]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
8ac15a604e086b766552b3ff8a646ca3a8d44f08
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95
96 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
97 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
98 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
100 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
101 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
102 #define FLAG_ECE 0x40 /* ECE in this ACK */
103 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
104 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110
111 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
118
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123 * real world.
124 */
125 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 {
127 struct inet_connection_sock *icsk = inet_csk(sk);
128 const unsigned int lss = icsk->icsk_ack.last_seg_size;
129 unsigned int len;
130
131 icsk->icsk_ack.last_seg_size = 0;
132
133 /* skb->len may jitter because of SACKs, even if peer
134 * sends good full-sized frames.
135 */
136 len = skb_shinfo(skb)->gso_size ? : skb->len;
137 if (len >= icsk->icsk_ack.rcv_mss) {
138 icsk->icsk_ack.rcv_mss = len;
139 } else {
140 /* Otherwise, we make more careful check taking into account,
141 * that SACKs block is variable.
142 *
143 * "len" is invariant segment length, including TCP header.
144 */
145 len += skb->data - skb_transport_header(skb);
146 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
147 /* If PSH is not set, packet should be
148 * full sized, provided peer TCP is not badly broken.
149 * This observation (if it is correct 8)) allows
150 * to handle super-low mtu links fairly.
151 */
152 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154 /* Subtract also invariant (if peer is RFC compliant),
155 * tcp header plus fixed timestamp option length.
156 * Resulting "len" is MSS free of SACK jitter.
157 */
158 len -= tcp_sk(sk)->tcp_header_len;
159 icsk->icsk_ack.last_seg_size = len;
160 if (len == lss) {
161 icsk->icsk_ack.rcv_mss = len;
162 return;
163 }
164 }
165 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 }
169 }
170
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173 struct inet_connection_sock *icsk = inet_csk(sk);
174 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175
176 if (quickacks == 0)
177 quickacks = 2;
178 if (quickacks > icsk->icsk_ack.quick)
179 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184 struct inet_connection_sock *icsk = inet_csk(sk);
185 tcp_incr_quickack(sk);
186 icsk->icsk_ack.pingpong = 0;
187 icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189
190 /* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
192 */
193
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196 const struct inet_connection_sock *icsk = inet_csk(sk);
197 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202 if (tp->ecn_flags & TCP_ECN_OK)
203 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208 if (tcp_hdr(skb)->cwr)
209 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219 if (tp->ecn_flags & TCP_ECN_OK) {
220 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222 /* Funny extension: if ECT is not set on a segment,
223 * it is surely retransmit. It is not in ECN RFC,
224 * but Linux follows this rule. */
225 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226 tcp_enter_quickack_mode((struct sock *)tp);
227 }
228 }
229
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
233 tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
239 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245 return 1;
246 return 0;
247 }
248
249 /* Buffer size and advertised window tuning.
250 *
251 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252 */
253
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257 sizeof(struct sk_buff);
258
259 if (sk->sk_sndbuf < 3 * sndmem)
260 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 *
265 * All tcp_full_space() is split to two parts: "network" buffer, allocated
266 * forward and advertised in receiver window (tp->rcv_wnd) and
267 * "application buffer", required to isolate scheduling/application
268 * latencies from network.
269 * window_clamp is maximal advertised window. It can be less than
270 * tcp_full_space(), in this case tcp_full_space() - window_clamp
271 * is reserved for "application" buffer. The less window_clamp is
272 * the smoother our behaviour from viewpoint of network, but the lower
273 * throughput and the higher sensitivity of the connection to losses. 8)
274 *
275 * rcv_ssthresh is more strict window_clamp used at "slow start"
276 * phase to predict further behaviour of this connection.
277 * It is used for two goals:
278 * - to enforce header prediction at sender, even when application
279 * requires some significant "application buffer". It is check #1.
280 * - to prevent pruning of receive queue because of misprediction
281 * of receiver window. Check #2.
282 *
283 * The scheme does not work when sender sends good segments opening
284 * window and then starts to feed us spaghetti. But it should work
285 * in common situations. Otherwise, we have to rely on queue collapsing.
286 */
287
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291 struct tcp_sock *tp = tcp_sk(sk);
292 /* Optimize this! */
293 int truesize = tcp_win_from_space(skb->truesize) >> 1;
294 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295
296 while (tp->rcv_ssthresh <= window) {
297 if (truesize <= skb->len)
298 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299
300 truesize >>= 1;
301 window >>= 1;
302 }
303 return 0;
304 }
305
306 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2 * tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
326 tp->window_clamp);
327 inet_csk(sk)->icsk_ack.quick |= 1;
328 }
329 }
330 }
331
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336 struct tcp_sock *tp = tcp_sk(sk);
337 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338
339 /* Try to select rcvbuf so that 4 mss-sized segments
340 * will fit to window and corresponding skbs will fit to our rcvbuf.
341 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 */
343 while (tcp_win_from_space(rcvmem) < tp->advmss)
344 rcvmem += 128;
345 if (sk->sk_rcvbuf < 4 * rcvmem)
346 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348
349 /* 4. Try to fixup all. It is made immediately after connection enters
350 * established state.
351 */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355 int maxwin;
356
357 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358 tcp_fixup_rcvbuf(sk);
359 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360 tcp_fixup_sndbuf(sk);
361
362 tp->rcvq_space.space = tp->rcv_wnd;
363
364 maxwin = tcp_full_space(sk);
365
366 if (tp->window_clamp >= maxwin) {
367 tp->window_clamp = maxwin;
368
369 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370 tp->window_clamp = max(maxwin -
371 (maxwin >> sysctl_tcp_app_win),
372 4 * tp->advmss);
373 }
374
375 /* Force reservation of one segment. */
376 if (sysctl_tcp_app_win &&
377 tp->window_clamp > 2 * tp->advmss &&
378 tp->window_clamp + tp->advmss > maxwin)
379 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382 tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388 struct tcp_sock *tp = tcp_sk(sk);
389 struct inet_connection_sock *icsk = inet_csk(sk);
390
391 icsk->icsk_ack.quick = 0;
392
393 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395 !tcp_memory_pressure &&
396 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398 sysctl_tcp_rmem[2]);
399 }
400 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
402 }
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd / 2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474
475 new_measure:
476 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
477 tp->rcv_rtt_est.time = tcp_time_stamp;
478 }
479
480 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
481 const struct sk_buff *skb)
482 {
483 struct tcp_sock *tp = tcp_sk(sk);
484 if (tp->rx_opt.rcv_tsecr &&
485 (TCP_SKB_CB(skb)->end_seq -
486 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489
490 /*
491 * This function should be called every time data is copied to user space.
492 * It calculates the appropriate TCP receive buffer space.
493 */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496 struct tcp_sock *tp = tcp_sk(sk);
497 int time;
498 int space;
499
500 if (tp->rcvq_space.time == 0)
501 goto new_measure;
502
503 time = tcp_time_stamp - tp->rcvq_space.time;
504 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
505 return;
506
507 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508
509 space = max(tp->rcvq_space.space, space);
510
511 if (tp->rcvq_space.space != space) {
512 int rcvmem;
513
514 tp->rcvq_space.space = space;
515
516 if (sysctl_tcp_moderate_rcvbuf &&
517 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
518 int new_clamp = space;
519
520 /* Receive space grows, normalize in order to
521 * take into account packet headers and sk_buff
522 * structure overhead.
523 */
524 space /= tp->advmss;
525 if (!space)
526 space = 1;
527 rcvmem = (tp->advmss + MAX_TCP_HEADER +
528 16 + sizeof(struct sk_buff));
529 while (tcp_win_from_space(rcvmem) < tp->advmss)
530 rcvmem += 128;
531 space *= rcvmem;
532 space = min(space, sysctl_tcp_rmem[2]);
533 if (space > sk->sk_rcvbuf) {
534 sk->sk_rcvbuf = space;
535
536 /* Make the window clamp follow along. */
537 tp->window_clamp = new_clamp;
538 }
539 }
540 }
541
542 new_measure:
543 tp->rcvq_space.seq = tp->copied_seq;
544 tp->rcvq_space.time = tcp_time_stamp;
545 }
546
547 /* There is something which you must keep in mind when you analyze the
548 * behavior of the tp->ato delayed ack timeout interval. When a
549 * connection starts up, we want to ack as quickly as possible. The
550 * problem is that "good" TCP's do slow start at the beginning of data
551 * transmission. The means that until we send the first few ACK's the
552 * sender will sit on his end and only queue most of his data, because
553 * he can only send snd_cwnd unacked packets at any given time. For
554 * each ACK we send, he increments snd_cwnd and transmits more of his
555 * queue. -DaveM
556 */
557 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 {
559 struct tcp_sock *tp = tcp_sk(sk);
560 struct inet_connection_sock *icsk = inet_csk(sk);
561 u32 now;
562
563 inet_csk_schedule_ack(sk);
564
565 tcp_measure_rcv_mss(sk, skb);
566
567 tcp_rcv_rtt_measure(tp);
568
569 now = tcp_time_stamp;
570
571 if (!icsk->icsk_ack.ato) {
572 /* The _first_ data packet received, initialize
573 * delayed ACK engine.
574 */
575 tcp_incr_quickack(sk);
576 icsk->icsk_ack.ato = TCP_ATO_MIN;
577 } else {
578 int m = now - icsk->icsk_ack.lrcvtime;
579
580 if (m <= TCP_ATO_MIN / 2) {
581 /* The fastest case is the first. */
582 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
583 } else if (m < icsk->icsk_ack.ato) {
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
585 if (icsk->icsk_ack.ato > icsk->icsk_rto)
586 icsk->icsk_ack.ato = icsk->icsk_rto;
587 } else if (m > icsk->icsk_rto) {
588 /* Too long gap. Apparently sender failed to
589 * restart window, so that we send ACKs quickly.
590 */
591 tcp_incr_quickack(sk);
592 sk_mem_reclaim(sk);
593 }
594 }
595 icsk->icsk_ack.lrcvtime = now;
596
597 TCP_ECN_check_ce(tp, skb);
598
599 if (skb->len >= 128)
600 tcp_grow_window(sk, skb);
601 }
602
603 static u32 tcp_rto_min(struct sock *sk)
604 {
605 struct dst_entry *dst = __sk_dst_get(sk);
606 u32 rto_min = TCP_RTO_MIN;
607
608 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
609 rto_min = dst_metric(dst, RTAX_RTO_MIN);
610 return rto_min;
611 }
612
613 /* Called to compute a smoothed rtt estimate. The data fed to this
614 * routine either comes from timestamps, or from segments that were
615 * known _not_ to have been retransmitted [see Karn/Partridge
616 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
617 * piece by Van Jacobson.
618 * NOTE: the next three routines used to be one big routine.
619 * To save cycles in the RFC 1323 implementation it was better to break
620 * it up into three procedures. -- erics
621 */
622 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
623 {
624 struct tcp_sock *tp = tcp_sk(sk);
625 long m = mrtt; /* RTT */
626
627 /* The following amusing code comes from Jacobson's
628 * article in SIGCOMM '88. Note that rtt and mdev
629 * are scaled versions of rtt and mean deviation.
630 * This is designed to be as fast as possible
631 * m stands for "measurement".
632 *
633 * On a 1990 paper the rto value is changed to:
634 * RTO = rtt + 4 * mdev
635 *
636 * Funny. This algorithm seems to be very broken.
637 * These formulae increase RTO, when it should be decreased, increase
638 * too slowly, when it should be increased quickly, decrease too quickly
639 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
640 * does not matter how to _calculate_ it. Seems, it was trap
641 * that VJ failed to avoid. 8)
642 */
643 if (m == 0)
644 m = 1;
645 if (tp->srtt != 0) {
646 m -= (tp->srtt >> 3); /* m is now error in rtt est */
647 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
648 if (m < 0) {
649 m = -m; /* m is now abs(error) */
650 m -= (tp->mdev >> 2); /* similar update on mdev */
651 /* This is similar to one of Eifel findings.
652 * Eifel blocks mdev updates when rtt decreases.
653 * This solution is a bit different: we use finer gain
654 * for mdev in this case (alpha*beta).
655 * Like Eifel it also prevents growth of rto,
656 * but also it limits too fast rto decreases,
657 * happening in pure Eifel.
658 */
659 if (m > 0)
660 m >>= 3;
661 } else {
662 m -= (tp->mdev >> 2); /* similar update on mdev */
663 }
664 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
665 if (tp->mdev > tp->mdev_max) {
666 tp->mdev_max = tp->mdev;
667 if (tp->mdev_max > tp->rttvar)
668 tp->rttvar = tp->mdev_max;
669 }
670 if (after(tp->snd_una, tp->rtt_seq)) {
671 if (tp->mdev_max < tp->rttvar)
672 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
673 tp->rtt_seq = tp->snd_nxt;
674 tp->mdev_max = tcp_rto_min(sk);
675 }
676 } else {
677 /* no previous measure. */
678 tp->srtt = m << 3; /* take the measured time to be rtt */
679 tp->mdev = m << 1; /* make sure rto = 3*rtt */
680 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
681 tp->rtt_seq = tp->snd_nxt;
682 }
683 }
684
685 /* Calculate rto without backoff. This is the second half of Van Jacobson's
686 * routine referred to above.
687 */
688 static inline void tcp_set_rto(struct sock *sk)
689 {
690 const struct tcp_sock *tp = tcp_sk(sk);
691 /* Old crap is replaced with new one. 8)
692 *
693 * More seriously:
694 * 1. If rtt variance happened to be less 50msec, it is hallucination.
695 * It cannot be less due to utterly erratic ACK generation made
696 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
697 * to do with delayed acks, because at cwnd>2 true delack timeout
698 * is invisible. Actually, Linux-2.4 also generates erratic
699 * ACKs in some circumstances.
700 */
701 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
702
703 /* 2. Fixups made earlier cannot be right.
704 * If we do not estimate RTO correctly without them,
705 * all the algo is pure shit and should be replaced
706 * with correct one. It is exactly, which we pretend to do.
707 */
708 }
709
710 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
711 * guarantees that rto is higher.
712 */
713 static inline void tcp_bound_rto(struct sock *sk)
714 {
715 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
716 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
717 }
718
719 /* Save metrics learned by this TCP session.
720 This function is called only, when TCP finishes successfully
721 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
722 */
723 void tcp_update_metrics(struct sock *sk)
724 {
725 struct tcp_sock *tp = tcp_sk(sk);
726 struct dst_entry *dst = __sk_dst_get(sk);
727
728 if (sysctl_tcp_nometrics_save)
729 return;
730
731 dst_confirm(dst);
732
733 if (dst && (dst->flags & DST_HOST)) {
734 const struct inet_connection_sock *icsk = inet_csk(sk);
735 int m;
736
737 if (icsk->icsk_backoff || !tp->srtt) {
738 /* This session failed to estimate rtt. Why?
739 * Probably, no packets returned in time.
740 * Reset our results.
741 */
742 if (!(dst_metric_locked(dst, RTAX_RTT)))
743 dst->metrics[RTAX_RTT - 1] = 0;
744 return;
745 }
746
747 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
748
749 /* If newly calculated rtt larger than stored one,
750 * store new one. Otherwise, use EWMA. Remember,
751 * rtt overestimation is always better than underestimation.
752 */
753 if (!(dst_metric_locked(dst, RTAX_RTT))) {
754 if (m <= 0)
755 dst->metrics[RTAX_RTT - 1] = tp->srtt;
756 else
757 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
758 }
759
760 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
761 if (m < 0)
762 m = -m;
763
764 /* Scale deviation to rttvar fixed point */
765 m >>= 1;
766 if (m < tp->mdev)
767 m = tp->mdev;
768
769 if (m >= dst_metric(dst, RTAX_RTTVAR))
770 dst->metrics[RTAX_RTTVAR - 1] = m;
771 else
772 dst->metrics[RTAX_RTTVAR-1] -=
773 (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
774 }
775
776 if (tp->snd_ssthresh >= 0xFFFF) {
777 /* Slow start still did not finish. */
778 if (dst_metric(dst, RTAX_SSTHRESH) &&
779 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
780 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
781 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
782 if (!dst_metric_locked(dst, RTAX_CWND) &&
783 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
784 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
785 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
786 icsk->icsk_ca_state == TCP_CA_Open) {
787 /* Cong. avoidance phase, cwnd is reliable. */
788 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
789 dst->metrics[RTAX_SSTHRESH-1] =
790 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
791 if (!dst_metric_locked(dst, RTAX_CWND))
792 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
796 */
797 if (!dst_metric_locked(dst, RTAX_CWND))
798 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
799 if (dst_metric(dst, RTAX_SSTHRESH) &&
800 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
801 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
802 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
803 }
804
805 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
806 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
807 tp->reordering != sysctl_tcp_reordering)
808 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
809 }
810 }
811 }
812
813 /* Numbers are taken from RFC3390.
814 *
815 * John Heffner states:
816 *
817 * The RFC specifies a window of no more than 4380 bytes
818 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
819 * is a bit misleading because they use a clamp at 4380 bytes
820 * rather than use a multiplier in the relevant range.
821 */
822 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
823 {
824 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
825
826 if (!cwnd) {
827 if (tp->mss_cache > 1460)
828 cwnd = 2;
829 else
830 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
831 }
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838 struct tcp_sock *tp = tcp_sk(sk);
839 const struct inet_connection_sock *icsk = inet_csk(sk);
840
841 tp->prior_ssthresh = 0;
842 tp->bytes_acked = 0;
843 if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 tp->undo_marker = 0;
845 if (set_ssthresh)
846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 tp->snd_cwnd = min(tp->snd_cwnd,
848 tcp_packets_in_flight(tp) + 1U);
849 tp->snd_cwnd_cnt = 0;
850 tp->high_seq = tp->snd_nxt;
851 tp->snd_cwnd_stamp = tcp_time_stamp;
852 TCP_ECN_queue_cwr(tp);
853
854 tcp_set_ca_state(sk, TCP_CA_CWR);
855 }
856 }
857
858 /*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~2;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 tp->rx_opt.sack_ok |= 4;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880 struct tcp_sock *tp = tcp_sk(sk);
881 struct dst_entry *dst = __sk_dst_get(sk);
882
883 if (dst == NULL)
884 goto reset;
885
886 dst_confirm(dst);
887
888 if (dst_metric_locked(dst, RTAX_CWND))
889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 if (dst_metric(dst, RTAX_SSTHRESH)) {
891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 }
895 if (dst_metric(dst, RTAX_REORDERING) &&
896 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
897 tcp_disable_fack(tp);
898 tp->reordering = dst_metric(dst, RTAX_REORDERING);
899 }
900
901 if (dst_metric(dst, RTAX_RTT) == 0)
902 goto reset;
903
904 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
905 goto reset;
906
907 /* Initial rtt is determined from SYN,SYN-ACK.
908 * The segment is small and rtt may appear much
909 * less than real one. Use per-dst memory
910 * to make it more realistic.
911 *
912 * A bit of theory. RTT is time passed after "normal" sized packet
913 * is sent until it is ACKed. In normal circumstances sending small
914 * packets force peer to delay ACKs and calculation is correct too.
915 * The algorithm is adaptive and, provided we follow specs, it
916 * NEVER underestimate RTT. BUT! If peer tries to make some clever
917 * tricks sort of "quick acks" for time long enough to decrease RTT
918 * to low value, and then abruptly stops to do it and starts to delay
919 * ACKs, wait for troubles.
