]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
130 {
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
142 rcu_read_unlock();
143 }
144 }
145
146 /* Adapt the MSS value used to make delayed ack decision to the
147 * real world.
148 */
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
150 {
151 struct inet_connection_sock *icsk = inet_csk(sk);
152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
153 unsigned int len;
154
155 icsk->icsk_ack.last_seg_size = 0;
156
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
159 */
160 len = skb_shinfo(skb)->gso_size ? : skb->len;
161 if (len >= icsk->icsk_ack.rcv_mss) {
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 tcp_sk(sk)->advmss);
164 if (unlikely(icsk->icsk_ack.rcv_mss != len))
165 tcp_gro_dev_warn(sk, skb);
166 } else {
167 /* Otherwise, we make more careful check taking into account,
168 * that SACKs block is variable.
169 *
170 * "len" is invariant segment length, including TCP header.
171 */
172 len += skb->data - skb_transport_header(skb);
173 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
174 /* If PSH is not set, packet should be
175 * full sized, provided peer TCP is not badly broken.
176 * This observation (if it is correct 8)) allows
177 * to handle super-low mtu links fairly.
178 */
179 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
180 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
181 /* Subtract also invariant (if peer is RFC compliant),
182 * tcp header plus fixed timestamp option length.
183 * Resulting "len" is MSS free of SACK jitter.
184 */
185 len -= tcp_sk(sk)->tcp_header_len;
186 icsk->icsk_ack.last_seg_size = len;
187 if (len == lss) {
188 icsk->icsk_ack.rcv_mss = len;
189 return;
190 }
191 }
192 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
195 }
196 }
197
198 static void tcp_incr_quickack(struct sock *sk)
199 {
200 struct inet_connection_sock *icsk = inet_csk(sk);
201 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
202
203 if (quickacks == 0)
204 quickacks = 2;
205 if (quickacks > icsk->icsk_ack.quick)
206 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
207 }
208
209 static void tcp_enter_quickack_mode(struct sock *sk)
210 {
211 struct inet_connection_sock *icsk = inet_csk(sk);
212 tcp_incr_quickack(sk);
213 icsk->icsk_ack.pingpong = 0;
214 icsk->icsk_ack.ato = TCP_ATO_MIN;
215 }
216
217 /* Send ACKs quickly, if "quick" count is not exhausted
218 * and the session is not interactive.
219 */
220
221 static bool tcp_in_quickack_mode(struct sock *sk)
222 {
223 const struct inet_connection_sock *icsk = inet_csk(sk);
224 const struct dst_entry *dst = __sk_dst_get(sk);
225
226 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
227 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
228 }
229
230 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
231 {
232 if (tp->ecn_flags & TCP_ECN_OK)
233 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
234 }
235
236 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
237 {
238 if (tcp_hdr(skb)->cwr)
239 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
240 }
241
242 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
243 {
244 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
245 }
246
247 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
248 {
249 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
250 case INET_ECN_NOT_ECT:
251 /* Funny extension: if ECT is not set on a segment,
252 * and we already seen ECT on a previous segment,
253 * it is probably a retransmit.
254 */
255 if (tp->ecn_flags & TCP_ECN_SEEN)
256 tcp_enter_quickack_mode((struct sock *)tp);
257 break;
258 case INET_ECN_CE:
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
261
262 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
263 /* Better not delay acks, sender can have a very low cwnd */
264 tcp_enter_quickack_mode((struct sock *)tp);
265 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
266 }
267 tp->ecn_flags |= TCP_ECN_SEEN;
268 break;
269 default:
270 if (tcp_ca_needs_ecn((struct sock *)tp))
271 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
272 tp->ecn_flags |= TCP_ECN_SEEN;
273 break;
274 }
275 }
276
277 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
278 {
279 if (tp->ecn_flags & TCP_ECN_OK)
280 __tcp_ecn_check_ce(tp, skb);
281 }
282
283 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
286 tp->ecn_flags &= ~TCP_ECN_OK;
287 }
288
289 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
290 {
291 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
292 tp->ecn_flags &= ~TCP_ECN_OK;
293 }
294
295 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
296 {
297 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
298 return true;
299 return false;
300 }
301
302 /* Buffer size and advertised window tuning.
303 *
304 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
305 */
306
307 static void tcp_sndbuf_expand(struct sock *sk)
308 {
309 const struct tcp_sock *tp = tcp_sk(sk);
310 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
311 int sndmem, per_mss;
312 u32 nr_segs;
313
314 /* Worst case is non GSO/TSO : each frame consumes one skb
315 * and skb->head is kmalloced using power of two area of memory
316 */
317 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
318 MAX_TCP_HEADER +
319 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320
321 per_mss = roundup_pow_of_two(per_mss) +
322 SKB_DATA_ALIGN(sizeof(struct sk_buff));
323
324 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
325 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
326
327 /* Fast Recovery (RFC 5681 3.2) :
328 * Cubic needs 1.7 factor, rounded to 2 to include
329 * extra cushion (application might react slowly to POLLOUT)
330 */
331 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
332 sndmem *= nr_segs * per_mss;
333
334 if (sk->sk_sndbuf < sndmem)
335 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
336 }
337
338 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
339 *
340 * All tcp_full_space() is split to two parts: "network" buffer, allocated
341 * forward and advertised in receiver window (tp->rcv_wnd) and
342 * "application buffer", required to isolate scheduling/application
343 * latencies from network.
344 * window_clamp is maximal advertised window. It can be less than
345 * tcp_full_space(), in this case tcp_full_space() - window_clamp
346 * is reserved for "application" buffer. The less window_clamp is
347 * the smoother our behaviour from viewpoint of network, but the lower
348 * throughput and the higher sensitivity of the connection to losses. 8)
349 *
350 * rcv_ssthresh is more strict window_clamp used at "slow start"
351 * phase to predict further behaviour of this connection.
352 * It is used for two goals:
353 * - to enforce header prediction at sender, even when application
354 * requires some significant "application buffer". It is check #1.
355 * - to prevent pruning of receive queue because of misprediction
356 * of receiver window. Check #2.
357 *
358 * The scheme does not work when sender sends good segments opening
359 * window and then starts to feed us spaghetti. But it should work
360 * in common situations. Otherwise, we have to rely on queue collapsing.
361 */
362
363 /* Slow part of check#2. */
364 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367 /* Optimize this! */
368 int truesize = tcp_win_from_space(skb->truesize) >> 1;
369 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
370
371 while (tp->rcv_ssthresh <= window) {
372 if (truesize <= skb->len)
373 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
374
375 truesize >>= 1;
376 window >>= 1;
377 }
378 return 0;
379 }
380
381 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
382 {
383 struct tcp_sock *tp = tcp_sk(sk);
384
385 /* Check #1 */
386 if (tp->rcv_ssthresh < tp->window_clamp &&
387 (int)tp->rcv_ssthresh < tcp_space(sk) &&
388 !tcp_under_memory_pressure(sk)) {
389 int incr;
390
391 /* Check #2. Increase window, if skb with such overhead
392 * will fit to rcvbuf in future.
393 */
394 if (tcp_win_from_space(skb->truesize) <= skb->len)
395 incr = 2 * tp->advmss;
396 else
397 incr = __tcp_grow_window(sk, skb);
398
399 if (incr) {
400 incr = max_t(int, incr, 2 * skb->len);
401 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
402 tp->window_clamp);
403 inet_csk(sk)->icsk_ack.quick |= 1;
404 }
405 }
406 }
407
408 /* 3. Tuning rcvbuf, when connection enters established state. */
409 static void tcp_fixup_rcvbuf(struct sock *sk)
410 {
411 u32 mss = tcp_sk(sk)->advmss;
412 int rcvmem;
413
414 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
415 tcp_default_init_rwnd(mss);
416
417 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
418 * Allow enough cushion so that sender is not limited by our window
419 */
420 if (sysctl_tcp_moderate_rcvbuf)
421 rcvmem <<= 2;
422
423 if (sk->sk_rcvbuf < rcvmem)
424 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
425 }
426
427 /* 4. Try to fixup all. It is made immediately after connection enters
428 * established state.
429 */
430 void tcp_init_buffer_space(struct sock *sk)
431 {
432 struct tcp_sock *tp = tcp_sk(sk);
433 int maxwin;
434
435 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
436 tcp_fixup_rcvbuf(sk);
437 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
438 tcp_sndbuf_expand(sk);
439
440 tp->rcvq_space.space = tp->rcv_wnd;
441 tp->rcvq_space.time = tcp_time_stamp;
442 tp->rcvq_space.seq = tp->copied_seq;
443
444 maxwin = tcp_full_space(sk);
445
446 if (tp->window_clamp >= maxwin) {
447 tp->window_clamp = maxwin;
448
449 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
450 tp->window_clamp = max(maxwin -
451 (maxwin >> sysctl_tcp_app_win),
452 4 * tp->advmss);
453 }
454
455 /* Force reservation of one segment. */
456 if (sysctl_tcp_app_win &&
457 tp->window_clamp > 2 * tp->advmss &&
458 tp->window_clamp + tp->advmss > maxwin)
459 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
460
461 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
462 tp->snd_cwnd_stamp = tcp_time_stamp;
463 }
464
465 /* 5. Recalculate window clamp after socket hit its memory bounds. */
466 static void tcp_clamp_window(struct sock *sk)
467 {
468 struct tcp_sock *tp = tcp_sk(sk);
469 struct inet_connection_sock *icsk = inet_csk(sk);
470
471 icsk->icsk_ack.quick = 0;
472
473 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
474 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
475 !tcp_under_memory_pressure(sk) &&
476 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
477 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
478 sysctl_tcp_rmem[2]);
479 }
480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
481 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
482 }
483
484 /* Initialize RCV_MSS value.
485 * RCV_MSS is an our guess about MSS used by the peer.
486 * We haven't any direct information about the MSS.
487 * It's better to underestimate the RCV_MSS rather than overestimate.
488 * Overestimations make us ACKing less frequently than needed.
489 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
490 */
491 void tcp_initialize_rcv_mss(struct sock *sk)
492 {
493 const struct tcp_sock *tp = tcp_sk(sk);
494 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
495
496 hint = min(hint, tp->rcv_wnd / 2);
497 hint = min(hint, TCP_MSS_DEFAULT);
498 hint = max(hint, TCP_MIN_MSS);
499
500 inet_csk(sk)->icsk_ack.rcv_mss = hint;
501 }
502 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
503
504 /* Receiver "autotuning" code.
505 *
506 * The algorithm for RTT estimation w/o timestamps is based on
507 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
508 * <http://public.lanl.gov/radiant/pubs.html#DRS>
509 *
510 * More detail on this code can be found at
511 * <http://staff.psc.edu/jheffner/>,
512 * though this reference is out of date. A new paper
513 * is pending.
514 */
515 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
516 {
517 u32 new_sample = tp->rcv_rtt_est.rtt;
518 long m = sample;
519
520 if (m == 0)
521 m = 1;
522
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
528 *
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
532 * long.
533 */
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
541 }
542 } else {
543 /* No previous measure. */
544 new_sample = m << 3;
545 }
546
547 if (tp->rcv_rtt_est.rtt != new_sample)
548 tp->rcv_rtt_est.rtt = new_sample;
549 }
550
551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 {
553 if (tp->rcv_rtt_est.time == 0)
554 goto new_measure;
555 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
556 return;
557 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
558
559 new_measure:
560 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
561 tp->rcv_rtt_est.time = tcp_time_stamp;
562 }
563
564 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
565 const struct sk_buff *skb)
566 {
567 struct tcp_sock *tp = tcp_sk(sk);
568 if (tp->rx_opt.rcv_tsecr &&
569 (TCP_SKB_CB(skb)->end_seq -
570 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
571 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
572 }
573
574 /*
575 * This function should be called every time data is copied to user space.
576 * It calculates the appropriate TCP receive buffer space.
577 */
578 void tcp_rcv_space_adjust(struct sock *sk)
579 {
580 struct tcp_sock *tp = tcp_sk(sk);
581 int time;
582 int copied;
583
584 time = tcp_time_stamp - tp->rcvq_space.time;
585 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
586 return;
587
588 /* Number of bytes copied to user in last RTT */
589 copied = tp->copied_seq - tp->rcvq_space.seq;
590 if (copied <= tp->rcvq_space.space)
591 goto new_measure;
592
593 /* A bit of theory :
594 * copied = bytes received in previous RTT, our base window
595 * To cope with packet losses, we need a 2x factor
596 * To cope with slow start, and sender growing its cwin by 100 %
597 * every RTT, we need a 4x factor, because the ACK we are sending
598 * now is for the next RTT, not the current one :
599 * <prev RTT . ><current RTT .. ><next RTT .... >
600 */
601
602 if (sysctl_tcp_moderate_rcvbuf &&
603 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
604 int rcvwin, rcvmem, rcvbuf;
605
606 /* minimal window to cope with packet losses, assuming
607 * steady state. Add some cushion because of small variations.
608 */
609 rcvwin = (copied << 1) + 16 * tp->advmss;
610
611 /* If rate increased by 25%,
612 * assume slow start, rcvwin = 3 * copied
613 * If rate increased by 50%,
614 * assume sender can use 2x growth, rcvwin = 4 * copied
615 */
616 if (copied >=
617 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
618 if (copied >=
619 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
620 rcvwin <<= 1;
621 else
622 rcvwin += (rcvwin >> 1);
623 }
624
625 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
626 while (tcp_win_from_space(rcvmem) < tp->advmss)
627 rcvmem += 128;
628
629 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
630 if (rcvbuf > sk->sk_rcvbuf) {
631 sk->sk_rcvbuf = rcvbuf;
632
633 /* Make the window clamp follow along. */
634 tp->window_clamp = rcvwin;
635 }
636 }
637 tp->rcvq_space.space = copied;
638
639 new_measure:
640 tp->rcvq_space.seq = tp->copied_seq;
641 tp->rcvq_space.time = tcp_time_stamp;
642 }
643
644 /* There is something which you must keep in mind when you analyze the
645 * behavior of the tp->ato delayed ack timeout interval. When a
646 * connection starts up, we want to ack as quickly as possible. The
647 * problem is that "good" TCP's do slow start at the beginning of data
648 * transmission. The means that until we send the first few ACK's the
649 * sender will sit on his end and only queue most of his data, because
650 * he can only send snd_cwnd unacked packets at any given time. For
651 * each ACK we send, he increments snd_cwnd and transmits more of his
652 * queue. -DaveM
653 */
654 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
655 {
656 struct tcp_sock *tp = tcp_sk(sk);
657 struct inet_connection_sock *icsk = inet_csk(sk);
658 u32 now;
659
660 inet_csk_schedule_ack(sk);
661
662 tcp_measure_rcv_mss(sk, skb);
663
664 tcp_rcv_rtt_measure(tp);
665
666 now = tcp_time_stamp;
667
668 if (!icsk->icsk_ack.ato) {
669 /* The _first_ data packet received, initialize
670 * delayed ACK engine.
671 */
672 tcp_incr_quickack(sk);
673 icsk->icsk_ack.ato = TCP_ATO_MIN;
674 } else {
675 int m = now - icsk->icsk_ack.lrcvtime;
676
677 if (m <= TCP_ATO_MIN / 2) {
678 /* The fastest case is the first. */
679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 } else if (m < icsk->icsk_ack.ato) {
681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 icsk->icsk_ack.ato = icsk->icsk_rto;
684 } else if (m > icsk->icsk_rto) {
685 /* Too long gap. Apparently sender failed to
686 * restart window, so that we send ACKs quickly.
687 */
688 tcp_incr_quickack(sk);
689 sk_mem_reclaim(sk);
690 }
691 }
692 icsk->icsk_ack.lrcvtime = now;
693
694 tcp_ecn_check_ce(tp, skb);
695
696 if (skb->len >= 128)
697 tcp_grow_window(sk, skb);
698 }
699
700 /* Called to compute a smoothed rtt estimate. The data fed to this
701 * routine either comes from timestamps, or from segments that were
702 * known _not_ to have been retransmitted [see Karn/Partridge
703 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704 * piece by Van Jacobson.
705 * NOTE: the next three routines used to be one big routine.
706 * To save cycles in the RFC 1323 implementation it was better to break
707 * it up into three procedures. -- erics
708 */
709 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
710 {
711 struct tcp_sock *tp = tcp_sk(sk);
712 long m = mrtt_us; /* RTT */
713 u32 srtt = tp->srtt_us;
714
715 /* The following amusing code comes from Jacobson's
716 * article in SIGCOMM '88. Note that rtt and mdev
717 * are scaled versions of rtt and mean deviation.
718 * This is designed to be as fast as possible
719 * m stands for "measurement".
720 *
721 * On a 1990 paper the rto value is changed to:
722 * RTO = rtt + 4 * mdev
723 *
724 * Funny. This algorithm seems to be very broken.
725 * These formulae increase RTO, when it should be decreased, increase
726 * too slowly, when it should be increased quickly, decrease too quickly
727 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 * does not matter how to _calculate_ it. Seems, it was trap
729 * that VJ failed to avoid. 8)
730 */
731 if (srtt != 0) {
732 m -= (srtt >> 3); /* m is now error in rtt est */
733 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
734 if (m < 0) {
735 m = -m; /* m is now abs(error) */
736 m -= (tp->mdev_us >> 2); /* similar update on mdev */
737 /* This is similar to one of Eifel findings.
738 * Eifel blocks mdev updates when rtt decreases.
739 * This solution is a bit different: we use finer gain
740 * for mdev in this case (alpha*beta).
741 * Like Eifel it also prevents growth of rto,
742 * but also it limits too fast rto decreases,
743 * happening in pure Eifel.
744 */
745 if (m > 0)
746 m >>= 3;
747 } else {
748 m -= (tp->mdev_us >> 2); /* similar update on mdev */
749 }
750 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
751 if (tp->mdev_us > tp->mdev_max_us) {
752 tp->mdev_max_us = tp->mdev_us;
753 if (tp->mdev_max_us > tp->rttvar_us)
754 tp->rttvar_us = tp->mdev_max_us;
755 }
756 if (after(tp->snd_una, tp->rtt_seq)) {
757 if (tp->mdev_max_us < tp->rttvar_us)
758 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
759 tp->rtt_seq = tp->snd_nxt;
760 tp->mdev_max_us = tcp_rto_min_us(sk);
761 }
762 } else {
763 /* no previous measure. */
764 srtt = m << 3; /* take the measured time to be rtt */
765 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
766 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 tp->mdev_max_us = tp->rttvar_us;
768 tp->rtt_seq = tp->snd_nxt;
769 }
770 tp->srtt_us = max(1U, srtt);
771 }
772
773 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
774 * Note: TCP stack does not yet implement pacing.
775 * FQ packet scheduler can be used to implement cheap but effective
776 * TCP pacing, to smooth the burst on large writes when packets
777 * in flight is significantly lower than cwnd (or rwin)
778 */
779 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
780 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
781
782 static void tcp_update_pacing_rate(struct sock *sk)
783 {
784 const struct tcp_sock *tp = tcp_sk(sk);
785 u64 rate;
786
787 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
788 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
789
790 /* current rate is (cwnd * mss) / srtt
791 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
792 * In Congestion Avoidance phase, set it to 120 % the current rate.
793 *
794 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
795 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
796 * end of slow start and should slow down.
797 */
798 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
799 rate *= sysctl_tcp_pacing_ss_ratio;
800 else
801 rate *= sysctl_tcp_pacing_ca_ratio;
802
803 rate *= max(tp->snd_cwnd, tp->packets_out);
804
805 if (likely(tp->srtt_us))
806 do_div(rate, tp->srtt_us);
807
808 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
809 * without any lock. We want to make sure compiler wont store
810 * intermediate values in this location.
811 */
812 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
813 sk->sk_max_pacing_rate);
814 }
815
816 /* Calculate rto without backoff. This is the second half of Van Jacobson's
817 * routine referred to above.
818 */
819 static void tcp_set_rto(struct sock *sk)
820 {
821 const struct tcp_sock *tp = tcp_sk(sk);
822 /* Old crap is replaced with new one. 8)
823 *
824 * More seriously:
825 * 1. If rtt variance happened to be less 50msec, it is hallucination.
826 * It cannot be less due to utterly erratic ACK generation made
827 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
828 * to do with delayed acks, because at cwnd>2 true delack timeout
829 * is invisible. Actually, Linux-2.4 also generates erratic
830 * ACKs in some circumstances.
831 */
832 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
833
834 /* 2. Fixups made earlier cannot be right.
835 * If we do not estimate RTO correctly without them,
836 * all the algo is pure shit and should be replaced
837 * with correct one. It is exactly, which we pretend to do.
838 */
839
840 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
841 * guarantees that rto is higher.
842 */
843 tcp_bound_rto(sk);
844 }
845
846 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
847 {
848 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
849
850 if (!cwnd)
851 cwnd = TCP_INIT_CWND;
852 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
853 }
854
855 /*
856 * Packet counting of FACK is based on in-order assumptions, therefore TCP
857 * disables it when reordering is detected
858 */
859 void tcp_disable_fack(struct tcp_sock *tp)
860 {
861 /* RFC3517 uses different metric in lost marker => reset on change */
862 if (tcp_is_fack(tp))
863 tp->lost_skb_hint = NULL;
864 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
865 }
866
867 /* Take a notice that peer is sending D-SACKs */
868 static void tcp_dsack_seen(struct tcp_sock *tp)
869 {
870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
871 }
872
873 static void tcp_update_reordering(struct sock *sk, const int metric,
874 const int ts)
875 {
876 struct tcp_sock *tp = tcp_sk(sk);
877 if (metric > tp->reordering) {
878 int mib_idx;
879
880 tp->reordering = min(sysctl_tcp_max_reordering, metric);
881
882 /* This exciting event is worth to be remembered. 8) */
883 if (ts)
884 mib_idx = LINUX_MIB_TCPTSREORDER;
885 else if (tcp_is_reno(tp))
886 mib_idx = LINUX_MIB_TCPRENOREORDER;
887 else if (tcp_is_fack(tp))
888 mib_idx = LINUX_MIB_TCPFACKREORDER;
889 else
890 mib_idx = LINUX_MIB_TCPSACKREORDER;
891
892 NET_INC_STATS(sock_net(sk), mib_idx);
893 #if FASTRETRANS_DEBUG > 1
894 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
895 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
896 tp->reordering,
897 tp->fackets_out,
898 tp->sacked_out,
899 tp->undo_marker ? tp->undo_retrans : 0);
900 #endif
901 tcp_disable_fack(tp);
902 }
903
904 tp->rack.reord = 1;
905 }
906
907 /* This must be called before lost_out is incremented */
908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
909 {
910 if (!tp->retransmit_skb_hint ||
911 before(TCP_SKB_CB(skb)->seq,
912 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
913 tp->retransmit_skb_hint = skb;
914 }
915
916 /* Sum the number of packets on the wire we have marked as lost.
917 * There are two cases we care about here:
918 * a) Packet hasn't been marked lost (nor retransmitted),
919 * and this is the first loss.
920 * b) Packet has been marked both lost and retransmitted,
921 * and this means we think it was lost again.
