743
5744 tcp_mtup_init(sk);
5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 tcp_initialize_rcv_mss(sk);
5747
5748 /* Remember, tcp_poll() does not lock socket!
5749 * Change state from SYN-SENT only after copied_seq
5750 * is initialized. */
5751 tp->copied_seq = tp->rcv_nxt;
5752
5753 smp_mb();
5754
5755 tcp_finish_connect(sk, skb);
5756
5757 if ((tp->syn_fastopen || tp->syn_data) &&
5758 tcp_rcv_fastopen_synack(sk, skb, &foc))
5759 return -1;
5760
5761 if (sk->sk_write_pending ||
5762 icsk->icsk_accept_queue.rskq_defer_accept ||
5763 icsk->icsk_ack.pingpong) {
5764 /* Save one ACK. Data will be ready after
5765 * several ticks, if write_pending is set.
5766 *
5767 * It may be deleted, but with this feature tcpdumps
5768 * look so _wonderfully_ clever, that I was not able
5769 * to stand against the temptation 8) --ANK
5770 */
5771 inet_csk_schedule_ack(sk);
5772 tcp_enter_quickack_mode(sk);
5773 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5774 TCP_DELACK_MAX, TCP_RTO_MAX);
5775
5776 discard:
5777 tcp_drop(sk, skb);
5778 return 0;
5779 } else {
5780 tcp_send_ack(sk);
5781 }
5782 return -1;
5783 }
5784
5785 /* No ACK in the segment */
5786
5787 if (th->rst) {
5788 /* rfc793:
5789 * "If the RST bit is set
5790 *
5791 * Otherwise (no ACK) drop the segment and return."
5792 */
5793
5794 goto discard_and_undo;
5795 }
5796
5797 /* PAWS check. */
5798 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5799 tcp_paws_reject(&tp->rx_opt, 0))
5800 goto discard_and_undo;
5801
5802 if (th->syn) {
5803 /* We see SYN without ACK. It is attempt of
5804 * simultaneous connect with crossed SYNs.
5805 * Particularly, it can be connect to self.
5806 */
5807 tcp_set_state(sk, TCP_SYN_RECV);
5808
5809 if (tp->rx_opt.saw_tstamp) {
5810 tp->rx_opt.tstamp_ok = 1;
5811 tcp_store_ts_recent(tp);
5812 tp->tcp_header_len =
5813 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5814 } else {
5815 tp->tcp_header_len = sizeof(struct tcphdr);
5816 }
5817
5818 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5819 tp->copied_seq = tp->rcv_nxt;
5820 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5821
5822 /* RFC1323: The window in SYN & SYN/ACK segments is
5823 * never scaled.
5824 */
5825 tp->snd_wnd = ntohs(th->window);
5826 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5827 tp->max_window = tp->snd_wnd;
5828
5829 tcp_ecn_rcv_syn(tp, th);
5830
5831 tcp_mtup_init(sk);
5832 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5833 tcp_initialize_rcv_mss(sk);
5834
5835 tcp_send_synack(sk);
5836 #if 0
5837 /* Note, we could accept data and URG from this segment.
5838 * There are no obstacles to make this (except that we must
5839 * either change tcp_recvmsg() to prevent it from returning data
5840 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5841 *
5842 * However, if we ignore data in ACKless segments sometimes,
5843 * we have no reasons to accept it sometimes.
5844 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5845 * is not flawless. So, discard packet for sanity.
5846 * Uncomment this return to process the data.
5847 */
5848 return -1;
5849 #else
5850 goto discard;
5851 #endif
5852 }
5853 /* "fifth, if neither of the SYN or RST bits is set then
5854 * drop the segment and return."
5855 */
5856
5857 discard_and_undo:
5858 tcp_clear_options(&tp->rx_opt);
5859 tp->rx_opt.mss_clamp = saved_clamp;
5860 goto discard;
5861
5862 reset_and_undo:
5863 tcp_clear_options(&tp->rx_opt);
5864 tp->rx_opt.mss_clamp = saved_clamp;
5865 return 1;
5866 }
5867
5868 /*
5869 * This function implements the receiving procedure of RFC 793 for
5870 * all states except ESTABLISHED and TIME_WAIT.
5871 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5872 * address independent.