920 */
921 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
922 tp->srtt = dst_metric(dst, RTAX_RTT);
923 tp->rtt_seq = tp->snd_nxt;
924 }
925 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
926 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
927 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
928 }
929 tcp_set_rto(sk);
930 tcp_bound_rto(sk);
931 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
932 goto reset;
933 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
934 tp->snd_cwnd_stamp = tcp_time_stamp;
935 return;
936
937 reset:
938 /* Play conservative. If timestamps are not
939 * supported, TCP will fail to recalculate correct
940 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 */
942 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
943 tp->srtt = 0;
944 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
945 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
946 }
947 }
948
949 static void tcp_update_reordering(struct sock *sk, const int metric,
950 const int ts)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 if (metric > tp->reordering) {
954 tp->reordering = min(TCP_MAX_REORDERING, metric);
955
956 /* This exciting event is worth to be remembered. 8) */
957 if (ts)
958 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
959 else if (tcp_is_reno(tp))
960 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
961 else if (tcp_is_fack(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
963 else
964 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
965 #if FASTRETRANS_DEBUG > 1
966 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
967 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
968 tp->reordering,
969 tp->fackets_out,
970 tp->sacked_out,
971 tp->undo_marker ? tp->undo_retrans : 0);
972 #endif
973 tcp_disable_fack(tp);
974 }
975 }
976
977 /* This procedure tags the retransmission queue when SACKs arrive.
978 *
979 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
980 * Packets in queue with these bits set are counted in variables
981 * sacked_out, retrans_out and lost_out, correspondingly.
982 *
983 * Valid combinations are:
984 * Tag InFlight Description
985 * 0 1 - orig segment is in flight.
986 * S 0 - nothing flies, orig reached receiver.
987 * L 0 - nothing flies, orig lost by net.
988 * R 2 - both orig and retransmit are in flight.
989 * L|R 1 - orig is lost, retransmit is in flight.
990 * S|R 1 - orig reached receiver, retrans is still in flight.
991 * (L|S|R is logically valid, it could occur when L|R is sacked,
992 * but it is equivalent to plain S and code short-curcuits it to S.
993 * L|S is logically invalid, it would mean -1 packet in flight 8))
994 *
995 * These 6 states form finite state machine, controlled by the following events:
996 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
997 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
998 * 3. Loss detection event of one of three flavors:
999 * A. Scoreboard estimator decided the packet is lost.
1000 * A'. Reno "three dupacks" marks head of queue lost.
1001 * A''. Its FACK modfication, head until snd.fack is lost.
1002 * B. SACK arrives sacking data transmitted after never retransmitted
1003 * hole was sent out.
1004 * C. SACK arrives sacking SND.NXT at the moment, when the
1005 * segment was retransmitted.
1006 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007 *
1008 * It is pleasant to note, that state diagram turns out to be commutative,
1009 * so that we are allowed not to be bothered by order of our actions,
1010 * when multiple events arrive simultaneously. (see the function below).
1011 *
1012 * Reordering detection.
1013 * --------------------
1014 * Reordering metric is maximal distance, which a packet can be displaced
1015 * in packet stream. With SACKs we can estimate it:
1016 *
1017 * 1. SACK fills old hole and the corresponding segment was not
1018 * ever retransmitted -> reordering. Alas, we cannot use it
1019 * when segment was retransmitted.
1020 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021 * for retransmitted and already SACKed segment -> reordering..
1022 * Both of these heuristics are not used in Loss state, when we cannot
1023 * account for retransmits accurately.
1024 *
1025 * SACK block validation.
1026 * ----------------------
1027 *
1028 * SACK block range validation checks that the received SACK block fits to
1029 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030 * Note that SND.UNA is not included to the range though being valid because
1031 * it means that the receiver is rather inconsistent with itself reporting
1032 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033 * perfectly valid, however, in light of RFC2018 which explicitly states
1034 * that "SACK block MUST reflect the newest segment. Even if the newest
1035 * segment is going to be discarded ...", not that it looks very clever
1036 * in case of head skb. Due to potentional receiver driven attacks, we
1037 * choose to avoid immediate execution of a walk in write queue due to
1038 * reneging and defer head skb's loss recovery to standard loss recovery
1039 * procedure that will eventually trigger (nothing forbids us doing this).
1040 *
1041 * Implements also blockage to start_seq wrap-around. Problem lies in the
1042 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043 * there's no guarantee that it will be before snd_nxt (n). The problem
1044 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045 * wrap (s_w):
1046 *
1047 * <- outs wnd -> <- wrapzone ->
1048 * u e n u_w e_w s n_w
1049 * | | | | | | |
1050 * |<------------+------+----- TCP seqno space --------------+---------->|
1051 * ...-- <2^31 ->| |<--------...
1052 * ...---- >2^31 ------>| |<--------...
1053 *
1054 * Current code wouldn't be vulnerable but it's better still to discard such
1055 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058 * equal to the ideal case (infinite seqno space without wrap caused issues).
1059 *
1060 * With D-SACK the lower bound is extended to cover sequence space below
1061 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062 * again, D-SACK block must not to go across snd_una (for the same reason as
1063 * for the normal SACK blocks, explained above). But there all simplicity
1064 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065 * fully below undo_marker they do not affect behavior in anyway and can
1066 * therefore be safely ignored. In rare cases (which are more or less
1067 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068 * fragmentation and packet reordering past skb's retransmission. To consider
1069 * them correctly, the acceptable range must be extended even more though
1070 * the exact amount is rather hard to quantify. However, tp->max_window can
1071 * be used as an exaggerated estimate.
1072 */
1073 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1074 u32 start_seq, u32 end_seq)
1075 {
1076 /* Too far in future, or reversed (interpretation is ambiguous) */
1077 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1078 return 0;
1079
1080 /* Nasty start_seq wrap-around check (see comments above) */
1081 if (!before(start_seq, tp->snd_nxt))
1082 return 0;
1083
1084 /* In outstanding window? ...This is valid exit for D-SACKs too.
1085 * start_seq == snd_una is non-sensical (see comments above)
1086 */
1087 if (after(start_seq, tp->snd_una))
1088 return 1;
1089
1090 if (!is_dsack || !tp->undo_marker)
1091 return 0;
1092
1093 /* ...Then it's D-SACK, and must reside below snd_una completely */
1094 if (!after(end_seq, tp->snd_una))
1095 return 0;
1096
1097 if (!before(start_seq, tp->undo_marker))
1098 return 1;
1099
1100 /* Too old */
1101 if (!after(end_seq, tp->undo_marker))
1102 return 0;
1103
1104 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105 * start_seq < undo_marker and end_seq >= undo_marker.
1106 */
1107 return !before(start_seq, end_seq - tp->max_window);
1108 }
1109
1110 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1111 * Event "C". Later note: FACK people cheated me again 8), we have to account
1112 * for reordering! Ugly, but should help.
1113 *
1114 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1115 * less than what is now known to be received by the other end (derived from
1116 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1117 * retransmitted skbs to avoid some costly processing per ACKs.
1118 */
1119 static void tcp_mark_lost_retrans(struct sock *sk)
1120 {
1121 const struct inet_connection_sock *icsk = inet_csk(sk);
1122 struct tcp_sock *tp = tcp_sk(sk);
1123 struct sk_buff *skb;
1124 int cnt = 0;
1125 u32 new_low_seq = tp->snd_nxt;
1126 u32 received_upto = tcp_highest_sack_seq(tp);
1127
1128 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1129 !after(received_upto, tp->lost_retrans_low) ||
1130 icsk->icsk_ca_state != TCP_CA_Recovery)
1131 return;
1132
1133 tcp_for_write_queue(skb, sk) {
1134 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1135
1136 if (skb == tcp_send_head(sk))
1137 break;
1138 if (cnt == tp->retrans_out)
1139 break;
1140 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1141 continue;
1142
1143 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1144 continue;
1145
1146 if (after(received_upto, ack_seq) &&
1147 (tcp_is_fack(tp) ||
1148 !before(received_upto,
1149 ack_seq + tp->reordering * tp->mss_cache))) {
1150 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1151 tp->retrans_out -= tcp_skb_pcount(skb);
1152
1153 /* clear lost hint */
1154 tp->retransmit_skb_hint = NULL;
1155
1156 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1157 tp->lost_out += tcp_skb_pcount(skb);
1158 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1159 }
1160 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1161 } else {
1162 if (before(ack_seq, new_low_seq))
1163 new_low_seq = ack_seq;
1164 cnt += tcp_skb_pcount(skb);
1165 }
1166 }
1167
1168 if (tp->retrans_out)
1169 tp->lost_retrans_low = new_low_seq;
1170 }
1171
1172 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1173 struct tcp_sack_block_wire *sp, int num_sacks,
1174 u32 prior_snd_una)
1175 {
1176 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1177 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1178 int dup_sack = 0;
1179
1180 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1181 dup_sack = 1;
1182 tcp_dsack_seen(tp);
1183 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1184 } else if (num_sacks > 1) {
1185 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1186 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1187
1188 if (!after(end_seq_0, end_seq_1) &&
1189 !before(start_seq_0, start_seq_1)) {
1190 dup_sack = 1;
1191 tcp_dsack_seen(tp);
1192 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1193 }
1194 }
1195
1196 /* D-SACK for already forgotten data... Do dumb counting. */
1197 if (dup_sack &&
1198 !after(end_seq_0, prior_snd_una) &&
1199 after(end_seq_0, tp->undo_marker))
1200 tp->undo_retrans--;
1201
1202 return dup_sack;
1203 }
1204
1205 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1206 * the incoming SACK may not exactly match but we can find smaller MSS
1207 * aligned portion of it that matches. Therefore we might need to fragment
1208 * which may fail and creates some hassle (caller must handle error case
1209 * returns).
1210 */
1211 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1212 u32 start_seq, u32 end_seq)
1213 {
1214 int in_sack, err;
1215 unsigned int pkt_len;
1216
1217 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1218 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1219
1220 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1221 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1222
1223 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1224
1225 if (!in_sack)
1226 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1227 else
1228 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1229 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1230 if (err < 0)
1231 return err;
1232 }
1233
1234 return in_sack;
1235 }
1236
1237 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1238 int *reord, int dup_sack, int fack_count)
1239 {
1240 struct tcp_sock *tp = tcp_sk(sk);
1241 u8 sacked = TCP_SKB_CB(skb)->sacked;
1242 int flag = 0;
1243
1244 /* Account D-SACK for retransmitted packet. */
1245 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1246 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1247 tp->undo_retrans--;
1248 if (sacked & TCPCB_SACKED_ACKED)
1249 *reord = min(fack_count, *reord);
1250 }
1251
1252 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1253 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1254 return flag;
1255
1256 if (!(sacked & TCPCB_SACKED_ACKED)) {
1257 if (sacked & TCPCB_SACKED_RETRANS) {
1258 /* If the segment is not tagged as lost,
1259 * we do not clear RETRANS, believing
1260 * that retransmission is still in flight.
1261 */
1262 if (sacked & TCPCB_LOST) {
1263 TCP_SKB_CB(skb)->sacked &=
1264 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1265 tp->lost_out -= tcp_skb_pcount(skb);
1266 tp->retrans_out -= tcp_skb_pcount(skb);
1267
1268 /* clear lost hint */
1269 tp->retransmit_skb_hint = NULL;
1270 }
1271 } else {
1272 if (!(sacked & TCPCB_RETRANS)) {
1273 /* New sack for not retransmitted frame,
1274 * which was in hole. It is reordering.
1275 */
1276 if (before(TCP_SKB_CB(skb)->seq,
1277 tcp_highest_sack_seq(tp)))
1278 *reord = min(fack_count, *reord);
1279
1280 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1281 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1282 flag |= FLAG_ONLY_ORIG_SACKED;
1283 }
1284
1285 if (sacked & TCPCB_LOST) {
1286 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1287 tp->lost_out -= tcp_skb_pcount(skb);
1288
1289 /* clear lost hint */
1290 tp->retransmit_skb_hint = NULL;
1291 }
1292 }
1293
1294 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1295 flag |= FLAG_DATA_SACKED;
1296 tp->sacked_out += tcp_skb_pcount(skb);
1297
1298 fack_count += tcp_skb_pcount(skb);
1299
1300 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1301 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1302 before(TCP_SKB_CB(skb)->seq,
1303 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1304 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1305
1306 if (fack_count > tp->fackets_out)
1307 tp->fackets_out = fack_count;
1308
1309 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1310 tcp_advance_highest_sack(sk, skb);
1311 }
1312
1313 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1314 * frames and clear it. undo_retrans is decreased above, L|R frames
1315 * are accounted above as well.
1316 */
1317 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1318 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1319 tp->retrans_out -= tcp_skb_pcount(skb);
1320 tp->retransmit_skb_hint = NULL;
1321 }
1322
1323 return flag;
1324 }
1325
1326 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1327 struct tcp_sack_block *next_dup,
1328 u32 start_seq, u32 end_seq,
1329 int dup_sack_in, int *fack_count,
1330 int *reord, int *flag)
1331 {
1332 tcp_for_write_queue_from(skb, sk) {
1333 int in_sack = 0;
1334 int dup_sack = dup_sack_in;
1335
1336 if (skb == tcp_send_head(sk))
1337 break;
1338
1339 /* queue is in-order => we can short-circuit the walk early */
1340 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1341 break;
1342
1343 if ((next_dup != NULL) &&
1344 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1345 in_sack = tcp_match_skb_to_sack(sk, skb,
1346 next_dup->start_seq,
1347 next_dup->end_seq);
1348 if (in_sack > 0)
1349 dup_sack = 1;
1350 }
1351
1352 if (in_sack <= 0)
1353 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1354 end_seq);
1355 if (unlikely(in_sack < 0))
1356 break;
1357
1358 if (in_sack)
1359 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1360 *fack_count);
1361
1362 *fack_count += tcp_skb_pcount(skb);
1363 }
1364 return skb;
1365 }
1366
1367 /* Avoid all extra work that is being done by sacktag while walking in
1368 * a normal way
1369 */
1370 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1371 u32 skip_to_seq, int *fack_count)
1372 {
1373 tcp_for_write_queue_from(skb, sk) {
1374 if (skb == tcp_send_head(sk))
1375 break;
1376
1377 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1378 break;
1379
1380 *fack_count += tcp_skb_pcount(skb);
1381 }
1382 return skb;
1383 }
1384
1385 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1386 struct sock *sk,
1387 struct tcp_sack_block *next_dup,
1388 u32 skip_to_seq,
1389 int *fack_count, int *reord,
1390 int *flag)
1391 {
1392 if (next_dup == NULL)
1393 return skb;
1394
1395 if (before(next_dup->start_seq, skip_to_seq)) {
1396 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1397 tcp_sacktag_walk(skb, sk, NULL,
1398 next_dup->start_seq, next_dup->end_seq,
1399 1, fack_count, reord, flag);
1400 }
1401
1402 return skb;
1403 }
1404
1405 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1406 {
1407 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1408 }
1409
1410 static int
1411 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1412 u32 prior_snd_una)
1413 {
1414 const struct inet_connection_sock *icsk = inet_csk(sk);
1415 struct tcp_sock *tp = tcp_sk(sk);
1416 unsigned char *ptr = (skb_transport_header(ack_skb) +
1417 TCP_SKB_CB(ack_skb)->sacked);
1418 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1419 struct tcp_sack_block sp[4];
1420 struct tcp_sack_block *cache;
1421 struct sk_buff *skb;
1422 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1423 int used_sacks;
1424 int reord = tp->packets_out;
1425 int flag = 0;
1426 int found_dup_sack = 0;
1427 int fack_count;
1428 int i, j;
1429 int first_sack_index;
1430
1431 if (!tp->sacked_out) {
1432 if (WARN_ON(tp->fackets_out))
1433 tp->fackets_out = 0;
1434 tcp_highest_sack_reset(sk);
1435 }
1436
1437 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1438 num_sacks, prior_snd_una);
1439 if (found_dup_sack)
1440 flag |= FLAG_DSACKING_ACK;
1441
1442 /* Eliminate too old ACKs, but take into
1443 * account more or less fresh ones, they can
1444 * contain valid SACK info.
1445 */
1446 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1447 return 0;
1448
1449 if (!tp->packets_out)
1450 goto out;
1451
1452 used_sacks = 0;
1453 first_sack_index = 0;
1454 for (i = 0; i < num_sacks; i++) {
1455 int dup_sack = !i && found_dup_sack;
1456
1457 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1458 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1459
1460 if (!tcp_is_sackblock_valid(tp, dup_sack,
1461 sp[used_sacks].start_seq,
1462 sp[used_sacks].end_seq)) {
1463 if (dup_sack) {
1464 if (!tp->undo_marker)
1465 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1466 else
1467 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1468 } else {
1469 /* Don't count olds caused by ACK reordering */
1470 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1471 !after(sp[used_sacks].end_seq, tp->snd_una))
1472 continue;
1473 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1474 }
1475 if (i == 0)
1476 first_sack_index = -1;
1477 continue;
1478 }
1479
1480 /* Ignore very old stuff early */
1481 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1482 continue;
1483
1484 used_sacks++;
1485 }
1486
1487 /* order SACK blocks to allow in order walk of the retrans queue */
1488 for (i = used_sacks - 1; i > 0; i--) {
1489 for (j = 0; j < i; j++) {
1490 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1491 struct tcp_sack_block tmp;
1492
1493 tmp = sp[j];
1494 sp[j] = sp[j + 1];
1495 sp[j + 1] = tmp;
1496
1497 /* Track where the first SACK block goes to */
1498 if (j == first_sack_index)
1499 first_sack_index = j + 1;
1500 }
1501 }
1502 }
1503
1504 skb = tcp_write_queue_head(sk);
1505 fack_count = 0;
1506 i = 0;
1507
1508 if (!tp->sacked_out) {
1509 /* It's already past, so skip checking against it */
1510 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1511 } else {
1512 cache = tp->recv_sack_cache;
1513 /* Skip empty blocks in at head of the cache */
1514 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1515 !cache->end_seq)
1516 cache++;
1517 }
1518
1519 while (i < used_sacks) {
1520 u32 start_seq = sp[i].start_seq;
1521 u32 end_seq = sp[i].end_seq;
1522 int dup_sack = (found_dup_sack && (i == first_sack_index));
1523 struct tcp_sack_block *next_dup = NULL;
1524
1525 if (found_dup_sack && ((i + 1) == first_sack_index))
1526 next_dup = &sp[i + 1];
1527
1528 /* Event "B" in the comment above. */
1529 if (after(end_seq, tp->high_seq))
1530 flag |= FLAG_DATA_LOST;
1531
1532 /* Skip too early cached blocks */
1533 while (tcp_sack_cache_ok(tp, cache) &&
1534 !before(start_seq, cache->end_seq))
1535 cache++;
1536
1537 /* Can skip some work by looking recv_sack_cache? */
1538 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1539 after(end_seq, cache->start_seq)) {
1540
1541 /* Head todo? */
1542 if (before(start_seq, cache->start_seq)) {
1543 skb = tcp_sacktag_skip(skb, sk, start_seq,
1544 &fack_count);
1545 skb = tcp_sacktag_walk(skb, sk, next_dup,
1546 start_seq,
1547 cache->start_seq,
1548 dup_sack, &fack_count,
1549 &reord, &flag);
1550 }
1551
1552 /* Rest of the block already fully processed? */
1553 if (!after(end_seq, cache->end_seq))
1554 goto advance_sp;
1555
1556 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1557 cache->end_seq,
1558 &fack_count, &reord,
1559 &flag);
1560
1561 /* ...tail remains todo... */
1562 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1563 /* ...but better entrypoint exists! */
1564 skb = tcp_highest_sack(sk);
1565 if (skb == NULL)
1566 break;
1567 fack_count = tp->fackets_out;
1568 cache++;
1569 goto walk;
1570 }
1571
1572 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1573 &fack_count);
1574 /* Check overlap against next cached too (past this one already) */
1575 cache++;
1576 continue;
1577 }
1578
1579 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1580 skb = tcp_highest_sack(sk);
1581 if (skb == NULL)
1582 break;
1583 fack_count = tp->fackets_out;
1584 }
1585 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1586
1587 walk:
1588 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1589 dup_sack, &fack_count, &reord, &flag);
1590
1591 advance_sp:
1592 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1593 * due to in-order walk
1594 */
1595 if (after(end_seq, tp->frto_highmark))
1596 flag &= ~FLAG_ONLY_ORIG_SACKED;
1597
1598 i++;
1599 }
1600
1601 /* Clear the head of the cache sack blocks so we can skip it next time */
1602 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1603 tp->recv_sack_cache[i].start_seq = 0;
1604 tp->recv_sack_cache[i].end_seq = 0;
1605 }
1606 for (j = 0; j < used_sacks; j++)
1607 tp->recv_sack_cache[i++] = sp[j];
1608
1609 tcp_mark_lost_retrans(sk);
1610
1611 tcp_verify_left_out(tp);
1612
1613 if ((reord < tp->fackets_out) &&
1614 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1615 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1616 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1617
1618 out:
1619
1620 #if FASTRETRANS_DEBUG > 0
1621 BUG_TRAP((int)tp->sacked_out >= 0);
1622 BUG_TRAP((int)tp->lost_out >= 0);
1623 BUG_TRAP((int)tp->retrans_out >= 0);
1624 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1625 #endif
1626 return flag;
1627 }
1628
1629 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1630 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1631 */
1632 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1633 {
1634 u32 holes;
1635
1636 holes = max(tp->lost_out, 1U);
1637 holes = min(holes, tp->packets_out);
1638
1639 if ((tp->sacked_out + holes) > tp->packets_out) {
1640 tp->sacked_out = tp->packets_out - holes;
1641 return 1;
1642 }
1643 return 0;
1644 }
1645
1646 /* If we receive more dupacks than we expected counting segments
1647 * in assumption of absent reordering, interpret this as reordering.