922 */
923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 __u8 sacked = TCP_SKB_CB(skb)->sacked;
926
927 if (!(sacked & TCPCB_LOST) ||
928 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
929 tp->lost += tcp_skb_pcount(skb);
930 }
931
932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 tcp_verify_retransmit_hint(tp, skb);
936
937 tp->lost_out += tcp_skb_pcount(skb);
938 tcp_sum_lost(tp, skb);
939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 }
941 }
942
943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
944 {
945 tcp_verify_retransmit_hint(tp, skb);
946
947 tcp_sum_lost(tp, skb);
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tp->lost_out += tcp_skb_pcount(skb);
950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 }
952 }
953
954 /* This procedure tags the retransmission queue when SACKs arrive.
955 *
956 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
957 * Packets in queue with these bits set are counted in variables
958 * sacked_out, retrans_out and lost_out, correspondingly.
959 *
960 * Valid combinations are:
961 * Tag InFlight Description
962 * 0 1 - orig segment is in flight.
963 * S 0 - nothing flies, orig reached receiver.
964 * L 0 - nothing flies, orig lost by net.
965 * R 2 - both orig and retransmit are in flight.
966 * L|R 1 - orig is lost, retransmit is in flight.
967 * S|R 1 - orig reached receiver, retrans is still in flight.
968 * (L|S|R is logically valid, it could occur when L|R is sacked,
969 * but it is equivalent to plain S and code short-curcuits it to S.
970 * L|S is logically invalid, it would mean -1 packet in flight 8))
971 *
972 * These 6 states form finite state machine, controlled by the following events:
973 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
974 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
975 * 3. Loss detection event of two flavors:
976 * A. Scoreboard estimator decided the packet is lost.
977 * A'. Reno "three dupacks" marks head of queue lost.
978 * A''. Its FACK modification, head until snd.fack is lost.
979 * B. SACK arrives sacking SND.NXT at the moment, when the
980 * segment was retransmitted.
981 * 4. D-SACK added new rule: D-SACK changes any tag to S.
982 *
983 * It is pleasant to note, that state diagram turns out to be commutative,
984 * so that we are allowed not to be bothered by order of our actions,
985 * when multiple events arrive simultaneously. (see the function below).
986 *
987 * Reordering detection.
988 * --------------------
989 * Reordering metric is maximal distance, which a packet can be displaced
990 * in packet stream. With SACKs we can estimate it:
991 *
992 * 1. SACK fills old hole and the corresponding segment was not
993 * ever retransmitted -> reordering. Alas, we cannot use it
994 * when segment was retransmitted.
995 * 2. The last flaw is solved with D-SACK. D-SACK arrives
996 * for retransmitted and already SACKed segment -> reordering..
997 * Both of these heuristics are not used in Loss state, when we cannot
998 * account for retransmits accurately.
999 *
1000 * SACK block validation.
1001 * ----------------------
1002 *
1003 * SACK block range validation checks that the received SACK block fits to
1004 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1005 * Note that SND.UNA is not included to the range though being valid because
1006 * it means that the receiver is rather inconsistent with itself reporting
1007 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1008 * perfectly valid, however, in light of RFC2018 which explicitly states
1009 * that "SACK block MUST reflect the newest segment. Even if the newest
1010 * segment is going to be discarded ...", not that it looks very clever
1011 * in case of head skb. Due to potentional receiver driven attacks, we
1012 * choose to avoid immediate execution of a walk in write queue due to
1013 * reneging and defer head skb's loss recovery to standard loss recovery
1014 * procedure that will eventually trigger (nothing forbids us doing this).
1015 *
1016 * Implements also blockage to start_seq wrap-around. Problem lies in the
1017 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1018 * there's no guarantee that it will be before snd_nxt (n). The problem
1019 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1020 * wrap (s_w):
1021 *
1022 * <- outs wnd -> <- wrapzone ->
1023 * u e n u_w e_w s n_w
1024 * | | | | | | |
1025 * |<------------+------+----- TCP seqno space --------------+---------->|
1026 * ...-- <2^31 ->| |<--------...
1027 * ...---- >2^31 ------>| |<--------...
1028 *
1029 * Current code wouldn't be vulnerable but it's better still to discard such
1030 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1031 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1032 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1033 * equal to the ideal case (infinite seqno space without wrap caused issues).
1034 *
1035 * With D-SACK the lower bound is extended to cover sequence space below
1036 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1037 * again, D-SACK block must not to go across snd_una (for the same reason as
1038 * for the normal SACK blocks, explained above). But there all simplicity
1039 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1040 * fully below undo_marker they do not affect behavior in anyway and can
1041 * therefore be safely ignored. In rare cases (which are more or less
1042 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1043 * fragmentation and packet reordering past skb's retransmission. To consider
1044 * them correctly, the acceptable range must be extended even more though
1045 * the exact amount is rather hard to quantify. However, tp->max_window can
1046 * be used as an exaggerated estimate.
1047 */
1048 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1049 u32 start_seq, u32 end_seq)
1050 {
1051 /* Too far in future, or reversed (interpretation is ambiguous) */
1052 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1053 return false;
1054
1055 /* Nasty start_seq wrap-around check (see comments above) */
1056 if (!before(start_seq, tp->snd_nxt))
1057 return false;
1058
1059 /* In outstanding window? ...This is valid exit for D-SACKs too.
1060 * start_seq == snd_una is non-sensical (see comments above)
1061 */
1062 if (after(start_seq, tp->snd_una))
1063 return true;
1064
1065 if (!is_dsack || !tp->undo_marker)
1066 return false;
1067
1068 /* ...Then it's D-SACK, and must reside below snd_una completely */
1069 if (after(end_seq, tp->snd_una))
1070 return false;
1071
1072 if (!before(start_seq, tp->undo_marker))
1073 return true;
1074
1075 /* Too old */
1076 if (!after(end_seq, tp->undo_marker))
1077 return false;
1078
1079 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1080 * start_seq < undo_marker and end_seq >= undo_marker.
1081 */
1082 return !before(start_seq, end_seq - tp->max_window);
1083 }
1084
1085 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1086 struct tcp_sack_block_wire *sp, int num_sacks,
1087 u32 prior_snd_una)
1088 {
1089 struct tcp_sock *tp = tcp_sk(sk);
1090 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1091 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1092 bool dup_sack = false;
1093
1094 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1095 dup_sack = true;
1096 tcp_dsack_seen(tp);
1097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1098 } else if (num_sacks > 1) {
1099 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1100 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1101
1102 if (!after(end_seq_0, end_seq_1) &&
1103 !before(start_seq_0, start_seq_1)) {
1104 dup_sack = true;
1105 tcp_dsack_seen(tp);
1106 NET_INC_STATS(sock_net(sk),
1107 LINUX_MIB_TCPDSACKOFORECV);
1108 }
1109 }
1110
1111 /* D-SACK for already forgotten data... Do dumb counting. */
1112 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1113 !after(end_seq_0, prior_snd_una) &&
1114 after(end_seq_0, tp->undo_marker))
1115 tp->undo_retrans--;
1116
1117 return dup_sack;
1118 }
1119
1120 struct tcp_sacktag_state {
1121 int reord;
1122 int fack_count;
1123 /* Timestamps for earliest and latest never-retransmitted segment
1124 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 * but congestion control should still get an accurate delay signal.
1126 */
1127 struct skb_mstamp first_sackt;
1128 struct skb_mstamp last_sackt;
1129 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1130 struct rate_sample *rate;
1131 int flag;
1132 };
1133
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135 * the incoming SACK may not exactly match but we can find smaller MSS
1136 * aligned portion of it that matches. Therefore we might need to fragment
1137 * which may fail and creates some hassle (caller must handle error case
1138 * returns).
1139 *
1140 * FIXME: this could be merged to shift decision code
1141 */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 u32 start_seq, u32 end_seq)
1144 {
1145 int err;
1146 bool in_sack;
1147 unsigned int pkt_len;
1148 unsigned int mss;
1149
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152
1153 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 mss = tcp_skb_mss(skb);
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157
1158 if (!in_sack) {
1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 if (pkt_len < mss)
1161 pkt_len = mss;
1162 } else {
1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 if (pkt_len < mss)
1165 return -EINVAL;
1166 }
1167
1168 /* Round if necessary so that SACKs cover only full MSSes
1169 * and/or the remaining small portion (if present)
1170 */
1171 if (pkt_len > mss) {
1172 unsigned int new_len = (pkt_len / mss) * mss;
1173 if (!in_sack && new_len < pkt_len) {
1174 new_len += mss;
1175 if (new_len >= skb->len)
1176 return 0;
1177 }
1178 pkt_len = new_len;
1179 }
1180 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1181 if (err < 0)
1182 return err;
1183 }
1184
1185 return in_sack;
1186 }
1187
1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189 static u8 tcp_sacktag_one(struct sock *sk,
1190 struct tcp_sacktag_state *state, u8 sacked,
1191 u32 start_seq, u32 end_seq,
1192 int dup_sack, int pcount,
1193 const struct skb_mstamp *xmit_time)
1194 {
1195 struct tcp_sock *tp = tcp_sk(sk);
1196 int fack_count = state->fack_count;
1197
1198 /* Account D-SACK for retransmitted packet. */
1199 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1200 if (tp->undo_marker && tp->undo_retrans > 0 &&
1201 after(end_seq, tp->undo_marker))
1202 tp->undo_retrans--;
1203 if (sacked & TCPCB_SACKED_ACKED)
1204 state->reord = min(fack_count, state->reord);
1205 }
1206
1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1208 if (!after(end_seq, tp->snd_una))
1209 return sacked;
1210
1211 if (!(sacked & TCPCB_SACKED_ACKED)) {
1212 tcp_rack_advance(tp, sacked, end_seq,
1213 xmit_time, &state->ack_time);
1214
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1233 state->reord);
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 if (state->first_sackt.v64 == 0)
1237 state->first_sackt = *xmit_time;
1238 state->last_sackt = *xmit_time;
1239 }
1240
1241 if (sacked & TCPCB_LOST) {
1242 sacked &= ~TCPCB_LOST;
1243 tp->lost_out -= pcount;
1244 }
1245 }
1246
1247 sacked |= TCPCB_SACKED_ACKED;
1248 state->flag |= FLAG_DATA_SACKED;
1249 tp->sacked_out += pcount;
1250 tp->delivered += pcount; /* Out-of-order packets delivered */
1251
1252 fack_count += pcount;
1253
1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 tp->lost_cnt_hint += pcount;
1258
1259 if (fack_count > tp->fackets_out)
1260 tp->fackets_out = fack_count;
1261 }
1262
1263 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1264 * frames and clear it. undo_retrans is decreased above, L|R frames
1265 * are accounted above as well.
1266 */
1267 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1268 sacked &= ~TCPCB_SACKED_RETRANS;
1269 tp->retrans_out -= pcount;
1270 }
1271
1272 return sacked;
1273 }
1274
1275 /* Shift newly-SACKed bytes from this skb to the immediately previous
1276 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1277 */
1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1279 struct tcp_sacktag_state *state,
1280 unsigned int pcount, int shifted, int mss,
1281 bool dup_sack)
1282 {
1283 struct tcp_sock *tp = tcp_sk(sk);
1284 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1285 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1286 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1287
1288 BUG_ON(!pcount);
1289
1290 /* Adjust counters and hints for the newly sacked sequence
1291 * range but discard the return value since prev is already
1292 * marked. We must tag the range first because the seq
1293 * advancement below implicitly advances
1294 * tcp_highest_sack_seq() when skb is highest_sack.
1295 */
1296 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1297 start_seq, end_seq, dup_sack, pcount,
1298 &skb->skb_mstamp);
1299 tcp_rate_skb_delivered(sk, skb, state->rate);
1300
1301 if (skb == tp->lost_skb_hint)
1302 tp->lost_cnt_hint += pcount;
1303
1304 TCP_SKB_CB(prev)->end_seq += shifted;
1305 TCP_SKB_CB(skb)->seq += shifted;
1306
1307 tcp_skb_pcount_add(prev, pcount);
1308 BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 tcp_skb_pcount_add(skb, -pcount);
1310
1311 /* When we're adding to gso_segs == 1, gso_size will be zero,
1312 * in theory this shouldn't be necessary but as long as DSACK
1313 * code can come after this skb later on it's better to keep
1314 * setting gso_size to something.
1315 */
1316 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1317 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1318
1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1320 if (tcp_skb_pcount(skb) <= 1)
1321 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1322
1323 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1324 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1325
1326 if (skb->len > 0) {
1327 BUG_ON(!tcp_skb_pcount(skb));
1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1329 return false;
1330 }
1331
1332 /* Whole SKB was eaten :-) */
1333
1334 if (skb == tp->retransmit_skb_hint)
1335 tp->retransmit_skb_hint = prev;
1336 if (skb == tp->lost_skb_hint) {
1337 tp->lost_skb_hint = prev;
1338 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1339 }
1340
1341 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1342 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1344 TCP_SKB_CB(prev)->end_seq++;
1345
1346 if (skb == tcp_highest_sack(sk))
1347 tcp_advance_highest_sack(sk, skb);
1348
1349 tcp_skb_collapse_tstamp(prev, skb);
1350 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1351 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1352
1353 tcp_unlink_write_queue(skb, sk);
1354 sk_wmem_free_skb(sk, skb);
1355
1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1357
1358 return true;
1359 }
1360
1361 /* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1365 {
1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367 }
1368
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1371 {
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373 }
1374
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1376 * skb.
1377 */
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 struct tcp_sacktag_state *state,
1380 u32 start_seq, u32 end_seq,
1381 bool dup_sack)
1382 {
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev;
1385 int mss;
1386 int pcount = 0;
1387 int len;
1388 int in_sack;
1389
1390 if (!sk_can_gso(sk))
1391 goto fallback;
1392
1393 /* Normally R but no L won't result in plain S */
1394 if (!dup_sack &&
1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1396 goto fallback;
1397 if (!skb_can_shift(skb))
1398 goto fallback;
1399 /* This frame is about to be dropped (was ACKed). */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401 goto fallback;
1402
1403 /* Can only happen with delayed DSACK + discard craziness */
1404 if (unlikely(skb == tcp_write_queue_head(sk)))
1405 goto fallback;
1406 prev = tcp_write_queue_prev(sk, skb);
1407
1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409 goto fallback;
1410
1411 if (!tcp_skb_can_collapse_to(prev))
1412 goto fallback;
1413
1414 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1415 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1416
1417 if (in_sack) {
1418 len = skb->len;
1419 pcount = tcp_skb_pcount(skb);
1420 mss = tcp_skb_seglen(skb);
1421
1422 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1423 * drop this restriction as unnecessary
1424 */
1425 if (mss != tcp_skb_seglen(prev))
1426 goto fallback;
1427 } else {
1428 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1429 goto noop;
1430 /* CHECKME: This is non-MSS split case only?, this will
1431 * cause skipped skbs due to advancing loop btw, original
1432 * has that feature too
1433 */
1434 if (tcp_skb_pcount(skb) <= 1)
1435 goto noop;
1436
1437 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1438 if (!in_sack) {
1439 /* TODO: head merge to next could be attempted here
1440 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1441 * though it might not be worth of the additional hassle
1442 *
1443 * ...we can probably just fallback to what was done
1444 * previously. We could try merging non-SACKed ones
1445 * as well but it probably isn't going to buy off
1446 * because later SACKs might again split them, and
1447 * it would make skb timestamp tracking considerably
1448 * harder problem.
1449 */
1450 goto fallback;
1451 }
1452
1453 len = end_seq - TCP_SKB_CB(skb)->seq;
1454 BUG_ON(len < 0);
1455 BUG_ON(len > skb->len);
1456
1457 /* MSS boundaries should be honoured or else pcount will
1458 * severely break even though it makes things bit trickier.
1459 * Optimize common case to avoid most of the divides
1460 */
1461 mss = tcp_skb_mss(skb);
1462
1463 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1464 * drop this restriction as unnecessary
1465 */
1466 if (mss != tcp_skb_seglen(prev))
1467 goto fallback;
1468
1469 if (len == mss) {
1470 pcount = 1;
1471 } else if (len < mss) {
1472 goto noop;
1473 } else {
1474 pcount = len / mss;
1475 len = pcount * mss;
1476 }
1477 }
1478
1479 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1480 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1481 goto fallback;
1482
1483 if (!skb_shift(prev, skb, len))
1484 goto fallback;
1485 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1486 goto out;
1487
1488 /* Hole filled allows collapsing with the next as well, this is very
1489 * useful when hole on every nth skb pattern happens
1490 */
1491 if (prev == tcp_write_queue_tail(sk))
1492 goto out;
1493 skb = tcp_write_queue_next(sk, prev);
1494
1495 if (!skb_can_shift(skb) ||
1496 (skb == tcp_send_head(sk)) ||
1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1498 (mss != tcp_skb_seglen(skb)))
1499 goto out;
1500
1501 len = skb->len;
1502 if (skb_shift(prev, skb, len)) {
1503 pcount += tcp_skb_pcount(skb);
1504 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1505 }
1506
1507 out:
1508 state->fack_count += pcount;
1509 return prev;
1510
1511 noop:
1512 return skb;
1513
1514 fallback:
1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 return NULL;
1517 }
1518
1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 struct tcp_sack_block *next_dup,
1521 struct tcp_sacktag_state *state,
1522 u32 start_seq, u32 end_seq,
1523 bool dup_sack_in)
1524 {
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *tmp;
1527
1528 tcp_for_write_queue_from(skb, sk) {
1529 int in_sack = 0;
1530 bool dup_sack = dup_sack_in;
1531
1532 if (skb == tcp_send_head(sk))
1533 break;
1534
1535 /* queue is in-order => we can short-circuit the walk early */
1536 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1537 break;
1538
1539 if (next_dup &&
1540 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1541 in_sack = tcp_match_skb_to_sack(sk, skb,
1542 next_dup->start_seq,
1543 next_dup->end_seq);
1544 if (in_sack > 0)
1545 dup_sack = true;
1546 }
1547
1548 /* skb reference here is a bit tricky to get right, since
1549 * shifting can eat and free both this skb and the next,
1550 * so not even _safe variant of the loop is enough.
1551 */
1552 if (in_sack <= 0) {
1553 tmp = tcp_shift_skb_data(sk, skb, state,
1554 start_seq, end_seq, dup_sack);
1555 if (tmp) {
1556 if (tmp != skb) {
1557 skb = tmp;
1558 continue;
1559 }
1560
1561 in_sack = 0;
1562 } else {
1563 in_sack = tcp_match_skb_to_sack(sk, skb,
1564 start_seq,
1565 end_seq);
1566 }
1567 }
1568
1569 if (unlikely(in_sack < 0))
1570 break;
1571
1572 if (in_sack) {
1573 TCP_SKB_CB(skb)->sacked =
1574 tcp_sacktag_one(sk,
1575 state,
1576 TCP_SKB_CB(skb)->sacked,
1577 TCP_SKB_CB(skb)->seq,
1578 TCP_SKB_CB(skb)->end_seq,
1579 dup_sack,
1580 tcp_skb_pcount(skb),
1581 &skb->skb_mstamp);
1582 tcp_rate_skb_delivered(sk, skb, state->rate);
1583
1584 if (!before(TCP_SKB_CB(skb)->seq,
1585 tcp_highest_sack_seq(tp)))
1586 tcp_advance_highest_sack(sk, skb);
1587 }
1588
1589 state->fack_count += tcp_skb_pcount(skb);
1590 }
1591 return skb;
1592 }
1593
1594 /* Avoid all extra work that is being done by sacktag while walking in
1595 * a normal way
1596 */
1597 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1598 struct tcp_sacktag_state *state,
1599 u32 skip_to_seq)
1600 {
1601 tcp_for_write_queue_from(skb, sk) {
1602 if (skb == tcp_send_head(sk))
1603 break;
1604
1605 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1606 break;
1607
1608 state->fack_count += tcp_skb_pcount(skb);
1609 }
1610 return skb;
1611 }
1612
1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1614 struct sock *sk,
1615 struct tcp_sack_block *next_dup,
1616 struct tcp_sacktag_state *state,
1617 u32 skip_to_seq)
1618 {
1619 if (!next_dup)
1620 return skb;
1621
1622 if (before(next_dup->start_seq, skip_to_seq)) {
1623 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1624 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1625 next_dup->start_seq, next_dup->end_seq,
1626 1);
1627 }
1628
1629 return skb;
1630 }
1631
1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1633 {
1634 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1635 }
1636
1637 static int
1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1639 u32 prior_snd_una, struct tcp_sacktag_state *state)
1640 {
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1643 TCP_SKB_CB(ack_skb)->sacked);
1644 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1645 struct tcp_sack_block sp[TCP_NUM_SACKS];
1646 struct tcp_sack_block *cache;
1647 struct sk_buff *skb;
1648 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1649 int used_sacks;
1650 bool found_dup_sack = false;
1651 int i, j;
1652 int first_sack_index;
1653
1654 state->flag = 0;
1655 state->reord = tp->packets_out;
1656
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1661 }
1662
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack) {
1666 state->flag |= FLAG_DSACKING_ACK;
1667 tp->delivered++; /* A spurious retransmission is delivered */
1668 }
1669
1670 /* Eliminate too old ACKs, but take into
1671 * account more or less fresh ones, they can
1672 * contain valid SACK info.
