]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
b2fc7163bd402407ae656de841aebf538ca1a326
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79
80 int sysctl_tcp_fack __read_mostly;
81 int sysctl_tcp_max_reordering __read_mostly = 300;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 1;
85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
86
87 /* rfc5961 challenge ack rate limiting */
88 int sysctl_tcp_challenge_ack_limit = 1000;
89
90 int sysctl_tcp_stdurg __read_mostly;
91 int sysctl_tcp_rfc1337 __read_mostly;
92 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
93 int sysctl_tcp_frto __read_mostly = 2;
94 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_early_retrans __read_mostly = 3;
97 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
98
99 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
100 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
101 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
102 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
103 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
104 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
105 #define FLAG_ECE 0x40 /* ECE in this ACK */
106 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
107 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
108 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
109 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
110 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
111 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
112 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
114 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
127
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 unsigned int len)
130 {
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 if (!dev || len >= dev->mtu)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev ? dev->name : "Unknown driver");
143 rcu_read_unlock();
144 }
145 }
146
147 /* Adapt the MSS value used to make delayed ack decision to the
148 * real world.
149 */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 struct inet_connection_sock *icsk = inet_csk(sk);
153 const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 unsigned int len;
155
156 icsk->icsk_ack.last_seg_size = 0;
157
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
160 */
161 len = skb_shinfo(skb)->gso_size ? : skb->len;
162 if (len >= icsk->icsk_ack.rcv_mss) {
163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 tcp_sk(sk)->advmss);
165 /* Account for possibly-removed options */
166 if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 MAX_TCP_OPTION_SPACE))
168 tcp_gro_dev_warn(sk, skb, len);
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
175 len += skb->data - skb_transport_header(skb);
176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
190 if (len == lss) {
191 icsk->icsk_ack.rcv_mss = len;
192 return;
193 }
194 }
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 }
199 }
200
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 struct inet_connection_sock *icsk = inet_csk(sk);
204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205
206 if (quickacks == 0)
207 quickacks = 2;
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
222 */
223
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 const struct inet_connection_sock *icsk = inet_csk(sk);
227 const struct dst_entry *dst = __sk_dst_get(sk);
228
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 if (tp->ecn_flags & TCP_ECN_OK)
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 case INET_ECN_NOT_ECT:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
257 */
258 if (tp->ecn_flags & TCP_ECN_SEEN)
259 tcp_enter_quickack_mode((struct sock *)tp);
260 break;
261 case INET_ECN_CE:
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 }
270 tp->ecn_flags |= TCP_ECN_SEEN;
271 break;
272 default:
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 tp->ecn_flags |= TCP_ECN_SEEN;
276 break;
277 }
278 }
279
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
284 }
285
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 return true;
302 return false;
303 }
304
305 /* Buffer size and advertised window tuning.
306 *
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308 */
309
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 const struct tcp_sock *tp = tcp_sk(sk);
313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 int sndmem, per_mss;
315 u32 nr_segs;
316
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
319 */
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 MAX_TCP_HEADER +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
326
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
333 */
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
336
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 *
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
352 *
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
360 *
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
364 */
365
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370 /* Optimize this! */
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377
378 truesize >>= 1;
379 window >>= 1;
380 }
381 return 0;
382 }
383
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 struct tcp_sock *tp = tcp_sk(sk);
387
388 /* Check #1 */
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 !tcp_under_memory_pressure(sk)) {
392 int incr;
393
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
396 */
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
398 incr = 2 * tp->advmss;
399 else
400 incr = __tcp_grow_window(sk, skb);
401
402 if (incr) {
403 incr = max_t(int, incr, 2 * skb->len);
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 tp->window_clamp);
406 inet_csk(sk)->icsk_ack.quick |= 1;
407 }
408 }
409 }
410
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 u32 mss = tcp_sk(sk)->advmss;
415 int rcvmem;
416
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
419
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
422 */
423 if (sysctl_tcp_moderate_rcvbuf)
424 rcvmem <<= 2;
425
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429
430 /* 4. Try to fixup all. It is made immediately after connection enters
431 * established state.
432 */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 tcp_sndbuf_expand(sk);
442
443 tp->rcvq_space.space = tp->rcv_wnd;
444 tcp_mstamp_refresh(tp);
445 tp->rcvq_space.time = tp->tcp_mstamp;
446 tp->rcvq_space.seq = tp->copied_seq;
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_jiffies32;
467 }
468
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
474
475 icsk->icsk_ack.quick = 0;
476
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
483 }
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507
508 /* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 *
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
546 } else {
547 /* No previous measure. */
548 new_sample = m << 3;
549 }
550
551 tp->rcv_rtt_est.rtt_us = new_sample;
552 }
553
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 u32 delta_us;
557
558 if (tp->rcv_rtt_est.time == 0)
559 goto new_measure;
560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 return;
562 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
563 tcp_rcv_rtt_update(tp, delta_us, 1);
564
565 new_measure:
566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 }
569
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 const struct sk_buff *skb)
572 {
573 struct tcp_sock *tp = tcp_sk(sk);
574
575 if (tp->rx_opt.rcv_tsecr &&
576 (TCP_SKB_CB(skb)->end_seq -
577 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
578 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
579 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
580
581 tcp_rcv_rtt_update(tp, delta_us, 0);
582 }
583 }
584
585 /*
586 * This function should be called every time data is copied to user space.
587 * It calculates the appropriate TCP receive buffer space.
588 */
589 void tcp_rcv_space_adjust(struct sock *sk)
590 {
591 struct tcp_sock *tp = tcp_sk(sk);
592 int time;
593 int copied;
594
595 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
596 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
597 return;
598
599 /* Number of bytes copied to user in last RTT */
600 copied = tp->copied_seq - tp->rcvq_space.seq;
601 if (copied <= tp->rcvq_space.space)
602 goto new_measure;
603
604 /* A bit of theory :
605 * copied = bytes received in previous RTT, our base window
606 * To cope with packet losses, we need a 2x factor
607 * To cope with slow start, and sender growing its cwin by 100 %
608 * every RTT, we need a 4x factor, because the ACK we are sending
609 * now is for the next RTT, not the current one :
610 * <prev RTT . ><current RTT .. ><next RTT .... >
611 */
612
613 if (sysctl_tcp_moderate_rcvbuf &&
614 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
615 int rcvwin, rcvmem, rcvbuf;
616
617 /* minimal window to cope with packet losses, assuming
618 * steady state. Add some cushion because of small variations.
619 */
620 rcvwin = (copied << 1) + 16 * tp->advmss;
621
622 /* If rate increased by 25%,
623 * assume slow start, rcvwin = 3 * copied
624 * If rate increased by 50%,
625 * assume sender can use 2x growth, rcvwin = 4 * copied
626 */
627 if (copied >=
628 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
629 if (copied >=
630 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
631 rcvwin <<= 1;
632 else
633 rcvwin += (rcvwin >> 1);
634 }
635
636 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 while (tcp_win_from_space(rcvmem) < tp->advmss)
638 rcvmem += 128;
639
640 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
641 if (rcvbuf > sk->sk_rcvbuf) {
642 sk->sk_rcvbuf = rcvbuf;
643
644 /* Make the window clamp follow along. */
645 tp->window_clamp = rcvwin;
646 }
647 }
648 tp->rcvq_space.space = copied;
649
650 new_measure:
651 tp->rcvq_space.seq = tp->copied_seq;
652 tp->rcvq_space.time = tp->tcp_mstamp;
653 }
654
655 /* There is something which you must keep in mind when you analyze the
656 * behavior of the tp->ato delayed ack timeout interval. When a
657 * connection starts up, we want to ack as quickly as possible. The
658 * problem is that "good" TCP's do slow start at the beginning of data
659 * transmission. The means that until we send the first few ACK's the
660 * sender will sit on his end and only queue most of his data, because
661 * he can only send snd_cwnd unacked packets at any given time. For
662 * each ACK we send, he increments snd_cwnd and transmits more of his
663 * queue. -DaveM
664 */
665 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
666 {
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct inet_connection_sock *icsk = inet_csk(sk);
669 u32 now;
670
671 inet_csk_schedule_ack(sk);
672
673 tcp_measure_rcv_mss(sk, skb);
674
675 tcp_rcv_rtt_measure(tp);
676
677 now = tcp_jiffies32;
678
679 if (!icsk->icsk_ack.ato) {
680 /* The _first_ data packet received, initialize
681 * delayed ACK engine.
682 */
683 tcp_incr_quickack(sk);
684 icsk->icsk_ack.ato = TCP_ATO_MIN;
685 } else {
686 int m = now - icsk->icsk_ack.lrcvtime;
687
688 if (m <= TCP_ATO_MIN / 2) {
689 /* The fastest case is the first. */
690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
691 } else if (m < icsk->icsk_ack.ato) {
692 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
693 if (icsk->icsk_ack.ato > icsk->icsk_rto)
694 icsk->icsk_ack.ato = icsk->icsk_rto;
695 } else if (m > icsk->icsk_rto) {
696 /* Too long gap. Apparently sender failed to
697 * restart window, so that we send ACKs quickly.
698 */
699 tcp_incr_quickack(sk);
700 sk_mem_reclaim(sk);
701 }
702 }
703 icsk->icsk_ack.lrcvtime = now;
704
705 tcp_ecn_check_ce(tp, skb);
706
707 if (skb->len >= 128)
708 tcp_grow_window(sk, skb);
709 }
710
711 /* Called to compute a smoothed rtt estimate. The data fed to this
712 * routine either comes from timestamps, or from segments that were
713 * known _not_ to have been retransmitted [see Karn/Partridge
714 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
715 * piece by Van Jacobson.
716 * NOTE: the next three routines used to be one big routine.
717 * To save cycles in the RFC 1323 implementation it was better to break
718 * it up into three procedures. -- erics
719 */
720 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
721 {
722 struct tcp_sock *tp = tcp_sk(sk);
723 long m = mrtt_us; /* RTT */
724 u32 srtt = tp->srtt_us;
725
726 /* The following amusing code comes from Jacobson's
727 * article in SIGCOMM '88. Note that rtt and mdev
728 * are scaled versions of rtt and mean deviation.
729 * This is designed to be as fast as possible
730 * m stands for "measurement".
731 *
732 * On a 1990 paper the rto value is changed to:
733 * RTO = rtt + 4 * mdev
734 *
735 * Funny. This algorithm seems to be very broken.
