]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/ipv4/tcp_input.c
Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
[mirror_ubuntu-kernels.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 } else {
247 /* Otherwise, we make more careful check taking into account,
248 * that SACKs block is variable.
249 *
250 * "len" is invariant segment length, including TCP header.
251 */
252 len += skb->data - skb_transport_header(skb);
253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 /* If PSH is not set, packet should be
255 * full sized, provided peer TCP is not badly broken.
256 * This observation (if it is correct 8)) allows
257 * to handle super-low mtu links fairly.
258 */
259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 /* Subtract also invariant (if peer is RFC compliant),
262 * tcp header plus fixed timestamp option length.
263 * Resulting "len" is MSS free of SACK jitter.
264 */
265 len -= tcp_sk(sk)->tcp_header_len;
266 icsk->icsk_ack.last_seg_size = len;
267 if (len == lss) {
268 icsk->icsk_ack.rcv_mss = len;
269 return;
270 }
271 }
272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 }
276 }
277
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 struct inet_connection_sock *icsk = inet_csk(sk);
281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282
283 if (quickacks == 0)
284 quickacks = 2;
285 quickacks = min(quickacks, max_quickacks);
286 if (quickacks > icsk->icsk_ack.quick)
287 icsk->icsk_ack.quick = quickacks;
288 }
289
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 struct inet_connection_sock *icsk = inet_csk(sk);
293
294 tcp_incr_quickack(sk, max_quickacks);
295 inet_csk_exit_pingpong_mode(sk);
296 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299
300 /* Send ACKs quickly, if "quick" count is not exhausted
301 * and the session is not interactive.
302 */
303
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 const struct inet_connection_sock *icsk = inet_csk(sk);
307 const struct dst_entry *dst = __sk_dst_get(sk);
308
309 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 if (tp->ecn_flags & TCP_ECN_OK)
316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 if (tcp_hdr(skb)->cwr) {
322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323
324 /* If the sender is telling us it has entered CWR, then its
325 * cwnd may be very low (even just 1 packet), so we should ACK
326 * immediately.
327 */
328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 }
331 }
332
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 case INET_ECN_NOT_ECT:
344 /* Funny extension: if ECT is not set on a segment,
345 * and we already seen ECT on a previous segment,
346 * it is probably a retransmit.
347 */
348 if (tp->ecn_flags & TCP_ECN_SEEN)
349 tcp_enter_quickack_mode(sk, 2);
350 break;
351 case INET_ECN_CE:
352 if (tcp_ca_needs_ecn(sk))
353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354
355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 /* Better not delay acks, sender can have a very low cwnd */
357 tcp_enter_quickack_mode(sk, 2);
358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 }
360 tp->ecn_flags |= TCP_ECN_SEEN;
361 break;
362 default:
363 if (tcp_ca_needs_ecn(sk))
364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 tp->ecn_flags |= TCP_ECN_SEEN;
366 break;
367 }
368 }
369
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 __tcp_ecn_check_ce(sk, skb);
374 }
375
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 return true;
392 return false;
393 }
394
395 /* Buffer size and advertised window tuning.
396 *
397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398 */
399
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 const struct tcp_sock *tp = tcp_sk(sk);
403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 int sndmem, per_mss;
405 u32 nr_segs;
406
407 /* Worst case is non GSO/TSO : each frame consumes one skb
408 * and skb->head is kmalloced using power of two area of memory
409 */
410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 MAX_TCP_HEADER +
412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413
414 per_mss = roundup_pow_of_two(per_mss) +
415 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416
417 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419
420 /* Fast Recovery (RFC 5681 3.2) :
421 * Cubic needs 1.7 factor, rounded to 2 to include
422 * extra cushion (application might react slowly to EPOLLOUT)
423 */
424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 sndmem *= nr_segs * per_mss;
426
427 if (sk->sk_sndbuf < sndmem)
428 WRITE_ONCE(sk->sk_sndbuf,
429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 *
434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
435 * forward and advertised in receiver window (tp->rcv_wnd) and
436 * "application buffer", required to isolate scheduling/application
437 * latencies from network.
438 * window_clamp is maximal advertised window. It can be less than
439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
440 * is reserved for "application" buffer. The less window_clamp is
441 * the smoother our behaviour from viewpoint of network, but the lower
442 * throughput and the higher sensitivity of the connection to losses. 8)
443 *
444 * rcv_ssthresh is more strict window_clamp used at "slow start"
445 * phase to predict further behaviour of this connection.
446 * It is used for two goals:
447 * - to enforce header prediction at sender, even when application
448 * requires some significant "application buffer". It is check #1.
449 * - to prevent pruning of receive queue because of misprediction
450 * of receiver window. Check #2.
451 *
452 * The scheme does not work when sender sends good segments opening
453 * window and then starts to feed us spaghetti. But it should work
454 * in common situations. Otherwise, we have to rely on queue collapsing.
455 */
456
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 unsigned int skbtruesize)
460 {
461 struct tcp_sock *tp = tcp_sk(sk);
462 /* Optimize this! */
463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465
466 while (tp->rcv_ssthresh <= window) {
467 if (truesize <= skb->len)
468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469
470 truesize >>= 1;
471 window >>= 1;
472 }
473 return 0;
474 }
475
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477 * can play nice with us, as sk_buff and skb->head might be either
478 * freed or shared with up to MAX_SKB_FRAGS segments.
479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
480 * and if no payload was pulled in skb->head before reaching us.
481 */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 u32 truesize = skb->truesize;
485
486 if (adjust && !skb_headlen(skb)) {
487 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 /* paranoid check, some drivers might be buggy */
489 if (unlikely((int)truesize < (int)skb->len))
490 truesize = skb->truesize;
491 }
492 return truesize;
493 }
494
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 bool adjust)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int room;
500
501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502
503 if (room <= 0)
504 return;
505
506 /* Check #1 */
507 if (!tcp_under_memory_pressure(sk)) {
508 unsigned int truesize = truesize_adjust(adjust, skb);
509 int incr;
510
511 /* Check #2. Increase window, if skb with such overhead
512 * will fit to rcvbuf in future.
513 */
514 if (tcp_win_from_space(sk, truesize) <= skb->len)
515 incr = 2 * tp->advmss;
516 else
517 incr = __tcp_grow_window(sk, skb, truesize);
518
519 if (incr) {
520 incr = max_t(int, incr, 2 * skb->len);
521 tp->rcv_ssthresh += min(room, incr);
522 inet_csk(sk)->icsk_ack.quick |= 1;
523 }
524 } else {
525 /* Under pressure:
526 * Adjust rcv_ssthresh according to reserved mem
527 */
528 tcp_adjust_rcv_ssthresh(sk);
529 }
530 }
531
532 /* 3. Try to fixup all. It is made immediately after connection enters
533 * established state.
534 */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 struct tcp_sock *tp = tcp_sk(sk);
539 int maxwin;
540
541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 tcp_sndbuf_expand(sk);
543
544 tcp_mstamp_refresh(tp);
545 tp->rcvq_space.time = tp->tcp_mstamp;
546 tp->rcvq_space.seq = tp->copied_seq;
547
548 maxwin = tcp_full_space(sk);
549
550 if (tp->window_clamp >= maxwin) {
551 tp->window_clamp = maxwin;
552
553 if (tcp_app_win && maxwin > 4 * tp->advmss)
554 tp->window_clamp = max(maxwin -
555 (maxwin >> tcp_app_win),
556 4 * tp->advmss);
557 }
558
559 /* Force reservation of one segment. */
560 if (tcp_app_win &&
561 tp->window_clamp > 2 * tp->advmss &&
562 tp->window_clamp + tp->advmss > maxwin)
563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564
565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 tp->snd_cwnd_stamp = tcp_jiffies32;
567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 (u32)TCP_INIT_CWND * tp->advmss);
569 }
570
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 struct tcp_sock *tp = tcp_sk(sk);
575 struct inet_connection_sock *icsk = inet_csk(sk);
576 struct net *net = sock_net(sk);
577
578 icsk->icsk_ack.quick = 0;
579
580 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 !tcp_under_memory_pressure(sk) &&
583 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 WRITE_ONCE(sk->sk_rcvbuf,
585 min(atomic_read(&sk->sk_rmem_alloc),
586 net->ipv4.sysctl_tcp_rmem[2]));
587 }
588 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591
592 /* Initialize RCV_MSS value.
593 * RCV_MSS is an our guess about MSS used by the peer.
594 * We haven't any direct information about the MSS.
595 * It's better to underestimate the RCV_MSS rather than overestimate.
596 * Overestimations make us ACKing less frequently than needed.
597 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598 */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 const struct tcp_sock *tp = tcp_sk(sk);
602 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603
604 hint = min(hint, tp->rcv_wnd / 2);
605 hint = min(hint, TCP_MSS_DEFAULT);
606 hint = max(hint, TCP_MIN_MSS);
607
608 inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611
612 /* Receiver "autotuning" code.
613 *
614 * The algorithm for RTT estimation w/o timestamps is based on
615 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616 * <https://public.lanl.gov/radiant/pubs.html#DRS>
617 *
618 * More detail on this code can be found at
619 * <http://staff.psc.edu/jheffner/>,
620 * though this reference is out of date. A new paper
621 * is pending.
622 */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 long m = sample;
627
628 if (new_sample != 0) {
629 /* If we sample in larger samples in the non-timestamp
630 * case, we could grossly overestimate the RTT especially
631 * with chatty applications or bulk transfer apps which
632 * are stalled on filesystem I/O.
633 *
634 * Also, since we are only going for a minimum in the
635 * non-timestamp case, we do not smooth things out
636 * else with timestamps disabled convergence takes too
637 * long.
638 */
639 if (!win_dep) {
640 m -= (new_sample >> 3);
641 new_sample += m;
642 } else {
643 m <<= 3;
644 if (m < new_sample)
645 new_sample = m;
646 }
647 } else {
648 /* No previous measure. */
649 new_sample = m << 3;
650 }
651
652 tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 u32 delta_us;
658
659 if (tp->rcv_rtt_est.time == 0)
660 goto new_measure;
661 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 return;
663 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 if (!delta_us)
665 delta_us = 1;
666 tcp_rcv_rtt_update(tp, delta_us, 1);
667
668 new_measure:
669 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 const struct sk_buff *skb)
675 {
676 struct tcp_sock *tp = tcp_sk(sk);
677
678 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 return;
680 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681
682 if (TCP_SKB_CB(skb)->end_seq -
683 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 u32 delta_us;
686
687 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 if (!delta)
689 delta = 1;
690 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 tcp_rcv_rtt_update(tp, delta_us, 0);
692 }
693 }
694 }
695
696 /*
697 * This function should be called every time data is copied to user space.
698 * It calculates the appropriate TCP receive buffer space.
699 */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 u32 copied;
704 int time;
705
706 trace_tcp_rcv_space_adjust(sk);
707
708 tcp_mstamp_refresh(tp);
709 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 return;
712
713 /* Number of bytes copied to user in last RTT */
714 copied = tp->copied_seq - tp->rcvq_space.seq;
715 if (copied <= tp->rcvq_space.space)
716 goto new_measure;
717
718 /* A bit of theory :
719 * copied = bytes received in previous RTT, our base window
720 * To cope with packet losses, we need a 2x factor
721 * To cope with slow start, and sender growing its cwin by 100 %
722 * every RTT, we need a 4x factor, because the ACK we are sending
723 * now is for the next RTT, not the current one :
724 * <prev RTT . ><current RTT .. ><next RTT .... >
725 */
726
727 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 int rcvmem, rcvbuf;
730 u64 rcvwin, grow;
731
732 /* minimal window to cope with packet losses, assuming
733 * steady state. Add some cushion because of small variations.
734 */
735 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736
737 /* Accommodate for sender rate increase (eg. slow start) */
738 grow = rcvwin * (copied - tp->rcvq_space.space);
739 do_div(grow, tp->rcvq_space.space);
740 rcvwin += (grow << 1);
741
742 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 rcvmem += 128;
745
746 do_div(rcvwin, tp->advmss);
747 rcvbuf = min_t(u64, rcvwin * rcvmem,
748 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 if (rcvbuf > sk->sk_rcvbuf) {
750 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751
752 /* Make the window clamp follow along. */
753 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 }
755 }
756 tp->rcvq_space.space = copied;
757
758 new_measure:
759 tp->rcvq_space.seq = tp->copied_seq;
760 tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762
763 /* There is something which you must keep in mind when you analyze the
764 * behavior of the tp->ato delayed ack timeout interval. When a
765 * connection starts up, we want to ack as quickly as possible. The
766 * problem is that "good" TCP's do slow start at the beginning of data
767 * transmission. The means that until we send the first few ACK's the
768 * sender will sit on his end and only queue most of his data, because
769 * he can only send snd_cwnd unacked packets at any given time. For
770 * each ACK we send, he increments snd_cwnd and transmits more of his
771 * queue. -DaveM
772 */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 struct tcp_sock *tp = tcp_sk(sk);
776 struct inet_connection_sock *icsk = inet_csk(sk);
777 u32 now;
778
779 inet_csk_schedule_ack(sk);
780
781 tcp_measure_rcv_mss(sk, skb);
782
783 tcp_rcv_rtt_measure(tp);
784
785 now = tcp_jiffies32;
786
787 if (!icsk->icsk_ack.ato) {
788 /* The _first_ data packet received, initialize
789 * delayed ACK engine.
790 */
791 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 icsk->icsk_ack.ato = TCP_ATO_MIN;
793 } else {
794 int m = now - icsk->icsk_ack.lrcvtime;
795
796 if (m <= TCP_ATO_MIN / 2) {
797 /* The fastest case is the first. */
798 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 } else if (m < icsk->icsk_ack.ato) {
800 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 icsk->icsk_ack.ato = icsk->icsk_rto;
803 } else if (m > icsk->icsk_rto) {
804 /* Too long gap. Apparently sender failed to
805 * restart window, so that we send ACKs quickly.
806 */
807 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 }
809 }
810 icsk->icsk_ack.lrcvtime = now;
811
812 tcp_ecn_check_ce(sk, skb);
813
814 if (skb->len >= 128)
815 tcp_grow_window(sk, skb, true);
816 }
817
818 /* Called to compute a smoothed rtt estimate. The data fed to this
819 * routine either comes from timestamps, or from segments that were
820 * known _not_ to have been retransmitted [see Karn/Partridge
821 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
822 * piece by Van Jacobson.
823 * NOTE: the next three routines used to be one big routine.
824 * To save cycles in the RFC 1323 implementation it was better to break
825 * it up into three procedures. -- erics
826 */
827 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
828 {
829 struct tcp_sock *tp = tcp_sk(sk);
830 long m = mrtt_us; /* RTT */
831 u32 srtt = tp->srtt_us;
832
833 /* The following amusing code comes from Jacobson's
834 * article in SIGCOMM '88. Note that rtt and mdev
835 * are scaled versions of rtt and mean deviation.
836 * This is designed to be as fast as possible
837 * m stands for "measurement".
838 *
839 * On a 1990 paper the rto value is changed to:
840 * RTO = rtt + 4 * mdev
841 *
842 * Funny. This algorithm seems to be very broken.
843 * These formulae increase RTO, when it should be decreased, increase
844 * too slowly, when it should be increased quickly, decrease too quickly
845 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
846 * does not matter how to _calculate_ it. Seems, it was trap
847 * that VJ failed to avoid. 8)
848 */
849 if (srtt != 0) {
850 m -= (srtt >> 3); /* m is now error in rtt est */
851 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
852 if (m < 0) {
853 m = -m; /* m is now abs(error) */
854 m -= (tp->mdev_us >> 2); /* similar update on mdev */
855 /* This is similar to one of Eifel findings.
856 * Eifel blocks mdev updates when rtt decreases.
857 * This solution is a bit different: we use finer gain
858 * for mdev in this case (alpha*beta).
859 * Like Eifel it also prevents growth of rto,
860 * but also it limits too fast rto decreases,
861 * happening in pure Eifel.
862 */
863 if (m > 0)
864 m >>= 3;
865 } else {
866 m -= (tp->mdev_us >> 2); /* similar update on mdev */
867 }
868 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
869 if (tp->mdev_us > tp->mdev_max_us) {
870 tp->mdev_max_us = tp->mdev_us;
871 if (tp->mdev_max_us > tp->rttvar_us)
872 tp->rttvar_us = tp->mdev_max_us;
873 }
874 if (after(tp->snd_una, tp->rtt_seq)) {
875 if (tp->mdev_max_us < tp->rttvar_us)
876 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
877 tp->rtt_seq = tp->snd_nxt;
878 tp->mdev_max_us = tcp_rto_min_us(sk);
879
880 tcp_bpf_rtt(sk);
881 }
882 } else {
883 /* no previous measure. */
884 srtt = m << 3; /* take the measured time to be rtt */
885 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
886 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
887 tp->mdev_max_us = tp->rttvar_us;
888 tp->rtt_seq = tp->snd_nxt;
889
890 tcp_bpf_rtt(sk);
891 }
892 tp->srtt_us = max(1U, srtt);
893 }
894
895 static void tcp_update_pacing_rate(struct sock *sk)
896 {
897 const struct tcp_sock *tp = tcp_sk(sk);
898 u64 rate;
899
900 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
901 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
902
903 /* current rate is (cwnd * mss) / srtt
904 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
905 * In Congestion Avoidance phase, set it to 120 % the current rate.
906 *
907 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
908 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
909 * end of slow start and should slow down.
910 */
911 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
912 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
913 else
914 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
915
916 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
917
918 if (likely(tp->srtt_us))
919 do_div(rate, tp->srtt_us);
920
921 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
922 * without any lock. We want to make sure compiler wont store
923 * intermediate values in this location.
924 */
925 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
926 sk->sk_max_pacing_rate));
927 }
928
929 /* Calculate rto without backoff. This is the second half of Van Jacobson's
930 * routine referred to above.
931 */
932 static void tcp_set_rto(struct sock *sk)
933 {
934 const struct tcp_sock *tp = tcp_sk(sk);
935 /* Old crap is replaced with new one. 8)
936 *
937 * More seriously:
938 * 1. If rtt variance happened to be less 50msec, it is hallucination.
939 * It cannot be less due to utterly erratic ACK generation made
940 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
941 * to do with delayed acks, because at cwnd>2 true delack timeout
942 * is invisible. Actually, Linux-2.4 also generates erratic
943 * ACKs in some circumstances.
944 */
945 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
946
947 /* 2. Fixups made earlier cannot be right.
948 * If we do not estimate RTO correctly without them,
949 * all the algo is pure shit and should be replaced
950 * with correct one. It is exactly, which we pretend to do.
951 */
952
953 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
954 * guarantees that rto is higher.
955 */
956 tcp_bound_rto(sk);
957 }
958
959 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
960 {
961 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
962
963 if (!cwnd)
964 cwnd = TCP_INIT_CWND;
965 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
966 }
967
968 struct tcp_sacktag_state {
969 /* Timestamps for earliest and latest never-retransmitted segment
970 * that was SACKed. RTO needs the earliest RTT to stay conservative,
971 * but congestion control should still get an accurate delay signal.
972 */
973 u64 first_sackt;
974 u64 last_sackt;
975 u32 reord;
976 u32 sack_delivered;
977 int flag;
978 unsigned int mss_now;
979 struct rate_sample *rate;
980 };
981
982 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
983 * and spurious retransmission information if this DSACK is unlikely caused by
984 * sender's action:
985 * - DSACKed sequence range is larger than maximum receiver's window.
986 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
987 */
988 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
989 u32 end_seq, struct tcp_sacktag_state *state)
990 {
991 u32 seq_len, dup_segs = 1;
992
993 if (!before(start_seq, end_seq))
994 return 0;
995
996 seq_len = end_seq - start_seq;
997 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
998 if (seq_len > tp->max_window)
999 return 0;
1000 if (seq_len > tp->mss_cache)
1001 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1002 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1003 state->flag |= FLAG_DSACK_TLP;
1004
1005 tp->dsack_dups += dup_segs;
1006 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1007 if (tp->dsack_dups > tp->total_retrans)
1008 return 0;
1009
1010 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1011 /* We increase the RACK ordering window in rounds where we receive
1012 * DSACKs that may have been due to reordering causing RACK to trigger
1013 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1014 * without having seen reordering, or that match TLP probes (TLP
1015 * is timer-driven, not triggered by RACK).
1016 */
1017 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1018 tp->rack.dsack_seen = 1;
1019
1020 state->flag |= FLAG_DSACKING_ACK;
1021 /* A spurious retransmission is delivered */
1022 state->sack_delivered += dup_segs;
1023
1024 return dup_segs;
1025 }
1026
1027 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1028 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1029 * distance is approximated in full-mss packet distance ("reordering").
1030 */
1031 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1032 const int ts)
1033 {
1034 struct tcp_sock *tp = tcp_sk(sk);
1035 const u32 mss = tp->mss_cache;
1036 u32 fack, metric;
1037
1038 fack = tcp_highest_sack_seq(tp);
1039 if (!before(low_seq, fack))
1040 return;
1041
1042 metric = fack - low_seq;
1043 if ((metric > tp->reordering * mss) && mss) {
1044 #if FASTRETRANS_DEBUG > 1
1045 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1046 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1047 tp->reordering,
1048 0,
1049 tp->sacked_out,
1050 tp->undo_marker ? tp->undo_retrans : 0);
1051 #endif
1052 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1053 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1054 }
1055
1056 /* This exciting event is worth to be remembered. 8) */
1057 tp->reord_seen++;
1058 NET_INC_STATS(sock_net(sk),
1059 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1060 }
1061
1062 /* This must be called before lost_out or retrans_out are updated
1063 * on a new loss, because we want to know if all skbs previously
1064 * known to be lost have already been retransmitted, indicating
1065 * that this newly lost skb is our next skb to retransmit.
1066 */
1067 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1068 {
1069 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1070 (tp->retransmit_skb_hint &&
1071 before(TCP_SKB_CB(skb)->seq,
1072 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1073 tp->retransmit_skb_hint = skb;
1074 }
1075
1076 /* Sum the number of packets on the wire we have marked as lost, and
1077 * notify the congestion control module that the given skb was marked lost.
1078 */
1079 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1080 {
1081 tp->lost += tcp_skb_pcount(skb);
1082 }
1083
1084 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1085 {
1086 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1087 struct tcp_sock *tp = tcp_sk(sk);
1088
1089 if (sacked & TCPCB_SACKED_ACKED)
1090 return;
1091
1092 tcp_verify_retransmit_hint(tp, skb);
1093 if (sacked & TCPCB_LOST) {
1094 if (sacked & TCPCB_SACKED_RETRANS) {
1095 /* Account for retransmits that are lost again */
1096 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1097 tp->retrans_out -= tcp_skb_pcount(skb);
1098 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1099 tcp_skb_pcount(skb));
1100 tcp_notify_skb_loss_event(tp, skb);
1101 }
1102 } else {
1103 tp->lost_out += tcp_skb_pcount(skb);
1104 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1105 tcp_notify_skb_loss_event(tp, skb);
1106 }
1107 }
1108
1109 /* Updates the delivered and delivered_ce counts */
1110 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1111 bool ece_ack)
1112 {
1113 tp->delivered += delivered;
1114 if (ece_ack)
1115 tp->delivered_ce += delivered;
1116 }
1117
1118 /* This procedure tags the retransmission queue when SACKs arrive.
1119 *
1120 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1121 * Packets in queue with these bits set are counted in variables
1122 * sacked_out, retrans_out and lost_out, correspondingly.
1123 *
1124 * Valid combinations are:
1125 * Tag InFlight Description
1126 * 0 1 - orig segment is in flight.
1127 * S 0 - nothing flies, orig reached receiver.
1128 * L 0 - nothing flies, orig lost by net.
1129 * R 2 - both orig and retransmit are in flight.
1130 * L|R 1 - orig is lost, retransmit is in flight.
1131 * S|R 1 - orig reached receiver, retrans is still in flight.
1132 * (L|S|R is logically valid, it could occur when L|R is sacked,
1133 * but it is equivalent to plain S and code short-curcuits it to S.
1134 * L|S is logically invalid, it would mean -1 packet in flight 8))
1135 *
1136 * These 6 states form finite state machine, controlled by the following events:
1137 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1138 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1139 * 3. Loss detection event of two flavors:
1140 * A. Scoreboard estimator decided the packet is lost.
1141 * A'. Reno "three dupacks" marks head of queue lost.
1142 * B. SACK arrives sacking SND.NXT at the moment, when the
1143 * segment was retransmitted.
1144 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1145 *
1146 * It is pleasant to note, that state diagram turns out to be commutative,
1147 * so that we are allowed not to be bothered by order of our actions,
1148 * when multiple events arrive simultaneously. (see the function below).
1149 *
1150 * Reordering detection.
1151 * --------------------
1152 * Reordering metric is maximal distance, which a packet can be displaced
1153 * in packet stream. With SACKs we can estimate it:
1154 *
1155 * 1. SACK fills old hole and the corresponding segment was not
1156 * ever retransmitted -> reordering. Alas, we cannot use it
1157 * when segment was retransmitted.
1158 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1159 * for retransmitted and already SACKed segment -> reordering..
1160 * Both of these heuristics are not used in Loss state, when we cannot
1161 * account for retransmits accurately.
1162 *
1163 * SACK block validation.