1648 * The only another reason could be bug in receiver TCP.
1649 */
1650 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1651 {
1652 struct tcp_sock *tp = tcp_sk(sk);
1653 if (tcp_limit_reno_sacked(tp))
1654 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1655 }
1656
1657 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1658
1659 static void tcp_add_reno_sack(struct sock *sk)
1660 {
1661 struct tcp_sock *tp = tcp_sk(sk);
1662 tp->sacked_out++;
1663 tcp_check_reno_reordering(sk, 0);
1664 tcp_verify_left_out(tp);
1665 }
1666
1667 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1668
1669 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1670 {
1671 struct tcp_sock *tp = tcp_sk(sk);
1672
1673 if (acked > 0) {
1674 /* One ACK acked hole. The rest eat duplicate ACKs. */
1675 if (acked - 1 >= tp->sacked_out)
1676 tp->sacked_out = 0;
1677 else
1678 tp->sacked_out -= acked - 1;
1679 }
1680 tcp_check_reno_reordering(sk, acked);
1681 tcp_verify_left_out(tp);
1682 }
1683
1684 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1685 {
1686 tp->sacked_out = 0;
1687 }
1688
1689 /* F-RTO can only be used if TCP has never retransmitted anything other than
1690 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1691 */
1692 int tcp_use_frto(struct sock *sk)
1693 {
1694 const struct tcp_sock *tp = tcp_sk(sk);
1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1696 struct sk_buff *skb;
1697
1698 if (!sysctl_tcp_frto)
1699 return 0;
1700
1701 /* MTU probe and F-RTO won't really play nicely along currently */
1702 if (icsk->icsk_mtup.probe_size)
1703 return 0;
1704
1705 if (IsSackFrto())
1706 return 1;
1707
1708 /* Avoid expensive walking of rexmit queue if possible */
1709 if (tp->retrans_out > 1)
1710 return 0;
1711
1712 skb = tcp_write_queue_head(sk);
1713 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1714 tcp_for_write_queue_from(skb, sk) {
1715 if (skb == tcp_send_head(sk))
1716 break;
1717 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1718 return 0;
1719 /* Short-circuit when first non-SACKed skb has been checked */
1720 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1721 break;
1722 }
1723 return 1;
1724 }
1725
1726 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1727 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1728 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1729 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1730 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1731 * bits are handled if the Loss state is really to be entered (in
1732 * tcp_enter_frto_loss).
1733 *
1734 * Do like tcp_enter_loss() would; when RTO expires the second time it
1735 * does:
1736 * "Reduce ssthresh if it has not yet been made inside this window."
1737 */
1738 void tcp_enter_frto(struct sock *sk)
1739 {
1740 const struct inet_connection_sock *icsk = inet_csk(sk);
1741 struct tcp_sock *tp = tcp_sk(sk);
1742 struct sk_buff *skb;
1743
1744 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1745 tp->snd_una == tp->high_seq ||
1746 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1747 !icsk->icsk_retransmits)) {
1748 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1749 /* Our state is too optimistic in ssthresh() call because cwnd
1750 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1751 * recovery has not yet completed. Pattern would be this: RTO,
1752 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1753 * up here twice).
1754 * RFC4138 should be more specific on what to do, even though
1755 * RTO is quite unlikely to occur after the first Cumulative ACK
1756 * due to back-off and complexity of triggering events ...
1757 */
1758 if (tp->frto_counter) {
1759 u32 stored_cwnd;
1760 stored_cwnd = tp->snd_cwnd;
1761 tp->snd_cwnd = 2;
1762 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1763 tp->snd_cwnd = stored_cwnd;
1764 } else {
1765 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766 }
1767 /* ... in theory, cong.control module could do "any tricks" in
1768 * ssthresh(), which means that ca_state, lost bits and lost_out
1769 * counter would have to be faked before the call occurs. We
1770 * consider that too expensive, unlikely and hacky, so modules
1771 * using these in ssthresh() must deal these incompatibility
1772 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1773 */
1774 tcp_ca_event(sk, CA_EVENT_FRTO);
1775 }
1776
1777 tp->undo_marker = tp->snd_una;
1778 tp->undo_retrans = 0;
1779
1780 skb = tcp_write_queue_head(sk);
1781 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1782 tp->undo_marker = 0;
1783 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1784 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1785 tp->retrans_out -= tcp_skb_pcount(skb);
1786 }
1787 tcp_verify_left_out(tp);
1788
1789 /* Too bad if TCP was application limited */
1790 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1791
1792 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1793 * The last condition is necessary at least in tp->frto_counter case.
1794 */
1795 if (IsSackFrto() && (tp->frto_counter ||
1796 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1797 after(tp->high_seq, tp->snd_una)) {
1798 tp->frto_highmark = tp->high_seq;
1799 } else {
1800 tp->frto_highmark = tp->snd_nxt;
1801 }
1802 tcp_set_ca_state(sk, TCP_CA_Disorder);
1803 tp->high_seq = tp->snd_nxt;
1804 tp->frto_counter = 1;
1805 }
1806
1807 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1808 * which indicates that we should follow the traditional RTO recovery,
1809 * i.e. mark everything lost and do go-back-N retransmission.
1810 */
1811 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 struct sk_buff *skb;
1815
1816 tp->lost_out = 0;
1817 tp->retrans_out = 0;
1818 if (tcp_is_reno(tp))
1819 tcp_reset_reno_sack(tp);
1820
1821 tcp_for_write_queue(skb, sk) {
1822 if (skb == tcp_send_head(sk))
1823 break;
1824
1825 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1826 /*
1827 * Count the retransmission made on RTO correctly (only when
1828 * waiting for the first ACK and did not get it)...
1829 */
1830 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1831 /* For some reason this R-bit might get cleared? */
1832 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1833 tp->retrans_out += tcp_skb_pcount(skb);
1834 /* ...enter this if branch just for the first segment */
1835 flag |= FLAG_DATA_ACKED;
1836 } else {
1837 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1838 tp->undo_marker = 0;
1839 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1840 }
1841
1842 /* Don't lost mark skbs that were fwd transmitted after RTO */
1843 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1844 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1845 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1846 tp->lost_out += tcp_skb_pcount(skb);
1847 }
1848 }
1849 tcp_verify_left_out(tp);
1850
1851 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1852 tp->snd_cwnd_cnt = 0;
1853 tp->snd_cwnd_stamp = tcp_time_stamp;
1854 tp->frto_counter = 0;
1855 tp->bytes_acked = 0;
1856
1857 tp->reordering = min_t(unsigned int, tp->reordering,
1858 sysctl_tcp_reordering);
1859 tcp_set_ca_state(sk, TCP_CA_Loss);
1860 tp->high_seq = tp->frto_highmark;
1861 TCP_ECN_queue_cwr(tp);
1862
1863 tcp_clear_retrans_hints_partial(tp);
1864 }
1865
1866 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1867 {
1868 tp->retrans_out = 0;
1869 tp->lost_out = 0;
1870
1871 tp->undo_marker = 0;
1872 tp->undo_retrans = 0;
1873 }
1874
1875 void tcp_clear_retrans(struct tcp_sock *tp)
1876 {
1877 tcp_clear_retrans_partial(tp);
1878
1879 tp->fackets_out = 0;
1880 tp->sacked_out = 0;
1881 }
1882
1883 /* Enter Loss state. If "how" is not zero, forget all SACK information
1884 * and reset tags completely, otherwise preserve SACKs. If receiver
1885 * dropped its ofo queue, we will know this due to reneging detection.
1886 */
1887 void tcp_enter_loss(struct sock *sk, int how)
1888 {
1889 const struct inet_connection_sock *icsk = inet_csk(sk);
1890 struct tcp_sock *tp = tcp_sk(sk);
1891 struct sk_buff *skb;
1892
1893 /* Reduce ssthresh if it has not yet been made inside this window. */
1894 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1895 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1896 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1897 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1898 tcp_ca_event(sk, CA_EVENT_LOSS);
1899 }
1900 tp->snd_cwnd = 1;
1901 tp->snd_cwnd_cnt = 0;
1902 tp->snd_cwnd_stamp = tcp_time_stamp;
1903
1904 tp->bytes_acked = 0;
1905 tcp_clear_retrans_partial(tp);
1906
1907 if (tcp_is_reno(tp))
1908 tcp_reset_reno_sack(tp);
1909
1910 if (!how) {
1911 /* Push undo marker, if it was plain RTO and nothing
1912 * was retransmitted. */
1913 tp->undo_marker = tp->snd_una;
1914 tcp_clear_retrans_hints_partial(tp);
1915 } else {
1916 tp->sacked_out = 0;
1917 tp->fackets_out = 0;
1918 tcp_clear_all_retrans_hints(tp);
1919 }
1920
1921 tcp_for_write_queue(skb, sk) {
1922 if (skb == tcp_send_head(sk))
1923 break;
1924
1925 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1926 tp->undo_marker = 0;
1927 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1928 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1929 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1930 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1931 tp->lost_out += tcp_skb_pcount(skb);
1932 }
1933 }
1934 tcp_verify_left_out(tp);
1935
1936 tp->reordering = min_t(unsigned int, tp->reordering,
1937 sysctl_tcp_reordering);
1938 tcp_set_ca_state(sk, TCP_CA_Loss);
1939 tp->high_seq = tp->snd_nxt;
1940 TCP_ECN_queue_cwr(tp);
1941 /* Abort F-RTO algorithm if one is in progress */
1942 tp->frto_counter = 0;
1943 }
1944
1945 /* If ACK arrived pointing to a remembered SACK, it means that our
1946 * remembered SACKs do not reflect real state of receiver i.e.
1947 * receiver _host_ is heavily congested (or buggy).
1948 *
1949 * Do processing similar to RTO timeout.
1950 */
1951 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1952 {
1953 if (flag & FLAG_SACK_RENEGING) {
1954 struct inet_connection_sock *icsk = inet_csk(sk);
1955 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1956
1957 tcp_enter_loss(sk, 1);
1958 icsk->icsk_retransmits++;
1959 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1960 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1961 icsk->icsk_rto, TCP_RTO_MAX);
1962 return 1;
1963 }
1964 return 0;
1965 }
1966
1967 static inline int tcp_fackets_out(struct tcp_sock *tp)
1968 {
1969 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1970 }
1971
1972 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1973 * counter when SACK is enabled (without SACK, sacked_out is used for
1974 * that purpose).
1975 *
1976 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1977 * segments up to the highest received SACK block so far and holes in
1978 * between them.
1979 *
1980 * With reordering, holes may still be in flight, so RFC3517 recovery
1981 * uses pure sacked_out (total number of SACKed segments) even though
1982 * it violates the RFC that uses duplicate ACKs, often these are equal
1983 * but when e.g. out-of-window ACKs or packet duplication occurs,
1984 * they differ. Since neither occurs due to loss, TCP should really
1985 * ignore them.
1986 */
1987 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1988 {
1989 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1990 }
1991
1992 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1993 {
1994 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1995 }
1996
1997 static inline int tcp_head_timedout(struct sock *sk)
1998 {
1999 struct tcp_sock *tp = tcp_sk(sk);
2000
2001 return tp->packets_out &&
2002 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2003 }
2004
2005 /* Linux NewReno/SACK/FACK/ECN state machine.
2006 * --------------------------------------
2007 *
2008 * "Open" Normal state, no dubious events, fast path.
2009 * "Disorder" In all the respects it is "Open",
2010 * but requires a bit more attention. It is entered when
2011 * we see some SACKs or dupacks. It is split of "Open"
2012 * mainly to move some processing from fast path to slow one.
2013 * "CWR" CWND was reduced due to some Congestion Notification event.
2014 * It can be ECN, ICMP source quench, local device congestion.
2015 * "Recovery" CWND was reduced, we are fast-retransmitting.
2016 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2017 *
2018 * tcp_fastretrans_alert() is entered:
2019 * - each incoming ACK, if state is not "Open"
2020 * - when arrived ACK is unusual, namely:
2021 * * SACK
2022 * * Duplicate ACK.
2023 * * ECN ECE.
2024 *
2025 * Counting packets in flight is pretty simple.
2026 *
2027 * in_flight = packets_out - left_out + retrans_out
2028 *
2029 * packets_out is SND.NXT-SND.UNA counted in packets.
2030 *
2031 * retrans_out is number of retransmitted segments.
2032 *
2033 * left_out is number of segments left network, but not ACKed yet.
2034 *
2035 * left_out = sacked_out + lost_out
2036 *
2037 * sacked_out: Packets, which arrived to receiver out of order
2038 * and hence not ACKed. With SACKs this number is simply
2039 * amount of SACKed data. Even without SACKs
2040 * it is easy to give pretty reliable estimate of this number,
2041 * counting duplicate ACKs.
2042 *
2043 * lost_out: Packets lost by network. TCP has no explicit
2044 * "loss notification" feedback from network (for now).
2045 * It means that this number can be only _guessed_.
2046 * Actually, it is the heuristics to predict lossage that
2047 * distinguishes different algorithms.
2048 *
2049 * F.e. after RTO, when all the queue is considered as lost,
2050 * lost_out = packets_out and in_flight = retrans_out.
2051 *
2052 * Essentially, we have now two algorithms counting
2053 * lost packets.
2054 *
2055 * FACK: It is the simplest heuristics. As soon as we decided
2056 * that something is lost, we decide that _all_ not SACKed
2057 * packets until the most forward SACK are lost. I.e.
2058 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2059 * It is absolutely correct estimate, if network does not reorder
2060 * packets. And it loses any connection to reality when reordering
2061 * takes place. We use FACK by default until reordering
2062 * is suspected on the path to this destination.
2063 *
2064 * NewReno: when Recovery is entered, we assume that one segment
2065 * is lost (classic Reno). While we are in Recovery and
2066 * a partial ACK arrives, we assume that one more packet
2067 * is lost (NewReno). This heuristics are the same in NewReno
2068 * and SACK.
2069 *
2070 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2071 * deflation etc. CWND is real congestion window, never inflated, changes
2072 * only according to classic VJ rules.
2073 *
2074 * Really tricky (and requiring careful tuning) part of algorithm
2075 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2076 * The first determines the moment _when_ we should reduce CWND and,
2077 * hence, slow down forward transmission. In fact, it determines the moment
2078 * when we decide that hole is caused by loss, rather than by a reorder.
2079 *
2080 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2081 * holes, caused by lost packets.
2082 *
2083 * And the most logically complicated part of algorithm is undo
2084 * heuristics. We detect false retransmits due to both too early
2085 * fast retransmit (reordering) and underestimated RTO, analyzing
2086 * timestamps and D-SACKs. When we detect that some segments were
2087 * retransmitted by mistake and CWND reduction was wrong, we undo
2088 * window reduction and abort recovery phase. This logic is hidden
2089 * inside several functions named tcp_try_undo_<something>.
2090 */
2091
2092 /* This function decides, when we should leave Disordered state
2093 * and enter Recovery phase, reducing congestion window.
2094 *
2095 * Main question: may we further continue forward transmission
2096 * with the same cwnd?
2097 */
2098 static int tcp_time_to_recover(struct sock *sk)
2099 {
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 __u32 packets_out;
2102
2103 /* Do not perform any recovery during F-RTO algorithm */
2104 if (tp->frto_counter)
2105 return 0;
2106
2107 /* Trick#1: The loss is proven. */
2108 if (tp->lost_out)
2109 return 1;
2110
2111 /* Not-A-Trick#2 : Classic rule... */
2112 if (tcp_dupack_heurestics(tp) > tp->reordering)
2113 return 1;
2114
2115 /* Trick#3 : when we use RFC2988 timer restart, fast
2116 * retransmit can be triggered by timeout of queue head.
2117 */
2118 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2119 return 1;
2120
2121 /* Trick#4: It is still not OK... But will it be useful to delay
2122 * recovery more?
2123 */
2124 packets_out = tp->packets_out;
2125 if (packets_out <= tp->reordering &&
2126 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2127 !tcp_may_send_now(sk)) {
2128 /* We have nothing to send. This connection is limited
2129 * either by receiver window or by application.
2130 */
2131 return 1;
2132 }
2133
2134 return 0;
2135 }
2136
2137 /* RFC: This is from the original, I doubt that this is necessary at all:
2138 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2139 * retransmitted past LOST markings in the first place? I'm not fully sure
2140 * about undo and end of connection cases, which can cause R without L?
2141 */
2142 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2143 {
2144 if ((tp->retransmit_skb_hint != NULL) &&
2145 before(TCP_SKB_CB(skb)->seq,
2146 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2147 tp->retransmit_skb_hint = NULL;
2148 }
2149
2150 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2151 * is against sacked "cnt", otherwise it's against facked "cnt"
2152 */
2153 static void tcp_mark_head_lost(struct sock *sk, int packets)
2154 {
2155 struct tcp_sock *tp = tcp_sk(sk);
2156 struct sk_buff *skb;
2157 int cnt, oldcnt;
2158 int err;
2159 unsigned int mss;
2160
2161 BUG_TRAP(packets <= tp->packets_out);
2162 if (tp->lost_skb_hint) {
2163 skb = tp->lost_skb_hint;
2164 cnt = tp->lost_cnt_hint;
2165 } else {
2166 skb = tcp_write_queue_head(sk);
2167 cnt = 0;
2168 }
2169
2170 tcp_for_write_queue_from(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173 /* TODO: do this better */
2174 /* this is not the most efficient way to do this... */
2175 tp->lost_skb_hint = skb;
2176 tp->lost_cnt_hint = cnt;
2177
2178 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2179 break;
2180
2181 oldcnt = cnt;
2182 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2184 cnt += tcp_skb_pcount(skb);
2185
2186 if (cnt > packets) {
2187 if (tcp_is_sack(tp) || (oldcnt >= packets))
2188 break;
2189
2190 mss = skb_shinfo(skb)->gso_size;
2191 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2192 if (err < 0)
2193 break;
2194 cnt = packets;
2195 }
2196
2197 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2198 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2199 tp->lost_out += tcp_skb_pcount(skb);
2200 tcp_verify_retransmit_hint(tp, skb);
2201 }
2202 }
2203 tcp_verify_left_out(tp);
2204 }
2205
2206 /* Account newly detected lost packet(s) */
2207
2208 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2209 {
2210 struct tcp_sock *tp = tcp_sk(sk);
2211
2212 if (tcp_is_reno(tp)) {
2213 tcp_mark_head_lost(sk, 1);
2214 } else if (tcp_is_fack(tp)) {
2215 int lost = tp->fackets_out - tp->reordering;
2216 if (lost <= 0)
2217 lost = 1;
2218 tcp_mark_head_lost(sk, lost);
2219 } else {
2220 int sacked_upto = tp->sacked_out - tp->reordering;
2221 if (sacked_upto < fast_rexmit)
2222 sacked_upto = fast_rexmit;
2223 tcp_mark_head_lost(sk, sacked_upto);
2224 }
2225
2226 /* New heuristics: it is possible only after we switched
2227 * to restart timer each time when something is ACKed.