5873 */
5874
5875 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5876 {
5877 struct tcp_sock *tp = tcp_sk(sk);
5878 struct inet_connection_sock *icsk = inet_csk(sk);
5879 const struct tcphdr *th = tcp_hdr(skb);
5880 struct request_sock *req;
5881 int queued = 0;
5882 bool acceptable;
5883
5884 switch (sk->sk_state) {
5885 case TCP_CLOSE:
5886 goto discard;
5887
5888 case TCP_LISTEN:
5889 if (th->ack)
5890 return 1;
5891
5892 if (th->rst)
5893 goto discard;
5894
5895 if (th->syn) {
5896 if (th->fin)
5897 goto discard;
5898 /* It is possible that we process SYN packets from backlog,
5899 * so we need to make sure to disable BH right there.
5900 */
5901 local_bh_disable();
5902 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5903 local_bh_enable();
5904
5905 if (!acceptable)
5906 return 1;
5907 consume_skb(skb);
5908 return 0;
5909 }
5910 goto discard;
5911
5912 case TCP_SYN_SENT:
5913 tp->rx_opt.saw_tstamp = 0;
5914 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5915 if (queued >= 0)
5916 return queued;
5917
5918 /* Do step6 onward by hand. */
5919 tcp_urg(sk, skb, th);
5920 __kfree_skb(skb);
5921 tcp_data_snd_check(sk);
5922 return 0;
5923 }
5924
5925 tp->rx_opt.saw_tstamp = 0;
5926 req = tp->fastopen_rsk;
5927 if (req) {
5928 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5929 sk->sk_state != TCP_FIN_WAIT1);
5930
5931 if (!tcp_check_req(sk, skb, req, true))
5932 goto discard;
5933 }
5934
5935 if (!th->ack && !th->rst && !th->syn)
5936 goto discard;
5937
5938 if (!tcp_validate_incoming(sk, skb, th, 0))
5939 return 0;
5940
5941 /* step 5: check the ACK field */
5942 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5943 FLAG_UPDATE_TS_RECENT) > 0;
5944
5945 switch (sk->sk_state) {
5946 case TCP_SYN_RECV:
5947 if (!acceptable)
5948 return 1;
5949
5950 if (!tp->srtt_us)
5951 tcp_synack_rtt_meas(sk, req);
5952
5953 /* Once we leave TCP_SYN_RECV, we no longer need req
5954 * so release it.
5955 */
5956 if (req) {
5957 inet_csk(sk)->icsk_retransmits = 0;
5958 reqsk_fastopen_remove(sk, req, false);
5959 } else {
5960 /* Make sure socket is routed, for correct metrics. */
5961 icsk->icsk_af_ops->rebuild_header(sk);
5962 tcp_init_congestion_control(sk);
5963
5964 tcp_mtup_init(sk);
5965 tp->copied_seq = tp->rcv_nxt;
5966 tcp_init_buffer_space(sk);
5967 }
5968 smp_mb();
5969 tcp_set_state(sk, TCP_ESTABLISHED);
5970 sk->sk_state_change(sk);
5971
5972 /* Note, that this wakeup is only for marginal crossed SYN case.
5973 * Passively open sockets are not waked up, because
5974 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5975 */
5976 if (sk->sk_socket)
5977 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5978
5979 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5980 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5981 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5982
5983 if (tp->rx_opt.tstamp_ok)
5984 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5985
5986 if (req) {
5987 /* Re-arm the timer because data may have been sent out.
5988 * This is similar to the regular data transmission case
5989 * when new data has just been ack'ed.
5990 *
5991 * (TFO) - we could try to be more aggressive and
5992 * retransmitting any data sooner based on when they
5993 * are sent out.
5994 */
5995 tcp_rearm_rto(sk);
5996 } else
5997 tcp_init_metrics(sk);
5998
5999 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6000 tcp_update_pacing_rate(sk);
6001
6002 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6003 tp->lsndtime = tcp_time_stamp;
6004
6005 tcp_initialize_rcv_mss(sk);
6006 tcp_fast_path_on(tp);
6007 break;
6008
6009 case TCP_FIN_WAIT1: {
6010 int tmo;
6011
6012 /* If we enter the TCP_FIN_WAIT1 state and we are a
6013 * Fast Open socket and this is the first acceptable
6014 * ACK we have received, this would have acknowledged
6015 * our SYNACK so stop the SYNACK timer.
6016 */
6017 if (req) {
6018 /* Return RST if ack_seq is invalid.
6019 * Note that RFC793 only says to generate a
6020 * DUPACK for it but for TCP Fast Open it seems
6021 * better to treat this case like TCP_SYN_RECV
6022 * above.
