]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
net: Abstract away all dst_entry metrics accesses.
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
133
134 icsk->icsk_ack.last_seg_size = 0;
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
166 }
167 }
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 return 1;
249 return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 }
267 }
268
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270 *
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
280 *
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
288 *
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
292 */
293
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 /* Optimize this! */
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306 truesize >>= 1;
307 window >>= 1;
308 }
309 return 0;
310 }
311
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314 struct tcp_sock *tp = tcp_sk(sk);
315
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
321
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
324 */
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
326 incr = 2 * tp->advmss;
327 else
328 incr = __tcp_grow_window(sk, skb);
329
330 if (incr) {
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
333 inet_csk(sk)->icsk_ack.quick |= 1;
334 }
335 }
336 }
337
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345 /* Try to select rcvbuf so that 4 mss-sized segments
346 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 */
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354
355 /* 4. Try to fixup all. It is made immediately after connection enters
356 * established state.
357 */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
362
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
367
368 tp->rcvq_space.space = tp->rcv_wnd;
369
370 maxwin = tcp_full_space(sk);
371
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
374
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
379 }
380
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395 struct inet_connection_sock *icsk = inet_csk(sk);
396
397 icsk->icsk_ack.quick = 0;
398
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
405 }
406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409
410 /* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416 */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
422 hint = min(hint, tp->rcv_wnd / 2);
423 hint = min(hint, TCP_MSS_DEFAULT);
424 hint = max(hint, TCP_MIN_MSS);
425
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429
430 /* Receiver "autotuning" code.
431 *
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
435 *
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date. A new paper
439 * is pending.
440 */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
445
446 if (m == 0)
447 m = 1;
448
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
454 *
455 * Also, since we are only going for a minimum in the
456 * non-timestamp case, we do not smooth things out
457 * else with timestamps disabled convergence takes too
458 * long.
459 */
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
466 /* No previous measure. */
467 new_sample = m << 3;
468 }
469
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
472 }
473
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481
482 new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
489 {
490 struct tcp_sock *tp = tcp_sk(sk);
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496
497 /*
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
500 */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
506
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
509
510 time = tcp_time_stamp - tp->rcvq_space.time;
511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 return;
513
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516 space = max(tp->rcvq_space.space, space);
517
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
520
521 tp->rcvq_space.space = space;
522
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 int new_clamp = space;
526
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
530 */
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
542
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
545 }
546 }
547 }
548
549 new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
552 }
553
554 /* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
563 */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 u32 now;
569
570 inet_csk_schedule_ack(sk);
571
572 tcp_measure_rcv_mss(sk, skb);
573
574 tcp_rcv_rtt_measure(tp);
575
576 now = tcp_time_stamp;
577
578 if (!icsk->icsk_ack.ato) {
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
581 */
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
584 } else {
585 int m = now - icsk->icsk_ack.lrcvtime;
586
587 if (m <= TCP_ATO_MIN / 2) {
588 /* The fastest case is the first. */
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
595 /* Too long gap. Apparently sender failed to
596 * restart window, so that we send ACKs quickly.
597 */
598 tcp_incr_quickack(sk);
599 sk_mem_reclaim(sk);
600 }
601 }
602 icsk->icsk_ack.lrcvtime = now;
603
604 TCP_ECN_check_ce(tp, skb);
605
606 if (skb->len >= 128)
607 tcp_grow_window(sk, skb);
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 struct tcp_sock *tp = tcp_sk(sk);
622 long m = mrtt; /* RTT */
623
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
640 if (m == 0)
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 tp->rtt_seq = tp->snd_nxt;
671 tp->mdev_max = tcp_rto_min(sk);
672 }
673 } else {
674 /* no previous measure. */
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 tp->rtt_seq = tp->snd_nxt;
679 }
680 }
681
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 const struct tcp_sock *tp = tcp_sk(sk);
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
697 */
698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
704 */
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
709 tcp_bound_rto(sk);
710 }
711
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
726 if (dst && (dst->flags & DST_HOST)) {
727 const struct inet_connection_sock *icsk = inet_csk(sk);
728 int m;
729 unsigned long rtt;
730
731 if (icsk->icsk_backoff || !tp->srtt) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
737 dst_metric_set(dst, RTAX_RTT, 0);
738 return;
739 }
740
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 else
752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 unsigned long var;
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
768 else
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 }
773
774 if (tcp_in_initial_slowstart(tp)) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst_metric_set(dst, RTAX_SSTHRESH,
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst_metric_set(dst, RTAX_CWND,
791 (dst_metric(dst, RTAX_CWND) +
792 tp->snd_cwnd) >> 1);
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
796 */
797 if (!dst_metric_locked(dst, RTAX_CWND))
798 dst_metric_set(dst, RTAX_CWND,
799 (dst_metric(dst, RTAX_CWND) +
800 tp->snd_ssthresh) >> 1);
801 if (dst_metric(dst, RTAX_SSTHRESH) &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811 }
812 }
813 }
814
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
819 if (!cwnd)
820 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827 struct tcp_sock *tp = tcp_sk(sk);
828 const struct inet_connection_sock *icsk = inet_csk(sk);
829
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 tp->undo_marker = 0;
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
842
843 tcp_set_ca_state(sk, TCP_CA_CWR);
844 }
845 }
846
847 /*
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
850 */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
856 tp->rx_opt.sack_ok &= ~2;
857 }
858
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 tp->rx_opt.sack_ok |= 4;
863 }
864
865 /* Initialize metrics on socket. */
866
867 static void tcp_init_metrics(struct sock *sk)
868 {
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
871
872 if (dst == NULL)
873 goto reset;
874
875 dst_confirm(dst);
876
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 }
884 if (dst_metric(dst, RTAX_REORDERING) &&
885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 tcp_disable_fack(tp);
887 tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 }
889
890 if (dst_metric(dst, RTAX_RTT) == 0)
891 goto reset;
892
893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 goto reset;
895
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
900 *
901 * A bit of theory. RTT is time passed after "normal" sized packet
902 * is sent until it is ACKed. In normal circumstances sending small
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
909 */
910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 tp->rtt_seq = tp->snd_nxt;
913 }
914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917 }
918 tcp_set_rto(sk);
919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
920 goto reset;
921
922 cwnd:
923 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
924 tp->snd_cwnd_stamp = tcp_time_stamp;
925 return;
926
927 reset:
928 /* Play conservative. If timestamps are not
929 * supported, TCP will fail to recalculate correct
930 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 */
932 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933 tp->srtt = 0;
934 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
935 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
936 }
937 goto cwnd;
938 }
939
940 static void tcp_update_reordering(struct sock *sk, const int metric,
941 const int ts)
942 {
943 struct tcp_sock *tp = tcp_sk(sk);
944 if (metric > tp->reordering) {
945 int mib_idx;
946
947 tp->reordering = min(TCP_MAX_REORDERING, metric);
948
949 /* This exciting event is worth to be remembered. 8) */
950 if (ts)
951 mib_idx = LINUX_MIB_TCPTSREORDER;
952 else if (tcp_is_reno(tp))
953 mib_idx = LINUX_MIB_TCPRENOREORDER;
954 else if (tcp_is_fack(tp))
955 mib_idx = LINUX_MIB_TCPFACKREORDER;
956 else
957 mib_idx = LINUX_MIB_TCPSACKREORDER;
958
959 NET_INC_STATS_BH(sock_net(sk), mib_idx);
960 #if FASTRETRANS_DEBUG > 1
961 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
962 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
963 tp->reordering,
964 tp->fackets_out,
965 tp->sacked_out,
966 tp->undo_marker ? tp->undo_retrans : 0);
967 #endif
968 tcp_disable_fack(tp);
969 }
970 }
971
972 /* This must be called before lost_out is incremented */
973 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974 {
975 if ((tp->retransmit_skb_hint == NULL) ||
976 before(TCP_SKB_CB(skb)->seq,
977 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
978 tp->retransmit_skb_hint = skb;
979
980 if (!tp->lost_out ||
981 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
982 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
983 }
984
985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986 {
987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 tcp_verify_retransmit_hint(tp, skb);
989
990 tp->lost_out += tcp_skb_pcount(skb);
991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
992 }
993 }
994
995 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
996 struct sk_buff *skb)
997 {
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1001 tp->lost_out += tcp_skb_pcount(skb);
1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1003 }
1004 }
1005
1006 /* This procedure tags the retransmission queue when SACKs arrive.
1007 *
1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009 * Packets in queue with these bits set are counted in variables
1010 * sacked_out, retrans_out and lost_out, correspondingly.
1011 *
1012 * Valid combinations are:
1013 * Tag InFlight Description
1014 * 0 1 - orig segment is in flight.
1015 * S 0 - nothing flies, orig reached receiver.
1016 * L 0 - nothing flies, orig lost by net.
1017 * R 2 - both orig and retransmit are in flight.
1018 * L|R 1 - orig is lost, retransmit is in flight.
1019 * S|R 1 - orig reached receiver, retrans is still in flight.
1020 * (L|S|R is logically valid, it could occur when L|R is sacked,
1021 * but it is equivalent to plain S and code short-curcuits it to S.
1022 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 *
1024 * These 6 states form finite state machine, controlled by the following events:
1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027 * 3. Loss detection event of one of three flavors:
1028 * A. Scoreboard estimator decided the packet is lost.
1029 * A'. Reno "three dupacks" marks head of queue lost.
1030 * A''. Its FACK modfication, head until snd.fack is lost.
1031 * B. SACK arrives sacking data transmitted after never retransmitted
1032 * hole was sent out.
1033 * C. SACK arrives sacking SND.NXT at the moment, when the
1034 * segment was retransmitted.
1035 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 *
1037 * It is pleasant to note, that state diagram turns out to be commutative,
1038 * so that we are allowed not to be bothered by order of our actions,
1039 * when multiple events arrive simultaneously. (see the function below).
1040 *
1041 * Reordering detection.
1042 * --------------------
1043 * Reordering metric is maximal distance, which a packet can be displaced
1044 * in packet stream. With SACKs we can estimate it:
1045 *
1046 * 1. SACK fills old hole and the corresponding segment was not
1047 * ever retransmitted -> reordering. Alas, we cannot use it
1048 * when segment was retransmitted.
1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050 * for retransmitted and already SACKed segment -> reordering..
1051 * Both of these heuristics are not used in Loss state, when we cannot
1052 * account for retransmits accurately.
1053 *
1054 * SACK block validation.
1055 * ----------------------
1056 *
1057 * SACK block range validation checks that the received SACK block fits to
1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059 * Note that SND.UNA is not included to the range though being valid because
1060 * it means that the receiver is rather inconsistent with itself reporting
1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062 * perfectly valid, however, in light of RFC2018 which explicitly states
1063 * that "SACK block MUST reflect the newest segment. Even if the newest
1064 * segment is going to be discarded ...", not that it looks very clever
1065 * in case of head skb. Due to potentional receiver driven attacks, we
1066 * choose to avoid immediate execution of a walk in write queue due to
1067 * reneging and defer head skb's loss recovery to standard loss recovery
1068 * procedure that will eventually trigger (nothing forbids us doing this).
1069 *
1070 * Implements also blockage to start_seq wrap-around. Problem lies in the
1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072 * there's no guarantee that it will be before snd_nxt (n). The problem
1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1074 * wrap (s_w):
1075 *
1076 * <- outs wnd -> <- wrapzone ->
1077 * u e n u_w e_w s n_w
1078 * | | | | | | |
1079 * |<------------+------+----- TCP seqno space --------------+---------->|
1080 * ...-- <2^31 ->| |<--------...
1081 * ...---- >2^31 ------>| |<--------...
1082 *
1083 * Current code wouldn't be vulnerable but it's better still to discard such
1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 *
1089 * With D-SACK the lower bound is extended to cover sequence space below
1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1091 * again, D-SACK block must not to go across snd_una (for the same reason as
1092 * for the normal SACK blocks, explained above). But there all simplicity
1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094 * fully below undo_marker they do not affect behavior in anyway and can
1095 * therefore be safely ignored. In rare cases (which are more or less
1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097 * fragmentation and packet reordering past skb's retransmission. To consider
1098 * them correctly, the acceptable range must be extended even more though
1099 * the exact amount is rather hard to quantify. However, tp->max_window can
1100 * be used as an exaggerated estimate.
1101 */
1102 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1103 u32 start_seq, u32 end_seq)
1104 {
1105 /* Too far in future, or reversed (interpretation is ambiguous) */
1106 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1107 return 0;
1108
1109 /* Nasty start_seq wrap-around check (see comments above) */
1110 if (!before(start_seq, tp->snd_nxt))
1111 return 0;
1112
1113 /* In outstanding window? ...This is valid exit for D-SACKs too.
1114 * start_seq == snd_una is non-sensical (see comments above)
1115 */
1116 if (after(start_seq, tp->snd_una))
1117 return 1;
1118
1119 if (!is_dsack || !tp->undo_marker)
1120 return 0;
1121
1122 /* ...Then it's D-SACK, and must reside below snd_una completely */
1123 if (!after(end_seq, tp->snd_una))
1124 return 0;
1125
1126 if (!before(start_seq, tp->undo_marker))
1127 return 1;
1128
1129 /* Too old */
1130 if (!after(end_seq, tp->undo_marker))
1131 return 0;
1132
1133 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 * start_seq < undo_marker and end_seq >= undo_marker.
1135 */
1136 return !before(start_seq, end_seq - tp->max_window);
1137 }
1138
1139 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140 * Event "C". Later note: FACK people cheated me again 8), we have to account
1141 * for reordering! Ugly, but should help.
1142 *
1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144 * less than what is now known to be received by the other end (derived from
1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146 * retransmitted skbs to avoid some costly processing per ACKs.
1147 */
1148 static void tcp_mark_lost_retrans(struct sock *sk)
1149 {
1150 const struct inet_connection_sock *icsk = inet_csk(sk);
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *skb;
1153 int cnt = 0;
1154 u32 new_low_seq = tp->snd_nxt;
1155 u32 received_upto = tcp_highest_sack_seq(tp);
1156
1157 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1158 !after(received_upto, tp->lost_retrans_low) ||
1159 icsk->icsk_ca_state != TCP_CA_Recovery)
1160 return;
1161
1162 tcp_for_write_queue(skb, sk) {
1163 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164
1165 if (skb == tcp_send_head(sk))
1166 break;
1167 if (cnt == tp->retrans_out)
1168 break;
1169 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1170 continue;
1171
1172 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1173 continue;
1174
1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 * constraint here (see above) but figuring out that at
1177 * least tp->reordering SACK blocks reside between ack_seq
1178 * and received_upto is not easy task to do cheaply with
1179 * the available datastructures.
1180 *
1181 * Whether FACK should check here for tp->reordering segs
1182 * in-between one could argue for either way (it would be
1183 * rather simple to implement as we could count fack_count
1184 * during the walk and do tp->fackets_out - fack_count).
1185 */
1186 if (after(received_upto, ack_seq)) {
1187 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1188 tp->retrans_out -= tcp_skb_pcount(skb);
1189
1190 tcp_skb_mark_lost_uncond_verify(tp, skb);
1191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1192 } else {
1193 if (before(ack_seq, new_low_seq))
1194 new_low_seq = ack_seq;
1195 cnt += tcp_skb_pcount(skb);
1196 }
1197 }
1198
1199 if (tp->retrans_out)
1200 tp->lost_retrans_low = new_low_seq;
1201 }
1202
1203 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1204 struct tcp_sack_block_wire *sp, int num_sacks,
1205 u32 prior_snd_una)
1206 {
1207 struct tcp_sock *tp = tcp_sk(sk);
1208 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1209 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1210 int dup_sack = 0;
1211
1212 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1213 dup_sack = 1;
1214 tcp_dsack_seen(tp);
1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1216 } else if (num_sacks > 1) {
1217 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1218 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1219
1220 if (!after(end_seq_0, end_seq_1) &&
1221 !before(start_seq_0, start_seq_1)) {
1222 dup_sack = 1;
1223 tcp_dsack_seen(tp);
1224 NET_INC_STATS_BH(sock_net(sk),
1225 LINUX_MIB_TCPDSACKOFORECV);
1226 }
1227 }
1228
1229 /* D-SACK for already forgotten data... Do dumb counting. */
1230 if (dup_sack &&
1231 !after(end_seq_0, prior_snd_una) &&
1232 after(end_seq_0, tp->undo_marker))
1233 tp->undo_retrans--;
1234
1235 return dup_sack;
1236 }
1237
1238 struct tcp_sacktag_state {
1239 int reord;
1240 int fack_count;
1241 int flag;
1242 };
1243
1244 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245 * the incoming SACK may not exactly match but we can find smaller MSS
1246 * aligned portion of it that matches. Therefore we might need to fragment
1247 * which may fail and creates some hassle (caller must handle error case
1248 * returns).
1249 *
1250 * FIXME: this could be merged to shift decision code
1251 */
1252 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1253 u32 start_seq, u32 end_seq)
1254 {
1255 int in_sack, err;
1256 unsigned int pkt_len;
1257 unsigned int mss;
1258
1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1260 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261
1262 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1263 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1264 mss = tcp_skb_mss(skb);
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266
1267 if (!in_sack) {
1268 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1269 if (pkt_len < mss)
1270 pkt_len = mss;
1271 } else {
1272 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1273 if (pkt_len < mss)
1274 return -EINVAL;
1275 }
1276
1277 /* Round if necessary so that SACKs cover only full MSSes
1278 * and/or the remaining small portion (if present)
1279 */
1280 if (pkt_len > mss) {
1281 unsigned int new_len = (pkt_len / mss) * mss;
1282 if (!in_sack && new_len < pkt_len) {
1283 new_len += mss;
1284 if (new_len > skb->len)
1285 return 0;
1286 }
1287 pkt_len = new_len;
1288 }
1289 err = tcp_fragment(sk, skb, pkt_len, mss);
1290 if (err < 0)
1291 return err;
1292 }
1293
1294 return in_sack;
1295 }
1296
1297 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1298 struct tcp_sacktag_state *state,
1299 int dup_sack, int pcount)
1300 {
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 u8 sacked = TCP_SKB_CB(skb)->sacked;
1303 int fack_count = state->fack_count;
1304
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1308 tp->undo_retrans--;
1309 if (sacked & TCPCB_SACKED_ACKED)
1310 state->reord = min(fack_count, state->reord);
1311 }
1312
1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 return sacked;
1316
1317 if (!(sacked & TCPCB_SACKED_ACKED)) {
1318 if (sacked & TCPCB_SACKED_RETRANS) {
1319 /* If the segment is not tagged as lost,
1320 * we do not clear RETRANS, believing
1321 * that retransmission is still in flight.
1322 */
1323 if (sacked & TCPCB_LOST) {
1324 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1325 tp->lost_out -= pcount;
1326 tp->retrans_out -= pcount;
1327 }
1328 } else {
1329 if (!(sacked & TCPCB_RETRANS)) {
1330 /* New sack for not retransmitted frame,
1331 * which was in hole. It is reordering.