736 * These formulae increase RTO, when it should be decreased, increase
737 * too slowly, when it should be increased quickly, decrease too quickly
738 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
739 * does not matter how to _calculate_ it. Seems, it was trap
740 * that VJ failed to avoid. 8)
741 */
742 if (srtt != 0) {
743 m -= (srtt >> 3); /* m is now error in rtt est */
744 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
745 if (m < 0) {
746 m = -m; /* m is now abs(error) */
747 m -= (tp->mdev_us >> 2); /* similar update on mdev */
748 /* This is similar to one of Eifel findings.
749 * Eifel blocks mdev updates when rtt decreases.
750 * This solution is a bit different: we use finer gain
751 * for mdev in this case (alpha*beta).
752 * Like Eifel it also prevents growth of rto,
753 * but also it limits too fast rto decreases,
754 * happening in pure Eifel.
755 */
756 if (m > 0)
757 m >>= 3;
758 } else {
759 m -= (tp->mdev_us >> 2); /* similar update on mdev */
760 }
761 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
762 if (tp->mdev_us > tp->mdev_max_us) {
763 tp->mdev_max_us = tp->mdev_us;
764 if (tp->mdev_max_us > tp->rttvar_us)
765 tp->rttvar_us = tp->mdev_max_us;
766 }
767 if (after(tp->snd_una, tp->rtt_seq)) {
768 if (tp->mdev_max_us < tp->rttvar_us)
769 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
770 tp->rtt_seq = tp->snd_nxt;
771 tp->mdev_max_us = tcp_rto_min_us(sk);
772 }
773 } else {
774 /* no previous measure. */
775 srtt = m << 3; /* take the measured time to be rtt */
776 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
777 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
778 tp->mdev_max_us = tp->rttvar_us;
779 tp->rtt_seq = tp->snd_nxt;
780 }
781 tp->srtt_us = max(1U, srtt);
782 }
783
784 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
785 * Note: TCP stack does not yet implement pacing.
786 * FQ packet scheduler can be used to implement cheap but effective
787 * TCP pacing, to smooth the burst on large writes when packets
788 * in flight is significantly lower than cwnd (or rwin)
789 */
790 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
791 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
792
793 static void tcp_update_pacing_rate(struct sock *sk)
794 {
795 const struct tcp_sock *tp = tcp_sk(sk);
796 u64 rate;
797
798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800
801 /* current rate is (cwnd * mss) / srtt
802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 *
805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 * end of slow start and should slow down.
808 */
809 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 rate *= sysctl_tcp_pacing_ss_ratio;
811 else
812 rate *= sysctl_tcp_pacing_ca_ratio;
813
814 rate *= max(tp->snd_cwnd, tp->packets_out);
815
816 if (likely(tp->srtt_us))
817 do_div(rate, tp->srtt_us);
818
819 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 * without any lock. We want to make sure compiler wont store
821 * intermediate values in this location.
822 */
823 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
824 sk->sk_max_pacing_rate);
825 }
826
827 /* Calculate rto without backoff. This is the second half of Van Jacobson's
828 * routine referred to above.
829 */
830 static void tcp_set_rto(struct sock *sk)
831 {
832 const struct tcp_sock *tp = tcp_sk(sk);
833 /* Old crap is replaced with new one. 8)
834 *
835 * More seriously:
836 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 * It cannot be less due to utterly erratic ACK generation made
838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 * to do with delayed acks, because at cwnd>2 true delack timeout
840 * is invisible. Actually, Linux-2.4 also generates erratic
841 * ACKs in some circumstances.
842 */
843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
844
845 /* 2. Fixups made earlier cannot be right.
846 * If we do not estimate RTO correctly without them,
847 * all the algo is pure shit and should be replaced
848 * with correct one. It is exactly, which we pretend to do.
849 */
850
851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 * guarantees that rto is higher.
853 */
854 tcp_bound_rto(sk);
855 }
856
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
858 {
859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860
861 if (!cwnd)
862 cwnd = TCP_INIT_CWND;
863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864 }
865
866 /*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
870 void tcp_disable_fack(struct tcp_sock *tp)
871 {
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 }
877
878 /* Take a notice that peer is sending D-SACKs */
879 static void tcp_dsack_seen(struct tcp_sock *tp)
880 {
881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 }
883
884 static void tcp_update_reordering(struct sock *sk, const int metric,
885 const int ts)
886 {
887 struct tcp_sock *tp = tcp_sk(sk);
888 int mib_idx;
889
890 if (WARN_ON_ONCE(metric < 0))
891 return;
892
893 if (metric > tp->reordering) {
894 tp->reordering = min(sysctl_tcp_max_reordering, metric);
895
896 #if FASTRETRANS_DEBUG > 1
897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 tp->reordering,
900 tp->fackets_out,
901 tp->sacked_out,
902 tp->undo_marker ? tp->undo_retrans : 0);
903 #endif
904 tcp_disable_fack(tp);
905 }
906
907 tp->rack.reord = 1;
908
909 /* This exciting event is worth to be remembered. 8) */
910 if (ts)
911 mib_idx = LINUX_MIB_TCPTSREORDER;
912 else if (tcp_is_reno(tp))
913 mib_idx = LINUX_MIB_TCPRENOREORDER;
914 else if (tcp_is_fack(tp))
915 mib_idx = LINUX_MIB_TCPFACKREORDER;
916 else
917 mib_idx = LINUX_MIB_TCPSACKREORDER;
918
919 NET_INC_STATS(sock_net(sk), mib_idx);
920 }
921
922 /* This must be called before lost_out is incremented */
923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 if (!tp->retransmit_skb_hint ||
926 before(TCP_SKB_CB(skb)->seq,
927 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
928 tp->retransmit_skb_hint = skb;
929 }
930
931 /* Sum the number of packets on the wire we have marked as lost.
932 * There are two cases we care about here:
933 * a) Packet hasn't been marked lost (nor retransmitted),
934 * and this is the first loss.
935 * b) Packet has been marked both lost and retransmitted,
936 * and this means we think it was lost again.
937 */
938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 __u8 sacked = TCP_SKB_CB(skb)->sacked;
941
942 if (!(sacked & TCPCB_LOST) ||
943 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
944 tp->lost += tcp_skb_pcount(skb);
945 }
946
947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 tcp_verify_retransmit_hint(tp, skb);
951
952 tp->lost_out += tcp_skb_pcount(skb);
953 tcp_sum_lost(tp, skb);
954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
955 }
956 }
957
958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
959 {
960 tcp_verify_retransmit_hint(tp, skb);
961
962 tcp_sum_lost(tp, skb);
963 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
964 tp->lost_out += tcp_skb_pcount(skb);
965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 }
967 }
968
969 /* This procedure tags the retransmission queue when SACKs arrive.
970 *
971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
972 * Packets in queue with these bits set are counted in variables
973 * sacked_out, retrans_out and lost_out, correspondingly.
974 *
975 * Valid combinations are:
976 * Tag InFlight Description
977 * 0 1 - orig segment is in flight.
978 * S 0 - nothing flies, orig reached receiver.
979 * L 0 - nothing flies, orig lost by net.
980 * R 2 - both orig and retransmit are in flight.
981 * L|R 1 - orig is lost, retransmit is in flight.
982 * S|R 1 - orig reached receiver, retrans is still in flight.
983 * (L|S|R is logically valid, it could occur when L|R is sacked,
984 * but it is equivalent to plain S and code short-curcuits it to S.
985 * L|S is logically invalid, it would mean -1 packet in flight 8))
986 *
987 * These 6 states form finite state machine, controlled by the following events:
988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
990 * 3. Loss detection event of two flavors:
991 * A. Scoreboard estimator decided the packet is lost.
992 * A'. Reno "three dupacks" marks head of queue lost.
993 * A''. Its FACK modification, head until snd.fack is lost.
994 * B. SACK arrives sacking SND.NXT at the moment, when the
995 * segment was retransmitted.
996 * 4. D-SACK added new rule: D-SACK changes any tag to S.
997 *
998 * It is pleasant to note, that state diagram turns out to be commutative,
999 * so that we are allowed not to be bothered by order of our actions,
1000 * when multiple events arrive simultaneously. (see the function below).
1001 *
1002 * Reordering detection.
1003 * --------------------
1004 * Reordering metric is maximal distance, which a packet can be displaced
1005 * in packet stream. With SACKs we can estimate it:
1006 *
1007 * 1. SACK fills old hole and the corresponding segment was not
1008 * ever retransmitted -> reordering. Alas, we cannot use it
1009 * when segment was retransmitted.
1010 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1011 * for retransmitted and already SACKed segment -> reordering..
1012 * Both of these heuristics are not used in Loss state, when we cannot
1013 * account for retransmits accurately.
1014 *
1015 * SACK block validation.
1016 * ----------------------
1017 *
1018 * SACK block range validation checks that the received SACK block fits to
1019 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1020 * Note that SND.UNA is not included to the range though being valid because
1021 * it means that the receiver is rather inconsistent with itself reporting
1022 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1023 * perfectly valid, however, in light of RFC2018 which explicitly states
1024 * that "SACK block MUST reflect the newest segment. Even if the newest
1025 * segment is going to be discarded ...", not that it looks very clever
1026 * in case of head skb. Due to potentional receiver driven attacks, we
1027 * choose to avoid immediate execution of a walk in write queue due to
1028 * reneging and defer head skb's loss recovery to standard loss recovery
1029 * procedure that will eventually trigger (nothing forbids us doing this).
1030 *
1031 * Implements also blockage to start_seq wrap-around. Problem lies in the
1032 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1033 * there's no guarantee that it will be before snd_nxt (n). The problem
1034 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1035 * wrap (s_w):
1036 *
1037 * <- outs wnd -> <- wrapzone ->
1038 * u e n u_w e_w s n_w
1039 * | | | | | | |
1040 * |<------------+------+----- TCP seqno space --------------+---------->|
1041 * ...-- <2^31 ->| |<--------...
1042 * ...---- >2^31 ------>| |<--------...
1043 *
1044 * Current code wouldn't be vulnerable but it's better still to discard such
1045 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1046 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1047 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1048 * equal to the ideal case (infinite seqno space without wrap caused issues).
1049 *
1050 * With D-SACK the lower bound is extended to cover sequence space below
1051 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1052 * again, D-SACK block must not to go across snd_una (for the same reason as
1053 * for the normal SACK blocks, explained above). But there all simplicity
1054 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1055 * fully below undo_marker they do not affect behavior in anyway and can
1056 * therefore be safely ignored. In rare cases (which are more or less
1057 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1058 * fragmentation and packet reordering past skb's retransmission. To consider
1059 * them correctly, the acceptable range must be extended even more though
1060 * the exact amount is rather hard to quantify. However, tp->max_window can
1061 * be used as an exaggerated estimate.