6023 */
6024 if (!acceptable)
6025 return 1;
6026 /* We no longer need the request sock. */
6027 reqsk_fastopen_remove(sk, req, false);
6028 tcp_rearm_rto(sk);
6029 }
6030 if (tp->snd_una != tp->write_seq)
6031 break;
6032
6033 tcp_set_state(sk, TCP_FIN_WAIT2);
6034 sk->sk_shutdown |= SEND_SHUTDOWN;
6035
6036 sk_dst_confirm(sk);
6037
6038 if (!sock_flag(sk, SOCK_DEAD)) {
6039 /* Wake up lingering close() */
6040 sk->sk_state_change(sk);
6041 break;
6042 }
6043
6044 if (tp->linger2 < 0 ||
6045 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6046 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6047 tcp_done(sk);
6048 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6049 return 1;
6050 }
6051
6052 tmo = tcp_fin_time(sk);
6053 if (tmo > TCP_TIMEWAIT_LEN) {
6054 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6055 } else if (th->fin || sock_owned_by_user(sk)) {
6056 /* Bad case. We could lose such FIN otherwise.
6057 * It is not a big problem, but it looks confusing
6058 * and not so rare event. We still can lose it now,
6059 * if it spins in bh_lock_sock(), but it is really
6060 * marginal case.
6061 */
6062 inet_csk_reset_keepalive_timer(sk, tmo);
6063 } else {
6064 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6065 goto discard;
6066 }
6067 break;
6068 }
6069
6070 case TCP_CLOSING:
6071 if (tp->snd_una == tp->write_seq) {
6072 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6073 goto discard;
6074 }
6075 break;
6076
6077 case TCP_LAST_ACK:
6078 if (tp->snd_una == tp->write_seq) {
6079 tcp_update_metrics(sk);
6080 tcp_done(sk);
6081 goto discard;
6082 }
6083 break;
6084 }
6085
6086 /* step 6: check the URG bit */
6087 tcp_urg(sk, skb, th);
6088
6089 /* step 7: process the segment text */
6090 switch (sk->sk_state) {
6091 case TCP_CLOSE_WAIT:
6092 case TCP_CLOSING:
6093 case TCP_LAST_ACK:
6094 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6095 break;
6096 case TCP_FIN_WAIT1:
6097 case TCP_FIN_WAIT2:
6098 /* RFC 793 says to queue data in these states,
6099 * RFC 1122 says we MUST send a reset.
6100 * BSD 4.4 also does reset.
6101 */
6102 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6103 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6104 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6106 tcp_reset(sk);
6107 return 1;
6108 }
6109 }
6110 /* Fall through */
6111 case TCP_ESTABLISHED:
6112 tcp_data_queue(sk, skb);
6113 queued = 1;
6114 break;
6115 }
6116
6117 /* tcp_data could move socket to TIME-WAIT */
6118 if (sk->sk_state != TCP_CLOSE) {
6119 tcp_data_snd_check(sk);
6120 tcp_ack_snd_check(sk);
6121 }
6122
6123 if (!queued) {
6124 discard:
6125 tcp_drop(sk, skb);
6126 }
6127 return 0;
6128 }
6129 EXPORT_SYMBOL(tcp_rcv_state_process);
6130
6131 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6132 {
6133 struct inet_request_sock *ireq = inet_rsk(req);
6134
6135 if (family == AF_INET)
6136 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6137 &ireq->ir_rmt_addr, port);
6138 #if IS_ENABLED(CONFIG_IPV6)
6139 else if (family == AF_INET6)
6140 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6141 &ireq->ir_v6_rmt_addr, port);
6142 #endif
6143 }
6144
6145 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6146 *
6147 * If we receive a SYN packet with these bits set, it means a
6148 * network is playing bad games with TOS bits. In order to
6149 * avoid possible false congestion notifications, we disable
6150 * TCP ECN negotiation.
6151 *
6152 * Exception: tcp_ca wants ECN. This is required for DCTCP
6153 * congestion control: Linux DCTCP asserts ECT on all packets,
6154 * including SYN, which is most optimal solution; however,
6155 * others, such as FreeBSD do not.