1332 */
1333 if (before(TCP_SKB_CB(skb)->seq,
1334 tcp_highest_sack_seq(tp)))
1335 state->reord = min(fack_count,
1336 state->reord);
1337
1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1340 state->flag |= FLAG_ONLY_ORIG_SACKED;
1341 }
1342
1343 if (sacked & TCPCB_LOST) {
1344 sacked &= ~TCPCB_LOST;
1345 tp->lost_out -= pcount;
1346 }
1347 }
1348
1349 sacked |= TCPCB_SACKED_ACKED;
1350 state->flag |= FLAG_DATA_SACKED;
1351 tp->sacked_out += pcount;
1352
1353 fack_count += pcount;
1354
1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1357 before(TCP_SKB_CB(skb)->seq,
1358 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1359 tp->lost_cnt_hint += pcount;
1360
1361 if (fack_count > tp->fackets_out)
1362 tp->fackets_out = fack_count;
1363 }
1364
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1368 */
1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 sacked &= ~TCPCB_SACKED_RETRANS;
1371 tp->retrans_out -= pcount;
1372 }
1373
1374 return sacked;
1375 }
1376
1377 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1378 struct tcp_sacktag_state *state,
1379 unsigned int pcount, int shifted, int mss,
1380 int dup_sack)
1381 {
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1384
1385 BUG_ON(!pcount);
1386
1387 /* Tweak before seqno plays */
1388 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1389 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1390 tp->lost_cnt_hint += pcount;
1391
1392 TCP_SKB_CB(prev)->end_seq += shifted;
1393 TCP_SKB_CB(skb)->seq += shifted;
1394
1395 skb_shinfo(prev)->gso_segs += pcount;
1396 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1397 skb_shinfo(skb)->gso_segs -= pcount;
1398
1399 /* When we're adding to gso_segs == 1, gso_size will be zero,
1400 * in theory this shouldn't be necessary but as long as DSACK
1401 * code can come after this skb later on it's better to keep
1402 * setting gso_size to something.
1403 */
1404 if (!skb_shinfo(prev)->gso_size) {
1405 skb_shinfo(prev)->gso_size = mss;
1406 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1407 }
1408
1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 if (skb_shinfo(skb)->gso_segs <= 1) {
1411 skb_shinfo(skb)->gso_size = 0;
1412 skb_shinfo(skb)->gso_type = 0;
1413 }
1414
1415 /* We discard results */
1416 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1417
1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1420
1421 if (skb->len > 0) {
1422 BUG_ON(!tcp_skb_pcount(skb));
1423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1424 return 0;
1425 }
1426
1427 /* Whole SKB was eaten :-) */
1428
1429 if (skb == tp->retransmit_skb_hint)
1430 tp->retransmit_skb_hint = prev;
1431 if (skb == tp->scoreboard_skb_hint)
1432 tp->scoreboard_skb_hint = prev;
1433 if (skb == tp->lost_skb_hint) {
1434 tp->lost_skb_hint = prev;
1435 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1436 }
1437
1438 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1439 if (skb == tcp_highest_sack(sk))
1440 tcp_advance_highest_sack(sk, skb);
1441
1442 tcp_unlink_write_queue(skb, sk);
1443 sk_wmem_free_skb(sk, skb);
1444
1445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1446
1447 return 1;
1448 }
1449
1450 /* I wish gso_size would have a bit more sane initialization than
1451 * something-or-zero which complicates things
1452 */
1453 static int tcp_skb_seglen(struct sk_buff *skb)
1454 {
1455 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1456 }
1457
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1460 {
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462 }
1463
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1466 */
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468 struct tcp_sacktag_state *state,
1469 u32 start_seq, u32 end_seq,
1470 int dup_sack)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1478
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1481
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
1484 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1491
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1496
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1499
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
1506 mss = tcp_skb_seglen(skb);
1507
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1510 */
1511 if (mss != tcp_skb_seglen(prev))
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1519 */
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1522
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1528 *
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1535 */
1536 goto fallback;
1537 }
1538
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1542
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1546 */
1547 mss = tcp_skb_mss(skb);
1548
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1551 */
1552 if (mss != tcp_skb_seglen(prev))
1553 goto fallback;
1554
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1562 }
1563 }
1564
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
1567 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1568 goto out;
1569
1570 /* Hole filled allows collapsing with the next as well, this is very
1571 * useful when hole on every nth skb pattern happens
1572 */
1573 if (prev == tcp_write_queue_tail(sk))
1574 goto out;
1575 skb = tcp_write_queue_next(sk, prev);
1576
1577 if (!skb_can_shift(skb) ||
1578 (skb == tcp_send_head(sk)) ||
1579 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1580 (mss != tcp_skb_seglen(skb)))
1581 goto out;
1582
1583 len = skb->len;
1584 if (skb_shift(prev, skb, len)) {
1585 pcount += tcp_skb_pcount(skb);
1586 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1587 }
1588
1589 out:
1590 state->fack_count += pcount;
1591 return prev;
1592
1593 noop:
1594 return skb;
1595
1596 fallback:
1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1598 return NULL;
1599 }
1600
1601 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1602 struct tcp_sack_block *next_dup,
1603 struct tcp_sacktag_state *state,
1604 u32 start_seq, u32 end_seq,
1605 int dup_sack_in)
1606 {
1607 struct tcp_sock *tp = tcp_sk(sk);
1608 struct sk_buff *tmp;
1609
1610 tcp_for_write_queue_from(skb, sk) {
1611 int in_sack = 0;
1612 int dup_sack = dup_sack_in;
1613
1614 if (skb == tcp_send_head(sk))
1615 break;
1616
1617 /* queue is in-order => we can short-circuit the walk early */
1618 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1619 break;
1620
1621 if ((next_dup != NULL) &&
1622 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1623 in_sack = tcp_match_skb_to_sack(sk, skb,
1624 next_dup->start_seq,
1625 next_dup->end_seq);
1626 if (in_sack > 0)
1627 dup_sack = 1;
1628 }
1629
1630 /* skb reference here is a bit tricky to get right, since
1631 * shifting can eat and free both this skb and the next,
1632 * so not even _safe variant of the loop is enough.
1633 */
1634 if (in_sack <= 0) {
1635 tmp = tcp_shift_skb_data(sk, skb, state,
1636 start_seq, end_seq, dup_sack);
1637 if (tmp != NULL) {
1638 if (tmp != skb) {
1639 skb = tmp;
1640 continue;
1641 }
1642
1643 in_sack = 0;
1644 } else {
1645 in_sack = tcp_match_skb_to_sack(sk, skb,
1646 start_seq,
1647 end_seq);
1648 }
1649 }
1650
1651 if (unlikely(in_sack < 0))
1652 break;
1653
1654 if (in_sack) {
1655 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1656 state,
1657 dup_sack,
1658 tcp_skb_pcount(skb));
1659
1660 if (!before(TCP_SKB_CB(skb)->seq,
1661 tcp_highest_sack_seq(tp)))
1662 tcp_advance_highest_sack(sk, skb);
1663 }
1664
1665 state->fack_count += tcp_skb_pcount(skb);
1666 }
1667 return skb;
1668 }
1669
1670 /* Avoid all extra work that is being done by sacktag while walking in
1671 * a normal way
1672 */
1673 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1674 struct tcp_sacktag_state *state,
1675 u32 skip_to_seq)
1676 {
1677 tcp_for_write_queue_from(skb, sk) {
1678 if (skb == tcp_send_head(sk))
1679 break;
1680
1681 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1682 break;
1683
1684 state->fack_count += tcp_skb_pcount(skb);
1685 }
1686 return skb;
1687 }
1688
1689 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1690 struct sock *sk,
1691 struct tcp_sack_block *next_dup,
1692 struct tcp_sacktag_state *state,
1693 u32 skip_to_seq)
1694 {
1695 if (next_dup == NULL)
1696 return skb;
1697
1698 if (before(next_dup->start_seq, skip_to_seq)) {
1699 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1700 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1701 next_dup->start_seq, next_dup->end_seq,
1702 1);
1703 }
1704
1705 return skb;
1706 }
1707
1708 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709 {
1710 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1711 }
1712
1713 static int
1714 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715 u32 prior_snd_una)
1716 {
1717 const struct inet_connection_sock *icsk = inet_csk(sk);
1718 struct tcp_sock *tp = tcp_sk(sk);
1719 unsigned char *ptr = (skb_transport_header(ack_skb) +
1720 TCP_SKB_CB(ack_skb)->sacked);
1721 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1722 struct tcp_sack_block sp[TCP_NUM_SACKS];
1723 struct tcp_sack_block *cache;
1724 struct tcp_sacktag_state state;
1725 struct sk_buff *skb;
1726 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1727 int used_sacks;
1728 int found_dup_sack = 0;
1729 int i, j;
1730 int first_sack_index;
1731
1732 state.flag = 0;
1733 state.reord = tp->packets_out;
1734
1735 if (!tp->sacked_out) {
1736 if (WARN_ON(tp->fackets_out))
1737 tp->fackets_out = 0;
1738 tcp_highest_sack_reset(sk);
1739 }
1740
1741 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1742 num_sacks, prior_snd_una);
1743 if (found_dup_sack)
1744 state.flag |= FLAG_DSACKING_ACK;
1745
1746 /* Eliminate too old ACKs, but take into
1747 * account more or less fresh ones, they can
1748 * contain valid SACK info.
1749 */
1750 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1751 return 0;
1752
1753 if (!tp->packets_out)
1754 goto out;
1755
1756 used_sacks = 0;
1757 first_sack_index = 0;
1758 for (i = 0; i < num_sacks; i++) {
1759 int dup_sack = !i && found_dup_sack;
1760
1761 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1762 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1763
1764 if (!tcp_is_sackblock_valid(tp, dup_sack,
1765 sp[used_sacks].start_seq,
1766 sp[used_sacks].end_seq)) {
1767 int mib_idx;
1768
1769 if (dup_sack) {
1770 if (!tp->undo_marker)
1771 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1772 else
1773 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1774 } else {
1775 /* Don't count olds caused by ACK reordering */
1776 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1777 !after(sp[used_sacks].end_seq, tp->snd_una))
1778 continue;
1779 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1780 }
1781
1782 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1783 if (i == 0)
1784 first_sack_index = -1;
1785 continue;
1786 }
1787
1788 /* Ignore very old stuff early */
1789 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1790 continue;
1791
1792 used_sacks++;
1793 }
1794
1795 /* order SACK blocks to allow in order walk of the retrans queue */
1796 for (i = used_sacks - 1; i > 0; i--) {
1797 for (j = 0; j < i; j++) {
1798 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1799 swap(sp[j], sp[j + 1]);
1800
1801 /* Track where the first SACK block goes to */
1802 if (j == first_sack_index)
1803 first_sack_index = j + 1;
1804 }
1805 }
1806 }
1807
1808 skb = tcp_write_queue_head(sk);
1809 state.fack_count = 0;
1810 i = 0;
1811
1812 if (!tp->sacked_out) {
1813 /* It's already past, so skip checking against it */
1814 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1815 } else {
1816 cache = tp->recv_sack_cache;
1817 /* Skip empty blocks in at head of the cache */
1818 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1819 !cache->end_seq)
1820 cache++;
1821 }
1822
1823 while (i < used_sacks) {
1824 u32 start_seq = sp[i].start_seq;
1825 u32 end_seq = sp[i].end_seq;
1826 int dup_sack = (found_dup_sack && (i == first_sack_index));
1827 struct tcp_sack_block *next_dup = NULL;
1828
1829 if (found_dup_sack && ((i + 1) == first_sack_index))
1830 next_dup = &sp[i + 1];
1831
1832 /* Event "B" in the comment above. */
1833 if (after(end_seq, tp->high_seq))
1834 state.flag |= FLAG_DATA_LOST;
1835
1836 /* Skip too early cached blocks */
1837 while (tcp_sack_cache_ok(tp, cache) &&
1838 !before(start_seq, cache->end_seq))
1839 cache++;
1840
1841 /* Can skip some work by looking recv_sack_cache? */
1842 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1843 after(end_seq, cache->start_seq)) {
1844
1845 /* Head todo? */
1846 if (before(start_seq, cache->start_seq)) {
1847 skb = tcp_sacktag_skip(skb, sk, &state,
1848 start_seq);
1849 skb = tcp_sacktag_walk(skb, sk, next_dup,
1850 &state,
1851 start_seq,
1852 cache->start_seq,
1853 dup_sack);
1854 }
1855
1856 /* Rest of the block already fully processed? */
1857 if (!after(end_seq, cache->end_seq))
1858 goto advance_sp;
1859
1860 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1861 &state,
1862 cache->end_seq);
1863
1864 /* ...tail remains todo... */
1865 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1866 /* ...but better entrypoint exists! */
1867 skb = tcp_highest_sack(sk);
1868 if (skb == NULL)
1869 break;
1870 state.fack_count = tp->fackets_out;
1871 cache++;
1872 goto walk;
1873 }
1874
1875 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1876 /* Check overlap against next cached too (past this one already) */
1877 cache++;
1878 continue;
1879 }
1880
1881 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1882 skb = tcp_highest_sack(sk);
1883 if (skb == NULL)
1884 break;
1885 state.fack_count = tp->fackets_out;
1886 }
1887 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1888
1889 walk:
1890 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1891 start_seq, end_seq, dup_sack);
1892
1893 advance_sp:
1894 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1895 * due to in-order walk
1896 */
1897 if (after(end_seq, tp->frto_highmark))
1898 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1899
1900 i++;
1901 }
1902
1903 /* Clear the head of the cache sack blocks so we can skip it next time */
1904 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1905 tp->recv_sack_cache[i].start_seq = 0;
1906 tp->recv_sack_cache[i].end_seq = 0;
1907 }
1908 for (j = 0; j < used_sacks; j++)
1909 tp->recv_sack_cache[i++] = sp[j];
1910
1911 tcp_mark_lost_retrans(sk);
1912
1913 tcp_verify_left_out(tp);
1914
1915 if ((state.reord < tp->fackets_out) &&
1916 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1917 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1918 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1919
1920 out:
1921
1922 #if FASTRETRANS_DEBUG > 0
1923 WARN_ON((int)tp->sacked_out < 0);
1924 WARN_ON((int)tp->lost_out < 0);
1925 WARN_ON((int)tp->retrans_out < 0);
1926 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1927 #endif
1928 return state.flag;
1929 }
1930
1931 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1932 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1933 */
1934 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1935 {
1936 u32 holes;
1937
1938 holes = max(tp->lost_out, 1U);
1939 holes = min(holes, tp->packets_out);
1940
1941 if ((tp->sacked_out + holes) > tp->packets_out) {
1942 tp->sacked_out = tp->packets_out - holes;
1943 return 1;
1944 }
1945 return 0;
1946 }
1947
1948 /* If we receive more dupacks than we expected counting segments
1949 * in assumption of absent reordering, interpret this as reordering.
1950 * The only another reason could be bug in receiver TCP.
1951 */
1952 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1953 {
1954 struct tcp_sock *tp = tcp_sk(sk);
1955 if (tcp_limit_reno_sacked(tp))
1956 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1957 }
1958
1959 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1960
1961 static void tcp_add_reno_sack(struct sock *sk)
1962 {
1963 struct tcp_sock *tp = tcp_sk(sk);
1964 tp->sacked_out++;
1965 tcp_check_reno_reordering(sk, 0);
1966 tcp_verify_left_out(tp);
1967 }
1968
1969 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1970
1971 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1972 {
1973 struct tcp_sock *tp = tcp_sk(sk);
1974
1975 if (acked > 0) {
1976 /* One ACK acked hole. The rest eat duplicate ACKs. */
1977 if (acked - 1 >= tp->sacked_out)
1978 tp->sacked_out = 0;
1979 else
1980 tp->sacked_out -= acked - 1;
1981 }
1982 tcp_check_reno_reordering(sk, acked);
1983 tcp_verify_left_out(tp);
1984 }
1985
1986 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1987 {
1988 tp->sacked_out = 0;
1989 }
1990
1991 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1992 {
1993 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1994 }
1995
1996 /* F-RTO can only be used if TCP has never retransmitted anything other than
1997 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1998 */
1999 int tcp_use_frto(struct sock *sk)
2000 {
2001 const struct tcp_sock *tp = tcp_sk(sk);
2002 const struct inet_connection_sock *icsk = inet_csk(sk);
2003 struct sk_buff *skb;
2004
2005 if (!sysctl_tcp_frto)
2006 return 0;
2007
2008 /* MTU probe and F-RTO won't really play nicely along currently */
2009 if (icsk->icsk_mtup.probe_size)
2010 return 0;
2011
2012 if (tcp_is_sackfrto(tp))
2013 return 1;
2014
2015 /* Avoid expensive walking of rexmit queue if possible */
2016 if (tp->retrans_out > 1)
2017 return 0;
2018
2019 skb = tcp_write_queue_head(sk);
2020 if (tcp_skb_is_last(sk, skb))
2021 return 1;
2022 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2023 tcp_for_write_queue_from(skb, sk) {
2024 if (skb == tcp_send_head(sk))
2025 break;
2026 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2027 return 0;
2028 /* Short-circuit when first non-SACKed skb has been checked */
2029 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2030 break;
2031 }
2032 return 1;
2033 }
2034
2035 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2036 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2037 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2038 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2039 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2040 * bits are handled if the Loss state is really to be entered (in
2041 * tcp_enter_frto_loss).
2042 *
2043 * Do like tcp_enter_loss() would; when RTO expires the second time it
2044 * does:
2045 * "Reduce ssthresh if it has not yet been made inside this window."
2046 */
2047 void tcp_enter_frto(struct sock *sk)
2048 {
2049 const struct inet_connection_sock *icsk = inet_csk(sk);
2050 struct tcp_sock *tp = tcp_sk(sk);
2051 struct sk_buff *skb;
2052
2053 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2054 tp->snd_una == tp->high_seq ||
2055 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2056 !icsk->icsk_retransmits)) {
2057 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2058 /* Our state is too optimistic in ssthresh() call because cwnd
2059 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2060 * recovery has not yet completed. Pattern would be this: RTO,
2061 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2062 * up here twice).
2063 * RFC4138 should be more specific on what to do, even though
2064 * RTO is quite unlikely to occur after the first Cumulative ACK
2065 * due to back-off and complexity of triggering events ...
2066 */
2067 if (tp->frto_counter) {
2068 u32 stored_cwnd;
2069 stored_cwnd = tp->snd_cwnd;
2070 tp->snd_cwnd = 2;
2071 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2072 tp->snd_cwnd = stored_cwnd;
2073 } else {
2074 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2075 }
2076 /* ... in theory, cong.control module could do "any tricks" in
2077 * ssthresh(), which means that ca_state, lost bits and lost_out
2078 * counter would have to be faked before the call occurs. We
2079 * consider that too expensive, unlikely and hacky, so modules
2080 * using these in ssthresh() must deal these incompatibility
2081 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2082 */
2083 tcp_ca_event(sk, CA_EVENT_FRTO);
2084 }
2085
2086 tp->undo_marker = tp->snd_una;
2087 tp->undo_retrans = 0;
2088
2089 skb = tcp_write_queue_head(sk);
2090 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2091 tp->undo_marker = 0;
2092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2093 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2094 tp->retrans_out -= tcp_skb_pcount(skb);
2095 }
2096 tcp_verify_left_out(tp);
2097
2098 /* Too bad if TCP was application limited */
2099 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2100
2101 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2102 * The last condition is necessary at least in tp->frto_counter case.
2103 */
2104 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2105 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2106 after(tp->high_seq, tp->snd_una)) {
2107 tp->frto_highmark = tp->high_seq;
2108 } else {
2109 tp->frto_highmark = tp->snd_nxt;
2110 }
2111 tcp_set_ca_state(sk, TCP_CA_Disorder);
2112 tp->high_seq = tp->snd_nxt;
2113 tp->frto_counter = 1;
2114 }
2115
2116 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2117 * which indicates that we should follow the traditional RTO recovery,
2118 * i.e. mark everything lost and do go-back-N retransmission.