2228 * Hence, we can detect timed out packets during fast
2229 * retransmit without falling to slow start.
2230 */
2231 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2232 struct sk_buff *skb;
2233
2234 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2235 : tcp_write_queue_head(sk);
2236
2237 tcp_for_write_queue_from(skb, sk) {
2238 if (skb == tcp_send_head(sk))
2239 break;
2240 if (!tcp_skb_timedout(sk, skb))
2241 break;
2242
2243 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2244 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2245 tp->lost_out += tcp_skb_pcount(skb);
2246 tcp_verify_retransmit_hint(tp, skb);
2247 }
2248 }
2249
2250 tp->scoreboard_skb_hint = skb;
2251
2252 tcp_verify_left_out(tp);
2253 }
2254 }
2255
2256 /* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2258 */
2259 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260 {
2261 tp->snd_cwnd = min(tp->snd_cwnd,
2262 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263 tp->snd_cwnd_stamp = tcp_time_stamp;
2264 }
2265
2266 /* Lower bound on congestion window is slow start threshold
2267 * unless congestion avoidance choice decides to overide it.
2268 */
2269 static inline u32 tcp_cwnd_min(const struct sock *sk)
2270 {
2271 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2272
2273 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2274 }
2275
2276 /* Decrease cwnd each second ack. */
2277 static void tcp_cwnd_down(struct sock *sk, int flag)
2278 {
2279 struct tcp_sock *tp = tcp_sk(sk);
2280 int decr = tp->snd_cwnd_cnt + 1;
2281
2282 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2283 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2284 tp->snd_cwnd_cnt = decr & 1;
2285 decr >>= 1;
2286
2287 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2288 tp->snd_cwnd -= decr;
2289
2290 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2291 tp->snd_cwnd_stamp = tcp_time_stamp;
2292 }
2293 }
2294
2295 /* Nothing was retransmitted or returned timestamp is less
2296 * than timestamp of the first retransmission.
2297 */
2298 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2299 {
2300 return !tp->retrans_stamp ||
2301 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2302 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2303 }
2304
2305 /* Undo procedures. */
2306
2307 #if FASTRETRANS_DEBUG > 1
2308 static void DBGUNDO(struct sock *sk, const char *msg)
2309 {
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 struct inet_sock *inet = inet_sk(sk);
2312
2313 if (sk->sk_family == AF_INET) {
2314 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2315 msg,
2316 NIPQUAD(inet->daddr), ntohs(inet->dport),
2317 tp->snd_cwnd, tcp_left_out(tp),
2318 tp->snd_ssthresh, tp->prior_ssthresh,
2319 tp->packets_out);
2320 }
2321 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2322 else if (sk->sk_family == AF_INET6) {
2323 struct ipv6_pinfo *np = inet6_sk(sk);
2324 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325 msg,
2326 NIP6(np->daddr), ntohs(inet->dport),
2327 tp->snd_cwnd, tcp_left_out(tp),
2328 tp->snd_ssthresh, tp->prior_ssthresh,
2329 tp->packets_out);
2330 }
2331 #endif
2332 }
2333 #else
2334 #define DBGUNDO(x...) do { } while (0)
2335 #endif
2336
2337 static void tcp_undo_cwr(struct sock *sk, const int undo)
2338 {
2339 struct tcp_sock *tp = tcp_sk(sk);
2340
2341 if (tp->prior_ssthresh) {
2342 const struct inet_connection_sock *icsk = inet_csk(sk);
2343
2344 if (icsk->icsk_ca_ops->undo_cwnd)
2345 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2346 else
2347 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2348
2349 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2350 tp->snd_ssthresh = tp->prior_ssthresh;
2351 TCP_ECN_withdraw_cwr(tp);
2352 }
2353 } else {
2354 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2355 }
2356 tcp_moderate_cwnd(tp);
2357 tp->snd_cwnd_stamp = tcp_time_stamp;
2358
2359 /* There is something screwy going on with the retrans hints after
2360 an undo */
2361 tcp_clear_all_retrans_hints(tp);
2362 }
2363
2364 static inline int tcp_may_undo(struct tcp_sock *tp)
2365 {
2366 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2367 }
2368
2369 /* People celebrate: "We love our President!" */
2370 static int tcp_try_undo_recovery(struct sock *sk)
2371 {
2372 struct tcp_sock *tp = tcp_sk(sk);
2373
2374 if (tcp_may_undo(tp)) {
2375 /* Happy end! We did not retransmit anything
2376 * or our original transmission succeeded.
2377 */
2378 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2379 tcp_undo_cwr(sk, 1);
2380 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2381 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2382 else
2383 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2384 tp->undo_marker = 0;
2385 }
2386 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2387 /* Hold old state until something *above* high_seq
2388 * is ACKed. For Reno it is MUST to prevent false
2389 * fast retransmits (RFC2582). SACK TCP is safe. */
2390 tcp_moderate_cwnd(tp);
2391 return 1;
2392 }
2393 tcp_set_ca_state(sk, TCP_CA_Open);
2394 return 0;
2395 }
2396
2397 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2398 static void tcp_try_undo_dsack(struct sock *sk)
2399 {
2400 struct tcp_sock *tp = tcp_sk(sk);
2401
2402 if (tp->undo_marker && !tp->undo_retrans) {
2403 DBGUNDO(sk, "D-SACK");
2404 tcp_undo_cwr(sk, 1);
2405 tp->undo_marker = 0;
2406 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2407 }
2408 }
2409
2410 /* Undo during fast recovery after partial ACK. */
2411
2412 static int tcp_try_undo_partial(struct sock *sk, int acked)
2413 {
2414 struct tcp_sock *tp = tcp_sk(sk);
2415 /* Partial ACK arrived. Force Hoe's retransmit. */
2416 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2417
2418 if (tcp_may_undo(tp)) {
2419 /* Plain luck! Hole if filled with delayed
2420 * packet, rather than with a retransmit.
2421 */
2422 if (tp->retrans_out == 0)
2423 tp->retrans_stamp = 0;
2424
2425 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2426
2427 DBGUNDO(sk, "Hoe");
2428 tcp_undo_cwr(sk, 0);
2429 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2430
2431 /* So... Do not make Hoe's retransmit yet.
2432 * If the first packet was delayed, the rest
2433 * ones are most probably delayed as well.
2434 */
2435 failed = 0;
2436 }
2437 return failed;
2438 }
2439
2440 /* Undo during loss recovery after partial ACK. */
2441 static int tcp_try_undo_loss(struct sock *sk)
2442 {
2443 struct tcp_sock *tp = tcp_sk(sk);
2444
2445 if (tcp_may_undo(tp)) {
2446 struct sk_buff *skb;
2447 tcp_for_write_queue(skb, sk) {
2448 if (skb == tcp_send_head(sk))
2449 break;
2450 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2451 }
2452
2453 tcp_clear_all_retrans_hints(tp);
2454
2455 DBGUNDO(sk, "partial loss");
2456 tp->lost_out = 0;
2457 tcp_undo_cwr(sk, 1);
2458 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2459 inet_csk(sk)->icsk_retransmits = 0;
2460 tp->undo_marker = 0;
2461 if (tcp_is_sack(tp))
2462 tcp_set_ca_state(sk, TCP_CA_Open);
2463 return 1;
2464 }
2465 return 0;
2466 }
2467
2468 static inline void tcp_complete_cwr(struct sock *sk)
2469 {
2470 struct tcp_sock *tp = tcp_sk(sk);
2471 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2472 tp->snd_cwnd_stamp = tcp_time_stamp;
2473 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2474 }
2475
2476 static void tcp_try_to_open(struct sock *sk, int flag)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479
2480 tcp_verify_left_out(tp);
2481
2482 if (tp->retrans_out == 0)
2483 tp->retrans_stamp = 0;
2484
2485 if (flag & FLAG_ECE)
2486 tcp_enter_cwr(sk, 1);
2487
2488 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2489 int state = TCP_CA_Open;
2490
2491 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2492 state = TCP_CA_Disorder;
2493
2494 if (inet_csk(sk)->icsk_ca_state != state) {
2495 tcp_set_ca_state(sk, state);
2496 tp->high_seq = tp->snd_nxt;
2497 }
2498 tcp_moderate_cwnd(tp);
2499 } else {
2500 tcp_cwnd_down(sk, flag);
2501 }
2502 }
2503
2504 static void tcp_mtup_probe_failed(struct sock *sk)
2505 {
2506 struct inet_connection_sock *icsk = inet_csk(sk);
2507
2508 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2509 icsk->icsk_mtup.probe_size = 0;
2510 }
2511
2512 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2513 {
2514 struct tcp_sock *tp = tcp_sk(sk);
2515 struct inet_connection_sock *icsk = inet_csk(sk);
2516
2517 /* FIXME: breaks with very large cwnd */
2518 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2519 tp->snd_cwnd = tp->snd_cwnd *
2520 tcp_mss_to_mtu(sk, tp->mss_cache) /
2521 icsk->icsk_mtup.probe_size;
2522 tp->snd_cwnd_cnt = 0;
2523 tp->snd_cwnd_stamp = tcp_time_stamp;
2524 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2525
2526 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2527 icsk->icsk_mtup.probe_size = 0;
2528 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2529 }
2530
2531 /* Process an event, which can update packets-in-flight not trivially.
2532 * Main goal of this function is to calculate new estimate for left_out,
2533 * taking into account both packets sitting in receiver's buffer and
2534 * packets lost by network.
2535 *
2536 * Besides that it does CWND reduction, when packet loss is detected
2537 * and changes state of machine.
2538 *
2539 * It does _not_ decide what to send, it is made in function
2540 * tcp_xmit_retransmit_queue().
2541 */
2542 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2543 {
2544 struct inet_connection_sock *icsk = inet_csk(sk);
2545 struct tcp_sock *tp = tcp_sk(sk);
2546 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2547 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2548 (tcp_fackets_out(tp) > tp->reordering));
2549 int fast_rexmit = 0;
2550
2551 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2552 tp->sacked_out = 0;
2553 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2554 tp->fackets_out = 0;
2555
2556 /* Now state machine starts.
2557 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2558 if (flag & FLAG_ECE)
2559 tp->prior_ssthresh = 0;
2560
2561 /* B. In all the states check for reneging SACKs. */
2562 if (tcp_check_sack_reneging(sk, flag))
2563 return;
2564
2565 /* C. Process data loss notification, provided it is valid. */
2566 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2567 before(tp->snd_una, tp->high_seq) &&
2568 icsk->icsk_ca_state != TCP_CA_Open &&
2569 tp->fackets_out > tp->reordering) {
2570 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2571 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2572 }
2573
2574 /* D. Check consistency of the current state. */
2575 tcp_verify_left_out(tp);
2576
2577 /* E. Check state exit conditions. State can be terminated
2578 * when high_seq is ACKed. */
2579 if (icsk->icsk_ca_state == TCP_CA_Open) {
2580 BUG_TRAP(tp->retrans_out == 0);
2581 tp->retrans_stamp = 0;
2582 } else if (!before(tp->snd_una, tp->high_seq)) {
2583 switch (icsk->icsk_ca_state) {
2584 case TCP_CA_Loss:
2585 icsk->icsk_retransmits = 0;
2586 if (tcp_try_undo_recovery(sk))
2587 return;
2588 break;
2589
2590 case TCP_CA_CWR:
2591 /* CWR is to be held something *above* high_seq
2592 * is ACKed for CWR bit to reach receiver. */
2593 if (tp->snd_una != tp->high_seq) {
2594 tcp_complete_cwr(sk);
2595 tcp_set_ca_state(sk, TCP_CA_Open);
2596 }
2597 break;
2598
2599 case TCP_CA_Disorder:
2600 tcp_try_undo_dsack(sk);
2601 if (!tp->undo_marker ||
2602 /* For SACK case do not Open to allow to undo
2603 * catching for all duplicate ACKs. */
2604 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2605 tp->undo_marker = 0;
2606 tcp_set_ca_state(sk, TCP_CA_Open);
2607 }
2608 break;
2609
2610 case TCP_CA_Recovery:
2611 if (tcp_is_reno(tp))
2612 tcp_reset_reno_sack(tp);
2613 if (tcp_try_undo_recovery(sk))
2614 return;
2615 tcp_complete_cwr(sk);
2616 break;
2617 }
2618 }
2619
2620 /* F. Process state. */
2621 switch (icsk->icsk_ca_state) {
2622 case TCP_CA_Recovery:
2623 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2624 if (tcp_is_reno(tp) && is_dupack)
2625 tcp_add_reno_sack(sk);
2626 } else
2627 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2628 break;
2629 case TCP_CA_Loss:
2630 if (flag & FLAG_DATA_ACKED)
2631 icsk->icsk_retransmits = 0;
2632 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2633 tcp_reset_reno_sack(tp);
2634 if (!tcp_try_undo_loss(sk)) {
2635 tcp_moderate_cwnd(tp);
2636 tcp_xmit_retransmit_queue(sk);
2637 return;
2638 }
2639 if (icsk->icsk_ca_state != TCP_CA_Open)
2640 return;
2641 /* Loss is undone; fall through to processing in Open state. */
2642 default:
2643 if (tcp_is_reno(tp)) {
2644 if (flag & FLAG_SND_UNA_ADVANCED)
2645 tcp_reset_reno_sack(tp);
2646 if (is_dupack)
2647 tcp_add_reno_sack(sk);
2648 }
2649
2650 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2651 tcp_try_undo_dsack(sk);
2652
2653 if (!tcp_time_to_recover(sk)) {
2654 tcp_try_to_open(sk, flag);
2655 return;
2656 }
2657
2658 /* MTU probe failure: don't reduce cwnd */
2659 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2660 icsk->icsk_mtup.probe_size &&
2661 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2662 tcp_mtup_probe_failed(sk);
2663 /* Restores the reduction we did in tcp_mtup_probe() */
2664 tp->snd_cwnd++;
2665 tcp_simple_retransmit(sk);
2666 return;
2667 }
2668
2669 /* Otherwise enter Recovery state */
2670
2671 if (tcp_is_reno(tp))
2672 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2673 else
2674 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2675
2676 tp->high_seq = tp->snd_nxt;
2677 tp->prior_ssthresh = 0;
2678 tp->undo_marker = tp->snd_una;
2679 tp->undo_retrans = tp->retrans_out;
2680
2681 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2682 if (!(flag & FLAG_ECE))
2683 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2684 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2685 TCP_ECN_queue_cwr(tp);
2686 }
2687
2688 tp->bytes_acked = 0;
2689 tp->snd_cwnd_cnt = 0;
2690 tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 fast_rexmit = 1;
2692 }
2693
2694 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2695 tcp_update_scoreboard(sk, fast_rexmit);
2696 tcp_cwnd_down(sk, flag);
2697 tcp_xmit_retransmit_queue(sk);
2698 }
2699
2700 /* Read draft-ietf-tcplw-high-performance before mucking
2701 * with this code. (Supersedes RFC1323)
2702 */
2703 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2704 {
2705 /* RTTM Rule: A TSecr value received in a segment is used to
2706 * update the averaged RTT measurement only if the segment
2707 * acknowledges some new data, i.e., only if it advances the
2708 * left edge of the send window.
2709 *
2710 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2711 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2712 *
2713 * Changed: reset backoff as soon as we see the first valid sample.
2714 * If we do not, we get strongly overestimated rto. With timestamps
2715 * samples are accepted even from very old segments: f.e., when rtt=1
2716 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2717 * answer arrives rto becomes 120 seconds! If at least one of segments
2718 * in window is lost... Voila. --ANK (010210)
2719 */
2720 struct tcp_sock *tp = tcp_sk(sk);
2721 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2722 tcp_rtt_estimator(sk, seq_rtt);
2723 tcp_set_rto(sk);
2724 inet_csk(sk)->icsk_backoff = 0;
2725 tcp_bound_rto(sk);
2726 }
2727
2728 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2729 {
2730 /* We don't have a timestamp. Can only use
2731 * packets that are not retransmitted to determine
2732 * rtt estimates. Also, we must not reset the
2733 * backoff for rto until we get a non-retransmitted
2734 * packet. This allows us to deal with a situation
2735 * where the network delay has increased suddenly.
2736 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2737 */
2738
2739 if (flag & FLAG_RETRANS_DATA_ACKED)
2740 return;
2741
2742 tcp_rtt_estimator(sk, seq_rtt);
2743 tcp_set_rto(sk);
2744 inet_csk(sk)->icsk_backoff = 0;
2745 tcp_bound_rto(sk);
2746 }
2747
2748 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2749 const s32 seq_rtt)
2750 {
2751 const struct tcp_sock *tp = tcp_sk(sk);
2752 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2753 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2754 tcp_ack_saw_tstamp(sk, flag);
2755 else if (seq_rtt >= 0)
2756 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2757 }
2758
2759 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2760 {
2761 const struct inet_connection_sock *icsk = inet_csk(sk);
2762 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2763 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2764 }
2765
2766 /* Restart timer after forward progress on connection.
2767 * RFC2988 recommends to restart timer to now+rto.
2768 */
2769 static void tcp_rearm_rto(struct sock *sk)
2770 {
2771 struct tcp_sock *tp = tcp_sk(sk);
2772
2773 if (!tp->packets_out) {
2774 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2775 } else {
2776 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2777 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2778 }
2779 }
2780
2781 /* If we get here, the whole TSO packet has not been acked. */
2782 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2783 {
2784 struct tcp_sock *tp = tcp_sk(sk);
2785 u32 packets_acked;
2786
2787 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2788
2789 packets_acked = tcp_skb_pcount(skb);
2790 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2791 return 0;
2792 packets_acked -= tcp_skb_pcount(skb);
2793
2794 if (packets_acked) {
2795 BUG_ON(tcp_skb_pcount(skb) == 0);
2796 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2797 }
2798
2799 return packets_acked;
2800 }
2801
2802 /* Remove acknowledged frames from the retransmission queue. If our packet
2803 * is before the ack sequence we can discard it as it's confirmed to have
2804 * arrived at the other end.