1062 */
1063 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1064 u32 start_seq, u32 end_seq)
1065 {
1066 /* Too far in future, or reversed (interpretation is ambiguous) */
1067 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1068 return false;
1069
1070 /* Nasty start_seq wrap-around check (see comments above) */
1071 if (!before(start_seq, tp->snd_nxt))
1072 return false;
1073
1074 /* In outstanding window? ...This is valid exit for D-SACKs too.
1075 * start_seq == snd_una is non-sensical (see comments above)
1076 */
1077 if (after(start_seq, tp->snd_una))
1078 return true;
1079
1080 if (!is_dsack || !tp->undo_marker)
1081 return false;
1082
1083 /* ...Then it's D-SACK, and must reside below snd_una completely */
1084 if (after(end_seq, tp->snd_una))
1085 return false;
1086
1087 if (!before(start_seq, tp->undo_marker))
1088 return true;
1089
1090 /* Too old */
1091 if (!after(end_seq, tp->undo_marker))
1092 return false;
1093
1094 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1095 * start_seq < undo_marker and end_seq >= undo_marker.
1096 */
1097 return !before(start_seq, end_seq - tp->max_window);
1098 }
1099
1100 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1101 struct tcp_sack_block_wire *sp, int num_sacks,
1102 u32 prior_snd_una)
1103 {
1104 struct tcp_sock *tp = tcp_sk(sk);
1105 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1106 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1107 bool dup_sack = false;
1108
1109 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1110 dup_sack = true;
1111 tcp_dsack_seen(tp);
1112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1113 } else if (num_sacks > 1) {
1114 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1115 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1116
1117 if (!after(end_seq_0, end_seq_1) &&
1118 !before(start_seq_0, start_seq_1)) {
1119 dup_sack = true;
1120 tcp_dsack_seen(tp);
1121 NET_INC_STATS(sock_net(sk),
1122 LINUX_MIB_TCPDSACKOFORECV);
1123 }
1124 }
1125
1126 /* D-SACK for already forgotten data... Do dumb counting. */
1127 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1128 !after(end_seq_0, prior_snd_una) &&
1129 after(end_seq_0, tp->undo_marker))
1130 tp->undo_retrans--;
1131
1132 return dup_sack;
1133 }
1134
1135 struct tcp_sacktag_state {
1136 int reord;
1137 int fack_count;
1138 /* Timestamps for earliest and latest never-retransmitted segment
1139 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1140 * but congestion control should still get an accurate delay signal.
1141 */
1142 u64 first_sackt;
1143 u64 last_sackt;
1144 struct rate_sample *rate;
1145 int flag;
1146 };
1147
1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1149 * the incoming SACK may not exactly match but we can find smaller MSS
1150 * aligned portion of it that matches. Therefore we might need to fragment
1151 * which may fail and creates some hassle (caller must handle error case
1152 * returns).
1153 *
1154 * FIXME: this could be merged to shift decision code
1155 */
1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1157 u32 start_seq, u32 end_seq)
1158 {
1159 int err;
1160 bool in_sack;
1161 unsigned int pkt_len;
1162 unsigned int mss;
1163
1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1165 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1166
1167 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1168 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1169 mss = tcp_skb_mss(skb);
1170 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1171
1172 if (!in_sack) {
1173 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1174 if (pkt_len < mss)
1175 pkt_len = mss;
1176 } else {
1177 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1178 if (pkt_len < mss)
1179 return -EINVAL;
1180 }
1181
1182 /* Round if necessary so that SACKs cover only full MSSes
1183 * and/or the remaining small portion (if present)
1184 */
1185 if (pkt_len > mss) {
1186 unsigned int new_len = (pkt_len / mss) * mss;
1187 if (!in_sack && new_len < pkt_len)
1188 new_len += mss;
1189 pkt_len = new_len;
1190 }
1191
1192 if (pkt_len >= skb->len && !in_sack)
1193 return 0;
1194
1195 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1196 if (err < 0)
1197 return err;
1198 }
1199
1200 return in_sack;
1201 }
1202
1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1204 static u8 tcp_sacktag_one(struct sock *sk,
1205 struct tcp_sacktag_state *state, u8 sacked,
1206 u32 start_seq, u32 end_seq,
1207 int dup_sack, int pcount,
1208 u64 xmit_time)
1209 {
1210 struct tcp_sock *tp = tcp_sk(sk);
1211 int fack_count = state->fack_count;
1212
1213 /* Account D-SACK for retransmitted packet. */
1214 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1215 if (tp->undo_marker && tp->undo_retrans > 0 &&
1216 after(end_seq, tp->undo_marker))
1217 tp->undo_retrans--;
1218 if (sacked & TCPCB_SACKED_ACKED)
1219 state->reord = min(fack_count, state->reord);
1220 }
1221
1222 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1223 if (!after(end_seq, tp->snd_una))
1224 return sacked;
1225
1226 if (!(sacked & TCPCB_SACKED_ACKED)) {
1227 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1228
1229 if (sacked & TCPCB_SACKED_RETRANS) {
1230 /* If the segment is not tagged as lost,
1231 * we do not clear RETRANS, believing
1232 * that retransmission is still in flight.
1233 */
1234 if (sacked & TCPCB_LOST) {
1235 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1236 tp->lost_out -= pcount;
1237 tp->retrans_out -= pcount;
1238 }
1239 } else {
1240 if (!(sacked & TCPCB_RETRANS)) {
1241 /* New sack for not retransmitted frame,
1242 * which was in hole. It is reordering.
1243 */
1244 if (before(start_seq,
1245 tcp_highest_sack_seq(tp)))
1246 state->reord = min(fack_count,
1247 state->reord);
1248 if (!after(end_seq, tp->high_seq))
1249 state->flag |= FLAG_ORIG_SACK_ACKED;
1250 if (state->first_sackt == 0)
1251 state->first_sackt = xmit_time;
1252 state->last_sackt = xmit_time;
1253 }
1254
1255 if (sacked & TCPCB_LOST) {
1256 sacked &= ~TCPCB_LOST;
1257 tp->lost_out -= pcount;
1258 }
1259 }
1260
1261 sacked |= TCPCB_SACKED_ACKED;
1262 state->flag |= FLAG_DATA_SACKED;
1263 tp->sacked_out += pcount;
1264 tp->delivered += pcount; /* Out-of-order packets delivered */
1265
1266 fack_count += pcount;
1267
1268 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1269 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1270 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1271 tp->lost_cnt_hint += pcount;
1272
1273 if (fack_count > tp->fackets_out)
1274 tp->fackets_out = fack_count;
1275 }
1276
1277 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1278 * frames and clear it. undo_retrans is decreased above, L|R frames
1279 * are accounted above as well.
1280 */
1281 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1282 sacked &= ~TCPCB_SACKED_RETRANS;
1283 tp->retrans_out -= pcount;
1284 }
1285
1286 return sacked;
1287 }
1288
1289 /* Shift newly-SACKed bytes from this skb to the immediately previous
1290 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1291 */
1292 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1293 struct tcp_sacktag_state *state,
1294 unsigned int pcount, int shifted, int mss,
1295 bool dup_sack)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1299 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1300 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1301
1302 BUG_ON(!pcount);
1303
1304 /* Adjust counters and hints for the newly sacked sequence
1305 * range but discard the return value since prev is already
1306 * marked. We must tag the range first because the seq
1307 * advancement below implicitly advances
1308 * tcp_highest_sack_seq() when skb is highest_sack.
1309 */
1310 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1311 start_seq, end_seq, dup_sack, pcount,
1312 skb->skb_mstamp);
1313 tcp_rate_skb_delivered(sk, skb, state->rate);
1314
1315 if (skb == tp->lost_skb_hint)
1316 tp->lost_cnt_hint += pcount;
1317
1318 TCP_SKB_CB(prev)->end_seq += shifted;
1319 TCP_SKB_CB(skb)->seq += shifted;
1320
1321 tcp_skb_pcount_add(prev, pcount);
1322 BUG_ON(tcp_skb_pcount(skb) < pcount);
1323 tcp_skb_pcount_add(skb, -pcount);
1324
1325 /* When we're adding to gso_segs == 1, gso_size will be zero,
1326 * in theory this shouldn't be necessary but as long as DSACK
1327 * code can come after this skb later on it's better to keep
1328 * setting gso_size to something.
1329 */
1330 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1331 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1332
1333 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1334 if (tcp_skb_pcount(skb) <= 1)
1335 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1336
1337 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1338 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1339
1340 if (skb->len > 0) {
1341 BUG_ON(!tcp_skb_pcount(skb));
1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1343 return false;
1344 }
1345
1346 /* Whole SKB was eaten :-) */
1347
1348 if (skb == tp->retransmit_skb_hint)
1349 tp->retransmit_skb_hint = prev;
1350 if (skb == tp->lost_skb_hint) {
1351 tp->lost_skb_hint = prev;
1352 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1353 }
1354
1355 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1356 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1357 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1358 TCP_SKB_CB(prev)->end_seq++;
1359
1360 if (skb == tcp_highest_sack(sk))
1361 tcp_advance_highest_sack(sk, skb);
1362
1363 tcp_skb_collapse_tstamp(prev, skb);
1364 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1365 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1366
1367 tcp_unlink_write_queue(skb, sk);
1368 sk_wmem_free_skb(sk, skb);
1369
1370 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1371
1372 return true;
1373 }
1374
1375 /* I wish gso_size would have a bit more sane initialization than
1376 * something-or-zero which complicates things
1377 */
1378 static int tcp_skb_seglen(const struct sk_buff *skb)
1379 {
1380 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1381 }
1382
1383 /* Shifting pages past head area doesn't work */
1384 static int skb_can_shift(const struct sk_buff *skb)
1385 {
1386 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1387 }
1388
1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1390 * skb.