2119 */
2120 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2121 {
2122 struct tcp_sock *tp = tcp_sk(sk);
2123 struct sk_buff *skb;
2124
2125 tp->lost_out = 0;
2126 tp->retrans_out = 0;
2127 if (tcp_is_reno(tp))
2128 tcp_reset_reno_sack(tp);
2129
2130 tcp_for_write_queue(skb, sk) {
2131 if (skb == tcp_send_head(sk))
2132 break;
2133
2134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2135 /*
2136 * Count the retransmission made on RTO correctly (only when
2137 * waiting for the first ACK and did not get it)...
2138 */
2139 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2140 /* For some reason this R-bit might get cleared? */
2141 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2142 tp->retrans_out += tcp_skb_pcount(skb);
2143 /* ...enter this if branch just for the first segment */
2144 flag |= FLAG_DATA_ACKED;
2145 } else {
2146 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2147 tp->undo_marker = 0;
2148 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2149 }
2150
2151 /* Marking forward transmissions that were made after RTO lost
2152 * can cause unnecessary retransmissions in some scenarios,
2153 * SACK blocks will mitigate that in some but not in all cases.
2154 * We used to not mark them but it was causing break-ups with
2155 * receivers that do only in-order receival.
2156 *
2157 * TODO: we could detect presence of such receiver and select
2158 * different behavior per flow.
2159 */
2160 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2162 tp->lost_out += tcp_skb_pcount(skb);
2163 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2164 }
2165 }
2166 tcp_verify_left_out(tp);
2167
2168 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2169 tp->snd_cwnd_cnt = 0;
2170 tp->snd_cwnd_stamp = tcp_time_stamp;
2171 tp->frto_counter = 0;
2172 tp->bytes_acked = 0;
2173
2174 tp->reordering = min_t(unsigned int, tp->reordering,
2175 sysctl_tcp_reordering);
2176 tcp_set_ca_state(sk, TCP_CA_Loss);
2177 tp->high_seq = tp->snd_nxt;
2178 TCP_ECN_queue_cwr(tp);
2179
2180 tcp_clear_all_retrans_hints(tp);
2181 }
2182
2183 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2184 {
2185 tp->retrans_out = 0;
2186 tp->lost_out = 0;
2187
2188 tp->undo_marker = 0;
2189 tp->undo_retrans = 0;
2190 }
2191
2192 void tcp_clear_retrans(struct tcp_sock *tp)
2193 {
2194 tcp_clear_retrans_partial(tp);
2195
2196 tp->fackets_out = 0;
2197 tp->sacked_out = 0;
2198 }
2199
2200 /* Enter Loss state. If "how" is not zero, forget all SACK information
2201 * and reset tags completely, otherwise preserve SACKs. If receiver
2202 * dropped its ofo queue, we will know this due to reneging detection.
2203 */
2204 void tcp_enter_loss(struct sock *sk, int how)
2205 {
2206 const struct inet_connection_sock *icsk = inet_csk(sk);
2207 struct tcp_sock *tp = tcp_sk(sk);
2208 struct sk_buff *skb;
2209
2210 /* Reduce ssthresh if it has not yet been made inside this window. */
2211 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2212 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2213 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2214 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2215 tcp_ca_event(sk, CA_EVENT_LOSS);
2216 }
2217 tp->snd_cwnd = 1;
2218 tp->snd_cwnd_cnt = 0;
2219 tp->snd_cwnd_stamp = tcp_time_stamp;
2220
2221 tp->bytes_acked = 0;
2222 tcp_clear_retrans_partial(tp);
2223
2224 if (tcp_is_reno(tp))
2225 tcp_reset_reno_sack(tp);
2226
2227 if (!how) {
2228 /* Push undo marker, if it was plain RTO and nothing
2229 * was retransmitted. */
2230 tp->undo_marker = tp->snd_una;
2231 } else {
2232 tp->sacked_out = 0;
2233 tp->fackets_out = 0;
2234 }
2235 tcp_clear_all_retrans_hints(tp);
2236
2237 tcp_for_write_queue(skb, sk) {
2238 if (skb == tcp_send_head(sk))
2239 break;
2240
2241 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2242 tp->undo_marker = 0;
2243 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2244 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2245 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2246 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2247 tp->lost_out += tcp_skb_pcount(skb);
2248 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2249 }
2250 }
2251 tcp_verify_left_out(tp);
2252
2253 tp->reordering = min_t(unsigned int, tp->reordering,
2254 sysctl_tcp_reordering);
2255 tcp_set_ca_state(sk, TCP_CA_Loss);
2256 tp->high_seq = tp->snd_nxt;
2257 TCP_ECN_queue_cwr(tp);
2258 /* Abort F-RTO algorithm if one is in progress */
2259 tp->frto_counter = 0;
2260 }
2261
2262 /* If ACK arrived pointing to a remembered SACK, it means that our
2263 * remembered SACKs do not reflect real state of receiver i.e.
2264 * receiver _host_ is heavily congested (or buggy).
2265 *
2266 * Do processing similar to RTO timeout.
2267 */
2268 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2269 {
2270 if (flag & FLAG_SACK_RENEGING) {
2271 struct inet_connection_sock *icsk = inet_csk(sk);
2272 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2273
2274 tcp_enter_loss(sk, 1);
2275 icsk->icsk_retransmits++;
2276 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2277 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2278 icsk->icsk_rto, TCP_RTO_MAX);
2279 return 1;
2280 }
2281 return 0;
2282 }
2283
2284 static inline int tcp_fackets_out(struct tcp_sock *tp)
2285 {
2286 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2287 }
2288
2289 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2290 * counter when SACK is enabled (without SACK, sacked_out is used for
2291 * that purpose).
2292 *
2293 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2294 * segments up to the highest received SACK block so far and holes in
2295 * between them.
2296 *
2297 * With reordering, holes may still be in flight, so RFC3517 recovery
2298 * uses pure sacked_out (total number of SACKed segments) even though
2299 * it violates the RFC that uses duplicate ACKs, often these are equal
2300 * but when e.g. out-of-window ACKs or packet duplication occurs,
2301 * they differ. Since neither occurs due to loss, TCP should really
2302 * ignore them.
2303 */
2304 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2305 {
2306 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2307 }
2308
2309 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2310 {
2311 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2312 }
2313
2314 static inline int tcp_head_timedout(struct sock *sk)
2315 {
2316 struct tcp_sock *tp = tcp_sk(sk);
2317
2318 return tp->packets_out &&
2319 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2320 }
2321
2322 /* Linux NewReno/SACK/FACK/ECN state machine.
2323 * --------------------------------------
2324 *
2325 * "Open" Normal state, no dubious events, fast path.
2326 * "Disorder" In all the respects it is "Open",
2327 * but requires a bit more attention. It is entered when
2328 * we see some SACKs or dupacks. It is split of "Open"
2329 * mainly to move some processing from fast path to slow one.
2330 * "CWR" CWND was reduced due to some Congestion Notification event.
2331 * It can be ECN, ICMP source quench, local device congestion.
2332 * "Recovery" CWND was reduced, we are fast-retransmitting.
2333 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2334 *
2335 * tcp_fastretrans_alert() is entered:
2336 * - each incoming ACK, if state is not "Open"
2337 * - when arrived ACK is unusual, namely:
2338 * * SACK
2339 * * Duplicate ACK.
2340 * * ECN ECE.
2341 *
2342 * Counting packets in flight is pretty simple.
2343 *
2344 * in_flight = packets_out - left_out + retrans_out
2345 *
2346 * packets_out is SND.NXT-SND.UNA counted in packets.
2347 *
2348 * retrans_out is number of retransmitted segments.
2349 *
2350 * left_out is number of segments left network, but not ACKed yet.
2351 *
2352 * left_out = sacked_out + lost_out
2353 *
2354 * sacked_out: Packets, which arrived to receiver out of order
2355 * and hence not ACKed. With SACKs this number is simply
2356 * amount of SACKed data. Even without SACKs
2357 * it is easy to give pretty reliable estimate of this number,
2358 * counting duplicate ACKs.
2359 *
2360 * lost_out: Packets lost by network. TCP has no explicit
2361 * "loss notification" feedback from network (for now).
2362 * It means that this number can be only _guessed_.
2363 * Actually, it is the heuristics to predict lossage that
2364 * distinguishes different algorithms.
2365 *
2366 * F.e. after RTO, when all the queue is considered as lost,
2367 * lost_out = packets_out and in_flight = retrans_out.
2368 *
2369 * Essentially, we have now two algorithms counting
2370 * lost packets.
2371 *
2372 * FACK: It is the simplest heuristics. As soon as we decided
2373 * that something is lost, we decide that _all_ not SACKed
2374 * packets until the most forward SACK are lost. I.e.
2375 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2376 * It is absolutely correct estimate, if network does not reorder
2377 * packets. And it loses any connection to reality when reordering
2378 * takes place. We use FACK by default until reordering
2379 * is suspected on the path to this destination.
2380 *
2381 * NewReno: when Recovery is entered, we assume that one segment
2382 * is lost (classic Reno). While we are in Recovery and
2383 * a partial ACK arrives, we assume that one more packet
2384 * is lost (NewReno). This heuristics are the same in NewReno
2385 * and SACK.
2386 *
2387 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2388 * deflation etc. CWND is real congestion window, never inflated, changes
2389 * only according to classic VJ rules.
2390 *
2391 * Really tricky (and requiring careful tuning) part of algorithm
2392 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2393 * The first determines the moment _when_ we should reduce CWND and,
2394 * hence, slow down forward transmission. In fact, it determines the moment
2395 * when we decide that hole is caused by loss, rather than by a reorder.
2396 *
2397 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2398 * holes, caused by lost packets.
2399 *
2400 * And the most logically complicated part of algorithm is undo
2401 * heuristics. We detect false retransmits due to both too early
2402 * fast retransmit (reordering) and underestimated RTO, analyzing
2403 * timestamps and D-SACKs. When we detect that some segments were
2404 * retransmitted by mistake and CWND reduction was wrong, we undo
2405 * window reduction and abort recovery phase. This logic is hidden
2406 * inside several functions named tcp_try_undo_<something>.
2407 */
2408
2409 /* This function decides, when we should leave Disordered state
2410 * and enter Recovery phase, reducing congestion window.
2411 *
2412 * Main question: may we further continue forward transmission
2413 * with the same cwnd?
2414 */
2415 static int tcp_time_to_recover(struct sock *sk)
2416 {
2417 struct tcp_sock *tp = tcp_sk(sk);
2418 __u32 packets_out;
2419
2420 /* Do not perform any recovery during F-RTO algorithm */
2421 if (tp->frto_counter)
2422 return 0;
2423
2424 /* Trick#1: The loss is proven. */
2425 if (tp->lost_out)
2426 return 1;
2427
2428 /* Not-A-Trick#2 : Classic rule... */
2429 if (tcp_dupack_heuristics(tp) > tp->reordering)
2430 return 1;
2431
2432 /* Trick#3 : when we use RFC2988 timer restart, fast
2433 * retransmit can be triggered by timeout of queue head.
2434 */
2435 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2436 return 1;
2437
2438 /* Trick#4: It is still not OK... But will it be useful to delay
2439 * recovery more?
2440 */
2441 packets_out = tp->packets_out;
2442 if (packets_out <= tp->reordering &&
2443 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2444 !tcp_may_send_now(sk)) {
2445 /* We have nothing to send. This connection is limited
2446 * either by receiver window or by application.
2447 */
2448 return 1;
2449 }
2450
2451 /* If a thin stream is detected, retransmit after first
2452 * received dupack. Employ only if SACK is supported in order
2453 * to avoid possible corner-case series of spurious retransmissions
2454 * Use only if there are no unsent data.
2455 */
2456 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2457 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2458 tcp_is_sack(tp) && !tcp_send_head(sk))
2459 return 1;
2460
2461 return 0;
2462 }
2463
2464 /* New heuristics: it is possible only after we switched to restart timer
2465 * each time when something is ACKed. Hence, we can detect timed out packets
2466 * during fast retransmit without falling to slow start.
2467 *
2468 * Usefulness of this as is very questionable, since we should know which of
2469 * the segments is the next to timeout which is relatively expensive to find
2470 * in general case unless we add some data structure just for that. The
2471 * current approach certainly won't find the right one too often and when it
2472 * finally does find _something_ it usually marks large part of the window
2473 * right away (because a retransmission with a larger timestamp blocks the
2474 * loop from advancing). -ij
2475 */
2476 static void tcp_timeout_skbs(struct sock *sk)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct sk_buff *skb;
2480
2481 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2482 return;
2483
2484 skb = tp->scoreboard_skb_hint;
2485 if (tp->scoreboard_skb_hint == NULL)
2486 skb = tcp_write_queue_head(sk);
2487
2488 tcp_for_write_queue_from(skb, sk) {
2489 if (skb == tcp_send_head(sk))
2490 break;
2491 if (!tcp_skb_timedout(sk, skb))
2492 break;
2493
2494 tcp_skb_mark_lost(tp, skb);
2495 }
2496
2497 tp->scoreboard_skb_hint = skb;
2498
2499 tcp_verify_left_out(tp);
2500 }
2501
2502 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2503 * is against sacked "cnt", otherwise it's against facked "cnt"
2504 */
2505 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 struct sk_buff *skb;
2509 int cnt, oldcnt;
2510 int err;
2511 unsigned int mss;
2512
2513 WARN_ON(packets > tp->packets_out);
2514 if (tp->lost_skb_hint) {
2515 skb = tp->lost_skb_hint;
2516 cnt = tp->lost_cnt_hint;
2517 /* Head already handled? */
2518 if (mark_head && skb != tcp_write_queue_head(sk))
2519 return;
2520 } else {
2521 skb = tcp_write_queue_head(sk);
2522 cnt = 0;
2523 }
2524
2525 tcp_for_write_queue_from(skb, sk) {
2526 if (skb == tcp_send_head(sk))
2527 break;
2528 /* TODO: do this better */
2529 /* this is not the most efficient way to do this... */
2530 tp->lost_skb_hint = skb;
2531 tp->lost_cnt_hint = cnt;
2532
2533 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2534 break;
2535
2536 oldcnt = cnt;
2537 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2538 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2539 cnt += tcp_skb_pcount(skb);
2540
2541 if (cnt > packets) {
2542 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2543 (oldcnt >= packets))
2544 break;
2545
2546 mss = skb_shinfo(skb)->gso_size;
2547 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2548 if (err < 0)
2549 break;
2550 cnt = packets;
2551 }
2552
2553 tcp_skb_mark_lost(tp, skb);
2554
2555 if (mark_head)
2556 break;
2557 }
2558 tcp_verify_left_out(tp);
2559 }
2560
2561 /* Account newly detected lost packet(s) */
2562
2563 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566
2567 if (tcp_is_reno(tp)) {
2568 tcp_mark_head_lost(sk, 1, 1);
2569 } else if (tcp_is_fack(tp)) {
2570 int lost = tp->fackets_out - tp->reordering;
2571 if (lost <= 0)
2572 lost = 1;
2573 tcp_mark_head_lost(sk, lost, 0);
2574 } else {
2575 int sacked_upto = tp->sacked_out - tp->reordering;
2576 if (sacked_upto >= 0)
2577 tcp_mark_head_lost(sk, sacked_upto, 0);
2578 else if (fast_rexmit)
2579 tcp_mark_head_lost(sk, 1, 1);
2580 }
2581
2582 tcp_timeout_skbs(sk);
2583 }
2584
2585 /* CWND moderation, preventing bursts due to too big ACKs
2586 * in dubious situations.
2587 */
2588 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2589 {
2590 tp->snd_cwnd = min(tp->snd_cwnd,
2591 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2592 tp->snd_cwnd_stamp = tcp_time_stamp;
2593 }
2594
2595 /* Lower bound on congestion window is slow start threshold
2596 * unless congestion avoidance choice decides to overide it.
2597 */
2598 static inline u32 tcp_cwnd_min(const struct sock *sk)
2599 {
2600 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2601
2602 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2603 }
2604
2605 /* Decrease cwnd each second ack. */
2606 static void tcp_cwnd_down(struct sock *sk, int flag)
2607 {
2608 struct tcp_sock *tp = tcp_sk(sk);
2609 int decr = tp->snd_cwnd_cnt + 1;
2610
2611 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2612 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2613 tp->snd_cwnd_cnt = decr & 1;
2614 decr >>= 1;
2615
2616 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2617 tp->snd_cwnd -= decr;
2618
2619 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2620 tp->snd_cwnd_stamp = tcp_time_stamp;
2621 }
2622 }
2623
2624 /* Nothing was retransmitted or returned timestamp is less
2625 * than timestamp of the first retransmission.
2626 */
2627 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2628 {
2629 return !tp->retrans_stamp ||
2630 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2631 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2632 }
2633
2634 /* Undo procedures. */
2635
2636 #if FASTRETRANS_DEBUG > 1
2637 static void DBGUNDO(struct sock *sk, const char *msg)
2638 {
2639 struct tcp_sock *tp = tcp_sk(sk);
2640 struct inet_sock *inet = inet_sk(sk);
2641
2642 if (sk->sk_family == AF_INET) {
2643 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2644 msg,
2645 &inet->inet_daddr, ntohs(inet->inet_dport),
2646 tp->snd_cwnd, tcp_left_out(tp),
2647 tp->snd_ssthresh, tp->prior_ssthresh,
2648 tp->packets_out);
2649 }
2650 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2651 else if (sk->sk_family == AF_INET6) {
2652 struct ipv6_pinfo *np = inet6_sk(sk);
2653 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2654 msg,
2655 &np->daddr, ntohs(inet->inet_dport),
2656 tp->snd_cwnd, tcp_left_out(tp),
2657 tp->snd_ssthresh, tp->prior_ssthresh,
2658 tp->packets_out);
2659 }
2660 #endif
2661 }
2662 #else
2663 #define DBGUNDO(x...) do { } while (0)
2664 #endif
2665
2666 static void tcp_undo_cwr(struct sock *sk, const int undo)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669
2670 if (tp->prior_ssthresh) {
2671 const struct inet_connection_sock *icsk = inet_csk(sk);
2672
2673 if (icsk->icsk_ca_ops->undo_cwnd)
2674 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2675 else
2676 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2677
2678 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2679 tp->snd_ssthresh = tp->prior_ssthresh;
2680 TCP_ECN_withdraw_cwr(tp);
2681 }
2682 } else {
2683 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2684 }
2685 tcp_moderate_cwnd(tp);
2686 tp->snd_cwnd_stamp = tcp_time_stamp;
2687 }
2688
2689 static inline int tcp_may_undo(struct tcp_sock *tp)
2690 {
2691 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2692 }
2693
2694 /* People celebrate: "We love our President!" */
2695 static int tcp_try_undo_recovery(struct sock *sk)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698
2699 if (tcp_may_undo(tp)) {
2700 int mib_idx;
2701
2702 /* Happy end! We did not retransmit anything
2703 * or our original transmission succeeded.
2704 */
2705 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2706 tcp_undo_cwr(sk, 1);
2707 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2708 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2709 else
2710 mib_idx = LINUX_MIB_TCPFULLUNDO;
2711
2712 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2713 tp->undo_marker = 0;
2714 }
2715 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2716 /* Hold old state until something *above* high_seq
2717 * is ACKed. For Reno it is MUST to prevent false
2718 * fast retransmits (RFC2582). SACK TCP is safe. */
2719 tcp_moderate_cwnd(tp);
2720 return 1;
2721 }
2722 tcp_set_ca_state(sk, TCP_CA_Open);
2723 return 0;
2724 }
2725
2726 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2727 static void tcp_try_undo_dsack(struct sock *sk)
2728 {
2729 struct tcp_sock *tp = tcp_sk(sk);
2730
2731 if (tp->undo_marker && !tp->undo_retrans) {
2732 DBGUNDO(sk, "D-SACK");
2733 tcp_undo_cwr(sk, 1);
2734 tp->undo_marker = 0;
2735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2736 }
2737 }
2738
2739 /* We can clear retrans_stamp when there are no retransmissions in the
2740 * window. It would seem that it is trivially available for us in
2741 * tp->retrans_out, however, that kind of assumptions doesn't consider
2742 * what will happen if errors occur when sending retransmission for the
2743 * second time. ...It could the that such segment has only
2744 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2745 * the head skb is enough except for some reneging corner cases that
2746 * are not worth the effort.