6156 */
6157 static void tcp_ecn_create_request(struct request_sock *req,
6158 const struct sk_buff *skb,
6159 const struct sock *listen_sk,
6160 const struct dst_entry *dst)
6161 {
6162 const struct tcphdr *th = tcp_hdr(skb);
6163 const struct net *net = sock_net(listen_sk);
6164 bool th_ecn = th->ece && th->cwr;
6165 bool ect, ecn_ok;
6166 u32 ecn_ok_dst;
6167
6168 if (!th_ecn)
6169 return;
6170
6171 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6172 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6173 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6174
6175 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6176 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6177 inet_rsk(req)->ecn_ok = 1;
6178 }
6179
6180 static void tcp_openreq_init(struct request_sock *req,
6181 const struct tcp_options_received *rx_opt,
6182 struct sk_buff *skb, const struct sock *sk)
6183 {
6184 struct inet_request_sock *ireq = inet_rsk(req);
6185
6186 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6187 req->cookie_ts = 0;
6188 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6189 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6190 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6191 tcp_rsk(req)->last_oow_ack_time = 0;
6192 req->mss = rx_opt->mss_clamp;
6193 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6194 ireq->tstamp_ok = rx_opt->tstamp_ok;
6195 ireq->sack_ok = rx_opt->sack_ok;
6196 ireq->snd_wscale = rx_opt->snd_wscale;
6197 ireq->wscale_ok = rx_opt->wscale_ok;
6198 ireq->acked = 0;
6199 ireq->ecn_ok = 0;
6200 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6201 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6202 ireq->ir_mark = inet_request_mark(sk, skb);
6203 }
6204
6205 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6206 struct sock *sk_listener,
6207 bool attach_listener)
6208 {
6209 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6210 attach_listener);
6211
6212 if (req) {
6213 struct inet_request_sock *ireq = inet_rsk(req);
6214
6215 kmemcheck_annotate_bitfield(ireq, flags);
6216 ireq->opt = NULL;
6217 #if IS_ENABLED(CONFIG_IPV6)
6218 ireq->pktopts = NULL;
6219 #endif
6220 atomic64_set(&ireq->ir_cookie, 0);
6221 ireq->ireq_state = TCP_NEW_SYN_RECV;
6222 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6223 ireq->ireq_family = sk_listener->sk_family;
6224 }
6225
6226 return req;
6227 }
6228 EXPORT_SYMBOL(inet_reqsk_alloc);
6229
6230 /*
6231 * Return true if a syncookie should be sent
6232 */
6233 static bool tcp_syn_flood_action(const struct sock *sk,
6234 const struct sk_buff *skb,
6235 const char *proto)
6236 {
6237 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6238 const char *msg = "Dropping request";
6239 bool want_cookie = false;
6240 struct net *net = sock_net(sk);
6241
6242 #ifdef CONFIG_SYN_COOKIES
6243 if (net->ipv4.sysctl_tcp_syncookies) {
6244 msg = "Sending cookies";
6245 want_cookie = true;
6246 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6247 } else
6248 #endif
6249 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6250
6251 if (!queue->synflood_warned &&
6252 net->ipv4.sysctl_tcp_syncookies != 2 &&
6253 xchg(&queue->synflood_warned, 1) == 0)
6254 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6255 proto, ntohs(tcp_hdr(skb)->dest), msg);
6256
6257 return want_cookie;
6258 }
6259
6260 static void tcp_reqsk_record_syn(const struct sock *sk,
6261 struct request_sock *req,
6262 const struct sk_buff *skb)
6263 {
6264 if (tcp_sk(sk)->save_syn) {
6265 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6266 u32 *copy;
6267
6268 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6269 if (copy) {
6270 copy[0] = len;
6271 memcpy(&copy[1], skb_network_header(skb), len);
6272 req->saved_syn = copy;
6273 }
6274 }
6275 }
6276
6277 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6278 const struct tcp_request_sock_ops *af_ops,
6279 struct sock *sk, struct sk_buff *skb)
6280 {
6281 struct tcp_fastopen_cookie foc = { .len = -1 };
6282 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6283 struct tcp_options_received tmp_opt;
6284 struct tcp_sock *tp = tcp_sk(sk);
6285 struct net *net = sock_net(sk);
6286 struct sock *fastopen_sk = NULL;
6287 struct dst_entry *dst = NULL;
6288 struct request_sock *req;
6289 bool want_cookie = false;
6290 struct flowi fl;
6291
6292 /* TW buckets are converted to open requests without
6293 * limitations, they conserve resources and peer is
6294 * evidently real one.