1164 * ----------------------
1165 *
1166 * SACK block range validation checks that the received SACK block fits to
1167 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1168 * Note that SND.UNA is not included to the range though being valid because
1169 * it means that the receiver is rather inconsistent with itself reporting
1170 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1171 * perfectly valid, however, in light of RFC2018 which explicitly states
1172 * that "SACK block MUST reflect the newest segment. Even if the newest
1173 * segment is going to be discarded ...", not that it looks very clever
1174 * in case of head skb. Due to potentional receiver driven attacks, we
1175 * choose to avoid immediate execution of a walk in write queue due to
1176 * reneging and defer head skb's loss recovery to standard loss recovery
1177 * procedure that will eventually trigger (nothing forbids us doing this).
1178 *
1179 * Implements also blockage to start_seq wrap-around. Problem lies in the
1180 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1181 * there's no guarantee that it will be before snd_nxt (n). The problem
1182 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1183 * wrap (s_w):
1184 *
1185 * <- outs wnd -> <- wrapzone ->
1186 * u e n u_w e_w s n_w
1187 * | | | | | | |
1188 * |<------------+------+----- TCP seqno space --------------+---------->|
1189 * ...-- <2^31 ->| |<--------...
1190 * ...---- >2^31 ------>| |<--------...
1191 *
1192 * Current code wouldn't be vulnerable but it's better still to discard such
1193 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1194 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1195 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1196 * equal to the ideal case (infinite seqno space without wrap caused issues).
1197 *
1198 * With D-SACK the lower bound is extended to cover sequence space below
1199 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1200 * again, D-SACK block must not to go across snd_una (for the same reason as
1201 * for the normal SACK blocks, explained above). But there all simplicity
1202 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1203 * fully below undo_marker they do not affect behavior in anyway and can
1204 * therefore be safely ignored. In rare cases (which are more or less
1205 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1206 * fragmentation and packet reordering past skb's retransmission. To consider
1207 * them correctly, the acceptable range must be extended even more though
1208 * the exact amount is rather hard to quantify. However, tp->max_window can
1209 * be used as an exaggerated estimate.
1210 */
1211 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1212 u32 start_seq, u32 end_seq)
1213 {
1214 /* Too far in future, or reversed (interpretation is ambiguous) */
1215 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1216 return false;
1217
1218 /* Nasty start_seq wrap-around check (see comments above) */
1219 if (!before(start_seq, tp->snd_nxt))
1220 return false;
1221
1222 /* In outstanding window? ...This is valid exit for D-SACKs too.
1223 * start_seq == snd_una is non-sensical (see comments above)
1224 */
1225 if (after(start_seq, tp->snd_una))
1226 return true;
1227
1228 if (!is_dsack || !tp->undo_marker)
1229 return false;
1230
1231 /* ...Then it's D-SACK, and must reside below snd_una completely */
1232 if (after(end_seq, tp->snd_una))
1233 return false;
1234
1235 if (!before(start_seq, tp->undo_marker))
1236 return true;
1237
1238 /* Too old */
1239 if (!after(end_seq, tp->undo_marker))
1240 return false;
1241
1242 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1243 * start_seq < undo_marker and end_seq >= undo_marker.
1244 */
1245 return !before(start_seq, end_seq - tp->max_window);
1246 }
1247
1248 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1249 struct tcp_sack_block_wire *sp, int num_sacks,
1250 u32 prior_snd_una, struct tcp_sacktag_state *state)
1251 {
1252 struct tcp_sock *tp = tcp_sk(sk);
1253 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1254 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1255 u32 dup_segs;
1256
1257 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1259 } else if (num_sacks > 1) {
1260 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1261 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1262
1263 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1264 return false;
1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1266 } else {
1267 return false;
1268 }
1269
1270 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1271 if (!dup_segs) { /* Skip dubious DSACK */
1272 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1273 return false;
1274 }
1275
1276 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1277
1278 /* D-SACK for already forgotten data... Do dumb counting. */
1279 if (tp->undo_marker && tp->undo_retrans > 0 &&
1280 !after(end_seq_0, prior_snd_una) &&
1281 after(end_seq_0, tp->undo_marker))
1282 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1283
1284 return true;
1285 }
1286
1287 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1288 * the incoming SACK may not exactly match but we can find smaller MSS
1289 * aligned portion of it that matches. Therefore we might need to fragment
1290 * which may fail and creates some hassle (caller must handle error case
1291 * returns).
1292 *
1293 * FIXME: this could be merged to shift decision code
1294 */
1295 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1296 u32 start_seq, u32 end_seq)
1297 {
1298 int err;
1299 bool in_sack;
1300 unsigned int pkt_len;
1301 unsigned int mss;
1302
1303 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1304 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1305
1306 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1307 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1308 mss = tcp_skb_mss(skb);
1309 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1310
1311 if (!in_sack) {
1312 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1313 if (pkt_len < mss)
1314 pkt_len = mss;
1315 } else {
1316 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1317 if (pkt_len < mss)
1318 return -EINVAL;
1319 }
1320
1321 /* Round if necessary so that SACKs cover only full MSSes
1322 * and/or the remaining small portion (if present)
1323 */
1324 if (pkt_len > mss) {
1325 unsigned int new_len = (pkt_len / mss) * mss;
1326 if (!in_sack && new_len < pkt_len)
1327 new_len += mss;
1328 pkt_len = new_len;
1329 }
1330
1331 if (pkt_len >= skb->len && !in_sack)
1332 return 0;
1333
1334 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1335 pkt_len, mss, GFP_ATOMIC);
1336 if (err < 0)
1337 return err;
1338 }
1339
1340 return in_sack;
1341 }
1342
1343 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1344 static u8 tcp_sacktag_one(struct sock *sk,
1345 struct tcp_sacktag_state *state, u8 sacked,
1346 u32 start_seq, u32 end_seq,
1347 int dup_sack, int pcount,
1348 u64 xmit_time)
1349 {
1350 struct tcp_sock *tp = tcp_sk(sk);
1351
1352 /* Account D-SACK for retransmitted packet. */
1353 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1354 if (tp->undo_marker && tp->undo_retrans > 0 &&
1355 after(end_seq, tp->undo_marker))
1356 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1357 if ((sacked & TCPCB_SACKED_ACKED) &&
1358 before(start_seq, state->reord))
1359 state->reord = start_seq;
1360 }
1361
1362 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1363 if (!after(end_seq, tp->snd_una))
1364 return sacked;
1365
1366 if (!(sacked & TCPCB_SACKED_ACKED)) {
1367 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1368
1369 if (sacked & TCPCB_SACKED_RETRANS) {
1370 /* If the segment is not tagged as lost,
1371 * we do not clear RETRANS, believing
1372 * that retransmission is still in flight.
1373 */
1374 if (sacked & TCPCB_LOST) {
1375 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1376 tp->lost_out -= pcount;
1377 tp->retrans_out -= pcount;
1378 }
1379 } else {
1380 if (!(sacked & TCPCB_RETRANS)) {
1381 /* New sack for not retransmitted frame,
1382 * which was in hole. It is reordering.
1383 */
1384 if (before(start_seq,
1385 tcp_highest_sack_seq(tp)) &&
1386 before(start_seq, state->reord))
1387 state->reord = start_seq;
1388
1389 if (!after(end_seq, tp->high_seq))
1390 state->flag |= FLAG_ORIG_SACK_ACKED;
1391 if (state->first_sackt == 0)
1392 state->first_sackt = xmit_time;
1393 state->last_sackt = xmit_time;
1394 }
1395
1396 if (sacked & TCPCB_LOST) {
1397 sacked &= ~TCPCB_LOST;
1398 tp->lost_out -= pcount;
1399 }
1400 }
1401
1402 sacked |= TCPCB_SACKED_ACKED;
1403 state->flag |= FLAG_DATA_SACKED;
1404 tp->sacked_out += pcount;
1405 /* Out-of-order packets delivered */
1406 state->sack_delivered += pcount;
1407
1408 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1409 if (tp->lost_skb_hint &&
1410 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1411 tp->lost_cnt_hint += pcount;
1412 }
1413
1414 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1415 * frames and clear it. undo_retrans is decreased above, L|R frames
1416 * are accounted above as well.
1417 */
1418 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1419 sacked &= ~TCPCB_SACKED_RETRANS;
1420 tp->retrans_out -= pcount;
1421 }
1422
1423 return sacked;
1424 }
1425
1426 /* Shift newly-SACKed bytes from this skb to the immediately previous
1427 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1428 */
1429 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1430 struct sk_buff *skb,
1431 struct tcp_sacktag_state *state,
1432 unsigned int pcount, int shifted, int mss,
1433 bool dup_sack)
1434 {
1435 struct tcp_sock *tp = tcp_sk(sk);
1436 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1437 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1438
1439 BUG_ON(!pcount);
1440
1441 /* Adjust counters and hints for the newly sacked sequence
1442 * range but discard the return value since prev is already
1443 * marked. We must tag the range first because the seq
1444 * advancement below implicitly advances
1445 * tcp_highest_sack_seq() when skb is highest_sack.
1446 */
1447 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1448 start_seq, end_seq, dup_sack, pcount,
1449 tcp_skb_timestamp_us(skb));
1450 tcp_rate_skb_delivered(sk, skb, state->rate);
1451
1452 if (skb == tp->lost_skb_hint)
1453 tp->lost_cnt_hint += pcount;
1454
1455 TCP_SKB_CB(prev)->end_seq += shifted;
1456 TCP_SKB_CB(skb)->seq += shifted;
1457
1458 tcp_skb_pcount_add(prev, pcount);
1459 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1460 tcp_skb_pcount_add(skb, -pcount);
1461
1462 /* When we're adding to gso_segs == 1, gso_size will be zero,
1463 * in theory this shouldn't be necessary but as long as DSACK
1464 * code can come after this skb later on it's better to keep
1465 * setting gso_size to something.
1466 */
1467 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1468 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1469
1470 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1471 if (tcp_skb_pcount(skb) <= 1)
1472 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1473
1474 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1475 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1476
1477 if (skb->len > 0) {
1478 BUG_ON(!tcp_skb_pcount(skb));
1479 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1480 return false;
1481 }
1482
1483 /* Whole SKB was eaten :-) */
1484
1485 if (skb == tp->retransmit_skb_hint)
1486 tp->retransmit_skb_hint = prev;
1487 if (skb == tp->lost_skb_hint) {
1488 tp->lost_skb_hint = prev;
1489 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1490 }
1491
1492 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1493 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1494 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1495 TCP_SKB_CB(prev)->end_seq++;
1496
1497 if (skb == tcp_highest_sack(sk))
1498 tcp_advance_highest_sack(sk, skb);
1499
1500 tcp_skb_collapse_tstamp(prev, skb);
1501 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1502 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1503
1504 tcp_rtx_queue_unlink_and_free(skb, sk);
1505
1506 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1507
1508 return true;
1509 }
1510
1511 /* I wish gso_size would have a bit more sane initialization than
1512 * something-or-zero which complicates things
1513 */
1514 static int tcp_skb_seglen(const struct sk_buff *skb)
1515 {
1516 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1517 }
1518
1519 /* Shifting pages past head area doesn't work */
1520 static int skb_can_shift(const struct sk_buff *skb)
1521 {
1522 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1523 }
1524
1525 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1526 int pcount, int shiftlen)
1527 {
1528 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1529 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1530 * to make sure not storing more than 65535 * 8 bytes per skb,
1531 * even if current MSS is bigger.
1532 */
1533 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1534 return 0;
1535 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1536 return 0;
1537 return skb_shift(to, from, shiftlen);
1538 }
1539
1540 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1541 * skb.
1542 */
1543 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1544 struct tcp_sacktag_state *state,
1545 u32 start_seq, u32 end_seq,
1546 bool dup_sack)
1547 {
1548 struct tcp_sock *tp = tcp_sk(sk);
1549 struct sk_buff *prev;
1550 int mss;
1551 int pcount = 0;
1552 int len;
1553 int in_sack;
1554
1555 /* Normally R but no L won't result in plain S */
1556 if (!dup_sack &&
1557 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1558 goto fallback;
1559 if (!skb_can_shift(skb))
1560 goto fallback;
1561 /* This frame is about to be dropped (was ACKed). */
1562 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1563 goto fallback;
1564
1565 /* Can only happen with delayed DSACK + discard craziness */
1566 prev = skb_rb_prev(skb);
1567 if (!prev)
1568 goto fallback;
1569
1570 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1571 goto fallback;
1572
1573 if (!tcp_skb_can_collapse(prev, skb))
1574 goto fallback;
1575
1576 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1577 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1578
1579 if (in_sack) {
1580 len = skb->len;
1581 pcount = tcp_skb_pcount(skb);
1582 mss = tcp_skb_seglen(skb);
1583
1584 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1585 * drop this restriction as unnecessary
1586 */
1587 if (mss != tcp_skb_seglen(prev))
1588 goto fallback;
1589 } else {
1590 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1591 goto noop;
1592 /* CHECKME: This is non-MSS split case only?, this will
1593 * cause skipped skbs due to advancing loop btw, original
1594 * has that feature too
1595 */
1596 if (tcp_skb_pcount(skb) <= 1)
1597 goto noop;
1598
1599 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1600 if (!in_sack) {
1601 /* TODO: head merge to next could be attempted here
1602 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1603 * though it might not be worth of the additional hassle
1604 *
1605 * ...we can probably just fallback to what was done
1606 * previously. We could try merging non-SACKed ones
1607 * as well but it probably isn't going to buy off
1608 * because later SACKs might again split them, and
1609 * it would make skb timestamp tracking considerably
1610 * harder problem.
1611 */
1612 goto fallback;
1613 }
1614
1615 len = end_seq - TCP_SKB_CB(skb)->seq;
1616 BUG_ON(len < 0);
1617 BUG_ON(len > skb->len);
1618
1619 /* MSS boundaries should be honoured or else pcount will
1620 * severely break even though it makes things bit trickier.
1621 * Optimize common case to avoid most of the divides
1622 */
1623 mss = tcp_skb_mss(skb);
1624
1625 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1626 * drop this restriction as unnecessary
1627 */
1628 if (mss != tcp_skb_seglen(prev))
1629 goto fallback;
1630
1631 if (len == mss) {
1632 pcount = 1;
1633 } else if (len < mss) {
1634 goto noop;
1635 } else {
1636 pcount = len / mss;
1637 len = pcount * mss;
1638 }
1639 }
1640
1641 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1642 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1643 goto fallback;
1644
1645 if (!tcp_skb_shift(prev, skb, pcount, len))
1646 goto fallback;
1647 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1648 goto out;
1649
1650 /* Hole filled allows collapsing with the next as well, this is very
1651 * useful when hole on every nth skb pattern happens
1652 */
1653 skb = skb_rb_next(prev);
1654 if (!skb)
1655 goto out;
1656
1657 if (!skb_can_shift(skb) ||
1658 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1659 (mss != tcp_skb_seglen(skb)))
1660 goto out;
1661
1662 if (!tcp_skb_can_collapse(prev, skb))
1663 goto out;
1664 len = skb->len;
1665 pcount = tcp_skb_pcount(skb);
1666 if (tcp_skb_shift(prev, skb, pcount, len))
1667 tcp_shifted_skb(sk, prev, skb, state, pcount,
1668 len, mss, 0);
1669
1670 out:
1671 return prev;
1672
1673 noop:
1674 return skb;
1675
1676 fallback:
1677 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1678 return NULL;
1679 }
1680
1681 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1682 struct tcp_sack_block *next_dup,
1683 struct tcp_sacktag_state *state,
1684 u32 start_seq, u32 end_seq,
1685 bool dup_sack_in)
1686 {
1687 struct tcp_sock *tp = tcp_sk(sk);
1688 struct sk_buff *tmp;
1689
1690 skb_rbtree_walk_from(skb) {
1691 int in_sack = 0;
1692 bool dup_sack = dup_sack_in;
1693
1694 /* queue is in-order => we can short-circuit the walk early */
1695 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1696 break;
1697
1698 if (next_dup &&
1699 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1700 in_sack = tcp_match_skb_to_sack(sk, skb,
1701 next_dup->start_seq,
1702 next_dup->end_seq);
1703 if (in_sack > 0)
1704 dup_sack = true;
1705 }
1706
1707 /* skb reference here is a bit tricky to get right, since
1708 * shifting can eat and free both this skb and the next,
1709 * so not even _safe variant of the loop is enough.
1710 */
1711 if (in_sack <= 0) {
1712 tmp = tcp_shift_skb_data(sk, skb, state,
1713 start_seq, end_seq, dup_sack);
1714 if (tmp) {
1715 if (tmp != skb) {
1716 skb = tmp;
1717 continue;
1718 }
1719
1720 in_sack = 0;
1721 } else {
1722 in_sack = tcp_match_skb_to_sack(sk, skb,
1723 start_seq,
1724 end_seq);
1725 }
1726 }
1727
1728 if (unlikely(in_sack < 0))
1729 break;
1730
1731 if (in_sack) {
1732 TCP_SKB_CB(skb)->sacked =
1733 tcp_sacktag_one(sk,
1734 state,
1735 TCP_SKB_CB(skb)->sacked,
1736 TCP_SKB_CB(skb)->seq,
1737 TCP_SKB_CB(skb)->end_seq,
1738 dup_sack,
1739 tcp_skb_pcount(skb),
1740 tcp_skb_timestamp_us(skb));
1741 tcp_rate_skb_delivered(sk, skb, state->rate);
1742 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1743 list_del_init(&skb->tcp_tsorted_anchor);
1744
1745 if (!before(TCP_SKB_CB(skb)->seq,
1746 tcp_highest_sack_seq(tp)))
1747 tcp_advance_highest_sack(sk, skb);
1748 }
1749 }
1750 return skb;
1751 }
1752
1753 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1754 {
1755 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1756 struct sk_buff *skb;
1757
1758 while (*p) {
1759 parent = *p;
1760 skb = rb_to_skb(parent);
1761 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1762 p = &parent->rb_left;
1763 continue;
1764 }
1765 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1766 p = &parent->rb_right;
1767 continue;
1768 }
1769 return skb;
1770 }
1771 return NULL;
1772 }
1773
1774 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1775 u32 skip_to_seq)
1776 {
1777 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1778 return skb;
1779
1780 return tcp_sacktag_bsearch(sk, skip_to_seq);
1781 }
1782
1783 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1784 struct sock *sk,
1785 struct tcp_sack_block *next_dup,
1786 struct tcp_sacktag_state *state,
1787 u32 skip_to_seq)
1788 {
1789 if (!next_dup)
1790 return skb;
1791
1792 if (before(next_dup->start_seq, skip_to_seq)) {
1793 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1794 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1795 next_dup->start_seq, next_dup->end_seq,
1796 1);
1797 }
1798
1799 return skb;
1800 }
1801
1802 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1803 {
1804 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1805 }
1806
1807 static int
1808 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1809 u32 prior_snd_una, struct tcp_sacktag_state *state)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1813 TCP_SKB_CB(ack_skb)->sacked);
1814 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1815 struct tcp_sack_block sp[TCP_NUM_SACKS];
1816 struct tcp_sack_block *cache;
1817 struct sk_buff *skb;
1818 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1819 int used_sacks;
1820 bool found_dup_sack = false;
1821 int i, j;
1822 int first_sack_index;
1823
1824 state->flag = 0;
1825 state->reord = tp->snd_nxt;
1826
1827 if (!tp->sacked_out)
1828 tcp_highest_sack_reset(sk);
1829
1830 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1831 num_sacks, prior_snd_una, state);
1832
1833 /* Eliminate too old ACKs, but take into
1834 * account more or less fresh ones, they can
1835 * contain valid SACK info.
1836 */
1837 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1838 return 0;
1839
1840 if (!tp->packets_out)
1841 goto out;
1842
1843 used_sacks = 0;
1844 first_sack_index = 0;
1845 for (i = 0; i < num_sacks; i++) {
1846 bool dup_sack = !i && found_dup_sack;
1847
1848 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1849 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1850
1851 if (!tcp_is_sackblock_valid(tp, dup_sack,
1852 sp[used_sacks].start_seq,
1853 sp[used_sacks].end_seq)) {
1854 int mib_idx;
1855
1856 if (dup_sack) {
1857 if (!tp->undo_marker)
1858 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1859 else
1860 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1861 } else {
1862 /* Don't count olds caused by ACK reordering */
1863 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1864 !after(sp[used_sacks].end_seq, tp->snd_una))
1865 continue;
1866 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1867 }
1868
1869 NET_INC_STATS(sock_net(sk), mib_idx);
1870 if (i == 0)
1871 first_sack_index = -1;
1872 continue;
1873 }
1874
1875 /* Ignore very old stuff early */
1876 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1877 if (i == 0)
1878 first_sack_index = -1;
1879 continue;
1880 }
1881
1882 used_sacks++;
1883 }
1884
1885 /* order SACK blocks to allow in order walk of the retrans queue */
1886 for (i = used_sacks - 1; i > 0; i--) {
1887 for (j = 0; j < i; j++) {
1888 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1889 swap(sp[j], sp[j + 1]);
1890
1891 /* Track where the first SACK block goes to */
1892 if (j == first_sack_index)
1893 first_sack_index = j + 1;
1894 }
1895 }
1896 }
1897
1898 state->mss_now = tcp_current_mss(sk);
1899 skb = NULL;
1900 i = 0;
1901
1902 if (!tp->sacked_out) {
1903 /* It's already past, so skip checking against it */
1904 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1905 } else {
1906 cache = tp->recv_sack_cache;
1907 /* Skip empty blocks in at head of the cache */
1908 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1909 !cache->end_seq)
1910 cache++;
1911 }
1912
1913 while (i < used_sacks) {
1914 u32 start_seq = sp[i].start_seq;
1915 u32 end_seq = sp[i].end_seq;
1916 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1917 struct tcp_sack_block *next_dup = NULL;
1918
1919 if (found_dup_sack && ((i + 1) == first_sack_index))
1920 next_dup = &sp[i + 1];
1921
1922 /* Skip too early cached blocks */
1923 while (tcp_sack_cache_ok(tp, cache) &&
1924 !before(start_seq, cache->end_seq))
1925 cache++;
1926
1927 /* Can skip some work by looking recv_sack_cache? */
1928 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1929 after(end_seq, cache->start_seq)) {
1930
1931 /* Head todo? */
1932 if (before(start_seq, cache->start_seq)) {
1933 skb = tcp_sacktag_skip(skb, sk, start_seq);
1934 skb = tcp_sacktag_walk(skb, sk, next_dup,
1935 state,
1936 start_seq,
1937 cache->start_seq,
1938 dup_sack);
1939 }
1940
1941 /* Rest of the block already fully processed? */
1942 if (!after(end_seq, cache->end_seq))
1943 goto advance_sp;
1944
1945 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1946 state,
1947 cache->end_seq);
1948
1949 /* ...tail remains todo... */
1950 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1951 /* ...but better entrypoint exists! */
1952 skb = tcp_highest_sack(sk);
1953 if (!skb)
1954 break;
1955 cache++;
1956 goto walk;
1957 }
1958
1959 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1960 /* Check overlap against next cached too (past this one already) */
1961 cache++;
1962 continue;
1963 }
1964
1965 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1966 skb = tcp_highest_sack(sk);
1967 if (!skb)
1968 break;
1969 }
1970 skb = tcp_sacktag_skip(skb, sk, start_seq);
1971
1972 walk:
1973 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1974 start_seq, end_seq, dup_sack);
1975
1976 advance_sp:
1977 i++;
1978 }
1979
1980 /* Clear the head of the cache sack blocks so we can skip it next time */
1981 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1982 tp->recv_sack_cache[i].start_seq = 0;
1983 tp->recv_sack_cache[i].end_seq = 0;
1984 }
1985 for (j = 0; j < used_sacks; j++)
1986 tp->recv_sack_cache[i++] = sp[j];
1987
1988 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1989 tcp_check_sack_reordering(sk, state->reord, 0);
1990
1991 tcp_verify_left_out(tp);
1992 out:
1993
1994 #if FASTRETRANS_DEBUG > 0
1995 WARN_ON((int)tp->sacked_out < 0);
1996 WARN_ON((int)tp->lost_out < 0);
1997 WARN_ON((int)tp->retrans_out < 0);
1998 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1999 #endif
2000 return state->flag;
2001 }
2002
2003 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2004 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2005 */
2006 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2007 {
2008 u32 holes;
2009
2010 holes = max(tp->lost_out, 1U);
2011 holes = min(holes, tp->packets_out);
2012
2013 if ((tp->sacked_out + holes) > tp->packets_out) {
2014 tp->sacked_out = tp->packets_out - holes;
2015 return true;
2016 }
2017 return false;
2018 }
2019
2020 /* If we receive more dupacks than we expected counting segments
2021 * in assumption of absent reordering, interpret this as reordering.
2022 * The only another reason could be bug in receiver TCP.