1673 */
1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1675 return 0;
1676
1677 if (!tp->packets_out)
1678 goto out;
1679
1680 used_sacks = 0;
1681 first_sack_index = 0;
1682 for (i = 0; i < num_sacks; i++) {
1683 bool dup_sack = !i && found_dup_sack;
1684
1685 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1686 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1687
1688 if (!tcp_is_sackblock_valid(tp, dup_sack,
1689 sp[used_sacks].start_seq,
1690 sp[used_sacks].end_seq)) {
1691 int mib_idx;
1692
1693 if (dup_sack) {
1694 if (!tp->undo_marker)
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1696 else
1697 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1698 } else {
1699 /* Don't count olds caused by ACK reordering */
1700 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1701 !after(sp[used_sacks].end_seq, tp->snd_una))
1702 continue;
1703 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1704 }
1705
1706 NET_INC_STATS(sock_net(sk), mib_idx);
1707 if (i == 0)
1708 first_sack_index = -1;
1709 continue;
1710 }
1711
1712 /* Ignore very old stuff early */
1713 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1714 continue;
1715
1716 used_sacks++;
1717 }
1718
1719 /* order SACK blocks to allow in order walk of the retrans queue */
1720 for (i = used_sacks - 1; i > 0; i--) {
1721 for (j = 0; j < i; j++) {
1722 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1723 swap(sp[j], sp[j + 1]);
1724
1725 /* Track where the first SACK block goes to */
1726 if (j == first_sack_index)
1727 first_sack_index = j + 1;
1728 }
1729 }
1730 }
1731
1732 skb = tcp_write_queue_head(sk);
1733 state->fack_count = 0;
1734 i = 0;
1735
1736 if (!tp->sacked_out) {
1737 /* It's already past, so skip checking against it */
1738 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1739 } else {
1740 cache = tp->recv_sack_cache;
1741 /* Skip empty blocks in at head of the cache */
1742 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1743 !cache->end_seq)
1744 cache++;
1745 }
1746
1747 while (i < used_sacks) {
1748 u32 start_seq = sp[i].start_seq;
1749 u32 end_seq = sp[i].end_seq;
1750 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1751 struct tcp_sack_block *next_dup = NULL;
1752
1753 if (found_dup_sack && ((i + 1) == first_sack_index))
1754 next_dup = &sp[i + 1];
1755
1756 /* Skip too early cached blocks */
1757 while (tcp_sack_cache_ok(tp, cache) &&
1758 !before(start_seq, cache->end_seq))
1759 cache++;
1760
1761 /* Can skip some work by looking recv_sack_cache? */
1762 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1763 after(end_seq, cache->start_seq)) {
1764
1765 /* Head todo? */
1766 if (before(start_seq, cache->start_seq)) {
1767 skb = tcp_sacktag_skip(skb, sk, state,
1768 start_seq);
1769 skb = tcp_sacktag_walk(skb, sk, next_dup,
1770 state,
1771 start_seq,
1772 cache->start_seq,
1773 dup_sack);
1774 }
1775
1776 /* Rest of the block already fully processed? */
1777 if (!after(end_seq, cache->end_seq))
1778 goto advance_sp;
1779
1780 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1781 state,
1782 cache->end_seq);
1783
1784 /* ...tail remains todo... */
1785 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1786 /* ...but better entrypoint exists! */
1787 skb = tcp_highest_sack(sk);
1788 if (!skb)
1789 break;
1790 state->fack_count = tp->fackets_out;
1791 cache++;
1792 goto walk;
1793 }
1794
1795 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1796 /* Check overlap against next cached too (past this one already) */
1797 cache++;
1798 continue;
1799 }
1800
1801 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1802 skb = tcp_highest_sack(sk);
1803 if (!skb)
1804 break;
1805 state->fack_count = tp->fackets_out;
1806 }
1807 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1808
1809 walk:
1810 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1811 start_seq, end_seq, dup_sack);
1812
1813 advance_sp:
1814 i++;
1815 }
1816
1817 /* Clear the head of the cache sack blocks so we can skip it next time */
1818 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1819 tp->recv_sack_cache[i].start_seq = 0;
1820 tp->recv_sack_cache[i].end_seq = 0;
1821 }
1822 for (j = 0; j < used_sacks; j++)
1823 tp->recv_sack_cache[i++] = sp[j];
1824
1825 if ((state->reord < tp->fackets_out) &&
1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1828
1829 tcp_verify_left_out(tp);
1830 out:
1831
1832 #if FASTRETRANS_DEBUG > 0
1833 WARN_ON((int)tp->sacked_out < 0);
1834 WARN_ON((int)tp->lost_out < 0);
1835 WARN_ON((int)tp->retrans_out < 0);
1836 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1837 #endif
1838 return state->flag;
1839 }
1840
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843 */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 u32 holes;
1847
1848 holes = max(tp->lost_out, 1U);
1849 holes = min(holes, tp->packets_out);
1850
1851 if ((tp->sacked_out + holes) > tp->packets_out) {
1852 tp->sacked_out = tp->packets_out - holes;
1853 return true;
1854 }
1855 return false;
1856 }
1857
1858 /* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1861 */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 if (tcp_limit_reno_sacked(tp))
1866 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867 }
1868
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874 u32 prior_sacked = tp->sacked_out;
1875
1876 tp->sacked_out++;
1877 tcp_check_reno_reordering(sk, 0);
1878 if (tp->sacked_out > prior_sacked)
1879 tp->delivered++; /* Some out-of-order packet is delivered */
1880 tcp_verify_left_out(tp);
1881 }
1882
1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1884
1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1886 {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888
1889 if (acked > 0) {
1890 /* One ACK acked hole. The rest eat duplicate ACKs. */
1891 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1892 if (acked - 1 >= tp->sacked_out)
1893 tp->sacked_out = 0;
1894 else
1895 tp->sacked_out -= acked - 1;
1896 }
1897 tcp_check_reno_reordering(sk, acked);
1898 tcp_verify_left_out(tp);
1899 }
1900
1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1902 {
1903 tp->sacked_out = 0;
1904 }
1905
1906 void tcp_clear_retrans(struct tcp_sock *tp)
1907 {
1908 tp->retrans_out = 0;
1909 tp->lost_out = 0;
1910 tp->undo_marker = 0;
1911 tp->undo_retrans = -1;
1912 tp->fackets_out = 0;
1913 tp->sacked_out = 0;
1914 }
1915
1916 static inline void tcp_init_undo(struct tcp_sock *tp)
1917 {
1918 tp->undo_marker = tp->snd_una;
1919 /* Retransmission still in flight may cause DSACKs later. */
1920 tp->undo_retrans = tp->retrans_out ? : -1;
1921 }
1922
1923 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1924 * and reset tags completely, otherwise preserve SACKs. If receiver
1925 * dropped its ofo queue, we will know this due to reneging detection.
1926 */
1927 void tcp_enter_loss(struct sock *sk)
1928 {
1929 const struct inet_connection_sock *icsk = inet_csk(sk);
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct net *net = sock_net(sk);
1932 struct sk_buff *skb;
1933 bool is_reneg; /* is receiver reneging on SACKs? */
1934 bool mark_lost;
1935
1936 /* Reduce ssthresh if it has not yet been made inside this window. */
1937 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1938 !after(tp->high_seq, tp->snd_una) ||
1939 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1940 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1941 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1942 tcp_ca_event(sk, CA_EVENT_LOSS);
1943 tcp_init_undo(tp);
1944 }
1945 tp->snd_cwnd = 1;
1946 tp->snd_cwnd_cnt = 0;
1947 tp->snd_cwnd_stamp = tcp_time_stamp;
1948
1949 tp->retrans_out = 0;
1950 tp->lost_out = 0;
1951
1952 if (tcp_is_reno(tp))
1953 tcp_reset_reno_sack(tp);
1954
1955 skb = tcp_write_queue_head(sk);
1956 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1957 if (is_reneg) {
1958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1959 tp->sacked_out = 0;
1960 tp->fackets_out = 0;
1961 }
1962 tcp_clear_all_retrans_hints(tp);
1963
1964 tcp_for_write_queue(skb, sk) {
1965 if (skb == tcp_send_head(sk))
1966 break;
1967
1968 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1969 is_reneg);
1970 if (mark_lost)
1971 tcp_sum_lost(tp, skb);
1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973 if (mark_lost) {
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 tp->lost_out += tcp_skb_pcount(skb);
1977 }
1978 }
1979 tcp_verify_left_out(tp);
1980
1981 /* Timeout in disordered state after receiving substantial DUPACKs
1982 * suggests that the degree of reordering is over-estimated.
1983 */
1984 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1985 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1986 tp->reordering = min_t(unsigned int, tp->reordering,
1987 net->ipv4.sysctl_tcp_reordering);
1988 tcp_set_ca_state(sk, TCP_CA_Loss);
1989 tp->high_seq = tp->snd_nxt;
1990 tcp_ecn_queue_cwr(tp);
1991
1992 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1993 * if a previous recovery is underway, otherwise it may incorrectly
1994 * call a timeout spurious if some previously retransmitted packets
1995 * are s/acked (sec 3.2). We do not apply that retriction since
1996 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
1997 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
1998 * on PTMU discovery to avoid sending new data.
1999 */
2000 tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size;
2001 }
2002
2003 /* If ACK arrived pointing to a remembered SACK, it means that our
2004 * remembered SACKs do not reflect real state of receiver i.e.
2005 * receiver _host_ is heavily congested (or buggy).
2006 *
2007 * To avoid big spurious retransmission bursts due to transient SACK
2008 * scoreboard oddities that look like reneging, we give the receiver a
2009 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2010 * restore sanity to the SACK scoreboard. If the apparent reneging
2011 * persists until this RTO then we'll clear the SACK scoreboard.
2012 */
2013 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2014 {
2015 if (flag & FLAG_SACK_RENEGING) {
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2018 msecs_to_jiffies(10));
2019
2020 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2021 delay, TCP_RTO_MAX);
2022 return true;
2023 }
2024 return false;
2025 }
2026
2027 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2028 {
2029 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2030 }
2031
2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2033 * counter when SACK is enabled (without SACK, sacked_out is used for
2034 * that purpose).
2035 *
2036 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2037 * segments up to the highest received SACK block so far and holes in
2038 * between them.
2039 *
2040 * With reordering, holes may still be in flight, so RFC3517 recovery
2041 * uses pure sacked_out (total number of SACKed segments) even though
2042 * it violates the RFC that uses duplicate ACKs, often these are equal
2043 * but when e.g. out-of-window ACKs or packet duplication occurs,
2044 * they differ. Since neither occurs due to loss, TCP should really
2045 * ignore them.
2046 */
2047 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2048 {
2049 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2050 }
2051
2052 /* Linux NewReno/SACK/FACK/ECN state machine.
2053 * --------------------------------------
2054 *
2055 * "Open" Normal state, no dubious events, fast path.
2056 * "Disorder" In all the respects it is "Open",
2057 * but requires a bit more attention. It is entered when
2058 * we see some SACKs or dupacks. It is split of "Open"
2059 * mainly to move some processing from fast path to slow one.
2060 * "CWR" CWND was reduced due to some Congestion Notification event.
2061 * It can be ECN, ICMP source quench, local device congestion.
2062 * "Recovery" CWND was reduced, we are fast-retransmitting.
2063 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2064 *
2065 * tcp_fastretrans_alert() is entered:
2066 * - each incoming ACK, if state is not "Open"
2067 * - when arrived ACK is unusual, namely:
2068 * * SACK
2069 * * Duplicate ACK.
2070 * * ECN ECE.
2071 *
2072 * Counting packets in flight is pretty simple.
2073 *
2074 * in_flight = packets_out - left_out + retrans_out
2075 *
2076 * packets_out is SND.NXT-SND.UNA counted in packets.
2077 *
2078 * retrans_out is number of retransmitted segments.
2079 *
2080 * left_out is number of segments left network, but not ACKed yet.
2081 *
2082 * left_out = sacked_out + lost_out
2083 *
2084 * sacked_out: Packets, which arrived to receiver out of order
2085 * and hence not ACKed. With SACKs this number is simply
2086 * amount of SACKed data. Even without SACKs
2087 * it is easy to give pretty reliable estimate of this number,
2088 * counting duplicate ACKs.
2089 *
2090 * lost_out: Packets lost by network. TCP has no explicit
2091 * "loss notification" feedback from network (for now).
2092 * It means that this number can be only _guessed_.
2093 * Actually, it is the heuristics to predict lossage that
2094 * distinguishes different algorithms.
2095 *
2096 * F.e. after RTO, when all the queue is considered as lost,
2097 * lost_out = packets_out and in_flight = retrans_out.
2098 *
2099 * Essentially, we have now a few algorithms detecting
2100 * lost packets.
2101 *
2102 * If the receiver supports SACK:
2103 *
2104 * RFC6675/3517: It is the conventional algorithm. A packet is
2105 * considered lost if the number of higher sequence packets
2106 * SACKed is greater than or equal the DUPACK thoreshold
2107 * (reordering). This is implemented in tcp_mark_head_lost and
2108 * tcp_update_scoreboard.
2109 *
2110 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2111 * (2017-) that checks timing instead of counting DUPACKs.
2112 * Essentially a packet is considered lost if it's not S/ACKed
2113 * after RTT + reordering_window, where both metrics are
2114 * dynamically measured and adjusted. This is implemented in
2115 * tcp_rack_mark_lost.
2116 *
2117 * FACK (Disabled by default. Subsumbed by RACK):
2118 * It is the simplest heuristics. As soon as we decided
2119 * that something is lost, we decide that _all_ not SACKed
2120 * packets until the most forward SACK are lost. I.e.
2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122 * It is absolutely correct estimate, if network does not reorder
2123 * packets. And it loses any connection to reality when reordering
2124 * takes place. We use FACK by default until reordering
2125 * is suspected on the path to this destination.
2126 *
2127 * If the receiver does not support SACK:
2128 *
2129 * NewReno (RFC6582): in Recovery we assume that one segment
2130 * is lost (classic Reno). While we are in Recovery and
2131 * a partial ACK arrives, we assume that one more packet
2132 * is lost (NewReno). This heuristics are the same in NewReno
2133 * and SACK.
2134 *
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2140 *
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2143 *
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2151 */
2152
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2155 *
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2158 */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 struct tcp_sock *tp = tcp_sk(sk);
2162
2163 /* Trick#1: The loss is proven. */
2164 if (tp->lost_out)
2165 return true;
2166
2167 /* Not-A-Trick#2 : Classic rule... */
2168 if (tcp_dupack_heuristics(tp) > tp->reordering)
2169 return true;
2170
2171 return false;
2172 }
2173
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2179 */
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2181 {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *skb;
2184 int cnt, oldcnt, lost;
2185 unsigned int mss;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2188
2189 WARN_ON(packets > tp->packets_out);
2190 if (tp->lost_skb_hint) {
2191 skb = tp->lost_skb_hint;
2192 cnt = tp->lost_cnt_hint;
2193 /* Head already handled? */
2194 if (mark_head && skb != tcp_write_queue_head(sk))
2195 return;
2196 } else {
2197 skb = tcp_write_queue_head(sk);
2198 cnt = 0;
2199 }
2200
2201 tcp_for_write_queue_from(skb, sk) {
2202 if (skb == tcp_send_head(sk))
2203 break;
2204 /* TODO: do this better */
2205 /* this is not the most efficient way to do this... */
2206 tp->lost_skb_hint = skb;
2207 tp->lost_cnt_hint = cnt;
2208
2209 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2210 break;
2211
2212 oldcnt = cnt;
2213 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2215 cnt += tcp_skb_pcount(skb);
2216
2217 if (cnt > packets) {
2218 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2220 (oldcnt >= packets))
2221 break;
2222
2223 mss = tcp_skb_mss(skb);
2224 /* If needed, chop off the prefix to mark as lost. */
2225 lost = (packets - oldcnt) * mss;
2226 if (lost < skb->len &&
2227 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2228 break;
2229 cnt = packets;
2230 }
2231
2232 tcp_skb_mark_lost(tp, skb);
2233
2234 if (mark_head)
2235 break;
2236 }
2237 tcp_verify_left_out(tp);
2238 }
2239
2240 /* Account newly detected lost packet(s) */
2241
2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 {
2244 struct tcp_sock *tp = tcp_sk(sk);
2245
2246 if (tcp_is_reno(tp)) {
2247 tcp_mark_head_lost(sk, 1, 1);
2248 } else if (tcp_is_fack(tp)) {
2249 int lost = tp->fackets_out - tp->reordering;
2250 if (lost <= 0)
2251 lost = 1;
2252 tcp_mark_head_lost(sk, lost, 0);
2253 } else {
2254 int sacked_upto = tp->sacked_out - tp->reordering;
2255 if (sacked_upto >= 0)
2256 tcp_mark_head_lost(sk, sacked_upto, 0);
2257 else if (fast_rexmit)
2258 tcp_mark_head_lost(sk, 1, 1);
2259 }
2260 }
2261
2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2263 {
2264 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2265 before(tp->rx_opt.rcv_tsecr, when);
2266 }
2267
2268 /* skb is spurious retransmitted if the returned timestamp echo
2269 * reply is prior to the skb transmission time
2270 */
2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2272 const struct sk_buff *skb)
2273 {
2274 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2275 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2276 }
2277
2278 /* Nothing was retransmitted or returned timestamp is less
2279 * than timestamp of the first retransmission.
2280 */
2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2282 {
2283 return !tp->retrans_stamp ||
2284 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2285 }
2286
2287 /* Undo procedures. */
2288
2289 /* We can clear retrans_stamp when there are no retransmissions in the
2290 * window. It would seem that it is trivially available for us in
2291 * tp->retrans_out, however, that kind of assumptions doesn't consider
2292 * what will happen if errors occur when sending retransmission for the
2293 * second time. ...It could the that such segment has only
2294 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2295 * the head skb is enough except for some reneging corner cases that
2296 * are not worth the effort.
2297 *
2298 * Main reason for all this complexity is the fact that connection dying
2299 * time now depends on the validity of the retrans_stamp, in particular,
2300 * that successive retransmissions of a segment must not advance
2301 * retrans_stamp under any conditions.
2302 */
2303 static bool tcp_any_retrans_done(const struct sock *sk)
2304 {
2305 const struct tcp_sock *tp = tcp_sk(sk);
2306 struct sk_buff *skb;
2307
2308 if (tp->retrans_out)
2309 return true;
2310
2311 skb = tcp_write_queue_head(sk);
2312 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2313 return true;
2314
2315 return false;
2316 }
2317
2318 #if FASTRETRANS_DEBUG > 1
2319 static void DBGUNDO(struct sock *sk, const char *msg)
2320 {
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 struct inet_sock *inet = inet_sk(sk);
2323
2324 if (sk->sk_family == AF_INET) {
2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2326 msg,
2327 &inet->inet_daddr, ntohs(inet->inet_dport),
2328 tp->snd_cwnd, tcp_left_out(tp),
2329 tp->snd_ssthresh, tp->prior_ssthresh,
2330 tp->packets_out);
2331 }
2332 #if IS_ENABLED(CONFIG_IPV6)
2333 else if (sk->sk_family == AF_INET6) {
2334 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2335 msg,
2336 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2337 tp->snd_cwnd, tcp_left_out(tp),
2338 tp->snd_ssthresh, tp->prior_ssthresh,
2339 tp->packets_out);
2340 }
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346
2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 struct tcp_sock *tp = tcp_sk(sk);
2350
2351 if (unmark_loss) {
2352 struct sk_buff *skb;
2353
2354 tcp_for_write_queue(skb, sk) {
2355 if (skb == tcp_send_head(sk))
2356 break;
2357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2358 }
2359 tp->lost_out = 0;
2360 tcp_clear_all_retrans_hints(tp);
2361 }
2362
2363 if (tp->prior_ssthresh) {
2364 const struct inet_connection_sock *icsk = inet_csk(sk);
2365
2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367
2368 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2369 tp->snd_ssthresh = tp->prior_ssthresh;
2370 tcp_ecn_withdraw_cwr(tp);
2371 }
2372 }
2373 tp->snd_cwnd_stamp = tcp_time_stamp;
2374 tp->undo_marker = 0;
2375 }
2376
2377 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2378 {
2379 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2380 }
2381
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock *sk)
2384 {
2385 struct tcp_sock *tp = tcp_sk(sk);
2386
2387 if (tcp_may_undo(tp)) {
2388 int mib_idx;
2389
2390 /* Happy end! We did not retransmit anything
2391 * or our original transmission succeeded.
2392 */
2393 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2394 tcp_undo_cwnd_reduction(sk, false);
2395 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2396 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2397 else
2398 mib_idx = LINUX_MIB_TCPFULLUNDO;
2399
2400 NET_INC_STATS(sock_net(sk), mib_idx);
2401 }
2402 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2403 /* Hold old state until something *above* high_seq
2404 * is ACKed. For Reno it is MUST to prevent false
2405 * fast retransmits (RFC2582). SACK TCP is safe. */
2406 if (!tcp_any_retrans_done(sk))
2407 tp->retrans_stamp = 0;
2408 return true;
2409 }
2410 tcp_set_ca_state(sk, TCP_CA_Open);
2411 return false;
2412 }
2413
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2416 {
2417 struct tcp_sock *tp = tcp_sk(sk);
2418
2419 if (tp->undo_marker && !tp->undo_retrans) {
2420 DBGUNDO(sk, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 return true;
2424 }
2425 return false;
2426 }
2427
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430 {
2431 struct tcp_sock *tp = tcp_sk(sk);
2432
2433 if (frto_undo || tcp_may_undo(tp)) {
2434 tcp_undo_cwnd_reduction(sk, true);
2435
2436 DBGUNDO(sk, "partial loss");
2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 if (frto_undo)
2439 NET_INC_STATS(sock_net(sk),
2440 LINUX_MIB_TCPSPURIOUSRTOS);
2441 inet_csk(sk)->icsk_retransmits = 0;
2442 if (frto_undo || tcp_is_sack(tp))
2443 tcp_set_ca_state(sk, TCP_CA_Open);
2444 return true;
2445 }
2446 return false;
2447 }
2448
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2451 * delivered:
2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 * cwnd reductions across a full RTT.
2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 * But when the retransmits are acked without further losses, PRR
2456 * slow starts cwnd up to ssthresh to speed up the recovery.
2457 */
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2459 {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461
2462 tp->high_seq = tp->snd_nxt;
2463 tp->tlp_high_seq = 0;
2464 tp->snd_cwnd_cnt = 0;
2465 tp->prior_cwnd = tp->snd_cwnd;
2466 tp->prr_delivered = 0;
2467 tp->prr_out = 0;
2468 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 tcp_ecn_queue_cwr(tp);
2470 }
2471
2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2473 {
2474 struct tcp_sock *tp = tcp_sk(sk);
2475 int sndcnt = 0;
2476 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2477
2478 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2479 return;
2480
2481 tp->prr_delivered += newly_acked_sacked;
2482 if (delta < 0) {
2483 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2484 tp->prior_cwnd - 1;
2485 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2487 !(flag & FLAG_LOST_RETRANS)) {
2488 sndcnt = min_t(int, delta,
2489 max_t(int, tp->prr_delivered - tp->prr_out,
2490 newly_acked_sacked) + 1);
2491 } else {
2492 sndcnt = min(delta, newly_acked_sacked);
2493 }
2494 /* Force a fast retransmit upon entering fast recovery */
2495 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2496 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2497 }
2498
2499 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2500 {
2501 struct tcp_sock *tp = tcp_sk(sk);
2502
2503 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2504 return;
2505
2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509 tp->snd_cwnd = tp->snd_ssthresh;
2510 tp->snd_cwnd_stamp = tcp_time_stamp;
2511 }
2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513 }
2514
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 tp->prior_ssthresh = 0;
2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 tp->undo_marker = 0;
2523 tcp_init_cwnd_reduction(sk);
2524 tcp_set_ca_state(sk, TCP_CA_CWR);
2525 }
2526 }
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2528
2529 static void tcp_try_keep_open(struct sock *sk)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 int state = TCP_CA_Open;
2533
2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 state = TCP_CA_Disorder;
2536
2537 if (inet_csk(sk)->icsk_ca_state != state) {
2538 tcp_set_ca_state(sk, state);
2539 tp->high_seq = tp->snd_nxt;
2540 }
2541 }
2542
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2544 {
2545 struct tcp_sock *tp = tcp_sk(sk);
2546
2547 tcp_verify_left_out(tp);
2548
2549 if (!tcp_any_retrans_done(sk))
2550 tp->retrans_stamp = 0;
2551
2552 if (flag & FLAG_ECE)
2553 tcp_enter_cwr(sk);
2554
2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 tcp_try_keep_open(sk);
2557 }
2558 }
2559
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2561 {
2562 struct inet_connection_sock *icsk = inet_csk(sk);
2563
2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 icsk->icsk_mtup.probe_size = 0;
2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567 }
2568
2569 static void tcp_mtup_probe_success(struct sock *sk)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572 struct inet_connection_sock *icsk = inet_csk(sk);
2573
2574 /* FIXME: breaks with very large cwnd */
2575 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 tp->snd_cwnd = tp->snd_cwnd *
2577 tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 icsk->icsk_mtup.probe_size;
2579 tp->snd_cwnd_cnt = 0;
2580 tp->snd_cwnd_stamp = tcp_time_stamp;
2581 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582
2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 icsk->icsk_mtup.probe_size = 0;
2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587 }
2588
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2592 */
2593 void tcp_simple_retransmit(struct sock *sk)
2594 {
2595 const struct inet_connection_sock *icsk = inet_csk(sk);
2596 struct tcp_sock *tp = tcp_sk(sk);
2597 struct sk_buff *skb;
2598 unsigned int mss = tcp_current_mss(sk);
2599 u32 prior_lost = tp->lost_out;
2600
2601 tcp_for_write_queue(skb, sk) {
2602 if (skb == tcp_send_head(sk))
2603 break;
2604 if (tcp_skb_seglen(skb) > mss &&
2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608 tp->retrans_out -= tcp_skb_pcount(skb);
2609 }
2610 tcp_skb_mark_lost_uncond_verify(tp, skb);
2611 }
2612 }
2613
2614 tcp_clear_retrans_hints_partial(tp);
2615
2616 if (prior_lost == tp->lost_out)
2617 return;
2618
2619 if (tcp_is_reno(tp))
2620 tcp_limit_reno_sacked(tp);
2621
2622 tcp_verify_left_out(tp);
2623
2624 /* Don't muck with the congestion window here.