2805 */
2806 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2807 {
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 const struct inet_connection_sock *icsk = inet_csk(sk);
2810 struct sk_buff *skb;
2811 u32 now = tcp_time_stamp;
2812 int fully_acked = 1;
2813 int flag = 0;
2814 u32 pkts_acked = 0;
2815 u32 reord = tp->packets_out;
2816 s32 seq_rtt = -1;
2817 s32 ca_seq_rtt = -1;
2818 ktime_t last_ackt = net_invalid_timestamp();
2819
2820 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2821 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2822 u32 end_seq;
2823 u32 acked_pcount;
2824 u8 sacked = scb->sacked;
2825
2826 /* Determine how many packets and what bytes were acked, tso and else */
2827 if (after(scb->end_seq, tp->snd_una)) {
2828 if (tcp_skb_pcount(skb) == 1 ||
2829 !after(tp->snd_una, scb->seq))
2830 break;
2831
2832 acked_pcount = tcp_tso_acked(sk, skb);
2833 if (!acked_pcount)
2834 break;
2835
2836 fully_acked = 0;
2837 end_seq = tp->snd_una;
2838 } else {
2839 acked_pcount = tcp_skb_pcount(skb);
2840 end_seq = scb->end_seq;
2841 }
2842
2843 /* MTU probing checks */
2844 if (fully_acked && icsk->icsk_mtup.probe_size &&
2845 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2846 tcp_mtup_probe_success(sk, skb);
2847 }
2848
2849 if (sacked & TCPCB_RETRANS) {
2850 if (sacked & TCPCB_SACKED_RETRANS)
2851 tp->retrans_out -= acked_pcount;
2852 flag |= FLAG_RETRANS_DATA_ACKED;
2853 ca_seq_rtt = -1;
2854 seq_rtt = -1;
2855 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2856 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2857 } else {
2858 ca_seq_rtt = now - scb->when;
2859 last_ackt = skb->tstamp;
2860 if (seq_rtt < 0) {
2861 seq_rtt = ca_seq_rtt;
2862 }
2863 if (!(sacked & TCPCB_SACKED_ACKED))
2864 reord = min(pkts_acked, reord);
2865 }
2866
2867 if (sacked & TCPCB_SACKED_ACKED)
2868 tp->sacked_out -= acked_pcount;
2869 if (sacked & TCPCB_LOST)
2870 tp->lost_out -= acked_pcount;
2871
2872 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2873 tp->urg_mode = 0;
2874
2875 tp->packets_out -= acked_pcount;
2876 pkts_acked += acked_pcount;
2877
2878 /* Initial outgoing SYN's get put onto the write_queue
2879 * just like anything else we transmit. It is not
2880 * true data, and if we misinform our callers that
2881 * this ACK acks real data, we will erroneously exit
2882 * connection startup slow start one packet too
2883 * quickly. This is severely frowned upon behavior.
2884 */
2885 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2886 flag |= FLAG_DATA_ACKED;
2887 } else {
2888 flag |= FLAG_SYN_ACKED;
2889 tp->retrans_stamp = 0;
2890 }
2891
2892 if (!fully_acked)
2893 break;
2894
2895 tcp_unlink_write_queue(skb, sk);
2896 sk_wmem_free_skb(sk, skb);
2897 tcp_clear_all_retrans_hints(tp);
2898 }
2899
2900 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2901 flag |= FLAG_SACK_RENEGING;
2902
2903 if (flag & FLAG_ACKED) {
2904 const struct tcp_congestion_ops *ca_ops
2905 = inet_csk(sk)->icsk_ca_ops;
2906
2907 tcp_ack_update_rtt(sk, flag, seq_rtt);
2908 tcp_rearm_rto(sk);
2909
2910 if (tcp_is_reno(tp)) {
2911 tcp_remove_reno_sacks(sk, pkts_acked);
2912 } else {
2913 /* Non-retransmitted hole got filled? That's reordering */
2914 if (reord < prior_fackets)
2915 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2916 }
2917
2918 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2919
2920 if (ca_ops->pkts_acked) {
2921 s32 rtt_us = -1;
2922
2923 /* Is the ACK triggering packet unambiguous? */
2924 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2925 /* High resolution needed and available? */
2926 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2927 !ktime_equal(last_ackt,
2928 net_invalid_timestamp()))
2929 rtt_us = ktime_us_delta(ktime_get_real(),
2930 last_ackt);
2931 else if (ca_seq_rtt > 0)
2932 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2933 }
2934
2935 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2936 }
2937 }
2938
2939 #if FASTRETRANS_DEBUG > 0
2940 BUG_TRAP((int)tp->sacked_out >= 0);
2941 BUG_TRAP((int)tp->lost_out >= 0);
2942 BUG_TRAP((int)tp->retrans_out >= 0);
2943 if (!tp->packets_out && tcp_is_sack(tp)) {
2944 icsk = inet_csk(sk);
2945 if (tp->lost_out) {
2946 printk(KERN_DEBUG "Leak l=%u %d\n",
2947 tp->lost_out, icsk->icsk_ca_state);
2948 tp->lost_out = 0;
2949 }
2950 if (tp->sacked_out) {
2951 printk(KERN_DEBUG "Leak s=%u %d\n",
2952 tp->sacked_out, icsk->icsk_ca_state);
2953 tp->sacked_out = 0;
2954 }
2955 if (tp->retrans_out) {
2956 printk(KERN_DEBUG "Leak r=%u %d\n",
2957 tp->retrans_out, icsk->icsk_ca_state);
2958 tp->retrans_out = 0;
2959 }
2960 }
2961 #endif
2962 return flag;
2963 }
2964
2965 static void tcp_ack_probe(struct sock *sk)
2966 {
2967 const struct tcp_sock *tp = tcp_sk(sk);
2968 struct inet_connection_sock *icsk = inet_csk(sk);
2969
2970 /* Was it a usable window open? */
2971
2972 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2973 icsk->icsk_backoff = 0;
2974 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2975 /* Socket must be waked up by subsequent tcp_data_snd_check().
2976 * This function is not for random using!
2977 */
2978 } else {
2979 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2980 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2981 TCP_RTO_MAX);
2982 }
2983 }
2984
2985 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2986 {
2987 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2988 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2989 }
2990
2991 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2992 {
2993 const struct tcp_sock *tp = tcp_sk(sk);
2994 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2995 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2996 }
2997
2998 /* Check that window update is acceptable.
2999 * The function assumes that snd_una<=ack<=snd_next.
3000 */
3001 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3002 const u32 ack, const u32 ack_seq,
3003 const u32 nwin)
3004 {
3005 return (after(ack, tp->snd_una) ||
3006 after(ack_seq, tp->snd_wl1) ||
3007 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3008 }
3009
3010 /* Update our send window.
3011 *
3012 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3013 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3014 */
3015 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3016 u32 ack_seq)
3017 {
3018 struct tcp_sock *tp = tcp_sk(sk);
3019 int flag = 0;
3020 u32 nwin = ntohs(tcp_hdr(skb)->window);
3021
3022 if (likely(!tcp_hdr(skb)->syn))
3023 nwin <<= tp->rx_opt.snd_wscale;
3024
3025 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3026 flag |= FLAG_WIN_UPDATE;
3027 tcp_update_wl(tp, ack, ack_seq);
3028
3029 if (tp->snd_wnd != nwin) {
3030 tp->snd_wnd = nwin;
3031
3032 /* Note, it is the only place, where
3033 * fast path is recovered for sending TCP.
3034 */
3035 tp->pred_flags = 0;
3036 tcp_fast_path_check(sk);
3037
3038 if (nwin > tp->max_window) {
3039 tp->max_window = nwin;
3040 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3041 }
3042 }
3043 }
3044
3045 tp->snd_una = ack;
3046
3047 return flag;
3048 }
3049
3050 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3051 * continue in congestion avoidance.
3052 */
3053 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3054 {
3055 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3056 tp->snd_cwnd_cnt = 0;
3057 tp->bytes_acked = 0;
3058 TCP_ECN_queue_cwr(tp);
3059 tcp_moderate_cwnd(tp);
3060 }
3061
3062 /* A conservative spurious RTO response algorithm: reduce cwnd using
3063 * rate halving and continue in congestion avoidance.
3064 */
3065 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3066 {
3067 tcp_enter_cwr(sk, 0);
3068 }
3069
3070 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3071 {
3072 if (flag & FLAG_ECE)
3073 tcp_ratehalving_spur_to_response(sk);
3074 else
3075 tcp_undo_cwr(sk, 1);
3076 }
3077
3078 /* F-RTO spurious RTO detection algorithm (RFC4138)
3079 *
3080 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3081 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3082 * window (but not to or beyond highest sequence sent before RTO):
3083 * On First ACK, send two new segments out.
3084 * On Second ACK, RTO was likely spurious. Do spurious response (response
3085 * algorithm is not part of the F-RTO detection algorithm
3086 * given in RFC4138 but can be selected separately).
3087 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3088 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3089 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3090 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3091 *
3092 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3093 * original window even after we transmit two new data segments.
3094 *
3095 * SACK version:
3096 * on first step, wait until first cumulative ACK arrives, then move to
3097 * the second step. In second step, the next ACK decides.
3098 *
3099 * F-RTO is implemented (mainly) in four functions:
3100 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3101 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3102 * called when tcp_use_frto() showed green light
3103 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3104 * - tcp_enter_frto_loss() is called if there is not enough evidence
3105 * to prove that the RTO is indeed spurious. It transfers the control
3106 * from F-RTO to the conventional RTO recovery
3107 */
3108 static int tcp_process_frto(struct sock *sk, int flag)
3109 {
3110 struct tcp_sock *tp = tcp_sk(sk);
3111
3112 tcp_verify_left_out(tp);
3113
3114 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3115 if (flag & FLAG_DATA_ACKED)
3116 inet_csk(sk)->icsk_retransmits = 0;
3117
3118 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3119 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3120 tp->undo_marker = 0;
3121
3122 if (!before(tp->snd_una, tp->frto_highmark)) {
3123 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3124 return 1;
3125 }
3126
3127 if (!IsSackFrto() || tcp_is_reno(tp)) {
3128 /* RFC4138 shortcoming in step 2; should also have case c):
3129 * ACK isn't duplicate nor advances window, e.g., opposite dir
3130 * data, winupdate
3131 */
3132 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3133 return 1;
3134
3135 if (!(flag & FLAG_DATA_ACKED)) {
3136 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3137 flag);
3138 return 1;
3139 }
3140 } else {
3141 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3142 /* Prevent sending of new data. */
3143 tp->snd_cwnd = min(tp->snd_cwnd,
3144 tcp_packets_in_flight(tp));
3145 return 1;
3146 }
3147
3148 if ((tp->frto_counter >= 2) &&
3149 (!(flag & FLAG_FORWARD_PROGRESS) ||
3150 ((flag & FLAG_DATA_SACKED) &&
3151 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3152 /* RFC4138 shortcoming (see comment above) */
3153 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3154 (flag & FLAG_NOT_DUP))
3155 return 1;
3156
3157 tcp_enter_frto_loss(sk, 3, flag);
3158 return 1;
3159 }
3160 }
3161
3162 if (tp->frto_counter == 1) {
3163 /* tcp_may_send_now needs to see updated state */
3164 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3165 tp->frto_counter = 2;
3166
3167 if (!tcp_may_send_now(sk))
3168 tcp_enter_frto_loss(sk, 2, flag);
3169
3170 return 1;
3171 } else {
3172 switch (sysctl_tcp_frto_response) {
3173 case 2:
3174 tcp_undo_spur_to_response(sk, flag);
3175 break;
3176 case 1:
3177 tcp_conservative_spur_to_response(tp);
3178 break;
3179 default:
3180 tcp_ratehalving_spur_to_response(sk);
3181 break;
3182 }
3183 tp->frto_counter = 0;
3184 tp->undo_marker = 0;
3185 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3186 }
3187 return 0;
3188 }
3189
3190 /* This routine deals with incoming acks, but not outgoing ones. */
3191 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3192 {
3193 struct inet_connection_sock *icsk = inet_csk(sk);
3194 struct tcp_sock *tp = tcp_sk(sk);
3195 u32 prior_snd_una = tp->snd_una;
3196 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3197 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3198 u32 prior_in_flight;
3199 u32 prior_fackets;
3200 int prior_packets;
3201 int frto_cwnd = 0;
3202
3203 /* If the ack is newer than sent or older than previous acks
3204 * then we can probably ignore it.
3205 */
3206 if (after(ack, tp->snd_nxt))
3207 goto uninteresting_ack;
3208
3209 if (before(ack, prior_snd_una))
3210 goto old_ack;
3211
3212 if (after(ack, prior_snd_una))
3213 flag |= FLAG_SND_UNA_ADVANCED;
3214
3215 if (sysctl_tcp_abc) {
3216 if (icsk->icsk_ca_state < TCP_CA_CWR)
3217 tp->bytes_acked += ack - prior_snd_una;
3218 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3219 /* we assume just one segment left network */
3220 tp->bytes_acked += min(ack - prior_snd_una,
3221 tp->mss_cache);
3222 }
3223
3224 prior_fackets = tp->fackets_out;
3225 prior_in_flight = tcp_packets_in_flight(tp);
3226
3227 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3228 /* Window is constant, pure forward advance.
3229 * No more checks are required.
3230 * Note, we use the fact that SND.UNA>=SND.WL2.
3231 */
3232 tcp_update_wl(tp, ack, ack_seq);
3233 tp->snd_una = ack;
3234 flag |= FLAG_WIN_UPDATE;
3235
3236 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3237
3238 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3239 } else {
3240 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3241 flag |= FLAG_DATA;
3242 else
3243 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3244
3245 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3246
3247 if (TCP_SKB_CB(skb)->sacked)
3248 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3249
3250 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3251 flag |= FLAG_ECE;
3252
3253 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3254 }
3255
3256 /* We passed data and got it acked, remove any soft error
3257 * log. Something worked...
3258 */
3259 sk->sk_err_soft = 0;
3260 tp->rcv_tstamp = tcp_time_stamp;
3261 prior_packets = tp->packets_out;
3262 if (!prior_packets)
3263 goto no_queue;
3264
3265 /* See if we can take anything off of the retransmit queue. */
3266 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3267
3268 if (tp->frto_counter)
3269 frto_cwnd = tcp_process_frto(sk, flag);
3270 /* Guarantee sacktag reordering detection against wrap-arounds */
3271 if (before(tp->frto_highmark, tp->snd_una))
3272 tp->frto_highmark = 0;
3273
3274 if (tcp_ack_is_dubious(sk, flag)) {
3275 /* Advance CWND, if state allows this. */
3276 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3277 tcp_may_raise_cwnd(sk, flag))
3278 tcp_cong_avoid(sk, ack, prior_in_flight);
3279 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3280 flag);
3281 } else {
3282 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3283 tcp_cong_avoid(sk, ack, prior_in_flight);
3284 }
3285
3286 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3287 dst_confirm(sk->sk_dst_cache);
3288
3289 return 1;
3290
3291 no_queue:
3292 icsk->icsk_probes_out = 0;
3293
3294 /* If this ack opens up a zero window, clear backoff. It was
3295 * being used to time the probes, and is probably far higher than
3296 * it needs to be for normal retransmission.
3297 */
3298 if (tcp_send_head(sk))
3299 tcp_ack_probe(sk);
3300 return 1;
3301
3302 old_ack:
3303 if (TCP_SKB_CB(skb)->sacked)
3304 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3305
3306 uninteresting_ack:
3307 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3308 return 0;
3309 }
3310
3311 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3312 * But, this can also be called on packets in the established flow when
3313 * the fast version below fails.
3314 */
3315 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3316 int estab)
3317 {
3318 unsigned char *ptr;
3319 struct tcphdr *th = tcp_hdr(skb);
3320 int length = (th->doff * 4) - sizeof(struct tcphdr);
3321
3322 ptr = (unsigned char *)(th + 1);
3323 opt_rx->saw_tstamp = 0;
3324
3325 while (length > 0) {
3326 int opcode = *ptr++;
3327 int opsize;
3328
3329 switch (opcode) {
3330 case TCPOPT_EOL:
3331 return;
3332 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3333 length--;
3334 continue;
3335 default:
3336 opsize = *ptr++;
3337 if (opsize < 2) /* "silly options" */
3338 return;
3339 if (opsize > length)
3340 return; /* don't parse partial options */
3341 switch (opcode) {
3342 case TCPOPT_MSS:
3343 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3344 u16 in_mss = get_unaligned_be16(ptr);
3345 if (in_mss) {
3346 if (opt_rx->user_mss &&
3347 opt_rx->user_mss < in_mss)
3348 in_mss = opt_rx->user_mss;
3349 opt_rx->mss_clamp = in_mss;
3350 }
3351 }
3352 break;
3353 case TCPOPT_WINDOW:
3354 if (opsize == TCPOLEN_WINDOW && th->syn &&
3355 !estab && sysctl_tcp_window_scaling) {
3356 __u8 snd_wscale = *(__u8 *)ptr;
3357 opt_rx->wscale_ok = 1;
3358 if (snd_wscale > 14) {
3359 if (net_ratelimit())
3360 printk(KERN_INFO "tcp_parse_options: Illegal window "
3361 "scaling value %d >14 received.\n",
3362 snd_wscale);
3363 snd_wscale = 14;
3364 }
3365 opt_rx->snd_wscale = snd_wscale;
3366 }
3367 break;
3368 case TCPOPT_TIMESTAMP:
3369 if ((opsize == TCPOLEN_TIMESTAMP) &&
3370 ((estab && opt_rx->tstamp_ok) ||
3371 (!estab && sysctl_tcp_timestamps))) {
3372 opt_rx->saw_tstamp = 1;
3373 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3374 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3375 }
3376 break;
3377 case TCPOPT_SACK_PERM:
3378 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3379 !estab && sysctl_tcp_sack) {
3380 opt_rx->sack_ok = 1;
3381 tcp_sack_reset(opt_rx);
3382 }
3383 break;
3384
3385 case TCPOPT_SACK:
3386 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3387 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3388 opt_rx->sack_ok) {
3389 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3390 }
3391 break;
3392 #ifdef CONFIG_TCP_MD5SIG
3393 case TCPOPT_MD5SIG:
3394 /*
3395 * The MD5 Hash has already been
3396 * checked (see tcp_v{4,6}_do_rcv()).
3397 */
3398 break;
3399 #endif
3400 }
3401
3402 ptr += opsize-2;
3403 length -= opsize;
3404 }
3405 }
3406 }
3407
3408 /* Fast parse options. This hopes to only see timestamps.
3409 * If it is wrong it falls back on tcp_parse_options().
3410 */
3411 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3412 struct tcp_sock *tp)
3413 {
3414 if (th->doff == sizeof(struct tcphdr) >> 2) {
3415 tp->rx_opt.saw_tstamp = 0;
3416 return 0;
3417 } else if (tp->rx_opt.tstamp_ok &&
3418 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3419 __be32 *ptr = (__be32 *)(th + 1);
3420 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3421 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3422 tp->rx_opt.saw_tstamp = 1;
3423 ++ptr;
3424 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3425 ++ptr;
3426 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3427 return 1;
3428 }
3429 }
3430 tcp_parse_options(skb, &tp->rx_opt, 1);
3431 return 1;
3432 }
3433
3434 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3435 {
3436 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3437 tp->rx_opt.ts_recent_stamp = get_seconds();
3438 }
3439
3440 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3441 {
3442 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3443 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3444 * extra check below makes sure this can only happen
3445 * for pure ACK frames. -DaveM
3446 *
3447 * Not only, also it occurs for expired timestamps.
3448 */
3449
3450 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3451 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3452 tcp_store_ts_recent(tp);
3453 }
3454 }
3455
3456 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3457 *
3458 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3459 * it can pass through stack. So, the following predicate verifies that
3460 * this segment is not used for anything but congestion avoidance or
3461 * fast retransmit. Moreover, we even are able to eliminate most of such
3462 * second order effects, if we apply some small "replay" window (~RTO)
3463 * to timestamp space.
3464 *
3465 * All these measures still do not guarantee that we reject wrapped ACKs
3466 * on networks with high bandwidth, when sequence space is recycled fastly,
3467 * but it guarantees that such events will be very rare and do not affect
3468 * connection seriously. This doesn't look nice, but alas, PAWS is really
3469 * buggy extension.
3470 *
3471 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3472 * states that events when retransmit arrives after original data are rare.
3473 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3474 * the biggest problem on large power networks even with minor reordering.