1391 */
1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1393 struct tcp_sacktag_state *state,
1394 u32 start_seq, u32 end_seq,
1395 bool dup_sack)
1396 {
1397 struct tcp_sock *tp = tcp_sk(sk);
1398 struct sk_buff *prev;
1399 int mss;
1400 int pcount = 0;
1401 int len;
1402 int in_sack;
1403
1404 if (!sk_can_gso(sk))
1405 goto fallback;
1406
1407 /* Normally R but no L won't result in plain S */
1408 if (!dup_sack &&
1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 goto fallback;
1411 if (!skb_can_shift(skb))
1412 goto fallback;
1413 /* This frame is about to be dropped (was ACKed). */
1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 goto fallback;
1416
1417 /* Can only happen with delayed DSACK + discard craziness */
1418 if (unlikely(skb == tcp_write_queue_head(sk)))
1419 goto fallback;
1420 prev = tcp_write_queue_prev(sk, skb);
1421
1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 goto fallback;
1424
1425 if (!tcp_skb_can_collapse_to(prev))
1426 goto fallback;
1427
1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431 if (in_sack) {
1432 len = skb->len;
1433 pcount = tcp_skb_pcount(skb);
1434 mss = tcp_skb_seglen(skb);
1435
1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 * drop this restriction as unnecessary
1438 */
1439 if (mss != tcp_skb_seglen(prev))
1440 goto fallback;
1441 } else {
1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 goto noop;
1444 /* CHECKME: This is non-MSS split case only?, this will
1445 * cause skipped skbs due to advancing loop btw, original
1446 * has that feature too
1447 */
1448 if (tcp_skb_pcount(skb) <= 1)
1449 goto noop;
1450
1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 if (!in_sack) {
1453 /* TODO: head merge to next could be attempted here
1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 * though it might not be worth of the additional hassle
1456 *
1457 * ...we can probably just fallback to what was done
1458 * previously. We could try merging non-SACKed ones
1459 * as well but it probably isn't going to buy off
1460 * because later SACKs might again split them, and
1461 * it would make skb timestamp tracking considerably
1462 * harder problem.
1463 */
1464 goto fallback;
1465 }
1466
1467 len = end_seq - TCP_SKB_CB(skb)->seq;
1468 BUG_ON(len < 0);
1469 BUG_ON(len > skb->len);
1470
1471 /* MSS boundaries should be honoured or else pcount will
1472 * severely break even though it makes things bit trickier.
1473 * Optimize common case to avoid most of the divides
1474 */
1475 mss = tcp_skb_mss(skb);
1476
1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 * drop this restriction as unnecessary
1479 */
1480 if (mss != tcp_skb_seglen(prev))
1481 goto fallback;
1482
1483 if (len == mss) {
1484 pcount = 1;
1485 } else if (len < mss) {
1486 goto noop;
1487 } else {
1488 pcount = len / mss;
1489 len = pcount * mss;
1490 }
1491 }
1492
1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 goto fallback;
1496
1497 if (!skb_shift(prev, skb, len))
1498 goto fallback;
1499 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1500 goto out;
1501
1502 /* Hole filled allows collapsing with the next as well, this is very
1503 * useful when hole on every nth skb pattern happens
1504 */
1505 if (prev == tcp_write_queue_tail(sk))
1506 goto out;
1507 skb = tcp_write_queue_next(sk, prev);
1508
1509 if (!skb_can_shift(skb) ||
1510 (skb == tcp_send_head(sk)) ||
1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 (mss != tcp_skb_seglen(skb)))
1513 goto out;
1514
1515 len = skb->len;
1516 if (skb_shift(prev, skb, len)) {
1517 pcount += tcp_skb_pcount(skb);
1518 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1519 }
1520
1521 out:
1522 state->fack_count += pcount;
1523 return prev;
1524
1525 noop:
1526 return skb;
1527
1528 fallback:
1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 return NULL;
1531 }
1532
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 struct tcp_sack_block *next_dup,
1535 struct tcp_sacktag_state *state,
1536 u32 start_seq, u32 end_seq,
1537 bool dup_sack_in)
1538 {
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 struct sk_buff *tmp;
1541
1542 tcp_for_write_queue_from(skb, sk) {
1543 int in_sack = 0;
1544 bool dup_sack = dup_sack_in;
1545
1546 if (skb == tcp_send_head(sk))
1547 break;
1548
1549 /* queue is in-order => we can short-circuit the walk early */
1550 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1551 break;
1552
1553 if (next_dup &&
1554 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1555 in_sack = tcp_match_skb_to_sack(sk, skb,
1556 next_dup->start_seq,
1557 next_dup->end_seq);
1558 if (in_sack > 0)
1559 dup_sack = true;
1560 }
1561
1562 /* skb reference here is a bit tricky to get right, since
1563 * shifting can eat and free both this skb and the next,
1564 * so not even _safe variant of the loop is enough.
1565 */
1566 if (in_sack <= 0) {
1567 tmp = tcp_shift_skb_data(sk, skb, state,
1568 start_seq, end_seq, dup_sack);
1569 if (tmp) {
1570 if (tmp != skb) {
1571 skb = tmp;
1572 continue;
1573 }
1574
1575 in_sack = 0;
1576 } else {
1577 in_sack = tcp_match_skb_to_sack(sk, skb,
1578 start_seq,
1579 end_seq);
1580 }
1581 }
1582
1583 if (unlikely(in_sack < 0))
1584 break;
1585
1586 if (in_sack) {
1587 TCP_SKB_CB(skb)->sacked =
1588 tcp_sacktag_one(sk,
1589 state,
1590 TCP_SKB_CB(skb)->sacked,
1591 TCP_SKB_CB(skb)->seq,
1592 TCP_SKB_CB(skb)->end_seq,
1593 dup_sack,
1594 tcp_skb_pcount(skb),
1595 skb->skb_mstamp);
1596 tcp_rate_skb_delivered(sk, skb, state->rate);
1597
1598 if (!before(TCP_SKB_CB(skb)->seq,
1599 tcp_highest_sack_seq(tp)))
1600 tcp_advance_highest_sack(sk, skb);
1601 }
1602
1603 state->fack_count += tcp_skb_pcount(skb);
1604 }
1605 return skb;
1606 }
1607
1608 /* Avoid all extra work that is being done by sacktag while walking in
1609 * a normal way
1610 */
1611 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1612 struct tcp_sacktag_state *state,
1613 u32 skip_to_seq)
1614 {
1615 tcp_for_write_queue_from(skb, sk) {
1616 if (skb == tcp_send_head(sk))
1617 break;
1618
1619 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1620 break;
1621
1622 state->fack_count += tcp_skb_pcount(skb);
1623 }
1624 return skb;
1625 }
1626
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1628 struct sock *sk,
1629 struct tcp_sack_block *next_dup,
1630 struct tcp_sacktag_state *state,
1631 u32 skip_to_seq)
1632 {
1633 if (!next_dup)
1634 return skb;
1635
1636 if (before(next_dup->start_seq, skip_to_seq)) {
1637 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1638 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 next_dup->start_seq, next_dup->end_seq,
1640 1);
1641 }
1642
1643 return skb;
1644 }
1645
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1647 {
1648 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1649 }
1650
1651 static int
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 u32 prior_snd_una, struct tcp_sacktag_state *state)
1654 {
1655 struct tcp_sock *tp = tcp_sk(sk);
1656 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 TCP_SKB_CB(ack_skb)->sacked);
1658 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 struct tcp_sack_block *cache;
1661 struct sk_buff *skb;
1662 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1663 int used_sacks;
1664 bool found_dup_sack = false;
1665 int i, j;
1666 int first_sack_index;
1667
1668 state->flag = 0;
1669 state->reord = tp->packets_out;
1670
1671 if (!tp->sacked_out) {
1672 if (WARN_ON(tp->fackets_out))
1673 tp->fackets_out = 0;
1674 tcp_highest_sack_reset(sk);
1675 }
1676
1677 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1678 num_sacks, prior_snd_una);
1679 if (found_dup_sack) {
1680 state->flag |= FLAG_DSACKING_ACK;
1681 tp->delivered++; /* A spurious retransmission is delivered */
1682 }
1683
1684 /* Eliminate too old ACKs, but take into
1685 * account more or less fresh ones, they can
1686 * contain valid SACK info.
1687 */
1688 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1689 return 0;
1690
1691 if (!tp->packets_out)
1692 goto out;
1693
1694 used_sacks = 0;
1695 first_sack_index = 0;
1696 for (i = 0; i < num_sacks; i++) {
1697 bool dup_sack = !i && found_dup_sack;
1698
1699 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1700 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1701
1702 if (!tcp_is_sackblock_valid(tp, dup_sack,
1703 sp[used_sacks].start_seq,
1704 sp[used_sacks].end_seq)) {
1705 int mib_idx;
1706
1707 if (dup_sack) {
1708 if (!tp->undo_marker)
1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1710 else
1711 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1712 } else {
1713 /* Don't count olds caused by ACK reordering */
1714 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1715 !after(sp[used_sacks].end_seq, tp->snd_una))
1716 continue;
1717 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1718 }
1719
1720 NET_INC_STATS(sock_net(sk), mib_idx);
1721 if (i == 0)
1722 first_sack_index = -1;
1723 continue;
1724 }
1725
1726 /* Ignore very old stuff early */
1727 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1728 continue;
1729
1730 used_sacks++;
1731 }
1732
1733 /* order SACK blocks to allow in order walk of the retrans queue */
1734 for (i = used_sacks - 1; i > 0; i--) {
1735 for (j = 0; j < i; j++) {
1736 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1737 swap(sp[j], sp[j + 1]);
1738
1739 /* Track where the first SACK block goes to */
1740 if (j == first_sack_index)
1741 first_sack_index = j + 1;
1742 }
1743 }
1744 }
1745
1746 skb = tcp_write_queue_head(sk);
1747 state->fack_count = 0;
1748 i = 0;
1749
1750 if (!tp->sacked_out) {
1751 /* It's already past, so skip checking against it */
1752 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 } else {
1754 cache = tp->recv_sack_cache;
1755 /* Skip empty blocks in at head of the cache */
1756 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1757 !cache->end_seq)
1758 cache++;
1759 }
1760
1761 while (i < used_sacks) {
1762 u32 start_seq = sp[i].start_seq;
1763 u32 end_seq = sp[i].end_seq;
1764 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1765 struct tcp_sack_block *next_dup = NULL;
1766
1767 if (found_dup_sack && ((i + 1) == first_sack_index))
1768 next_dup = &sp[i + 1];
1769
1770 /* Skip too early cached blocks */
1771 while (tcp_sack_cache_ok(tp, cache) &&
1772 !before(start_seq, cache->end_seq))
1773 cache++;
1774
1775 /* Can skip some work by looking recv_sack_cache? */
1776 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1777 after(end_seq, cache->start_seq)) {
1778
1779 /* Head todo? */
1780 if (before(start_seq, cache->start_seq)) {
1781 skb = tcp_sacktag_skip(skb, sk, state,
1782 start_seq);
1783 skb = tcp_sacktag_walk(skb, sk, next_dup,
1784 state,
1785 start_seq,
1786 cache->start_seq,
1787 dup_sack);
1788 }
1789
1790 /* Rest of the block already fully processed? */
1791 if (!after(end_seq, cache->end_seq))
1792 goto advance_sp;
1793
1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1795 state,
1796 cache->end_seq);
1797
1798 /* ...tail remains todo... */
1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800 /* ...but better entrypoint exists! */
1801 skb = tcp_highest_sack(sk);
1802 if (!skb)
1803 break;
1804 state->fack_count = tp->fackets_out;
1805 cache++;
1806 goto walk;
1807 }
1808
1809 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1810 /* Check overlap against next cached too (past this one already) */
1811 cache++;
1812 continue;
1813 }
1814
1815 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1816 skb = tcp_highest_sack(sk);
1817 if (!skb)
1818 break;
1819 state->fack_count = tp->fackets_out;
1820 }
1821 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1822
1823 walk:
1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825 start_seq, end_seq, dup_sack);
1826
1827 advance_sp:
1828 i++;
1829 }
1830
1831 /* Clear the head of the cache sack blocks so we can skip it next time */
1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833 tp->recv_sack_cache[i].start_seq = 0;
1834 tp->recv_sack_cache[i].end_seq = 0;
1835 }
1836 for (j = 0; j < used_sacks; j++)
1837 tp->recv_sack_cache[i++] = sp[j];
1838
1839 if ((state->reord < tp->fackets_out) &&
1840 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1841 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1842
1843 tcp_verify_left_out(tp);
1844 out:
1845
1846 #if FASTRETRANS_DEBUG > 0
1847 WARN_ON((int)tp->sacked_out < 0);
1848 WARN_ON((int)tp->lost_out < 0);
1849 WARN_ON((int)tp->retrans_out < 0);
1850 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1851 #endif
1852 return state->flag;
1853 }
1854
1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1856 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1857 */
1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1859 {
1860 u32 holes;
1861
1862 holes = max(tp->lost_out, 1U);
1863 holes = min(holes, tp->packets_out);
1864
1865 if ((tp->sacked_out + holes) > tp->packets_out) {
1866 tp->sacked_out = tp->packets_out - holes;
1867 return true;
1868 }
1869 return false;
1870 }
1871
1872 /* If we receive more dupacks than we expected counting segments
1873 * in assumption of absent reordering, interpret this as reordering.