2023 */
2024 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2025 {
2026 struct tcp_sock *tp = tcp_sk(sk);
2027
2028 if (!tcp_limit_reno_sacked(tp))
2029 return;
2030
2031 tp->reordering = min_t(u32, tp->packets_out + addend,
2032 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2033 tp->reord_seen++;
2034 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2035 }
2036
2037 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2038
2039 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2040 {
2041 if (num_dupack) {
2042 struct tcp_sock *tp = tcp_sk(sk);
2043 u32 prior_sacked = tp->sacked_out;
2044 s32 delivered;
2045
2046 tp->sacked_out += num_dupack;
2047 tcp_check_reno_reordering(sk, 0);
2048 delivered = tp->sacked_out - prior_sacked;
2049 if (delivered > 0)
2050 tcp_count_delivered(tp, delivered, ece_ack);
2051 tcp_verify_left_out(tp);
2052 }
2053 }
2054
2055 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2056
2057 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2058 {
2059 struct tcp_sock *tp = tcp_sk(sk);
2060
2061 if (acked > 0) {
2062 /* One ACK acked hole. The rest eat duplicate ACKs. */
2063 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2064 ece_ack);
2065 if (acked - 1 >= tp->sacked_out)
2066 tp->sacked_out = 0;
2067 else
2068 tp->sacked_out -= acked - 1;
2069 }
2070 tcp_check_reno_reordering(sk, acked);
2071 tcp_verify_left_out(tp);
2072 }
2073
2074 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2075 {
2076 tp->sacked_out = 0;
2077 }
2078
2079 void tcp_clear_retrans(struct tcp_sock *tp)
2080 {
2081 tp->retrans_out = 0;
2082 tp->lost_out = 0;
2083 tp->undo_marker = 0;
2084 tp->undo_retrans = -1;
2085 tp->sacked_out = 0;
2086 }
2087
2088 static inline void tcp_init_undo(struct tcp_sock *tp)
2089 {
2090 tp->undo_marker = tp->snd_una;
2091 /* Retransmission still in flight may cause DSACKs later. */
2092 tp->undo_retrans = tp->retrans_out ? : -1;
2093 }
2094
2095 static bool tcp_is_rack(const struct sock *sk)
2096 {
2097 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2098 }
2099
2100 /* If we detect SACK reneging, forget all SACK information
2101 * and reset tags completely, otherwise preserve SACKs. If receiver
2102 * dropped its ofo queue, we will know this due to reneging detection.
2103 */
2104 static void tcp_timeout_mark_lost(struct sock *sk)
2105 {
2106 struct tcp_sock *tp = tcp_sk(sk);
2107 struct sk_buff *skb, *head;
2108 bool is_reneg; /* is receiver reneging on SACKs? */
2109
2110 head = tcp_rtx_queue_head(sk);
2111 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2112 if (is_reneg) {
2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2114 tp->sacked_out = 0;
2115 /* Mark SACK reneging until we recover from this loss event. */
2116 tp->is_sack_reneg = 1;
2117 } else if (tcp_is_reno(tp)) {
2118 tcp_reset_reno_sack(tp);
2119 }
2120
2121 skb = head;
2122 skb_rbtree_walk_from(skb) {
2123 if (is_reneg)
2124 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2125 else if (tcp_is_rack(sk) && skb != head &&
2126 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2127 continue; /* Don't mark recently sent ones lost yet */
2128 tcp_mark_skb_lost(sk, skb);
2129 }
2130 tcp_verify_left_out(tp);
2131 tcp_clear_all_retrans_hints(tp);
2132 }
2133
2134 /* Enter Loss state. */
2135 void tcp_enter_loss(struct sock *sk)
2136 {
2137 const struct inet_connection_sock *icsk = inet_csk(sk);
2138 struct tcp_sock *tp = tcp_sk(sk);
2139 struct net *net = sock_net(sk);
2140 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2141
2142 tcp_timeout_mark_lost(sk);
2143
2144 /* Reduce ssthresh if it has not yet been made inside this window. */
2145 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2146 !after(tp->high_seq, tp->snd_una) ||
2147 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2148 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2149 tp->prior_cwnd = tcp_snd_cwnd(tp);
2150 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2151 tcp_ca_event(sk, CA_EVENT_LOSS);
2152 tcp_init_undo(tp);
2153 }
2154 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2155 tp->snd_cwnd_cnt = 0;
2156 tp->snd_cwnd_stamp = tcp_jiffies32;
2157
2158 /* Timeout in disordered state after receiving substantial DUPACKs
2159 * suggests that the degree of reordering is over-estimated.
2160 */
2161 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2162 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2163 tp->reordering = min_t(unsigned int, tp->reordering,
2164 net->ipv4.sysctl_tcp_reordering);
2165 tcp_set_ca_state(sk, TCP_CA_Loss);
2166 tp->high_seq = tp->snd_nxt;
2167 tcp_ecn_queue_cwr(tp);
2168
2169 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2170 * loss recovery is underway except recurring timeout(s) on
2171 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2172 */
2173 tp->frto = net->ipv4.sysctl_tcp_frto &&
2174 (new_recovery || icsk->icsk_retransmits) &&
2175 !inet_csk(sk)->icsk_mtup.probe_size;
2176 }
2177
2178 /* If ACK arrived pointing to a remembered SACK, it means that our
2179 * remembered SACKs do not reflect real state of receiver i.e.
2180 * receiver _host_ is heavily congested (or buggy).
2181 *
2182 * To avoid big spurious retransmission bursts due to transient SACK
2183 * scoreboard oddities that look like reneging, we give the receiver a
2184 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2185 * restore sanity to the SACK scoreboard. If the apparent reneging
2186 * persists until this RTO then we'll clear the SACK scoreboard.
2187 */
2188 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2189 {
2190 if (flag & FLAG_SACK_RENEGING) {
2191 struct tcp_sock *tp = tcp_sk(sk);
2192 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2193 msecs_to_jiffies(10));
2194
2195 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2196 delay, TCP_RTO_MAX);
2197 return true;
2198 }
2199 return false;
2200 }
2201
2202 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2203 * counter when SACK is enabled (without SACK, sacked_out is used for
2204 * that purpose).
2205 *
2206 * With reordering, holes may still be in flight, so RFC3517 recovery
2207 * uses pure sacked_out (total number of SACKed segments) even though
2208 * it violates the RFC that uses duplicate ACKs, often these are equal
2209 * but when e.g. out-of-window ACKs or packet duplication occurs,
2210 * they differ. Since neither occurs due to loss, TCP should really
2211 * ignore them.
2212 */
2213 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2214 {
2215 return tp->sacked_out + 1;
2216 }
2217
2218 /* Linux NewReno/SACK/ECN state machine.
2219 * --------------------------------------
2220 *
2221 * "Open" Normal state, no dubious events, fast path.
2222 * "Disorder" In all the respects it is "Open",
2223 * but requires a bit more attention. It is entered when
2224 * we see some SACKs or dupacks. It is split of "Open"
2225 * mainly to move some processing from fast path to slow one.
2226 * "CWR" CWND was reduced due to some Congestion Notification event.
2227 * It can be ECN, ICMP source quench, local device congestion.
2228 * "Recovery" CWND was reduced, we are fast-retransmitting.
2229 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2230 *
2231 * tcp_fastretrans_alert() is entered:
2232 * - each incoming ACK, if state is not "Open"
2233 * - when arrived ACK is unusual, namely:
2234 * * SACK
2235 * * Duplicate ACK.
2236 * * ECN ECE.
2237 *
2238 * Counting packets in flight is pretty simple.
2239 *
2240 * in_flight = packets_out - left_out + retrans_out
2241 *
2242 * packets_out is SND.NXT-SND.UNA counted in packets.
2243 *
2244 * retrans_out is number of retransmitted segments.
2245 *
2246 * left_out is number of segments left network, but not ACKed yet.
2247 *
2248 * left_out = sacked_out + lost_out
2249 *
2250 * sacked_out: Packets, which arrived to receiver out of order
2251 * and hence not ACKed. With SACKs this number is simply
2252 * amount of SACKed data. Even without SACKs
2253 * it is easy to give pretty reliable estimate of this number,
2254 * counting duplicate ACKs.
2255 *
2256 * lost_out: Packets lost by network. TCP has no explicit
2257 * "loss notification" feedback from network (for now).
2258 * It means that this number can be only _guessed_.
2259 * Actually, it is the heuristics to predict lossage that
2260 * distinguishes different algorithms.
2261 *
2262 * F.e. after RTO, when all the queue is considered as lost,
2263 * lost_out = packets_out and in_flight = retrans_out.
2264 *
2265 * Essentially, we have now a few algorithms detecting
2266 * lost packets.
2267 *
2268 * If the receiver supports SACK:
2269 *
2270 * RFC6675/3517: It is the conventional algorithm. A packet is
2271 * considered lost if the number of higher sequence packets
2272 * SACKed is greater than or equal the DUPACK thoreshold
2273 * (reordering). This is implemented in tcp_mark_head_lost and
2274 * tcp_update_scoreboard.
2275 *
2276 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2277 * (2017-) that checks timing instead of counting DUPACKs.
2278 * Essentially a packet is considered lost if it's not S/ACKed
2279 * after RTT + reordering_window, where both metrics are
2280 * dynamically measured and adjusted. This is implemented in
2281 * tcp_rack_mark_lost.
2282 *
2283 * If the receiver does not support SACK:
2284 *
2285 * NewReno (RFC6582): in Recovery we assume that one segment
2286 * is lost (classic Reno). While we are in Recovery and
2287 * a partial ACK arrives, we assume that one more packet
2288 * is lost (NewReno). This heuristics are the same in NewReno
2289 * and SACK.
2290 *
2291 * Really tricky (and requiring careful tuning) part of algorithm
2292 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2293 * The first determines the moment _when_ we should reduce CWND and,
2294 * hence, slow down forward transmission. In fact, it determines the moment
2295 * when we decide that hole is caused by loss, rather than by a reorder.
2296 *
2297 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2298 * holes, caused by lost packets.
2299 *
2300 * And the most logically complicated part of algorithm is undo
2301 * heuristics. We detect false retransmits due to both too early
2302 * fast retransmit (reordering) and underestimated RTO, analyzing
2303 * timestamps and D-SACKs. When we detect that some segments were
2304 * retransmitted by mistake and CWND reduction was wrong, we undo
2305 * window reduction and abort recovery phase. This logic is hidden
2306 * inside several functions named tcp_try_undo_<something>.
2307 */
2308
2309 /* This function decides, when we should leave Disordered state
2310 * and enter Recovery phase, reducing congestion window.
2311 *
2312 * Main question: may we further continue forward transmission
2313 * with the same cwnd?
2314 */
2315 static bool tcp_time_to_recover(struct sock *sk, int flag)
2316 {
2317 struct tcp_sock *tp = tcp_sk(sk);
2318
2319 /* Trick#1: The loss is proven. */
2320 if (tp->lost_out)
2321 return true;
2322
2323 /* Not-A-Trick#2 : Classic rule... */
2324 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2325 return true;
2326
2327 return false;
2328 }
2329
2330 /* Detect loss in event "A" above by marking head of queue up as lost.
2331 * For RFC3517 SACK, a segment is considered lost if it
2332 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2333 * the maximum SACKed segments to pass before reaching this limit.
2334 */
2335 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2336 {
2337 struct tcp_sock *tp = tcp_sk(sk);
2338 struct sk_buff *skb;
2339 int cnt;
2340 /* Use SACK to deduce losses of new sequences sent during recovery */
2341 const u32 loss_high = tp->snd_nxt;
2342
2343 WARN_ON(packets > tp->packets_out);
2344 skb = tp->lost_skb_hint;
2345 if (skb) {
2346 /* Head already handled? */
2347 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2348 return;
2349 cnt = tp->lost_cnt_hint;
2350 } else {
2351 skb = tcp_rtx_queue_head(sk);
2352 cnt = 0;
2353 }
2354
2355 skb_rbtree_walk_from(skb) {
2356 /* TODO: do this better */
2357 /* this is not the most efficient way to do this... */
2358 tp->lost_skb_hint = skb;
2359 tp->lost_cnt_hint = cnt;
2360
2361 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2362 break;
2363
2364 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2365 cnt += tcp_skb_pcount(skb);
2366
2367 if (cnt > packets)
2368 break;
2369
2370 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2371 tcp_mark_skb_lost(sk, skb);
2372
2373 if (mark_head)
2374 break;
2375 }
2376 tcp_verify_left_out(tp);
2377 }
2378
2379 /* Account newly detected lost packet(s) */
2380
2381 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2382 {
2383 struct tcp_sock *tp = tcp_sk(sk);
2384
2385 if (tcp_is_sack(tp)) {
2386 int sacked_upto = tp->sacked_out - tp->reordering;
2387 if (sacked_upto >= 0)
2388 tcp_mark_head_lost(sk, sacked_upto, 0);
2389 else if (fast_rexmit)
2390 tcp_mark_head_lost(sk, 1, 1);
2391 }
2392 }
2393
2394 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2395 {
2396 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2397 before(tp->rx_opt.rcv_tsecr, when);
2398 }
2399
2400 /* skb is spurious retransmitted if the returned timestamp echo
2401 * reply is prior to the skb transmission time
2402 */
2403 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2404 const struct sk_buff *skb)
2405 {
2406 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2407 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2408 }
2409
2410 /* Nothing was retransmitted or returned timestamp is less
2411 * than timestamp of the first retransmission.
2412 */
2413 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2414 {
2415 return tp->retrans_stamp &&
2416 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2417 }
2418
2419 /* Undo procedures. */
2420
2421 /* We can clear retrans_stamp when there are no retransmissions in the
2422 * window. It would seem that it is trivially available for us in
2423 * tp->retrans_out, however, that kind of assumptions doesn't consider
2424 * what will happen if errors occur when sending retransmission for the
2425 * second time. ...It could the that such segment has only
2426 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2427 * the head skb is enough except for some reneging corner cases that
2428 * are not worth the effort.
2429 *
2430 * Main reason for all this complexity is the fact that connection dying
2431 * time now depends on the validity of the retrans_stamp, in particular,
2432 * that successive retransmissions of a segment must not advance
2433 * retrans_stamp under any conditions.
2434 */
2435 static bool tcp_any_retrans_done(const struct sock *sk)
2436 {
2437 const struct tcp_sock *tp = tcp_sk(sk);
2438 struct sk_buff *skb;
2439
2440 if (tp->retrans_out)
2441 return true;
2442
2443 skb = tcp_rtx_queue_head(sk);
2444 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2445 return true;
2446
2447 return false;
2448 }
2449
2450 static void DBGUNDO(struct sock *sk, const char *msg)
2451 {
2452 #if FASTRETRANS_DEBUG > 1
2453 struct tcp_sock *tp = tcp_sk(sk);
2454 struct inet_sock *inet = inet_sk(sk);
2455
2456 if (sk->sk_family == AF_INET) {
2457 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2458 msg,
2459 &inet->inet_daddr, ntohs(inet->inet_dport),
2460 tcp_snd_cwnd(tp), tcp_left_out(tp),
2461 tp->snd_ssthresh, tp->prior_ssthresh,
2462 tp->packets_out);
2463 }
2464 #if IS_ENABLED(CONFIG_IPV6)
2465 else if (sk->sk_family == AF_INET6) {
2466 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2467 msg,
2468 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2469 tcp_snd_cwnd(tp), tcp_left_out(tp),
2470 tp->snd_ssthresh, tp->prior_ssthresh,
2471 tp->packets_out);
2472 }
2473 #endif
2474 #endif
2475 }
2476
2477 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480
2481 if (unmark_loss) {
2482 struct sk_buff *skb;
2483
2484 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2485 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2486 }
2487 tp->lost_out = 0;
2488 tcp_clear_all_retrans_hints(tp);
2489 }
2490
2491 if (tp->prior_ssthresh) {
2492 const struct inet_connection_sock *icsk = inet_csk(sk);
2493
2494 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2495
2496 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2497 tp->snd_ssthresh = tp->prior_ssthresh;
2498 tcp_ecn_withdraw_cwr(tp);
2499 }
2500 }
2501 tp->snd_cwnd_stamp = tcp_jiffies32;
2502 tp->undo_marker = 0;
2503 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2504 }
2505
2506 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2507 {
2508 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2509 }
2510
2511 /* People celebrate: "We love our President!" */
2512 static bool tcp_try_undo_recovery(struct sock *sk)
2513 {
2514 struct tcp_sock *tp = tcp_sk(sk);
2515
2516 if (tcp_may_undo(tp)) {
2517 int mib_idx;
2518
2519 /* Happy end! We did not retransmit anything
2520 * or our original transmission succeeded.
2521 */
2522 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2523 tcp_undo_cwnd_reduction(sk, false);
2524 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2525 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2526 else
2527 mib_idx = LINUX_MIB_TCPFULLUNDO;
2528
2529 NET_INC_STATS(sock_net(sk), mib_idx);
2530 } else if (tp->rack.reo_wnd_persist) {
2531 tp->rack.reo_wnd_persist--;
2532 }
2533 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2534 /* Hold old state until something *above* high_seq
2535 * is ACKed. For Reno it is MUST to prevent false
2536 * fast retransmits (RFC2582). SACK TCP is safe. */
2537 if (!tcp_any_retrans_done(sk))
2538 tp->retrans_stamp = 0;
2539 return true;
2540 }
2541 tcp_set_ca_state(sk, TCP_CA_Open);
2542 tp->is_sack_reneg = 0;
2543 return false;
2544 }
2545
2546 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2547 static bool tcp_try_undo_dsack(struct sock *sk)
2548 {
2549 struct tcp_sock *tp = tcp_sk(sk);
2550
2551 if (tp->undo_marker && !tp->undo_retrans) {
2552 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2553 tp->rack.reo_wnd_persist + 1);
2554 DBGUNDO(sk, "D-SACK");
2555 tcp_undo_cwnd_reduction(sk, false);
2556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2557 return true;
2558 }
2559 return false;
2560 }
2561
2562 /* Undo during loss recovery after partial ACK or using F-RTO. */
2563 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566
2567 if (frto_undo || tcp_may_undo(tp)) {
2568 tcp_undo_cwnd_reduction(sk, true);
2569
2570 DBGUNDO(sk, "partial loss");
2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2572 if (frto_undo)
2573 NET_INC_STATS(sock_net(sk),
2574 LINUX_MIB_TCPSPURIOUSRTOS);
2575 inet_csk(sk)->icsk_retransmits = 0;
2576 if (frto_undo || tcp_is_sack(tp)) {
2577 tcp_set_ca_state(sk, TCP_CA_Open);
2578 tp->is_sack_reneg = 0;
2579 }
2580 return true;
2581 }
2582 return false;
2583 }
2584
2585 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2586 * It computes the number of packets to send (sndcnt) based on packets newly
2587 * delivered:
2588 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2589 * cwnd reductions across a full RTT.
2590 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2591 * But when SND_UNA is acked without further losses,
2592 * slow starts cwnd up to ssthresh to speed up the recovery.
2593 */
2594 static void tcp_init_cwnd_reduction(struct sock *sk)
2595 {
2596 struct tcp_sock *tp = tcp_sk(sk);
2597
2598 tp->high_seq = tp->snd_nxt;
2599 tp->tlp_high_seq = 0;
2600 tp->snd_cwnd_cnt = 0;
2601 tp->prior_cwnd = tcp_snd_cwnd(tp);
2602 tp->prr_delivered = 0;
2603 tp->prr_out = 0;
2604 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2605 tcp_ecn_queue_cwr(tp);
2606 }
2607
2608 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2609 {
2610 struct tcp_sock *tp = tcp_sk(sk);
2611 int sndcnt = 0;
2612 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2613
2614 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2615 return;
2616
2617 tp->prr_delivered += newly_acked_sacked;
2618 if (delta < 0) {
2619 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2620 tp->prior_cwnd - 1;
2621 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2622 } else {
2623 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2624 newly_acked_sacked);
2625 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2626 sndcnt++;
2627 sndcnt = min(delta, sndcnt);
2628 }
2629 /* Force a fast retransmit upon entering fast recovery */
2630 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2631 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2632 }
2633
2634 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2635 {
2636 struct tcp_sock *tp = tcp_sk(sk);
2637
2638 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2639 return;
2640
2641 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2642 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2643 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2644 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2645 tp->snd_cwnd_stamp = tcp_jiffies32;
2646 }
2647 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2648 }
2649
2650 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2651 void tcp_enter_cwr(struct sock *sk)
2652 {
2653 struct tcp_sock *tp = tcp_sk(sk);
2654
2655 tp->prior_ssthresh = 0;
2656 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2657 tp->undo_marker = 0;
2658 tcp_init_cwnd_reduction(sk);
2659 tcp_set_ca_state(sk, TCP_CA_CWR);
2660 }
2661 }
2662 EXPORT_SYMBOL(tcp_enter_cwr);
2663
2664 static void tcp_try_keep_open(struct sock *sk)
2665 {
2666 struct tcp_sock *tp = tcp_sk(sk);
2667 int state = TCP_CA_Open;
2668
2669 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2670 state = TCP_CA_Disorder;
2671
2672 if (inet_csk(sk)->icsk_ca_state != state) {
2673 tcp_set_ca_state(sk, state);
2674 tp->high_seq = tp->snd_nxt;
2675 }
2676 }
2677
2678 static void tcp_try_to_open(struct sock *sk, int flag)
2679 {
2680 struct tcp_sock *tp = tcp_sk(sk);
2681
2682 tcp_verify_left_out(tp);
2683
2684 if (!tcp_any_retrans_done(sk))
2685 tp->retrans_stamp = 0;
2686
2687 if (flag & FLAG_ECE)
2688 tcp_enter_cwr(sk);
2689
2690 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2691 tcp_try_keep_open(sk);
2692 }
2693 }
2694
2695 static void tcp_mtup_probe_failed(struct sock *sk)
2696 {
2697 struct inet_connection_sock *icsk = inet_csk(sk);
2698
2699 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2700 icsk->icsk_mtup.probe_size = 0;
2701 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2702 }
2703
2704 static void tcp_mtup_probe_success(struct sock *sk)
2705 {
2706 struct tcp_sock *tp = tcp_sk(sk);
2707 struct inet_connection_sock *icsk = inet_csk(sk);
2708 u64 val;
2709
2710 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2711
2712 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2713 do_div(val, icsk->icsk_mtup.probe_size);
2714 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2715 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2716
2717 tp->snd_cwnd_cnt = 0;
2718 tp->snd_cwnd_stamp = tcp_jiffies32;
2719 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2720
2721 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2722 icsk->icsk_mtup.probe_size = 0;
2723 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2725 }
2726
2727 /* Do a simple retransmit without using the backoff mechanisms in
2728 * tcp_timer. This is used for path mtu discovery.
2729 * The socket is already locked here.
2730 */
2731 void tcp_simple_retransmit(struct sock *sk)
2732 {
2733 const struct inet_connection_sock *icsk = inet_csk(sk);
2734 struct tcp_sock *tp = tcp_sk(sk);
2735 struct sk_buff *skb;
2736 int mss;
2737
2738 /* A fastopen SYN request is stored as two separate packets within
2739 * the retransmit queue, this is done by tcp_send_syn_data().
2740 * As a result simply checking the MSS of the frames in the queue
2741 * will not work for the SYN packet.
2742 *
2743 * Us being here is an indication of a path MTU issue so we can
2744 * assume that the fastopen SYN was lost and just mark all the
2745 * frames in the retransmit queue as lost. We will use an MSS of
2746 * -1 to mark all frames as lost, otherwise compute the current MSS.
2747 */
2748 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2749 mss = -1;
2750 else
2751 mss = tcp_current_mss(sk);
2752
2753 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2754 if (tcp_skb_seglen(skb) > mss)
2755 tcp_mark_skb_lost(sk, skb);
2756 }
2757
2758 tcp_clear_retrans_hints_partial(tp);
2759
2760 if (!tp->lost_out)
2761 return;
2762
2763 if (tcp_is_reno(tp))
2764 tcp_limit_reno_sacked(tp);
2765
2766 tcp_verify_left_out(tp);
2767
2768 /* Don't muck with the congestion window here.
2769 * Reason is that we do not increase amount of _data_
2770 * in network, but units changed and effective
2771 * cwnd/ssthresh really reduced now.
2772 */
2773 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2774 tp->high_seq = tp->snd_nxt;
2775 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2776 tp->prior_ssthresh = 0;
2777 tp->undo_marker = 0;
2778 tcp_set_ca_state(sk, TCP_CA_Loss);
2779 }
2780 tcp_xmit_retransmit_queue(sk);
2781 }
2782 EXPORT_SYMBOL(tcp_simple_retransmit);
2783
2784 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2785 {
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 int mib_idx;
2788
2789 if (tcp_is_reno(tp))
2790 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2791 else
2792 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2793
2794 NET_INC_STATS(sock_net(sk), mib_idx);
2795
2796 tp->prior_ssthresh = 0;
2797 tcp_init_undo(tp);
2798
2799 if (!tcp_in_cwnd_reduction(sk)) {
2800 if (!ece_ack)
2801 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2802 tcp_init_cwnd_reduction(sk);
2803 }
2804 tcp_set_ca_state(sk, TCP_CA_Recovery);
2805 }
2806
2807 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2808 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2809 */
2810 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2811 int *rexmit)
2812 {
2813 struct tcp_sock *tp = tcp_sk(sk);
2814 bool recovered = !before(tp->snd_una, tp->high_seq);
2815
2816 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2817 tcp_try_undo_loss(sk, false))
2818 return;
2819
2820 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2821 /* Step 3.b. A timeout is spurious if not all data are
2822 * lost, i.e., never-retransmitted data are (s)acked.