2747 *
2748 * Main reason for all this complexity is the fact that connection dying
2749 * time now depends on the validity of the retrans_stamp, in particular,
2750 * that successive retransmissions of a segment must not advance
2751 * retrans_stamp under any conditions.
2752 */
2753 static int tcp_any_retrans_done(struct sock *sk)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 struct sk_buff *skb;
2757
2758 if (tp->retrans_out)
2759 return 1;
2760
2761 skb = tcp_write_queue_head(sk);
2762 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2763 return 1;
2764
2765 return 0;
2766 }
2767
2768 /* Undo during fast recovery after partial ACK. */
2769
2770 static int tcp_try_undo_partial(struct sock *sk, int acked)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 /* Partial ACK arrived. Force Hoe's retransmit. */
2774 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2775
2776 if (tcp_may_undo(tp)) {
2777 /* Plain luck! Hole if filled with delayed
2778 * packet, rather than with a retransmit.
2779 */
2780 if (!tcp_any_retrans_done(sk))
2781 tp->retrans_stamp = 0;
2782
2783 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2784
2785 DBGUNDO(sk, "Hoe");
2786 tcp_undo_cwr(sk, 0);
2787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2788
2789 /* So... Do not make Hoe's retransmit yet.
2790 * If the first packet was delayed, the rest
2791 * ones are most probably delayed as well.
2792 */
2793 failed = 0;
2794 }
2795 return failed;
2796 }
2797
2798 /* Undo during loss recovery after partial ACK. */
2799 static int tcp_try_undo_loss(struct sock *sk)
2800 {
2801 struct tcp_sock *tp = tcp_sk(sk);
2802
2803 if (tcp_may_undo(tp)) {
2804 struct sk_buff *skb;
2805 tcp_for_write_queue(skb, sk) {
2806 if (skb == tcp_send_head(sk))
2807 break;
2808 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2809 }
2810
2811 tcp_clear_all_retrans_hints(tp);
2812
2813 DBGUNDO(sk, "partial loss");
2814 tp->lost_out = 0;
2815 tcp_undo_cwr(sk, 1);
2816 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2817 inet_csk(sk)->icsk_retransmits = 0;
2818 tp->undo_marker = 0;
2819 if (tcp_is_sack(tp))
2820 tcp_set_ca_state(sk, TCP_CA_Open);
2821 return 1;
2822 }
2823 return 0;
2824 }
2825
2826 static inline void tcp_complete_cwr(struct sock *sk)
2827 {
2828 struct tcp_sock *tp = tcp_sk(sk);
2829 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2830 tp->snd_cwnd_stamp = tcp_time_stamp;
2831 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2832 }
2833
2834 static void tcp_try_keep_open(struct sock *sk)
2835 {
2836 struct tcp_sock *tp = tcp_sk(sk);
2837 int state = TCP_CA_Open;
2838
2839 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2840 state = TCP_CA_Disorder;
2841
2842 if (inet_csk(sk)->icsk_ca_state != state) {
2843 tcp_set_ca_state(sk, state);
2844 tp->high_seq = tp->snd_nxt;
2845 }
2846 }
2847
2848 static void tcp_try_to_open(struct sock *sk, int flag)
2849 {
2850 struct tcp_sock *tp = tcp_sk(sk);
2851
2852 tcp_verify_left_out(tp);
2853
2854 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2855 tp->retrans_stamp = 0;
2856
2857 if (flag & FLAG_ECE)
2858 tcp_enter_cwr(sk, 1);
2859
2860 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2861 tcp_try_keep_open(sk);
2862 tcp_moderate_cwnd(tp);
2863 } else {
2864 tcp_cwnd_down(sk, flag);
2865 }
2866 }
2867
2868 static void tcp_mtup_probe_failed(struct sock *sk)
2869 {
2870 struct inet_connection_sock *icsk = inet_csk(sk);
2871
2872 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2873 icsk->icsk_mtup.probe_size = 0;
2874 }
2875
2876 static void tcp_mtup_probe_success(struct sock *sk)
2877 {
2878 struct tcp_sock *tp = tcp_sk(sk);
2879 struct inet_connection_sock *icsk = inet_csk(sk);
2880
2881 /* FIXME: breaks with very large cwnd */
2882 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2883 tp->snd_cwnd = tp->snd_cwnd *
2884 tcp_mss_to_mtu(sk, tp->mss_cache) /
2885 icsk->icsk_mtup.probe_size;
2886 tp->snd_cwnd_cnt = 0;
2887 tp->snd_cwnd_stamp = tcp_time_stamp;
2888 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2889
2890 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2891 icsk->icsk_mtup.probe_size = 0;
2892 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2893 }
2894
2895 /* Do a simple retransmit without using the backoff mechanisms in
2896 * tcp_timer. This is used for path mtu discovery.
2897 * The socket is already locked here.
2898 */
2899 void tcp_simple_retransmit(struct sock *sk)
2900 {
2901 const struct inet_connection_sock *icsk = inet_csk(sk);
2902 struct tcp_sock *tp = tcp_sk(sk);
2903 struct sk_buff *skb;
2904 unsigned int mss = tcp_current_mss(sk);
2905 u32 prior_lost = tp->lost_out;
2906
2907 tcp_for_write_queue(skb, sk) {
2908 if (skb == tcp_send_head(sk))
2909 break;
2910 if (tcp_skb_seglen(skb) > mss &&
2911 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2912 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2913 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2914 tp->retrans_out -= tcp_skb_pcount(skb);
2915 }
2916 tcp_skb_mark_lost_uncond_verify(tp, skb);
2917 }
2918 }
2919
2920 tcp_clear_retrans_hints_partial(tp);
2921
2922 if (prior_lost == tp->lost_out)
2923 return;
2924
2925 if (tcp_is_reno(tp))
2926 tcp_limit_reno_sacked(tp);
2927
2928 tcp_verify_left_out(tp);
2929
2930 /* Don't muck with the congestion window here.
2931 * Reason is that we do not increase amount of _data_
2932 * in network, but units changed and effective
2933 * cwnd/ssthresh really reduced now.
2934 */
2935 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2936 tp->high_seq = tp->snd_nxt;
2937 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2938 tp->prior_ssthresh = 0;
2939 tp->undo_marker = 0;
2940 tcp_set_ca_state(sk, TCP_CA_Loss);
2941 }
2942 tcp_xmit_retransmit_queue(sk);
2943 }
2944 EXPORT_SYMBOL(tcp_simple_retransmit);
2945
2946 /* Process an event, which can update packets-in-flight not trivially.
2947 * Main goal of this function is to calculate new estimate for left_out,
2948 * taking into account both packets sitting in receiver's buffer and
2949 * packets lost by network.
2950 *
2951 * Besides that it does CWND reduction, when packet loss is detected
2952 * and changes state of machine.
2953 *
2954 * It does _not_ decide what to send, it is made in function
2955 * tcp_xmit_retransmit_queue().
2956 */
2957 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2958 {
2959 struct inet_connection_sock *icsk = inet_csk(sk);
2960 struct tcp_sock *tp = tcp_sk(sk);
2961 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2962 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2963 (tcp_fackets_out(tp) > tp->reordering));
2964 int fast_rexmit = 0, mib_idx;
2965
2966 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2967 tp->sacked_out = 0;
2968 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2969 tp->fackets_out = 0;
2970
2971 /* Now state machine starts.
2972 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2973 if (flag & FLAG_ECE)
2974 tp->prior_ssthresh = 0;
2975
2976 /* B. In all the states check for reneging SACKs. */
2977 if (tcp_check_sack_reneging(sk, flag))
2978 return;
2979
2980 /* C. Process data loss notification, provided it is valid. */
2981 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2982 before(tp->snd_una, tp->high_seq) &&
2983 icsk->icsk_ca_state != TCP_CA_Open &&
2984 tp->fackets_out > tp->reordering) {
2985 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2986 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2987 }
2988
2989 /* D. Check consistency of the current state. */
2990 tcp_verify_left_out(tp);
2991
2992 /* E. Check state exit conditions. State can be terminated
2993 * when high_seq is ACKed. */
2994 if (icsk->icsk_ca_state == TCP_CA_Open) {
2995 WARN_ON(tp->retrans_out != 0);
2996 tp->retrans_stamp = 0;
2997 } else if (!before(tp->snd_una, tp->high_seq)) {
2998 switch (icsk->icsk_ca_state) {
2999 case TCP_CA_Loss:
3000 icsk->icsk_retransmits = 0;
3001 if (tcp_try_undo_recovery(sk))
3002 return;
3003 break;
3004
3005 case TCP_CA_CWR:
3006 /* CWR is to be held something *above* high_seq
3007 * is ACKed for CWR bit to reach receiver. */
3008 if (tp->snd_una != tp->high_seq) {
3009 tcp_complete_cwr(sk);
3010 tcp_set_ca_state(sk, TCP_CA_Open);
3011 }
3012 break;
3013
3014 case TCP_CA_Disorder:
3015 tcp_try_undo_dsack(sk);
3016 if (!tp->undo_marker ||
3017 /* For SACK case do not Open to allow to undo
3018 * catching for all duplicate ACKs. */
3019 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3020 tp->undo_marker = 0;
3021 tcp_set_ca_state(sk, TCP_CA_Open);
3022 }
3023 break;
3024
3025 case TCP_CA_Recovery:
3026 if (tcp_is_reno(tp))
3027 tcp_reset_reno_sack(tp);
3028 if (tcp_try_undo_recovery(sk))
3029 return;
3030 tcp_complete_cwr(sk);
3031 break;
3032 }
3033 }
3034
3035 /* F. Process state. */
3036 switch (icsk->icsk_ca_state) {
3037 case TCP_CA_Recovery:
3038 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3039 if (tcp_is_reno(tp) && is_dupack)
3040 tcp_add_reno_sack(sk);
3041 } else
3042 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3043 break;
3044 case TCP_CA_Loss:
3045 if (flag & FLAG_DATA_ACKED)
3046 icsk->icsk_retransmits = 0;
3047 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3048 tcp_reset_reno_sack(tp);
3049 if (!tcp_try_undo_loss(sk)) {
3050 tcp_moderate_cwnd(tp);
3051 tcp_xmit_retransmit_queue(sk);
3052 return;
3053 }
3054 if (icsk->icsk_ca_state != TCP_CA_Open)
3055 return;
3056 /* Loss is undone; fall through to processing in Open state. */
3057 default:
3058 if (tcp_is_reno(tp)) {
3059 if (flag & FLAG_SND_UNA_ADVANCED)
3060 tcp_reset_reno_sack(tp);
3061 if (is_dupack)
3062 tcp_add_reno_sack(sk);
3063 }
3064
3065 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3066 tcp_try_undo_dsack(sk);
3067
3068 if (!tcp_time_to_recover(sk)) {
3069 tcp_try_to_open(sk, flag);
3070 return;
3071 }
3072
3073 /* MTU probe failure: don't reduce cwnd */
3074 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3075 icsk->icsk_mtup.probe_size &&
3076 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3077 tcp_mtup_probe_failed(sk);
3078 /* Restores the reduction we did in tcp_mtup_probe() */
3079 tp->snd_cwnd++;
3080 tcp_simple_retransmit(sk);
3081 return;
3082 }
3083
3084 /* Otherwise enter Recovery state */
3085
3086 if (tcp_is_reno(tp))
3087 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3088 else
3089 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3090
3091 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3092
3093 tp->high_seq = tp->snd_nxt;
3094 tp->prior_ssthresh = 0;
3095 tp->undo_marker = tp->snd_una;
3096 tp->undo_retrans = tp->retrans_out;
3097
3098 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3099 if (!(flag & FLAG_ECE))
3100 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3101 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3102 TCP_ECN_queue_cwr(tp);
3103 }
3104
3105 tp->bytes_acked = 0;
3106 tp->snd_cwnd_cnt = 0;
3107 tcp_set_ca_state(sk, TCP_CA_Recovery);
3108 fast_rexmit = 1;
3109 }
3110
3111 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3112 tcp_update_scoreboard(sk, fast_rexmit);
3113 tcp_cwnd_down(sk, flag);
3114 tcp_xmit_retransmit_queue(sk);
3115 }
3116
3117 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3118 {
3119 tcp_rtt_estimator(sk, seq_rtt);
3120 tcp_set_rto(sk);
3121 inet_csk(sk)->icsk_backoff = 0;
3122 }
3123
3124 /* Read draft-ietf-tcplw-high-performance before mucking
3125 * with this code. (Supersedes RFC1323)
3126 */
3127 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3128 {
3129 /* RTTM Rule: A TSecr value received in a segment is used to
3130 * update the averaged RTT measurement only if the segment
3131 * acknowledges some new data, i.e., only if it advances the
3132 * left edge of the send window.
3133 *
3134 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3135 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3136 *
3137 * Changed: reset backoff as soon as we see the first valid sample.
3138 * If we do not, we get strongly overestimated rto. With timestamps
3139 * samples are accepted even from very old segments: f.e., when rtt=1
3140 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3141 * answer arrives rto becomes 120 seconds! If at least one of segments
3142 * in window is lost... Voila. --ANK (010210)
3143 */
3144 struct tcp_sock *tp = tcp_sk(sk);
3145
3146 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3147 }
3148
3149 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3150 {
3151 /* We don't have a timestamp. Can only use
3152 * packets that are not retransmitted to determine
3153 * rtt estimates. Also, we must not reset the
3154 * backoff for rto until we get a non-retransmitted
3155 * packet. This allows us to deal with a situation
3156 * where the network delay has increased suddenly.
3157 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3158 */
3159
3160 if (flag & FLAG_RETRANS_DATA_ACKED)
3161 return;
3162
3163 tcp_valid_rtt_meas(sk, seq_rtt);
3164 }
3165
3166 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3167 const s32 seq_rtt)
3168 {
3169 const struct tcp_sock *tp = tcp_sk(sk);
3170 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3171 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3172 tcp_ack_saw_tstamp(sk, flag);
3173 else if (seq_rtt >= 0)
3174 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3175 }
3176
3177 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3178 {
3179 const struct inet_connection_sock *icsk = inet_csk(sk);
3180 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3181 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3182 }
3183
3184 /* Restart timer after forward progress on connection.
3185 * RFC2988 recommends to restart timer to now+rto.
3186 */
3187 static void tcp_rearm_rto(struct sock *sk)
3188 {
3189 struct tcp_sock *tp = tcp_sk(sk);
3190
3191 if (!tp->packets_out) {
3192 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3193 } else {
3194 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3195 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3196 }
3197 }
3198
3199 /* If we get here, the whole TSO packet has not been acked. */
3200 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3201 {
3202 struct tcp_sock *tp = tcp_sk(sk);
3203 u32 packets_acked;
3204
3205 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3206
3207 packets_acked = tcp_skb_pcount(skb);
3208 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3209 return 0;
3210 packets_acked -= tcp_skb_pcount(skb);
3211
3212 if (packets_acked) {
3213 BUG_ON(tcp_skb_pcount(skb) == 0);
3214 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3215 }
3216
3217 return packets_acked;
3218 }
3219
3220 /* Remove acknowledged frames from the retransmission queue. If our packet
3221 * is before the ack sequence we can discard it as it's confirmed to have
3222 * arrived at the other end.
3223 */
3224 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3225 u32 prior_snd_una)
3226 {
3227 struct tcp_sock *tp = tcp_sk(sk);
3228 const struct inet_connection_sock *icsk = inet_csk(sk);
3229 struct sk_buff *skb;
3230 u32 now = tcp_time_stamp;
3231 int fully_acked = 1;
3232 int flag = 0;
3233 u32 pkts_acked = 0;
3234 u32 reord = tp->packets_out;
3235 u32 prior_sacked = tp->sacked_out;
3236 s32 seq_rtt = -1;
3237 s32 ca_seq_rtt = -1;
3238 ktime_t last_ackt = net_invalid_timestamp();
3239
3240 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3241 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3242 u32 acked_pcount;
3243 u8 sacked = scb->sacked;
3244
3245 /* Determine how many packets and what bytes were acked, tso and else */
3246 if (after(scb->end_seq, tp->snd_una)) {
3247 if (tcp_skb_pcount(skb) == 1 ||
3248 !after(tp->snd_una, scb->seq))
3249 break;
3250
3251 acked_pcount = tcp_tso_acked(sk, skb);
3252 if (!acked_pcount)
3253 break;
3254
3255 fully_acked = 0;
3256 } else {
3257 acked_pcount = tcp_skb_pcount(skb);
3258 }
3259
3260 if (sacked & TCPCB_RETRANS) {
3261 if (sacked & TCPCB_SACKED_RETRANS)
3262 tp->retrans_out -= acked_pcount;
3263 flag |= FLAG_RETRANS_DATA_ACKED;
3264 ca_seq_rtt = -1;
3265 seq_rtt = -1;
3266 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3267 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3268 } else {
3269 ca_seq_rtt = now - scb->when;
3270 last_ackt = skb->tstamp;
3271 if (seq_rtt < 0) {
3272 seq_rtt = ca_seq_rtt;
3273 }
3274 if (!(sacked & TCPCB_SACKED_ACKED))
3275 reord = min(pkts_acked, reord);
3276 }
3277
3278 if (sacked & TCPCB_SACKED_ACKED)
3279 tp->sacked_out -= acked_pcount;
3280 if (sacked & TCPCB_LOST)
3281 tp->lost_out -= acked_pcount;
3282
3283 tp->packets_out -= acked_pcount;
3284 pkts_acked += acked_pcount;
3285
3286 /* Initial outgoing SYN's get put onto the write_queue
3287 * just like anything else we transmit. It is not
3288 * true data, and if we misinform our callers that
3289 * this ACK acks real data, we will erroneously exit
3290 * connection startup slow start one packet too
3291 * quickly. This is severely frowned upon behavior.