1874 * The only another reason could be bug in receiver TCP.
1875 */
1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1877 {
1878 struct tcp_sock *tp = tcp_sk(sk);
1879 if (tcp_limit_reno_sacked(tp))
1880 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1881 }
1882
1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884
1885 static void tcp_add_reno_sack(struct sock *sk)
1886 {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 u32 prior_sacked = tp->sacked_out;
1889
1890 tp->sacked_out++;
1891 tcp_check_reno_reordering(sk, 0);
1892 if (tp->sacked_out > prior_sacked)
1893 tp->delivered++; /* Some out-of-order packet is delivered */
1894 tcp_verify_left_out(tp);
1895 }
1896
1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1898
1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1900 {
1901 struct tcp_sock *tp = tcp_sk(sk);
1902
1903 if (acked > 0) {
1904 /* One ACK acked hole. The rest eat duplicate ACKs. */
1905 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1906 if (acked - 1 >= tp->sacked_out)
1907 tp->sacked_out = 0;
1908 else
1909 tp->sacked_out -= acked - 1;
1910 }
1911 tcp_check_reno_reordering(sk, acked);
1912 tcp_verify_left_out(tp);
1913 }
1914
1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1916 {
1917 tp->sacked_out = 0;
1918 }
1919
1920 void tcp_clear_retrans(struct tcp_sock *tp)
1921 {
1922 tp->retrans_out = 0;
1923 tp->lost_out = 0;
1924 tp->undo_marker = 0;
1925 tp->undo_retrans = -1;
1926 tp->fackets_out = 0;
1927 tp->sacked_out = 0;
1928 }
1929
1930 static inline void tcp_init_undo(struct tcp_sock *tp)
1931 {
1932 tp->undo_marker = tp->snd_una;
1933 /* Retransmission still in flight may cause DSACKs later. */
1934 tp->undo_retrans = tp->retrans_out ? : -1;
1935 }
1936
1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1938 * and reset tags completely, otherwise preserve SACKs. If receiver
1939 * dropped its ofo queue, we will know this due to reneging detection.
1940 */
1941 void tcp_enter_loss(struct sock *sk)
1942 {
1943 const struct inet_connection_sock *icsk = inet_csk(sk);
1944 struct tcp_sock *tp = tcp_sk(sk);
1945 struct net *net = sock_net(sk);
1946 struct sk_buff *skb;
1947 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1948 bool is_reneg; /* is receiver reneging on SACKs? */
1949 bool mark_lost;
1950
1951 /* Reduce ssthresh if it has not yet been made inside this window. */
1952 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1953 !after(tp->high_seq, tp->snd_una) ||
1954 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1955 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1956 tp->prior_cwnd = tp->snd_cwnd;
1957 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1958 tcp_ca_event(sk, CA_EVENT_LOSS);
1959 tcp_init_undo(tp);
1960 }
1961 tp->snd_cwnd = 1;
1962 tp->snd_cwnd_cnt = 0;
1963 tp->snd_cwnd_stamp = tcp_jiffies32;
1964
1965 tp->retrans_out = 0;
1966 tp->lost_out = 0;
1967
1968 if (tcp_is_reno(tp))
1969 tcp_reset_reno_sack(tp);
1970
1971 skb = tcp_write_queue_head(sk);
1972 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1973 if (is_reneg) {
1974 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1975 tp->sacked_out = 0;
1976 tp->fackets_out = 0;
1977 }
1978 tcp_clear_all_retrans_hints(tp);
1979
1980 tcp_for_write_queue(skb, sk) {
1981 if (skb == tcp_send_head(sk))
1982 break;
1983
1984 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1985 is_reneg);
1986 if (mark_lost)
1987 tcp_sum_lost(tp, skb);
1988 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1989 if (mark_lost) {
1990 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1992 tp->lost_out += tcp_skb_pcount(skb);
1993 }
1994 }
1995 tcp_verify_left_out(tp);
1996
1997 /* Timeout in disordered state after receiving substantial DUPACKs
1998 * suggests that the degree of reordering is over-estimated.
1999 */
2000 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2001 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2002 tp->reordering = min_t(unsigned int, tp->reordering,
2003 net->ipv4.sysctl_tcp_reordering);
2004 tcp_set_ca_state(sk, TCP_CA_Loss);
2005 tp->high_seq = tp->snd_nxt;
2006 tcp_ecn_queue_cwr(tp);
2007
2008 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2009 * loss recovery is underway except recurring timeout(s) on
2010 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2011 *
2012 * In theory F-RTO can be used repeatedly during loss recovery.
2013 * In practice this interacts badly with broken middle-boxes that
2014 * falsely raise the receive window, which results in repeated
2015 * timeouts and stop-and-go behavior.
2016 */
2017 tp->frto = sysctl_tcp_frto &&
2018 (new_recovery || icsk->icsk_retransmits) &&
2019 !inet_csk(sk)->icsk_mtup.probe_size;
2020 }
2021
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023 * remembered SACKs do not reflect real state of receiver i.e.
2024 * receiver _host_ is heavily congested (or buggy).
2025 *
2026 * To avoid big spurious retransmission bursts due to transient SACK
2027 * scoreboard oddities that look like reneging, we give the receiver a
2028 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029 * restore sanity to the SACK scoreboard. If the apparent reneging
2030 * persists until this RTO then we'll clear the SACK scoreboard.
2031 */
2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2033 {
2034 if (flag & FLAG_SACK_RENEGING) {
2035 struct tcp_sock *tp = tcp_sk(sk);
2036 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2037 msecs_to_jiffies(10));
2038
2039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2040 delay, TCP_RTO_MAX);
2041 return true;
2042 }
2043 return false;
2044 }
2045
2046 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2047 {
2048 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2049 }
2050
2051 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2052 * counter when SACK is enabled (without SACK, sacked_out is used for
2053 * that purpose).
2054 *
2055 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2056 * segments up to the highest received SACK block so far and holes in
2057 * between them.
2058 *
2059 * With reordering, holes may still be in flight, so RFC3517 recovery
2060 * uses pure sacked_out (total number of SACKed segments) even though
2061 * it violates the RFC that uses duplicate ACKs, often these are equal
2062 * but when e.g. out-of-window ACKs or packet duplication occurs,
2063 * they differ. Since neither occurs due to loss, TCP should really
2064 * ignore them.
2065 */
2066 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2067 {
2068 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2069 }
2070
2071 /* Linux NewReno/SACK/FACK/ECN state machine.
2072 * --------------------------------------
2073 *
2074 * "Open" Normal state, no dubious events, fast path.
2075 * "Disorder" In all the respects it is "Open",
2076 * but requires a bit more attention. It is entered when
2077 * we see some SACKs or dupacks. It is split of "Open"
2078 * mainly to move some processing from fast path to slow one.
2079 * "CWR" CWND was reduced due to some Congestion Notification event.
2080 * It can be ECN, ICMP source quench, local device congestion.
2081 * "Recovery" CWND was reduced, we are fast-retransmitting.
2082 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2083 *
2084 * tcp_fastretrans_alert() is entered:
2085 * - each incoming ACK, if state is not "Open"
2086 * - when arrived ACK is unusual, namely:
2087 * * SACK
2088 * * Duplicate ACK.
2089 * * ECN ECE.
2090 *
2091 * Counting packets in flight is pretty simple.
2092 *
2093 * in_flight = packets_out - left_out + retrans_out
2094 *
2095 * packets_out is SND.NXT-SND.UNA counted in packets.
2096 *
2097 * retrans_out is number of retransmitted segments.
2098 *
2099 * left_out is number of segments left network, but not ACKed yet.
2100 *
2101 * left_out = sacked_out + lost_out
2102 *
2103 * sacked_out: Packets, which arrived to receiver out of order
2104 * and hence not ACKed. With SACKs this number is simply
2105 * amount of SACKed data. Even without SACKs
2106 * it is easy to give pretty reliable estimate of this number,
2107 * counting duplicate ACKs.
2108 *
2109 * lost_out: Packets lost by network. TCP has no explicit
2110 * "loss notification" feedback from network (for now).
2111 * It means that this number can be only _guessed_.
2112 * Actually, it is the heuristics to predict lossage that
2113 * distinguishes different algorithms.
2114 *
2115 * F.e. after RTO, when all the queue is considered as lost,
2116 * lost_out = packets_out and in_flight = retrans_out.
2117 *
2118 * Essentially, we have now a few algorithms detecting
2119 * lost packets.