2823 */
2824 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2825 tcp_try_undo_loss(sk, true))
2826 return;
2827
2828 if (after(tp->snd_nxt, tp->high_seq)) {
2829 if (flag & FLAG_DATA_SACKED || num_dupack)
2830 tp->frto = 0; /* Step 3.a. loss was real */
2831 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2832 tp->high_seq = tp->snd_nxt;
2833 /* Step 2.b. Try send new data (but deferred until cwnd
2834 * is updated in tcp_ack()). Otherwise fall back to
2835 * the conventional recovery.
2836 */
2837 if (!tcp_write_queue_empty(sk) &&
2838 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2839 *rexmit = REXMIT_NEW;
2840 return;
2841 }
2842 tp->frto = 0;
2843 }
2844 }
2845
2846 if (recovered) {
2847 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2848 tcp_try_undo_recovery(sk);
2849 return;
2850 }
2851 if (tcp_is_reno(tp)) {
2852 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2853 * delivered. Lower inflight to clock out (re)tranmissions.
2854 */
2855 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2856 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2857 else if (flag & FLAG_SND_UNA_ADVANCED)
2858 tcp_reset_reno_sack(tp);
2859 }
2860 *rexmit = REXMIT_LOST;
2861 }
2862
2863 static bool tcp_force_fast_retransmit(struct sock *sk)
2864 {
2865 struct tcp_sock *tp = tcp_sk(sk);
2866
2867 return after(tcp_highest_sack_seq(tp),
2868 tp->snd_una + tp->reordering * tp->mss_cache);
2869 }
2870
2871 /* Undo during fast recovery after partial ACK. */
2872 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2873 bool *do_lost)
2874 {
2875 struct tcp_sock *tp = tcp_sk(sk);
2876
2877 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2878 /* Plain luck! Hole if filled with delayed
2879 * packet, rather than with a retransmit. Check reordering.
2880 */
2881 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2882
2883 /* We are getting evidence that the reordering degree is higher
2884 * than we realized. If there are no retransmits out then we
2885 * can undo. Otherwise we clock out new packets but do not
2886 * mark more packets lost or retransmit more.
2887 */
2888 if (tp->retrans_out)
2889 return true;
2890
2891 if (!tcp_any_retrans_done(sk))
2892 tp->retrans_stamp = 0;
2893
2894 DBGUNDO(sk, "partial recovery");
2895 tcp_undo_cwnd_reduction(sk, true);
2896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2897 tcp_try_keep_open(sk);
2898 } else {
2899 /* Partial ACK arrived. Force fast retransmit. */
2900 *do_lost = tcp_force_fast_retransmit(sk);
2901 }
2902 return false;
2903 }
2904
2905 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2906 {
2907 struct tcp_sock *tp = tcp_sk(sk);
2908
2909 if (tcp_rtx_queue_empty(sk))
2910 return;
2911
2912 if (unlikely(tcp_is_reno(tp))) {
2913 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2914 } else if (tcp_is_rack(sk)) {
2915 u32 prior_retrans = tp->retrans_out;
2916
2917 if (tcp_rack_mark_lost(sk))
2918 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2919 if (prior_retrans > tp->retrans_out)
2920 *ack_flag |= FLAG_LOST_RETRANS;
2921 }
2922 }
2923
2924 /* Process an event, which can update packets-in-flight not trivially.
2925 * Main goal of this function is to calculate new estimate for left_out,
2926 * taking into account both packets sitting in receiver's buffer and
2927 * packets lost by network.
2928 *
2929 * Besides that it updates the congestion state when packet loss or ECN
2930 * is detected. But it does not reduce the cwnd, it is done by the
2931 * congestion control later.
2932 *
2933 * It does _not_ decide what to send, it is made in function
2934 * tcp_xmit_retransmit_queue().
2935 */
2936 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2937 int num_dupack, int *ack_flag, int *rexmit)
2938 {
2939 struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 int fast_rexmit = 0, flag = *ack_flag;
2942 bool ece_ack = flag & FLAG_ECE;
2943 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2944 tcp_force_fast_retransmit(sk));
2945
2946 if (!tp->packets_out && tp->sacked_out)
2947 tp->sacked_out = 0;
2948
2949 /* Now state machine starts.
2950 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2951 if (ece_ack)
2952 tp->prior_ssthresh = 0;
2953
2954 /* B. In all the states check for reneging SACKs. */
2955 if (tcp_check_sack_reneging(sk, flag))
2956 return;
2957
2958 /* C. Check consistency of the current state. */
2959 tcp_verify_left_out(tp);
2960
2961 /* D. Check state exit conditions. State can be terminated
2962 * when high_seq is ACKed. */
2963 if (icsk->icsk_ca_state == TCP_CA_Open) {
2964 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2965 tp->retrans_stamp = 0;
2966 } else if (!before(tp->snd_una, tp->high_seq)) {
2967 switch (icsk->icsk_ca_state) {
2968 case TCP_CA_CWR:
2969 /* CWR is to be held something *above* high_seq
2970 * is ACKed for CWR bit to reach receiver. */
2971 if (tp->snd_una != tp->high_seq) {
2972 tcp_end_cwnd_reduction(sk);
2973 tcp_set_ca_state(sk, TCP_CA_Open);
2974 }
2975 break;
2976
2977 case TCP_CA_Recovery:
2978 if (tcp_is_reno(tp))
2979 tcp_reset_reno_sack(tp);
2980 if (tcp_try_undo_recovery(sk))
2981 return;
2982 tcp_end_cwnd_reduction(sk);
2983 break;
2984 }
2985 }
2986
2987 /* E. Process state. */
2988 switch (icsk->icsk_ca_state) {
2989 case TCP_CA_Recovery:
2990 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 if (tcp_is_reno(tp))
2992 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2993 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2994 return;
2995
2996 if (tcp_try_undo_dsack(sk))
2997 tcp_try_keep_open(sk);
2998
2999 tcp_identify_packet_loss(sk, ack_flag);
3000 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3001 if (!tcp_time_to_recover(sk, flag))
3002 return;
3003 /* Undo reverts the recovery state. If loss is evident,
3004 * starts a new recovery (e.g. reordering then loss);
3005 */
3006 tcp_enter_recovery(sk, ece_ack);
3007 }
3008 break;
3009 case TCP_CA_Loss:
3010 tcp_process_loss(sk, flag, num_dupack, rexmit);
3011 tcp_identify_packet_loss(sk, ack_flag);
3012 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3013 (*ack_flag & FLAG_LOST_RETRANS)))
3014 return;
3015 /* Change state if cwnd is undone or retransmits are lost */
3016 fallthrough;
3017 default:
3018 if (tcp_is_reno(tp)) {
3019 if (flag & FLAG_SND_UNA_ADVANCED)
3020 tcp_reset_reno_sack(tp);
3021 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3022 }
3023
3024 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3025 tcp_try_undo_dsack(sk);
3026
3027 tcp_identify_packet_loss(sk, ack_flag);
3028 if (!tcp_time_to_recover(sk, flag)) {
3029 tcp_try_to_open(sk, flag);
3030 return;
3031 }
3032
3033 /* MTU probe failure: don't reduce cwnd */
3034 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3035 icsk->icsk_mtup.probe_size &&
3036 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3037 tcp_mtup_probe_failed(sk);
3038 /* Restores the reduction we did in tcp_mtup_probe() */
3039 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3040 tcp_simple_retransmit(sk);
3041 return;
3042 }
3043
3044 /* Otherwise enter Recovery state */
3045 tcp_enter_recovery(sk, ece_ack);
3046 fast_rexmit = 1;
3047 }
3048
3049 if (!tcp_is_rack(sk) && do_lost)
3050 tcp_update_scoreboard(sk, fast_rexmit);
3051 *rexmit = REXMIT_LOST;
3052 }
3053
3054 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3055 {
3056 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3057 struct tcp_sock *tp = tcp_sk(sk);
3058
3059 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3060 /* If the remote keeps returning delayed ACKs, eventually
3061 * the min filter would pick it up and overestimate the
3062 * prop. delay when it expires. Skip suspected delayed ACKs.
3063 */
3064 return;
3065 }
3066 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3067 rtt_us ? : jiffies_to_usecs(1));
3068 }
3069
3070 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3071 long seq_rtt_us, long sack_rtt_us,
3072 long ca_rtt_us, struct rate_sample *rs)
3073 {
3074 const struct tcp_sock *tp = tcp_sk(sk);
3075
3076 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3077 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3078 * Karn's algorithm forbids taking RTT if some retransmitted data
3079 * is acked (RFC6298).
3080 */
3081 if (seq_rtt_us < 0)
3082 seq_rtt_us = sack_rtt_us;
3083
3084 /* RTTM Rule: A TSecr value received in a segment is used to
3085 * update the averaged RTT measurement only if the segment
3086 * acknowledges some new data, i.e., only if it advances the
3087 * left edge of the send window.
3088 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3089 */
3090 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3091 flag & FLAG_ACKED) {
3092 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3093
3094 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3095 if (!delta)
3096 delta = 1;
3097 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3098 ca_rtt_us = seq_rtt_us;
3099 }
3100 }
3101 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3102 if (seq_rtt_us < 0)
3103 return false;
3104
3105 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3106 * always taken together with ACK, SACK, or TS-opts. Any negative
3107 * values will be skipped with the seq_rtt_us < 0 check above.
3108 */
3109 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3110 tcp_rtt_estimator(sk, seq_rtt_us);
3111 tcp_set_rto(sk);
3112
3113 /* RFC6298: only reset backoff on valid RTT measurement. */
3114 inet_csk(sk)->icsk_backoff = 0;
3115 return true;
3116 }
3117
3118 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3119 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3120 {
3121 struct rate_sample rs;
3122 long rtt_us = -1L;
3123
3124 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3125 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3126
3127 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3128 }
3129
3130
3131 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3132 {
3133 const struct inet_connection_sock *icsk = inet_csk(sk);
3134
3135 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3136 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3137 }
3138
3139 /* Restart timer after forward progress on connection.
3140 * RFC2988 recommends to restart timer to now+rto.
3141 */
3142 void tcp_rearm_rto(struct sock *sk)
3143 {
3144 const struct inet_connection_sock *icsk = inet_csk(sk);
3145 struct tcp_sock *tp = tcp_sk(sk);
3146
3147 /* If the retrans timer is currently being used by Fast Open
3148 * for SYN-ACK retrans purpose, stay put.
3149 */
3150 if (rcu_access_pointer(tp->fastopen_rsk))
3151 return;
3152
3153 if (!tp->packets_out) {
3154 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 } else {
3156 u32 rto = inet_csk(sk)->icsk_rto;
3157 /* Offset the time elapsed after installing regular RTO */
3158 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3159 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3160 s64 delta_us = tcp_rto_delta_us(sk);
3161 /* delta_us may not be positive if the socket is locked
3162 * when the retrans timer fires and is rescheduled.
3163 */
3164 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3165 }
3166 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3167 TCP_RTO_MAX);
3168 }
3169 }
3170
3171 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3172 static void tcp_set_xmit_timer(struct sock *sk)
3173 {
3174 if (!tcp_schedule_loss_probe(sk, true))
3175 tcp_rearm_rto(sk);
3176 }
3177
3178 /* If we get here, the whole TSO packet has not been acked. */
3179 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3180 {
3181 struct tcp_sock *tp = tcp_sk(sk);
3182 u32 packets_acked;
3183
3184 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3185
3186 packets_acked = tcp_skb_pcount(skb);
3187 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188 return 0;
3189 packets_acked -= tcp_skb_pcount(skb);
3190
3191 if (packets_acked) {
3192 BUG_ON(tcp_skb_pcount(skb) == 0);
3193 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3194 }
3195
3196 return packets_acked;
3197 }
3198
3199 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3200 const struct sk_buff *ack_skb, u32 prior_snd_una)
3201 {
3202 const struct skb_shared_info *shinfo;
3203
3204 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3205 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3206 return;
3207
3208 shinfo = skb_shinfo(skb);
3209 if (!before(shinfo->tskey, prior_snd_una) &&
3210 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3211 tcp_skb_tsorted_save(skb) {
3212 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3213 } tcp_skb_tsorted_restore(skb);
3214 }
3215 }
3216
3217 /* Remove acknowledged frames from the retransmission queue. If our packet
3218 * is before the ack sequence we can discard it as it's confirmed to have
3219 * arrived at the other end.
3220 */
3221 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3222 u32 prior_fack, u32 prior_snd_una,
3223 struct tcp_sacktag_state *sack, bool ece_ack)
3224 {
3225 const struct inet_connection_sock *icsk = inet_csk(sk);
3226 u64 first_ackt, last_ackt;
3227 struct tcp_sock *tp = tcp_sk(sk);
3228 u32 prior_sacked = tp->sacked_out;
3229 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3230 struct sk_buff *skb, *next;
3231 bool fully_acked = true;
3232 long sack_rtt_us = -1L;
3233 long seq_rtt_us = -1L;
3234 long ca_rtt_us = -1L;
3235 u32 pkts_acked = 0;
3236 bool rtt_update;
3237 int flag = 0;
3238
3239 first_ackt = 0;
3240
3241 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3242 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3243 const u32 start_seq = scb->seq;
3244 u8 sacked = scb->sacked;
3245 u32 acked_pcount;
3246
3247 /* Determine how many packets and what bytes were acked, tso and else */
3248 if (after(scb->end_seq, tp->snd_una)) {
3249 if (tcp_skb_pcount(skb) == 1 ||
3250 !after(tp->snd_una, scb->seq))
3251 break;
3252
3253 acked_pcount = tcp_tso_acked(sk, skb);
3254 if (!acked_pcount)
3255 break;
3256 fully_acked = false;
3257 } else {
3258 acked_pcount = tcp_skb_pcount(skb);
3259 }
3260
3261 if (unlikely(sacked & TCPCB_RETRANS)) {
3262 if (sacked & TCPCB_SACKED_RETRANS)
3263 tp->retrans_out -= acked_pcount;
3264 flag |= FLAG_RETRANS_DATA_ACKED;
3265 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3266 last_ackt = tcp_skb_timestamp_us(skb);
3267 WARN_ON_ONCE(last_ackt == 0);
3268 if (!first_ackt)
3269 first_ackt = last_ackt;
3270
3271 if (before(start_seq, reord))
3272 reord = start_seq;
3273 if (!after(scb->end_seq, tp->high_seq))
3274 flag |= FLAG_ORIG_SACK_ACKED;
3275 }
3276
3277 if (sacked & TCPCB_SACKED_ACKED) {
3278 tp->sacked_out -= acked_pcount;
3279 } else if (tcp_is_sack(tp)) {
3280 tcp_count_delivered(tp, acked_pcount, ece_ack);
3281 if (!tcp_skb_spurious_retrans(tp, skb))
3282 tcp_rack_advance(tp, sacked, scb->end_seq,
3283 tcp_skb_timestamp_us(skb));
3284 }
3285 if (sacked & TCPCB_LOST)
3286 tp->lost_out -= acked_pcount;
3287
3288 tp->packets_out -= acked_pcount;
3289 pkts_acked += acked_pcount;
3290 tcp_rate_skb_delivered(sk, skb, sack->rate);
3291
3292 /* Initial outgoing SYN's get put onto the write_queue
3293 * just like anything else we transmit. It is not
3294 * true data, and if we misinform our callers that
3295 * this ACK acks real data, we will erroneously exit
3296 * connection startup slow start one packet too
3297 * quickly. This is severely frowned upon behavior.
3298 */
3299 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3300 flag |= FLAG_DATA_ACKED;
3301 } else {
3302 flag |= FLAG_SYN_ACKED;
3303 tp->retrans_stamp = 0;
3304 }
3305
3306 if (!fully_acked)
3307 break;
3308
3309 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3310
3311 next = skb_rb_next(skb);
3312 if (unlikely(skb == tp->retransmit_skb_hint))
3313 tp->retransmit_skb_hint = NULL;
3314 if (unlikely(skb == tp->lost_skb_hint))
3315 tp->lost_skb_hint = NULL;
3316 tcp_highest_sack_replace(sk, skb, next);
3317 tcp_rtx_queue_unlink_and_free(skb, sk);
3318 }
3319
3320 if (!skb)
3321 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3322
3323 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3324 tp->snd_up = tp->snd_una;
3325
3326 if (skb) {
3327 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3328 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3329 flag |= FLAG_SACK_RENEGING;
3330 }
3331
3332 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3333 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3334 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3335
3336 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3337 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3338 sack->rate->prior_delivered + 1 == tp->delivered &&
3339 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3340 /* Conservatively mark a delayed ACK. It's typically
3341 * from a lone runt packet over the round trip to
3342 * a receiver w/o out-of-order or CE events.
3343 */
3344 flag |= FLAG_ACK_MAYBE_DELAYED;
3345 }
3346 }
3347 if (sack->first_sackt) {
3348 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3349 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3350 }
3351 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3352 ca_rtt_us, sack->rate);
3353
3354 if (flag & FLAG_ACKED) {
3355 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3356 if (unlikely(icsk->icsk_mtup.probe_size &&
3357 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3358 tcp_mtup_probe_success(sk);
3359 }
3360
3361 if (tcp_is_reno(tp)) {
3362 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3363
3364 /* If any of the cumulatively ACKed segments was
3365 * retransmitted, non-SACK case cannot confirm that
3366 * progress was due to original transmission due to
3367 * lack of TCPCB_SACKED_ACKED bits even if some of
3368 * the packets may have been never retransmitted.
3369 */
3370 if (flag & FLAG_RETRANS_DATA_ACKED)
3371 flag &= ~FLAG_ORIG_SACK_ACKED;
3372 } else {
3373 int delta;
3374
3375 /* Non-retransmitted hole got filled? That's reordering */
3376 if (before(reord, prior_fack))
3377 tcp_check_sack_reordering(sk, reord, 0);
3378
3379 delta = prior_sacked - tp->sacked_out;
3380 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3381 }
3382 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3383 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3384 tcp_skb_timestamp_us(skb))) {
3385 /* Do not re-arm RTO if the sack RTT is measured from data sent
3386 * after when the head was last (re)transmitted. Otherwise the
3387 * timeout may continue to extend in loss recovery.
3388 */
3389 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3390 }
3391
3392 if (icsk->icsk_ca_ops->pkts_acked) {
3393 struct ack_sample sample = { .pkts_acked = pkts_acked,
3394 .rtt_us = sack->rate->rtt_us };
3395
3396 sample.in_flight = tp->mss_cache *
3397 (tp->delivered - sack->rate->prior_delivered);
3398 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3399 }
3400
3401 #if FASTRETRANS_DEBUG > 0
3402 WARN_ON((int)tp->sacked_out < 0);
3403 WARN_ON((int)tp->lost_out < 0);
3404 WARN_ON((int)tp->retrans_out < 0);
3405 if (!tp->packets_out && tcp_is_sack(tp)) {
3406 icsk = inet_csk(sk);
3407 if (tp->lost_out) {
3408 pr_debug("Leak l=%u %d\n",
3409 tp->lost_out, icsk->icsk_ca_state);
3410 tp->lost_out = 0;
3411 }
3412 if (tp->sacked_out) {
3413 pr_debug("Leak s=%u %d\n",
3414 tp->sacked_out, icsk->icsk_ca_state);
3415 tp->sacked_out = 0;
3416 }
3417 if (tp->retrans_out) {
3418 pr_debug("Leak r=%u %d\n",
3419 tp->retrans_out, icsk->icsk_ca_state);
3420 tp->retrans_out = 0;
3421 }
3422 }
3423 #endif
3424 return flag;
3425 }
3426
3427 static void tcp_ack_probe(struct sock *sk)
3428 {
3429 struct inet_connection_sock *icsk = inet_csk(sk);
3430 struct sk_buff *head = tcp_send_head(sk);
3431 const struct tcp_sock *tp = tcp_sk(sk);
3432
3433 /* Was it a usable window open? */
3434 if (!head)
3435 return;
3436 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3437 icsk->icsk_backoff = 0;
3438 icsk->icsk_probes_tstamp = 0;
3439 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3440 /* Socket must be waked up by subsequent tcp_data_snd_check().
3441 * This function is not for random using!
3442 */
3443 } else {
3444 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3445
3446 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3447 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3448 }
3449 }
3450
3451 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3452 {
3453 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3454 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3455 }
3456
3457 /* Decide wheather to run the increase function of congestion control. */
3458 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3459 {
3460 /* If reordering is high then always grow cwnd whenever data is
3461 * delivered regardless of its ordering. Otherwise stay conservative
3462 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3463 * new SACK or ECE mark may first advance cwnd here and later reduce
3464 * cwnd in tcp_fastretrans_alert() based on more states.
3465 */
3466 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3467 return flag & FLAG_FORWARD_PROGRESS;
3468
3469 return flag & FLAG_DATA_ACKED;
3470 }
3471
3472 /* The "ultimate" congestion control function that aims to replace the rigid
3473 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3474 * It's called toward the end of processing an ACK with precise rate
3475 * information. All transmission or retransmission are delayed afterwards.
3476 */
3477 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3478 int flag, const struct rate_sample *rs)
3479 {
3480 const struct inet_connection_sock *icsk = inet_csk(sk);
3481
3482 if (icsk->icsk_ca_ops->cong_control) {
3483 icsk->icsk_ca_ops->cong_control(sk, rs);
3484 return;
3485 }
3486
3487 if (tcp_in_cwnd_reduction(sk)) {
3488 /* Reduce cwnd if state mandates */
3489 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3490 } else if (tcp_may_raise_cwnd(sk, flag)) {
3491 /* Advance cwnd if state allows */
3492 tcp_cong_avoid(sk, ack, acked_sacked);
3493 }
3494 tcp_update_pacing_rate(sk);
3495 }
3496
3497 /* Check that window update is acceptable.
3498 * The function assumes that snd_una<=ack<=snd_next.
3499 */
3500 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3501 const u32 ack, const u32 ack_seq,
3502 const u32 nwin)
3503 {
3504 return after(ack, tp->snd_una) ||
3505 after(ack_seq, tp->snd_wl1) ||
3506 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3507 }
3508
3509 /* If we update tp->snd_una, also update tp->bytes_acked */
3510 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3511 {
3512 u32 delta = ack - tp->snd_una;
3513
3514 sock_owned_by_me((struct sock *)tp);
3515 tp->bytes_acked += delta;
3516 tp->snd_una = ack;
3517 }
3518
3519 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3520 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3521 {
3522 u32 delta = seq - tp->rcv_nxt;
3523
3524 sock_owned_by_me((struct sock *)tp);
3525 tp->bytes_received += delta;
3526 WRITE_ONCE(tp->rcv_nxt, seq);
3527 }
3528
3529 /* Update our send window.
3530 *
3531 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3532 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3533 */
3534 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3535 u32 ack_seq)
3536 {
3537 struct tcp_sock *tp = tcp_sk(sk);
3538 int flag = 0;
3539 u32 nwin = ntohs(tcp_hdr(skb)->window);
3540
3541 if (likely(!tcp_hdr(skb)->syn))
3542 nwin <<= tp->rx_opt.snd_wscale;
3543
3544 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3545 flag |= FLAG_WIN_UPDATE;
3546 tcp_update_wl(tp, ack_seq);
3547
3548 if (tp->snd_wnd != nwin) {
3549 tp->snd_wnd = nwin;
3550
3551 /* Note, it is the only place, where
3552 * fast path is recovered for sending TCP.
3553 */
3554 tp->pred_flags = 0;
3555 tcp_fast_path_check(sk);
3556
3557 if (!tcp_write_queue_empty(sk))
3558 tcp_slow_start_after_idle_check(sk);
3559
3560 if (nwin > tp->max_window) {
3561 tp->max_window = nwin;
3562 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3563 }
3564 }
3565 }
3566
3567 tcp_snd_una_update(tp, ack);
3568
3569 return flag;
3570 }
3571
3572 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3573 u32 *last_oow_ack_time)
3574 {
3575 if (*last_oow_ack_time) {
3576 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3577
3578 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3579 NET_INC_STATS(net, mib_idx);
3580 return true; /* rate-limited: don't send yet! */
3581 }
3582 }
3583
3584 *last_oow_ack_time = tcp_jiffies32;
3585
3586 return false; /* not rate-limited: go ahead, send dupack now! */
3587 }
3588
3589 /* Return true if we're currently rate-limiting out-of-window ACKs and
3590 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3591 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3592 * attacks that send repeated SYNs or ACKs for the same connection. To
3593 * do this, we do not send a duplicate SYNACK or ACK if the remote
3594 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3595 */
3596 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3597 int mib_idx, u32 *last_oow_ack_time)
3598 {
3599 /* Data packets without SYNs are not likely part of an ACK loop. */
3600 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3601 !tcp_hdr(skb)->syn)
3602 return false;
3603
3604 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3605 }
3606
3607 /* RFC 5961 7 [ACK Throttling] */
3608 static void tcp_send_challenge_ack(struct sock *sk)
3609 {
3610 /* unprotected vars, we dont care of overwrites */
3611 static u32 challenge_timestamp;
3612 static unsigned int challenge_count;
3613 struct tcp_sock *tp = tcp_sk(sk);
3614 struct net *net = sock_net(sk);
3615 u32 count, now;
3616
3617 /* First check our per-socket dupack rate limit. */
3618 if (__tcp_oow_rate_limited(net,
3619 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3620 &tp->last_oow_ack_time))
3621 return;
3622
3623 /* Then check host-wide RFC 5961 rate limit. */
3624 now = jiffies / HZ;
3625 if (now != challenge_timestamp) {
3626 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3627 u32 half = (ack_limit + 1) >> 1;
3628
3629 challenge_timestamp = now;
3630 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3631 }
3632 count = READ_ONCE(challenge_count);
3633 if (count > 0) {
3634 WRITE_ONCE(challenge_count, count - 1);
3635 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3636 tcp_send_ack(sk);
3637 }
3638 }
3639
3640 static void tcp_store_ts_recent(struct tcp_sock *tp)
3641 {
3642 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3643 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3644 }
3645
3646 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3647 {
3648 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3649 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3650 * extra check below makes sure this can only happen
3651 * for pure ACK frames. -DaveM
3652 *
3653 * Not only, also it occurs for expired timestamps.