3292 */
3293 if (!(scb->flags & TCPHDR_SYN)) {
3294 flag |= FLAG_DATA_ACKED;
3295 } else {
3296 flag |= FLAG_SYN_ACKED;
3297 tp->retrans_stamp = 0;
3298 }
3299
3300 if (!fully_acked)
3301 break;
3302
3303 tcp_unlink_write_queue(skb, sk);
3304 sk_wmem_free_skb(sk, skb);
3305 tp->scoreboard_skb_hint = NULL;
3306 if (skb == tp->retransmit_skb_hint)
3307 tp->retransmit_skb_hint = NULL;
3308 if (skb == tp->lost_skb_hint)
3309 tp->lost_skb_hint = NULL;
3310 }
3311
3312 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3313 tp->snd_up = tp->snd_una;
3314
3315 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3316 flag |= FLAG_SACK_RENEGING;
3317
3318 if (flag & FLAG_ACKED) {
3319 const struct tcp_congestion_ops *ca_ops
3320 = inet_csk(sk)->icsk_ca_ops;
3321
3322 if (unlikely(icsk->icsk_mtup.probe_size &&
3323 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3324 tcp_mtup_probe_success(sk);
3325 }
3326
3327 tcp_ack_update_rtt(sk, flag, seq_rtt);
3328 tcp_rearm_rto(sk);
3329
3330 if (tcp_is_reno(tp)) {
3331 tcp_remove_reno_sacks(sk, pkts_acked);
3332 } else {
3333 int delta;
3334
3335 /* Non-retransmitted hole got filled? That's reordering */
3336 if (reord < prior_fackets)
3337 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3338
3339 delta = tcp_is_fack(tp) ? pkts_acked :
3340 prior_sacked - tp->sacked_out;
3341 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3342 }
3343
3344 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3345
3346 if (ca_ops->pkts_acked) {
3347 s32 rtt_us = -1;
3348
3349 /* Is the ACK triggering packet unambiguous? */
3350 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3351 /* High resolution needed and available? */
3352 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3353 !ktime_equal(last_ackt,
3354 net_invalid_timestamp()))
3355 rtt_us = ktime_us_delta(ktime_get_real(),
3356 last_ackt);
3357 else if (ca_seq_rtt > 0)
3358 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3359 }
3360
3361 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3362 }
3363 }
3364
3365 #if FASTRETRANS_DEBUG > 0
3366 WARN_ON((int)tp->sacked_out < 0);
3367 WARN_ON((int)tp->lost_out < 0);
3368 WARN_ON((int)tp->retrans_out < 0);
3369 if (!tp->packets_out && tcp_is_sack(tp)) {
3370 icsk = inet_csk(sk);
3371 if (tp->lost_out) {
3372 printk(KERN_DEBUG "Leak l=%u %d\n",
3373 tp->lost_out, icsk->icsk_ca_state);
3374 tp->lost_out = 0;
3375 }
3376 if (tp->sacked_out) {
3377 printk(KERN_DEBUG "Leak s=%u %d\n",
3378 tp->sacked_out, icsk->icsk_ca_state);
3379 tp->sacked_out = 0;
3380 }
3381 if (tp->retrans_out) {
3382 printk(KERN_DEBUG "Leak r=%u %d\n",
3383 tp->retrans_out, icsk->icsk_ca_state);
3384 tp->retrans_out = 0;
3385 }
3386 }
3387 #endif
3388 return flag;
3389 }
3390
3391 static void tcp_ack_probe(struct sock *sk)
3392 {
3393 const struct tcp_sock *tp = tcp_sk(sk);
3394 struct inet_connection_sock *icsk = inet_csk(sk);
3395
3396 /* Was it a usable window open? */
3397
3398 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3399 icsk->icsk_backoff = 0;
3400 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3401 /* Socket must be waked up by subsequent tcp_data_snd_check().
3402 * This function is not for random using!
3403 */
3404 } else {
3405 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3406 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3407 TCP_RTO_MAX);
3408 }
3409 }
3410
3411 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3412 {
3413 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3414 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3415 }
3416
3417 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3418 {
3419 const struct tcp_sock *tp = tcp_sk(sk);
3420 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3421 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3422 }
3423
3424 /* Check that window update is acceptable.
3425 * The function assumes that snd_una<=ack<=snd_next.
3426 */
3427 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3428 const u32 ack, const u32 ack_seq,
3429 const u32 nwin)
3430 {
3431 return after(ack, tp->snd_una) ||
3432 after(ack_seq, tp->snd_wl1) ||
3433 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3434 }
3435
3436 /* Update our send window.
3437 *
3438 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3439 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3440 */
3441 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3442 u32 ack_seq)
3443 {
3444 struct tcp_sock *tp = tcp_sk(sk);
3445 int flag = 0;
3446 u32 nwin = ntohs(tcp_hdr(skb)->window);
3447
3448 if (likely(!tcp_hdr(skb)->syn))
3449 nwin <<= tp->rx_opt.snd_wscale;
3450
3451 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3452 flag |= FLAG_WIN_UPDATE;
3453 tcp_update_wl(tp, ack_seq);
3454
3455 if (tp->snd_wnd != nwin) {
3456 tp->snd_wnd = nwin;
3457
3458 /* Note, it is the only place, where
3459 * fast path is recovered for sending TCP.
3460 */
3461 tp->pred_flags = 0;
3462 tcp_fast_path_check(sk);
3463
3464 if (nwin > tp->max_window) {
3465 tp->max_window = nwin;
3466 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3467 }
3468 }
3469 }
3470
3471 tp->snd_una = ack;
3472
3473 return flag;
3474 }
3475
3476 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3477 * continue in congestion avoidance.
3478 */
3479 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3480 {
3481 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3482 tp->snd_cwnd_cnt = 0;
3483 tp->bytes_acked = 0;
3484 TCP_ECN_queue_cwr(tp);
3485 tcp_moderate_cwnd(tp);
3486 }
3487
3488 /* A conservative spurious RTO response algorithm: reduce cwnd using
3489 * rate halving and continue in congestion avoidance.
3490 */
3491 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3492 {
3493 tcp_enter_cwr(sk, 0);
3494 }
3495
3496 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3497 {
3498 if (flag & FLAG_ECE)
3499 tcp_ratehalving_spur_to_response(sk);
3500 else
3501 tcp_undo_cwr(sk, 1);
3502 }
3503
3504 /* F-RTO spurious RTO detection algorithm (RFC4138)
3505 *
3506 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3507 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3508 * window (but not to or beyond highest sequence sent before RTO):
3509 * On First ACK, send two new segments out.
3510 * On Second ACK, RTO was likely spurious. Do spurious response (response
3511 * algorithm is not part of the F-RTO detection algorithm
3512 * given in RFC4138 but can be selected separately).
3513 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3514 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3515 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3516 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3517 *
3518 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3519 * original window even after we transmit two new data segments.
3520 *
3521 * SACK version:
3522 * on first step, wait until first cumulative ACK arrives, then move to
3523 * the second step. In second step, the next ACK decides.
3524 *
3525 * F-RTO is implemented (mainly) in four functions:
3526 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3527 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3528 * called when tcp_use_frto() showed green light
3529 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3530 * - tcp_enter_frto_loss() is called if there is not enough evidence
3531 * to prove that the RTO is indeed spurious. It transfers the control
3532 * from F-RTO to the conventional RTO recovery
3533 */
3534 static int tcp_process_frto(struct sock *sk, int flag)
3535 {
3536 struct tcp_sock *tp = tcp_sk(sk);
3537
3538 tcp_verify_left_out(tp);
3539
3540 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3541 if (flag & FLAG_DATA_ACKED)
3542 inet_csk(sk)->icsk_retransmits = 0;
3543
3544 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3545 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3546 tp->undo_marker = 0;
3547
3548 if (!before(tp->snd_una, tp->frto_highmark)) {
3549 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3550 return 1;
3551 }
3552
3553 if (!tcp_is_sackfrto(tp)) {
3554 /* RFC4138 shortcoming in step 2; should also have case c):
3555 * ACK isn't duplicate nor advances window, e.g., opposite dir
3556 * data, winupdate
3557 */
3558 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3559 return 1;
3560
3561 if (!(flag & FLAG_DATA_ACKED)) {
3562 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3563 flag);
3564 return 1;
3565 }
3566 } else {
3567 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3568 /* Prevent sending of new data. */
3569 tp->snd_cwnd = min(tp->snd_cwnd,
3570 tcp_packets_in_flight(tp));
3571 return 1;
3572 }
3573
3574 if ((tp->frto_counter >= 2) &&
3575 (!(flag & FLAG_FORWARD_PROGRESS) ||
3576 ((flag & FLAG_DATA_SACKED) &&
3577 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3578 /* RFC4138 shortcoming (see comment above) */
3579 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3580 (flag & FLAG_NOT_DUP))
3581 return 1;
3582
3583 tcp_enter_frto_loss(sk, 3, flag);
3584 return 1;
3585 }
3586 }
3587
3588 if (tp->frto_counter == 1) {
3589 /* tcp_may_send_now needs to see updated state */
3590 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3591 tp->frto_counter = 2;
3592
3593 if (!tcp_may_send_now(sk))
3594 tcp_enter_frto_loss(sk, 2, flag);
3595
3596 return 1;
3597 } else {
3598 switch (sysctl_tcp_frto_response) {
3599 case 2:
3600 tcp_undo_spur_to_response(sk, flag);
3601 break;
3602 case 1:
3603 tcp_conservative_spur_to_response(tp);
3604 break;
3605 default:
3606 tcp_ratehalving_spur_to_response(sk);
3607 break;
3608 }
3609 tp->frto_counter = 0;
3610 tp->undo_marker = 0;
3611 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3612 }
3613 return 0;
3614 }
3615
3616 /* This routine deals with incoming acks, but not outgoing ones. */
3617 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3618 {
3619 struct inet_connection_sock *icsk = inet_csk(sk);
3620 struct tcp_sock *tp = tcp_sk(sk);
3621 u32 prior_snd_una = tp->snd_una;
3622 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3623 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3624 u32 prior_in_flight;
3625 u32 prior_fackets;
3626 int prior_packets;
3627 int frto_cwnd = 0;
3628
3629 /* If the ack is older than previous acks
3630 * then we can probably ignore it.
3631 */
3632 if (before(ack, prior_snd_una))
3633 goto old_ack;
3634
3635 /* If the ack includes data we haven't sent yet, discard
3636 * this segment (RFC793 Section 3.9).
3637 */
3638 if (after(ack, tp->snd_nxt))
3639 goto invalid_ack;
3640
3641 if (after(ack, prior_snd_una))
3642 flag |= FLAG_SND_UNA_ADVANCED;
3643
3644 if (sysctl_tcp_abc) {
3645 if (icsk->icsk_ca_state < TCP_CA_CWR)
3646 tp->bytes_acked += ack - prior_snd_una;
3647 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3648 /* we assume just one segment left network */
3649 tp->bytes_acked += min(ack - prior_snd_una,
3650 tp->mss_cache);
3651 }
3652
3653 prior_fackets = tp->fackets_out;
3654 prior_in_flight = tcp_packets_in_flight(tp);
3655
3656 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3657 /* Window is constant, pure forward advance.
3658 * No more checks are required.
3659 * Note, we use the fact that SND.UNA>=SND.WL2.
3660 */
3661 tcp_update_wl(tp, ack_seq);
3662 tp->snd_una = ack;
3663 flag |= FLAG_WIN_UPDATE;
3664
3665 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3666
3667 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3668 } else {
3669 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3670 flag |= FLAG_DATA;
3671 else
3672 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3673
3674 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3675
3676 if (TCP_SKB_CB(skb)->sacked)
3677 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3678
3679 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3680 flag |= FLAG_ECE;
3681
3682 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3683 }
3684
3685 /* We passed data and got it acked, remove any soft error
3686 * log. Something worked...
3687 */
3688 sk->sk_err_soft = 0;
3689 icsk->icsk_probes_out = 0;
3690 tp->rcv_tstamp = tcp_time_stamp;
3691 prior_packets = tp->packets_out;
3692 if (!prior_packets)
3693 goto no_queue;
3694
3695 /* See if we can take anything off of the retransmit queue. */
3696 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3697
3698 if (tp->frto_counter)
3699 frto_cwnd = tcp_process_frto(sk, flag);
3700 /* Guarantee sacktag reordering detection against wrap-arounds */
3701 if (before(tp->frto_highmark, tp->snd_una))
3702 tp->frto_highmark = 0;
3703
3704 if (tcp_ack_is_dubious(sk, flag)) {
3705 /* Advance CWND, if state allows this. */
3706 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3707 tcp_may_raise_cwnd(sk, flag))
3708 tcp_cong_avoid(sk, ack, prior_in_flight);
3709 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3710 flag);
3711 } else {
3712 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3713 tcp_cong_avoid(sk, ack, prior_in_flight);
3714 }
3715
3716 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3717 dst_confirm(__sk_dst_get(sk));
3718
3719 return 1;
3720
3721 no_queue:
3722 /* If this ack opens up a zero window, clear backoff. It was
3723 * being used to time the probes, and is probably far higher than
3724 * it needs to be for normal retransmission.
3725 */
3726 if (tcp_send_head(sk))
3727 tcp_ack_probe(sk);
3728 return 1;
3729
3730 invalid_ack:
3731 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3732 return -1;
3733
3734 old_ack:
3735 if (TCP_SKB_CB(skb)->sacked) {
3736 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3737 if (icsk->icsk_ca_state == TCP_CA_Open)
3738 tcp_try_keep_open(sk);
3739 }
3740
3741 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3742 return 0;
3743 }
3744
3745 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3746 * But, this can also be called on packets in the established flow when
3747 * the fast version below fails.
3748 */
3749 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3750 u8 **hvpp, int estab)
3751 {
3752 unsigned char *ptr;
3753 struct tcphdr *th = tcp_hdr(skb);
3754 int length = (th->doff * 4) - sizeof(struct tcphdr);
3755
3756 ptr = (unsigned char *)(th + 1);
3757 opt_rx->saw_tstamp = 0;
3758
3759 while (length > 0) {
3760 int opcode = *ptr++;
3761 int opsize;
3762
3763 switch (opcode) {
3764 case TCPOPT_EOL:
3765 return;
3766 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3767 length--;
3768 continue;
3769 default:
3770 opsize = *ptr++;
3771 if (opsize < 2) /* "silly options" */
3772 return;
3773 if (opsize > length)
3774 return; /* don't parse partial options */
3775 switch (opcode) {
3776 case TCPOPT_MSS:
3777 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3778 u16 in_mss = get_unaligned_be16(ptr);
3779 if (in_mss) {
3780 if (opt_rx->user_mss &&
3781 opt_rx->user_mss < in_mss)
3782 in_mss = opt_rx->user_mss;
3783 opt_rx->mss_clamp = in_mss;
3784 }
3785 }
3786 break;
3787 case TCPOPT_WINDOW:
3788 if (opsize == TCPOLEN_WINDOW && th->syn &&
3789 !estab && sysctl_tcp_window_scaling) {
3790 __u8 snd_wscale = *(__u8 *)ptr;
3791 opt_rx->wscale_ok = 1;
3792 if (snd_wscale > 14) {
3793 if (net_ratelimit())
3794 printk(KERN_INFO "tcp_parse_options: Illegal window "
3795 "scaling value %d >14 received.\n",
3796 snd_wscale);
3797 snd_wscale = 14;
3798 }
3799 opt_rx->snd_wscale = snd_wscale;
3800 }
3801 break;
3802 case TCPOPT_TIMESTAMP:
3803 if ((opsize == TCPOLEN_TIMESTAMP) &&
3804 ((estab && opt_rx->tstamp_ok) ||
3805 (!estab && sysctl_tcp_timestamps))) {
3806 opt_rx->saw_tstamp = 1;
3807 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3808 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3809 }
3810 break;
3811 case TCPOPT_SACK_PERM:
3812 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3813 !estab && sysctl_tcp_sack) {
3814 opt_rx->sack_ok = 1;
3815 tcp_sack_reset(opt_rx);
3816 }
3817 break;
3818
3819 case TCPOPT_SACK:
3820 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3821 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3822 opt_rx->sack_ok) {
3823 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3824 }
3825 break;
3826 #ifdef CONFIG_TCP_MD5SIG
3827 case TCPOPT_MD5SIG:
3828 /*
3829 * The MD5 Hash has already been
3830 * checked (see tcp_v{4,6}_do_rcv()).
3831 */
3832 break;
3833 #endif
3834 case TCPOPT_COOKIE:
3835 /* This option is variable length.
3836 */
3837 switch (opsize) {
3838 case TCPOLEN_COOKIE_BASE:
3839 /* not yet implemented */
3840 break;
3841 case TCPOLEN_COOKIE_PAIR:
3842 /* not yet implemented */
3843 break;
3844 case TCPOLEN_COOKIE_MIN+0:
3845 case TCPOLEN_COOKIE_MIN+2:
3846 case TCPOLEN_COOKIE_MIN+4:
3847 case TCPOLEN_COOKIE_MIN+6:
3848 case TCPOLEN_COOKIE_MAX:
3849 /* 16-bit multiple */
3850 opt_rx->cookie_plus = opsize;
3851 *hvpp = ptr;
3852 break;
3853 default:
3854 /* ignore option */
3855 break;
3856 }
3857 break;
3858 }
3859
3860 ptr += opsize-2;
3861 length -= opsize;
3862 }
3863 }
3864 }
3865 EXPORT_SYMBOL(tcp_parse_options);
3866
3867 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3868 {
3869 __be32 *ptr = (__be32 *)(th + 1);
3870
3871 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3872 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3873 tp->rx_opt.saw_tstamp = 1;
3874 ++ptr;
3875 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3876 ++ptr;
3877 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3878 return 1;
3879 }
3880 return 0;
3881 }
3882
3883 /* Fast parse options. This hopes to only see timestamps.
3884 * If it is wrong it falls back on tcp_parse_options().
3885 */
3886 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3887 struct tcp_sock *tp, u8 **hvpp)
3888 {
3889 /* In the spirit of fast parsing, compare doff directly to constant
3890 * values. Because equality is used, short doff can be ignored here.
3891 */
3892 if (th->doff == (sizeof(*th) / 4)) {
3893 tp->rx_opt.saw_tstamp = 0;
3894 return 0;
3895 } else if (tp->rx_opt.tstamp_ok &&
3896 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3897 if (tcp_parse_aligned_timestamp(tp, th))
3898 return 1;
3899 }
3900 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3901 return 1;
3902 }
3903
3904 #ifdef CONFIG_TCP_MD5SIG
3905 /*
3906 * Parse MD5 Signature option
3907 */
3908 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3909 {
3910 int length = (th->doff << 2) - sizeof (*th);
3911 u8 *ptr = (u8*)(th + 1);
3912
3913 /* If the TCP option is too short, we can short cut */
3914 if (length < TCPOLEN_MD5SIG)
3915 return NULL;
3916
3917 while (length > 0) {
3918 int opcode = *ptr++;
3919 int opsize;
3920
3921 switch(opcode) {
3922 case TCPOPT_EOL:
3923 return NULL;
3924 case TCPOPT_NOP:
3925 length--;
3926 continue;
3927 default:
3928 opsize = *ptr++;
3929 if (opsize < 2 || opsize > length)
3930 return NULL;
3931 if (opcode == TCPOPT_MD5SIG)
3932 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3933 }
3934 ptr += opsize - 2;
3935 length -= opsize;
3936 }
3937 return NULL;
3938 }
3939 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3940 #endif
3941
3942 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3943 {
3944 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3945 tp->rx_opt.ts_recent_stamp = get_seconds();
3946 }
3947
3948 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3949 {
3950 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3951 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3952 * extra check below makes sure this can only happen
3953 * for pure ACK frames. -DaveM
3954 *
3955 * Not only, also it occurs for expired timestamps.
3956 */
3957
3958 if (tcp_paws_check(&tp->rx_opt, 0))
3959 tcp_store_ts_recent(tp);
3960 }
3961 }
3962
3963 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3964 *
3965 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3966 * it can pass through stack. So, the following predicate verifies that
3967 * this segment is not used for anything but congestion avoidance or
3968 * fast retransmit. Moreover, we even are able to eliminate most of such
3969 * second order effects, if we apply some small "replay" window (~RTO)
3970 * to timestamp space.
3971 *
3972 * All these measures still do not guarantee that we reject wrapped ACKs
3973 * on networks with high bandwidth, when sequence space is recycled fastly,
3974 * but it guarantees that such events will be very rare and do not affect
3975 * connection seriously. This doesn't look nice, but alas, PAWS is really
3976 * buggy extension.
3977 *
3978 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3979 * states that events when retransmit arrives after original data are rare.
3980 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3981 * the biggest problem on large power networks even with minor reordering.