2120 *
2121 * If the receiver supports SACK:
2122 *
2123 * RFC6675/3517: It is the conventional algorithm. A packet is
2124 * considered lost if the number of higher sequence packets
2125 * SACKed is greater than or equal the DUPACK thoreshold
2126 * (reordering). This is implemented in tcp_mark_head_lost and
2127 * tcp_update_scoreboard.
2128 *
2129 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2130 * (2017-) that checks timing instead of counting DUPACKs.
2131 * Essentially a packet is considered lost if it's not S/ACKed
2132 * after RTT + reordering_window, where both metrics are
2133 * dynamically measured and adjusted. This is implemented in
2134 * tcp_rack_mark_lost.
2135 *
2136 * FACK (Disabled by default. Subsumbed by RACK):
2137 * It is the simplest heuristics. As soon as we decided
2138 * that something is lost, we decide that _all_ not SACKed
2139 * packets until the most forward SACK are lost. I.e.
2140 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2141 * It is absolutely correct estimate, if network does not reorder
2142 * packets. And it loses any connection to reality when reordering
2143 * takes place. We use FACK by default until reordering
2144 * is suspected on the path to this destination.
2145 *
2146 * If the receiver does not support SACK:
2147 *
2148 * NewReno (RFC6582): in Recovery we assume that one segment
2149 * is lost (classic Reno). While we are in Recovery and
2150 * a partial ACK arrives, we assume that one more packet
2151 * is lost (NewReno). This heuristics are the same in NewReno
2152 * and SACK.
2153 *
2154 * Really tricky (and requiring careful tuning) part of algorithm
2155 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2156 * The first determines the moment _when_ we should reduce CWND and,
2157 * hence, slow down forward transmission. In fact, it determines the moment
2158 * when we decide that hole is caused by loss, rather than by a reorder.
2159 *
2160 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2161 * holes, caused by lost packets.
2162 *
2163 * And the most logically complicated part of algorithm is undo
2164 * heuristics. We detect false retransmits due to both too early
2165 * fast retransmit (reordering) and underestimated RTO, analyzing
2166 * timestamps and D-SACKs. When we detect that some segments were
2167 * retransmitted by mistake and CWND reduction was wrong, we undo
2168 * window reduction and abort recovery phase. This logic is hidden
2169 * inside several functions named tcp_try_undo_<something>.
2170 */
2171
2172 /* This function decides, when we should leave Disordered state
2173 * and enter Recovery phase, reducing congestion window.
2174 *
2175 * Main question: may we further continue forward transmission
2176 * with the same cwnd?
2177 */
2178 static bool tcp_time_to_recover(struct sock *sk, int flag)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181
2182 /* Trick#1: The loss is proven. */
2183 if (tp->lost_out)
2184 return true;
2185
2186 /* Not-A-Trick#2 : Classic rule... */
2187 if (tcp_dupack_heuristics(tp) > tp->reordering)
2188 return true;
2189
2190 return false;
2191 }
2192
2193 /* Detect loss in event "A" above by marking head of queue up as lost.
2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197 * the maximum SACKed segments to pass before reaching this limit.
2198 */
2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200 {
2201 struct tcp_sock *tp = tcp_sk(sk);
2202 struct sk_buff *skb;
2203 int cnt, oldcnt, lost;
2204 unsigned int mss;
2205 /* Use SACK to deduce losses of new sequences sent during recovery */
2206 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2207
2208 WARN_ON(packets > tp->packets_out);
2209 if (tp->lost_skb_hint) {
2210 skb = tp->lost_skb_hint;
2211 cnt = tp->lost_cnt_hint;
2212 /* Head already handled? */
2213 if (mark_head && skb != tcp_write_queue_head(sk))
2214 return;
2215 } else {
2216 skb = tcp_write_queue_head(sk);
2217 cnt = 0;
2218 }
2219
2220 tcp_for_write_queue_from(skb, sk) {
2221 if (skb == tcp_send_head(sk))
2222 break;
2223 /* TODO: do this better */
2224 /* this is not the most efficient way to do this... */
2225 tp->lost_skb_hint = skb;
2226 tp->lost_cnt_hint = cnt;
2227
2228 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2229 break;
2230
2231 oldcnt = cnt;
2232 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2233 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2234 cnt += tcp_skb_pcount(skb);
2235
2236 if (cnt > packets) {
2237 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2238 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2239 (oldcnt >= packets))
2240 break;
2241
2242 mss = tcp_skb_mss(skb);
2243 /* If needed, chop off the prefix to mark as lost. */
2244 lost = (packets - oldcnt) * mss;
2245 if (lost < skb->len &&
2246 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2247 break;
2248 cnt = packets;
2249 }
2250
2251 tcp_skb_mark_lost(tp, skb);
2252
2253 if (mark_head)
2254 break;
2255 }
2256 tcp_verify_left_out(tp);
2257 }
2258
2259 /* Account newly detected lost packet(s) */
2260
2261 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2262 {
2263 struct tcp_sock *tp = tcp_sk(sk);
2264
2265 if (tcp_is_reno(tp)) {
2266 tcp_mark_head_lost(sk, 1, 1);
2267 } else if (tcp_is_fack(tp)) {
2268 int lost = tp->fackets_out - tp->reordering;
2269 if (lost <= 0)
2270 lost = 1;
2271 tcp_mark_head_lost(sk, lost, 0);
2272 } else {
2273 int sacked_upto = tp->sacked_out - tp->reordering;
2274 if (sacked_upto >= 0)
2275 tcp_mark_head_lost(sk, sacked_upto, 0);
2276 else if (fast_rexmit)
2277 tcp_mark_head_lost(sk, 1, 1);
2278 }
2279 }
2280
2281 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2282 {
2283 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2284 before(tp->rx_opt.rcv_tsecr, when);
2285 }
2286
2287 /* skb is spurious retransmitted if the returned timestamp echo
2288 * reply is prior to the skb transmission time
2289 */
2290 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2291 const struct sk_buff *skb)
2292 {
2293 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2294 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2295 }
2296
2297 /* Nothing was retransmitted or returned timestamp is less
2298 * than timestamp of the first retransmission.
2299 */
2300 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2301 {
2302 return !tp->retrans_stamp ||
2303 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2304 }
2305
2306 /* Undo procedures. */
2307
2308 /* We can clear retrans_stamp when there are no retransmissions in the
2309 * window. It would seem that it is trivially available for us in
2310 * tp->retrans_out, however, that kind of assumptions doesn't consider
2311 * what will happen if errors occur when sending retransmission for the
2312 * second time. ...It could the that such segment has only
2313 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2314 * the head skb is enough except for some reneging corner cases that
2315 * are not worth the effort.
2316 *
2317 * Main reason for all this complexity is the fact that connection dying
2318 * time now depends on the validity of the retrans_stamp, in particular,
2319 * that successive retransmissions of a segment must not advance
2320 * retrans_stamp under any conditions.
2321 */
2322 static bool tcp_any_retrans_done(const struct sock *sk)
2323 {
2324 const struct tcp_sock *tp = tcp_sk(sk);
2325 struct sk_buff *skb;
2326
2327 if (tp->retrans_out)
2328 return true;
2329
2330 skb = tcp_write_queue_head(sk);
2331 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2332 return true;
2333
2334 return false;
2335 }
2336
2337 #if FASTRETRANS_DEBUG > 1
2338 static void DBGUNDO(struct sock *sk, const char *msg)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341 struct inet_sock *inet = inet_sk(sk);
2342
2343 if (sk->sk_family == AF_INET) {
2344 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2345 msg,
2346 &inet->inet_daddr, ntohs(inet->inet_dport),
2347 tp->snd_cwnd, tcp_left_out(tp),
2348 tp->snd_ssthresh, tp->prior_ssthresh,
2349 tp->packets_out);
2350 }
2351 #if IS_ENABLED(CONFIG_IPV6)
2352 else if (sk->sk_family == AF_INET6) {
2353 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2354 msg,
2355 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2356 tp->snd_cwnd, tcp_left_out(tp),
2357 tp->snd_ssthresh, tp->prior_ssthresh,
2358 tp->packets_out);
2359 }
2360 #endif
2361 }
2362 #else
2363 #define DBGUNDO(x...) do { } while (0)
2364 #endif
2365
2366 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2367 {
2368 struct tcp_sock *tp = tcp_sk(sk);
2369
2370 if (unmark_loss) {
2371 struct sk_buff *skb;
2372
2373 tcp_for_write_queue(skb, sk) {
2374 if (skb == tcp_send_head(sk))
2375 break;
2376 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2377 }
2378 tp->lost_out = 0;
2379 tcp_clear_all_retrans_hints(tp);
2380 }
2381
2382 if (tp->prior_ssthresh) {
2383 const struct inet_connection_sock *icsk = inet_csk(sk);
2384
2385 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2386
2387 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2388 tp->snd_ssthresh = tp->prior_ssthresh;
2389 tcp_ecn_withdraw_cwr(tp);
2390 }
2391 }
2392 tp->snd_cwnd_stamp = tcp_jiffies32;
2393 tp->undo_marker = 0;
2394 }
2395
2396 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2397 {
2398 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2399 }
2400
2401 /* People celebrate: "We love our President!" */
2402 static bool tcp_try_undo_recovery(struct sock *sk)
2403 {
2404 struct tcp_sock *tp = tcp_sk(sk);
2405
2406 if (tcp_may_undo(tp)) {
2407 int mib_idx;
2408
2409 /* Happy end! We did not retransmit anything
2410 * or our original transmission succeeded.
2411 */
2412 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2413 tcp_undo_cwnd_reduction(sk, false);
2414 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2415 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2416 else
2417 mib_idx = LINUX_MIB_TCPFULLUNDO;
2418
2419 NET_INC_STATS(sock_net(sk), mib_idx);
2420 }
2421 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2422 /* Hold old state until something *above* high_seq
2423 * is ACKed. For Reno it is MUST to prevent false
2424 * fast retransmits (RFC2582). SACK TCP is safe. */
2425 if (!tcp_any_retrans_done(sk))
2426 tp->retrans_stamp = 0;
2427 return true;
2428 }
2429 tcp_set_ca_state(sk, TCP_CA_Open);
2430 return false;
2431 }
2432
2433 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2434 static bool tcp_try_undo_dsack(struct sock *sk)
2435 {
2436 struct tcp_sock *tp = tcp_sk(sk);
2437
2438 if (tp->undo_marker && !tp->undo_retrans) {
2439 DBGUNDO(sk, "D-SACK");
2440 tcp_undo_cwnd_reduction(sk, false);
2441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2442 return true;
2443 }
2444 return false;
2445 }
2446
2447 /* Undo during loss recovery after partial ACK or using F-RTO. */
2448 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2449 {
2450 struct tcp_sock *tp = tcp_sk(sk);
2451
2452 if (frto_undo || tcp_may_undo(tp)) {
2453 tcp_undo_cwnd_reduction(sk, true);
2454
2455 DBGUNDO(sk, "partial loss");
2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2457 if (frto_undo)
2458 NET_INC_STATS(sock_net(sk),
2459 LINUX_MIB_TCPSPURIOUSRTOS);
2460 inet_csk(sk)->icsk_retransmits = 0;
2461 if (frto_undo || tcp_is_sack(tp))
2462 tcp_set_ca_state(sk, TCP_CA_Open);
2463 return true;
2464 }
2465 return false;
2466 }
2467
2468 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2469 * It computes the number of packets to send (sndcnt) based on packets newly
2470 * delivered:
2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2472 * cwnd reductions across a full RTT.