2625 * Reason is that we do not increase amount of _data_
2626 * in network, but units changed and effective
2627 * cwnd/ssthresh really reduced now.
2628 */
2629 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630 tp->high_seq = tp->snd_nxt;
2631 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632 tp->prior_ssthresh = 0;
2633 tp->undo_marker = 0;
2634 tcp_set_ca_state(sk, TCP_CA_Loss);
2635 }
2636 tcp_xmit_retransmit_queue(sk);
2637 }
2638 EXPORT_SYMBOL(tcp_simple_retransmit);
2639
2640 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2641 {
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 int mib_idx;
2644
2645 if (tcp_is_reno(tp))
2646 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2647 else
2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2649
2650 NET_INC_STATS(sock_net(sk), mib_idx);
2651
2652 tp->prior_ssthresh = 0;
2653 tcp_init_undo(tp);
2654
2655 if (!tcp_in_cwnd_reduction(sk)) {
2656 if (!ece_ack)
2657 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658 tcp_init_cwnd_reduction(sk);
2659 }
2660 tcp_set_ca_state(sk, TCP_CA_Recovery);
2661 }
2662
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2665 */
2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2667 int *rexmit)
2668 {
2669 struct tcp_sock *tp = tcp_sk(sk);
2670 bool recovered = !before(tp->snd_una, tp->high_seq);
2671
2672 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 tcp_try_undo_loss(sk, false))
2674 return;
2675
2676 /* The ACK (s)acks some never-retransmitted data meaning not all
2677 * the data packets before the timeout were lost. Therefore we
2678 * undo the congestion window and state. This is essentially
2679 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2680 * a retransmitted skb is permantly marked, we can apply such an
2681 * operation even if F-RTO was not used.
2682 */
2683 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 tcp_try_undo_loss(sk, tp->undo_marker))
2685 return;
2686
2687 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2688 if (after(tp->snd_nxt, tp->high_seq)) {
2689 if (flag & FLAG_DATA_SACKED || is_dupack)
2690 tp->frto = 0; /* Step 3.a. loss was real */
2691 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2692 tp->high_seq = tp->snd_nxt;
2693 /* Step 2.b. Try send new data (but deferred until cwnd
2694 * is updated in tcp_ack()). Otherwise fall back to
2695 * the conventional recovery.
2696 */
2697 if (tcp_send_head(sk) &&
2698 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2699 *rexmit = REXMIT_NEW;
2700 return;
2701 }
2702 tp->frto = 0;
2703 }
2704 }
2705
2706 if (recovered) {
2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 tcp_try_undo_recovery(sk);
2709 return;
2710 }
2711 if (tcp_is_reno(tp)) {
2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 * delivered. Lower inflight to clock out (re)tranmissions.
2714 */
2715 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2716 tcp_add_reno_sack(sk);
2717 else if (flag & FLAG_SND_UNA_ADVANCED)
2718 tcp_reset_reno_sack(tp);
2719 }
2720 *rexmit = REXMIT_LOST;
2721 }
2722
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2725 {
2726 struct tcp_sock *tp = tcp_sk(sk);
2727
2728 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit.
2731 */
2732 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2733
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2738 */
2739 if (tp->retrans_out)
2740 return true;
2741
2742 if (!tcp_any_retrans_done(sk))
2743 tp->retrans_stamp = 0;
2744
2745 DBGUNDO(sk, "partial recovery");
2746 tcp_undo_cwnd_reduction(sk, true);
2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 tcp_try_keep_open(sk);
2749 return true;
2750 }
2751 return false;
2752 }
2753
2754 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2755 const struct skb_mstamp *ack_time)
2756 {
2757 struct tcp_sock *tp = tcp_sk(sk);
2758
2759 /* Use RACK to detect loss */
2760 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2761 u32 prior_retrans = tp->retrans_out;
2762
2763 tcp_rack_mark_lost(sk, ack_time);
2764 if (prior_retrans > tp->retrans_out)
2765 *ack_flag |= FLAG_LOST_RETRANS;
2766 }
2767 }
2768
2769 /* Process an event, which can update packets-in-flight not trivially.
2770 * Main goal of this function is to calculate new estimate for left_out,
2771 * taking into account both packets sitting in receiver's buffer and
2772 * packets lost by network.
2773 *
2774 * Besides that it updates the congestion state when packet loss or ECN
2775 * is detected. But it does not reduce the cwnd, it is done by the
2776 * congestion control later.
2777 *
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2780 */
2781 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782 bool is_dupack, int *ack_flag, int *rexmit,
2783 const struct skb_mstamp *ack_time)
2784 {
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 int fast_rexmit = 0, flag = *ack_flag;
2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 (tcp_fackets_out(tp) > tp->reordering));
2790
2791 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2792 tp->sacked_out = 0;
2793 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794 tp->fackets_out = 0;
2795
2796 /* Now state machine starts.
2797 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798 if (flag & FLAG_ECE)
2799 tp->prior_ssthresh = 0;
2800
2801 /* B. In all the states check for reneging SACKs. */
2802 if (tcp_check_sack_reneging(sk, flag))
2803 return;
2804
2805 /* C. Check consistency of the current state. */
2806 tcp_verify_left_out(tp);
2807
2808 /* D. Check state exit conditions. State can be terminated
2809 * when high_seq is ACKed. */
2810 if (icsk->icsk_ca_state == TCP_CA_Open) {
2811 WARN_ON(tp->retrans_out != 0);
2812 tp->retrans_stamp = 0;
2813 } else if (!before(tp->snd_una, tp->high_seq)) {
2814 switch (icsk->icsk_ca_state) {
2815 case TCP_CA_CWR:
2816 /* CWR is to be held something *above* high_seq
2817 * is ACKed for CWR bit to reach receiver. */
2818 if (tp->snd_una != tp->high_seq) {
2819 tcp_end_cwnd_reduction(sk);
2820 tcp_set_ca_state(sk, TCP_CA_Open);
2821 }
2822 break;
2823
2824 case TCP_CA_Recovery:
2825 if (tcp_is_reno(tp))
2826 tcp_reset_reno_sack(tp);
2827 if (tcp_try_undo_recovery(sk))
2828 return;
2829 tcp_end_cwnd_reduction(sk);
2830 break;
2831 }
2832 }
2833
2834 /* E. Process state. */
2835 switch (icsk->icsk_ca_state) {
2836 case TCP_CA_Recovery:
2837 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838 if (tcp_is_reno(tp) && is_dupack)
2839 tcp_add_reno_sack(sk);
2840 } else {
2841 if (tcp_try_undo_partial(sk, acked))
2842 return;
2843 /* Partial ACK arrived. Force fast retransmit. */
2844 do_lost = tcp_is_reno(tp) ||
2845 tcp_fackets_out(tp) > tp->reordering;
2846 }
2847 if (tcp_try_undo_dsack(sk)) {
2848 tcp_try_keep_open(sk);
2849 return;
2850 }
2851 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2852 break;
2853 case TCP_CA_Loss:
2854 tcp_process_loss(sk, flag, is_dupack, rexmit);
2855 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2856 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2857 (*ack_flag & FLAG_LOST_RETRANS)))
2858 return;
2859 /* Change state if cwnd is undone or retransmits are lost */
2860 default:
2861 if (tcp_is_reno(tp)) {
2862 if (flag & FLAG_SND_UNA_ADVANCED)
2863 tcp_reset_reno_sack(tp);
2864 if (is_dupack)
2865 tcp_add_reno_sack(sk);
2866 }
2867
2868 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2869 tcp_try_undo_dsack(sk);
2870
2871 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2872 if (!tcp_time_to_recover(sk, flag)) {
2873 tcp_try_to_open(sk, flag);
2874 return;
2875 }
2876
2877 /* MTU probe failure: don't reduce cwnd */
2878 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879 icsk->icsk_mtup.probe_size &&
2880 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881 tcp_mtup_probe_failed(sk);
2882 /* Restores the reduction we did in tcp_mtup_probe() */
2883 tp->snd_cwnd++;
2884 tcp_simple_retransmit(sk);
2885 return;
2886 }
2887
2888 /* Otherwise enter Recovery state */
2889 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2890 fast_rexmit = 1;
2891 }
2892
2893 if (do_lost)
2894 tcp_update_scoreboard(sk, fast_rexmit);
2895 *rexmit = REXMIT_LOST;
2896 }
2897
2898 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2899 {
2900 struct tcp_sock *tp = tcp_sk(sk);
2901 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2902
2903 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2904 rtt_us ? : jiffies_to_usecs(1));
2905 }
2906
2907 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2908 long seq_rtt_us, long sack_rtt_us,
2909 long ca_rtt_us)
2910 {
2911 const struct tcp_sock *tp = tcp_sk(sk);
2912
2913 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2914 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2915 * Karn's algorithm forbids taking RTT if some retransmitted data
2916 * is acked (RFC6298).
2917 */
2918 if (seq_rtt_us < 0)
2919 seq_rtt_us = sack_rtt_us;
2920
2921 /* RTTM Rule: A TSecr value received in a segment is used to
2922 * update the averaged RTT measurement only if the segment
2923 * acknowledges some new data, i.e., only if it advances the
2924 * left edge of the send window.
2925 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2926 */
2927 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2928 flag & FLAG_ACKED)
2929 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2930 tp->rx_opt.rcv_tsecr);
2931 if (seq_rtt_us < 0)
2932 return false;
2933
2934 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2935 * always taken together with ACK, SACK, or TS-opts. Any negative
2936 * values will be skipped with the seq_rtt_us < 0 check above.
2937 */
2938 tcp_update_rtt_min(sk, ca_rtt_us);
2939 tcp_rtt_estimator(sk, seq_rtt_us);
2940 tcp_set_rto(sk);
2941
2942 /* RFC6298: only reset backoff on valid RTT measurement. */
2943 inet_csk(sk)->icsk_backoff = 0;
2944 return true;
2945 }
2946
2947 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2948 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2949 {
2950 long rtt_us = -1L;
2951
2952 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2953 struct skb_mstamp now;
2954
2955 skb_mstamp_get(&now);
2956 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2957 }
2958
2959 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2960 }
2961
2962
2963 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2964 {
2965 const struct inet_connection_sock *icsk = inet_csk(sk);
2966
2967 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2968 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2969 }
2970
2971 /* Restart timer after forward progress on connection.
2972 * RFC2988 recommends to restart timer to now+rto.
2973 */
2974 void tcp_rearm_rto(struct sock *sk)
2975 {
2976 const struct inet_connection_sock *icsk = inet_csk(sk);
2977 struct tcp_sock *tp = tcp_sk(sk);
2978
2979 /* If the retrans timer is currently being used by Fast Open
2980 * for SYN-ACK retrans purpose, stay put.
2981 */
2982 if (tp->fastopen_rsk)
2983 return;
2984
2985 if (!tp->packets_out) {
2986 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2987 } else {
2988 u32 rto = inet_csk(sk)->icsk_rto;
2989 /* Offset the time elapsed after installing regular RTO */
2990 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2991 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2992 struct sk_buff *skb = tcp_write_queue_head(sk);
2993 const u32 rto_time_stamp =
2994 tcp_skb_timestamp(skb) + rto;
2995 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2996 /* delta may not be positive if the socket is locked
2997 * when the retrans timer fires and is rescheduled.
2998 */
2999 if (delta > 0)
3000 rto = delta;
3001 }
3002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3003 TCP_RTO_MAX);
3004 }
3005 }
3006
3007 /* If we get here, the whole TSO packet has not been acked. */
3008 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3009 {
3010 struct tcp_sock *tp = tcp_sk(sk);
3011 u32 packets_acked;
3012
3013 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3014
3015 packets_acked = tcp_skb_pcount(skb);
3016 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3017 return 0;
3018 packets_acked -= tcp_skb_pcount(skb);
3019
3020 if (packets_acked) {
3021 BUG_ON(tcp_skb_pcount(skb) == 0);
3022 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3023 }
3024
3025 return packets_acked;
3026 }
3027
3028 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3029 u32 prior_snd_una)
3030 {
3031 const struct skb_shared_info *shinfo;
3032
3033 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3034 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3035 return;
3036
3037 shinfo = skb_shinfo(skb);
3038 if (!before(shinfo->tskey, prior_snd_una) &&
3039 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3040 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3041 }
3042
3043 /* Remove acknowledged frames from the retransmission queue. If our packet
3044 * is before the ack sequence we can discard it as it's confirmed to have
3045 * arrived at the other end.
3046 */
3047 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3048 u32 prior_snd_una, int *acked,
3049 struct tcp_sacktag_state *sack)
3050 {
3051 const struct inet_connection_sock *icsk = inet_csk(sk);
3052 struct skb_mstamp first_ackt, last_ackt;
3053 struct skb_mstamp *now = &sack->ack_time;
3054 struct tcp_sock *tp = tcp_sk(sk);
3055 u32 prior_sacked = tp->sacked_out;
3056 u32 reord = tp->packets_out;
3057 bool fully_acked = true;
3058 long sack_rtt_us = -1L;
3059 long seq_rtt_us = -1L;
3060 long ca_rtt_us = -1L;
3061 struct sk_buff *skb;
3062 u32 pkts_acked = 0;
3063 u32 last_in_flight = 0;
3064 bool rtt_update;
3065 int flag = 0;
3066
3067 first_ackt.v64 = 0;
3068
3069 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3070 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3071 u8 sacked = scb->sacked;
3072 u32 acked_pcount;
3073
3074 tcp_ack_tstamp(sk, skb, prior_snd_una);
3075
3076 /* Determine how many packets and what bytes were acked, tso and else */
3077 if (after(scb->end_seq, tp->snd_una)) {
3078 if (tcp_skb_pcount(skb) == 1 ||
3079 !after(tp->snd_una, scb->seq))
3080 break;
3081
3082 acked_pcount = tcp_tso_acked(sk, skb);
3083 if (!acked_pcount)
3084 break;
3085 fully_acked = false;
3086 } else {
3087 /* Speedup tcp_unlink_write_queue() and next loop */
3088 prefetchw(skb->next);
3089 acked_pcount = tcp_skb_pcount(skb);
3090 }
3091
3092 if (unlikely(sacked & TCPCB_RETRANS)) {
3093 if (sacked & TCPCB_SACKED_RETRANS)
3094 tp->retrans_out -= acked_pcount;
3095 flag |= FLAG_RETRANS_DATA_ACKED;
3096 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3097 last_ackt = skb->skb_mstamp;
3098 WARN_ON_ONCE(last_ackt.v64 == 0);
3099 if (!first_ackt.v64)
3100 first_ackt = last_ackt;
3101
3102 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3103 reord = min(pkts_acked, reord);
3104 if (!after(scb->end_seq, tp->high_seq))
3105 flag |= FLAG_ORIG_SACK_ACKED;
3106 }
3107
3108 if (sacked & TCPCB_SACKED_ACKED) {
3109 tp->sacked_out -= acked_pcount;
3110 } else if (tcp_is_sack(tp)) {
3111 tp->delivered += acked_pcount;
3112 if (!tcp_skb_spurious_retrans(tp, skb))
3113 tcp_rack_advance(tp, sacked, scb->end_seq,
3114 &skb->skb_mstamp,
3115 &sack->ack_time);
3116 }
3117 if (sacked & TCPCB_LOST)
3118 tp->lost_out -= acked_pcount;
3119
3120 tp->packets_out -= acked_pcount;
3121 pkts_acked += acked_pcount;
3122 tcp_rate_skb_delivered(sk, skb, sack->rate);
3123
3124 /* Initial outgoing SYN's get put onto the write_queue
3125 * just like anything else we transmit. It is not
3126 * true data, and if we misinform our callers that
3127 * this ACK acks real data, we will erroneously exit
3128 * connection startup slow start one packet too
3129 * quickly. This is severely frowned upon behavior.
3130 */
3131 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3132 flag |= FLAG_DATA_ACKED;
3133 } else {
3134 flag |= FLAG_SYN_ACKED;
3135 tp->retrans_stamp = 0;
3136 }
3137
3138 if (!fully_acked)
3139 break;
3140
3141 tcp_unlink_write_queue(skb, sk);
3142 sk_wmem_free_skb(sk, skb);
3143 if (unlikely(skb == tp->retransmit_skb_hint))
3144 tp->retransmit_skb_hint = NULL;
3145 if (unlikely(skb == tp->lost_skb_hint))
3146 tp->lost_skb_hint = NULL;
3147 }
3148
3149 if (!skb)
3150 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3151
3152 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3153 tp->snd_up = tp->snd_una;
3154
3155 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3156 flag |= FLAG_SACK_RENEGING;
3157
3158 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3159 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3160 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3161 }
3162 if (sack->first_sackt.v64) {
3163 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3164 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3165 }
3166 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3167 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3168 ca_rtt_us);
3169
3170 if (flag & FLAG_ACKED) {
3171 tcp_rearm_rto(sk);
3172 if (unlikely(icsk->icsk_mtup.probe_size &&
3173 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3174 tcp_mtup_probe_success(sk);
3175 }
3176
3177 if (tcp_is_reno(tp)) {
3178 tcp_remove_reno_sacks(sk, pkts_acked);
3179 } else {
3180 int delta;
3181
3182 /* Non-retransmitted hole got filled? That's reordering */
3183 if (reord < prior_fackets)
3184 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3185
3186 delta = tcp_is_fack(tp) ? pkts_acked :
3187 prior_sacked - tp->sacked_out;
3188 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3189 }
3190
3191 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3192
3193 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3194 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3195 /* Do not re-arm RTO if the sack RTT is measured from data sent
3196 * after when the head was last (re)transmitted. Otherwise the
3197 * timeout may continue to extend in loss recovery.
3198 */
3199 tcp_rearm_rto(sk);
3200 }
3201
3202 if (icsk->icsk_ca_ops->pkts_acked) {
3203 struct ack_sample sample = { .pkts_acked = pkts_acked,
3204 .rtt_us = ca_rtt_us,
3205 .in_flight = last_in_flight };
3206
3207 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3208 }
3209
3210 #if FASTRETRANS_DEBUG > 0
3211 WARN_ON((int)tp->sacked_out < 0);
3212 WARN_ON((int)tp->lost_out < 0);
3213 WARN_ON((int)tp->retrans_out < 0);
3214 if (!tp->packets_out && tcp_is_sack(tp)) {
3215 icsk = inet_csk(sk);
3216 if (tp->lost_out) {
3217 pr_debug("Leak l=%u %d\n",
3218 tp->lost_out, icsk->icsk_ca_state);
3219 tp->lost_out = 0;
3220 }
3221 if (tp->sacked_out) {
3222 pr_debug("Leak s=%u %d\n",
3223 tp->sacked_out, icsk->icsk_ca_state);
3224 tp->sacked_out = 0;
3225 }
3226 if (tp->retrans_out) {
3227 pr_debug("Leak r=%u %d\n",
3228 tp->retrans_out, icsk->icsk_ca_state);
3229 tp->retrans_out = 0;
3230 }
3231 }
3232 #endif
3233 *acked = pkts_acked;
3234 return flag;
3235 }
3236
3237 static void tcp_ack_probe(struct sock *sk)
3238 {
3239 const struct tcp_sock *tp = tcp_sk(sk);
3240 struct inet_connection_sock *icsk = inet_csk(sk);
3241
3242 /* Was it a usable window open? */
3243
3244 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3245 icsk->icsk_backoff = 0;
3246 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3247 /* Socket must be waked up by subsequent tcp_data_snd_check().
3248 * This function is not for random using!
3249 */
3250 } else {
3251 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3252
3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3254 when, TCP_RTO_MAX);
3255 }
3256 }
3257
3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3259 {
3260 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3261 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3262 }
3263
3264 /* Decide wheather to run the increase function of congestion control. */
3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3266 {
3267 /* If reordering is high then always grow cwnd whenever data is
3268 * delivered regardless of its ordering. Otherwise stay conservative
3269 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3270 * new SACK or ECE mark may first advance cwnd here and later reduce
3271 * cwnd in tcp_fastretrans_alert() based on more states.
3272 */
3273 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3274 return flag & FLAG_FORWARD_PROGRESS;
3275
3276 return flag & FLAG_DATA_ACKED;
3277 }
3278
3279 /* The "ultimate" congestion control function that aims to replace the rigid
3280 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3281 * It's called toward the end of processing an ACK with precise rate
3282 * information. All transmission or retransmission are delayed afterwards.
3283 */
3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3285 int flag, const struct rate_sample *rs)
3286 {
3287 const struct inet_connection_sock *icsk = inet_csk(sk);
3288
3289 if (icsk->icsk_ca_ops->cong_control) {
3290 icsk->icsk_ca_ops->cong_control(sk, rs);
3291 return;
3292 }
3293
3294 if (tcp_in_cwnd_reduction(sk)) {
3295 /* Reduce cwnd if state mandates */
3296 tcp_cwnd_reduction(sk, acked_sacked, flag);
3297 } else if (tcp_may_raise_cwnd(sk, flag)) {
3298 /* Advance cwnd if state allows */
3299 tcp_cong_avoid(sk, ack, acked_sacked);
3300 }
3301 tcp_update_pacing_rate(sk);
3302 }
3303
3304 /* Check that window update is acceptable.
3305 * The function assumes that snd_una<=ack<=snd_next.