3475 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3476 * up to bandwidth of 18Gigabit/sec. 8) ]
3477 */
3478
3479 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3480 {
3481 struct tcp_sock *tp = tcp_sk(sk);
3482 struct tcphdr *th = tcp_hdr(skb);
3483 u32 seq = TCP_SKB_CB(skb)->seq;
3484 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3485
3486 return (/* 1. Pure ACK with correct sequence number. */
3487 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3488
3489 /* 2. ... and duplicate ACK. */
3490 ack == tp->snd_una &&
3491
3492 /* 3. ... and does not update window. */
3493 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3494
3495 /* 4. ... and sits in replay window. */
3496 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3497 }
3498
3499 static inline int tcp_paws_discard(const struct sock *sk,
3500 const struct sk_buff *skb)
3501 {
3502 const struct tcp_sock *tp = tcp_sk(sk);
3503 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3504 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3505 !tcp_disordered_ack(sk, skb));
3506 }
3507
3508 /* Check segment sequence number for validity.
3509 *
3510 * Segment controls are considered valid, if the segment
3511 * fits to the window after truncation to the window. Acceptability
3512 * of data (and SYN, FIN, of course) is checked separately.
3513 * See tcp_data_queue(), for example.
3514 *
3515 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3516 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3517 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3518 * (borrowed from freebsd)
3519 */
3520
3521 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3522 {
3523 return !before(end_seq, tp->rcv_wup) &&
3524 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3525 }
3526
3527 /* When we get a reset we do this. */
3528 static void tcp_reset(struct sock *sk)
3529 {
3530 /* We want the right error as BSD sees it (and indeed as we do). */
3531 switch (sk->sk_state) {
3532 case TCP_SYN_SENT:
3533 sk->sk_err = ECONNREFUSED;
3534 break;
3535 case TCP_CLOSE_WAIT:
3536 sk->sk_err = EPIPE;
3537 break;
3538 case TCP_CLOSE:
3539 return;
3540 default:
3541 sk->sk_err = ECONNRESET;
3542 }
3543
3544 if (!sock_flag(sk, SOCK_DEAD))
3545 sk->sk_error_report(sk);
3546
3547 tcp_done(sk);
3548 }
3549
3550 /*
3551 * Process the FIN bit. This now behaves as it is supposed to work
3552 * and the FIN takes effect when it is validly part of sequence
3553 * space. Not before when we get holes.
3554 *
3555 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3556 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3557 * TIME-WAIT)
3558 *
3559 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3560 * close and we go into CLOSING (and later onto TIME-WAIT)
3561 *
3562 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3563 */
3564 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3565 {
3566 struct tcp_sock *tp = tcp_sk(sk);
3567
3568 inet_csk_schedule_ack(sk);
3569
3570 sk->sk_shutdown |= RCV_SHUTDOWN;
3571 sock_set_flag(sk, SOCK_DONE);
3572
3573 switch (sk->sk_state) {
3574 case TCP_SYN_RECV:
3575 case TCP_ESTABLISHED:
3576 /* Move to CLOSE_WAIT */
3577 tcp_set_state(sk, TCP_CLOSE_WAIT);
3578 inet_csk(sk)->icsk_ack.pingpong = 1;
3579 break;
3580
3581 case TCP_CLOSE_WAIT:
3582 case TCP_CLOSING:
3583 /* Received a retransmission of the FIN, do
3584 * nothing.
3585 */
3586 break;
3587 case TCP_LAST_ACK:
3588 /* RFC793: Remain in the LAST-ACK state. */
3589 break;
3590
3591 case TCP_FIN_WAIT1:
3592 /* This case occurs when a simultaneous close
3593 * happens, we must ack the received FIN and
3594 * enter the CLOSING state.
3595 */
3596 tcp_send_ack(sk);
3597 tcp_set_state(sk, TCP_CLOSING);
3598 break;
3599 case TCP_FIN_WAIT2:
3600 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3601 tcp_send_ack(sk);
3602 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3603 break;
3604 default:
3605 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3606 * cases we should never reach this piece of code.
3607 */
3608 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3609 __func__, sk->sk_state);
3610 break;
3611 }
3612
3613 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3614 * Probably, we should reset in this case. For now drop them.
3615 */
3616 __skb_queue_purge(&tp->out_of_order_queue);
3617 if (tcp_is_sack(tp))
3618 tcp_sack_reset(&tp->rx_opt);
3619 sk_mem_reclaim(sk);
3620
3621 if (!sock_flag(sk, SOCK_DEAD)) {
3622 sk->sk_state_change(sk);
3623
3624 /* Do not send POLL_HUP for half duplex close. */
3625 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3626 sk->sk_state == TCP_CLOSE)
3627 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3628 else
3629 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3630 }
3631 }
3632
3633 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3634 u32 end_seq)
3635 {
3636 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3637 if (before(seq, sp->start_seq))
3638 sp->start_seq = seq;
3639 if (after(end_seq, sp->end_seq))
3640 sp->end_seq = end_seq;
3641 return 1;
3642 }
3643 return 0;
3644 }
3645
3646 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3647 {
3648 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3649 if (before(seq, tp->rcv_nxt))
3650 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3651 else
3652 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3653
3654 tp->rx_opt.dsack = 1;
3655 tp->duplicate_sack[0].start_seq = seq;
3656 tp->duplicate_sack[0].end_seq = end_seq;
3657 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3658 4 - tp->rx_opt.tstamp_ok);
3659 }
3660 }
3661
3662 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3663 {
3664 if (!tp->rx_opt.dsack)
3665 tcp_dsack_set(tp, seq, end_seq);
3666 else
3667 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3668 }
3669
3670 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3671 {
3672 struct tcp_sock *tp = tcp_sk(sk);
3673
3674 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3675 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3676 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3677 tcp_enter_quickack_mode(sk);
3678
3679 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3680 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3681
3682 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3683 end_seq = tp->rcv_nxt;
3684 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3685 }
3686 }
3687
3688 tcp_send_ack(sk);
3689 }
3690
3691 /* These routines update the SACK block as out-of-order packets arrive or
3692 * in-order packets close up the sequence space.
3693 */
3694 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3695 {
3696 int this_sack;
3697 struct tcp_sack_block *sp = &tp->selective_acks[0];
3698 struct tcp_sack_block *swalk = sp + 1;
3699
3700 /* See if the recent change to the first SACK eats into
3701 * or hits the sequence space of other SACK blocks, if so coalesce.
3702 */
3703 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3704 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3705 int i;
3706
3707 /* Zap SWALK, by moving every further SACK up by one slot.
3708 * Decrease num_sacks.
3709 */
3710 tp->rx_opt.num_sacks--;
3711 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3712 tp->rx_opt.dsack,
3713 4 - tp->rx_opt.tstamp_ok);
3714 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3715 sp[i] = sp[i + 1];
3716 continue;
3717 }
3718 this_sack++, swalk++;
3719 }
3720 }
3721
3722 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3723 struct tcp_sack_block *sack2)
3724 {
3725 __u32 tmp;
3726
3727 tmp = sack1->start_seq;
3728 sack1->start_seq = sack2->start_seq;
3729 sack2->start_seq = tmp;
3730
3731 tmp = sack1->end_seq;
3732 sack1->end_seq = sack2->end_seq;
3733 sack2->end_seq = tmp;
3734 }
3735
3736 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3737 {
3738 struct tcp_sock *tp = tcp_sk(sk);
3739 struct tcp_sack_block *sp = &tp->selective_acks[0];
3740 int cur_sacks = tp->rx_opt.num_sacks;
3741 int this_sack;
3742
3743 if (!cur_sacks)
3744 goto new_sack;
3745
3746 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3747 if (tcp_sack_extend(sp, seq, end_seq)) {
3748 /* Rotate this_sack to the first one. */
3749 for (; this_sack > 0; this_sack--, sp--)
3750 tcp_sack_swap(sp, sp - 1);
3751 if (cur_sacks > 1)
3752 tcp_sack_maybe_coalesce(tp);
3753 return;
3754 }
3755 }
3756
3757 /* Could not find an adjacent existing SACK, build a new one,
3758 * put it at the front, and shift everyone else down. We
3759 * always know there is at least one SACK present already here.
3760 *
3761 * If the sack array is full, forget about the last one.
3762 */
3763 if (this_sack >= 4) {
3764 this_sack--;
3765 tp->rx_opt.num_sacks--;
3766 sp--;
3767 }
3768 for (; this_sack > 0; this_sack--, sp--)
3769 *sp = *(sp - 1);
3770
3771 new_sack:
3772 /* Build the new head SACK, and we're done. */
3773 sp->start_seq = seq;
3774 sp->end_seq = end_seq;
3775 tp->rx_opt.num_sacks++;
3776 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3777 4 - tp->rx_opt.tstamp_ok);
3778 }
3779
3780 /* RCV.NXT advances, some SACKs should be eaten. */
3781
3782 static void tcp_sack_remove(struct tcp_sock *tp)
3783 {
3784 struct tcp_sack_block *sp = &tp->selective_acks[0];
3785 int num_sacks = tp->rx_opt.num_sacks;
3786 int this_sack;
3787
3788 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3789 if (skb_queue_empty(&tp->out_of_order_queue)) {
3790 tp->rx_opt.num_sacks = 0;
3791 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3792 return;
3793 }
3794
3795 for (this_sack = 0; this_sack < num_sacks;) {
3796 /* Check if the start of the sack is covered by RCV.NXT. */
3797 if (!before(tp->rcv_nxt, sp->start_seq)) {
3798 int i;
3799
3800 /* RCV.NXT must cover all the block! */
3801 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3802
3803 /* Zap this SACK, by moving forward any other SACKS. */
3804 for (i=this_sack+1; i < num_sacks; i++)
3805 tp->selective_acks[i-1] = tp->selective_acks[i];
3806 num_sacks--;
3807 continue;
3808 }
3809 this_sack++;
3810 sp++;
3811 }
3812 if (num_sacks != tp->rx_opt.num_sacks) {
3813 tp->rx_opt.num_sacks = num_sacks;
3814 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3815 tp->rx_opt.dsack,
3816 4 - tp->rx_opt.tstamp_ok);
3817 }
3818 }
3819
3820 /* This one checks to see if we can put data from the
3821 * out_of_order queue into the receive_queue.
3822 */
3823 static void tcp_ofo_queue(struct sock *sk)
3824 {
3825 struct tcp_sock *tp = tcp_sk(sk);
3826 __u32 dsack_high = tp->rcv_nxt;
3827 struct sk_buff *skb;
3828
3829 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3830 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3831 break;
3832
3833 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3834 __u32 dsack = dsack_high;
3835 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3836 dsack_high = TCP_SKB_CB(skb)->end_seq;
3837 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3838 }
3839
3840 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3841 SOCK_DEBUG(sk, "ofo packet was already received \n");
3842 __skb_unlink(skb, &tp->out_of_order_queue);
3843 __kfree_skb(skb);
3844 continue;
3845 }
3846 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3847 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3848 TCP_SKB_CB(skb)->end_seq);
3849
3850 __skb_unlink(skb, &tp->out_of_order_queue);
3851 __skb_queue_tail(&sk->sk_receive_queue, skb);
3852 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3853 if (tcp_hdr(skb)->fin)
3854 tcp_fin(skb, sk, tcp_hdr(skb));
3855 }
3856 }
3857
3858 static int tcp_prune_ofo_queue(struct sock *sk);
3859 static int tcp_prune_queue(struct sock *sk);
3860
3861 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3862 {
3863 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3864 !sk_rmem_schedule(sk, size)) {
3865
3866 if (tcp_prune_queue(sk) < 0)
3867 return -1;
3868
3869 if (!sk_rmem_schedule(sk, size)) {
3870 if (!tcp_prune_ofo_queue(sk))
3871 return -1;
3872
3873 if (!sk_rmem_schedule(sk, size))
3874 return -1;
3875 }
3876 }
3877 return 0;
3878 }
3879
3880 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3881 {
3882 struct tcphdr *th = tcp_hdr(skb);
3883 struct tcp_sock *tp = tcp_sk(sk);
3884 int eaten = -1;
3885
3886 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3887 goto drop;
3888
3889 __skb_pull(skb, th->doff * 4);
3890
3891 TCP_ECN_accept_cwr(tp, skb);
3892
3893 if (tp->rx_opt.dsack) {
3894 tp->rx_opt.dsack = 0;
3895 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3896 4 - tp->rx_opt.tstamp_ok);
3897 }
3898
3899 /* Queue data for delivery to the user.
3900 * Packets in sequence go to the receive queue.
3901 * Out of sequence packets to the out_of_order_queue.
3902 */
3903 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3904 if (tcp_receive_window(tp) == 0)
3905 goto out_of_window;
3906
3907 /* Ok. In sequence. In window. */
3908 if (tp->ucopy.task == current &&
3909 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3910 sock_owned_by_user(sk) && !tp->urg_data) {
3911 int chunk = min_t(unsigned int, skb->len,
3912 tp->ucopy.len);
3913
3914 __set_current_state(TASK_RUNNING);
3915
3916 local_bh_enable();
3917 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3918 tp->ucopy.len -= chunk;
3919 tp->copied_seq += chunk;
3920 eaten = (chunk == skb->len && !th->fin);
3921 tcp_rcv_space_adjust(sk);
3922 }
3923 local_bh_disable();
3924 }
3925
3926 if (eaten <= 0) {
3927 queue_and_out:
3928 if (eaten < 0 &&
3929 tcp_try_rmem_schedule(sk, skb->truesize))
3930 goto drop;
3931
3932 skb_set_owner_r(skb, sk);
3933 __skb_queue_tail(&sk->sk_receive_queue, skb);
3934 }
3935 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3936 if (skb->len)
3937 tcp_event_data_recv(sk, skb);
3938 if (th->fin)
3939 tcp_fin(skb, sk, th);
3940
3941 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3942 tcp_ofo_queue(sk);
3943
3944 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3945 * gap in queue is filled.
3946 */
3947 if (skb_queue_empty(&tp->out_of_order_queue))
3948 inet_csk(sk)->icsk_ack.pingpong = 0;
3949 }
3950
3951 if (tp->rx_opt.num_sacks)
3952 tcp_sack_remove(tp);
3953
3954 tcp_fast_path_check(sk);
3955
3956 if (eaten > 0)
3957 __kfree_skb(skb);
3958 else if (!sock_flag(sk, SOCK_DEAD))
3959 sk->sk_data_ready(sk, 0);
3960 return;
3961 }
3962
3963 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3964 /* A retransmit, 2nd most common case. Force an immediate ack. */
3965 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3966 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3967
3968 out_of_window:
3969 tcp_enter_quickack_mode(sk);
3970 inet_csk_schedule_ack(sk);
3971 drop:
3972 __kfree_skb(skb);
3973 return;
3974 }
3975
3976 /* Out of window. F.e. zero window probe. */
3977 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3978 goto out_of_window;
3979
3980 tcp_enter_quickack_mode(sk);
3981
3982 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3983 /* Partial packet, seq < rcv_next < end_seq */
3984 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3985 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3986 TCP_SKB_CB(skb)->end_seq);
3987
3988 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3989
3990 /* If window is closed, drop tail of packet. But after
3991 * remembering D-SACK for its head made in previous line.
3992 */
3993 if (!tcp_receive_window(tp))
3994 goto out_of_window;
3995 goto queue_and_out;
3996 }
3997
3998 TCP_ECN_check_ce(tp, skb);
3999
4000 if (tcp_try_rmem_schedule(sk, skb->truesize))
4001 goto drop;
4002
4003 /* Disable header prediction. */
4004 tp->pred_flags = 0;
4005 inet_csk_schedule_ack(sk);
4006
4007 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4008 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4009
4010 skb_set_owner_r(skb, sk);
4011
4012 if (!skb_peek(&tp->out_of_order_queue)) {
4013 /* Initial out of order segment, build 1 SACK. */
4014 if (tcp_is_sack(tp)) {
4015 tp->rx_opt.num_sacks = 1;
4016 tp->rx_opt.dsack = 0;
4017 tp->rx_opt.eff_sacks = 1;
4018 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4019 tp->selective_acks[0].end_seq =
4020 TCP_SKB_CB(skb)->end_seq;
4021 }
4022 __skb_queue_head(&tp->out_of_order_queue, skb);
4023 } else {
4024 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4025 u32 seq = TCP_SKB_CB(skb)->seq;
4026 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4027
4028 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4029 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4030
4031 if (!tp->rx_opt.num_sacks ||
4032 tp->selective_acks[0].end_seq != seq)
4033 goto add_sack;
4034
4035 /* Common case: data arrive in order after hole. */
4036 tp->selective_acks[0].end_seq = end_seq;
4037 return;
4038 }
4039
4040 /* Find place to insert this segment. */
4041 do {
4042 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4043 break;
4044 } while ((skb1 = skb1->prev) !=
4045 (struct sk_buff *)&tp->out_of_order_queue);
4046
4047 /* Do skb overlap to previous one? */
4048 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4049 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4050 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4051 /* All the bits are present. Drop. */
4052 __kfree_skb(skb);
4053 tcp_dsack_set(tp, seq, end_seq);
4054 goto add_sack;
4055 }
4056 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4057 /* Partial overlap. */
4058 tcp_dsack_set(tp, seq,
4059 TCP_SKB_CB(skb1)->end_seq);
4060 } else {
4061 skb1 = skb1->prev;
4062 }
4063 }
4064 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4065
4066 /* And clean segments covered by new one as whole. */
4067 while ((skb1 = skb->next) !=
4068 (struct sk_buff *)&tp->out_of_order_queue &&
4069 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4070 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4071 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4072 end_seq);
4073 break;
4074 }
4075 __skb_unlink(skb1, &tp->out_of_order_queue);
4076 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4077 TCP_SKB_CB(skb1)->end_seq);
4078 __kfree_skb(skb1);
4079 }
4080
4081 add_sack:
4082 if (tcp_is_sack(tp))
4083 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4084 }
4085 }
4086
4087 /* Collapse contiguous sequence of skbs head..tail with
4088 * sequence numbers start..end.
4089 * Segments with FIN/SYN are not collapsed (only because this
4090 * simplifies code)
4091 */
4092 static void
4093 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4094 struct sk_buff *head, struct sk_buff *tail,
4095 u32 start, u32 end)
4096 {
4097 struct sk_buff *skb;
4098
4099 /* First, check that queue is collapsible and find
4100 * the point where collapsing can be useful. */
4101 for (skb = head; skb != tail;) {
4102 /* No new bits? It is possible on ofo queue. */
4103 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4104 struct sk_buff *next = skb->next;
4105 __skb_unlink(skb, list);
4106 __kfree_skb(skb);
4107 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4108 skb = next;
4109 continue;
4110 }
4111
4112 /* The first skb to collapse is:
4113 * - not SYN/FIN and
4114 * - bloated or contains data before "start" or
4115 * overlaps to the next one.
4116 */
4117 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4118 (tcp_win_from_space(skb->truesize) > skb->len ||
4119 before(TCP_SKB_CB(skb)->seq, start) ||
4120 (skb->next != tail &&
4121 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4122 break;
4123
4124 /* Decided to skip this, advance start seq. */
4125 start = TCP_SKB_CB(skb)->end_seq;
4126 skb = skb->next;
4127 }
4128 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4129 return;
4130
4131 while (before(start, end)) {
4132 struct sk_buff *nskb;
4133 unsigned int header = skb_headroom(skb);
4134 int copy = SKB_MAX_ORDER(header, 0);
4135
4136 /* Too big header? This can happen with IPv6. */
4137 if (copy < 0)
4138 return;
4139 if (end - start < copy)
4140 copy = end - start;
4141 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4142 if (!nskb)
4143 return;
4144
4145 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4146 skb_set_network_header(nskb, (skb_network_header(skb) -
4147 skb->head));
4148 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4149 skb->head));
4150 skb_reserve(nskb, header);
4151 memcpy(nskb->head, skb->head, header);
4152 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4153 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4154 __skb_insert(nskb, skb->prev, skb, list);
4155 skb_set_owner_r(nskb, sk);
4156
4157 /* Copy data, releasing collapsed skbs. */
4158 while (copy > 0) {
4159 int offset = start - TCP_SKB_CB(skb)->seq;
4160 int size = TCP_SKB_CB(skb)->end_seq - start;
4161
4162 BUG_ON(offset < 0);
4163 if (size > 0) {
4164 size = min(copy, size);
4165 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4166 BUG();
4167 TCP_SKB_CB(nskb)->end_seq += size;
4168 copy -= size;
4169 start += size;
4170 }
4171 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4172 struct sk_buff *next = skb->next;
4173 __skb_unlink(skb, list);
4174 __kfree_skb(skb);
4175 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4176 skb = next;
4177 if (skb == tail ||
4178 tcp_hdr(skb)->syn ||
4179 tcp_hdr(skb)->fin)
4180 return;
4181 }
4182 }
4183 }
4184 }
4185
4186 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4187 * and tcp_collapse() them until all the queue is collapsed.