2473 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2474 * But when the retransmits are acked without further losses, PRR
2475 * slow starts cwnd up to ssthresh to speed up the recovery.
2476 */
2477 static void tcp_init_cwnd_reduction(struct sock *sk)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480
2481 tp->high_seq = tp->snd_nxt;
2482 tp->tlp_high_seq = 0;
2483 tp->snd_cwnd_cnt = 0;
2484 tp->prior_cwnd = tp->snd_cwnd;
2485 tp->prr_delivered = 0;
2486 tp->prr_out = 0;
2487 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2488 tcp_ecn_queue_cwr(tp);
2489 }
2490
2491 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2492 {
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 int sndcnt = 0;
2495 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2496
2497 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2498 return;
2499
2500 tp->prr_delivered += newly_acked_sacked;
2501 if (delta < 0) {
2502 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2503 tp->prior_cwnd - 1;
2504 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2505 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2506 !(flag & FLAG_LOST_RETRANS)) {
2507 sndcnt = min_t(int, delta,
2508 max_t(int, tp->prr_delivered - tp->prr_out,
2509 newly_acked_sacked) + 1);
2510 } else {
2511 sndcnt = min(delta, newly_acked_sacked);
2512 }
2513 /* Force a fast retransmit upon entering fast recovery */
2514 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2515 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2516 }
2517
2518 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2519 {
2520 struct tcp_sock *tp = tcp_sk(sk);
2521
2522 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2523 return;
2524
2525 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2526 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2527 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2528 tp->snd_cwnd = tp->snd_ssthresh;
2529 tp->snd_cwnd_stamp = tcp_jiffies32;
2530 }
2531 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2532 }
2533
2534 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2535 void tcp_enter_cwr(struct sock *sk)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538
2539 tp->prior_ssthresh = 0;
2540 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2541 tp->undo_marker = 0;
2542 tcp_init_cwnd_reduction(sk);
2543 tcp_set_ca_state(sk, TCP_CA_CWR);
2544 }
2545 }
2546 EXPORT_SYMBOL(tcp_enter_cwr);
2547
2548 static void tcp_try_keep_open(struct sock *sk)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 int state = TCP_CA_Open;
2552
2553 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2554 state = TCP_CA_Disorder;
2555
2556 if (inet_csk(sk)->icsk_ca_state != state) {
2557 tcp_set_ca_state(sk, state);
2558 tp->high_seq = tp->snd_nxt;
2559 }
2560 }
2561
2562 static void tcp_try_to_open(struct sock *sk, int flag)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565
2566 tcp_verify_left_out(tp);
2567
2568 if (!tcp_any_retrans_done(sk))
2569 tp->retrans_stamp = 0;
2570
2571 if (flag & FLAG_ECE)
2572 tcp_enter_cwr(sk);
2573
2574 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2575 tcp_try_keep_open(sk);
2576 }
2577 }
2578
2579 static void tcp_mtup_probe_failed(struct sock *sk)
2580 {
2581 struct inet_connection_sock *icsk = inet_csk(sk);
2582
2583 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2584 icsk->icsk_mtup.probe_size = 0;
2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2586 }
2587
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 /* FIXME: breaks with very large cwnd */
2594 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 tp->snd_cwnd = tp->snd_cwnd *
2596 tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 icsk->icsk_mtup.probe_size;
2598 tp->snd_cwnd_cnt = 0;
2599 tp->snd_cwnd_stamp = tcp_jiffies32;
2600 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601
2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 icsk->icsk_mtup.probe_size = 0;
2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2606 }
2607
2608 /* Do a simple retransmit without using the backoff mechanisms in
2609 * tcp_timer. This is used for path mtu discovery.
2610 * The socket is already locked here.
2611 */
2612 void tcp_simple_retransmit(struct sock *sk)
2613 {
2614 const struct inet_connection_sock *icsk = inet_csk(sk);
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 struct sk_buff *skb;
2617 unsigned int mss = tcp_current_mss(sk);
2618 u32 prior_lost = tp->lost_out;
2619
2620 tcp_for_write_queue(skb, sk) {
2621 if (skb == tcp_send_head(sk))
2622 break;
2623 if (tcp_skb_seglen(skb) > mss &&
2624 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2625 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2626 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2627 tp->retrans_out -= tcp_skb_pcount(skb);
2628 }
2629 tcp_skb_mark_lost_uncond_verify(tp, skb);
2630 }
2631 }
2632
2633 tcp_clear_retrans_hints_partial(tp);
2634
2635 if (prior_lost == tp->lost_out)
2636 return;
2637
2638 if (tcp_is_reno(tp))
2639 tcp_limit_reno_sacked(tp);
2640
2641 tcp_verify_left_out(tp);
2642
2643 /* Don't muck with the congestion window here.
2644 * Reason is that we do not increase amount of _data_
2645 * in network, but units changed and effective
2646 * cwnd/ssthresh really reduced now.
2647 */
2648 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2649 tp->high_seq = tp->snd_nxt;
2650 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2651 tp->prior_ssthresh = 0;
2652 tp->undo_marker = 0;
2653 tcp_set_ca_state(sk, TCP_CA_Loss);
2654 }
2655 tcp_xmit_retransmit_queue(sk);
2656 }
2657 EXPORT_SYMBOL(tcp_simple_retransmit);
2658
2659 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2660 {
2661 struct tcp_sock *tp = tcp_sk(sk);
2662 int mib_idx;
2663
2664 if (tcp_is_reno(tp))
2665 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2666 else
2667 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2668
2669 NET_INC_STATS(sock_net(sk), mib_idx);
2670
2671 tp->prior_ssthresh = 0;
2672 tcp_init_undo(tp);
2673
2674 if (!tcp_in_cwnd_reduction(sk)) {
2675 if (!ece_ack)
2676 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677 tcp_init_cwnd_reduction(sk);
2678 }
2679 tcp_set_ca_state(sk, TCP_CA_Recovery);
2680 }
2681
2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684 */
2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2686 int *rexmit)
2687 {
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 bool recovered = !before(tp->snd_una, tp->high_seq);
2690
2691 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2692 tcp_try_undo_loss(sk, false))
2693 return;
2694
2695 /* The ACK (s)acks some never-retransmitted data meaning not all
2696 * the data packets before the timeout were lost. Therefore we
2697 * undo the congestion window and state. This is essentially
2698 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2699 * a retransmitted skb is permantly marked, we can apply such an
2700 * operation even if F-RTO was not used.
2701 */
2702 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2703 tcp_try_undo_loss(sk, tp->undo_marker))
2704 return;
2705
2706 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2707 if (after(tp->snd_nxt, tp->high_seq)) {
2708 if (flag & FLAG_DATA_SACKED || is_dupack)
2709 tp->frto = 0; /* Step 3.a. loss was real */
2710 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2711 tp->high_seq = tp->snd_nxt;
2712 /* Step 2.b. Try send new data (but deferred until cwnd
2713 * is updated in tcp_ack()). Otherwise fall back to
2714 * the conventional recovery.
2715 */
2716 if (tcp_send_head(sk) &&
2717 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2718 *rexmit = REXMIT_NEW;
2719 return;
2720 }
2721 tp->frto = 0;
2722 }
2723 }
2724
2725 if (recovered) {
2726 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2727 tcp_try_undo_recovery(sk);
2728 return;
2729 }
2730 if (tcp_is_reno(tp)) {
2731 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2732 * delivered. Lower inflight to clock out (re)tranmissions.
2733 */
2734 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2735 tcp_add_reno_sack(sk);
2736 else if (flag & FLAG_SND_UNA_ADVANCED)
2737 tcp_reset_reno_sack(tp);
2738 }
2739 *rexmit = REXMIT_LOST;
2740 }
2741
2742 /* Undo during fast recovery after partial ACK. */
2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2744 {
2745 struct tcp_sock *tp = tcp_sk(sk);
2746
2747 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2748 /* Plain luck! Hole if filled with delayed
2749 * packet, rather than with a retransmit.
2750 */
2751 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2752
2753 /* We are getting evidence that the reordering degree is higher
2754 * than we realized. If there are no retransmits out then we
2755 * can undo. Otherwise we clock out new packets but do not
2756 * mark more packets lost or retransmit more.
2757 */
2758 if (tp->retrans_out)
2759 return true;
2760
2761 if (!tcp_any_retrans_done(sk))
2762 tp->retrans_stamp = 0;
2763
2764 DBGUNDO(sk, "partial recovery");
2765 tcp_undo_cwnd_reduction(sk, true);
2766 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2767 tcp_try_keep_open(sk);
2768 return true;
2769 }
2770 return false;
2771 }
2772
2773 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2774 {
2775 struct tcp_sock *tp = tcp_sk(sk);
2776
2777 /* Use RACK to detect loss */
2778 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2779 u32 prior_retrans = tp->retrans_out;
2780
2781 tcp_rack_mark_lost(sk);
2782 if (prior_retrans > tp->retrans_out)
2783 *ack_flag |= FLAG_LOST_RETRANS;
2784 }
2785 }
2786
2787 /* Process an event, which can update packets-in-flight not trivially.
2788 * Main goal of this function is to calculate new estimate for left_out,
2789 * taking into account both packets sitting in receiver's buffer and
2790 * packets lost by network.
2791 *
2792 * Besides that it updates the congestion state when packet loss or ECN
2793 * is detected. But it does not reduce the cwnd, it is done by the
2794 * congestion control later.
2795 *
2796 * It does _not_ decide what to send, it is made in function
2797 * tcp_xmit_retransmit_queue().
2798 */
2799 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2800 bool is_dupack, int *ack_flag, int *rexmit)
2801 {
2802 struct inet_connection_sock *icsk = inet_csk(sk);
2803 struct tcp_sock *tp = tcp_sk(sk);
2804 int fast_rexmit = 0, flag = *ack_flag;
2805 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2806 (tcp_fackets_out(tp) > tp->reordering));
2807
2808 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2809 tp->sacked_out = 0;
2810 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2811 tp->fackets_out = 0;
2812
2813 /* Now state machine starts.