3306 */
3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3308 const u32 ack, const u32 ack_seq,
3309 const u32 nwin)
3310 {
3311 return after(ack, tp->snd_una) ||
3312 after(ack_seq, tp->snd_wl1) ||
3313 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3314 }
3315
3316 /* If we update tp->snd_una, also update tp->bytes_acked */
3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3318 {
3319 u32 delta = ack - tp->snd_una;
3320
3321 sock_owned_by_me((struct sock *)tp);
3322 tp->bytes_acked += delta;
3323 tp->snd_una = ack;
3324 }
3325
3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3328 {
3329 u32 delta = seq - tp->rcv_nxt;
3330
3331 sock_owned_by_me((struct sock *)tp);
3332 tp->bytes_received += delta;
3333 tp->rcv_nxt = seq;
3334 }
3335
3336 /* Update our send window.
3337 *
3338 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3339 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3340 */
3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3342 u32 ack_seq)
3343 {
3344 struct tcp_sock *tp = tcp_sk(sk);
3345 int flag = 0;
3346 u32 nwin = ntohs(tcp_hdr(skb)->window);
3347
3348 if (likely(!tcp_hdr(skb)->syn))
3349 nwin <<= tp->rx_opt.snd_wscale;
3350
3351 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3352 flag |= FLAG_WIN_UPDATE;
3353 tcp_update_wl(tp, ack_seq);
3354
3355 if (tp->snd_wnd != nwin) {
3356 tp->snd_wnd = nwin;
3357
3358 /* Note, it is the only place, where
3359 * fast path is recovered for sending TCP.
3360 */
3361 tp->pred_flags = 0;
3362 tcp_fast_path_check(sk);
3363
3364 if (tcp_send_head(sk))
3365 tcp_slow_start_after_idle_check(sk);
3366
3367 if (nwin > tp->max_window) {
3368 tp->max_window = nwin;
3369 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3370 }
3371 }
3372 }
3373
3374 tcp_snd_una_update(tp, ack);
3375
3376 return flag;
3377 }
3378
3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3380 u32 *last_oow_ack_time)
3381 {
3382 if (*last_oow_ack_time) {
3383 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3384
3385 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3386 NET_INC_STATS(net, mib_idx);
3387 return true; /* rate-limited: don't send yet! */
3388 }
3389 }
3390
3391 *last_oow_ack_time = tcp_time_stamp;
3392
3393 return false; /* not rate-limited: go ahead, send dupack now! */
3394 }
3395
3396 /* Return true if we're currently rate-limiting out-of-window ACKs and
3397 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3398 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3399 * attacks that send repeated SYNs or ACKs for the same connection. To
3400 * do this, we do not send a duplicate SYNACK or ACK if the remote
3401 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3402 */
3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3404 int mib_idx, u32 *last_oow_ack_time)
3405 {
3406 /* Data packets without SYNs are not likely part of an ACK loop. */
3407 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3408 !tcp_hdr(skb)->syn)
3409 return false;
3410
3411 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3412 }
3413
3414 /* RFC 5961 7 [ACK Throttling] */
3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3416 {
3417 /* unprotected vars, we dont care of overwrites */
3418 static u32 challenge_timestamp;
3419 static unsigned int challenge_count;
3420 struct tcp_sock *tp = tcp_sk(sk);
3421 u32 count, now;
3422
3423 /* First check our per-socket dupack rate limit. */
3424 if (__tcp_oow_rate_limited(sock_net(sk),
3425 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3426 &tp->last_oow_ack_time))
3427 return;
3428
3429 /* Then check host-wide RFC 5961 rate limit. */
3430 now = jiffies / HZ;
3431 if (now != challenge_timestamp) {
3432 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3433
3434 challenge_timestamp = now;
3435 WRITE_ONCE(challenge_count, half +
3436 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3437 }
3438 count = READ_ONCE(challenge_count);
3439 if (count > 0) {
3440 WRITE_ONCE(challenge_count, count - 1);
3441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3442 tcp_send_ack(sk);
3443 }
3444 }
3445
3446 static void tcp_store_ts_recent(struct tcp_sock *tp)
3447 {
3448 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3449 tp->rx_opt.ts_recent_stamp = get_seconds();
3450 }
3451
3452 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3453 {
3454 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3455 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3456 * extra check below makes sure this can only happen
3457 * for pure ACK frames. -DaveM
3458 *
3459 * Not only, also it occurs for expired timestamps.
3460 */
3461
3462 if (tcp_paws_check(&tp->rx_opt, 0))
3463 tcp_store_ts_recent(tp);
3464 }
3465 }
3466
3467 /* This routine deals with acks during a TLP episode.
3468 * We mark the end of a TLP episode on receiving TLP dupack or when
3469 * ack is after tlp_high_seq.
3470 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3471 */
3472 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3473 {
3474 struct tcp_sock *tp = tcp_sk(sk);
3475
3476 if (before(ack, tp->tlp_high_seq))
3477 return;
3478
3479 if (flag & FLAG_DSACKING_ACK) {
3480 /* This DSACK means original and TLP probe arrived; no loss */
3481 tp->tlp_high_seq = 0;
3482 } else if (after(ack, tp->tlp_high_seq)) {
3483 /* ACK advances: there was a loss, so reduce cwnd. Reset
3484 * tlp_high_seq in tcp_init_cwnd_reduction()
3485 */
3486 tcp_init_cwnd_reduction(sk);
3487 tcp_set_ca_state(sk, TCP_CA_CWR);
3488 tcp_end_cwnd_reduction(sk);
3489 tcp_try_keep_open(sk);
3490 NET_INC_STATS(sock_net(sk),
3491 LINUX_MIB_TCPLOSSPROBERECOVERY);
3492 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3493 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3494 /* Pure dupack: original and TLP probe arrived; no loss */
3495 tp->tlp_high_seq = 0;
3496 }
3497 }
3498
3499 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3500 {
3501 const struct inet_connection_sock *icsk = inet_csk(sk);
3502
3503 if (icsk->icsk_ca_ops->in_ack_event)
3504 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3505 }
3506
3507 /* Congestion control has updated the cwnd already. So if we're in
3508 * loss recovery then now we do any new sends (for FRTO) or
3509 * retransmits (for CA_Loss or CA_recovery) that make sense.
3510 */
3511 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3512 {
3513 struct tcp_sock *tp = tcp_sk(sk);
3514
3515 if (rexmit == REXMIT_NONE)
3516 return;
3517
3518 if (unlikely(rexmit == 2)) {
3519 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3520 TCP_NAGLE_OFF);
3521 if (after(tp->snd_nxt, tp->high_seq))
3522 return;
3523 tp->frto = 0;
3524 }
3525 tcp_xmit_retransmit_queue(sk);
3526 }
3527
3528 /* This routine deals with incoming acks, but not outgoing ones. */
3529 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3530 {
3531 struct inet_connection_sock *icsk = inet_csk(sk);
3532 struct tcp_sock *tp = tcp_sk(sk);
3533 struct tcp_sacktag_state sack_state;
3534 struct rate_sample rs = { .prior_delivered = 0 };
3535 u32 prior_snd_una = tp->snd_una;
3536 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3537 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3538 bool is_dupack = false;
3539 u32 prior_fackets;
3540 int prior_packets = tp->packets_out;
3541 u32 delivered = tp->delivered;
3542 u32 lost = tp->lost;
3543 int acked = 0; /* Number of packets newly acked */
3544 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3545
3546 sack_state.first_sackt.v64 = 0;
3547 sack_state.rate = &rs;
3548
3549 /* We very likely will need to access write queue head. */
3550 prefetchw(sk->sk_write_queue.next);
3551
3552 /* If the ack is older than previous acks
3553 * then we can probably ignore it.
3554 */
3555 if (before(ack, prior_snd_una)) {
3556 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3557 if (before(ack, prior_snd_una - tp->max_window)) {
3558 tcp_send_challenge_ack(sk, skb);
3559 return -1;
3560 }
3561 goto old_ack;
3562 }
3563
3564 /* If the ack includes data we haven't sent yet, discard
3565 * this segment (RFC793 Section 3.9).
3566 */
3567 if (after(ack, tp->snd_nxt))
3568 goto invalid_ack;
3569
3570 skb_mstamp_get(&sack_state.ack_time);
3571
3572 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3573 tcp_rearm_rto(sk);
3574
3575 if (after(ack, prior_snd_una)) {
3576 flag |= FLAG_SND_UNA_ADVANCED;
3577 icsk->icsk_retransmits = 0;
3578 }
3579
3580 prior_fackets = tp->fackets_out;
3581 rs.prior_in_flight = tcp_packets_in_flight(tp);
3582
3583 /* ts_recent update must be made after we are sure that the packet
3584 * is in window.
3585 */
3586 if (flag & FLAG_UPDATE_TS_RECENT)
3587 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3588
3589 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3590 /* Window is constant, pure forward advance.
3591 * No more checks are required.
3592 * Note, we use the fact that SND.UNA>=SND.WL2.
3593 */
3594 tcp_update_wl(tp, ack_seq);
3595 tcp_snd_una_update(tp, ack);
3596 flag |= FLAG_WIN_UPDATE;
3597
3598 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3599
3600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3601 } else {
3602 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3603
3604 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3605 flag |= FLAG_DATA;
3606 else
3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3608
3609 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3610
3611 if (TCP_SKB_CB(skb)->sacked)
3612 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3613 &sack_state);
3614
3615 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3616 flag |= FLAG_ECE;
3617 ack_ev_flags |= CA_ACK_ECE;
3618 }
3619
3620 if (flag & FLAG_WIN_UPDATE)
3621 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3622
3623 tcp_in_ack_event(sk, ack_ev_flags);
3624 }
3625
3626 /* We passed data and got it acked, remove any soft error
3627 * log. Something worked...
3628 */
3629 sk->sk_err_soft = 0;
3630 icsk->icsk_probes_out = 0;
3631 tp->rcv_tstamp = tcp_time_stamp;
3632 if (!prior_packets)
3633 goto no_queue;
3634
3635 /* See if we can take anything off of the retransmit queue. */
3636 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3637 &sack_state);
3638
3639 if (tcp_ack_is_dubious(sk, flag)) {
3640 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3641 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3642 &sack_state.ack_time);
3643 }
3644 if (tp->tlp_high_seq)
3645 tcp_process_tlp_ack(sk, ack, flag);
3646
3647 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3648 sk_dst_confirm(sk);
3649
3650 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3651 tcp_schedule_loss_probe(sk);
3652 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3653 lost = tp->lost - lost; /* freshly marked lost */
3654 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3655 sack_state.rate);
3656 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3657 tcp_xmit_recovery(sk, rexmit);
3658 return 1;
3659
3660 no_queue:
3661 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3662 if (flag & FLAG_DSACKING_ACK)
3663 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3664 &sack_state.ack_time);
3665 /* If this ack opens up a zero window, clear backoff. It was
3666 * being used to time the probes, and is probably far higher than
3667 * it needs to be for normal retransmission.
3668 */
3669 if (tcp_send_head(sk))
3670 tcp_ack_probe(sk);
3671
3672 if (tp->tlp_high_seq)
3673 tcp_process_tlp_ack(sk, ack, flag);
3674 return 1;
3675
3676 invalid_ack:
3677 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3678 return -1;
3679
3680 old_ack:
3681 /* If data was SACKed, tag it and see if we should send more data.
3682 * If data was DSACKed, see if we can undo a cwnd reduction.
3683 */
3684 if (TCP_SKB_CB(skb)->sacked) {
3685 skb_mstamp_get(&sack_state.ack_time);
3686 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3687 &sack_state);
3688 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3689 &sack_state.ack_time);
3690 tcp_xmit_recovery(sk, rexmit);
3691 }
3692
3693 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 return 0;
3695 }
3696
3697 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3698 bool syn, struct tcp_fastopen_cookie *foc,
3699 bool exp_opt)
3700 {
3701 /* Valid only in SYN or SYN-ACK with an even length. */
3702 if (!foc || !syn || len < 0 || (len & 1))
3703 return;
3704
3705 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3706 len <= TCP_FASTOPEN_COOKIE_MAX)
3707 memcpy(foc->val, cookie, len);
3708 else if (len != 0)
3709 len = -1;
3710 foc->len = len;
3711 foc->exp = exp_opt;
3712 }
3713
3714 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3715 * But, this can also be called on packets in the established flow when
3716 * the fast version below fails.
3717 */
3718 void tcp_parse_options(const struct sk_buff *skb,
3719 struct tcp_options_received *opt_rx, int estab,
3720 struct tcp_fastopen_cookie *foc)
3721 {
3722 const unsigned char *ptr;
3723 const struct tcphdr *th = tcp_hdr(skb);
3724 int length = (th->doff * 4) - sizeof(struct tcphdr);
3725
3726 ptr = (const unsigned char *)(th + 1);
3727 opt_rx->saw_tstamp = 0;
3728
3729 while (length > 0) {
3730 int opcode = *ptr++;
3731 int opsize;
3732
3733 switch (opcode) {
3734 case TCPOPT_EOL:
3735 return;
3736 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3737 length--;
3738 continue;
3739 default:
3740 opsize = *ptr++;
3741 if (opsize < 2) /* "silly options" */
3742 return;
3743 if (opsize > length)
3744 return; /* don't parse partial options */
3745 switch (opcode) {
3746 case TCPOPT_MSS:
3747 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3748 u16 in_mss = get_unaligned_be16(ptr);
3749 if (in_mss) {
3750 if (opt_rx->user_mss &&
3751 opt_rx->user_mss < in_mss)
3752 in_mss = opt_rx->user_mss;
3753 opt_rx->mss_clamp = in_mss;
3754 }
3755 }
3756 break;
3757 case TCPOPT_WINDOW:
3758 if (opsize == TCPOLEN_WINDOW && th->syn &&
3759 !estab && sysctl_tcp_window_scaling) {
3760 __u8 snd_wscale = *(__u8 *)ptr;
3761 opt_rx->wscale_ok = 1;
3762 if (snd_wscale > 14) {
3763 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3764 __func__,
3765 snd_wscale);
3766 snd_wscale = 14;
3767 }
3768 opt_rx->snd_wscale = snd_wscale;
3769 }
3770 break;
3771 case TCPOPT_TIMESTAMP:
3772 if ((opsize == TCPOLEN_TIMESTAMP) &&
3773 ((estab && opt_rx->tstamp_ok) ||
3774 (!estab && sysctl_tcp_timestamps))) {
3775 opt_rx->saw_tstamp = 1;
3776 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3777 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3778 }
3779 break;
3780 case TCPOPT_SACK_PERM:
3781 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3782 !estab && sysctl_tcp_sack) {
3783 opt_rx->sack_ok = TCP_SACK_SEEN;
3784 tcp_sack_reset(opt_rx);
3785 }
3786 break;
3787
3788 case TCPOPT_SACK:
3789 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3790 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3791 opt_rx->sack_ok) {
3792 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3793 }
3794 break;
3795 #ifdef CONFIG_TCP_MD5SIG
3796 case TCPOPT_MD5SIG:
3797 /*
3798 * The MD5 Hash has already been
3799 * checked (see tcp_v{4,6}_do_rcv()).
3800 */
3801 break;
3802 #endif
3803 case TCPOPT_FASTOPEN:
3804 tcp_parse_fastopen_option(
3805 opsize - TCPOLEN_FASTOPEN_BASE,
3806 ptr, th->syn, foc, false);
3807 break;
3808
3809 case TCPOPT_EXP:
3810 /* Fast Open option shares code 254 using a
3811 * 16 bits magic number.
3812 */
3813 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3814 get_unaligned_be16(ptr) ==
3815 TCPOPT_FASTOPEN_MAGIC)
3816 tcp_parse_fastopen_option(opsize -
3817 TCPOLEN_EXP_FASTOPEN_BASE,
3818 ptr + 2, th->syn, foc, true);
3819 break;
3820
3821 }
3822 ptr += opsize-2;
3823 length -= opsize;
3824 }
3825 }
3826 }
3827 EXPORT_SYMBOL(tcp_parse_options);
3828
3829 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3830 {
3831 const __be32 *ptr = (const __be32 *)(th + 1);
3832
3833 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3834 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3835 tp->rx_opt.saw_tstamp = 1;
3836 ++ptr;
3837 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3838 ++ptr;
3839 if (*ptr)
3840 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3841 else
3842 tp->rx_opt.rcv_tsecr = 0;
3843 return true;
3844 }
3845 return false;
3846 }
3847
3848 /* Fast parse options. This hopes to only see timestamps.
3849 * If it is wrong it falls back on tcp_parse_options().
3850 */
3851 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3852 const struct tcphdr *th, struct tcp_sock *tp)
3853 {
3854 /* In the spirit of fast parsing, compare doff directly to constant
3855 * values. Because equality is used, short doff can be ignored here.
3856 */
3857 if (th->doff == (sizeof(*th) / 4)) {
3858 tp->rx_opt.saw_tstamp = 0;
3859 return false;
3860 } else if (tp->rx_opt.tstamp_ok &&
3861 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3862 if (tcp_parse_aligned_timestamp(tp, th))
3863 return true;
3864 }
3865
3866 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3867 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3868 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3869
3870 return true;
3871 }
3872
3873 #ifdef CONFIG_TCP_MD5SIG
3874 /*
3875 * Parse MD5 Signature option
3876 */
3877 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3878 {
3879 int length = (th->doff << 2) - sizeof(*th);
3880 const u8 *ptr = (const u8 *)(th + 1);
3881
3882 /* If the TCP option is too short, we can short cut */
3883 if (length < TCPOLEN_MD5SIG)
3884 return NULL;
3885
3886 while (length > 0) {
3887 int opcode = *ptr++;
3888 int opsize;
3889
3890 switch (opcode) {
3891 case TCPOPT_EOL:
3892 return NULL;
3893 case TCPOPT_NOP:
3894 length--;
3895 continue;
3896 default:
3897 opsize = *ptr++;
3898 if (opsize < 2 || opsize > length)
3899 return NULL;
3900 if (opcode == TCPOPT_MD5SIG)
3901 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3902 }
3903 ptr += opsize - 2;
3904 length -= opsize;
3905 }
3906 return NULL;
3907 }
3908 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3909 #endif
3910
3911 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3912 *
3913 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3914 * it can pass through stack. So, the following predicate verifies that
3915 * this segment is not used for anything but congestion avoidance or
3916 * fast retransmit. Moreover, we even are able to eliminate most of such
3917 * second order effects, if we apply some small "replay" window (~RTO)
3918 * to timestamp space.
3919 *
3920 * All these measures still do not guarantee that we reject wrapped ACKs
3921 * on networks with high bandwidth, when sequence space is recycled fastly,
3922 * but it guarantees that such events will be very rare and do not affect
3923 * connection seriously. This doesn't look nice, but alas, PAWS is really
3924 * buggy extension.
3925 *
3926 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3927 * states that events when retransmit arrives after original data are rare.
3928 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3929 * the biggest problem on large power networks even with minor reordering.
3930 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3931 * up to bandwidth of 18Gigabit/sec. 8) ]
3932 */
3933
3934 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3935 {
3936 const struct tcp_sock *tp = tcp_sk(sk);
3937 const struct tcphdr *th = tcp_hdr(skb);
3938 u32 seq = TCP_SKB_CB(skb)->seq;
3939 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3940
3941 return (/* 1. Pure ACK with correct sequence number. */
3942 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3943
3944 /* 2. ... and duplicate ACK. */
3945 ack == tp->snd_una &&
3946
3947 /* 3. ... and does not update window. */
3948 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3949
3950 /* 4. ... and sits in replay window. */
3951 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3952 }
3953
3954 static inline bool tcp_paws_discard(const struct sock *sk,
3955 const struct sk_buff *skb)
3956 {
3957 const struct tcp_sock *tp = tcp_sk(sk);
3958
3959 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3960 !tcp_disordered_ack(sk, skb);
3961 }
3962
3963 /* Check segment sequence number for validity.
3964 *
3965 * Segment controls are considered valid, if the segment
3966 * fits to the window after truncation to the window. Acceptability
3967 * of data (and SYN, FIN, of course) is checked separately.
3968 * See tcp_data_queue(), for example.
3969 *
3970 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3971 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3972 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3973 * (borrowed from freebsd)
3974 */
3975
3976 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3977 {
3978 return !before(end_seq, tp->rcv_wup) &&
3979 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3980 }
3981
3982 /* When we get a reset we do this. */
3983 void tcp_reset(struct sock *sk)
3984 {
3985 /* We want the right error as BSD sees it (and indeed as we do). */
3986 switch (sk->sk_state) {
3987 case TCP_SYN_SENT:
3988 sk->sk_err = ECONNREFUSED;
3989 break;
3990 case TCP_CLOSE_WAIT:
3991 sk->sk_err = EPIPE;
3992 break;
3993 case TCP_CLOSE:
3994 return;
3995 default:
3996 sk->sk_err = ECONNRESET;
3997 }
3998 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3999 smp_wmb();
4000
4001 if (!sock_flag(sk, SOCK_DEAD))
4002 sk->sk_error_report(sk);
4003
4004 tcp_done(sk);
4005 }
4006
4007 /*
4008 * Process the FIN bit. This now behaves as it is supposed to work
4009 * and the FIN takes effect when it is validly part of sequence
4010 * space. Not before when we get holes.
4011 *
4012 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4013 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4014 * TIME-WAIT)
4015 *
4016 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4017 * close and we go into CLOSING (and later onto TIME-WAIT)
4018 *
4019 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4020 */
4021 void tcp_fin(struct sock *sk)
4022 {
4023 struct tcp_sock *tp = tcp_sk(sk);
4024
4025 inet_csk_schedule_ack(sk);
4026
4027 sk->sk_shutdown |= RCV_SHUTDOWN;
4028 sock_set_flag(sk, SOCK_DONE);
4029
4030 switch (sk->sk_state) {
4031 case TCP_SYN_RECV:
4032 case TCP_ESTABLISHED:
4033 /* Move to CLOSE_WAIT */
4034 tcp_set_state(sk, TCP_CLOSE_WAIT);
4035 inet_csk(sk)->icsk_ack.pingpong = 1;
4036 break;
4037
4038 case TCP_CLOSE_WAIT:
4039 case TCP_CLOSING:
4040 /* Received a retransmission of the FIN, do
4041 * nothing.
4042 */
4043 break;
4044 case TCP_LAST_ACK:
4045 /* RFC793: Remain in the LAST-ACK state. */
4046 break;
4047
4048 case TCP_FIN_WAIT1:
4049 /* This case occurs when a simultaneous close
4050 * happens, we must ack the received FIN and
4051 * enter the CLOSING state.
4052 */
4053 tcp_send_ack(sk);
4054 tcp_set_state(sk, TCP_CLOSING);
4055 break;
4056 case TCP_FIN_WAIT2:
4057 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4058 tcp_send_ack(sk);
4059 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4060 break;
4061 default:
4062 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4063 * cases we should never reach this piece of code.
4064 */
4065 pr_err("%s: Impossible, sk->sk_state=%d\n",
4066 __func__, sk->sk_state);
4067 break;
4068 }
4069
4070 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4071 * Probably, we should reset in this case. For now drop them.