3654 */
3655
3656 if (tcp_paws_check(&tp->rx_opt, 0))
3657 tcp_store_ts_recent(tp);
3658 }
3659 }
3660
3661 /* This routine deals with acks during a TLP episode and ends an episode by
3662 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3663 */
3664 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3665 {
3666 struct tcp_sock *tp = tcp_sk(sk);
3667
3668 if (before(ack, tp->tlp_high_seq))
3669 return;
3670
3671 if (!tp->tlp_retrans) {
3672 /* TLP of new data has been acknowledged */
3673 tp->tlp_high_seq = 0;
3674 } else if (flag & FLAG_DSACK_TLP) {
3675 /* This DSACK means original and TLP probe arrived; no loss */
3676 tp->tlp_high_seq = 0;
3677 } else if (after(ack, tp->tlp_high_seq)) {
3678 /* ACK advances: there was a loss, so reduce cwnd. Reset
3679 * tlp_high_seq in tcp_init_cwnd_reduction()
3680 */
3681 tcp_init_cwnd_reduction(sk);
3682 tcp_set_ca_state(sk, TCP_CA_CWR);
3683 tcp_end_cwnd_reduction(sk);
3684 tcp_try_keep_open(sk);
3685 NET_INC_STATS(sock_net(sk),
3686 LINUX_MIB_TCPLOSSPROBERECOVERY);
3687 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3688 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3689 /* Pure dupack: original and TLP probe arrived; no loss */
3690 tp->tlp_high_seq = 0;
3691 }
3692 }
3693
3694 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3695 {
3696 const struct inet_connection_sock *icsk = inet_csk(sk);
3697
3698 if (icsk->icsk_ca_ops->in_ack_event)
3699 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3700 }
3701
3702 /* Congestion control has updated the cwnd already. So if we're in
3703 * loss recovery then now we do any new sends (for FRTO) or
3704 * retransmits (for CA_Loss or CA_recovery) that make sense.
3705 */
3706 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3707 {
3708 struct tcp_sock *tp = tcp_sk(sk);
3709
3710 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3711 return;
3712
3713 if (unlikely(rexmit == REXMIT_NEW)) {
3714 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3715 TCP_NAGLE_OFF);
3716 if (after(tp->snd_nxt, tp->high_seq))
3717 return;
3718 tp->frto = 0;
3719 }
3720 tcp_xmit_retransmit_queue(sk);
3721 }
3722
3723 /* Returns the number of packets newly acked or sacked by the current ACK */
3724 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3725 {
3726 const struct net *net = sock_net(sk);
3727 struct tcp_sock *tp = tcp_sk(sk);
3728 u32 delivered;
3729
3730 delivered = tp->delivered - prior_delivered;
3731 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3732 if (flag & FLAG_ECE)
3733 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3734
3735 return delivered;
3736 }
3737
3738 /* This routine deals with incoming acks, but not outgoing ones. */
3739 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3740 {
3741 struct inet_connection_sock *icsk = inet_csk(sk);
3742 struct tcp_sock *tp = tcp_sk(sk);
3743 struct tcp_sacktag_state sack_state;
3744 struct rate_sample rs = { .prior_delivered = 0 };
3745 u32 prior_snd_una = tp->snd_una;
3746 bool is_sack_reneg = tp->is_sack_reneg;
3747 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3748 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3749 int num_dupack = 0;
3750 int prior_packets = tp->packets_out;
3751 u32 delivered = tp->delivered;
3752 u32 lost = tp->lost;
3753 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3754 u32 prior_fack;
3755
3756 sack_state.first_sackt = 0;
3757 sack_state.rate = &rs;
3758 sack_state.sack_delivered = 0;
3759
3760 /* We very likely will need to access rtx queue. */
3761 prefetch(sk->tcp_rtx_queue.rb_node);
3762
3763 /* If the ack is older than previous acks
3764 * then we can probably ignore it.
3765 */
3766 if (before(ack, prior_snd_una)) {
3767 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3768 if (before(ack, prior_snd_una - tp->max_window)) {
3769 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3770 tcp_send_challenge_ack(sk);
3771 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3772 }
3773 goto old_ack;
3774 }
3775
3776 /* If the ack includes data we haven't sent yet, discard
3777 * this segment (RFC793 Section 3.9).
3778 */
3779 if (after(ack, tp->snd_nxt))
3780 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3781
3782 if (after(ack, prior_snd_una)) {
3783 flag |= FLAG_SND_UNA_ADVANCED;
3784 icsk->icsk_retransmits = 0;
3785
3786 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3787 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3788 if (icsk->icsk_clean_acked)
3789 icsk->icsk_clean_acked(sk, ack);
3790 #endif
3791 }
3792
3793 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3794 rs.prior_in_flight = tcp_packets_in_flight(tp);
3795
3796 /* ts_recent update must be made after we are sure that the packet
3797 * is in window.
3798 */
3799 if (flag & FLAG_UPDATE_TS_RECENT)
3800 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3801
3802 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3803 FLAG_SND_UNA_ADVANCED) {
3804 /* Window is constant, pure forward advance.
3805 * No more checks are required.
3806 * Note, we use the fact that SND.UNA>=SND.WL2.
3807 */
3808 tcp_update_wl(tp, ack_seq);
3809 tcp_snd_una_update(tp, ack);
3810 flag |= FLAG_WIN_UPDATE;
3811
3812 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3813
3814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3815 } else {
3816 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3817
3818 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3819 flag |= FLAG_DATA;
3820 else
3821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3822
3823 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3824
3825 if (TCP_SKB_CB(skb)->sacked)
3826 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3827 &sack_state);
3828
3829 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3830 flag |= FLAG_ECE;
3831 ack_ev_flags |= CA_ACK_ECE;
3832 }
3833
3834 if (sack_state.sack_delivered)
3835 tcp_count_delivered(tp, sack_state.sack_delivered,
3836 flag & FLAG_ECE);
3837
3838 if (flag & FLAG_WIN_UPDATE)
3839 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3840
3841 tcp_in_ack_event(sk, ack_ev_flags);
3842 }
3843
3844 /* This is a deviation from RFC3168 since it states that:
3845 * "When the TCP data sender is ready to set the CWR bit after reducing
3846 * the congestion window, it SHOULD set the CWR bit only on the first
3847 * new data packet that it transmits."
3848 * We accept CWR on pure ACKs to be more robust
3849 * with widely-deployed TCP implementations that do this.
3850 */
3851 tcp_ecn_accept_cwr(sk, skb);
3852
3853 /* We passed data and got it acked, remove any soft error
3854 * log. Something worked...
3855 */
3856 sk->sk_err_soft = 0;
3857 icsk->icsk_probes_out = 0;
3858 tp->rcv_tstamp = tcp_jiffies32;
3859 if (!prior_packets)
3860 goto no_queue;
3861
3862 /* See if we can take anything off of the retransmit queue. */
3863 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3864 &sack_state, flag & FLAG_ECE);
3865
3866 tcp_rack_update_reo_wnd(sk, &rs);
3867
3868 if (tp->tlp_high_seq)
3869 tcp_process_tlp_ack(sk, ack, flag);
3870
3871 if (tcp_ack_is_dubious(sk, flag)) {
3872 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3873 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3874 num_dupack = 1;
3875 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3876 if (!(flag & FLAG_DATA))
3877 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3878 }
3879 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3880 &rexmit);
3881 }
3882
3883 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3884 if (flag & FLAG_SET_XMIT_TIMER)
3885 tcp_set_xmit_timer(sk);
3886
3887 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3888 sk_dst_confirm(sk);
3889
3890 delivered = tcp_newly_delivered(sk, delivered, flag);
3891 lost = tp->lost - lost; /* freshly marked lost */
3892 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3893 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3894 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3895 tcp_xmit_recovery(sk, rexmit);
3896 return 1;
3897
3898 no_queue:
3899 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3900 if (flag & FLAG_DSACKING_ACK) {
3901 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3902 &rexmit);
3903 tcp_newly_delivered(sk, delivered, flag);
3904 }
3905 /* If this ack opens up a zero window, clear backoff. It was
3906 * being used to time the probes, and is probably far higher than
3907 * it needs to be for normal retransmission.
3908 */
3909 tcp_ack_probe(sk);
3910
3911 if (tp->tlp_high_seq)
3912 tcp_process_tlp_ack(sk, ack, flag);
3913 return 1;
3914
3915 old_ack:
3916 /* If data was SACKed, tag it and see if we should send more data.
3917 * If data was DSACKed, see if we can undo a cwnd reduction.
3918 */
3919 if (TCP_SKB_CB(skb)->sacked) {
3920 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3921 &sack_state);
3922 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3923 &rexmit);
3924 tcp_newly_delivered(sk, delivered, flag);
3925 tcp_xmit_recovery(sk, rexmit);
3926 }
3927
3928 return 0;
3929 }
3930
3931 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3932 bool syn, struct tcp_fastopen_cookie *foc,
3933 bool exp_opt)
3934 {
3935 /* Valid only in SYN or SYN-ACK with an even length. */
3936 if (!foc || !syn || len < 0 || (len & 1))
3937 return;
3938
3939 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3940 len <= TCP_FASTOPEN_COOKIE_MAX)
3941 memcpy(foc->val, cookie, len);
3942 else if (len != 0)
3943 len = -1;
3944 foc->len = len;
3945 foc->exp = exp_opt;
3946 }
3947
3948 static bool smc_parse_options(const struct tcphdr *th,
3949 struct tcp_options_received *opt_rx,
3950 const unsigned char *ptr,
3951 int opsize)
3952 {
3953 #if IS_ENABLED(CONFIG_SMC)
3954 if (static_branch_unlikely(&tcp_have_smc)) {
3955 if (th->syn && !(opsize & 1) &&
3956 opsize >= TCPOLEN_EXP_SMC_BASE &&
3957 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3958 opt_rx->smc_ok = 1;
3959 return true;
3960 }
3961 }
3962 #endif
3963 return false;
3964 }
3965
3966 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3967 * value on success.
3968 */
3969 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3970 {
3971 const unsigned char *ptr = (const unsigned char *)(th + 1);
3972 int length = (th->doff * 4) - sizeof(struct tcphdr);
3973 u16 mss = 0;
3974
3975 while (length > 0) {
3976 int opcode = *ptr++;
3977 int opsize;
3978
3979 switch (opcode) {
3980 case TCPOPT_EOL:
3981 return mss;
3982 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3983 length--;
3984 continue;
3985 default:
3986 if (length < 2)
3987 return mss;
3988 opsize = *ptr++;
3989 if (opsize < 2) /* "silly options" */
3990 return mss;
3991 if (opsize > length)
3992 return mss; /* fail on partial options */
3993 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3994 u16 in_mss = get_unaligned_be16(ptr);
3995
3996 if (in_mss) {
3997 if (user_mss && user_mss < in_mss)
3998 in_mss = user_mss;
3999 mss = in_mss;
4000 }
4001 }
4002 ptr += opsize - 2;
4003 length -= opsize;
4004 }
4005 }
4006 return mss;
4007 }
4008 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4009
4010 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4011 * But, this can also be called on packets in the established flow when
4012 * the fast version below fails.
4013 */
4014 void tcp_parse_options(const struct net *net,
4015 const struct sk_buff *skb,
4016 struct tcp_options_received *opt_rx, int estab,
4017 struct tcp_fastopen_cookie *foc)
4018 {
4019 const unsigned char *ptr;
4020 const struct tcphdr *th = tcp_hdr(skb);
4021 int length = (th->doff * 4) - sizeof(struct tcphdr);
4022
4023 ptr = (const unsigned char *)(th + 1);
4024 opt_rx->saw_tstamp = 0;
4025 opt_rx->saw_unknown = 0;
4026
4027 while (length > 0) {
4028 int opcode = *ptr++;
4029 int opsize;
4030
4031 switch (opcode) {
4032 case TCPOPT_EOL:
4033 return;
4034 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4035 length--;
4036 continue;
4037 default:
4038 if (length < 2)
4039 return;
4040 opsize = *ptr++;
4041 if (opsize < 2) /* "silly options" */
4042 return;
4043 if (opsize > length)
4044 return; /* don't parse partial options */
4045 switch (opcode) {
4046 case TCPOPT_MSS:
4047 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4048 u16 in_mss = get_unaligned_be16(ptr);
4049 if (in_mss) {
4050 if (opt_rx->user_mss &&
4051 opt_rx->user_mss < in_mss)
4052 in_mss = opt_rx->user_mss;
4053 opt_rx->mss_clamp = in_mss;
4054 }
4055 }
4056 break;
4057 case TCPOPT_WINDOW:
4058 if (opsize == TCPOLEN_WINDOW && th->syn &&
4059 !estab && net->ipv4.sysctl_tcp_window_scaling) {
4060 __u8 snd_wscale = *(__u8 *)ptr;
4061 opt_rx->wscale_ok = 1;
4062 if (snd_wscale > TCP_MAX_WSCALE) {
4063 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4064 __func__,
4065 snd_wscale,
4066 TCP_MAX_WSCALE);
4067 snd_wscale = TCP_MAX_WSCALE;
4068 }
4069 opt_rx->snd_wscale = snd_wscale;
4070 }
4071 break;
4072 case TCPOPT_TIMESTAMP:
4073 if ((opsize == TCPOLEN_TIMESTAMP) &&
4074 ((estab && opt_rx->tstamp_ok) ||
4075 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4076 opt_rx->saw_tstamp = 1;
4077 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4078 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4079 }
4080 break;
4081 case TCPOPT_SACK_PERM:
4082 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4083 !estab && net->ipv4.sysctl_tcp_sack) {
4084 opt_rx->sack_ok = TCP_SACK_SEEN;
4085 tcp_sack_reset(opt_rx);
4086 }
4087 break;
4088
4089 case TCPOPT_SACK:
4090 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4091 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4092 opt_rx->sack_ok) {
4093 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4094 }
4095 break;
4096 #ifdef CONFIG_TCP_MD5SIG
4097 case TCPOPT_MD5SIG:
4098 /*
4099 * The MD5 Hash has already been
4100 * checked (see tcp_v{4,6}_do_rcv()).
4101 */
4102 break;
4103 #endif
4104 case TCPOPT_FASTOPEN:
4105 tcp_parse_fastopen_option(
4106 opsize - TCPOLEN_FASTOPEN_BASE,
4107 ptr, th->syn, foc, false);
4108 break;
4109
4110 case TCPOPT_EXP:
4111 /* Fast Open option shares code 254 using a
4112 * 16 bits magic number.
4113 */
4114 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4115 get_unaligned_be16(ptr) ==
4116 TCPOPT_FASTOPEN_MAGIC) {
4117 tcp_parse_fastopen_option(opsize -
4118 TCPOLEN_EXP_FASTOPEN_BASE,
4119 ptr + 2, th->syn, foc, true);
4120 break;
4121 }
4122
4123 if (smc_parse_options(th, opt_rx, ptr, opsize))
4124 break;
4125
4126 opt_rx->saw_unknown = 1;
4127 break;
4128
4129 default:
4130 opt_rx->saw_unknown = 1;
4131 }
4132 ptr += opsize-2;
4133 length -= opsize;
4134 }
4135 }
4136 }
4137 EXPORT_SYMBOL(tcp_parse_options);
4138
4139 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4140 {
4141 const __be32 *ptr = (const __be32 *)(th + 1);
4142
4143 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4144 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4145 tp->rx_opt.saw_tstamp = 1;
4146 ++ptr;
4147 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4148 ++ptr;
4149 if (*ptr)
4150 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4151 else
4152 tp->rx_opt.rcv_tsecr = 0;
4153 return true;
4154 }
4155 return false;
4156 }
4157
4158 /* Fast parse options. This hopes to only see timestamps.
4159 * If it is wrong it falls back on tcp_parse_options().
4160 */
4161 static bool tcp_fast_parse_options(const struct net *net,
4162 const struct sk_buff *skb,
4163 const struct tcphdr *th, struct tcp_sock *tp)
4164 {
4165 /* In the spirit of fast parsing, compare doff directly to constant
4166 * values. Because equality is used, short doff can be ignored here.
4167 */
4168 if (th->doff == (sizeof(*th) / 4)) {
4169 tp->rx_opt.saw_tstamp = 0;
4170 return false;
4171 } else if (tp->rx_opt.tstamp_ok &&
4172 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4173 if (tcp_parse_aligned_timestamp(tp, th))
4174 return true;
4175 }
4176
4177 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4178 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4179 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4180
4181 return true;
4182 }
4183
4184 #ifdef CONFIG_TCP_MD5SIG
4185 /*
4186 * Parse MD5 Signature option
4187 */
4188 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4189 {
4190 int length = (th->doff << 2) - sizeof(*th);
4191 const u8 *ptr = (const u8 *)(th + 1);
4192
4193 /* If not enough data remaining, we can short cut */
4194 while (length >= TCPOLEN_MD5SIG) {
4195 int opcode = *ptr++;
4196 int opsize;
4197
4198 switch (opcode) {
4199 case TCPOPT_EOL:
4200 return NULL;
4201 case TCPOPT_NOP:
4202 length--;
4203 continue;
4204 default:
4205 opsize = *ptr++;
4206 if (opsize < 2 || opsize > length)
4207 return NULL;
4208 if (opcode == TCPOPT_MD5SIG)
4209 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4210 }
4211 ptr += opsize - 2;
4212 length -= opsize;
4213 }
4214 return NULL;
4215 }
4216 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4217 #endif
4218
4219 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4220 *
4221 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4222 * it can pass through stack. So, the following predicate verifies that
4223 * this segment is not used for anything but congestion avoidance or
4224 * fast retransmit. Moreover, we even are able to eliminate most of such
4225 * second order effects, if we apply some small "replay" window (~RTO)
4226 * to timestamp space.
4227 *
4228 * All these measures still do not guarantee that we reject wrapped ACKs
4229 * on networks with high bandwidth, when sequence space is recycled fastly,
4230 * but it guarantees that such events will be very rare and do not affect
4231 * connection seriously. This doesn't look nice, but alas, PAWS is really
4232 * buggy extension.
4233 *
4234 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4235 * states that events when retransmit arrives after original data are rare.
4236 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4237 * the biggest problem on large power networks even with minor reordering.
4238 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4239 * up to bandwidth of 18Gigabit/sec. 8) ]
4240 */
4241
4242 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4243 {
4244 const struct tcp_sock *tp = tcp_sk(sk);
4245 const struct tcphdr *th = tcp_hdr(skb);
4246 u32 seq = TCP_SKB_CB(skb)->seq;
4247 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4248
4249 return (/* 1. Pure ACK with correct sequence number. */
4250 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4251
4252 /* 2. ... and duplicate ACK. */
4253 ack == tp->snd_una &&
4254
4255 /* 3. ... and does not update window. */
4256 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4257
4258 /* 4. ... and sits in replay window. */
4259 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4260 }
4261
4262 static inline bool tcp_paws_discard(const struct sock *sk,
4263 const struct sk_buff *skb)
4264 {
4265 const struct tcp_sock *tp = tcp_sk(sk);
4266
4267 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4268 !tcp_disordered_ack(sk, skb);
4269 }
4270
4271 /* Check segment sequence number for validity.
4272 *
4273 * Segment controls are considered valid, if the segment
4274 * fits to the window after truncation to the window. Acceptability
4275 * of data (and SYN, FIN, of course) is checked separately.
4276 * See tcp_data_queue(), for example.
4277 *
4278 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4279 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4280 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4281 * (borrowed from freebsd)
4282 */
4283
4284 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4285 {
4286 return !before(end_seq, tp->rcv_wup) &&
4287 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4288 }
4289
4290 /* When we get a reset we do this. */
4291 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4292 {
4293 trace_tcp_receive_reset(sk);
4294
4295 /* mptcp can't tell us to ignore reset pkts,
4296 * so just ignore the return value of mptcp_incoming_options().
4297 */
4298 if (sk_is_mptcp(sk))
4299 mptcp_incoming_options(sk, skb);
4300
4301 /* We want the right error as BSD sees it (and indeed as we do). */
4302 switch (sk->sk_state) {
4303 case TCP_SYN_SENT:
4304 sk->sk_err = ECONNREFUSED;
4305 break;
4306 case TCP_CLOSE_WAIT:
4307 sk->sk_err = EPIPE;
4308 break;
4309 case TCP_CLOSE:
4310 return;
4311 default:
4312 sk->sk_err = ECONNRESET;
4313 }
4314 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4315 smp_wmb();
4316
4317 tcp_write_queue_purge(sk);
4318 tcp_done(sk);
4319
4320 if (!sock_flag(sk, SOCK_DEAD))
4321 sk_error_report(sk);
4322 }
4323
4324 /*
4325 * Process the FIN bit. This now behaves as it is supposed to work
4326 * and the FIN takes effect when it is validly part of sequence
4327 * space. Not before when we get holes.
4328 *
4329 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4330 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4331 * TIME-WAIT)
4332 *
4333 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4334 * close and we go into CLOSING (and later onto TIME-WAIT)
4335 *
4336 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4337 */
4338 void tcp_fin(struct sock *sk)
4339 {
4340 struct tcp_sock *tp = tcp_sk(sk);
4341
4342 inet_csk_schedule_ack(sk);
4343
4344 sk->sk_shutdown |= RCV_SHUTDOWN;
4345 sock_set_flag(sk, SOCK_DONE);
4346
4347 switch (sk->sk_state) {
4348 case TCP_SYN_RECV:
4349 case TCP_ESTABLISHED:
4350 /* Move to CLOSE_WAIT */
4351 tcp_set_state(sk, TCP_CLOSE_WAIT);
4352 inet_csk_enter_pingpong_mode(sk);
4353 break;
4354
4355 case TCP_CLOSE_WAIT:
4356 case TCP_CLOSING:
4357 /* Received a retransmission of the FIN, do
4358 * nothing.
4359 */
4360 break;
4361 case TCP_LAST_ACK:
4362 /* RFC793: Remain in the LAST-ACK state. */
4363 break;
4364
4365 case TCP_FIN_WAIT1:
4366 /* This case occurs when a simultaneous close
4367 * happens, we must ack the received FIN and
4368 * enter the CLOSING state.
4369 */
4370 tcp_send_ack(sk);
4371 tcp_set_state(sk, TCP_CLOSING);
4372 break;
4373 case TCP_FIN_WAIT2:
4374 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4375 tcp_send_ack(sk);
4376 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4377 break;
4378 default:
4379 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4380 * cases we should never reach this piece of code.
4381 */
4382 pr_err("%s: Impossible, sk->sk_state=%d\n",
4383 __func__, sk->sk_state);
4384 break;
4385 }
4386
4387 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4388 * Probably, we should reset in this case. For now drop them.
4389 */
4390 skb_rbtree_purge(&tp->out_of_order_queue);
4391 if (tcp_is_sack(tp))
4392 tcp_sack_reset(&tp->rx_opt);
4393
4394 if (!sock_flag(sk, SOCK_DEAD)) {
4395 sk->sk_state_change(sk);
4396
4397 /* Do not send POLL_HUP for half duplex close. */
4398 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4399 sk->sk_state == TCP_CLOSE)
4400 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4401 else
4402 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4403 }
4404 }
4405
4406 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4407 u32 end_seq)
4408 {
4409 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4410 if (before(seq, sp->start_seq))
4411 sp->start_seq = seq;
4412 if (after(end_seq, sp->end_seq))
4413 sp->end_seq = end_seq;
4414 return true;
4415 }
4416 return false;
4417 }
4418
4419 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4420 {
4421 struct tcp_sock *tp = tcp_sk(sk);
4422
4423 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4424 int mib_idx;
4425
4426 if (before(seq, tp->rcv_nxt))
4427 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4428 else
4429 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4430
4431 NET_INC_STATS(sock_net(sk), mib_idx);
4432
4433 tp->rx_opt.dsack = 1;
4434 tp->duplicate_sack[0].start_seq = seq;
4435 tp->duplicate_sack[0].end_seq = end_seq;
4436 }
4437 }
4438
4439 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4440 {
4441 struct tcp_sock *tp = tcp_sk(sk);
4442
4443 if (!tp->rx_opt.dsack)
4444 tcp_dsack_set(sk, seq, end_seq);
4445 else
4446 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4447 }
4448
4449 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4450 {
4451 /* When the ACK path fails or drops most ACKs, the sender would
4452 * timeout and spuriously retransmit the same segment repeatedly.
4453 * The receiver remembers and reflects via DSACKs. Leverage the
4454 * DSACK state and change the txhash to re-route speculatively.