4188 */
4189 static void tcp_collapse_ofo_queue(struct sock *sk)
4190 {
4191 struct tcp_sock *tp = tcp_sk(sk);
4192 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4193 struct sk_buff *head;
4194 u32 start, end;
4195
4196 if (skb == NULL)
4197 return;
4198
4199 start = TCP_SKB_CB(skb)->seq;
4200 end = TCP_SKB_CB(skb)->end_seq;
4201 head = skb;
4202
4203 for (;;) {
4204 skb = skb->next;
4205
4206 /* Segment is terminated when we see gap or when
4207 * we are at the end of all the queue. */
4208 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4209 after(TCP_SKB_CB(skb)->seq, end) ||
4210 before(TCP_SKB_CB(skb)->end_seq, start)) {
4211 tcp_collapse(sk, &tp->out_of_order_queue,
4212 head, skb, start, end);
4213 head = skb;
4214 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4215 break;
4216 /* Start new segment */
4217 start = TCP_SKB_CB(skb)->seq;
4218 end = TCP_SKB_CB(skb)->end_seq;
4219 } else {
4220 if (before(TCP_SKB_CB(skb)->seq, start))
4221 start = TCP_SKB_CB(skb)->seq;
4222 if (after(TCP_SKB_CB(skb)->end_seq, end))
4223 end = TCP_SKB_CB(skb)->end_seq;
4224 }
4225 }
4226 }
4227
4228 /*
4229 * Purge the out-of-order queue.
4230 * Return true if queue was pruned.
4231 */
4232 static int tcp_prune_ofo_queue(struct sock *sk)
4233 {
4234 struct tcp_sock *tp = tcp_sk(sk);
4235 int res = 0;
4236
4237 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4238 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4239 __skb_queue_purge(&tp->out_of_order_queue);
4240
4241 /* Reset SACK state. A conforming SACK implementation will
4242 * do the same at a timeout based retransmit. When a connection
4243 * is in a sad state like this, we care only about integrity
4244 * of the connection not performance.
4245 */
4246 if (tp->rx_opt.sack_ok)
4247 tcp_sack_reset(&tp->rx_opt);
4248 sk_mem_reclaim(sk);
4249 res = 1;
4250 }
4251 return res;
4252 }
4253
4254 /* Reduce allocated memory if we can, trying to get
4255 * the socket within its memory limits again.
4256 *
4257 * Return less than zero if we should start dropping frames
4258 * until the socket owning process reads some of the data
4259 * to stabilize the situation.
4260 */
4261 static int tcp_prune_queue(struct sock *sk)
4262 {
4263 struct tcp_sock *tp = tcp_sk(sk);
4264
4265 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4266
4267 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4268
4269 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4270 tcp_clamp_window(sk);
4271 else if (tcp_memory_pressure)
4272 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4273
4274 tcp_collapse_ofo_queue(sk);
4275 tcp_collapse(sk, &sk->sk_receive_queue,
4276 sk->sk_receive_queue.next,
4277 (struct sk_buff *)&sk->sk_receive_queue,
4278 tp->copied_seq, tp->rcv_nxt);
4279 sk_mem_reclaim(sk);
4280
4281 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4282 return 0;
4283
4284 /* Collapsing did not help, destructive actions follow.
4285 * This must not ever occur. */
4286
4287 tcp_prune_ofo_queue(sk);
4288
4289 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4290 return 0;
4291
4292 /* If we are really being abused, tell the caller to silently
4293 * drop receive data on the floor. It will get retransmitted
4294 * and hopefully then we'll have sufficient space.
4295 */
4296 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4297
4298 /* Massive buffer overcommit. */
4299 tp->pred_flags = 0;
4300 return -1;
4301 }
4302
4303 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4304 * As additional protections, we do not touch cwnd in retransmission phases,
4305 * and if application hit its sndbuf limit recently.
4306 */
4307 void tcp_cwnd_application_limited(struct sock *sk)
4308 {
4309 struct tcp_sock *tp = tcp_sk(sk);
4310
4311 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4312 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4313 /* Limited by application or receiver window. */
4314 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4315 u32 win_used = max(tp->snd_cwnd_used, init_win);
4316 if (win_used < tp->snd_cwnd) {
4317 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4318 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4319 }
4320 tp->snd_cwnd_used = 0;
4321 }
4322 tp->snd_cwnd_stamp = tcp_time_stamp;
4323 }
4324
4325 static int tcp_should_expand_sndbuf(struct sock *sk)
4326 {
4327 struct tcp_sock *tp = tcp_sk(sk);
4328
4329 /* If the user specified a specific send buffer setting, do
4330 * not modify it.
4331 */
4332 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4333 return 0;
4334
4335 /* If we are under global TCP memory pressure, do not expand. */
4336 if (tcp_memory_pressure)
4337 return 0;
4338
4339 /* If we are under soft global TCP memory pressure, do not expand. */
4340 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4341 return 0;
4342
4343 /* If we filled the congestion window, do not expand. */
4344 if (tp->packets_out >= tp->snd_cwnd)
4345 return 0;
4346
4347 return 1;
4348 }
4349
4350 /* When incoming ACK allowed to free some skb from write_queue,
4351 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4352 * on the exit from tcp input handler.
4353 *
4354 * PROBLEM: sndbuf expansion does not work well with largesend.
4355 */
4356 static void tcp_new_space(struct sock *sk)
4357 {
4358 struct tcp_sock *tp = tcp_sk(sk);
4359
4360 if (tcp_should_expand_sndbuf(sk)) {
4361 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4362 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4363 demanded = max_t(unsigned int, tp->snd_cwnd,
4364 tp->reordering + 1);
4365 sndmem *= 2 * demanded;
4366 if (sndmem > sk->sk_sndbuf)
4367 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4368 tp->snd_cwnd_stamp = tcp_time_stamp;
4369 }
4370
4371 sk->sk_write_space(sk);
4372 }
4373
4374 static void tcp_check_space(struct sock *sk)
4375 {
4376 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4377 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4378 if (sk->sk_socket &&
4379 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4380 tcp_new_space(sk);
4381 }
4382 }
4383
4384 static inline void tcp_data_snd_check(struct sock *sk)
4385 {
4386 tcp_push_pending_frames(sk);
4387 tcp_check_space(sk);
4388 }
4389
4390 /*
4391 * Check if sending an ack is needed.
4392 */
4393 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4394 {
4395 struct tcp_sock *tp = tcp_sk(sk);
4396
4397 /* More than one full frame received... */
4398 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4399 /* ... and right edge of window advances far enough.
4400 * (tcp_recvmsg() will send ACK otherwise). Or...
4401 */
4402 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4403 /* We ACK each frame or... */
4404 tcp_in_quickack_mode(sk) ||
4405 /* We have out of order data. */
4406 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4407 /* Then ack it now */
4408 tcp_send_ack(sk);
4409 } else {
4410 /* Else, send delayed ack. */
4411 tcp_send_delayed_ack(sk);
4412 }
4413 }
4414
4415 static inline void tcp_ack_snd_check(struct sock *sk)
4416 {
4417 if (!inet_csk_ack_scheduled(sk)) {
4418 /* We sent a data segment already. */
4419 return;
4420 }
4421 __tcp_ack_snd_check(sk, 1);
4422 }
4423
4424 /*
4425 * This routine is only called when we have urgent data
4426 * signaled. Its the 'slow' part of tcp_urg. It could be
4427 * moved inline now as tcp_urg is only called from one
4428 * place. We handle URGent data wrong. We have to - as
4429 * BSD still doesn't use the correction from RFC961.
4430 * For 1003.1g we should support a new option TCP_STDURG to permit
4431 * either form (or just set the sysctl tcp_stdurg).
4432 */
4433
4434 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4435 {
4436 struct tcp_sock *tp = tcp_sk(sk);
4437 u32 ptr = ntohs(th->urg_ptr);
4438
4439 if (ptr && !sysctl_tcp_stdurg)
4440 ptr--;
4441 ptr += ntohl(th->seq);
4442
4443 /* Ignore urgent data that we've already seen and read. */
4444 if (after(tp->copied_seq, ptr))
4445 return;
4446
4447 /* Do not replay urg ptr.
4448 *
4449 * NOTE: interesting situation not covered by specs.
4450 * Misbehaving sender may send urg ptr, pointing to segment,
4451 * which we already have in ofo queue. We are not able to fetch
4452 * such data and will stay in TCP_URG_NOTYET until will be eaten
4453 * by recvmsg(). Seems, we are not obliged to handle such wicked
4454 * situations. But it is worth to think about possibility of some
4455 * DoSes using some hypothetical application level deadlock.
4456 */
4457 if (before(ptr, tp->rcv_nxt))
4458 return;
4459
4460 /* Do we already have a newer (or duplicate) urgent pointer? */
4461 if (tp->urg_data && !after(ptr, tp->urg_seq))
4462 return;
4463
4464 /* Tell the world about our new urgent pointer. */
4465 sk_send_sigurg(sk);
4466
4467 /* We may be adding urgent data when the last byte read was
4468 * urgent. To do this requires some care. We cannot just ignore
4469 * tp->copied_seq since we would read the last urgent byte again
4470 * as data, nor can we alter copied_seq until this data arrives
4471 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4472 *
4473 * NOTE. Double Dutch. Rendering to plain English: author of comment
4474 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4475 * and expect that both A and B disappear from stream. This is _wrong_.
4476 * Though this happens in BSD with high probability, this is occasional.
4477 * Any application relying on this is buggy. Note also, that fix "works"
4478 * only in this artificial test. Insert some normal data between A and B and we will
4479 * decline of BSD again. Verdict: it is better to remove to trap
4480 * buggy users.
4481 */
4482 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4483 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4484 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4485 tp->copied_seq++;
4486 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4487 __skb_unlink(skb, &sk->sk_receive_queue);
4488 __kfree_skb(skb);
4489 }
4490 }
4491
4492 tp->urg_data = TCP_URG_NOTYET;
4493 tp->urg_seq = ptr;
4494
4495 /* Disable header prediction. */
4496 tp->pred_flags = 0;
4497 }
4498
4499 /* This is the 'fast' part of urgent handling. */
4500 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4501 {
4502 struct tcp_sock *tp = tcp_sk(sk);
4503
4504 /* Check if we get a new urgent pointer - normally not. */
4505 if (th->urg)
4506 tcp_check_urg(sk, th);
4507
4508 /* Do we wait for any urgent data? - normally not... */
4509 if (tp->urg_data == TCP_URG_NOTYET) {
4510 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4511 th->syn;
4512
4513 /* Is the urgent pointer pointing into this packet? */
4514 if (ptr < skb->len) {
4515 u8 tmp;
4516 if (skb_copy_bits(skb, ptr, &tmp, 1))
4517 BUG();
4518 tp->urg_data = TCP_URG_VALID | tmp;
4519 if (!sock_flag(sk, SOCK_DEAD))
4520 sk->sk_data_ready(sk, 0);
4521 }
4522 }
4523 }
4524
4525 static int tcp_defer_accept_check(struct sock *sk)
4526 {
4527 struct tcp_sock *tp = tcp_sk(sk);
4528
4529 if (tp->defer_tcp_accept.request) {
4530 int queued_data = tp->rcv_nxt - tp->copied_seq;
4531 int hasfin = !skb_queue_empty(&sk->sk_receive_queue) ?
4532 tcp_hdr((struct sk_buff *)
4533 sk->sk_receive_queue.prev)->fin : 0;
4534
4535 if (queued_data && hasfin)
4536 queued_data--;
4537
4538 if (queued_data &&
4539 tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4540 if (sock_flag(sk, SOCK_KEEPOPEN)) {
4541 inet_csk_reset_keepalive_timer(sk,
4542 keepalive_time_when(tp));
4543 } else {
4544 inet_csk_delete_keepalive_timer(sk);
4545 }
4546
4547 inet_csk_reqsk_queue_add(
4548 tp->defer_tcp_accept.listen_sk,
4549 tp->defer_tcp_accept.request,
4550 sk);
4551
4552 tp->defer_tcp_accept.listen_sk->sk_data_ready(
4553 tp->defer_tcp_accept.listen_sk, 0);
4554
4555 sock_put(tp->defer_tcp_accept.listen_sk);
4556 sock_put(sk);
4557 tp->defer_tcp_accept.listen_sk = NULL;
4558 tp->defer_tcp_accept.request = NULL;
4559 } else if (hasfin ||
4560 tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4561 tcp_reset(sk);
4562 return -1;
4563 }
4564 }
4565 return 0;
4566 }
4567
4568 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4569 {
4570 struct tcp_sock *tp = tcp_sk(sk);
4571 int chunk = skb->len - hlen;
4572 int err;
4573
4574 local_bh_enable();
4575 if (skb_csum_unnecessary(skb))
4576 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4577 else
4578 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4579 tp->ucopy.iov);
4580
4581 if (!err) {
4582 tp->ucopy.len -= chunk;
4583 tp->copied_seq += chunk;
4584 tcp_rcv_space_adjust(sk);
4585 }
4586
4587 local_bh_disable();
4588 return err;
4589 }
4590
4591 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4592 struct sk_buff *skb)
4593 {
4594 __sum16 result;
4595
4596 if (sock_owned_by_user(sk)) {
4597 local_bh_enable();
4598 result = __tcp_checksum_complete(skb);
4599 local_bh_disable();
4600 } else {
4601 result = __tcp_checksum_complete(skb);
4602 }
4603 return result;
4604 }
4605
4606 static inline int tcp_checksum_complete_user(struct sock *sk,
4607 struct sk_buff *skb)
4608 {
4609 return !skb_csum_unnecessary(skb) &&
4610 __tcp_checksum_complete_user(sk, skb);
4611 }
4612
4613 #ifdef CONFIG_NET_DMA
4614 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4615 int hlen)
4616 {
4617 struct tcp_sock *tp = tcp_sk(sk);
4618 int chunk = skb->len - hlen;
4619 int dma_cookie;
4620 int copied_early = 0;
4621
4622 if (tp->ucopy.wakeup)
4623 return 0;
4624
4625 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4626 tp->ucopy.dma_chan = get_softnet_dma();
4627
4628 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4629
4630 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4631 skb, hlen,
4632 tp->ucopy.iov, chunk,
4633 tp->ucopy.pinned_list);
4634
4635 if (dma_cookie < 0)
4636 goto out;
4637
4638 tp->ucopy.dma_cookie = dma_cookie;
4639 copied_early = 1;
4640
4641 tp->ucopy.len -= chunk;
4642 tp->copied_seq += chunk;
4643 tcp_rcv_space_adjust(sk);
4644
4645 if ((tp->ucopy.len == 0) ||
4646 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4647 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4648 tp->ucopy.wakeup = 1;
4649 sk->sk_data_ready(sk, 0);
4650 }
4651 } else if (chunk > 0) {
4652 tp->ucopy.wakeup = 1;
4653 sk->sk_data_ready(sk, 0);
4654 }
4655 out:
4656 return copied_early;
4657 }
4658 #endif /* CONFIG_NET_DMA */
4659
4660 /*
4661 * TCP receive function for the ESTABLISHED state.
4662 *
4663 * It is split into a fast path and a slow path. The fast path is
4664 * disabled when:
4665 * - A zero window was announced from us - zero window probing
4666 * is only handled properly in the slow path.
4667 * - Out of order segments arrived.
4668 * - Urgent data is expected.
4669 * - There is no buffer space left
4670 * - Unexpected TCP flags/window values/header lengths are received
4671 * (detected by checking the TCP header against pred_flags)
4672 * - Data is sent in both directions. Fast path only supports pure senders
4673 * or pure receivers (this means either the sequence number or the ack
4674 * value must stay constant)
4675 * - Unexpected TCP option.
4676 *
4677 * When these conditions are not satisfied it drops into a standard
4678 * receive procedure patterned after RFC793 to handle all cases.
4679 * The first three cases are guaranteed by proper pred_flags setting,
4680 * the rest is checked inline. Fast processing is turned on in
4681 * tcp_data_queue when everything is OK.
4682 */
4683 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4684 struct tcphdr *th, unsigned len)
4685 {
4686 struct tcp_sock *tp = tcp_sk(sk);
4687
4688 /*
4689 * Header prediction.
4690 * The code loosely follows the one in the famous
4691 * "30 instruction TCP receive" Van Jacobson mail.
4692 *
4693 * Van's trick is to deposit buffers into socket queue
4694 * on a device interrupt, to call tcp_recv function
4695 * on the receive process context and checksum and copy
4696 * the buffer to user space. smart...
4697 *
4698 * Our current scheme is not silly either but we take the
4699 * extra cost of the net_bh soft interrupt processing...
4700 * We do checksum and copy also but from device to kernel.
4701 */
4702
4703 tp->rx_opt.saw_tstamp = 0;
4704
4705 /* pred_flags is 0xS?10 << 16 + snd_wnd
4706 * if header_prediction is to be made
4707 * 'S' will always be tp->tcp_header_len >> 2
4708 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4709 * turn it off (when there are holes in the receive
4710 * space for instance)
4711 * PSH flag is ignored.
4712 */
4713
4714 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4715 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4716 int tcp_header_len = tp->tcp_header_len;
4717
4718 /* Timestamp header prediction: tcp_header_len
4719 * is automatically equal to th->doff*4 due to pred_flags
4720 * match.
4721 */
4722
4723 /* Check timestamp */
4724 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4725 __be32 *ptr = (__be32 *)(th + 1);
4726
4727 /* No? Slow path! */
4728 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4729 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4730 goto slow_path;
4731
4732 tp->rx_opt.saw_tstamp = 1;
4733 ++ptr;
4734 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4735 ++ptr;
4736 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4737
4738 /* If PAWS failed, check it more carefully in slow path */
4739 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4740 goto slow_path;
4741
4742 /* DO NOT update ts_recent here, if checksum fails
4743 * and timestamp was corrupted part, it will result
4744 * in a hung connection since we will drop all
4745 * future packets due to the PAWS test.
4746 */
4747 }
4748
4749 if (len <= tcp_header_len) {
4750 /* Bulk data transfer: sender */
4751 if (len == tcp_header_len) {
4752 /* Predicted packet is in window by definition.
4753 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4754 * Hence, check seq<=rcv_wup reduces to:
4755 */
4756 if (tcp_header_len ==
4757 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4758 tp->rcv_nxt == tp->rcv_wup)
4759 tcp_store_ts_recent(tp);
4760
4761 /* We know that such packets are checksummed
4762 * on entry.
4763 */
4764 tcp_ack(sk, skb, 0);
4765 __kfree_skb(skb);
4766 tcp_data_snd_check(sk);
4767 return 0;
4768 } else { /* Header too small */
4769 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4770 goto discard;
4771 }
4772 } else {
4773 int eaten = 0;
4774 int copied_early = 0;
4775
4776 if (tp->copied_seq == tp->rcv_nxt &&
4777 len - tcp_header_len <= tp->ucopy.len) {
4778 #ifdef CONFIG_NET_DMA
4779 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4780 copied_early = 1;
4781 eaten = 1;
4782 }
4783 #endif
4784 if (tp->ucopy.task == current &&
4785 sock_owned_by_user(sk) && !copied_early) {
4786 __set_current_state(TASK_RUNNING);
4787
4788 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4789 eaten = 1;
4790 }
4791 if (eaten) {
4792 /* Predicted packet is in window by definition.