4072 */
4073 skb_rbtree_purge(&tp->out_of_order_queue);
4074 if (tcp_is_sack(tp))
4075 tcp_sack_reset(&tp->rx_opt);
4076 sk_mem_reclaim(sk);
4077
4078 if (!sock_flag(sk, SOCK_DEAD)) {
4079 sk->sk_state_change(sk);
4080
4081 /* Do not send POLL_HUP for half duplex close. */
4082 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4083 sk->sk_state == TCP_CLOSE)
4084 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4085 else
4086 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4087 }
4088 }
4089
4090 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4091 u32 end_seq)
4092 {
4093 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4094 if (before(seq, sp->start_seq))
4095 sp->start_seq = seq;
4096 if (after(end_seq, sp->end_seq))
4097 sp->end_seq = end_seq;
4098 return true;
4099 }
4100 return false;
4101 }
4102
4103 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4104 {
4105 struct tcp_sock *tp = tcp_sk(sk);
4106
4107 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4108 int mib_idx;
4109
4110 if (before(seq, tp->rcv_nxt))
4111 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4112 else
4113 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4114
4115 NET_INC_STATS(sock_net(sk), mib_idx);
4116
4117 tp->rx_opt.dsack = 1;
4118 tp->duplicate_sack[0].start_seq = seq;
4119 tp->duplicate_sack[0].end_seq = end_seq;
4120 }
4121 }
4122
4123 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4124 {
4125 struct tcp_sock *tp = tcp_sk(sk);
4126
4127 if (!tp->rx_opt.dsack)
4128 tcp_dsack_set(sk, seq, end_seq);
4129 else
4130 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4131 }
4132
4133 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4134 {
4135 struct tcp_sock *tp = tcp_sk(sk);
4136
4137 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4138 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4139 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4140 tcp_enter_quickack_mode(sk);
4141
4142 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4143 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4144
4145 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4146 end_seq = tp->rcv_nxt;
4147 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4148 }
4149 }
4150
4151 tcp_send_ack(sk);
4152 }
4153
4154 /* These routines update the SACK block as out-of-order packets arrive or
4155 * in-order packets close up the sequence space.
4156 */
4157 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4158 {
4159 int this_sack;
4160 struct tcp_sack_block *sp = &tp->selective_acks[0];
4161 struct tcp_sack_block *swalk = sp + 1;
4162
4163 /* See if the recent change to the first SACK eats into
4164 * or hits the sequence space of other SACK blocks, if so coalesce.
4165 */
4166 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4167 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4168 int i;
4169
4170 /* Zap SWALK, by moving every further SACK up by one slot.
4171 * Decrease num_sacks.
4172 */
4173 tp->rx_opt.num_sacks--;
4174 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4175 sp[i] = sp[i + 1];
4176 continue;
4177 }
4178 this_sack++, swalk++;
4179 }
4180 }
4181
4182 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4183 {
4184 struct tcp_sock *tp = tcp_sk(sk);
4185 struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 int cur_sacks = tp->rx_opt.num_sacks;
4187 int this_sack;
4188
4189 if (!cur_sacks)
4190 goto new_sack;
4191
4192 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4193 if (tcp_sack_extend(sp, seq, end_seq)) {
4194 /* Rotate this_sack to the first one. */
4195 for (; this_sack > 0; this_sack--, sp--)
4196 swap(*sp, *(sp - 1));
4197 if (cur_sacks > 1)
4198 tcp_sack_maybe_coalesce(tp);
4199 return;
4200 }
4201 }
4202
4203 /* Could not find an adjacent existing SACK, build a new one,
4204 * put it at the front, and shift everyone else down. We
4205 * always know there is at least one SACK present already here.
4206 *
4207 * If the sack array is full, forget about the last one.
4208 */
4209 if (this_sack >= TCP_NUM_SACKS) {
4210 this_sack--;
4211 tp->rx_opt.num_sacks--;
4212 sp--;
4213 }
4214 for (; this_sack > 0; this_sack--, sp--)
4215 *sp = *(sp - 1);
4216
4217 new_sack:
4218 /* Build the new head SACK, and we're done. */
4219 sp->start_seq = seq;
4220 sp->end_seq = end_seq;
4221 tp->rx_opt.num_sacks++;
4222 }
4223
4224 /* RCV.NXT advances, some SACKs should be eaten. */
4225
4226 static void tcp_sack_remove(struct tcp_sock *tp)
4227 {
4228 struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 int num_sacks = tp->rx_opt.num_sacks;
4230 int this_sack;
4231
4232 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4233 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4234 tp->rx_opt.num_sacks = 0;
4235 return;
4236 }
4237
4238 for (this_sack = 0; this_sack < num_sacks;) {
4239 /* Check if the start of the sack is covered by RCV.NXT. */
4240 if (!before(tp->rcv_nxt, sp->start_seq)) {
4241 int i;
4242
4243 /* RCV.NXT must cover all the block! */
4244 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4245
4246 /* Zap this SACK, by moving forward any other SACKS. */
4247 for (i = this_sack+1; i < num_sacks; i++)
4248 tp->selective_acks[i-1] = tp->selective_acks[i];
4249 num_sacks--;
4250 continue;
4251 }
4252 this_sack++;
4253 sp++;
4254 }
4255 tp->rx_opt.num_sacks = num_sacks;
4256 }
4257
4258 /**
4259 * tcp_try_coalesce - try to merge skb to prior one
4260 * @sk: socket
4261 * @to: prior buffer
4262 * @from: buffer to add in queue
4263 * @fragstolen: pointer to boolean
4264 *
4265 * Before queueing skb @from after @to, try to merge them
4266 * to reduce overall memory use and queue lengths, if cost is small.
4267 * Packets in ofo or receive queues can stay a long time.
4268 * Better try to coalesce them right now to avoid future collapses.
4269 * Returns true if caller should free @from instead of queueing it
4270 */
4271 static bool tcp_try_coalesce(struct sock *sk,
4272 struct sk_buff *to,
4273 struct sk_buff *from,
4274 bool *fragstolen)
4275 {
4276 int delta;
4277
4278 *fragstolen = false;
4279
4280 /* Its possible this segment overlaps with prior segment in queue */
4281 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4282 return false;
4283
4284 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4285 return false;
4286
4287 atomic_add(delta, &sk->sk_rmem_alloc);
4288 sk_mem_charge(sk, delta);
4289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4290 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4291 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4292 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4293 return true;
4294 }
4295
4296 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4297 {
4298 sk_drops_add(sk, skb);
4299 __kfree_skb(skb);
4300 }
4301
4302 /* This one checks to see if we can put data from the
4303 * out_of_order queue into the receive_queue.
4304 */
4305 static void tcp_ofo_queue(struct sock *sk)
4306 {
4307 struct tcp_sock *tp = tcp_sk(sk);
4308 __u32 dsack_high = tp->rcv_nxt;
4309 bool fin, fragstolen, eaten;
4310 struct sk_buff *skb, *tail;
4311 struct rb_node *p;
4312
4313 p = rb_first(&tp->out_of_order_queue);
4314 while (p) {
4315 skb = rb_entry(p, struct sk_buff, rbnode);
4316 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4317 break;
4318
4319 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4320 __u32 dsack = dsack_high;
4321 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4322 dsack_high = TCP_SKB_CB(skb)->end_seq;
4323 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4324 }
4325 p = rb_next(p);
4326 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4327
4328 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4329 SOCK_DEBUG(sk, "ofo packet was already received\n");
4330 tcp_drop(sk, skb);
4331 continue;
4332 }
4333 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4334 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4335 TCP_SKB_CB(skb)->end_seq);
4336
4337 tail = skb_peek_tail(&sk->sk_receive_queue);
4338 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4339 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4340 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4341 if (!eaten)
4342 __skb_queue_tail(&sk->sk_receive_queue, skb);
4343 else
4344 kfree_skb_partial(skb, fragstolen);
4345
4346 if (unlikely(fin)) {
4347 tcp_fin(sk);
4348 /* tcp_fin() purges tp->out_of_order_queue,
4349 * so we must end this loop right now.
4350 */
4351 break;
4352 }
4353 }
4354 }
4355
4356 static bool tcp_prune_ofo_queue(struct sock *sk);
4357 static int tcp_prune_queue(struct sock *sk);
4358
4359 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4360 unsigned int size)
4361 {
4362 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4363 !sk_rmem_schedule(sk, skb, size)) {
4364
4365 if (tcp_prune_queue(sk) < 0)
4366 return -1;
4367
4368 while (!sk_rmem_schedule(sk, skb, size)) {
4369 if (!tcp_prune_ofo_queue(sk))
4370 return -1;
4371 }
4372 }
4373 return 0;
4374 }
4375
4376 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4377 {
4378 struct tcp_sock *tp = tcp_sk(sk);
4379 struct rb_node **p, *q, *parent;
4380 struct sk_buff *skb1;
4381 u32 seq, end_seq;
4382 bool fragstolen;
4383
4384 tcp_ecn_check_ce(tp, skb);
4385
4386 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4388 tcp_drop(sk, skb);
4389 return;
4390 }
4391
4392 /* Disable header prediction. */
4393 tp->pred_flags = 0;
4394 inet_csk_schedule_ack(sk);
4395
4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4397 seq = TCP_SKB_CB(skb)->seq;
4398 end_seq = TCP_SKB_CB(skb)->end_seq;
4399 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4400 tp->rcv_nxt, seq, end_seq);
4401
4402 p = &tp->out_of_order_queue.rb_node;
4403 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4404 /* Initial out of order segment, build 1 SACK. */
4405 if (tcp_is_sack(tp)) {
4406 tp->rx_opt.num_sacks = 1;
4407 tp->selective_acks[0].start_seq = seq;
4408 tp->selective_acks[0].end_seq = end_seq;
4409 }
4410 rb_link_node(&skb->rbnode, NULL, p);
4411 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4412 tp->ooo_last_skb = skb;
4413 goto end;
4414 }
4415
4416 /* In the typical case, we are adding an skb to the end of the list.
4417 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4418 */
4419 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4420 coalesce_done:
4421 tcp_grow_window(sk, skb);
4422 kfree_skb_partial(skb, fragstolen);
4423 skb = NULL;
4424 goto add_sack;
4425 }
4426 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4427 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4428 parent = &tp->ooo_last_skb->rbnode;
4429 p = &parent->rb_right;
4430 goto insert;
4431 }
4432
4433 /* Find place to insert this segment. Handle overlaps on the way. */
4434 parent = NULL;
4435 while (*p) {
4436 parent = *p;
4437 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4438 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4439 p = &parent->rb_left;
4440 continue;
4441 }
4442 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4443 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4444 /* All the bits are present. Drop. */
4445 NET_INC_STATS(sock_net(sk),
4446 LINUX_MIB_TCPOFOMERGE);
4447 __kfree_skb(skb);
4448 skb = NULL;
4449 tcp_dsack_set(sk, seq, end_seq);
4450 goto add_sack;
4451 }
4452 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4453 /* Partial overlap. */
4454 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4455 } else {
4456 /* skb's seq == skb1's seq and skb covers skb1.
4457 * Replace skb1 with skb.
4458 */
4459 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4460 &tp->out_of_order_queue);
4461 tcp_dsack_extend(sk,
4462 TCP_SKB_CB(skb1)->seq,
4463 TCP_SKB_CB(skb1)->end_seq);
4464 NET_INC_STATS(sock_net(sk),
4465 LINUX_MIB_TCPOFOMERGE);
4466 __kfree_skb(skb1);
4467 goto merge_right;
4468 }
4469 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4470 goto coalesce_done;
4471 }
4472 p = &parent->rb_right;
4473 }
4474 insert:
4475 /* Insert segment into RB tree. */
4476 rb_link_node(&skb->rbnode, parent, p);
4477 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4478
4479 merge_right:
4480 /* Remove other segments covered by skb. */
4481 while ((q = rb_next(&skb->rbnode)) != NULL) {
4482 skb1 = rb_entry(q, struct sk_buff, rbnode);
4483
4484 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4485 break;
4486 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4487 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4488 end_seq);
4489 break;
4490 }
4491 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4492 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 TCP_SKB_CB(skb1)->end_seq);
4494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4495 tcp_drop(sk, skb1);
4496 }
4497 /* If there is no skb after us, we are the last_skb ! */
4498 if (!q)
4499 tp->ooo_last_skb = skb;
4500
4501 add_sack:
4502 if (tcp_is_sack(tp))
4503 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4504 end:
4505 if (skb) {
4506 tcp_grow_window(sk, skb);
4507 skb_condense(skb);
4508 skb_set_owner_r(skb, sk);
4509 }
4510 }
4511
4512 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4513 bool *fragstolen)
4514 {
4515 int eaten;
4516 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4517
4518 __skb_pull(skb, hdrlen);
4519 eaten = (tail &&
4520 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4521 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4522 if (!eaten) {
4523 __skb_queue_tail(&sk->sk_receive_queue, skb);
4524 skb_set_owner_r(skb, sk);
4525 }
4526 return eaten;
4527 }
4528
4529 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4530 {
4531 struct sk_buff *skb;
4532 int err = -ENOMEM;
4533 int data_len = 0;
4534 bool fragstolen;
4535
4536 if (size == 0)
4537 return 0;
4538
4539 if (size > PAGE_SIZE) {
4540 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4541
4542 data_len = npages << PAGE_SHIFT;
4543 size = data_len + (size & ~PAGE_MASK);
4544 }
4545 skb = alloc_skb_with_frags(size - data_len, data_len,
4546 PAGE_ALLOC_COSTLY_ORDER,
4547 &err, sk->sk_allocation);
4548 if (!skb)
4549 goto err;
4550
4551 skb_put(skb, size - data_len);
4552 skb->data_len = data_len;
4553 skb->len = size;
4554
4555 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4556 goto err_free;
4557
4558 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4559 if (err)
4560 goto err_free;
4561
4562 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4563 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4564 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4565
4566 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4567 WARN_ON_ONCE(fragstolen); /* should not happen */
4568 __kfree_skb(skb);
4569 }
4570 return size;
4571
4572 err_free:
4573 kfree_skb(skb);
4574 err:
4575 return err;
4576
4577 }
4578
4579 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4580 {
4581 struct tcp_sock *tp = tcp_sk(sk);
4582 bool fragstolen = false;
4583 int eaten = -1;
4584
4585 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4586 __kfree_skb(skb);
4587 return;
4588 }
4589 skb_dst_drop(skb);
4590 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4591
4592 tcp_ecn_accept_cwr(tp, skb);
4593
4594 tp->rx_opt.dsack = 0;
4595
4596 /* Queue data for delivery to the user.
4597 * Packets in sequence go to the receive queue.
4598 * Out of sequence packets to the out_of_order_queue.
4599 */
4600 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 if (tcp_receive_window(tp) == 0)
4602 goto out_of_window;
4603
4604 /* Ok. In sequence. In window. */
4605 if (tp->ucopy.task == current &&
4606 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607 sock_owned_by_user(sk) && !tp->urg_data) {
4608 int chunk = min_t(unsigned int, skb->len,
4609 tp->ucopy.len);
4610
4611 __set_current_state(TASK_RUNNING);
4612
4613 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4614 tp->ucopy.len -= chunk;
4615 tp->copied_seq += chunk;
4616 eaten = (chunk == skb->len);
4617 tcp_rcv_space_adjust(sk);
4618 }
4619 }
4620
4621 if (eaten <= 0) {
4622 queue_and_out:
4623 if (eaten < 0) {
4624 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4625 sk_forced_mem_schedule(sk, skb->truesize);
4626 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4627 goto drop;
4628 }
4629 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4630 }
4631 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4632 if (skb->len)
4633 tcp_event_data_recv(sk, skb);
4634 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4635 tcp_fin(sk);
4636
4637 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4638 tcp_ofo_queue(sk);
4639
4640 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4641 * gap in queue is filled.
4642 */
4643 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4644 inet_csk(sk)->icsk_ack.pingpong = 0;
4645 }
4646
4647 if (tp->rx_opt.num_sacks)
4648 tcp_sack_remove(tp);
4649
4650 tcp_fast_path_check(sk);
4651
4652 if (eaten > 0)
4653 kfree_skb_partial(skb, fragstolen);
4654 if (!sock_flag(sk, SOCK_DEAD))
4655 sk->sk_data_ready(sk);
4656 return;
4657 }
4658
4659 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4660 /* A retransmit, 2nd most common case. Force an immediate ack. */
4661 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4662 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4663
4664 out_of_window:
4665 tcp_enter_quickack_mode(sk);
4666 inet_csk_schedule_ack(sk);
4667 drop:
4668 tcp_drop(sk, skb);
4669 return;
4670 }
4671
4672 /* Out of window. F.e. zero window probe. */
4673 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4674 goto out_of_window;
4675
4676 tcp_enter_quickack_mode(sk);
4677
4678 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4679 /* Partial packet, seq < rcv_next < end_seq */
4680 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4681 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4682 TCP_SKB_CB(skb)->end_seq);
4683
4684 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4685
4686 /* If window is closed, drop tail of packet. But after
4687 * remembering D-SACK for its head made in previous line.
4688 */
4689 if (!tcp_receive_window(tp))
4690 goto out_of_window;
4691 goto queue_and_out;
4692 }
4693
4694 tcp_data_queue_ofo(sk, skb);
4695 }
4696
4697 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4698 {
4699 if (list)
4700 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4701
4702 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4703 }
4704
4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4706 struct sk_buff_head *list,
4707 struct rb_root *root)
4708 {
4709 struct sk_buff *next = tcp_skb_next(skb, list);
4710
4711 if (list)
4712 __skb_unlink(skb, list);
4713 else
4714 rb_erase(&skb->rbnode, root);
4715
4716 __kfree_skb(skb);
4717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4718
4719 return next;
4720 }
4721
4722 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4723 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4724 {
4725 struct rb_node **p = &root->rb_node;
4726 struct rb_node *parent = NULL;
4727 struct sk_buff *skb1;
4728
4729 while (*p) {
4730 parent = *p;
4731 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4732 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4733 p = &parent->rb_left;
4734 else
4735 p = &parent->rb_right;
4736 }
4737 rb_link_node(&skb->rbnode, parent, p);
4738 rb_insert_color(&skb->rbnode, root);
4739 }
4740
4741 /* Collapse contiguous sequence of skbs head..tail with
4742 * sequence numbers start..end.
4743 *
4744 * If tail is NULL, this means until the end of the queue.
4745 *
4746 * Segments with FIN/SYN are not collapsed (only because this
4747 * simplifies code)
4748 */
4749 static void
4750 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4751 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4752 {
4753 struct sk_buff *skb = head, *n;
4754 struct sk_buff_head tmp;
4755 bool end_of_skbs;
4756
4757 /* First, check that queue is collapsible and find
4758 * the point where collapsing can be useful.
4759 */
4760 restart:
4761 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4762 n = tcp_skb_next(skb, list);
4763
4764 /* No new bits? It is possible on ofo queue. */
4765 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4766 skb = tcp_collapse_one(sk, skb, list, root);
4767 if (!skb)
4768 break;
4769 goto restart;
4770 }
4771
4772 /* The first skb to collapse is:
4773 * - not SYN/FIN and
4774 * - bloated or contains data before "start" or
4775 * overlaps to the next one.
4776 */
4777 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4778 (tcp_win_from_space(skb->truesize) > skb->len ||
4779 before(TCP_SKB_CB(skb)->seq, start))) {
4780 end_of_skbs = false;
4781 break;
4782 }
4783
4784 if (n && n != tail &&
4785 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4786 end_of_skbs = false;
4787 break;
4788 }
4789
4790 /* Decided to skip this, advance start seq. */
4791 start = TCP_SKB_CB(skb)->end_seq;
4792 }
4793 if (end_of_skbs ||
4794 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4795 return;
4796
4797 __skb_queue_head_init(&tmp);
4798
4799 while (before(start, end)) {
4800 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4801 struct sk_buff *nskb;
4802
4803 nskb = alloc_skb(copy, GFP_ATOMIC);
4804 if (!nskb)
4805 break;
4806
4807 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4808 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4809 if (list)
4810 __skb_queue_before(list, skb, nskb);
4811 else
4812 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4813 skb_set_owner_r(nskb, sk);
4814
4815 /* Copy data, releasing collapsed skbs. */
4816 while (copy > 0) {
4817 int offset = start - TCP_SKB_CB(skb)->seq;
4818 int size = TCP_SKB_CB(skb)->end_seq - start;
4819
4820 BUG_ON(offset < 0);
4821 if (size > 0) {
4822 size = min(copy, size);
4823 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4824 BUG();
4825 TCP_SKB_CB(nskb)->end_seq += size;
4826 copy -= size;
4827 start += size;
4828 }
4829 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4830 skb = tcp_collapse_one(sk, skb, list, root);
4831 if (!skb ||
4832 skb == tail ||
4833 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4834 goto end;
4835 }
4836 }
4837 }
4838 end:
4839 skb_queue_walk_safe(&tmp, skb, n)
4840 tcp_rbtree_insert(root, skb);
4841 }
4842
4843 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4844 * and tcp_collapse() them until all the queue is collapsed.
4845 */
4846 static void tcp_collapse_ofo_queue(struct sock *sk)
4847 {
4848 struct tcp_sock *tp = tcp_sk(sk);
4849 struct sk_buff *skb, *head;
4850 struct rb_node *p;
4851 u32 start, end;
4852
4853 p = rb_first(&tp->out_of_order_queue);
4854 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4855 new_range:
4856 if (!skb) {
4857 p = rb_last(&tp->out_of_order_queue);
4858 /* Note: This is possible p is NULL here. We do not
4859 * use rb_entry_safe(), as ooo_last_skb is valid only
4860 * if rbtree is not empty.
4861 */
4862 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4863 return;
4864 }
4865 start = TCP_SKB_CB(skb)->seq;
4866 end = TCP_SKB_CB(skb)->end_seq;
4867
4868 for (head = skb;;) {
4869 skb = tcp_skb_next(skb, NULL);
4870
4871 /* Range is terminated when we see a gap or when
4872 * we are at the queue end.
4873 */
4874 if (!skb ||
4875 after(TCP_SKB_CB(skb)->seq, end) ||
4876 before(TCP_SKB_CB(skb)->end_seq, start)) {
4877 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4878 head, skb, start, end);
4879 goto new_range;
4880 }
4881
4882 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4883 start = TCP_SKB_CB(skb)->seq;
4884 if (after(TCP_SKB_CB(skb)->end_seq, end))
4885 end = TCP_SKB_CB(skb)->end_seq;
4886 }
4887 }
4888
4889 /*
4890 * Clean the out-of-order queue to make room.
4891 * We drop high sequences packets to :
4892 * 1) Let a chance for holes to be filled.
4893 * 2) not add too big latencies if thousands of packets sit there.
4894 * (But if application shrinks SO_RCVBUF, we could still end up
4895 * freeing whole queue here)
4896 *
4897 * Return true if queue has shrunk.