4455 */
4456 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4457 sk_rethink_txhash(sk))
4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4459 }
4460
4461 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4462 {
4463 struct tcp_sock *tp = tcp_sk(sk);
4464
4465 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4466 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4467 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4468 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4469
4470 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4471 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4472
4473 tcp_rcv_spurious_retrans(sk, skb);
4474 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4475 end_seq = tp->rcv_nxt;
4476 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4477 }
4478 }
4479
4480 tcp_send_ack(sk);
4481 }
4482
4483 /* These routines update the SACK block as out-of-order packets arrive or
4484 * in-order packets close up the sequence space.
4485 */
4486 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4487 {
4488 int this_sack;
4489 struct tcp_sack_block *sp = &tp->selective_acks[0];
4490 struct tcp_sack_block *swalk = sp + 1;
4491
4492 /* See if the recent change to the first SACK eats into
4493 * or hits the sequence space of other SACK blocks, if so coalesce.
4494 */
4495 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4496 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4497 int i;
4498
4499 /* Zap SWALK, by moving every further SACK up by one slot.
4500 * Decrease num_sacks.
4501 */
4502 tp->rx_opt.num_sacks--;
4503 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4504 sp[i] = sp[i + 1];
4505 continue;
4506 }
4507 this_sack++;
4508 swalk++;
4509 }
4510 }
4511
4512 static void tcp_sack_compress_send_ack(struct sock *sk)
4513 {
4514 struct tcp_sock *tp = tcp_sk(sk);
4515
4516 if (!tp->compressed_ack)
4517 return;
4518
4519 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4520 __sock_put(sk);
4521
4522 /* Since we have to send one ack finally,
4523 * substract one from tp->compressed_ack to keep
4524 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4525 */
4526 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4527 tp->compressed_ack - 1);
4528
4529 tp->compressed_ack = 0;
4530 tcp_send_ack(sk);
4531 }
4532
4533 /* Reasonable amount of sack blocks included in TCP SACK option
4534 * The max is 4, but this becomes 3 if TCP timestamps are there.
4535 * Given that SACK packets might be lost, be conservative and use 2.
4536 */
4537 #define TCP_SACK_BLOCKS_EXPECTED 2
4538
4539 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4540 {
4541 struct tcp_sock *tp = tcp_sk(sk);
4542 struct tcp_sack_block *sp = &tp->selective_acks[0];
4543 int cur_sacks = tp->rx_opt.num_sacks;
4544 int this_sack;
4545
4546 if (!cur_sacks)
4547 goto new_sack;
4548
4549 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4550 if (tcp_sack_extend(sp, seq, end_seq)) {
4551 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4552 tcp_sack_compress_send_ack(sk);
4553 /* Rotate this_sack to the first one. */
4554 for (; this_sack > 0; this_sack--, sp--)
4555 swap(*sp, *(sp - 1));
4556 if (cur_sacks > 1)
4557 tcp_sack_maybe_coalesce(tp);
4558 return;
4559 }
4560 }
4561
4562 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4563 tcp_sack_compress_send_ack(sk);
4564
4565 /* Could not find an adjacent existing SACK, build a new one,
4566 * put it at the front, and shift everyone else down. We
4567 * always know there is at least one SACK present already here.
4568 *
4569 * If the sack array is full, forget about the last one.
4570 */
4571 if (this_sack >= TCP_NUM_SACKS) {
4572 this_sack--;
4573 tp->rx_opt.num_sacks--;
4574 sp--;
4575 }
4576 for (; this_sack > 0; this_sack--, sp--)
4577 *sp = *(sp - 1);
4578
4579 new_sack:
4580 /* Build the new head SACK, and we're done. */
4581 sp->start_seq = seq;
4582 sp->end_seq = end_seq;
4583 tp->rx_opt.num_sacks++;
4584 }
4585
4586 /* RCV.NXT advances, some SACKs should be eaten. */
4587
4588 static void tcp_sack_remove(struct tcp_sock *tp)
4589 {
4590 struct tcp_sack_block *sp = &tp->selective_acks[0];
4591 int num_sacks = tp->rx_opt.num_sacks;
4592 int this_sack;
4593
4594 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4595 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4596 tp->rx_opt.num_sacks = 0;
4597 return;
4598 }
4599
4600 for (this_sack = 0; this_sack < num_sacks;) {
4601 /* Check if the start of the sack is covered by RCV.NXT. */
4602 if (!before(tp->rcv_nxt, sp->start_seq)) {
4603 int i;
4604
4605 /* RCV.NXT must cover all the block! */
4606 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4607
4608 /* Zap this SACK, by moving forward any other SACKS. */
4609 for (i = this_sack+1; i < num_sacks; i++)
4610 tp->selective_acks[i-1] = tp->selective_acks[i];
4611 num_sacks--;
4612 continue;
4613 }
4614 this_sack++;
4615 sp++;
4616 }
4617 tp->rx_opt.num_sacks = num_sacks;
4618 }
4619
4620 /**
4621 * tcp_try_coalesce - try to merge skb to prior one
4622 * @sk: socket
4623 * @to: prior buffer
4624 * @from: buffer to add in queue
4625 * @fragstolen: pointer to boolean
4626 *
4627 * Before queueing skb @from after @to, try to merge them
4628 * to reduce overall memory use and queue lengths, if cost is small.
4629 * Packets in ofo or receive queues can stay a long time.
4630 * Better try to coalesce them right now to avoid future collapses.
4631 * Returns true if caller should free @from instead of queueing it
4632 */
4633 static bool tcp_try_coalesce(struct sock *sk,
4634 struct sk_buff *to,
4635 struct sk_buff *from,
4636 bool *fragstolen)
4637 {
4638 int delta;
4639
4640 *fragstolen = false;
4641
4642 /* Its possible this segment overlaps with prior segment in queue */
4643 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4644 return false;
4645
4646 if (!mptcp_skb_can_collapse(to, from))
4647 return false;
4648
4649 #ifdef CONFIG_TLS_DEVICE
4650 if (from->decrypted != to->decrypted)
4651 return false;
4652 #endif
4653
4654 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4655 return false;
4656
4657 atomic_add(delta, &sk->sk_rmem_alloc);
4658 sk_mem_charge(sk, delta);
4659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4660 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4661 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4662 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4663
4664 if (TCP_SKB_CB(from)->has_rxtstamp) {
4665 TCP_SKB_CB(to)->has_rxtstamp = true;
4666 to->tstamp = from->tstamp;
4667 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4668 }
4669
4670 return true;
4671 }
4672
4673 static bool tcp_ooo_try_coalesce(struct sock *sk,
4674 struct sk_buff *to,
4675 struct sk_buff *from,
4676 bool *fragstolen)
4677 {
4678 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4679
4680 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4681 if (res) {
4682 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4683 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4684
4685 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4686 }
4687 return res;
4688 }
4689
4690 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4691 enum skb_drop_reason reason)
4692 {
4693 sk_drops_add(sk, skb);
4694 kfree_skb_reason(skb, reason);
4695 }
4696
4697 /* This one checks to see if we can put data from the
4698 * out_of_order queue into the receive_queue.
4699 */
4700 static void tcp_ofo_queue(struct sock *sk)
4701 {
4702 struct tcp_sock *tp = tcp_sk(sk);
4703 __u32 dsack_high = tp->rcv_nxt;
4704 bool fin, fragstolen, eaten;
4705 struct sk_buff *skb, *tail;
4706 struct rb_node *p;
4707
4708 p = rb_first(&tp->out_of_order_queue);
4709 while (p) {
4710 skb = rb_to_skb(p);
4711 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4712 break;
4713
4714 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4715 __u32 dsack = dsack_high;
4716 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4717 dsack_high = TCP_SKB_CB(skb)->end_seq;
4718 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4719 }
4720 p = rb_next(p);
4721 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4722
4723 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4724 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4725 continue;
4726 }
4727
4728 tail = skb_peek_tail(&sk->sk_receive_queue);
4729 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4730 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4731 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4732 if (!eaten)
4733 __skb_queue_tail(&sk->sk_receive_queue, skb);
4734 else
4735 kfree_skb_partial(skb, fragstolen);
4736
4737 if (unlikely(fin)) {
4738 tcp_fin(sk);
4739 /* tcp_fin() purges tp->out_of_order_queue,
4740 * so we must end this loop right now.
4741 */
4742 break;
4743 }
4744 }
4745 }
4746
4747 static bool tcp_prune_ofo_queue(struct sock *sk);
4748 static int tcp_prune_queue(struct sock *sk);
4749
4750 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4751 unsigned int size)
4752 {
4753 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4754 !sk_rmem_schedule(sk, skb, size)) {
4755
4756 if (tcp_prune_queue(sk) < 0)
4757 return -1;
4758
4759 while (!sk_rmem_schedule(sk, skb, size)) {
4760 if (!tcp_prune_ofo_queue(sk))
4761 return -1;
4762 }
4763 }
4764 return 0;
4765 }
4766
4767 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4768 {
4769 struct tcp_sock *tp = tcp_sk(sk);
4770 struct rb_node **p, *parent;
4771 struct sk_buff *skb1;
4772 u32 seq, end_seq;
4773 bool fragstolen;
4774
4775 tcp_ecn_check_ce(sk, skb);
4776
4777 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4779 sk->sk_data_ready(sk);
4780 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4781 return;
4782 }
4783
4784 /* Disable header prediction. */
4785 tp->pred_flags = 0;
4786 inet_csk_schedule_ack(sk);
4787
4788 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4789 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4790 seq = TCP_SKB_CB(skb)->seq;
4791 end_seq = TCP_SKB_CB(skb)->end_seq;
4792
4793 p = &tp->out_of_order_queue.rb_node;
4794 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4795 /* Initial out of order segment, build 1 SACK. */
4796 if (tcp_is_sack(tp)) {
4797 tp->rx_opt.num_sacks = 1;
4798 tp->selective_acks[0].start_seq = seq;
4799 tp->selective_acks[0].end_seq = end_seq;
4800 }
4801 rb_link_node(&skb->rbnode, NULL, p);
4802 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4803 tp->ooo_last_skb = skb;
4804 goto end;
4805 }
4806
4807 /* In the typical case, we are adding an skb to the end of the list.
4808 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4809 */
4810 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4811 skb, &fragstolen)) {
4812 coalesce_done:
4813 /* For non sack flows, do not grow window to force DUPACK
4814 * and trigger fast retransmit.
4815 */
4816 if (tcp_is_sack(tp))
4817 tcp_grow_window(sk, skb, true);
4818 kfree_skb_partial(skb, fragstolen);
4819 skb = NULL;
4820 goto add_sack;
4821 }
4822 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4823 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4824 parent = &tp->ooo_last_skb->rbnode;
4825 p = &parent->rb_right;
4826 goto insert;
4827 }
4828
4829 /* Find place to insert this segment. Handle overlaps on the way. */
4830 parent = NULL;
4831 while (*p) {
4832 parent = *p;
4833 skb1 = rb_to_skb(parent);
4834 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4835 p = &parent->rb_left;
4836 continue;
4837 }
4838 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4839 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4840 /* All the bits are present. Drop. */
4841 NET_INC_STATS(sock_net(sk),
4842 LINUX_MIB_TCPOFOMERGE);
4843 tcp_drop_reason(sk, skb,
4844 SKB_DROP_REASON_TCP_OFOMERGE);
4845 skb = NULL;
4846 tcp_dsack_set(sk, seq, end_seq);
4847 goto add_sack;
4848 }
4849 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4850 /* Partial overlap. */
4851 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4852 } else {
4853 /* skb's seq == skb1's seq and skb covers skb1.
4854 * Replace skb1 with skb.
4855 */
4856 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4857 &tp->out_of_order_queue);
4858 tcp_dsack_extend(sk,
4859 TCP_SKB_CB(skb1)->seq,
4860 TCP_SKB_CB(skb1)->end_seq);
4861 NET_INC_STATS(sock_net(sk),
4862 LINUX_MIB_TCPOFOMERGE);
4863 tcp_drop_reason(sk, skb1,
4864 SKB_DROP_REASON_TCP_OFOMERGE);
4865 goto merge_right;
4866 }
4867 } else if (tcp_ooo_try_coalesce(sk, skb1,
4868 skb, &fragstolen)) {
4869 goto coalesce_done;
4870 }
4871 p = &parent->rb_right;
4872 }
4873 insert:
4874 /* Insert segment into RB tree. */
4875 rb_link_node(&skb->rbnode, parent, p);
4876 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4877
4878 merge_right:
4879 /* Remove other segments covered by skb. */
4880 while ((skb1 = skb_rb_next(skb)) != NULL) {
4881 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4882 break;
4883 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4884 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4885 end_seq);
4886 break;
4887 }
4888 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4889 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4890 TCP_SKB_CB(skb1)->end_seq);
4891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4892 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4893 }
4894 /* If there is no skb after us, we are the last_skb ! */
4895 if (!skb1)
4896 tp->ooo_last_skb = skb;
4897
4898 add_sack:
4899 if (tcp_is_sack(tp))
4900 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4901 end:
4902 if (skb) {
4903 /* For non sack flows, do not grow window to force DUPACK
4904 * and trigger fast retransmit.
4905 */
4906 if (tcp_is_sack(tp))
4907 tcp_grow_window(sk, skb, false);
4908 skb_condense(skb);
4909 skb_set_owner_r(skb, sk);
4910 }
4911 }
4912
4913 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4914 bool *fragstolen)
4915 {
4916 int eaten;
4917 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4918
4919 eaten = (tail &&
4920 tcp_try_coalesce(sk, tail,
4921 skb, fragstolen)) ? 1 : 0;
4922 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4923 if (!eaten) {
4924 __skb_queue_tail(&sk->sk_receive_queue, skb);
4925 skb_set_owner_r(skb, sk);
4926 }
4927 return eaten;
4928 }
4929
4930 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4931 {
4932 struct sk_buff *skb;
4933 int err = -ENOMEM;
4934 int data_len = 0;
4935 bool fragstolen;
4936
4937 if (size == 0)
4938 return 0;
4939
4940 if (size > PAGE_SIZE) {
4941 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4942
4943 data_len = npages << PAGE_SHIFT;
4944 size = data_len + (size & ~PAGE_MASK);
4945 }
4946 skb = alloc_skb_with_frags(size - data_len, data_len,
4947 PAGE_ALLOC_COSTLY_ORDER,
4948 &err, sk->sk_allocation);
4949 if (!skb)
4950 goto err;
4951
4952 skb_put(skb, size - data_len);
4953 skb->data_len = data_len;
4954 skb->len = size;
4955
4956 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4958 goto err_free;
4959 }
4960
4961 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4962 if (err)
4963 goto err_free;
4964
4965 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4966 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4967 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4968
4969 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4970 WARN_ON_ONCE(fragstolen); /* should not happen */
4971 __kfree_skb(skb);
4972 }
4973 return size;
4974
4975 err_free:
4976 kfree_skb(skb);
4977 err:
4978 return err;
4979
4980 }
4981
4982 void tcp_data_ready(struct sock *sk)
4983 {
4984 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4985 sk->sk_data_ready(sk);
4986 }
4987
4988 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4989 {
4990 struct tcp_sock *tp = tcp_sk(sk);
4991 enum skb_drop_reason reason;
4992 bool fragstolen;
4993 int eaten;
4994
4995 /* If a subflow has been reset, the packet should not continue
4996 * to be processed, drop the packet.
4997 */
4998 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4999 __kfree_skb(skb);
5000 return;
5001 }
5002
5003 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5004 __kfree_skb(skb);
5005 return;
5006 }
5007 skb_dst_drop(skb);
5008 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5009
5010 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5011 tp->rx_opt.dsack = 0;
5012
5013 /* Queue data for delivery to the user.
5014 * Packets in sequence go to the receive queue.
5015 * Out of sequence packets to the out_of_order_queue.
5016 */
5017 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5018 if (tcp_receive_window(tp) == 0) {
5019 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5021 goto out_of_window;
5022 }
5023
5024 /* Ok. In sequence. In window. */
5025 queue_and_out:
5026 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5027 sk_forced_mem_schedule(sk, skb->truesize);
5028 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5029 reason = SKB_DROP_REASON_PROTO_MEM;
5030 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5031 sk->sk_data_ready(sk);
5032 goto drop;
5033 }
5034
5035 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5036 if (skb->len)
5037 tcp_event_data_recv(sk, skb);
5038 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5039 tcp_fin(sk);
5040
5041 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5042 tcp_ofo_queue(sk);
5043
5044 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5045 * gap in queue is filled.
5046 */
5047 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5048 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5049 }
5050
5051 if (tp->rx_opt.num_sacks)
5052 tcp_sack_remove(tp);
5053
5054 tcp_fast_path_check(sk);
5055
5056 if (eaten > 0)
5057 kfree_skb_partial(skb, fragstolen);
5058 if (!sock_flag(sk, SOCK_DEAD))
5059 tcp_data_ready(sk);
5060 return;
5061 }
5062
5063 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5064 tcp_rcv_spurious_retrans(sk, skb);
5065 /* A retransmit, 2nd most common case. Force an immediate ack. */
5066 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5067 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5068 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5069
5070 out_of_window:
5071 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5072 inet_csk_schedule_ack(sk);
5073 drop:
5074 tcp_drop_reason(sk, skb, reason);
5075 return;
5076 }
5077
5078 /* Out of window. F.e. zero window probe. */
5079 if (!before(TCP_SKB_CB(skb)->seq,
5080 tp->rcv_nxt + tcp_receive_window(tp))) {
5081 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5082 goto out_of_window;
5083 }
5084
5085 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5086 /* Partial packet, seq < rcv_next < end_seq */
5087 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5088
5089 /* If window is closed, drop tail of packet. But after
5090 * remembering D-SACK for its head made in previous line.
5091 */
5092 if (!tcp_receive_window(tp)) {
5093 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5094 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5095 goto out_of_window;
5096 }
5097 goto queue_and_out;
5098 }
5099
5100 tcp_data_queue_ofo(sk, skb);
5101 }
5102
5103 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5104 {
5105 if (list)
5106 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5107
5108 return skb_rb_next(skb);
5109 }
5110
5111 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5112 struct sk_buff_head *list,
5113 struct rb_root *root)
5114 {
5115 struct sk_buff *next = tcp_skb_next(skb, list);
5116
5117 if (list)
5118 __skb_unlink(skb, list);
5119 else
5120 rb_erase(&skb->rbnode, root);
5121
5122 __kfree_skb(skb);
5123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5124
5125 return next;
5126 }
5127
5128 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5129 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5130 {
5131 struct rb_node **p = &root->rb_node;
5132 struct rb_node *parent = NULL;
5133 struct sk_buff *skb1;
5134
5135 while (*p) {
5136 parent = *p;
5137 skb1 = rb_to_skb(parent);
5138 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5139 p = &parent->rb_left;
5140 else
5141 p = &parent->rb_right;
5142 }
5143 rb_link_node(&skb->rbnode, parent, p);
5144 rb_insert_color(&skb->rbnode, root);
5145 }
5146
5147 /* Collapse contiguous sequence of skbs head..tail with
5148 * sequence numbers start..end.
5149 *
5150 * If tail is NULL, this means until the end of the queue.
5151 *
5152 * Segments with FIN/SYN are not collapsed (only because this
5153 * simplifies code)
5154 */
5155 static void
5156 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5157 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5158 {
5159 struct sk_buff *skb = head, *n;
5160 struct sk_buff_head tmp;
5161 bool end_of_skbs;
5162
5163 /* First, check that queue is collapsible and find
5164 * the point where collapsing can be useful.
5165 */
5166 restart:
5167 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5168 n = tcp_skb_next(skb, list);
5169
5170 /* No new bits? It is possible on ofo queue. */
5171 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5172 skb = tcp_collapse_one(sk, skb, list, root);
5173 if (!skb)
5174 break;
5175 goto restart;
5176 }
5177
5178 /* The first skb to collapse is:
5179 * - not SYN/FIN and
5180 * - bloated or contains data before "start" or
5181 * overlaps to the next one and mptcp allow collapsing.
5182 */
5183 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5184 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5185 before(TCP_SKB_CB(skb)->seq, start))) {
5186 end_of_skbs = false;
5187 break;
5188 }
5189
5190 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5191 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5192 end_of_skbs = false;
5193 break;
5194 }
5195
5196 /* Decided to skip this, advance start seq. */
5197 start = TCP_SKB_CB(skb)->end_seq;
5198 }
5199 if (end_of_skbs ||
5200 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5201 return;
5202
5203 __skb_queue_head_init(&tmp);
5204
5205 while (before(start, end)) {
5206 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5207 struct sk_buff *nskb;
5208
5209 nskb = alloc_skb(copy, GFP_ATOMIC);
5210 if (!nskb)
5211 break;
5212
5213 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5214 #ifdef CONFIG_TLS_DEVICE
5215 nskb->decrypted = skb->decrypted;
5216 #endif
5217 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5218 if (list)
5219 __skb_queue_before(list, skb, nskb);
5220 else
5221 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5222 skb_set_owner_r(nskb, sk);
5223 mptcp_skb_ext_move(nskb, skb);
5224
5225 /* Copy data, releasing collapsed skbs. */
5226 while (copy > 0) {
5227 int offset = start - TCP_SKB_CB(skb)->seq;
5228 int size = TCP_SKB_CB(skb)->end_seq - start;
5229
5230 BUG_ON(offset < 0);
5231 if (size > 0) {
5232 size = min(copy, size);
5233 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5234 BUG();
5235 TCP_SKB_CB(nskb)->end_seq += size;
5236 copy -= size;
5237 start += size;
5238 }
5239 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5240 skb = tcp_collapse_one(sk, skb, list, root);
5241 if (!skb ||
5242 skb == tail ||
5243 !mptcp_skb_can_collapse(nskb, skb) ||
5244 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5245 goto end;
5246 #ifdef CONFIG_TLS_DEVICE
5247 if (skb->decrypted != nskb->decrypted)
5248 goto end;
5249 #endif
5250 }
5251 }
5252 }
5253 end:
5254 skb_queue_walk_safe(&tmp, skb, n)
5255 tcp_rbtree_insert(root, skb);
5256 }
5257
5258 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5259 * and tcp_collapse() them until all the queue is collapsed.
5260 */
5261 static void tcp_collapse_ofo_queue(struct sock *sk)
5262 {
5263 struct tcp_sock *tp = tcp_sk(sk);
5264 u32 range_truesize, sum_tiny = 0;
5265 struct sk_buff *skb, *head;
5266 u32 start, end;
5267
5268 skb = skb_rb_first(&tp->out_of_order_queue);
5269 new_range:
5270 if (!skb) {
5271 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5272 return;
5273 }
5274 start = TCP_SKB_CB(skb)->seq;
5275 end = TCP_SKB_CB(skb)->end_seq;
5276 range_truesize = skb->truesize;
5277
5278 for (head = skb;;) {
5279 skb = skb_rb_next(skb);
5280
5281 /* Range is terminated when we see a gap or when
5282 * we are at the queue end.
5283 */
5284 if (!skb ||
5285 after(TCP_SKB_CB(skb)->seq, end) ||
5286 before(TCP_SKB_CB(skb)->end_seq, start)) {
5287 /* Do not attempt collapsing tiny skbs */
5288 if (range_truesize != head->truesize ||
5289 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5290 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5291 head, skb, start, end);
5292 } else {
5293 sum_tiny += range_truesize;
5294 if (sum_tiny > sk->sk_rcvbuf >> 3)
5295 return;
5296 }
5297 goto new_range;
5298 }
5299
5300 range_truesize += skb->truesize;
5301 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5302 start = TCP_SKB_CB(skb)->seq;
5303 if (after(TCP_SKB_CB(skb)->end_seq, end))
5304 end = TCP_SKB_CB(skb)->end_seq;
5305 }
5306 }
5307
5308 /*
5309 * Clean the out-of-order queue to make room.
5310 * We drop high sequences packets to :
5311 * 1) Let a chance for holes to be filled.
5312 * 2) not add too big latencies if thousands of packets sit there.
5313 * (But if application shrinks SO_RCVBUF, we could still end up
5314 * freeing whole queue here)
5315 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5316 *
5317 * Return true if queue has shrunk.
5318 */
5319 static bool tcp_prune_ofo_queue(struct sock *sk)
5320 {
5321 struct tcp_sock *tp = tcp_sk(sk);
5322 struct rb_node *node, *prev;
5323 int goal;
5324
5325 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5326 return false;
5327
5328 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5329 goal = sk->sk_rcvbuf >> 3;
5330 node = &tp->ooo_last_skb->rbnode;
5331 do {
5332 prev = rb_prev(node);
5333 rb_erase(node, &tp->out_of_order_queue);
5334 goal -= rb_to_skb(node)->truesize;
5335 tcp_drop_reason(sk, rb_to_skb(node),
5336 SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5337 if (!prev || goal <= 0) {
5338 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5339 !tcp_under_memory_pressure(sk))
5340 break;
5341 goal = sk->sk_rcvbuf >> 3;
5342 }
5343 node = prev;
5344 } while (node);
5345 tp->ooo_last_skb = rb_to_skb(prev);
5346
5347 /* Reset SACK state. A conforming SACK implementation will
5348 * do the same at a timeout based retransmit. When a connection
5349 * is in a sad state like this, we care only about integrity
5350 * of the connection not performance.
5351 */
5352 if (tp->rx_opt.sack_ok)
5353 tcp_sack_reset(&tp->rx_opt);
5354 return true;
5355 }
5356
5357 /* Reduce allocated memory if we can, trying to get
5358 * the socket within its memory limits again.