4793 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4794 * Hence, check seq<=rcv_wup reduces to:
4795 */
4796 if (tcp_header_len ==
4797 (sizeof(struct tcphdr) +
4798 TCPOLEN_TSTAMP_ALIGNED) &&
4799 tp->rcv_nxt == tp->rcv_wup)
4800 tcp_store_ts_recent(tp);
4801
4802 tcp_rcv_rtt_measure_ts(sk, skb);
4803
4804 __skb_pull(skb, tcp_header_len);
4805 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4806 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4807 }
4808 if (copied_early)
4809 tcp_cleanup_rbuf(sk, skb->len);
4810 }
4811 if (!eaten) {
4812 if (tcp_checksum_complete_user(sk, skb))
4813 goto csum_error;
4814
4815 /* Predicted packet is in window by definition.
4816 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4817 * Hence, check seq<=rcv_wup reduces to:
4818 */
4819 if (tcp_header_len ==
4820 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4821 tp->rcv_nxt == tp->rcv_wup)
4822 tcp_store_ts_recent(tp);
4823
4824 tcp_rcv_rtt_measure_ts(sk, skb);
4825
4826 if ((int)skb->truesize > sk->sk_forward_alloc)
4827 goto step5;
4828
4829 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4830
4831 /* Bulk data transfer: receiver */
4832 __skb_pull(skb, tcp_header_len);
4833 __skb_queue_tail(&sk->sk_receive_queue, skb);
4834 skb_set_owner_r(skb, sk);
4835 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4836 }
4837
4838 tcp_event_data_recv(sk, skb);
4839
4840 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4841 /* Well, only one small jumplet in fast path... */
4842 tcp_ack(sk, skb, FLAG_DATA);
4843 tcp_data_snd_check(sk);
4844 if (!inet_csk_ack_scheduled(sk))
4845 goto no_ack;
4846 }
4847
4848 __tcp_ack_snd_check(sk, 0);
4849 no_ack:
4850 #ifdef CONFIG_NET_DMA
4851 if (copied_early)
4852 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4853 else
4854 #endif
4855 if (eaten)
4856 __kfree_skb(skb);
4857 else
4858 sk->sk_data_ready(sk, 0);
4859 return 0;
4860 }
4861 }
4862
4863 slow_path:
4864 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4865 goto csum_error;
4866
4867 /*
4868 * RFC1323: H1. Apply PAWS check first.
4869 */
4870 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4871 tcp_paws_discard(sk, skb)) {
4872 if (!th->rst) {
4873 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4874 tcp_send_dupack(sk, skb);
4875 goto discard;
4876 }
4877 /* Resets are accepted even if PAWS failed.
4878
4879 ts_recent update must be made after we are sure
4880 that the packet is in window.
4881 */
4882 }
4883
4884 /*
4885 * Standard slow path.
4886 */
4887
4888 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4889 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4890 * (RST) segments are validated by checking their SEQ-fields."
4891 * And page 69: "If an incoming segment is not acceptable,
4892 * an acknowledgment should be sent in reply (unless the RST bit
4893 * is set, if so drop the segment and return)".
4894 */
4895 if (!th->rst)
4896 tcp_send_dupack(sk, skb);
4897 goto discard;
4898 }
4899
4900 if (th->rst) {
4901 tcp_reset(sk);
4902 goto discard;
4903 }
4904
4905 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4906
4907 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4908 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4909 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4910 tcp_reset(sk);
4911 return 1;
4912 }
4913
4914 step5:
4915 if (th->ack)
4916 tcp_ack(sk, skb, FLAG_SLOWPATH);
4917
4918 tcp_rcv_rtt_measure_ts(sk, skb);
4919
4920 /* Process urgent data. */
4921 tcp_urg(sk, skb, th);
4922
4923 /* step 7: process the segment text */
4924 tcp_data_queue(sk, skb);
4925
4926 tcp_data_snd_check(sk);
4927 tcp_ack_snd_check(sk);
4928
4929 tcp_defer_accept_check(sk);
4930 return 0;
4931
4932 csum_error:
4933 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4934
4935 discard:
4936 __kfree_skb(skb);
4937 return 0;
4938 }
4939
4940 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4941 struct tcphdr *th, unsigned len)
4942 {
4943 struct tcp_sock *tp = tcp_sk(sk);
4944 struct inet_connection_sock *icsk = inet_csk(sk);
4945 int saved_clamp = tp->rx_opt.mss_clamp;
4946
4947 tcp_parse_options(skb, &tp->rx_opt, 0);
4948
4949 if (th->ack) {
4950 /* rfc793:
4951 * "If the state is SYN-SENT then
4952 * first check the ACK bit
4953 * If the ACK bit is set
4954 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4955 * a reset (unless the RST bit is set, if so drop
4956 * the segment and return)"
4957 *
4958 * We do not send data with SYN, so that RFC-correct
4959 * test reduces to:
4960 */
4961 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4962 goto reset_and_undo;
4963
4964 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4965 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4966 tcp_time_stamp)) {
4967 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4968 goto reset_and_undo;
4969 }
4970
4971 /* Now ACK is acceptable.
4972 *
4973 * "If the RST bit is set
4974 * If the ACK was acceptable then signal the user "error:
4975 * connection reset", drop the segment, enter CLOSED state,
4976 * delete TCB, and return."
4977 */
4978
4979 if (th->rst) {
4980 tcp_reset(sk);
4981 goto discard;
4982 }
4983
4984 /* rfc793:
4985 * "fifth, if neither of the SYN or RST bits is set then
4986 * drop the segment and return."
4987 *
4988 * See note below!
4989 * --ANK(990513)
4990 */
4991 if (!th->syn)
4992 goto discard_and_undo;
4993
4994 /* rfc793:
4995 * "If the SYN bit is on ...
4996 * are acceptable then ...
4997 * (our SYN has been ACKed), change the connection
4998 * state to ESTABLISHED..."
4999 */
5000
5001 TCP_ECN_rcv_synack(tp, th);
5002
5003 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5004 tcp_ack(sk, skb, FLAG_SLOWPATH);
5005
5006 /* Ok.. it's good. Set up sequence numbers and
5007 * move to established.
5008 */
5009 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5010 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5011
5012 /* RFC1323: The window in SYN & SYN/ACK segments is
5013 * never scaled.
5014 */
5015 tp->snd_wnd = ntohs(th->window);
5016 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5017
5018 if (!tp->rx_opt.wscale_ok) {
5019 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5020 tp->window_clamp = min(tp->window_clamp, 65535U);
5021 }
5022
5023 if (tp->rx_opt.saw_tstamp) {
5024 tp->rx_opt.tstamp_ok = 1;
5025 tp->tcp_header_len =
5026 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5027 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5028 tcp_store_ts_recent(tp);
5029 } else {
5030 tp->tcp_header_len = sizeof(struct tcphdr);
5031 }
5032
5033 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5034 tcp_enable_fack(tp);
5035
5036 tcp_mtup_init(sk);
5037 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5038 tcp_initialize_rcv_mss(sk);
5039
5040 /* Remember, tcp_poll() does not lock socket!
5041 * Change state from SYN-SENT only after copied_seq
5042 * is initialized. */
5043 tp->copied_seq = tp->rcv_nxt;
5044 smp_mb();
5045 tcp_set_state(sk, TCP_ESTABLISHED);
5046
5047 security_inet_conn_established(sk, skb);
5048
5049 /* Make sure socket is routed, for correct metrics. */
5050 icsk->icsk_af_ops->rebuild_header(sk);
5051
5052 tcp_init_metrics(sk);
5053
5054 tcp_init_congestion_control(sk);
5055
5056 /* Prevent spurious tcp_cwnd_restart() on first data
5057 * packet.
5058 */
5059 tp->lsndtime = tcp_time_stamp;
5060
5061 tcp_init_buffer_space(sk);
5062
5063 if (sock_flag(sk, SOCK_KEEPOPEN))
5064 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5065
5066 if (!tp->rx_opt.snd_wscale)
5067 __tcp_fast_path_on(tp, tp->snd_wnd);
5068 else
5069 tp->pred_flags = 0;
5070
5071 if (!sock_flag(sk, SOCK_DEAD)) {
5072 sk->sk_state_change(sk);
5073 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5074 }
5075
5076 if (sk->sk_write_pending ||
5077 icsk->icsk_accept_queue.rskq_defer_accept ||
5078 icsk->icsk_ack.pingpong) {
5079 /* Save one ACK. Data will be ready after
5080 * several ticks, if write_pending is set.
5081 *
5082 * It may be deleted, but with this feature tcpdumps
5083 * look so _wonderfully_ clever, that I was not able
5084 * to stand against the temptation 8) --ANK
5085 */
5086 inet_csk_schedule_ack(sk);
5087 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5088 icsk->icsk_ack.ato = TCP_ATO_MIN;
5089 tcp_incr_quickack(sk);
5090 tcp_enter_quickack_mode(sk);
5091 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5092 TCP_DELACK_MAX, TCP_RTO_MAX);
5093
5094 discard:
5095 __kfree_skb(skb);
5096 return 0;
5097 } else {
5098 tcp_send_ack(sk);
5099 }
5100 return -1;
5101 }
5102
5103 /* No ACK in the segment */
5104
5105 if (th->rst) {
5106 /* rfc793:
5107 * "If the RST bit is set
5108 *
5109 * Otherwise (no ACK) drop the segment and return."
5110 */
5111
5112 goto discard_and_undo;
5113 }
5114
5115 /* PAWS check. */
5116 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5117 tcp_paws_check(&tp->rx_opt, 0))
5118 goto discard_and_undo;
5119
5120 if (th->syn) {
5121 /* We see SYN without ACK. It is attempt of
5122 * simultaneous connect with crossed SYNs.
5123 * Particularly, it can be connect to self.
5124 */
5125 tcp_set_state(sk, TCP_SYN_RECV);
5126
5127 if (tp->rx_opt.saw_tstamp) {
5128 tp->rx_opt.tstamp_ok = 1;
5129 tcp_store_ts_recent(tp);
5130 tp->tcp_header_len =
5131 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5132 } else {
5133 tp->tcp_header_len = sizeof(struct tcphdr);
5134 }
5135
5136 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5137 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5138
5139 /* RFC1323: The window in SYN & SYN/ACK segments is
5140 * never scaled.
5141 */
5142 tp->snd_wnd = ntohs(th->window);
5143 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5144 tp->max_window = tp->snd_wnd;
5145
5146 TCP_ECN_rcv_syn(tp, th);
5147
5148 tcp_mtup_init(sk);
5149 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5150 tcp_initialize_rcv_mss(sk);
5151
5152 tcp_send_synack(sk);
5153 #if 0
5154 /* Note, we could accept data and URG from this segment.
5155 * There are no obstacles to make this.
5156 *
5157 * However, if we ignore data in ACKless segments sometimes,
5158 * we have no reasons to accept it sometimes.
5159 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5160 * is not flawless. So, discard packet for sanity.
5161 * Uncomment this return to process the data.
5162 */
5163 return -1;
5164 #else
5165 goto discard;
5166 #endif
5167 }
5168 /* "fifth, if neither of the SYN or RST bits is set then
5169 * drop the segment and return."
5170 */
5171
5172 discard_and_undo:
5173 tcp_clear_options(&tp->rx_opt);
5174 tp->rx_opt.mss_clamp = saved_clamp;
5175 goto discard;
5176
5177 reset_and_undo:
5178 tcp_clear_options(&tp->rx_opt);
5179 tp->rx_opt.mss_clamp = saved_clamp;
5180 return 1;
5181 }
5182
5183 /*
5184 * This function implements the receiving procedure of RFC 793 for
5185 * all states except ESTABLISHED and TIME_WAIT.
5186 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5187 * address independent.
5188 */
5189
5190 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5191 struct tcphdr *th, unsigned len)
5192 {
5193 struct tcp_sock *tp = tcp_sk(sk);
5194 struct inet_connection_sock *icsk = inet_csk(sk);
5195 int queued = 0;
5196
5197 tp->rx_opt.saw_tstamp = 0;
5198
5199 switch (sk->sk_state) {
5200 case TCP_CLOSE:
5201 goto discard;
5202
5203 case TCP_LISTEN:
5204 if (th->ack)
5205 return 1;
5206
5207 if (th->rst)
5208 goto discard;
5209
5210 if (th->syn) {
5211 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5212 return 1;
5213
5214 /* Now we have several options: In theory there is
5215 * nothing else in the frame. KA9Q has an option to
5216 * send data with the syn, BSD accepts data with the
5217 * syn up to the [to be] advertised window and
5218 * Solaris 2.1 gives you a protocol error. For now
5219 * we just ignore it, that fits the spec precisely
5220 * and avoids incompatibilities. It would be nice in
5221 * future to drop through and process the data.
5222 *
5223 * Now that TTCP is starting to be used we ought to
5224 * queue this data.
5225 * But, this leaves one open to an easy denial of
5226 * service attack, and SYN cookies can't defend
5227 * against this problem. So, we drop the data
5228 * in the interest of security over speed unless
5229 * it's still in use.
5230 */
5231 kfree_skb(skb);
5232 return 0;
5233 }
5234 goto discard;
5235
5236 case TCP_SYN_SENT:
5237 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5238 if (queued >= 0)
5239 return queued;
5240
5241 /* Do step6 onward by hand. */
5242 tcp_urg(sk, skb, th);
5243 __kfree_skb(skb);
5244 tcp_data_snd_check(sk);
5245 return 0;
5246 }
5247
5248 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5249 tcp_paws_discard(sk, skb)) {
5250 if (!th->rst) {
5251 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5252 tcp_send_dupack(sk, skb);
5253 goto discard;
5254 }
5255 /* Reset is accepted even if it did not pass PAWS. */
5256 }
5257
5258 /* step 1: check sequence number */
5259 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5260 if (!th->rst)
5261 tcp_send_dupack(sk, skb);
5262 goto discard;
5263 }
5264
5265 /* step 2: check RST bit */
5266 if (th->rst) {
5267 tcp_reset(sk);
5268 goto discard;
5269 }
5270
5271 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5272
5273 /* step 3: check security and precedence [ignored] */
5274
5275 /* step 4:
5276 *
5277 * Check for a SYN in window.
5278 */
5279 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5280 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5281 tcp_reset(sk);
5282 return 1;
5283 }
5284
5285 /* step 5: check the ACK field */
5286 if (th->ack) {
5287 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5288
5289 switch (sk->sk_state) {
5290 case TCP_SYN_RECV:
5291 if (acceptable) {
5292 tp->copied_seq = tp->rcv_nxt;
5293 smp_mb();
5294 tcp_set_state(sk, TCP_ESTABLISHED);
5295 sk->sk_state_change(sk);
5296
5297 /* Note, that this wakeup is only for marginal
5298 * crossed SYN case. Passively open sockets
5299 * are not waked up, because sk->sk_sleep ==
5300 * NULL and sk->sk_socket == NULL.
5301 */
5302 if (sk->sk_socket)
5303 sk_wake_async(sk,
5304 SOCK_WAKE_IO, POLL_OUT);
5305
5306 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5307 tp->snd_wnd = ntohs(th->window) <<
5308 tp->rx_opt.snd_wscale;
5309 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5310 TCP_SKB_CB(skb)->seq);
5311
5312 /* tcp_ack considers this ACK as duplicate
5313 * and does not calculate rtt.
5314 * Fix it at least with timestamps.
5315 */
5316 if (tp->rx_opt.saw_tstamp &&
5317 tp->rx_opt.rcv_tsecr && !tp->srtt)
5318 tcp_ack_saw_tstamp(sk, 0);
5319
5320 if (tp->rx_opt.tstamp_ok)
5321 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5322
5323 /* Make sure socket is routed, for
5324 * correct metrics.
5325 */
5326 icsk->icsk_af_ops->rebuild_header(sk);
5327
5328 tcp_init_metrics(sk);
5329
5330 tcp_init_congestion_control(sk);
5331
5332 /* Prevent spurious tcp_cwnd_restart() on
5333 * first data packet.
5334 */
5335 tp->lsndtime = tcp_time_stamp;
5336
5337 tcp_mtup_init(sk);
5338 tcp_initialize_rcv_mss(sk);
5339 tcp_init_buffer_space(sk);
5340 tcp_fast_path_on(tp);
5341 } else {
5342 return 1;
5343 }
5344 break;
5345
5346 case TCP_FIN_WAIT1:
5347 if (tp->snd_una == tp->write_seq) {
5348 tcp_set_state(sk, TCP_FIN_WAIT2);
5349 sk->sk_shutdown |= SEND_SHUTDOWN;
5350 dst_confirm(sk->sk_dst_cache);
5351
5352 if (!sock_flag(sk, SOCK_DEAD))
5353 /* Wake up lingering close() */
5354 sk->sk_state_change(sk);
5355 else {
5356 int tmo;
5357
5358 if (tp->linger2 < 0 ||
5359 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5360 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5361 tcp_done(sk);
5362 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5363 return 1;
5364 }
5365
5366 tmo = tcp_fin_time(sk);
5367 if (tmo > TCP_TIMEWAIT_LEN) {
5368 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5369 } else if (th->fin || sock_owned_by_user(sk)) {
5370 /* Bad case. We could lose such FIN otherwise.
5371 * It is not a big problem, but it looks confusing
5372 * and not so rare event. We still can lose it now,
5373 * if it spins in bh_lock_sock(), but it is really
5374 * marginal case.
5375 */
5376 inet_csk_reset_keepalive_timer(sk, tmo);
5377 } else {
5378 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5379 goto discard;
5380 }
5381 }
5382 }
5383 break;
5384
5385 case TCP_CLOSING:
5386 if (tp->snd_una == tp->write_seq) {
5387 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5388 goto discard;
5389 }
5390 break;
5391
5392 case TCP_LAST_ACK:
5393 if (tp->snd_una == tp->write_seq) {
5394 tcp_update_metrics(sk);
5395 tcp_done(sk);
5396 goto discard;
5397 }
5398 break;
5399 }
5400 } else
5401 goto discard;
5402
5403 /* step 6: check the URG bit */
5404 tcp_urg(sk, skb, th);
5405
5406 /* step 7: process the segment text */
5407 switch (sk->sk_state) {
5408 case TCP_CLOSE_WAIT:
5409 case TCP_CLOSING:
5410 case TCP_LAST_ACK:
5411 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5412 break;
5413 case TCP_FIN_WAIT1:
5414 case TCP_FIN_WAIT2:
5415 /* RFC 793 says to queue data in these states,
5416 * RFC 1122 says we MUST send a reset.
5417 * BSD 4.4 also does reset.
5418 */
5419 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5420 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5421 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5422 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5423 tcp_reset(sk);
5424 return 1;
5425 }
5426 }
5427 /* Fall through */
5428 case TCP_ESTABLISHED:
5429 tcp_data_queue(sk, skb);
5430 queued = 1;
5431 break;
5432 }
5433
5434 /* tcp_data could move socket to TIME-WAIT */
5435 if (sk->sk_state != TCP_CLOSE) {
5436 tcp_data_snd_check(sk);
5437 tcp_ack_snd_check(sk);
5438 }
5439
5440 if (!queued) {
5441 discard:
5442 __kfree_skb(skb);
5443 }
5444 return 0;
5445 }
5446
5447 EXPORT_SYMBOL(sysctl_tcp_ecn);
5448 EXPORT_SYMBOL(sysctl_tcp_reordering);
5449 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5450 EXPORT_SYMBOL(tcp_parse_options);
5451 EXPORT_SYMBOL(tcp_rcv_established);
5452 EXPORT_SYMBOL(tcp_rcv_state_process);
5453 EXPORT_SYMBOL(tcp_initialize_rcv_mss);