4898 */
4899 static bool tcp_prune_ofo_queue(struct sock *sk)
4900 {
4901 struct tcp_sock *tp = tcp_sk(sk);
4902 struct rb_node *node, *prev;
4903
4904 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4905 return false;
4906
4907 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4908 node = &tp->ooo_last_skb->rbnode;
4909 do {
4910 prev = rb_prev(node);
4911 rb_erase(node, &tp->out_of_order_queue);
4912 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4913 sk_mem_reclaim(sk);
4914 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4915 !tcp_under_memory_pressure(sk))
4916 break;
4917 node = prev;
4918 } while (node);
4919 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4920
4921 /* Reset SACK state. A conforming SACK implementation will
4922 * do the same at a timeout based retransmit. When a connection
4923 * is in a sad state like this, we care only about integrity
4924 * of the connection not performance.
4925 */
4926 if (tp->rx_opt.sack_ok)
4927 tcp_sack_reset(&tp->rx_opt);
4928 return true;
4929 }
4930
4931 /* Reduce allocated memory if we can, trying to get
4932 * the socket within its memory limits again.
4933 *
4934 * Return less than zero if we should start dropping frames
4935 * until the socket owning process reads some of the data
4936 * to stabilize the situation.
4937 */
4938 static int tcp_prune_queue(struct sock *sk)
4939 {
4940 struct tcp_sock *tp = tcp_sk(sk);
4941
4942 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4943
4944 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4945
4946 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4947 tcp_clamp_window(sk);
4948 else if (tcp_under_memory_pressure(sk))
4949 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4950
4951 tcp_collapse_ofo_queue(sk);
4952 if (!skb_queue_empty(&sk->sk_receive_queue))
4953 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4954 skb_peek(&sk->sk_receive_queue),
4955 NULL,
4956 tp->copied_seq, tp->rcv_nxt);
4957 sk_mem_reclaim(sk);
4958
4959 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4960 return 0;
4961
4962 /* Collapsing did not help, destructive actions follow.
4963 * This must not ever occur. */
4964
4965 tcp_prune_ofo_queue(sk);
4966
4967 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4968 return 0;
4969
4970 /* If we are really being abused, tell the caller to silently
4971 * drop receive data on the floor. It will get retransmitted
4972 * and hopefully then we'll have sufficient space.
4973 */
4974 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4975
4976 /* Massive buffer overcommit. */
4977 tp->pred_flags = 0;
4978 return -1;
4979 }
4980
4981 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4982 {
4983 const struct tcp_sock *tp = tcp_sk(sk);
4984
4985 /* If the user specified a specific send buffer setting, do
4986 * not modify it.
4987 */
4988 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4989 return false;
4990
4991 /* If we are under global TCP memory pressure, do not expand. */
4992 if (tcp_under_memory_pressure(sk))
4993 return false;
4994
4995 /* If we are under soft global TCP memory pressure, do not expand. */
4996 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4997 return false;
4998
4999 /* If we filled the congestion window, do not expand. */
5000 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5001 return false;
5002
5003 return true;
5004 }
5005
5006 /* When incoming ACK allowed to free some skb from write_queue,
5007 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5008 * on the exit from tcp input handler.
5009 *
5010 * PROBLEM: sndbuf expansion does not work well with largesend.
5011 */
5012 static void tcp_new_space(struct sock *sk)
5013 {
5014 struct tcp_sock *tp = tcp_sk(sk);
5015
5016 if (tcp_should_expand_sndbuf(sk)) {
5017 tcp_sndbuf_expand(sk);
5018 tp->snd_cwnd_stamp = tcp_time_stamp;
5019 }
5020
5021 sk->sk_write_space(sk);
5022 }
5023
5024 static void tcp_check_space(struct sock *sk)
5025 {
5026 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5027 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5028 /* pairs with tcp_poll() */
5029 smp_mb();
5030 if (sk->sk_socket &&
5031 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5032 tcp_new_space(sk);
5033 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5034 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5035 }
5036 }
5037 }
5038
5039 static inline void tcp_data_snd_check(struct sock *sk)
5040 {
5041 tcp_push_pending_frames(sk);
5042 tcp_check_space(sk);
5043 }
5044
5045 /*
5046 * Check if sending an ack is needed.
5047 */
5048 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5049 {
5050 struct tcp_sock *tp = tcp_sk(sk);
5051
5052 /* More than one full frame received... */
5053 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5054 /* ... and right edge of window advances far enough.
5055 * (tcp_recvmsg() will send ACK otherwise). Or...
5056 */
5057 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5058 /* We ACK each frame or... */
5059 tcp_in_quickack_mode(sk) ||
5060 /* We have out of order data. */
5061 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5062 /* Then ack it now */
5063 tcp_send_ack(sk);
5064 } else {
5065 /* Else, send delayed ack. */
5066 tcp_send_delayed_ack(sk);
5067 }
5068 }
5069
5070 static inline void tcp_ack_snd_check(struct sock *sk)
5071 {
5072 if (!inet_csk_ack_scheduled(sk)) {
5073 /* We sent a data segment already. */
5074 return;
5075 }
5076 __tcp_ack_snd_check(sk, 1);
5077 }
5078
5079 /*
5080 * This routine is only called when we have urgent data
5081 * signaled. Its the 'slow' part of tcp_urg. It could be
5082 * moved inline now as tcp_urg is only called from one
5083 * place. We handle URGent data wrong. We have to - as
5084 * BSD still doesn't use the correction from RFC961.
5085 * For 1003.1g we should support a new option TCP_STDURG to permit
5086 * either form (or just set the sysctl tcp_stdurg).
5087 */
5088
5089 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5090 {
5091 struct tcp_sock *tp = tcp_sk(sk);
5092 u32 ptr = ntohs(th->urg_ptr);
5093
5094 if (ptr && !sysctl_tcp_stdurg)
5095 ptr--;
5096 ptr += ntohl(th->seq);
5097
5098 /* Ignore urgent data that we've already seen and read. */
5099 if (after(tp->copied_seq, ptr))
5100 return;
5101
5102 /* Do not replay urg ptr.
5103 *
5104 * NOTE: interesting situation not covered by specs.
5105 * Misbehaving sender may send urg ptr, pointing to segment,
5106 * which we already have in ofo queue. We are not able to fetch
5107 * such data and will stay in TCP_URG_NOTYET until will be eaten
5108 * by recvmsg(). Seems, we are not obliged to handle such wicked
5109 * situations. But it is worth to think about possibility of some
5110 * DoSes using some hypothetical application level deadlock.
5111 */
5112 if (before(ptr, tp->rcv_nxt))
5113 return;
5114
5115 /* Do we already have a newer (or duplicate) urgent pointer? */
5116 if (tp->urg_data && !after(ptr, tp->urg_seq))
5117 return;
5118
5119 /* Tell the world about our new urgent pointer. */
5120 sk_send_sigurg(sk);
5121
5122 /* We may be adding urgent data when the last byte read was
5123 * urgent. To do this requires some care. We cannot just ignore
5124 * tp->copied_seq since we would read the last urgent byte again
5125 * as data, nor can we alter copied_seq until this data arrives
5126 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5127 *
5128 * NOTE. Double Dutch. Rendering to plain English: author of comment
5129 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5130 * and expect that both A and B disappear from stream. This is _wrong_.
5131 * Though this happens in BSD with high probability, this is occasional.
5132 * Any application relying on this is buggy. Note also, that fix "works"
5133 * only in this artificial test. Insert some normal data between A and B and we will
5134 * decline of BSD again. Verdict: it is better to remove to trap
5135 * buggy users.
5136 */
5137 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5138 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5139 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5140 tp->copied_seq++;
5141 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5142 __skb_unlink(skb, &sk->sk_receive_queue);
5143 __kfree_skb(skb);
5144 }
5145 }
5146
5147 tp->urg_data = TCP_URG_NOTYET;
5148 tp->urg_seq = ptr;
5149
5150 /* Disable header prediction. */
5151 tp->pred_flags = 0;
5152 }
5153
5154 /* This is the 'fast' part of urgent handling. */
5155 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5156 {
5157 struct tcp_sock *tp = tcp_sk(sk);
5158
5159 /* Check if we get a new urgent pointer - normally not. */
5160 if (th->urg)
5161 tcp_check_urg(sk, th);
5162
5163 /* Do we wait for any urgent data? - normally not... */
5164 if (tp->urg_data == TCP_URG_NOTYET) {
5165 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5166 th->syn;
5167
5168 /* Is the urgent pointer pointing into this packet? */
5169 if (ptr < skb->len) {
5170 u8 tmp;
5171 if (skb_copy_bits(skb, ptr, &tmp, 1))
5172 BUG();
5173 tp->urg_data = TCP_URG_VALID | tmp;
5174 if (!sock_flag(sk, SOCK_DEAD))
5175 sk->sk_data_ready(sk);
5176 }
5177 }
5178 }
5179
5180 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5181 {
5182 struct tcp_sock *tp = tcp_sk(sk);
5183 int chunk = skb->len - hlen;
5184 int err;
5185
5186 if (skb_csum_unnecessary(skb))
5187 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5188 else
5189 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5190
5191 if (!err) {
5192 tp->ucopy.len -= chunk;
5193 tp->copied_seq += chunk;
5194 tcp_rcv_space_adjust(sk);
5195 }
5196
5197 return err;
5198 }
5199
5200 /* Accept RST for rcv_nxt - 1 after a FIN.
5201 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5202 * FIN is sent followed by a RST packet. The RST is sent with the same
5203 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5204 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5205 * ACKs on the closed socket. In addition middleboxes can drop either the
5206 * challenge ACK or a subsequent RST.
5207 */
5208 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5209 {
5210 struct tcp_sock *tp = tcp_sk(sk);
5211
5212 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5213 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5214 TCPF_CLOSING));
5215 }
5216
5217 /* Does PAWS and seqno based validation of an incoming segment, flags will
5218 * play significant role here.
5219 */
5220 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5221 const struct tcphdr *th, int syn_inerr)
5222 {
5223 struct tcp_sock *tp = tcp_sk(sk);
5224 bool rst_seq_match = false;
5225
5226 /* RFC1323: H1. Apply PAWS check first. */
5227 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5228 tcp_paws_discard(sk, skb)) {
5229 if (!th->rst) {
5230 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5231 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5232 LINUX_MIB_TCPACKSKIPPEDPAWS,
5233 &tp->last_oow_ack_time))
5234 tcp_send_dupack(sk, skb);
5235 goto discard;
5236 }
5237 /* Reset is accepted even if it did not pass PAWS. */
5238 }
5239
5240 /* Step 1: check sequence number */
5241 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5242 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5243 * (RST) segments are validated by checking their SEQ-fields."
5244 * And page 69: "If an incoming segment is not acceptable,
5245 * an acknowledgment should be sent in reply (unless the RST
5246 * bit is set, if so drop the segment and return)".
5247 */
5248 if (!th->rst) {
5249 if (th->syn)
5250 goto syn_challenge;
5251 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5252 LINUX_MIB_TCPACKSKIPPEDSEQ,
5253 &tp->last_oow_ack_time))
5254 tcp_send_dupack(sk, skb);
5255 } else if (tcp_reset_check(sk, skb)) {
5256 tcp_reset(sk);
5257 }
5258 goto discard;
5259 }
5260
5261 /* Step 2: check RST bit */
5262 if (th->rst) {
5263 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5264 * FIN and SACK too if available):
5265 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5266 * the right-most SACK block,
5267 * then
5268 * RESET the connection
5269 * else
5270 * Send a challenge ACK
5271 */
5272 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5273 tcp_reset_check(sk, skb)) {
5274 rst_seq_match = true;
5275 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5276 struct tcp_sack_block *sp = &tp->selective_acks[0];
5277 int max_sack = sp[0].end_seq;
5278 int this_sack;
5279
5280 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5281 ++this_sack) {
5282 max_sack = after(sp[this_sack].end_seq,
5283 max_sack) ?
5284 sp[this_sack].end_seq : max_sack;
5285 }
5286
5287 if (TCP_SKB_CB(skb)->seq == max_sack)
5288 rst_seq_match = true;
5289 }
5290
5291 if (rst_seq_match)
5292 tcp_reset(sk);
5293 else
5294 tcp_send_challenge_ack(sk, skb);
5295 goto discard;
5296 }
5297
5298 /* step 3: check security and precedence [ignored] */
5299
5300 /* step 4: Check for a SYN
5301 * RFC 5961 4.2 : Send a challenge ack
5302 */
5303 if (th->syn) {
5304 syn_challenge:
5305 if (syn_inerr)
5306 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5308 tcp_send_challenge_ack(sk, skb);
5309 goto discard;
5310 }
5311
5312 return true;
5313
5314 discard:
5315 tcp_drop(sk, skb);
5316 return false;
5317 }
5318
5319 /*
5320 * TCP receive function for the ESTABLISHED state.
5321 *
5322 * It is split into a fast path and a slow path. The fast path is
5323 * disabled when:
5324 * - A zero window was announced from us - zero window probing
5325 * is only handled properly in the slow path.
5326 * - Out of order segments arrived.
5327 * - Urgent data is expected.
5328 * - There is no buffer space left
5329 * - Unexpected TCP flags/window values/header lengths are received
5330 * (detected by checking the TCP header against pred_flags)
5331 * - Data is sent in both directions. Fast path only supports pure senders
5332 * or pure receivers (this means either the sequence number or the ack
5333 * value must stay constant)
5334 * - Unexpected TCP option.
5335 *
5336 * When these conditions are not satisfied it drops into a standard
5337 * receive procedure patterned after RFC793 to handle all cases.
5338 * The first three cases are guaranteed by proper pred_flags setting,
5339 * the rest is checked inline. Fast processing is turned on in
5340 * tcp_data_queue when everything is OK.
5341 */
5342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5343 const struct tcphdr *th, unsigned int len)
5344 {
5345 struct tcp_sock *tp = tcp_sk(sk);
5346
5347 if (unlikely(!sk->sk_rx_dst))
5348 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5349 /*
5350 * Header prediction.
5351 * The code loosely follows the one in the famous
5352 * "30 instruction TCP receive" Van Jacobson mail.
5353 *
5354 * Van's trick is to deposit buffers into socket queue
5355 * on a device interrupt, to call tcp_recv function
5356 * on the receive process context and checksum and copy
5357 * the buffer to user space. smart...
5358 *
5359 * Our current scheme is not silly either but we take the
5360 * extra cost of the net_bh soft interrupt processing...
5361 * We do checksum and copy also but from device to kernel.
5362 */
5363
5364 tp->rx_opt.saw_tstamp = 0;
5365
5366 /* pred_flags is 0xS?10 << 16 + snd_wnd
5367 * if header_prediction is to be made
5368 * 'S' will always be tp->tcp_header_len >> 2
5369 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5370 * turn it off (when there are holes in the receive
5371 * space for instance)
5372 * PSH flag is ignored.
5373 */
5374
5375 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5376 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5377 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5378 int tcp_header_len = tp->tcp_header_len;
5379
5380 /* Timestamp header prediction: tcp_header_len
5381 * is automatically equal to th->doff*4 due to pred_flags
5382 * match.
5383 */
5384
5385 /* Check timestamp */
5386 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5387 /* No? Slow path! */
5388 if (!tcp_parse_aligned_timestamp(tp, th))
5389 goto slow_path;
5390
5391 /* If PAWS failed, check it more carefully in slow path */
5392 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5393 goto slow_path;
5394
5395 /* DO NOT update ts_recent here, if checksum fails
5396 * and timestamp was corrupted part, it will result
5397 * in a hung connection since we will drop all
5398 * future packets due to the PAWS test.
5399 */
5400 }
5401
5402 if (len <= tcp_header_len) {
5403 /* Bulk data transfer: sender */
5404 if (len == tcp_header_len) {
5405 /* Predicted packet is in window by definition.
5406 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5407 * Hence, check seq<=rcv_wup reduces to:
5408 */
5409 if (tcp_header_len ==
5410 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5411 tp->rcv_nxt == tp->rcv_wup)
5412 tcp_store_ts_recent(tp);
5413
5414 /* We know that such packets are checksummed
5415 * on entry.
5416 */
5417 tcp_ack(sk, skb, 0);
5418 __kfree_skb(skb);
5419 tcp_data_snd_check(sk);
5420 return;
5421 } else { /* Header too small */
5422 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5423 goto discard;
5424 }
5425 } else {
5426 int eaten = 0;
5427 bool fragstolen = false;
5428
5429 if (tp->ucopy.task == current &&
5430 tp->copied_seq == tp->rcv_nxt &&
5431 len - tcp_header_len <= tp->ucopy.len &&
5432 sock_owned_by_user(sk)) {
5433 __set_current_state(TASK_RUNNING);
5434
5435 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5436 /* Predicted packet is in window by definition.
5437 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5438 * Hence, check seq<=rcv_wup reduces to:
5439 */
5440 if (tcp_header_len ==
5441 (sizeof(struct tcphdr) +
5442 TCPOLEN_TSTAMP_ALIGNED) &&
5443 tp->rcv_nxt == tp->rcv_wup)
5444 tcp_store_ts_recent(tp);
5445
5446 tcp_rcv_rtt_measure_ts(sk, skb);
5447
5448 __skb_pull(skb, tcp_header_len);
5449 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5450 NET_INC_STATS(sock_net(sk),
5451 LINUX_MIB_TCPHPHITSTOUSER);
5452 eaten = 1;
5453 }
5454 }
5455 if (!eaten) {
5456 if (tcp_checksum_complete(skb))
5457 goto csum_error;
5458
5459 if ((int)skb->truesize > sk->sk_forward_alloc)
5460 goto step5;
5461
5462 /* Predicted packet is in window by definition.
5463 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5464 * Hence, check seq<=rcv_wup reduces to:
5465 */
5466 if (tcp_header_len ==
5467 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5468 tp->rcv_nxt == tp->rcv_wup)
5469 tcp_store_ts_recent(tp);
5470
5471 tcp_rcv_rtt_measure_ts(sk, skb);
5472
5473 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5474
5475 /* Bulk data transfer: receiver */
5476 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5477 &fragstolen);
5478 }
5479
5480 tcp_event_data_recv(sk, skb);
5481
5482 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5483 /* Well, only one small jumplet in fast path... */
5484 tcp_ack(sk, skb, FLAG_DATA);
5485 tcp_data_snd_check(sk);
5486 if (!inet_csk_ack_scheduled(sk))
5487 goto no_ack;
5488 }
5489
5490 __tcp_ack_snd_check(sk, 0);
5491 no_ack:
5492 if (eaten)
5493 kfree_skb_partial(skb, fragstolen);
5494 sk->sk_data_ready(sk);
5495 return;
5496 }
5497 }
5498
5499 slow_path:
5500 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5501 goto csum_error;
5502
5503 if (!th->ack && !th->rst && !th->syn)
5504 goto discard;
5505
5506 /*
5507 * Standard slow path.
5508 */
5509
5510 if (!tcp_validate_incoming(sk, skb, th, 1))
5511 return;
5512
5513 step5:
5514 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5515 goto discard;
5516
5517 tcp_rcv_rtt_measure_ts(sk, skb);
5518
5519 /* Process urgent data. */
5520 tcp_urg(sk, skb, th);
5521
5522 /* step 7: process the segment text */
5523 tcp_data_queue(sk, skb);
5524
5525 tcp_data_snd_check(sk);
5526 tcp_ack_snd_check(sk);
5527 return;
5528
5529 csum_error:
5530 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5531 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5532
5533 discard:
5534 tcp_drop(sk, skb);
5535 }
5536 EXPORT_SYMBOL(tcp_rcv_established);
5537
5538 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5539 {
5540 struct tcp_sock *tp = tcp_sk(sk);
5541 struct inet_connection_sock *icsk = inet_csk(sk);
5542
5543 tcp_set_state(sk, TCP_ESTABLISHED);
5544 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5545
5546 if (skb) {
5547 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5548 security_inet_conn_established(sk, skb);
5549 }
5550
5551 /* Make sure socket is routed, for correct metrics. */
5552 icsk->icsk_af_ops->rebuild_header(sk);
5553
5554 tcp_init_metrics(sk);
5555
5556 tcp_init_congestion_control(sk);
5557
5558 /* Prevent spurious tcp_cwnd_restart() on first data
5559 * packet.
5560 */
5561 tp->lsndtime = tcp_time_stamp;
5562
5563 tcp_init_buffer_space(sk);
5564
5565 if (sock_flag(sk, SOCK_KEEPOPEN))
5566 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5567
5568 if (!tp->rx_opt.snd_wscale)
5569 __tcp_fast_path_on(tp, tp->snd_wnd);
5570 else
5571 tp->pred_flags = 0;
5572
5573 if (!sock_flag(sk, SOCK_DEAD)) {
5574 sk->sk_state_change(sk);
5575 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5576 }
5577 }
5578
5579 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5580 struct tcp_fastopen_cookie *cookie)
5581 {
5582 struct tcp_sock *tp = tcp_sk(sk);
5583 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5584 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5585 bool syn_drop = false;
5586
5587 if (mss == tp->rx_opt.user_mss) {
5588 struct tcp_options_received opt;
5589
5590 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5591 tcp_clear_options(&opt);
5592 opt.user_mss = opt.mss_clamp = 0;
5593 tcp_parse_options(synack, &opt, 0, NULL);
5594 mss = opt.mss_clamp;
5595 }
5596
5597 if (!tp->syn_fastopen) {
5598 /* Ignore an unsolicited cookie */
5599 cookie->len = -1;
5600 } else if (tp->total_retrans) {
5601 /* SYN timed out and the SYN-ACK neither has a cookie nor
5602 * acknowledges data. Presumably the remote received only
5603 * the retransmitted (regular) SYNs: either the original
5604 * SYN-data or the corresponding SYN-ACK was dropped.
5605 */
5606 syn_drop = (cookie->len < 0 && data);
5607 } else if (cookie->len < 0 && !tp->syn_data) {
5608 /* We requested a cookie but didn't get it. If we did not use
5609 * the (old) exp opt format then try so next time (try_exp=1).
5610 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5611 */
5612 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5613 }
5614
5615 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5616
5617 if (data) { /* Retransmit unacked data in SYN */
5618 tcp_for_write_queue_from(data, sk) {
5619 if (data == tcp_send_head(sk) ||
5620 __tcp_retransmit_skb(sk, data, 1))
5621 break;
5622 }
5623 tcp_rearm_rto(sk);
5624 NET_INC_STATS(sock_net(sk),
5625 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5626 return true;
5627 }
5628 tp->syn_data_acked = tp->syn_data;
5629 if (tp->syn_data_acked)
5630 NET_INC_STATS(sock_net(sk),
5631 LINUX_MIB_TCPFASTOPENACTIVE);
5632
5633 tcp_fastopen_add_skb(sk, synack);
5634
5635 return false;
5636 }
5637
5638 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5639 const struct tcphdr *th)
5640 {
5641 struct inet_connection_sock *icsk = inet_csk(sk);
5642 struct tcp_sock *tp = tcp_sk(sk);
5643 struct tcp_fastopen_cookie foc = { .len = -1 };
5644 int saved_clamp = tp->rx_opt.mss_clamp;
5645
5646 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5647 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5648 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5649
5650 if (th->ack) {
5651 /* rfc793:
5652 * "If the state is SYN-SENT then
5653 * first check the ACK bit
5654 * If the ACK bit is set
5655 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5656 * a reset (unless the RST bit is set, if so drop
5657 * the segment and return)"
5658 */
5659 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5660 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5661 goto reset_and_undo;
5662
5663 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5664 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5665 tcp_time_stamp)) {
5666 NET_INC_STATS(sock_net(sk),
5667 LINUX_MIB_PAWSACTIVEREJECTED);
5668 goto reset_and_undo;
5669 }
5670
5671 /* Now ACK is acceptable.