5359 *
5360 * Return less than zero if we should start dropping frames
5361 * until the socket owning process reads some of the data
5362 * to stabilize the situation.
5363 */
5364 static int tcp_prune_queue(struct sock *sk)
5365 {
5366 struct tcp_sock *tp = tcp_sk(sk);
5367
5368 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5369
5370 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5371 tcp_clamp_window(sk);
5372 else if (tcp_under_memory_pressure(sk))
5373 tcp_adjust_rcv_ssthresh(sk);
5374
5375 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5376 return 0;
5377
5378 tcp_collapse_ofo_queue(sk);
5379 if (!skb_queue_empty(&sk->sk_receive_queue))
5380 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5381 skb_peek(&sk->sk_receive_queue),
5382 NULL,
5383 tp->copied_seq, tp->rcv_nxt);
5384
5385 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5386 return 0;
5387
5388 /* Collapsing did not help, destructive actions follow.
5389 * This must not ever occur. */
5390
5391 tcp_prune_ofo_queue(sk);
5392
5393 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5394 return 0;
5395
5396 /* If we are really being abused, tell the caller to silently
5397 * drop receive data on the floor. It will get retransmitted
5398 * and hopefully then we'll have sufficient space.
5399 */
5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5401
5402 /* Massive buffer overcommit. */
5403 tp->pred_flags = 0;
5404 return -1;
5405 }
5406
5407 static bool tcp_should_expand_sndbuf(struct sock *sk)
5408 {
5409 const struct tcp_sock *tp = tcp_sk(sk);
5410
5411 /* If the user specified a specific send buffer setting, do
5412 * not modify it.
5413 */
5414 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5415 return false;
5416
5417 /* If we are under global TCP memory pressure, do not expand. */
5418 if (tcp_under_memory_pressure(sk)) {
5419 int unused_mem = sk_unused_reserved_mem(sk);
5420
5421 /* Adjust sndbuf according to reserved mem. But make sure
5422 * it never goes below SOCK_MIN_SNDBUF.
5423 * See sk_stream_moderate_sndbuf() for more details.
5424 */
5425 if (unused_mem > SOCK_MIN_SNDBUF)
5426 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5427
5428 return false;
5429 }
5430
5431 /* If we are under soft global TCP memory pressure, do not expand. */
5432 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5433 return false;
5434
5435 /* If we filled the congestion window, do not expand. */
5436 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5437 return false;
5438
5439 return true;
5440 }
5441
5442 static void tcp_new_space(struct sock *sk)
5443 {
5444 struct tcp_sock *tp = tcp_sk(sk);
5445
5446 if (tcp_should_expand_sndbuf(sk)) {
5447 tcp_sndbuf_expand(sk);
5448 tp->snd_cwnd_stamp = tcp_jiffies32;
5449 }
5450
5451 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5452 }
5453
5454 /* Caller made space either from:
5455 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5456 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5457 *
5458 * We might be able to generate EPOLLOUT to the application if:
5459 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5460 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5461 * small enough that tcp_stream_memory_free() decides it
5462 * is time to generate EPOLLOUT.
5463 */
5464 void tcp_check_space(struct sock *sk)
5465 {
5466 /* pairs with tcp_poll() */
5467 smp_mb();
5468 if (sk->sk_socket &&
5469 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5470 tcp_new_space(sk);
5471 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5473 }
5474 }
5475
5476 static inline void tcp_data_snd_check(struct sock *sk)
5477 {
5478 tcp_push_pending_frames(sk);
5479 tcp_check_space(sk);
5480 }
5481
5482 /*
5483 * Check if sending an ack is needed.
5484 */
5485 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5486 {
5487 struct tcp_sock *tp = tcp_sk(sk);
5488 unsigned long rtt, delay;
5489
5490 /* More than one full frame received... */
5491 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5492 /* ... and right edge of window advances far enough.
5493 * (tcp_recvmsg() will send ACK otherwise).
5494 * If application uses SO_RCVLOWAT, we want send ack now if
5495 * we have not received enough bytes to satisfy the condition.
5496 */
5497 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5498 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5499 /* We ACK each frame or... */
5500 tcp_in_quickack_mode(sk) ||
5501 /* Protocol state mandates a one-time immediate ACK */
5502 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5503 send_now:
5504 tcp_send_ack(sk);
5505 return;
5506 }
5507
5508 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5509 tcp_send_delayed_ack(sk);
5510 return;
5511 }
5512
5513 if (!tcp_is_sack(tp) ||
5514 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5515 goto send_now;
5516
5517 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5518 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5519 tp->dup_ack_counter = 0;
5520 }
5521 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5522 tp->dup_ack_counter++;
5523 goto send_now;
5524 }
5525 tp->compressed_ack++;
5526 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5527 return;
5528
5529 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5530
5531 rtt = tp->rcv_rtt_est.rtt_us;
5532 if (tp->srtt_us && tp->srtt_us < rtt)
5533 rtt = tp->srtt_us;
5534
5535 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5536 rtt * (NSEC_PER_USEC >> 3)/20);
5537 sock_hold(sk);
5538 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5539 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5540 HRTIMER_MODE_REL_PINNED_SOFT);
5541 }
5542
5543 static inline void tcp_ack_snd_check(struct sock *sk)
5544 {
5545 if (!inet_csk_ack_scheduled(sk)) {
5546 /* We sent a data segment already. */
5547 return;
5548 }
5549 __tcp_ack_snd_check(sk, 1);
5550 }
5551
5552 /*
5553 * This routine is only called when we have urgent data
5554 * signaled. Its the 'slow' part of tcp_urg. It could be
5555 * moved inline now as tcp_urg is only called from one
5556 * place. We handle URGent data wrong. We have to - as
5557 * BSD still doesn't use the correction from RFC961.
5558 * For 1003.1g we should support a new option TCP_STDURG to permit
5559 * either form (or just set the sysctl tcp_stdurg).
5560 */
5561
5562 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5563 {
5564 struct tcp_sock *tp = tcp_sk(sk);
5565 u32 ptr = ntohs(th->urg_ptr);
5566
5567 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5568 ptr--;
5569 ptr += ntohl(th->seq);
5570
5571 /* Ignore urgent data that we've already seen and read. */
5572 if (after(tp->copied_seq, ptr))
5573 return;
5574
5575 /* Do not replay urg ptr.
5576 *
5577 * NOTE: interesting situation not covered by specs.
5578 * Misbehaving sender may send urg ptr, pointing to segment,
5579 * which we already have in ofo queue. We are not able to fetch
5580 * such data and will stay in TCP_URG_NOTYET until will be eaten
5581 * by recvmsg(). Seems, we are not obliged to handle such wicked
5582 * situations. But it is worth to think about possibility of some
5583 * DoSes using some hypothetical application level deadlock.
5584 */
5585 if (before(ptr, tp->rcv_nxt))
5586 return;
5587
5588 /* Do we already have a newer (or duplicate) urgent pointer? */
5589 if (tp->urg_data && !after(ptr, tp->urg_seq))
5590 return;
5591
5592 /* Tell the world about our new urgent pointer. */
5593 sk_send_sigurg(sk);
5594
5595 /* We may be adding urgent data when the last byte read was
5596 * urgent. To do this requires some care. We cannot just ignore
5597 * tp->copied_seq since we would read the last urgent byte again
5598 * as data, nor can we alter copied_seq until this data arrives
5599 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5600 *
5601 * NOTE. Double Dutch. Rendering to plain English: author of comment
5602 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5603 * and expect that both A and B disappear from stream. This is _wrong_.
5604 * Though this happens in BSD with high probability, this is occasional.
5605 * Any application relying on this is buggy. Note also, that fix "works"
5606 * only in this artificial test. Insert some normal data between A and B and we will
5607 * decline of BSD again. Verdict: it is better to remove to trap
5608 * buggy users.
5609 */
5610 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5611 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5612 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5613 tp->copied_seq++;
5614 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5615 __skb_unlink(skb, &sk->sk_receive_queue);
5616 __kfree_skb(skb);
5617 }
5618 }
5619
5620 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5621 WRITE_ONCE(tp->urg_seq, ptr);
5622
5623 /* Disable header prediction. */
5624 tp->pred_flags = 0;
5625 }
5626
5627 /* This is the 'fast' part of urgent handling. */
5628 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5629 {
5630 struct tcp_sock *tp = tcp_sk(sk);
5631
5632 /* Check if we get a new urgent pointer - normally not. */
5633 if (unlikely(th->urg))
5634 tcp_check_urg(sk, th);
5635
5636 /* Do we wait for any urgent data? - normally not... */
5637 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5638 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5639 th->syn;
5640
5641 /* Is the urgent pointer pointing into this packet? */
5642 if (ptr < skb->len) {
5643 u8 tmp;
5644 if (skb_copy_bits(skb, ptr, &tmp, 1))
5645 BUG();
5646 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5647 if (!sock_flag(sk, SOCK_DEAD))
5648 sk->sk_data_ready(sk);
5649 }
5650 }
5651 }
5652
5653 /* Accept RST for rcv_nxt - 1 after a FIN.
5654 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5655 * FIN is sent followed by a RST packet. The RST is sent with the same
5656 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5657 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5658 * ACKs on the closed socket. In addition middleboxes can drop either the
5659 * challenge ACK or a subsequent RST.
5660 */
5661 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5662 {
5663 struct tcp_sock *tp = tcp_sk(sk);
5664
5665 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5666 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5667 TCPF_CLOSING));
5668 }
5669
5670 /* Does PAWS and seqno based validation of an incoming segment, flags will
5671 * play significant role here.
5672 */
5673 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5674 const struct tcphdr *th, int syn_inerr)
5675 {
5676 struct tcp_sock *tp = tcp_sk(sk);
5677 SKB_DR(reason);
5678
5679 /* RFC1323: H1. Apply PAWS check first. */
5680 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5681 tp->rx_opt.saw_tstamp &&
5682 tcp_paws_discard(sk, skb)) {
5683 if (!th->rst) {
5684 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5685 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5686 LINUX_MIB_TCPACKSKIPPEDPAWS,
5687 &tp->last_oow_ack_time))
5688 tcp_send_dupack(sk, skb);
5689 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5690 goto discard;
5691 }
5692 /* Reset is accepted even if it did not pass PAWS. */
5693 }
5694
5695 /* Step 1: check sequence number */
5696 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5697 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5698 * (RST) segments are validated by checking their SEQ-fields."
5699 * And page 69: "If an incoming segment is not acceptable,
5700 * an acknowledgment should be sent in reply (unless the RST
5701 * bit is set, if so drop the segment and return)".
5702 */
5703 if (!th->rst) {
5704 if (th->syn)
5705 goto syn_challenge;
5706 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5707 LINUX_MIB_TCPACKSKIPPEDSEQ,
5708 &tp->last_oow_ack_time))
5709 tcp_send_dupack(sk, skb);
5710 } else if (tcp_reset_check(sk, skb)) {
5711 goto reset;
5712 }
5713 SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5714 goto discard;
5715 }
5716
5717 /* Step 2: check RST bit */
5718 if (th->rst) {
5719 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5720 * FIN and SACK too if available):
5721 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5722 * the right-most SACK block,
5723 * then
5724 * RESET the connection
5725 * else
5726 * Send a challenge ACK
5727 */
5728 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5729 tcp_reset_check(sk, skb))
5730 goto reset;
5731
5732 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5733 struct tcp_sack_block *sp = &tp->selective_acks[0];
5734 int max_sack = sp[0].end_seq;
5735 int this_sack;
5736
5737 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5738 ++this_sack) {
5739 max_sack = after(sp[this_sack].end_seq,
5740 max_sack) ?
5741 sp[this_sack].end_seq : max_sack;
5742 }
5743
5744 if (TCP_SKB_CB(skb)->seq == max_sack)
5745 goto reset;
5746 }
5747
5748 /* Disable TFO if RST is out-of-order
5749 * and no data has been received
5750 * for current active TFO socket
5751 */
5752 if (tp->syn_fastopen && !tp->data_segs_in &&
5753 sk->sk_state == TCP_ESTABLISHED)
5754 tcp_fastopen_active_disable(sk);
5755 tcp_send_challenge_ack(sk);
5756 SKB_DR_SET(reason, TCP_RESET);
5757 goto discard;
5758 }
5759
5760 /* step 3: check security and precedence [ignored] */
5761
5762 /* step 4: Check for a SYN
5763 * RFC 5961 4.2 : Send a challenge ack
5764 */
5765 if (th->syn) {
5766 syn_challenge:
5767 if (syn_inerr)
5768 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5769 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5770 tcp_send_challenge_ack(sk);
5771 SKB_DR_SET(reason, TCP_INVALID_SYN);
5772 goto discard;
5773 }
5774
5775 bpf_skops_parse_hdr(sk, skb);
5776
5777 return true;
5778
5779 discard:
5780 tcp_drop_reason(sk, skb, reason);
5781 return false;
5782
5783 reset:
5784 tcp_reset(sk, skb);
5785 __kfree_skb(skb);
5786 return false;
5787 }
5788
5789 /*
5790 * TCP receive function for the ESTABLISHED state.
5791 *
5792 * It is split into a fast path and a slow path. The fast path is
5793 * disabled when:
5794 * - A zero window was announced from us - zero window probing
5795 * is only handled properly in the slow path.
5796 * - Out of order segments arrived.
5797 * - Urgent data is expected.
5798 * - There is no buffer space left
5799 * - Unexpected TCP flags/window values/header lengths are received
5800 * (detected by checking the TCP header against pred_flags)
5801 * - Data is sent in both directions. Fast path only supports pure senders
5802 * or pure receivers (this means either the sequence number or the ack
5803 * value must stay constant)
5804 * - Unexpected TCP option.
5805 *
5806 * When these conditions are not satisfied it drops into a standard
5807 * receive procedure patterned after RFC793 to handle all cases.
5808 * The first three cases are guaranteed by proper pred_flags setting,
5809 * the rest is checked inline. Fast processing is turned on in
5810 * tcp_data_queue when everything is OK.
5811 */
5812 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5813 {
5814 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5815 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5816 struct tcp_sock *tp = tcp_sk(sk);
5817 unsigned int len = skb->len;
5818
5819 /* TCP congestion window tracking */
5820 trace_tcp_probe(sk, skb);
5821
5822 tcp_mstamp_refresh(tp);
5823 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5824 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5825 /*
5826 * Header prediction.
5827 * The code loosely follows the one in the famous
5828 * "30 instruction TCP receive" Van Jacobson mail.
5829 *
5830 * Van's trick is to deposit buffers into socket queue
5831 * on a device interrupt, to call tcp_recv function
5832 * on the receive process context and checksum and copy
5833 * the buffer to user space. smart...
5834 *
5835 * Our current scheme is not silly either but we take the
5836 * extra cost of the net_bh soft interrupt processing...
5837 * We do checksum and copy also but from device to kernel.
5838 */
5839
5840 tp->rx_opt.saw_tstamp = 0;
5841
5842 /* pred_flags is 0xS?10 << 16 + snd_wnd
5843 * if header_prediction is to be made
5844 * 'S' will always be tp->tcp_header_len >> 2
5845 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5846 * turn it off (when there are holes in the receive
5847 * space for instance)
5848 * PSH flag is ignored.
5849 */
5850
5851 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5852 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5853 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5854 int tcp_header_len = tp->tcp_header_len;
5855
5856 /* Timestamp header prediction: tcp_header_len
5857 * is automatically equal to th->doff*4 due to pred_flags
5858 * match.
5859 */
5860
5861 /* Check timestamp */
5862 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5863 /* No? Slow path! */
5864 if (!tcp_parse_aligned_timestamp(tp, th))
5865 goto slow_path;
5866
5867 /* If PAWS failed, check it more carefully in slow path */
5868 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5869 goto slow_path;
5870
5871 /* DO NOT update ts_recent here, if checksum fails
5872 * and timestamp was corrupted part, it will result
5873 * in a hung connection since we will drop all
5874 * future packets due to the PAWS test.
5875 */
5876 }
5877
5878 if (len <= tcp_header_len) {
5879 /* Bulk data transfer: sender */
5880 if (len == tcp_header_len) {
5881 /* Predicted packet is in window by definition.
5882 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5883 * Hence, check seq<=rcv_wup reduces to:
5884 */
5885 if (tcp_header_len ==
5886 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5887 tp->rcv_nxt == tp->rcv_wup)
5888 tcp_store_ts_recent(tp);
5889
5890 /* We know that such packets are checksummed
5891 * on entry.
5892 */
5893 tcp_ack(sk, skb, 0);
5894 __kfree_skb(skb);
5895 tcp_data_snd_check(sk);
5896 /* When receiving pure ack in fast path, update
5897 * last ts ecr directly instead of calling
5898 * tcp_rcv_rtt_measure_ts()
5899 */
5900 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5901 return;
5902 } else { /* Header too small */
5903 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5904 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5905 goto discard;
5906 }
5907 } else {
5908 int eaten = 0;
5909 bool fragstolen = false;
5910
5911 if (tcp_checksum_complete(skb))
5912 goto csum_error;
5913
5914 if ((int)skb->truesize > sk->sk_forward_alloc)
5915 goto step5;
5916
5917 /* Predicted packet is in window by definition.
5918 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5919 * Hence, check seq<=rcv_wup reduces to:
5920 */
5921 if (tcp_header_len ==
5922 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5923 tp->rcv_nxt == tp->rcv_wup)
5924 tcp_store_ts_recent(tp);
5925
5926 tcp_rcv_rtt_measure_ts(sk, skb);
5927
5928 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5929
5930 /* Bulk data transfer: receiver */
5931 skb_dst_drop(skb);
5932 __skb_pull(skb, tcp_header_len);
5933 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5934
5935 tcp_event_data_recv(sk, skb);
5936
5937 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5938 /* Well, only one small jumplet in fast path... */
5939 tcp_ack(sk, skb, FLAG_DATA);
5940 tcp_data_snd_check(sk);
5941 if (!inet_csk_ack_scheduled(sk))
5942 goto no_ack;
5943 } else {
5944 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5945 }
5946
5947 __tcp_ack_snd_check(sk, 0);
5948 no_ack:
5949 if (eaten)
5950 kfree_skb_partial(skb, fragstolen);
5951 tcp_data_ready(sk);
5952 return;
5953 }
5954 }
5955
5956 slow_path:
5957 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5958 goto csum_error;
5959
5960 if (!th->ack && !th->rst && !th->syn) {
5961 reason = SKB_DROP_REASON_TCP_FLAGS;
5962 goto discard;
5963 }
5964
5965 /*
5966 * Standard slow path.
5967 */
5968
5969 if (!tcp_validate_incoming(sk, skb, th, 1))
5970 return;
5971
5972 step5:
5973 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5974 if ((int)reason < 0) {
5975 reason = -reason;
5976 goto discard;
5977 }
5978 tcp_rcv_rtt_measure_ts(sk, skb);
5979
5980 /* Process urgent data. */
5981 tcp_urg(sk, skb, th);
5982
5983 /* step 7: process the segment text */
5984 tcp_data_queue(sk, skb);
5985
5986 tcp_data_snd_check(sk);
5987 tcp_ack_snd_check(sk);
5988 return;
5989
5990 csum_error:
5991 reason = SKB_DROP_REASON_TCP_CSUM;
5992 trace_tcp_bad_csum(skb);
5993 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5994 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5995
5996 discard:
5997 tcp_drop_reason(sk, skb, reason);
5998 }
5999 EXPORT_SYMBOL(tcp_rcv_established);
6000
6001 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6002 {
6003 struct inet_connection_sock *icsk = inet_csk(sk);
6004 struct tcp_sock *tp = tcp_sk(sk);
6005
6006 tcp_mtup_init(sk);
6007 icsk->icsk_af_ops->rebuild_header(sk);
6008 tcp_init_metrics(sk);
6009
6010 /* Initialize the congestion window to start the transfer.
6011 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6012 * retransmitted. In light of RFC6298 more aggressive 1sec
6013 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6014 * retransmission has occurred.
6015 */
6016 if (tp->total_retrans > 1 && tp->undo_marker)
6017 tcp_snd_cwnd_set(tp, 1);
6018 else
6019 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6020 tp->snd_cwnd_stamp = tcp_jiffies32;
6021
6022 bpf_skops_established(sk, bpf_op, skb);
6023 /* Initialize congestion control unless BPF initialized it already: */
6024 if (!icsk->icsk_ca_initialized)
6025 tcp_init_congestion_control(sk);
6026 tcp_init_buffer_space(sk);
6027 }
6028
6029 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6030 {
6031 struct tcp_sock *tp = tcp_sk(sk);
6032 struct inet_connection_sock *icsk = inet_csk(sk);
6033
6034 tcp_set_state(sk, TCP_ESTABLISHED);
6035 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6036
6037 if (skb) {
6038 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6039 security_inet_conn_established(sk, skb);
6040 sk_mark_napi_id(sk, skb);
6041 }
6042
6043 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6044
6045 /* Prevent spurious tcp_cwnd_restart() on first data
6046 * packet.
6047 */
6048 tp->lsndtime = tcp_jiffies32;
6049
6050 if (sock_flag(sk, SOCK_KEEPOPEN))
6051 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6052
6053 if (!tp->rx_opt.snd_wscale)
6054 __tcp_fast_path_on(tp, tp->snd_wnd);
6055 else
6056 tp->pred_flags = 0;
6057 }
6058
6059 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6060 struct tcp_fastopen_cookie *cookie)
6061 {
6062 struct tcp_sock *tp = tcp_sk(sk);
6063 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6064 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6065 bool syn_drop = false;
6066
6067 if (mss == tp->rx_opt.user_mss) {
6068 struct tcp_options_received opt;
6069
6070 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6071 tcp_clear_options(&opt);
6072 opt.user_mss = opt.mss_clamp = 0;
6073 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6074 mss = opt.mss_clamp;
6075 }
6076
6077 if (!tp->syn_fastopen) {
6078 /* Ignore an unsolicited cookie */
6079 cookie->len = -1;
6080 } else if (tp->total_retrans) {
6081 /* SYN timed out and the SYN-ACK neither has a cookie nor
6082 * acknowledges data. Presumably the remote received only
6083 * the retransmitted (regular) SYNs: either the original
6084 * SYN-data or the corresponding SYN-ACK was dropped.
6085 */
6086 syn_drop = (cookie->len < 0 && data);
6087 } else if (cookie->len < 0 && !tp->syn_data) {
6088 /* We requested a cookie but didn't get it. If we did not use
6089 * the (old) exp opt format then try so next time (try_exp=1).
6090 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6091 */
6092 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6093 }
6094
6095 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6096
6097 if (data) { /* Retransmit unacked data in SYN */
6098 if (tp->total_retrans)
6099 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6100 else
6101 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6102 skb_rbtree_walk_from(data)
6103 tcp_mark_skb_lost(sk, data);
6104 tcp_xmit_retransmit_queue(sk);
6105 NET_INC_STATS(sock_net(sk),
6106 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6107 return true;
6108 }
6109 tp->syn_data_acked = tp->syn_data;
6110 if (tp->syn_data_acked) {
6111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6112 /* SYN-data is counted as two separate packets in tcp_ack() */
6113 if (tp->delivered > 1)
6114 --tp->delivered;
6115 }
6116
6117 tcp_fastopen_add_skb(sk, synack);
6118
6119 return false;
6120 }
6121
6122 static void smc_check_reset_syn(struct tcp_sock *tp)
6123 {
6124 #if IS_ENABLED(CONFIG_SMC)
6125 if (static_branch_unlikely(&tcp_have_smc)) {
6126 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6127 tp->syn_smc = 0;
6128 }
6129 #endif
6130 }
6131
6132 static void tcp_try_undo_spurious_syn(struct sock *sk)
6133 {
6134 struct tcp_sock *tp = tcp_sk(sk);
6135 u32 syn_stamp;
6136
6137 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6138 * spurious if the ACK's timestamp option echo value matches the
6139 * original SYN timestamp.
6140 */
6141 syn_stamp = tp->retrans_stamp;
6142 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6143 syn_stamp == tp->rx_opt.rcv_tsecr)
6144 tp->undo_marker = 0;
6145 }
6146
6147 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6148 const struct tcphdr *th)
6149 {
6150 struct inet_connection_sock *icsk = inet_csk(sk);
6151 struct tcp_sock *tp = tcp_sk(sk);
6152 struct tcp_fastopen_cookie foc = { .len = -1 };
6153 int saved_clamp = tp->rx_opt.mss_clamp;
6154 bool fastopen_fail;
6155 SKB_DR(reason);
6156
6157 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6158 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6159 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6160
6161 if (th->ack) {
6162 /* rfc793:
6163 * "If the state is SYN-SENT then
6164 * first check the ACK bit
6165 * If the ACK bit is set
6166 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6167 * a reset (unless the RST bit is set, if so drop
6168 * the segment and return)"
6169 */
6170 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6171 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6172 /* Previous FIN/ACK or RST/ACK might be ignored. */
6173 if (icsk->icsk_retransmits == 0)
6174 inet_csk_reset_xmit_timer(sk,
6175 ICSK_TIME_RETRANS,
6176 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6177 goto reset_and_undo;
6178 }
6179
6180 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6181 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6182 tcp_time_stamp(tp))) {
6183 NET_INC_STATS(sock_net(sk),
6184 LINUX_MIB_PAWSACTIVEREJECTED);
6185 goto reset_and_undo;
6186 }
6187
6188 /* Now ACK is acceptable.