3982 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3983 * up to bandwidth of 18Gigabit/sec. 8) ]
3984 */
3985
3986 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3987 {
3988 struct tcp_sock *tp = tcp_sk(sk);
3989 struct tcphdr *th = tcp_hdr(skb);
3990 u32 seq = TCP_SKB_CB(skb)->seq;
3991 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3992
3993 return (/* 1. Pure ACK with correct sequence number. */
3994 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3995
3996 /* 2. ... and duplicate ACK. */
3997 ack == tp->snd_una &&
3998
3999 /* 3. ... and does not update window. */
4000 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4001
4002 /* 4. ... and sits in replay window. */
4003 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4004 }
4005
4006 static inline int tcp_paws_discard(const struct sock *sk,
4007 const struct sk_buff *skb)
4008 {
4009 const struct tcp_sock *tp = tcp_sk(sk);
4010
4011 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4012 !tcp_disordered_ack(sk, skb);
4013 }
4014
4015 /* Check segment sequence number for validity.
4016 *
4017 * Segment controls are considered valid, if the segment
4018 * fits to the window after truncation to the window. Acceptability
4019 * of data (and SYN, FIN, of course) is checked separately.
4020 * See tcp_data_queue(), for example.
4021 *
4022 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4023 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4024 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4025 * (borrowed from freebsd)
4026 */
4027
4028 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4029 {
4030 return !before(end_seq, tp->rcv_wup) &&
4031 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4032 }
4033
4034 /* When we get a reset we do this. */
4035 static void tcp_reset(struct sock *sk)
4036 {
4037 /* We want the right error as BSD sees it (and indeed as we do). */
4038 switch (sk->sk_state) {
4039 case TCP_SYN_SENT:
4040 sk->sk_err = ECONNREFUSED;
4041 break;
4042 case TCP_CLOSE_WAIT:
4043 sk->sk_err = EPIPE;
4044 break;
4045 case TCP_CLOSE:
4046 return;
4047 default:
4048 sk->sk_err = ECONNRESET;
4049 }
4050 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4051 smp_wmb();
4052
4053 if (!sock_flag(sk, SOCK_DEAD))
4054 sk->sk_error_report(sk);
4055
4056 tcp_done(sk);
4057 }
4058
4059 /*
4060 * Process the FIN bit. This now behaves as it is supposed to work
4061 * and the FIN takes effect when it is validly part of sequence
4062 * space. Not before when we get holes.
4063 *
4064 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4065 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4066 * TIME-WAIT)
4067 *
4068 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4069 * close and we go into CLOSING (and later onto TIME-WAIT)
4070 *
4071 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4072 */
4073 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4074 {
4075 struct tcp_sock *tp = tcp_sk(sk);
4076
4077 inet_csk_schedule_ack(sk);
4078
4079 sk->sk_shutdown |= RCV_SHUTDOWN;
4080 sock_set_flag(sk, SOCK_DONE);
4081
4082 switch (sk->sk_state) {
4083 case TCP_SYN_RECV:
4084 case TCP_ESTABLISHED:
4085 /* Move to CLOSE_WAIT */
4086 tcp_set_state(sk, TCP_CLOSE_WAIT);
4087 inet_csk(sk)->icsk_ack.pingpong = 1;
4088 break;
4089
4090 case TCP_CLOSE_WAIT:
4091 case TCP_CLOSING:
4092 /* Received a retransmission of the FIN, do
4093 * nothing.
4094 */
4095 break;
4096 case TCP_LAST_ACK:
4097 /* RFC793: Remain in the LAST-ACK state. */
4098 break;
4099
4100 case TCP_FIN_WAIT1:
4101 /* This case occurs when a simultaneous close
4102 * happens, we must ack the received FIN and
4103 * enter the CLOSING state.
4104 */
4105 tcp_send_ack(sk);
4106 tcp_set_state(sk, TCP_CLOSING);
4107 break;
4108 case TCP_FIN_WAIT2:
4109 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4110 tcp_send_ack(sk);
4111 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4112 break;
4113 default:
4114 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4115 * cases we should never reach this piece of code.
4116 */
4117 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4118 __func__, sk->sk_state);
4119 break;
4120 }
4121
4122 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4123 * Probably, we should reset in this case. For now drop them.
4124 */
4125 __skb_queue_purge(&tp->out_of_order_queue);
4126 if (tcp_is_sack(tp))
4127 tcp_sack_reset(&tp->rx_opt);
4128 sk_mem_reclaim(sk);
4129
4130 if (!sock_flag(sk, SOCK_DEAD)) {
4131 sk->sk_state_change(sk);
4132
4133 /* Do not send POLL_HUP for half duplex close. */
4134 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4135 sk->sk_state == TCP_CLOSE)
4136 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4137 else
4138 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4139 }
4140 }
4141
4142 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4143 u32 end_seq)
4144 {
4145 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4146 if (before(seq, sp->start_seq))
4147 sp->start_seq = seq;
4148 if (after(end_seq, sp->end_seq))
4149 sp->end_seq = end_seq;
4150 return 1;
4151 }
4152 return 0;
4153 }
4154
4155 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4156 {
4157 struct tcp_sock *tp = tcp_sk(sk);
4158
4159 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4160 int mib_idx;
4161
4162 if (before(seq, tp->rcv_nxt))
4163 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4164 else
4165 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4166
4167 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4168
4169 tp->rx_opt.dsack = 1;
4170 tp->duplicate_sack[0].start_seq = seq;
4171 tp->duplicate_sack[0].end_seq = end_seq;
4172 }
4173 }
4174
4175 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4176 {
4177 struct tcp_sock *tp = tcp_sk(sk);
4178
4179 if (!tp->rx_opt.dsack)
4180 tcp_dsack_set(sk, seq, end_seq);
4181 else
4182 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4183 }
4184
4185 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4186 {
4187 struct tcp_sock *tp = tcp_sk(sk);
4188
4189 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4190 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4192 tcp_enter_quickack_mode(sk);
4193
4194 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4195 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4196
4197 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4198 end_seq = tp->rcv_nxt;
4199 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4200 }
4201 }
4202
4203 tcp_send_ack(sk);
4204 }
4205
4206 /* These routines update the SACK block as out-of-order packets arrive or
4207 * in-order packets close up the sequence space.
4208 */
4209 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4210 {
4211 int this_sack;
4212 struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 struct tcp_sack_block *swalk = sp + 1;
4214
4215 /* See if the recent change to the first SACK eats into
4216 * or hits the sequence space of other SACK blocks, if so coalesce.
4217 */
4218 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4219 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4220 int i;
4221
4222 /* Zap SWALK, by moving every further SACK up by one slot.
4223 * Decrease num_sacks.
4224 */
4225 tp->rx_opt.num_sacks--;
4226 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4227 sp[i] = sp[i + 1];
4228 continue;
4229 }
4230 this_sack++, swalk++;
4231 }
4232 }
4233
4234 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4235 {
4236 struct tcp_sock *tp = tcp_sk(sk);
4237 struct tcp_sack_block *sp = &tp->selective_acks[0];
4238 int cur_sacks = tp->rx_opt.num_sacks;
4239 int this_sack;
4240
4241 if (!cur_sacks)
4242 goto new_sack;
4243
4244 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4245 if (tcp_sack_extend(sp, seq, end_seq)) {
4246 /* Rotate this_sack to the first one. */
4247 for (; this_sack > 0; this_sack--, sp--)
4248 swap(*sp, *(sp - 1));
4249 if (cur_sacks > 1)
4250 tcp_sack_maybe_coalesce(tp);
4251 return;
4252 }
4253 }
4254
4255 /* Could not find an adjacent existing SACK, build a new one,
4256 * put it at the front, and shift everyone else down. We
4257 * always know there is at least one SACK present already here.
4258 *
4259 * If the sack array is full, forget about the last one.
4260 */
4261 if (this_sack >= TCP_NUM_SACKS) {
4262 this_sack--;
4263 tp->rx_opt.num_sacks--;
4264 sp--;
4265 }
4266 for (; this_sack > 0; this_sack--, sp--)
4267 *sp = *(sp - 1);
4268
4269 new_sack:
4270 /* Build the new head SACK, and we're done. */
4271 sp->start_seq = seq;
4272 sp->end_seq = end_seq;
4273 tp->rx_opt.num_sacks++;
4274 }
4275
4276 /* RCV.NXT advances, some SACKs should be eaten. */
4277
4278 static void tcp_sack_remove(struct tcp_sock *tp)
4279 {
4280 struct tcp_sack_block *sp = &tp->selective_acks[0];
4281 int num_sacks = tp->rx_opt.num_sacks;
4282 int this_sack;
4283
4284 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4285 if (skb_queue_empty(&tp->out_of_order_queue)) {
4286 tp->rx_opt.num_sacks = 0;
4287 return;
4288 }
4289
4290 for (this_sack = 0; this_sack < num_sacks;) {
4291 /* Check if the start of the sack is covered by RCV.NXT. */
4292 if (!before(tp->rcv_nxt, sp->start_seq)) {
4293 int i;
4294
4295 /* RCV.NXT must cover all the block! */
4296 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4297
4298 /* Zap this SACK, by moving forward any other SACKS. */
4299 for (i=this_sack+1; i < num_sacks; i++)
4300 tp->selective_acks[i-1] = tp->selective_acks[i];
4301 num_sacks--;
4302 continue;
4303 }
4304 this_sack++;
4305 sp++;
4306 }
4307 tp->rx_opt.num_sacks = num_sacks;
4308 }
4309
4310 /* This one checks to see if we can put data from the
4311 * out_of_order queue into the receive_queue.
4312 */
4313 static void tcp_ofo_queue(struct sock *sk)
4314 {
4315 struct tcp_sock *tp = tcp_sk(sk);
4316 __u32 dsack_high = tp->rcv_nxt;
4317 struct sk_buff *skb;
4318
4319 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4320 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4321 break;
4322
4323 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4324 __u32 dsack = dsack_high;
4325 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4326 dsack_high = TCP_SKB_CB(skb)->end_seq;
4327 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4328 }
4329
4330 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4331 SOCK_DEBUG(sk, "ofo packet was already received\n");
4332 __skb_unlink(skb, &tp->out_of_order_queue);
4333 __kfree_skb(skb);
4334 continue;
4335 }
4336 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4337 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4338 TCP_SKB_CB(skb)->end_seq);
4339
4340 __skb_unlink(skb, &tp->out_of_order_queue);
4341 __skb_queue_tail(&sk->sk_receive_queue, skb);
4342 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4343 if (tcp_hdr(skb)->fin)
4344 tcp_fin(skb, sk, tcp_hdr(skb));
4345 }
4346 }
4347
4348 static int tcp_prune_ofo_queue(struct sock *sk);
4349 static int tcp_prune_queue(struct sock *sk);
4350
4351 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4352 {
4353 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4354 !sk_rmem_schedule(sk, size)) {
4355
4356 if (tcp_prune_queue(sk) < 0)
4357 return -1;
4358
4359 if (!sk_rmem_schedule(sk, size)) {
4360 if (!tcp_prune_ofo_queue(sk))
4361 return -1;
4362
4363 if (!sk_rmem_schedule(sk, size))
4364 return -1;
4365 }
4366 }
4367 return 0;
4368 }
4369
4370 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4371 {
4372 struct tcphdr *th = tcp_hdr(skb);
4373 struct tcp_sock *tp = tcp_sk(sk);
4374 int eaten = -1;
4375
4376 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4377 goto drop;
4378
4379 skb_dst_drop(skb);
4380 __skb_pull(skb, th->doff * 4);
4381
4382 TCP_ECN_accept_cwr(tp, skb);
4383
4384 tp->rx_opt.dsack = 0;
4385
4386 /* Queue data for delivery to the user.
4387 * Packets in sequence go to the receive queue.
4388 * Out of sequence packets to the out_of_order_queue.
4389 */
4390 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4391 if (tcp_receive_window(tp) == 0)
4392 goto out_of_window;
4393
4394 /* Ok. In sequence. In window. */
4395 if (tp->ucopy.task == current &&
4396 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4397 sock_owned_by_user(sk) && !tp->urg_data) {
4398 int chunk = min_t(unsigned int, skb->len,
4399 tp->ucopy.len);
4400
4401 __set_current_state(TASK_RUNNING);
4402
4403 local_bh_enable();
4404 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4405 tp->ucopy.len -= chunk;
4406 tp->copied_seq += chunk;
4407 eaten = (chunk == skb->len && !th->fin);
4408 tcp_rcv_space_adjust(sk);
4409 }
4410 local_bh_disable();
4411 }
4412
4413 if (eaten <= 0) {
4414 queue_and_out:
4415 if (eaten < 0 &&
4416 tcp_try_rmem_schedule(sk, skb->truesize))
4417 goto drop;
4418
4419 skb_set_owner_r(skb, sk);
4420 __skb_queue_tail(&sk->sk_receive_queue, skb);
4421 }
4422 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4423 if (skb->len)
4424 tcp_event_data_recv(sk, skb);
4425 if (th->fin)
4426 tcp_fin(skb, sk, th);
4427
4428 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4429 tcp_ofo_queue(sk);
4430
4431 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4432 * gap in queue is filled.
4433 */
4434 if (skb_queue_empty(&tp->out_of_order_queue))
4435 inet_csk(sk)->icsk_ack.pingpong = 0;
4436 }
4437
4438 if (tp->rx_opt.num_sacks)
4439 tcp_sack_remove(tp);
4440
4441 tcp_fast_path_check(sk);
4442
4443 if (eaten > 0)
4444 __kfree_skb(skb);
4445 else if (!sock_flag(sk, SOCK_DEAD))
4446 sk->sk_data_ready(sk, 0);
4447 return;
4448 }
4449
4450 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4451 /* A retransmit, 2nd most common case. Force an immediate ack. */
4452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4453 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4454
4455 out_of_window:
4456 tcp_enter_quickack_mode(sk);
4457 inet_csk_schedule_ack(sk);
4458 drop:
4459 __kfree_skb(skb);
4460 return;
4461 }
4462
4463 /* Out of window. F.e. zero window probe. */
4464 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4465 goto out_of_window;
4466
4467 tcp_enter_quickack_mode(sk);
4468
4469 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4470 /* Partial packet, seq < rcv_next < end_seq */
4471 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4472 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4473 TCP_SKB_CB(skb)->end_seq);
4474
4475 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4476
4477 /* If window is closed, drop tail of packet. But after
4478 * remembering D-SACK for its head made in previous line.
4479 */
4480 if (!tcp_receive_window(tp))
4481 goto out_of_window;
4482 goto queue_and_out;
4483 }
4484
4485 TCP_ECN_check_ce(tp, skb);
4486
4487 if (tcp_try_rmem_schedule(sk, skb->truesize))
4488 goto drop;
4489
4490 /* Disable header prediction. */
4491 tp->pred_flags = 0;
4492 inet_csk_schedule_ack(sk);
4493
4494 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4495 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4496
4497 skb_set_owner_r(skb, sk);
4498
4499 if (!skb_peek(&tp->out_of_order_queue)) {
4500 /* Initial out of order segment, build 1 SACK. */
4501 if (tcp_is_sack(tp)) {
4502 tp->rx_opt.num_sacks = 1;
4503 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4504 tp->selective_acks[0].end_seq =
4505 TCP_SKB_CB(skb)->end_seq;
4506 }
4507 __skb_queue_head(&tp->out_of_order_queue, skb);
4508 } else {
4509 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4510 u32 seq = TCP_SKB_CB(skb)->seq;
4511 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4512
4513 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4514 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4515
4516 if (!tp->rx_opt.num_sacks ||
4517 tp->selective_acks[0].end_seq != seq)
4518 goto add_sack;
4519
4520 /* Common case: data arrive in order after hole. */
4521 tp->selective_acks[0].end_seq = end_seq;
4522 return;
4523 }
4524
4525 /* Find place to insert this segment. */
4526 while (1) {
4527 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4528 break;
4529 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4530 skb1 = NULL;
4531 break;
4532 }
4533 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4534 }
4535
4536 /* Do skb overlap to previous one? */
4537 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4538 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4539 /* All the bits are present. Drop. */
4540 __kfree_skb(skb);
4541 tcp_dsack_set(sk, seq, end_seq);
4542 goto add_sack;
4543 }
4544 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4545 /* Partial overlap. */
4546 tcp_dsack_set(sk, seq,
4547 TCP_SKB_CB(skb1)->end_seq);
4548 } else {
4549 if (skb_queue_is_first(&tp->out_of_order_queue,
4550 skb1))
4551 skb1 = NULL;
4552 else
4553 skb1 = skb_queue_prev(
4554 &tp->out_of_order_queue,
4555 skb1);
4556 }
4557 }
4558 if (!skb1)
4559 __skb_queue_head(&tp->out_of_order_queue, skb);
4560 else
4561 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4562
4563 /* And clean segments covered by new one as whole. */
4564 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4565 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4566
4567 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4568 break;
4569 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4570 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571 end_seq);
4572 break;
4573 }
4574 __skb_unlink(skb1, &tp->out_of_order_queue);
4575 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4576 TCP_SKB_CB(skb1)->end_seq);
4577 __kfree_skb(skb1);
4578 }
4579
4580 add_sack:
4581 if (tcp_is_sack(tp))
4582 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4583 }
4584 }
4585
4586 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4587 struct sk_buff_head *list)
4588 {
4589 struct sk_buff *next = NULL;
4590
4591 if (!skb_queue_is_last(list, skb))
4592 next = skb_queue_next(list, skb);
4593
4594 __skb_unlink(skb, list);
4595 __kfree_skb(skb);
4596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4597
4598 return next;
4599 }
4600
4601 /* Collapse contiguous sequence of skbs head..tail with
4602 * sequence numbers start..end.
4603 *
4604 * If tail is NULL, this means until the end of the list.
4605 *
4606 * Segments with FIN/SYN are not collapsed (only because this
4607 * simplifies code)
4608 */
4609 static void
4610 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4611 struct sk_buff *head, struct sk_buff *tail,
4612 u32 start, u32 end)
4613 {
4614 struct sk_buff *skb, *n;
4615 bool end_of_skbs;
4616
4617 /* First, check that queue is collapsible and find
4618 * the point where collapsing can be useful. */
4619 skb = head;
4620 restart:
4621 end_of_skbs = true;
4622 skb_queue_walk_from_safe(list, skb, n) {
4623 if (skb == tail)
4624 break;
4625 /* No new bits? It is possible on ofo queue. */
4626 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4627 skb = tcp_collapse_one(sk, skb, list);
4628 if (!skb)
4629 break;
4630 goto restart;
4631 }
4632
4633 /* The first skb to collapse is:
4634 * - not SYN/FIN and
4635 * - bloated or contains data before "start" or
4636 * overlaps to the next one.