5672 *
5673 * "If the RST bit is set
5674 * If the ACK was acceptable then signal the user "error:
5675 * connection reset", drop the segment, enter CLOSED state,
5676 * delete TCB, and return."
5677 */
5678
5679 if (th->rst) {
5680 tcp_reset(sk);
5681 goto discard;
5682 }
5683
5684 /* rfc793:
5685 * "fifth, if neither of the SYN or RST bits is set then
5686 * drop the segment and return."
5687 *
5688 * See note below!
5689 * --ANK(990513)
5690 */
5691 if (!th->syn)
5692 goto discard_and_undo;
5693
5694 /* rfc793:
5695 * "If the SYN bit is on ...
5696 * are acceptable then ...
5697 * (our SYN has been ACKed), change the connection
5698 * state to ESTABLISHED..."
5699 */
5700
5701 tcp_ecn_rcv_synack(tp, th);
5702
5703 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5704 tcp_ack(sk, skb, FLAG_SLOWPATH);
5705
5706 /* Ok.. it's good. Set up sequence numbers and
5707 * move to established.
5708 */
5709 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5710 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5711
5712 /* RFC1323: The window in SYN & SYN/ACK segments is
5713 * never scaled.
5714 */
5715 tp->snd_wnd = ntohs(th->window);
5716
5717 if (!tp->rx_opt.wscale_ok) {
5718 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5719 tp->window_clamp = min(tp->window_clamp, 65535U);
5720 }
5721
5722 if (tp->rx_opt.saw_tstamp) {
5723 tp->rx_opt.tstamp_ok = 1;
5724 tp->tcp_header_len =
5725 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5726 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5727 tcp_store_ts_recent(tp);
5728 } else {
5729 tp->tcp_header_len = sizeof(struct tcphdr);
5730 }
5731
5732 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5733 tcp_enable_fack(tp);
5734
5735 tcp_mtup_init(sk);
5736 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5737 tcp_initialize_rcv_mss(sk);
5738
5739 /* Remember, tcp_poll() does not lock socket!
5740 * Change state from SYN-SENT only after copied_seq
5741 * is initialized. */
5742 tp->copied_seq = tp->rcv_nxt;
5743
5744 smp_mb();
5745
5746 tcp_finish_connect(sk, skb);
5747
5748 if ((tp->syn_fastopen || tp->syn_data) &&
5749 tcp_rcv_fastopen_synack(sk, skb, &foc))
5750 return -1;
5751
5752 if (sk->sk_write_pending ||
5753 icsk->icsk_accept_queue.rskq_defer_accept ||
5754 icsk->icsk_ack.pingpong) {
5755 /* Save one ACK. Data will be ready after
5756 * several ticks, if write_pending is set.
5757 *
5758 * It may be deleted, but with this feature tcpdumps
5759 * look so _wonderfully_ clever, that I was not able
5760 * to stand against the temptation 8) --ANK
5761 */
5762 inet_csk_schedule_ack(sk);
5763 tcp_enter_quickack_mode(sk);
5764 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5765 TCP_DELACK_MAX, TCP_RTO_MAX);
5766
5767 discard:
5768 tcp_drop(sk, skb);
5769 return 0;
5770 } else {
5771 tcp_send_ack(sk);
5772 }
5773 return -1;
5774 }
5775
5776 /* No ACK in the segment */
5777
5778 if (th->rst) {
5779 /* rfc793:
5780 * "If the RST bit is set
5781 *
5782 * Otherwise (no ACK) drop the segment and return."
5783 */
5784
5785 goto discard_and_undo;
5786 }
5787
5788 /* PAWS check. */
5789 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5790 tcp_paws_reject(&tp->rx_opt, 0))
5791 goto discard_and_undo;
5792
5793 if (th->syn) {
5794 /* We see SYN without ACK. It is attempt of
5795 * simultaneous connect with crossed SYNs.
5796 * Particularly, it can be connect to self.
5797 */
5798 tcp_set_state(sk, TCP_SYN_RECV);
5799
5800 if (tp->rx_opt.saw_tstamp) {
5801 tp->rx_opt.tstamp_ok = 1;
5802 tcp_store_ts_recent(tp);
5803 tp->tcp_header_len =
5804 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5805 } else {
5806 tp->tcp_header_len = sizeof(struct tcphdr);
5807 }
5808
5809 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5810 tp->copied_seq = tp->rcv_nxt;
5811 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5812
5813 /* RFC1323: The window in SYN & SYN/ACK segments is
5814 * never scaled.
5815 */
5816 tp->snd_wnd = ntohs(th->window);
5817 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5818 tp->max_window = tp->snd_wnd;
5819
5820 tcp_ecn_rcv_syn(tp, th);
5821
5822 tcp_mtup_init(sk);
5823 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5824 tcp_initialize_rcv_mss(sk);
5825
5826 tcp_send_synack(sk);
5827 #if 0
5828 /* Note, we could accept data and URG from this segment.
5829 * There are no obstacles to make this (except that we must
5830 * either change tcp_recvmsg() to prevent it from returning data
5831 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5832 *
5833 * However, if we ignore data in ACKless segments sometimes,
5834 * we have no reasons to accept it sometimes.
5835 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5836 * is not flawless. So, discard packet for sanity.
5837 * Uncomment this return to process the data.
5838 */
5839 return -1;
5840 #else
5841 goto discard;
5842 #endif
5843 }
5844 /* "fifth, if neither of the SYN or RST bits is set then
5845 * drop the segment and return."
5846 */
5847
5848 discard_and_undo:
5849 tcp_clear_options(&tp->rx_opt);
5850 tp->rx_opt.mss_clamp = saved_clamp;
5851 goto discard;
5852
5853 reset_and_undo:
5854 tcp_clear_options(&tp->rx_opt);
5855 tp->rx_opt.mss_clamp = saved_clamp;
5856 return 1;
5857 }
5858
5859 /*
5860 * This function implements the receiving procedure of RFC 793 for
5861 * all states except ESTABLISHED and TIME_WAIT.
5862 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5863 * address independent.
5864 */
5865
5866 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5867 {
5868 struct tcp_sock *tp = tcp_sk(sk);
5869 struct inet_connection_sock *icsk = inet_csk(sk);
5870 const struct tcphdr *th = tcp_hdr(skb);
5871 struct request_sock *req;
5872 int queued = 0;
5873 bool acceptable;
5874
5875 switch (sk->sk_state) {
5876 case TCP_CLOSE:
5877 goto discard;
5878
5879 case TCP_LISTEN:
5880 if (th->ack)
5881 return 1;
5882
5883 if (th->rst)
5884 goto discard;
5885
5886 if (th->syn) {
5887 if (th->fin)
5888 goto discard;
5889 /* It is possible that we process SYN packets from backlog,
5890 * so we need to make sure to disable BH right there.
5891 */
5892 local_bh_disable();
5893 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5894 local_bh_enable();
5895
5896 if (!acceptable)
5897 return 1;
5898 consume_skb(skb);
5899 return 0;
5900 }
5901 goto discard;
5902
5903 case TCP_SYN_SENT:
5904 tp->rx_opt.saw_tstamp = 0;
5905 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5906 if (queued >= 0)
5907 return queued;
5908
5909 /* Do step6 onward by hand. */
5910 tcp_urg(sk, skb, th);
5911 __kfree_skb(skb);
5912 tcp_data_snd_check(sk);
5913 return 0;
5914 }
5915
5916 tp->rx_opt.saw_tstamp = 0;
5917 req = tp->fastopen_rsk;
5918 if (req) {
5919 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5920 sk->sk_state != TCP_FIN_WAIT1);
5921
5922 if (!tcp_check_req(sk, skb, req, true))
5923 goto discard;
5924 }
5925
5926 if (!th->ack && !th->rst && !th->syn)
5927 goto discard;
5928
5929 if (!tcp_validate_incoming(sk, skb, th, 0))
5930 return 0;
5931
5932 /* step 5: check the ACK field */
5933 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5934 FLAG_UPDATE_TS_RECENT) > 0;
5935
5936 switch (sk->sk_state) {
5937 case TCP_SYN_RECV:
5938 if (!acceptable)
5939 return 1;
5940
5941 if (!tp->srtt_us)
5942 tcp_synack_rtt_meas(sk, req);
5943
5944 /* Once we leave TCP_SYN_RECV, we no longer need req
5945 * so release it.
5946 */
5947 if (req) {
5948 inet_csk(sk)->icsk_retransmits = 0;
5949 reqsk_fastopen_remove(sk, req, false);
5950 } else {
5951 /* Make sure socket is routed, for correct metrics. */
5952 icsk->icsk_af_ops->rebuild_header(sk);
5953 tcp_init_congestion_control(sk);
5954
5955 tcp_mtup_init(sk);
5956 tp->copied_seq = tp->rcv_nxt;
5957 tcp_init_buffer_space(sk);
5958 }
5959 smp_mb();
5960 tcp_set_state(sk, TCP_ESTABLISHED);
5961 sk->sk_state_change(sk);
5962
5963 /* Note, that this wakeup is only for marginal crossed SYN case.
5964 * Passively open sockets are not waked up, because
5965 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5966 */
5967 if (sk->sk_socket)
5968 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5969
5970 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5971 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5972 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5973
5974 if (tp->rx_opt.tstamp_ok)
5975 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5976
5977 if (req) {
5978 /* Re-arm the timer because data may have been sent out.
5979 * This is similar to the regular data transmission case
5980 * when new data has just been ack'ed.
5981 *
5982 * (TFO) - we could try to be more aggressive and
5983 * retransmitting any data sooner based on when they
5984 * are sent out.
5985 */
5986 tcp_rearm_rto(sk);
5987 } else
5988 tcp_init_metrics(sk);
5989
5990 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5991 tcp_update_pacing_rate(sk);
5992
5993 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5994 tp->lsndtime = tcp_time_stamp;
5995
5996 tcp_initialize_rcv_mss(sk);
5997 tcp_fast_path_on(tp);
5998 break;
5999
6000 case TCP_FIN_WAIT1: {
6001 int tmo;
6002
6003 /* If we enter the TCP_FIN_WAIT1 state and we are a
6004 * Fast Open socket and this is the first acceptable
6005 * ACK we have received, this would have acknowledged
6006 * our SYNACK so stop the SYNACK timer.
6007 */
6008 if (req) {
6009 /* Return RST if ack_seq is invalid.
6010 * Note that RFC793 only says to generate a
6011 * DUPACK for it but for TCP Fast Open it seems
6012 * better to treat this case like TCP_SYN_RECV
6013 * above.
6014 */
6015 if (!acceptable)
6016 return 1;
6017 /* We no longer need the request sock. */
6018 reqsk_fastopen_remove(sk, req, false);
6019 tcp_rearm_rto(sk);
6020 }
6021 if (tp->snd_una != tp->write_seq)
6022 break;
6023
6024 tcp_set_state(sk, TCP_FIN_WAIT2);
6025 sk->sk_shutdown |= SEND_SHUTDOWN;
6026
6027 sk_dst_confirm(sk);
6028
6029 if (!sock_flag(sk, SOCK_DEAD)) {
6030 /* Wake up lingering close() */
6031 sk->sk_state_change(sk);
6032 break;
6033 }
6034
6035 if (tp->linger2 < 0 ||
6036 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6038 tcp_done(sk);
6039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 return 1;
6041 }
6042
6043 tmo = tcp_fin_time(sk);
6044 if (tmo > TCP_TIMEWAIT_LEN) {
6045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6046 } else if (th->fin || sock_owned_by_user(sk)) {
6047 /* Bad case. We could lose such FIN otherwise.
6048 * It is not a big problem, but it looks confusing
6049 * and not so rare event. We still can lose it now,
6050 * if it spins in bh_lock_sock(), but it is really
6051 * marginal case.
6052 */
6053 inet_csk_reset_keepalive_timer(sk, tmo);
6054 } else {
6055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6056 goto discard;
6057 }
6058 break;
6059 }
6060
6061 case TCP_CLOSING:
6062 if (tp->snd_una == tp->write_seq) {
6063 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6064 goto discard;
6065 }
6066 break;
6067
6068 case TCP_LAST_ACK:
6069 if (tp->snd_una == tp->write_seq) {
6070 tcp_update_metrics(sk);
6071 tcp_done(sk);
6072 goto discard;
6073 }
6074 break;
6075 }
6076
6077 /* step 6: check the URG bit */
6078 tcp_urg(sk, skb, th);
6079
6080 /* step 7: process the segment text */
6081 switch (sk->sk_state) {
6082 case TCP_CLOSE_WAIT:
6083 case TCP_CLOSING:
6084 case TCP_LAST_ACK:
6085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6086 break;
6087 case TCP_FIN_WAIT1:
6088 case TCP_FIN_WAIT2:
6089 /* RFC 793 says to queue data in these states,
6090 * RFC 1122 says we MUST send a reset.
6091 * BSD 4.4 also does reset.
6092 */
6093 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6094 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6095 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6097 tcp_reset(sk);
6098 return 1;
6099 }
6100 }
6101 /* Fall through */
6102 case TCP_ESTABLISHED:
6103 tcp_data_queue(sk, skb);
6104 queued = 1;
6105 break;
6106 }
6107
6108 /* tcp_data could move socket to TIME-WAIT */
6109 if (sk->sk_state != TCP_CLOSE) {
6110 tcp_data_snd_check(sk);
6111 tcp_ack_snd_check(sk);
6112 }
6113
6114 if (!queued) {
6115 discard:
6116 tcp_drop(sk, skb);
6117 }
6118 return 0;
6119 }
6120 EXPORT_SYMBOL(tcp_rcv_state_process);
6121
6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6123 {
6124 struct inet_request_sock *ireq = inet_rsk(req);
6125
6126 if (family == AF_INET)
6127 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6128 &ireq->ir_rmt_addr, port);
6129 #if IS_ENABLED(CONFIG_IPV6)
6130 else if (family == AF_INET6)
6131 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6132 &ireq->ir_v6_rmt_addr, port);
6133 #endif
6134 }
6135
6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6137 *
6138 * If we receive a SYN packet with these bits set, it means a
6139 * network is playing bad games with TOS bits. In order to
6140 * avoid possible false congestion notifications, we disable
6141 * TCP ECN negotiation.
6142 *
6143 * Exception: tcp_ca wants ECN. This is required for DCTCP
6144 * congestion control: Linux DCTCP asserts ECT on all packets,
6145 * including SYN, which is most optimal solution; however,
6146 * others, such as FreeBSD do not.
6147 */
6148 static void tcp_ecn_create_request(struct request_sock *req,
6149 const struct sk_buff *skb,
6150 const struct sock *listen_sk,
6151 const struct dst_entry *dst)
6152 {
6153 const struct tcphdr *th = tcp_hdr(skb);
6154 const struct net *net = sock_net(listen_sk);
6155 bool th_ecn = th->ece && th->cwr;
6156 bool ect, ecn_ok;
6157 u32 ecn_ok_dst;
6158
6159 if (!th_ecn)
6160 return;
6161
6162 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6163 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6164 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6165
6166 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6167 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6168 inet_rsk(req)->ecn_ok = 1;
6169 }
6170
6171 static void tcp_openreq_init(struct request_sock *req,
6172 const struct tcp_options_received *rx_opt,
6173 struct sk_buff *skb, const struct sock *sk)
6174 {
6175 struct inet_request_sock *ireq = inet_rsk(req);
6176
6177 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6178 req->cookie_ts = 0;
6179 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6180 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6181 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6182 tcp_rsk(req)->last_oow_ack_time = 0;
6183 req->mss = rx_opt->mss_clamp;
6184 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6185 ireq->tstamp_ok = rx_opt->tstamp_ok;
6186 ireq->sack_ok = rx_opt->sack_ok;
6187 ireq->snd_wscale = rx_opt->snd_wscale;
6188 ireq->wscale_ok = rx_opt->wscale_ok;
6189 ireq->acked = 0;
6190 ireq->ecn_ok = 0;
6191 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6192 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6193 ireq->ir_mark = inet_request_mark(sk, skb);
6194 }
6195
6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6197 struct sock *sk_listener,
6198 bool attach_listener)
6199 {
6200 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6201 attach_listener);
6202
6203 if (req) {
6204 struct inet_request_sock *ireq = inet_rsk(req);
6205
6206 kmemcheck_annotate_bitfield(ireq, flags);
6207 ireq->opt = NULL;
6208 #if IS_ENABLED(CONFIG_IPV6)
6209 ireq->pktopts = NULL;
6210 #endif
6211 atomic64_set(&ireq->ir_cookie, 0);
6212 ireq->ireq_state = TCP_NEW_SYN_RECV;
6213 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6214 ireq->ireq_family = sk_listener->sk_family;
6215 }
6216
6217 return req;
6218 }
6219 EXPORT_SYMBOL(inet_reqsk_alloc);
6220
6221 /*
6222 * Return true if a syncookie should be sent
6223 */
6224 static bool tcp_syn_flood_action(const struct sock *sk,
6225 const struct sk_buff *skb,
6226 const char *proto)
6227 {
6228 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6229 const char *msg = "Dropping request";
6230 bool want_cookie = false;
6231 struct net *net = sock_net(sk);
6232
6233 #ifdef CONFIG_SYN_COOKIES
6234 if (net->ipv4.sysctl_tcp_syncookies) {
6235 msg = "Sending cookies";
6236 want_cookie = true;
6237 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6238 } else
6239 #endif
6240 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6241
6242 if (!queue->synflood_warned &&
6243 net->ipv4.sysctl_tcp_syncookies != 2 &&
6244 xchg(&queue->synflood_warned, 1) == 0)
6245 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6246 proto, ntohs(tcp_hdr(skb)->dest), msg);
6247
6248 return want_cookie;
6249 }
6250
6251 static void tcp_reqsk_record_syn(const struct sock *sk,
6252 struct request_sock *req,
6253 const struct sk_buff *skb)
6254 {
6255 if (tcp_sk(sk)->save_syn) {
6256 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6257 u32 *copy;
6258
6259 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6260 if (copy) {
6261 copy[0] = len;
6262 memcpy(&copy[1], skb_network_header(skb), len);
6263 req->saved_syn = copy;
6264 }
6265 }
6266 }
6267
6268 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6269 const struct tcp_request_sock_ops *af_ops,
6270 struct sock *sk, struct sk_buff *skb)
6271 {
6272 struct tcp_fastopen_cookie foc = { .len = -1 };
6273 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6274 struct tcp_options_received tmp_opt;
6275 struct tcp_sock *tp = tcp_sk(sk);
6276 struct net *net = sock_net(sk);
6277 struct sock *fastopen_sk = NULL;
6278 struct dst_entry *dst = NULL;
6279 struct request_sock *req;
6280 bool want_cookie = false;
6281 struct flowi fl;
6282
6283 /* TW buckets are converted to open requests without
6284 * limitations, they conserve resources and peer is
6285 * evidently real one.
6286 */
6287 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6288 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6289 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6290 if (!want_cookie)
6291 goto drop;
6292 }
6293
6294 if (sk_acceptq_is_full(sk)) {
6295 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6296 goto drop;
6297 }
6298
6299 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6300 if (!req)
6301 goto drop;
6302
6303 tcp_rsk(req)->af_specific = af_ops;
6304 tcp_rsk(req)->ts_off = 0;
6305
6306 tcp_clear_options(&tmp_opt);
6307 tmp_opt.mss_clamp = af_ops->mss_clamp;
6308 tmp_opt.user_mss = tp->rx_opt.user_mss;
6309 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6310
6311 if (want_cookie && !tmp_opt.saw_tstamp)
6312 tcp_clear_options(&tmp_opt);
6313
6314 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6315 tcp_openreq_init(req, &tmp_opt, skb, sk);
6316 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6317
6318 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6319 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6320
6321 af_ops->init_req(req, sk, skb);
6322
6323 if (security_inet_conn_request(sk, skb, req))
6324 goto drop_and_free;
6325
6326 if (isn && tmp_opt.tstamp_ok)
6327 af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off);
6328
6329 if (!want_cookie && !isn) {
6330 /* Kill the following clause, if you dislike this way. */
6331 if (!net->ipv4.sysctl_tcp_syncookies &&
6332 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6333 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6334 !tcp_peer_is_proven(req, dst)) {
6335 /* Without syncookies last quarter of
6336 * backlog is filled with destinations,
6337 * proven to be alive.
6338 * It means that we continue to communicate
6339 * to destinations, already remembered
6340 * to the moment of synflood.
6341 */
6342 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6343 rsk_ops->family);
6344 goto drop_and_release;
6345 }
6346
6347 isn = af_ops->init_seq_tsoff(skb, &tcp_rsk(req)->ts_off);
6348 }
6349 if (!dst) {
6350 dst = af_ops->route_req(sk, &fl, req);
6351 if (!dst)
6352 goto drop_and_free;
6353 }
6354
6355 tcp_ecn_create_request(req, skb, sk, dst);
6356
6357 if (want_cookie) {
6358 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6359 tcp_rsk(req)->ts_off = 0;
6360 req->cookie_ts = tmp_opt.tstamp_ok;
6361 if (!tmp_opt.tstamp_ok)
6362 inet_rsk(req)->ecn_ok = 0;
6363 }
6364
6365 tcp_rsk(req)->snt_isn = isn;
6366 tcp_rsk(req)->txhash = net_tx_rndhash();
6367 tcp_openreq_init_rwin(req, sk, dst);
6368 if (!want_cookie) {
6369 tcp_reqsk_record_syn(sk, req, skb);
6370 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6371 }
6372 if (fastopen_sk) {
6373 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6374 &foc, TCP_SYNACK_FASTOPEN);
6375 /* Add the child socket directly into the accept queue */
6376 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6377 sk->sk_data_ready(sk);
6378 bh_unlock_sock(fastopen_sk);
6379 sock_put(fastopen_sk);
6380 } else {
6381 tcp_rsk(req)->tfo_listener = false;
6382 if (!want_cookie)
6383 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6384 af_ops->send_synack(sk, dst, &fl, req, &foc,
6385 !want_cookie ? TCP_SYNACK_NORMAL :
6386 TCP_SYNACK_COOKIE);
6387 if (want_cookie) {
6388 reqsk_free(req);
6389 return 0;
6390 }
6391 }
6392 reqsk_put(req);
6393 return 0;
6394
6395 drop_and_release:
6396 dst_release(dst);
6397 drop_and_free:
6398 reqsk_free(req);
6399 drop:
6400 tcp_listendrop(sk);
6401 return 0;
6402 }
6403 EXPORT_SYMBOL(tcp_conn_request);