6189 *
6190 * "If the RST bit is set
6191 * If the ACK was acceptable then signal the user "error:
6192 * connection reset", drop the segment, enter CLOSED state,
6193 * delete TCB, and return."
6194 */
6195
6196 if (th->rst) {
6197 tcp_reset(sk, skb);
6198 consume:
6199 __kfree_skb(skb);
6200 return 0;
6201 }
6202
6203 /* rfc793:
6204 * "fifth, if neither of the SYN or RST bits is set then
6205 * drop the segment and return."
6206 *
6207 * See note below!
6208 * --ANK(990513)
6209 */
6210 if (!th->syn) {
6211 SKB_DR_SET(reason, TCP_FLAGS);
6212 goto discard_and_undo;
6213 }
6214 /* rfc793:
6215 * "If the SYN bit is on ...
6216 * are acceptable then ...
6217 * (our SYN has been ACKed), change the connection
6218 * state to ESTABLISHED..."
6219 */
6220
6221 tcp_ecn_rcv_synack(tp, th);
6222
6223 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6224 tcp_try_undo_spurious_syn(sk);
6225 tcp_ack(sk, skb, FLAG_SLOWPATH);
6226
6227 /* Ok.. it's good. Set up sequence numbers and
6228 * move to established.
6229 */
6230 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6231 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6232
6233 /* RFC1323: The window in SYN & SYN/ACK segments is
6234 * never scaled.
6235 */
6236 tp->snd_wnd = ntohs(th->window);
6237
6238 if (!tp->rx_opt.wscale_ok) {
6239 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6240 tp->window_clamp = min(tp->window_clamp, 65535U);
6241 }
6242
6243 if (tp->rx_opt.saw_tstamp) {
6244 tp->rx_opt.tstamp_ok = 1;
6245 tp->tcp_header_len =
6246 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6247 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6248 tcp_store_ts_recent(tp);
6249 } else {
6250 tp->tcp_header_len = sizeof(struct tcphdr);
6251 }
6252
6253 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6254 tcp_initialize_rcv_mss(sk);
6255
6256 /* Remember, tcp_poll() does not lock socket!
6257 * Change state from SYN-SENT only after copied_seq
6258 * is initialized. */
6259 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6260
6261 smc_check_reset_syn(tp);
6262
6263 smp_mb();
6264
6265 tcp_finish_connect(sk, skb);
6266
6267 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6268 tcp_rcv_fastopen_synack(sk, skb, &foc);
6269
6270 if (!sock_flag(sk, SOCK_DEAD)) {
6271 sk->sk_state_change(sk);
6272 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6273 }
6274 if (fastopen_fail)
6275 return -1;
6276 if (sk->sk_write_pending ||
6277 icsk->icsk_accept_queue.rskq_defer_accept ||
6278 inet_csk_in_pingpong_mode(sk)) {
6279 /* Save one ACK. Data will be ready after
6280 * several ticks, if write_pending is set.
6281 *
6282 * It may be deleted, but with this feature tcpdumps
6283 * look so _wonderfully_ clever, that I was not able
6284 * to stand against the temptation 8) --ANK
6285 */
6286 inet_csk_schedule_ack(sk);
6287 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6288 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6289 TCP_DELACK_MAX, TCP_RTO_MAX);
6290 goto consume;
6291 }
6292 tcp_send_ack(sk);
6293 return -1;
6294 }
6295
6296 /* No ACK in the segment */
6297
6298 if (th->rst) {
6299 /* rfc793:
6300 * "If the RST bit is set
6301 *
6302 * Otherwise (no ACK) drop the segment and return."
6303 */
6304 SKB_DR_SET(reason, TCP_RESET);
6305 goto discard_and_undo;
6306 }
6307
6308 /* PAWS check. */
6309 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6310 tcp_paws_reject(&tp->rx_opt, 0)) {
6311 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6312 goto discard_and_undo;
6313 }
6314 if (th->syn) {
6315 /* We see SYN without ACK. It is attempt of
6316 * simultaneous connect with crossed SYNs.
6317 * Particularly, it can be connect to self.
6318 */
6319 tcp_set_state(sk, TCP_SYN_RECV);
6320
6321 if (tp->rx_opt.saw_tstamp) {
6322 tp->rx_opt.tstamp_ok = 1;
6323 tcp_store_ts_recent(tp);
6324 tp->tcp_header_len =
6325 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6326 } else {
6327 tp->tcp_header_len = sizeof(struct tcphdr);
6328 }
6329
6330 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6331 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6332 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6333
6334 /* RFC1323: The window in SYN & SYN/ACK segments is
6335 * never scaled.
6336 */
6337 tp->snd_wnd = ntohs(th->window);
6338 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6339 tp->max_window = tp->snd_wnd;
6340
6341 tcp_ecn_rcv_syn(tp, th);
6342
6343 tcp_mtup_init(sk);
6344 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6345 tcp_initialize_rcv_mss(sk);
6346
6347 tcp_send_synack(sk);
6348 #if 0
6349 /* Note, we could accept data and URG from this segment.
6350 * There are no obstacles to make this (except that we must
6351 * either change tcp_recvmsg() to prevent it from returning data
6352 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6353 *
6354 * However, if we ignore data in ACKless segments sometimes,
6355 * we have no reasons to accept it sometimes.
6356 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6357 * is not flawless. So, discard packet for sanity.
6358 * Uncomment this return to process the data.
6359 */
6360 return -1;
6361 #else
6362 goto consume;
6363 #endif
6364 }
6365 /* "fifth, if neither of the SYN or RST bits is set then
6366 * drop the segment and return."
6367 */
6368
6369 discard_and_undo:
6370 tcp_clear_options(&tp->rx_opt);
6371 tp->rx_opt.mss_clamp = saved_clamp;
6372 tcp_drop_reason(sk, skb, reason);
6373 return 0;
6374
6375 reset_and_undo:
6376 tcp_clear_options(&tp->rx_opt);
6377 tp->rx_opt.mss_clamp = saved_clamp;
6378 return 1;
6379 }
6380
6381 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6382 {
6383 struct request_sock *req;
6384
6385 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6386 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6387 */
6388 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6389 tcp_try_undo_loss(sk, false);
6390
6391 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6392 tcp_sk(sk)->retrans_stamp = 0;
6393 inet_csk(sk)->icsk_retransmits = 0;
6394
6395 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6396 * we no longer need req so release it.
6397 */
6398 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6399 lockdep_sock_is_held(sk));
6400 reqsk_fastopen_remove(sk, req, false);
6401
6402 /* Re-arm the timer because data may have been sent out.
6403 * This is similar to the regular data transmission case
6404 * when new data has just been ack'ed.
6405 *
6406 * (TFO) - we could try to be more aggressive and
6407 * retransmitting any data sooner based on when they
6408 * are sent out.
6409 */
6410 tcp_rearm_rto(sk);
6411 }
6412
6413 /*
6414 * This function implements the receiving procedure of RFC 793 for
6415 * all states except ESTABLISHED and TIME_WAIT.
6416 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6417 * address independent.
6418 */
6419
6420 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6421 {
6422 struct tcp_sock *tp = tcp_sk(sk);
6423 struct inet_connection_sock *icsk = inet_csk(sk);
6424 const struct tcphdr *th = tcp_hdr(skb);
6425 struct request_sock *req;
6426 int queued = 0;
6427 bool acceptable;
6428 SKB_DR(reason);
6429
6430 switch (sk->sk_state) {
6431 case TCP_CLOSE:
6432 SKB_DR_SET(reason, TCP_CLOSE);
6433 goto discard;
6434
6435 case TCP_LISTEN:
6436 if (th->ack)
6437 return 1;
6438
6439 if (th->rst) {
6440 SKB_DR_SET(reason, TCP_RESET);
6441 goto discard;
6442 }
6443 if (th->syn) {
6444 if (th->fin) {
6445 SKB_DR_SET(reason, TCP_FLAGS);
6446 goto discard;
6447 }
6448 /* It is possible that we process SYN packets from backlog,
6449 * so we need to make sure to disable BH and RCU right there.
6450 */
6451 rcu_read_lock();
6452 local_bh_disable();
6453 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6454 local_bh_enable();
6455 rcu_read_unlock();
6456
6457 if (!acceptable)
6458 return 1;
6459 consume_skb(skb);
6460 return 0;
6461 }
6462 SKB_DR_SET(reason, TCP_FLAGS);
6463 goto discard;
6464
6465 case TCP_SYN_SENT:
6466 tp->rx_opt.saw_tstamp = 0;
6467 tcp_mstamp_refresh(tp);
6468 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6469 if (queued >= 0)
6470 return queued;
6471
6472 /* Do step6 onward by hand. */
6473 tcp_urg(sk, skb, th);
6474 __kfree_skb(skb);
6475 tcp_data_snd_check(sk);
6476 return 0;
6477 }
6478
6479 tcp_mstamp_refresh(tp);
6480 tp->rx_opt.saw_tstamp = 0;
6481 req = rcu_dereference_protected(tp->fastopen_rsk,
6482 lockdep_sock_is_held(sk));
6483 if (req) {
6484 bool req_stolen;
6485
6486 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6487 sk->sk_state != TCP_FIN_WAIT1);
6488
6489 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6490 SKB_DR_SET(reason, TCP_FASTOPEN);
6491 goto discard;
6492 }
6493 }
6494
6495 if (!th->ack && !th->rst && !th->syn) {
6496 SKB_DR_SET(reason, TCP_FLAGS);
6497 goto discard;
6498 }
6499 if (!tcp_validate_incoming(sk, skb, th, 0))
6500 return 0;
6501
6502 /* step 5: check the ACK field */
6503 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6504 FLAG_UPDATE_TS_RECENT |
6505 FLAG_NO_CHALLENGE_ACK) > 0;
6506
6507 if (!acceptable) {
6508 if (sk->sk_state == TCP_SYN_RECV)
6509 return 1; /* send one RST */
6510 tcp_send_challenge_ack(sk);
6511 SKB_DR_SET(reason, TCP_OLD_ACK);
6512 goto discard;
6513 }
6514 switch (sk->sk_state) {
6515 case TCP_SYN_RECV:
6516 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6517 if (!tp->srtt_us)
6518 tcp_synack_rtt_meas(sk, req);
6519
6520 if (req) {
6521 tcp_rcv_synrecv_state_fastopen(sk);
6522 } else {
6523 tcp_try_undo_spurious_syn(sk);
6524 tp->retrans_stamp = 0;
6525 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6526 skb);
6527 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6528 }
6529 smp_mb();
6530 tcp_set_state(sk, TCP_ESTABLISHED);
6531 sk->sk_state_change(sk);
6532
6533 /* Note, that this wakeup is only for marginal crossed SYN case.
6534 * Passively open sockets are not waked up, because
6535 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6536 */
6537 if (sk->sk_socket)
6538 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6539
6540 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6541 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6542 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6543
6544 if (tp->rx_opt.tstamp_ok)
6545 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6546
6547 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6548 tcp_update_pacing_rate(sk);
6549
6550 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6551 tp->lsndtime = tcp_jiffies32;
6552
6553 tcp_initialize_rcv_mss(sk);
6554 tcp_fast_path_on(tp);
6555 break;
6556
6557 case TCP_FIN_WAIT1: {
6558 int tmo;
6559
6560 if (req)
6561 tcp_rcv_synrecv_state_fastopen(sk);
6562
6563 if (tp->snd_una != tp->write_seq)
6564 break;
6565
6566 tcp_set_state(sk, TCP_FIN_WAIT2);
6567 sk->sk_shutdown |= SEND_SHUTDOWN;
6568
6569 sk_dst_confirm(sk);
6570
6571 if (!sock_flag(sk, SOCK_DEAD)) {
6572 /* Wake up lingering close() */
6573 sk->sk_state_change(sk);
6574 break;
6575 }
6576
6577 if (tp->linger2 < 0) {
6578 tcp_done(sk);
6579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6580 return 1;
6581 }
6582 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6583 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6584 /* Receive out of order FIN after close() */
6585 if (tp->syn_fastopen && th->fin)
6586 tcp_fastopen_active_disable(sk);
6587 tcp_done(sk);
6588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6589 return 1;
6590 }
6591
6592 tmo = tcp_fin_time(sk);
6593 if (tmo > TCP_TIMEWAIT_LEN) {
6594 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6595 } else if (th->fin || sock_owned_by_user(sk)) {
6596 /* Bad case. We could lose such FIN otherwise.
6597 * It is not a big problem, but it looks confusing
6598 * and not so rare event. We still can lose it now,
6599 * if it spins in bh_lock_sock(), but it is really
6600 * marginal case.
6601 */
6602 inet_csk_reset_keepalive_timer(sk, tmo);
6603 } else {
6604 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6605 goto consume;
6606 }
6607 break;
6608 }
6609
6610 case TCP_CLOSING:
6611 if (tp->snd_una == tp->write_seq) {
6612 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6613 goto consume;
6614 }
6615 break;
6616
6617 case TCP_LAST_ACK:
6618 if (tp->snd_una == tp->write_seq) {
6619 tcp_update_metrics(sk);
6620 tcp_done(sk);
6621 goto consume;
6622 }
6623 break;
6624 }
6625
6626 /* step 6: check the URG bit */
6627 tcp_urg(sk, skb, th);
6628
6629 /* step 7: process the segment text */
6630 switch (sk->sk_state) {
6631 case TCP_CLOSE_WAIT:
6632 case TCP_CLOSING:
6633 case TCP_LAST_ACK:
6634 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6635 /* If a subflow has been reset, the packet should not
6636 * continue to be processed, drop the packet.
6637 */
6638 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6639 goto discard;
6640 break;
6641 }
6642 fallthrough;
6643 case TCP_FIN_WAIT1:
6644 case TCP_FIN_WAIT2:
6645 /* RFC 793 says to queue data in these states,
6646 * RFC 1122 says we MUST send a reset.
6647 * BSD 4.4 also does reset.
6648 */
6649 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6650 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6651 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6652 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6653 tcp_reset(sk, skb);
6654 return 1;
6655 }
6656 }
6657 fallthrough;
6658 case TCP_ESTABLISHED:
6659 tcp_data_queue(sk, skb);
6660 queued = 1;
6661 break;
6662 }
6663
6664 /* tcp_data could move socket to TIME-WAIT */
6665 if (sk->sk_state != TCP_CLOSE) {
6666 tcp_data_snd_check(sk);
6667 tcp_ack_snd_check(sk);
6668 }
6669
6670 if (!queued) {
6671 discard:
6672 tcp_drop_reason(sk, skb, reason);
6673 }
6674 return 0;
6675
6676 consume:
6677 __kfree_skb(skb);
6678 return 0;
6679 }
6680 EXPORT_SYMBOL(tcp_rcv_state_process);
6681
6682 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6683 {
6684 struct inet_request_sock *ireq = inet_rsk(req);
6685
6686 if (family == AF_INET)
6687 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6688 &ireq->ir_rmt_addr, port);
6689 #if IS_ENABLED(CONFIG_IPV6)
6690 else if (family == AF_INET6)
6691 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6692 &ireq->ir_v6_rmt_addr, port);
6693 #endif
6694 }
6695
6696 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6697 *
6698 * If we receive a SYN packet with these bits set, it means a
6699 * network is playing bad games with TOS bits. In order to
6700 * avoid possible false congestion notifications, we disable
6701 * TCP ECN negotiation.
6702 *
6703 * Exception: tcp_ca wants ECN. This is required for DCTCP
6704 * congestion control: Linux DCTCP asserts ECT on all packets,
6705 * including SYN, which is most optimal solution; however,
6706 * others, such as FreeBSD do not.
6707 *
6708 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6709 * set, indicating the use of a future TCP extension (such as AccECN). See
6710 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6711 * extensions.
6712 */
6713 static void tcp_ecn_create_request(struct request_sock *req,
6714 const struct sk_buff *skb,
6715 const struct sock *listen_sk,
6716 const struct dst_entry *dst)
6717 {
6718 const struct tcphdr *th = tcp_hdr(skb);
6719 const struct net *net = sock_net(listen_sk);
6720 bool th_ecn = th->ece && th->cwr;
6721 bool ect, ecn_ok;
6722 u32 ecn_ok_dst;
6723
6724 if (!th_ecn)
6725 return;
6726
6727 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6728 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6729 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6730
6731 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6732 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6733 tcp_bpf_ca_needs_ecn((struct sock *)req))
6734 inet_rsk(req)->ecn_ok = 1;
6735 }
6736
6737 static void tcp_openreq_init(struct request_sock *req,
6738 const struct tcp_options_received *rx_opt,
6739 struct sk_buff *skb, const struct sock *sk)
6740 {
6741 struct inet_request_sock *ireq = inet_rsk(req);
6742
6743 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6744 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6745 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6746 tcp_rsk(req)->snt_synack = 0;
6747 tcp_rsk(req)->last_oow_ack_time = 0;
6748 req->mss = rx_opt->mss_clamp;
6749 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6750 ireq->tstamp_ok = rx_opt->tstamp_ok;
6751 ireq->sack_ok = rx_opt->sack_ok;
6752 ireq->snd_wscale = rx_opt->snd_wscale;
6753 ireq->wscale_ok = rx_opt->wscale_ok;
6754 ireq->acked = 0;
6755 ireq->ecn_ok = 0;
6756 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6757 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6758 ireq->ir_mark = inet_request_mark(sk, skb);
6759 #if IS_ENABLED(CONFIG_SMC)
6760 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6761 tcp_sk(sk)->smc_hs_congested(sk));
6762 #endif
6763 }
6764
6765 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6766 struct sock *sk_listener,
6767 bool attach_listener)
6768 {
6769 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6770 attach_listener);
6771
6772 if (req) {
6773 struct inet_request_sock *ireq = inet_rsk(req);
6774
6775 ireq->ireq_opt = NULL;
6776 #if IS_ENABLED(CONFIG_IPV6)
6777 ireq->pktopts = NULL;
6778 #endif
6779 atomic64_set(&ireq->ir_cookie, 0);
6780 ireq->ireq_state = TCP_NEW_SYN_RECV;
6781 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6782 ireq->ireq_family = sk_listener->sk_family;
6783 req->timeout = TCP_TIMEOUT_INIT;
6784 }
6785
6786 return req;
6787 }
6788 EXPORT_SYMBOL(inet_reqsk_alloc);
6789
6790 /*
6791 * Return true if a syncookie should be sent
6792 */
6793 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6794 {
6795 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6796 const char *msg = "Dropping request";
6797 bool want_cookie = false;
6798 struct net *net = sock_net(sk);
6799
6800 #ifdef CONFIG_SYN_COOKIES
6801 if (net->ipv4.sysctl_tcp_syncookies) {
6802 msg = "Sending cookies";
6803 want_cookie = true;
6804 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6805 } else
6806 #endif
6807 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6808
6809 if (!queue->synflood_warned &&
6810 net->ipv4.sysctl_tcp_syncookies != 2 &&
6811 xchg(&queue->synflood_warned, 1) == 0)
6812 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6813 proto, sk->sk_num, msg);
6814
6815 return want_cookie;
6816 }
6817
6818 static void tcp_reqsk_record_syn(const struct sock *sk,
6819 struct request_sock *req,
6820 const struct sk_buff *skb)
6821 {
6822 if (tcp_sk(sk)->save_syn) {
6823 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6824 struct saved_syn *saved_syn;
6825 u32 mac_hdrlen;
6826 void *base;
6827
6828 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6829 base = skb_mac_header(skb);
6830 mac_hdrlen = skb_mac_header_len(skb);
6831 len += mac_hdrlen;
6832 } else {
6833 base = skb_network_header(skb);
6834 mac_hdrlen = 0;
6835 }
6836
6837 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6838 GFP_ATOMIC);
6839 if (saved_syn) {
6840 saved_syn->mac_hdrlen = mac_hdrlen;
6841 saved_syn->network_hdrlen = skb_network_header_len(skb);
6842 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6843 memcpy(saved_syn->data, base, len);
6844 req->saved_syn = saved_syn;
6845 }
6846 }
6847 }
6848
6849 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6850 * used for SYN cookie generation.
6851 */
6852 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6853 const struct tcp_request_sock_ops *af_ops,
6854 struct sock *sk, struct tcphdr *th)
6855 {
6856 struct tcp_sock *tp = tcp_sk(sk);
6857 u16 mss;
6858
6859 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6860 !inet_csk_reqsk_queue_is_full(sk))
6861 return 0;
6862
6863 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6864 return 0;
6865
6866 if (sk_acceptq_is_full(sk)) {
6867 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6868 return 0;
6869 }
6870
6871 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6872 if (!mss)
6873 mss = af_ops->mss_clamp;
6874
6875 return mss;
6876 }
6877 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6878
6879 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6880 const struct tcp_request_sock_ops *af_ops,
6881 struct sock *sk, struct sk_buff *skb)
6882 {
6883 struct tcp_fastopen_cookie foc = { .len = -1 };
6884 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6885 struct tcp_options_received tmp_opt;
6886 struct tcp_sock *tp = tcp_sk(sk);
6887 struct net *net = sock_net(sk);
6888 struct sock *fastopen_sk = NULL;
6889 struct request_sock *req;
6890 bool want_cookie = false;
6891 struct dst_entry *dst;
6892 struct flowi fl;
6893
6894 /* TW buckets are converted to open requests without
6895 * limitations, they conserve resources and peer is
6896 * evidently real one.
6897 */
6898 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6899 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6900 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6901 if (!want_cookie)
6902 goto drop;
6903 }
6904
6905 if (sk_acceptq_is_full(sk)) {
6906 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6907 goto drop;
6908 }
6909
6910 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6911 if (!req)
6912 goto drop;
6913
6914 req->syncookie = want_cookie;
6915 tcp_rsk(req)->af_specific = af_ops;
6916 tcp_rsk(req)->ts_off = 0;
6917 #if IS_ENABLED(CONFIG_MPTCP)
6918 tcp_rsk(req)->is_mptcp = 0;
6919 #endif
6920
6921 tcp_clear_options(&tmp_opt);
6922 tmp_opt.mss_clamp = af_ops->mss_clamp;
6923 tmp_opt.user_mss = tp->rx_opt.user_mss;
6924 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6925 want_cookie ? NULL : &foc);
6926
6927 if (want_cookie && !tmp_opt.saw_tstamp)
6928 tcp_clear_options(&tmp_opt);
6929
6930 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6931 tmp_opt.smc_ok = 0;
6932
6933 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6934 tcp_openreq_init(req, &tmp_opt, skb, sk);
6935 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6936
6937 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6938 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6939
6940 dst = af_ops->route_req(sk, skb, &fl, req);
6941 if (!dst)
6942 goto drop_and_free;
6943
6944 if (tmp_opt.tstamp_ok)
6945 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6946
6947 if (!want_cookie && !isn) {
6948 /* Kill the following clause, if you dislike this way. */
6949 if (!net->ipv4.sysctl_tcp_syncookies &&
6950 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6951 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6952 !tcp_peer_is_proven(req, dst)) {
6953 /* Without syncookies last quarter of
6954 * backlog is filled with destinations,
6955 * proven to be alive.
6956 * It means that we continue to communicate
6957 * to destinations, already remembered
6958 * to the moment of synflood.
6959 */
6960 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6961 rsk_ops->family);
6962 goto drop_and_release;
6963 }
6964
6965 isn = af_ops->init_seq(skb);
6966 }
6967
6968 tcp_ecn_create_request(req, skb, sk, dst);
6969
6970 if (want_cookie) {
6971 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6972 if (!tmp_opt.tstamp_ok)
6973 inet_rsk(req)->ecn_ok = 0;
6974 }
6975
6976 tcp_rsk(req)->snt_isn = isn;
6977 tcp_rsk(req)->txhash = net_tx_rndhash();
6978 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6979 tcp_openreq_init_rwin(req, sk, dst);
6980 sk_rx_queue_set(req_to_sk(req), skb);
6981 if (!want_cookie) {
6982 tcp_reqsk_record_syn(sk, req, skb);
6983 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6984 }
6985 if (fastopen_sk) {
6986 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6987 &foc, TCP_SYNACK_FASTOPEN, skb);
6988 /* Add the child socket directly into the accept queue */
6989 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6990 reqsk_fastopen_remove(fastopen_sk, req, false);
6991 bh_unlock_sock(fastopen_sk);
6992 sock_put(fastopen_sk);
6993 goto drop_and_free;
6994 }
6995 sk->sk_data_ready(sk);
6996 bh_unlock_sock(fastopen_sk);
6997 sock_put(fastopen_sk);
6998 } else {
6999 tcp_rsk(req)->tfo_listener = false;
7000 if (!want_cookie) {
7001 req->timeout = tcp_timeout_init((struct sock *)req);
7002 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7003 }
7004 af_ops->send_synack(sk, dst, &fl, req, &foc,
7005 !want_cookie ? TCP_SYNACK_NORMAL :
7006 TCP_SYNACK_COOKIE,
7007 skb);
7008 if (want_cookie) {
7009 reqsk_free(req);
7010 return 0;
7011 }
7012 }
7013 reqsk_put(req);
7014 return 0;
7015
7016 drop_and_release:
7017 dst_release(dst);
7018 drop_and_free:
7019 __reqsk_free(req);
7020 drop:
7021 tcp_listendrop(sk);
7022 return 0;
7023 }
7024 EXPORT_SYMBOL(tcp_conn_request);