4637 */
4638 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4639 (tcp_win_from_space(skb->truesize) > skb->len ||
4640 before(TCP_SKB_CB(skb)->seq, start))) {
4641 end_of_skbs = false;
4642 break;
4643 }
4644
4645 if (!skb_queue_is_last(list, skb)) {
4646 struct sk_buff *next = skb_queue_next(list, skb);
4647 if (next != tail &&
4648 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4649 end_of_skbs = false;
4650 break;
4651 }
4652 }
4653
4654 /* Decided to skip this, advance start seq. */
4655 start = TCP_SKB_CB(skb)->end_seq;
4656 }
4657 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4658 return;
4659
4660 while (before(start, end)) {
4661 struct sk_buff *nskb;
4662 unsigned int header = skb_headroom(skb);
4663 int copy = SKB_MAX_ORDER(header, 0);
4664
4665 /* Too big header? This can happen with IPv6. */
4666 if (copy < 0)
4667 return;
4668 if (end - start < copy)
4669 copy = end - start;
4670 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4671 if (!nskb)
4672 return;
4673
4674 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4675 skb_set_network_header(nskb, (skb_network_header(skb) -
4676 skb->head));
4677 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4678 skb->head));
4679 skb_reserve(nskb, header);
4680 memcpy(nskb->head, skb->head, header);
4681 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4682 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4683 __skb_queue_before(list, skb, nskb);
4684 skb_set_owner_r(nskb, sk);
4685
4686 /* Copy data, releasing collapsed skbs. */
4687 while (copy > 0) {
4688 int offset = start - TCP_SKB_CB(skb)->seq;
4689 int size = TCP_SKB_CB(skb)->end_seq - start;
4690
4691 BUG_ON(offset < 0);
4692 if (size > 0) {
4693 size = min(copy, size);
4694 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4695 BUG();
4696 TCP_SKB_CB(nskb)->end_seq += size;
4697 copy -= size;
4698 start += size;
4699 }
4700 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4701 skb = tcp_collapse_one(sk, skb, list);
4702 if (!skb ||
4703 skb == tail ||
4704 tcp_hdr(skb)->syn ||
4705 tcp_hdr(skb)->fin)
4706 return;
4707 }
4708 }
4709 }
4710 }
4711
4712 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4713 * and tcp_collapse() them until all the queue is collapsed.
4714 */
4715 static void tcp_collapse_ofo_queue(struct sock *sk)
4716 {
4717 struct tcp_sock *tp = tcp_sk(sk);
4718 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4719 struct sk_buff *head;
4720 u32 start, end;
4721
4722 if (skb == NULL)
4723 return;
4724
4725 start = TCP_SKB_CB(skb)->seq;
4726 end = TCP_SKB_CB(skb)->end_seq;
4727 head = skb;
4728
4729 for (;;) {
4730 struct sk_buff *next = NULL;
4731
4732 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4733 next = skb_queue_next(&tp->out_of_order_queue, skb);
4734 skb = next;
4735
4736 /* Segment is terminated when we see gap or when
4737 * we are at the end of all the queue. */
4738 if (!skb ||
4739 after(TCP_SKB_CB(skb)->seq, end) ||
4740 before(TCP_SKB_CB(skb)->end_seq, start)) {
4741 tcp_collapse(sk, &tp->out_of_order_queue,
4742 head, skb, start, end);
4743 head = skb;
4744 if (!skb)
4745 break;
4746 /* Start new segment */
4747 start = TCP_SKB_CB(skb)->seq;
4748 end = TCP_SKB_CB(skb)->end_seq;
4749 } else {
4750 if (before(TCP_SKB_CB(skb)->seq, start))
4751 start = TCP_SKB_CB(skb)->seq;
4752 if (after(TCP_SKB_CB(skb)->end_seq, end))
4753 end = TCP_SKB_CB(skb)->end_seq;
4754 }
4755 }
4756 }
4757
4758 /*
4759 * Purge the out-of-order queue.
4760 * Return true if queue was pruned.
4761 */
4762 static int tcp_prune_ofo_queue(struct sock *sk)
4763 {
4764 struct tcp_sock *tp = tcp_sk(sk);
4765 int res = 0;
4766
4767 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4769 __skb_queue_purge(&tp->out_of_order_queue);
4770
4771 /* Reset SACK state. A conforming SACK implementation will
4772 * do the same at a timeout based retransmit. When a connection
4773 * is in a sad state like this, we care only about integrity
4774 * of the connection not performance.
4775 */
4776 if (tp->rx_opt.sack_ok)
4777 tcp_sack_reset(&tp->rx_opt);
4778 sk_mem_reclaim(sk);
4779 res = 1;
4780 }
4781 return res;
4782 }
4783
4784 /* Reduce allocated memory if we can, trying to get
4785 * the socket within its memory limits again.
4786 *
4787 * Return less than zero if we should start dropping frames
4788 * until the socket owning process reads some of the data
4789 * to stabilize the situation.
4790 */
4791 static int tcp_prune_queue(struct sock *sk)
4792 {
4793 struct tcp_sock *tp = tcp_sk(sk);
4794
4795 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4796
4797 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4798
4799 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4800 tcp_clamp_window(sk);
4801 else if (tcp_memory_pressure)
4802 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4803
4804 tcp_collapse_ofo_queue(sk);
4805 if (!skb_queue_empty(&sk->sk_receive_queue))
4806 tcp_collapse(sk, &sk->sk_receive_queue,
4807 skb_peek(&sk->sk_receive_queue),
4808 NULL,
4809 tp->copied_seq, tp->rcv_nxt);
4810 sk_mem_reclaim(sk);
4811
4812 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4813 return 0;
4814
4815 /* Collapsing did not help, destructive actions follow.
4816 * This must not ever occur. */
4817
4818 tcp_prune_ofo_queue(sk);
4819
4820 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4821 return 0;
4822
4823 /* If we are really being abused, tell the caller to silently
4824 * drop receive data on the floor. It will get retransmitted
4825 * and hopefully then we'll have sufficient space.
4826 */
4827 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4828
4829 /* Massive buffer overcommit. */
4830 tp->pred_flags = 0;
4831 return -1;
4832 }
4833
4834 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4835 * As additional protections, we do not touch cwnd in retransmission phases,
4836 * and if application hit its sndbuf limit recently.
4837 */
4838 void tcp_cwnd_application_limited(struct sock *sk)
4839 {
4840 struct tcp_sock *tp = tcp_sk(sk);
4841
4842 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4843 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4844 /* Limited by application or receiver window. */
4845 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4846 u32 win_used = max(tp->snd_cwnd_used, init_win);
4847 if (win_used < tp->snd_cwnd) {
4848 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4849 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4850 }
4851 tp->snd_cwnd_used = 0;
4852 }
4853 tp->snd_cwnd_stamp = tcp_time_stamp;
4854 }
4855
4856 static int tcp_should_expand_sndbuf(struct sock *sk)
4857 {
4858 struct tcp_sock *tp = tcp_sk(sk);
4859
4860 /* If the user specified a specific send buffer setting, do
4861 * not modify it.
4862 */
4863 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4864 return 0;
4865
4866 /* If we are under global TCP memory pressure, do not expand. */
4867 if (tcp_memory_pressure)
4868 return 0;
4869
4870 /* If we are under soft global TCP memory pressure, do not expand. */
4871 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4872 return 0;
4873
4874 /* If we filled the congestion window, do not expand. */
4875 if (tp->packets_out >= tp->snd_cwnd)
4876 return 0;
4877
4878 return 1;
4879 }
4880
4881 /* When incoming ACK allowed to free some skb from write_queue,
4882 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4883 * on the exit from tcp input handler.
4884 *
4885 * PROBLEM: sndbuf expansion does not work well with largesend.
4886 */
4887 static void tcp_new_space(struct sock *sk)
4888 {
4889 struct tcp_sock *tp = tcp_sk(sk);
4890
4891 if (tcp_should_expand_sndbuf(sk)) {
4892 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4893 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4894 int demanded = max_t(unsigned int, tp->snd_cwnd,
4895 tp->reordering + 1);
4896 sndmem *= 2 * demanded;
4897 if (sndmem > sk->sk_sndbuf)
4898 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4899 tp->snd_cwnd_stamp = tcp_time_stamp;
4900 }
4901
4902 sk->sk_write_space(sk);
4903 }
4904
4905 static void tcp_check_space(struct sock *sk)
4906 {
4907 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4908 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4909 if (sk->sk_socket &&
4910 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4911 tcp_new_space(sk);
4912 }
4913 }
4914
4915 static inline void tcp_data_snd_check(struct sock *sk)
4916 {
4917 tcp_push_pending_frames(sk);
4918 tcp_check_space(sk);
4919 }
4920
4921 /*
4922 * Check if sending an ack is needed.
4923 */
4924 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4925 {
4926 struct tcp_sock *tp = tcp_sk(sk);
4927
4928 /* More than one full frame received... */
4929 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4930 /* ... and right edge of window advances far enough.
4931 * (tcp_recvmsg() will send ACK otherwise). Or...
4932 */
4933 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4934 /* We ACK each frame or... */
4935 tcp_in_quickack_mode(sk) ||
4936 /* We have out of order data. */
4937 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4938 /* Then ack it now */
4939 tcp_send_ack(sk);
4940 } else {
4941 /* Else, send delayed ack. */
4942 tcp_send_delayed_ack(sk);
4943 }
4944 }
4945
4946 static inline void tcp_ack_snd_check(struct sock *sk)
4947 {
4948 if (!inet_csk_ack_scheduled(sk)) {
4949 /* We sent a data segment already. */
4950 return;
4951 }
4952 __tcp_ack_snd_check(sk, 1);
4953 }
4954
4955 /*
4956 * This routine is only called when we have urgent data
4957 * signaled. Its the 'slow' part of tcp_urg. It could be
4958 * moved inline now as tcp_urg is only called from one
4959 * place. We handle URGent data wrong. We have to - as
4960 * BSD still doesn't use the correction from RFC961.
4961 * For 1003.1g we should support a new option TCP_STDURG to permit
4962 * either form (or just set the sysctl tcp_stdurg).
4963 */
4964
4965 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4966 {
4967 struct tcp_sock *tp = tcp_sk(sk);
4968 u32 ptr = ntohs(th->urg_ptr);
4969
4970 if (ptr && !sysctl_tcp_stdurg)
4971 ptr--;
4972 ptr += ntohl(th->seq);
4973
4974 /* Ignore urgent data that we've already seen and read. */
4975 if (after(tp->copied_seq, ptr))
4976 return;
4977
4978 /* Do not replay urg ptr.
4979 *
4980 * NOTE: interesting situation not covered by specs.
4981 * Misbehaving sender may send urg ptr, pointing to segment,
4982 * which we already have in ofo queue. We are not able to fetch
4983 * such data and will stay in TCP_URG_NOTYET until will be eaten
4984 * by recvmsg(). Seems, we are not obliged to handle such wicked
4985 * situations. But it is worth to think about possibility of some
4986 * DoSes using some hypothetical application level deadlock.
4987 */
4988 if (before(ptr, tp->rcv_nxt))
4989 return;
4990
4991 /* Do we already have a newer (or duplicate) urgent pointer? */
4992 if (tp->urg_data && !after(ptr, tp->urg_seq))
4993 return;
4994
4995 /* Tell the world about our new urgent pointer. */
4996 sk_send_sigurg(sk);
4997
4998 /* We may be adding urgent data when the last byte read was
4999 * urgent. To do this requires some care. We cannot just ignore
5000 * tp->copied_seq since we would read the last urgent byte again
5001 * as data, nor can we alter copied_seq until this data arrives
5002 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5003 *
5004 * NOTE. Double Dutch. Rendering to plain English: author of comment
5005 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5006 * and expect that both A and B disappear from stream. This is _wrong_.
5007 * Though this happens in BSD with high probability, this is occasional.
5008 * Any application relying on this is buggy. Note also, that fix "works"
5009 * only in this artificial test. Insert some normal data between A and B and we will
5010 * decline of BSD again. Verdict: it is better to remove to trap
5011 * buggy users.
5012 */
5013 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5014 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5015 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5016 tp->copied_seq++;
5017 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5018 __skb_unlink(skb, &sk->sk_receive_queue);
5019 __kfree_skb(skb);
5020 }
5021 }
5022
5023 tp->urg_data = TCP_URG_NOTYET;
5024 tp->urg_seq = ptr;
5025
5026 /* Disable header prediction. */
5027 tp->pred_flags = 0;
5028 }
5029
5030 /* This is the 'fast' part of urgent handling. */
5031 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5032 {
5033 struct tcp_sock *tp = tcp_sk(sk);
5034
5035 /* Check if we get a new urgent pointer - normally not. */
5036 if (th->urg)
5037 tcp_check_urg(sk, th);
5038
5039 /* Do we wait for any urgent data? - normally not... */
5040 if (tp->urg_data == TCP_URG_NOTYET) {
5041 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5042 th->syn;
5043
5044 /* Is the urgent pointer pointing into this packet? */
5045 if (ptr < skb->len) {
5046 u8 tmp;
5047 if (skb_copy_bits(skb, ptr, &tmp, 1))
5048 BUG();
5049 tp->urg_data = TCP_URG_VALID | tmp;
5050 if (!sock_flag(sk, SOCK_DEAD))
5051 sk->sk_data_ready(sk, 0);
5052 }
5053 }
5054 }
5055
5056 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5057 {
5058 struct tcp_sock *tp = tcp_sk(sk);
5059 int chunk = skb->len - hlen;
5060 int err;
5061
5062 local_bh_enable();
5063 if (skb_csum_unnecessary(skb))
5064 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5065 else
5066 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5067 tp->ucopy.iov);
5068
5069 if (!err) {
5070 tp->ucopy.len -= chunk;
5071 tp->copied_seq += chunk;
5072 tcp_rcv_space_adjust(sk);
5073 }
5074
5075 local_bh_disable();
5076 return err;
5077 }
5078
5079 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5080 struct sk_buff *skb)
5081 {
5082 __sum16 result;
5083
5084 if (sock_owned_by_user(sk)) {
5085 local_bh_enable();
5086 result = __tcp_checksum_complete(skb);
5087 local_bh_disable();
5088 } else {
5089 result = __tcp_checksum_complete(skb);
5090 }
5091 return result;
5092 }
5093
5094 static inline int tcp_checksum_complete_user(struct sock *sk,
5095 struct sk_buff *skb)
5096 {
5097 return !skb_csum_unnecessary(skb) &&
5098 __tcp_checksum_complete_user(sk, skb);
5099 }
5100
5101 #ifdef CONFIG_NET_DMA
5102 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5103 int hlen)
5104 {
5105 struct tcp_sock *tp = tcp_sk(sk);
5106 int chunk = skb->len - hlen;
5107 int dma_cookie;
5108 int copied_early = 0;
5109
5110 if (tp->ucopy.wakeup)
5111 return 0;
5112
5113 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5114 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5115
5116 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5117
5118 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5119 skb, hlen,
5120 tp->ucopy.iov, chunk,
5121 tp->ucopy.pinned_list);
5122
5123 if (dma_cookie < 0)
5124 goto out;
5125
5126 tp->ucopy.dma_cookie = dma_cookie;
5127 copied_early = 1;
5128
5129 tp->ucopy.len -= chunk;
5130 tp->copied_seq += chunk;
5131 tcp_rcv_space_adjust(sk);
5132
5133 if ((tp->ucopy.len == 0) ||
5134 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5135 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5136 tp->ucopy.wakeup = 1;
5137 sk->sk_data_ready(sk, 0);
5138 }
5139 } else if (chunk > 0) {
5140 tp->ucopy.wakeup = 1;
5141 sk->sk_data_ready(sk, 0);
5142 }
5143 out:
5144 return copied_early;
5145 }
5146 #endif /* CONFIG_NET_DMA */
5147
5148 /* Does PAWS and seqno based validation of an incoming segment, flags will
5149 * play significant role here.
5150 */
5151 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5152 struct tcphdr *th, int syn_inerr)
5153 {
5154 u8 *hash_location;
5155 struct tcp_sock *tp = tcp_sk(sk);
5156
5157 /* RFC1323: H1. Apply PAWS check first. */
5158 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5159 tp->rx_opt.saw_tstamp &&
5160 tcp_paws_discard(sk, skb)) {
5161 if (!th->rst) {
5162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5163 tcp_send_dupack(sk, skb);
5164 goto discard;
5165 }
5166 /* Reset is accepted even if it did not pass PAWS. */
5167 }
5168
5169 /* Step 1: check sequence number */
5170 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5171 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5172 * (RST) segments are validated by checking their SEQ-fields."
5173 * And page 69: "If an incoming segment is not acceptable,
5174 * an acknowledgment should be sent in reply (unless the RST
5175 * bit is set, if so drop the segment and return)".
5176 */
5177 if (!th->rst)
5178 tcp_send_dupack(sk, skb);
5179 goto discard;
5180 }
5181
5182 /* Step 2: check RST bit */
5183 if (th->rst) {
5184 tcp_reset(sk);
5185 goto discard;
5186 }
5187
5188 /* ts_recent update must be made after we are sure that the packet
5189 * is in window.
5190 */
5191 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5192
5193 /* step 3: check security and precedence [ignored] */
5194
5195 /* step 4: Check for a SYN in window. */
5196 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5197 if (syn_inerr)
5198 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5200 tcp_reset(sk);
5201 return -1;
5202 }
5203
5204 return 1;
5205
5206 discard:
5207 __kfree_skb(skb);
5208 return 0;
5209 }
5210
5211 /*
5212 * TCP receive function for the ESTABLISHED state.
5213 *
5214 * It is split into a fast path and a slow path. The fast path is
5215 * disabled when:
5216 * - A zero window was announced from us - zero window probing
5217 * is only handled properly in the slow path.
5218 * - Out of order segments arrived.
5219 * - Urgent data is expected.
5220 * - There is no buffer space left
5221 * - Unexpected TCP flags/window values/header lengths are received
5222 * (detected by checking the TCP header against pred_flags)
5223 * - Data is sent in both directions. Fast path only supports pure senders
5224 * or pure receivers (this means either the sequence number or the ack
5225 * value must stay constant)
5226 * - Unexpected TCP option.
5227 *
5228 * When these conditions are not satisfied it drops into a standard
5229 * receive procedure patterned after RFC793 to handle all cases.
5230 * The first three cases are guaranteed by proper pred_flags setting,
5231 * the rest is checked inline. Fast processing is turned on in
5232 * tcp_data_queue when everything is OK.
5233 */
5234 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5235 struct tcphdr *th, unsigned len)
5236 {
5237 struct tcp_sock *tp = tcp_sk(sk);
5238 int res;
5239
5240 /*
5241 * Header prediction.
5242 * The code loosely follows the one in the famous
5243 * "30 instruction TCP receive" Van Jacobson mail.
5244 *
5245 * Van's trick is to deposit buffers into socket queue
5246 * on a device interrupt, to call tcp_recv function
5247 * on the receive process context and checksum and copy
5248 * the buffer to user space. smart...
5249 *
5250 * Our current scheme is not silly either but we take the
5251 * extra cost of the net_bh soft interrupt processing...
5252 * We do checksum and copy also but from device to kernel.
5253 */
5254
5255 tp->rx_opt.saw_tstamp = 0;
5256
5257 /* pred_flags is 0xS?10 << 16 + snd_wnd
5258 * if header_prediction is to be made
5259 * 'S' will always be tp->tcp_header_len >> 2
5260 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5261 * turn it off (when there are holes in the receive
5262 * space for instance)
5263 * PSH flag is ignored.
5264 */
5265
5266 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5267 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5268 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5269 int tcp_header_len = tp->tcp_header_len;
5270
5271 /* Timestamp header prediction: tcp_header_len
5272 * is automatically equal to th->doff*4 due to pred_flags
5273 * match.
5274 */
5275
5276 /* Check timestamp */
5277 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5278 /* No? Slow path! */
5279 if (!tcp_parse_aligned_timestamp(tp, th))
5280 goto slow_path;
5281
5282 /* If PAWS failed, check it more carefully in slow path */
5283 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5284 goto slow_path;
5285
5286 /* DO NOT update ts_recent here, if checksum fails
5287 * and timestamp was corrupted part, it will result
5288 * in a hung connection since we will drop all
5289 * future packets due to the PAWS test.
5290 */
5291 }
5292
5293 if (len <= tcp_header_len) {
5294 /* Bulk data transfer: sender */
5295 if (len == tcp_header_len) {
5296 /* Predicted packet is in window by definition.