6295 */
6296 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6297 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6298 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6299 if (!want_cookie)
6300 goto drop;
6301 }
6302
6303 if (sk_acceptq_is_full(sk)) {
6304 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6305 goto drop;
6306 }
6307
6308 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6309 if (!req)
6310 goto drop;
6311
6312 tcp_rsk(req)->af_specific = af_ops;
6313 tcp_rsk(req)->ts_off = 0;
6314
6315 tcp_clear_options(&tmp_opt);
6316 tmp_opt.mss_clamp = af_ops->mss_clamp;
6317 tmp_opt.user_mss = tp->rx_opt.user_mss;
6318 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6319
6320 if (want_cookie && !tmp_opt.saw_tstamp)
6321 tcp_clear_options(&tmp_opt);
6322
6323 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6324 tcp_openreq_init(req, &tmp_opt, skb, sk);
6325 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6326
6327 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6328 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6329
6330 af_ops->init_req(req, sk, skb);
6331
6332 if (security_inet_conn_request(sk, skb, req))
6333 goto drop_and_free;
6334
6335 if (isn && tmp_opt.tstamp_ok)
6336 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6337
6338 if (!want_cookie && !isn) {
6339 /* VJ's idea. We save last timestamp seen
6340 * from the destination in peer table, when entering
6341 * state TIME-WAIT, and check against it before
6342 * accepting new connection request.
6343 *
6344 * If "isn" is not zero, this request hit alive
6345 * timewait bucket, so that all the necessary checks
6346 * are made in the function processing timewait state.
6347 */
6348 if (net->ipv4.tcp_death_row.sysctl_tw_recycle) {
6349 bool strict;
6350
6351 dst = af_ops->route_req(sk, &fl, req, &strict);
6352
6353 if (dst && strict &&
6354 !tcp_peer_is_proven(req, dst, true,
6355 tmp_opt.saw_tstamp)) {
6356 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6357 goto drop_and_release;
6358 }
6359 }
6360 /* Kill the following clause, if you dislike this way. */
6361 else if (!net->ipv4.sysctl_tcp_syncookies &&
6362 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6363 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6364 !tcp_peer_is_proven(req, dst, false,
6365 tmp_opt.saw_tstamp)) {
6366 /* Without syncookies last quarter of
6367 * backlog is filled with destinations,
6368 * proven to be alive.
6369 * It means that we continue to communicate
6370 * to destinations, already remembered
6371 * to the moment of synflood.
6372 */
6373 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6374 rsk_ops->family);
6375 goto drop_and_release;
6376 }
6377
6378 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6379 }
6380 if (!dst) {
6381 dst = af_ops->route_req(sk, &fl, req, NULL);
6382 if (!dst)
6383 goto drop_and_free;
6384 }
6385
6386 tcp_ecn_create_request(req, skb, sk, dst);
6387
6388 if (want_cookie) {
6389 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6390 tcp_rsk(req)->ts_off = 0;
6391 req->cookie_ts = tmp_opt.tstamp_ok;
6392 if (!tmp_opt.tstamp_ok)
6393 inet_rsk(req)->ecn_ok = 0;
6394 }
6395
6396 tcp_rsk(req)->snt_isn = isn;
6397 tcp_rsk(req)->txhash = net_tx_rndhash();
6398 tcp_openreq_init_rwin(req, sk, dst);
6399 if (!want_cookie) {
6400 tcp_reqsk_record_syn(sk, req, skb);
6401 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6402 }
6403 if (fastopen_sk) {
6404 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6405 &foc, TCP_SYNACK_FASTOPEN);
6406 /* Add the child socket directly into the accept queue */
6407 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6408 sk->sk_data_ready(sk);
6409 bh_unlock_sock(fastopen_sk);
6410 sock_put(fastopen_sk);
6411 } else {
6412 tcp_rsk(req)->tfo_listener = false;
6413 if (!want_cookie)
6414 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6415 af_ops->send_synack(sk, dst, &fl, req, &foc,
6416 !want_cookie ? TCP_SYNACK_NORMAL :
6417 TCP_SYNACK_COOKIE);
6418 if (want_cookie) {
6419 reqsk_free(req);
6420 return 0;
6421 }
6422 }
6423 reqsk_put(req);
6424 return 0;
6425
6426 drop_and_release:
6427 dst_release(dst);
6428 drop_and_free:
6429 reqsk_free(req);
6430 drop:
6431 tcp_listendrop(sk);
6432 return 0;
6433 }
6434 EXPORT_SYMBOL(tcp_conn_request);