5297 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5298 * Hence, check seq<=rcv_wup reduces to:
5299 */
5300 if (tcp_header_len ==
5301 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5302 tp->rcv_nxt == tp->rcv_wup)
5303 tcp_store_ts_recent(tp);
5304
5305 /* We know that such packets are checksummed
5306 * on entry.
5307 */
5308 tcp_ack(sk, skb, 0);
5309 __kfree_skb(skb);
5310 tcp_data_snd_check(sk);
5311 return 0;
5312 } else { /* Header too small */
5313 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5314 goto discard;
5315 }
5316 } else {
5317 int eaten = 0;
5318 int copied_early = 0;
5319
5320 if (tp->copied_seq == tp->rcv_nxt &&
5321 len - tcp_header_len <= tp->ucopy.len) {
5322 #ifdef CONFIG_NET_DMA
5323 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5324 copied_early = 1;
5325 eaten = 1;
5326 }
5327 #endif
5328 if (tp->ucopy.task == current &&
5329 sock_owned_by_user(sk) && !copied_early) {
5330 __set_current_state(TASK_RUNNING);
5331
5332 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5333 eaten = 1;
5334 }
5335 if (eaten) {
5336 /* Predicted packet is in window by definition.
5337 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5338 * Hence, check seq<=rcv_wup reduces to:
5339 */
5340 if (tcp_header_len ==
5341 (sizeof(struct tcphdr) +
5342 TCPOLEN_TSTAMP_ALIGNED) &&
5343 tp->rcv_nxt == tp->rcv_wup)
5344 tcp_store_ts_recent(tp);
5345
5346 tcp_rcv_rtt_measure_ts(sk, skb);
5347
5348 __skb_pull(skb, tcp_header_len);
5349 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5351 }
5352 if (copied_early)
5353 tcp_cleanup_rbuf(sk, skb->len);
5354 }
5355 if (!eaten) {
5356 if (tcp_checksum_complete_user(sk, skb))
5357 goto csum_error;
5358
5359 /* Predicted packet is in window by definition.
5360 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5361 * Hence, check seq<=rcv_wup reduces to:
5362 */
5363 if (tcp_header_len ==
5364 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5365 tp->rcv_nxt == tp->rcv_wup)
5366 tcp_store_ts_recent(tp);
5367
5368 tcp_rcv_rtt_measure_ts(sk, skb);
5369
5370 if ((int)skb->truesize > sk->sk_forward_alloc)
5371 goto step5;
5372
5373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5374
5375 /* Bulk data transfer: receiver */
5376 __skb_pull(skb, tcp_header_len);
5377 __skb_queue_tail(&sk->sk_receive_queue, skb);
5378 skb_set_owner_r(skb, sk);
5379 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5380 }
5381
5382 tcp_event_data_recv(sk, skb);
5383
5384 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5385 /* Well, only one small jumplet in fast path... */
5386 tcp_ack(sk, skb, FLAG_DATA);
5387 tcp_data_snd_check(sk);
5388 if (!inet_csk_ack_scheduled(sk))
5389 goto no_ack;
5390 }
5391
5392 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5393 __tcp_ack_snd_check(sk, 0);
5394 no_ack:
5395 #ifdef CONFIG_NET_DMA
5396 if (copied_early)
5397 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5398 else
5399 #endif
5400 if (eaten)
5401 __kfree_skb(skb);
5402 else
5403 sk->sk_data_ready(sk, 0);
5404 return 0;
5405 }
5406 }
5407
5408 slow_path:
5409 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5410 goto csum_error;
5411
5412 /*
5413 * Standard slow path.
5414 */
5415
5416 res = tcp_validate_incoming(sk, skb, th, 1);
5417 if (res <= 0)
5418 return -res;
5419
5420 step5:
5421 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5422 goto discard;
5423
5424 tcp_rcv_rtt_measure_ts(sk, skb);
5425
5426 /* Process urgent data. */
5427 tcp_urg(sk, skb, th);
5428
5429 /* step 7: process the segment text */
5430 tcp_data_queue(sk, skb);
5431
5432 tcp_data_snd_check(sk);
5433 tcp_ack_snd_check(sk);
5434 return 0;
5435
5436 csum_error:
5437 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5438
5439 discard:
5440 __kfree_skb(skb);
5441 return 0;
5442 }
5443 EXPORT_SYMBOL(tcp_rcv_established);
5444
5445 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5446 struct tcphdr *th, unsigned len)
5447 {
5448 u8 *hash_location;
5449 struct inet_connection_sock *icsk = inet_csk(sk);
5450 struct tcp_sock *tp = tcp_sk(sk);
5451 struct tcp_cookie_values *cvp = tp->cookie_values;
5452 int saved_clamp = tp->rx_opt.mss_clamp;
5453
5454 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5455
5456 if (th->ack) {
5457 /* rfc793:
5458 * "If the state is SYN-SENT then
5459 * first check the ACK bit
5460 * If the ACK bit is set
5461 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5462 * a reset (unless the RST bit is set, if so drop
5463 * the segment and return)"
5464 *
5465 * We do not send data with SYN, so that RFC-correct
5466 * test reduces to:
5467 */
5468 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5469 goto reset_and_undo;
5470
5471 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5472 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5473 tcp_time_stamp)) {
5474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5475 goto reset_and_undo;
5476 }
5477
5478 /* Now ACK is acceptable.
5479 *
5480 * "If the RST bit is set
5481 * If the ACK was acceptable then signal the user "error:
5482 * connection reset", drop the segment, enter CLOSED state,
5483 * delete TCB, and return."
5484 */
5485
5486 if (th->rst) {
5487 tcp_reset(sk);
5488 goto discard;
5489 }
5490
5491 /* rfc793:
5492 * "fifth, if neither of the SYN or RST bits is set then
5493 * drop the segment and return."
5494 *
5495 * See note below!
5496 * --ANK(990513)
5497 */
5498 if (!th->syn)
5499 goto discard_and_undo;
5500
5501 /* rfc793:
5502 * "If the SYN bit is on ...
5503 * are acceptable then ...
5504 * (our SYN has been ACKed), change the connection
5505 * state to ESTABLISHED..."
5506 */
5507
5508 TCP_ECN_rcv_synack(tp, th);
5509
5510 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5511 tcp_ack(sk, skb, FLAG_SLOWPATH);
5512
5513 /* Ok.. it's good. Set up sequence numbers and
5514 * move to established.
5515 */
5516 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5517 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5518
5519 /* RFC1323: The window in SYN & SYN/ACK segments is
5520 * never scaled.
5521 */
5522 tp->snd_wnd = ntohs(th->window);
5523 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5524
5525 if (!tp->rx_opt.wscale_ok) {
5526 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5527 tp->window_clamp = min(tp->window_clamp, 65535U);
5528 }
5529
5530 if (tp->rx_opt.saw_tstamp) {
5531 tp->rx_opt.tstamp_ok = 1;
5532 tp->tcp_header_len =
5533 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5534 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5535 tcp_store_ts_recent(tp);
5536 } else {
5537 tp->tcp_header_len = sizeof(struct tcphdr);
5538 }
5539
5540 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5541 tcp_enable_fack(tp);
5542
5543 tcp_mtup_init(sk);
5544 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5545 tcp_initialize_rcv_mss(sk);
5546
5547 /* Remember, tcp_poll() does not lock socket!
5548 * Change state from SYN-SENT only after copied_seq
5549 * is initialized. */
5550 tp->copied_seq = tp->rcv_nxt;
5551
5552 if (cvp != NULL &&
5553 cvp->cookie_pair_size > 0 &&
5554 tp->rx_opt.cookie_plus > 0) {
5555 int cookie_size = tp->rx_opt.cookie_plus
5556 - TCPOLEN_COOKIE_BASE;
5557 int cookie_pair_size = cookie_size
5558 + cvp->cookie_desired;
5559
5560 /* A cookie extension option was sent and returned.
5561 * Note that each incoming SYNACK replaces the
5562 * Responder cookie. The initial exchange is most
5563 * fragile, as protection against spoofing relies
5564 * entirely upon the sequence and timestamp (above).
5565 * This replacement strategy allows the correct pair to
5566 * pass through, while any others will be filtered via
5567 * Responder verification later.
5568 */
5569 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5570 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5571 hash_location, cookie_size);
5572 cvp->cookie_pair_size = cookie_pair_size;
5573 }
5574 }
5575
5576 smp_mb();
5577 tcp_set_state(sk, TCP_ESTABLISHED);
5578
5579 security_inet_conn_established(sk, skb);
5580
5581 /* Make sure socket is routed, for correct metrics. */
5582 icsk->icsk_af_ops->rebuild_header(sk);
5583
5584 tcp_init_metrics(sk);
5585
5586 tcp_init_congestion_control(sk);
5587
5588 /* Prevent spurious tcp_cwnd_restart() on first data
5589 * packet.
5590 */
5591 tp->lsndtime = tcp_time_stamp;
5592
5593 tcp_init_buffer_space(sk);
5594
5595 if (sock_flag(sk, SOCK_KEEPOPEN))
5596 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5597
5598 if (!tp->rx_opt.snd_wscale)
5599 __tcp_fast_path_on(tp, tp->snd_wnd);
5600 else
5601 tp->pred_flags = 0;
5602
5603 if (!sock_flag(sk, SOCK_DEAD)) {
5604 sk->sk_state_change(sk);
5605 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5606 }
5607
5608 if (sk->sk_write_pending ||
5609 icsk->icsk_accept_queue.rskq_defer_accept ||
5610 icsk->icsk_ack.pingpong) {
5611 /* Save one ACK. Data will be ready after
5612 * several ticks, if write_pending is set.
5613 *
5614 * It may be deleted, but with this feature tcpdumps
5615 * look so _wonderfully_ clever, that I was not able
5616 * to stand against the temptation 8) --ANK
5617 */
5618 inet_csk_schedule_ack(sk);
5619 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5620 icsk->icsk_ack.ato = TCP_ATO_MIN;
5621 tcp_incr_quickack(sk);
5622 tcp_enter_quickack_mode(sk);
5623 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5624 TCP_DELACK_MAX, TCP_RTO_MAX);
5625
5626 discard:
5627 __kfree_skb(skb);
5628 return 0;
5629 } else {
5630 tcp_send_ack(sk);
5631 }
5632 return -1;
5633 }
5634
5635 /* No ACK in the segment */
5636
5637 if (th->rst) {
5638 /* rfc793:
5639 * "If the RST bit is set
5640 *
5641 * Otherwise (no ACK) drop the segment and return."
5642 */
5643
5644 goto discard_and_undo;
5645 }
5646
5647 /* PAWS check. */
5648 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5649 tcp_paws_reject(&tp->rx_opt, 0))
5650 goto discard_and_undo;
5651
5652 if (th->syn) {
5653 /* We see SYN without ACK. It is attempt of
5654 * simultaneous connect with crossed SYNs.
5655 * Particularly, it can be connect to self.
5656 */
5657 tcp_set_state(sk, TCP_SYN_RECV);
5658
5659 if (tp->rx_opt.saw_tstamp) {
5660 tp->rx_opt.tstamp_ok = 1;
5661 tcp_store_ts_recent(tp);
5662 tp->tcp_header_len =
5663 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5664 } else {
5665 tp->tcp_header_len = sizeof(struct tcphdr);
5666 }
5667
5668 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5669 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5670
5671 /* RFC1323: The window in SYN & SYN/ACK segments is
5672 * never scaled.
5673 */
5674 tp->snd_wnd = ntohs(th->window);
5675 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5676 tp->max_window = tp->snd_wnd;
5677
5678 TCP_ECN_rcv_syn(tp, th);
5679
5680 tcp_mtup_init(sk);
5681 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5682 tcp_initialize_rcv_mss(sk);
5683
5684 tcp_send_synack(sk);
5685 #if 0
5686 /* Note, we could accept data and URG from this segment.
5687 * There are no obstacles to make this.
5688 *
5689 * However, if we ignore data in ACKless segments sometimes,
5690 * we have no reasons to accept it sometimes.
5691 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5692 * is not flawless. So, discard packet for sanity.
5693 * Uncomment this return to process the data.
5694 */
5695 return -1;
5696 #else
5697 goto discard;
5698 #endif
5699 }
5700 /* "fifth, if neither of the SYN or RST bits is set then
5701 * drop the segment and return."
5702 */
5703
5704 discard_and_undo:
5705 tcp_clear_options(&tp->rx_opt);
5706 tp->rx_opt.mss_clamp = saved_clamp;
5707 goto discard;
5708
5709 reset_and_undo:
5710 tcp_clear_options(&tp->rx_opt);
5711 tp->rx_opt.mss_clamp = saved_clamp;
5712 return 1;
5713 }
5714
5715 /*
5716 * This function implements the receiving procedure of RFC 793 for
5717 * all states except ESTABLISHED and TIME_WAIT.
5718 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5719 * address independent.
5720 */
5721
5722 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5723 struct tcphdr *th, unsigned len)
5724 {
5725 struct tcp_sock *tp = tcp_sk(sk);
5726 struct inet_connection_sock *icsk = inet_csk(sk);
5727 int queued = 0;
5728 int res;
5729
5730 tp->rx_opt.saw_tstamp = 0;
5731
5732 switch (sk->sk_state) {
5733 case TCP_CLOSE:
5734 goto discard;
5735
5736 case TCP_LISTEN:
5737 if (th->ack)
5738 return 1;
5739
5740 if (th->rst)
5741 goto discard;
5742
5743 if (th->syn) {
5744 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5745 return 1;
5746
5747 /* Now we have several options: In theory there is
5748 * nothing else in the frame. KA9Q has an option to
5749 * send data with the syn, BSD accepts data with the
5750 * syn up to the [to be] advertised window and
5751 * Solaris 2.1 gives you a protocol error. For now
5752 * we just ignore it, that fits the spec precisely
5753 * and avoids incompatibilities. It would be nice in
5754 * future to drop through and process the data.
5755 *
5756 * Now that TTCP is starting to be used we ought to
5757 * queue this data.
5758 * But, this leaves one open to an easy denial of
5759 * service attack, and SYN cookies can't defend
5760 * against this problem. So, we drop the data
5761 * in the interest of security over speed unless
5762 * it's still in use.
5763 */
5764 kfree_skb(skb);
5765 return 0;
5766 }
5767 goto discard;
5768
5769 case TCP_SYN_SENT:
5770 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5771 if (queued >= 0)
5772 return queued;
5773
5774 /* Do step6 onward by hand. */
5775 tcp_urg(sk, skb, th);
5776 __kfree_skb(skb);
5777 tcp_data_snd_check(sk);
5778 return 0;
5779 }
5780
5781 res = tcp_validate_incoming(sk, skb, th, 0);
5782 if (res <= 0)
5783 return -res;
5784
5785 /* step 5: check the ACK field */
5786 if (th->ack) {
5787 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5788
5789 switch (sk->sk_state) {
5790 case TCP_SYN_RECV:
5791 if (acceptable) {
5792 tp->copied_seq = tp->rcv_nxt;
5793 smp_mb();
5794 tcp_set_state(sk, TCP_ESTABLISHED);
5795 sk->sk_state_change(sk);
5796
5797 /* Note, that this wakeup is only for marginal
5798 * crossed SYN case. Passively open sockets
5799 * are not waked up, because sk->sk_sleep ==
5800 * NULL and sk->sk_socket == NULL.
5801 */
5802 if (sk->sk_socket)
5803 sk_wake_async(sk,
5804 SOCK_WAKE_IO, POLL_OUT);
5805
5806 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5807 tp->snd_wnd = ntohs(th->window) <<
5808 tp->rx_opt.snd_wscale;
5809 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5810
5811 /* tcp_ack considers this ACK as duplicate
5812 * and does not calculate rtt.
5813 * Force it here.
5814 */
5815 tcp_ack_update_rtt(sk, 0, 0);
5816
5817 if (tp->rx_opt.tstamp_ok)
5818 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5819
5820 /* Make sure socket is routed, for
5821 * correct metrics.
5822 */
5823 icsk->icsk_af_ops->rebuild_header(sk);
5824
5825 tcp_init_metrics(sk);
5826
5827 tcp_init_congestion_control(sk);
5828
5829 /* Prevent spurious tcp_cwnd_restart() on
5830 * first data packet.
5831 */
5832 tp->lsndtime = tcp_time_stamp;
5833
5834 tcp_mtup_init(sk);
5835 tcp_initialize_rcv_mss(sk);
5836 tcp_init_buffer_space(sk);
5837 tcp_fast_path_on(tp);
5838 } else {
5839 return 1;
5840 }
5841 break;
5842
5843 case TCP_FIN_WAIT1:
5844 if (tp->snd_una == tp->write_seq) {
5845 tcp_set_state(sk, TCP_FIN_WAIT2);
5846 sk->sk_shutdown |= SEND_SHUTDOWN;
5847 dst_confirm(__sk_dst_get(sk));
5848
5849 if (!sock_flag(sk, SOCK_DEAD))
5850 /* Wake up lingering close() */
5851 sk->sk_state_change(sk);
5852 else {
5853 int tmo;
5854
5855 if (tp->linger2 < 0 ||
5856 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5857 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5858 tcp_done(sk);
5859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5860 return 1;
5861 }
5862
5863 tmo = tcp_fin_time(sk);
5864 if (tmo > TCP_TIMEWAIT_LEN) {
5865 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5866 } else if (th->fin || sock_owned_by_user(sk)) {
5867 /* Bad case. We could lose such FIN otherwise.
5868 * It is not a big problem, but it looks confusing
5869 * and not so rare event. We still can lose it now,
5870 * if it spins in bh_lock_sock(), but it is really
5871 * marginal case.
5872 */
5873 inet_csk_reset_keepalive_timer(sk, tmo);
5874 } else {
5875 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5876 goto discard;
5877 }
5878 }
5879 }
5880 break;
5881
5882 case TCP_CLOSING:
5883 if (tp->snd_una == tp->write_seq) {
5884 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5885 goto discard;
5886 }
5887 break;
5888
5889 case TCP_LAST_ACK:
5890 if (tp->snd_una == tp->write_seq) {
5891 tcp_update_metrics(sk);
5892 tcp_done(sk);
5893 goto discard;
5894 }
5895 break;
5896 }
5897 } else
5898 goto discard;
5899
5900 /* step 6: check the URG bit */
5901 tcp_urg(sk, skb, th);
5902
5903 /* step 7: process the segment text */
5904 switch (sk->sk_state) {
5905 case TCP_CLOSE_WAIT:
5906 case TCP_CLOSING:
5907 case TCP_LAST_ACK:
5908 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5909 break;
5910 case TCP_FIN_WAIT1:
5911 case TCP_FIN_WAIT2:
5912 /* RFC 793 says to queue data in these states,
5913 * RFC 1122 says we MUST send a reset.
5914 * BSD 4.4 also does reset.
5915 */
5916 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5917 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5918 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5919 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5920 tcp_reset(sk);
5921 return 1;
5922 }
5923 }
5924 /* Fall through */
5925 case TCP_ESTABLISHED:
5926 tcp_data_queue(sk, skb);
5927 queued = 1;
5928 break;
5929 }
5930
5931 /* tcp_data could move socket to TIME-WAIT */
5932 if (sk->sk_state != TCP_CLOSE) {
5933 tcp_data_snd_check(sk);
5934 tcp_ack_snd_check(sk);
5935 }
5936
5937 if (!queued) {
5938 discard:
5939 __kfree_skb(skb);
5940 }
5941 return 0;
5942 }
5943 EXPORT_SYMBOL(tcp_rcv_state_process);