2814 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2815 if (flag & FLAG_ECE)
2816 tp->prior_ssthresh = 0;
2817
2818 /* B. In all the states check for reneging SACKs. */
2819 if (tcp_check_sack_reneging(sk, flag))
2820 return;
2821
2822 /* C. Check consistency of the current state. */
2823 tcp_verify_left_out(tp);
2824
2825 /* D. Check state exit conditions. State can be terminated
2826 * when high_seq is ACKed. */
2827 if (icsk->icsk_ca_state == TCP_CA_Open) {
2828 WARN_ON(tp->retrans_out != 0);
2829 tp->retrans_stamp = 0;
2830 } else if (!before(tp->snd_una, tp->high_seq)) {
2831 switch (icsk->icsk_ca_state) {
2832 case TCP_CA_CWR:
2833 /* CWR is to be held something *above* high_seq
2834 * is ACKed for CWR bit to reach receiver. */
2835 if (tp->snd_una != tp->high_seq) {
2836 tcp_end_cwnd_reduction(sk);
2837 tcp_set_ca_state(sk, TCP_CA_Open);
2838 }
2839 break;
2840
2841 case TCP_CA_Recovery:
2842 if (tcp_is_reno(tp))
2843 tcp_reset_reno_sack(tp);
2844 if (tcp_try_undo_recovery(sk))
2845 return;
2846 tcp_end_cwnd_reduction(sk);
2847 break;
2848 }
2849 }
2850
2851 /* E. Process state. */
2852 switch (icsk->icsk_ca_state) {
2853 case TCP_CA_Recovery:
2854 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2855 if (tcp_is_reno(tp) && is_dupack)
2856 tcp_add_reno_sack(sk);
2857 } else {
2858 if (tcp_try_undo_partial(sk, acked))
2859 return;
2860 /* Partial ACK arrived. Force fast retransmit. */
2861 do_lost = tcp_is_reno(tp) ||
2862 tcp_fackets_out(tp) > tp->reordering;
2863 }
2864 if (tcp_try_undo_dsack(sk)) {
2865 tcp_try_keep_open(sk);
2866 return;
2867 }
2868 tcp_rack_identify_loss(sk, ack_flag);
2869 break;
2870 case TCP_CA_Loss:
2871 tcp_process_loss(sk, flag, is_dupack, rexmit);
2872 tcp_rack_identify_loss(sk, ack_flag);
2873 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2874 (*ack_flag & FLAG_LOST_RETRANS)))
2875 return;
2876 /* Change state if cwnd is undone or retransmits are lost */
2877 default:
2878 if (tcp_is_reno(tp)) {
2879 if (flag & FLAG_SND_UNA_ADVANCED)
2880 tcp_reset_reno_sack(tp);
2881 if (is_dupack)
2882 tcp_add_reno_sack(sk);
2883 }
2884
2885 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2886 tcp_try_undo_dsack(sk);
2887
2888 tcp_rack_identify_loss(sk, ack_flag);
2889 if (!tcp_time_to_recover(sk, flag)) {
2890 tcp_try_to_open(sk, flag);
2891 return;
2892 }
2893
2894 /* MTU probe failure: don't reduce cwnd */
2895 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2896 icsk->icsk_mtup.probe_size &&
2897 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2898 tcp_mtup_probe_failed(sk);
2899 /* Restores the reduction we did in tcp_mtup_probe() */
2900 tp->snd_cwnd++;
2901 tcp_simple_retransmit(sk);
2902 return;
2903 }
2904
2905 /* Otherwise enter Recovery state */
2906 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2907 fast_rexmit = 1;
2908 }
2909
2910 if (do_lost)
2911 tcp_update_scoreboard(sk, fast_rexmit);
2912 *rexmit = REXMIT_LOST;
2913 }
2914
2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2916 {
2917 struct tcp_sock *tp = tcp_sk(sk);
2918 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2919
2920 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2921 rtt_us ? : jiffies_to_usecs(1));
2922 }
2923
2924 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2925 long seq_rtt_us, long sack_rtt_us,
2926 long ca_rtt_us, struct rate_sample *rs)
2927 {
2928 const struct tcp_sock *tp = tcp_sk(sk);
2929
2930 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2931 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2932 * Karn's algorithm forbids taking RTT if some retransmitted data
2933 * is acked (RFC6298).
2934 */
2935 if (seq_rtt_us < 0)
2936 seq_rtt_us = sack_rtt_us;
2937
2938 /* RTTM Rule: A TSecr value received in a segment is used to
2939 * update the averaged RTT measurement only if the segment
2940 * acknowledges some new data, i.e., only if it advances the
2941 * left edge of the send window.
2942 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2943 */
2944 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2945 flag & FLAG_ACKED) {
2946 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2947 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2948
2949 seq_rtt_us = ca_rtt_us = delta_us;
2950 }
2951 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2952 if (seq_rtt_us < 0)
2953 return false;
2954
2955 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2956 * always taken together with ACK, SACK, or TS-opts. Any negative
2957 * values will be skipped with the seq_rtt_us < 0 check above.
2958 */
2959 tcp_update_rtt_min(sk, ca_rtt_us);
2960 tcp_rtt_estimator(sk, seq_rtt_us);
2961 tcp_set_rto(sk);
2962
2963 /* RFC6298: only reset backoff on valid RTT measurement. */
2964 inet_csk(sk)->icsk_backoff = 0;
2965 return true;
2966 }
2967
2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2970 {
2971 struct rate_sample rs;
2972 long rtt_us = -1L;
2973
2974 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2975 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2976
2977 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2978 }
2979
2980
2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2982 {
2983 const struct inet_connection_sock *icsk = inet_csk(sk);
2984
2985 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2986 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2987 }
2988
2989 /* Restart timer after forward progress on connection.
2990 * RFC2988 recommends to restart timer to now+rto.
2991 */
2992 void tcp_rearm_rto(struct sock *sk)
2993 {
2994 const struct inet_connection_sock *icsk = inet_csk(sk);
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 /* If the retrans timer is currently being used by Fast Open
2998 * for SYN-ACK retrans purpose, stay put.
2999 */
3000 if (tp->fastopen_rsk)
3001 return;
3002
3003 if (!tp->packets_out) {
3004 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3005 } else {
3006 u32 rto = inet_csk(sk)->icsk_rto;
3007 /* Offset the time elapsed after installing regular RTO */
3008 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3009 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3010 s64 delta_us = tcp_rto_delta_us(sk);
3011 /* delta_us may not be positive if the socket is locked
3012 * when the retrans timer fires and is rescheduled.
3013 */
3014 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3015 }
3016 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3017 TCP_RTO_MAX);
3018 }
3019 }
3020
3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3022 static void tcp_set_xmit_timer(struct sock *sk)
3023 {
3024 if (!tcp_schedule_loss_probe(sk))
3025 tcp_rearm_rto(sk);
3026 }
3027
3028 /* If we get here, the whole TSO packet has not been acked. */
3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3030 {
3031 struct tcp_sock *tp = tcp_sk(sk);
3032 u32 packets_acked;
3033
3034 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3035
3036 packets_acked = tcp_skb_pcount(skb);
3037 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3038 return 0;
3039 packets_acked -= tcp_skb_pcount(skb);
3040
3041 if (packets_acked) {
3042 BUG_ON(tcp_skb_pcount(skb) == 0);
3043 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3044 }
3045
3046 return packets_acked;
3047 }
3048
3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3050 u32 prior_snd_una)
3051 {
3052 const struct skb_shared_info *shinfo;
3053
3054 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3055 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3056 return;
3057
3058 shinfo = skb_shinfo(skb);
3059 if (!before(shinfo->tskey, prior_snd_una) &&
3060 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3061 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3062 }
3063
3064 /* Remove acknowledged frames from the retransmission queue. If our packet
3065 * is before the ack sequence we can discard it as it's confirmed to have
3066 * arrived at the other end.
3067 */
3068 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3069 u32 prior_snd_una, int *acked,
3070 struct tcp_sacktag_state *sack)
3071 {
3072 const struct inet_connection_sock *icsk = inet_csk(sk);
3073 u64 first_ackt, last_ackt;
3074 struct tcp_sock *tp = tcp_sk(sk);
3075 u32 prior_sacked = tp->sacked_out;
3076 u32 reord = tp->packets_out;
3077 bool fully_acked = true;
3078 long sack_rtt_us = -1L;
3079 long seq_rtt_us = -1L;
3080 long ca_rtt_us = -1L;
3081 struct sk_buff *skb;
3082 u32 pkts_acked = 0;
3083 u32 last_in_flight = 0;
3084 bool rtt_update;
3085 int flag = 0;
3086
3087 first_ackt = 0;
3088
3089 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3090 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3091 u8 sacked = scb->sacked;
3092 u32 acked_pcount;
3093
3094 tcp_ack_tstamp(sk, skb, prior_snd_una);
3095
3096 /* Determine how many packets and what bytes were acked, tso and else */
3097 if (after(scb->end_seq, tp->snd_una)) {
3098 if (tcp_skb_pcount(skb) == 1 ||
3099 !after(tp->snd_una, scb->seq))
3100 break;
3101
3102 acked_pcount = tcp_tso_acked(sk, skb);
3103 if (!acked_pcount)
3104 break;
3105 fully_acked = false;
3106 } else {
3107 /* Speedup tcp_unlink_write_queue() and next loop */
3108 prefetchw(skb->next);
3109 acked_pcount = tcp_skb_pcount(skb);
3110 }
3111
3112 if (unlikely(sacked & TCPCB_RETRANS)) {
3113 if (sacked & TCPCB_SACKED_RETRANS)
3114 tp->retrans_out -= acked_pcount;
3115 flag |= FLAG_RETRANS_DATA_ACKED;
3116 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3117 last_ackt = skb->skb_mstamp;
3118 WARN_ON_ONCE(last_ackt == 0);
3119 if (!first_ackt)
3120 first_ackt = last_ackt;
3121
3122 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3123 reord = min(pkts_acked, reord);
3124 if (!after(scb->end_seq, tp->high_seq))
3125 flag |= FLAG_ORIG_SACK_ACKED;
3126 }
3127
3128 if (sacked & TCPCB_SACKED_ACKED) {
3129 tp->sacked_out -= acked_pcount;
3130 } else if (tcp_is_sack(tp)) {
3131 tp->delivered += acked_pcount;
3132 if (!tcp_skb_spurious_retrans(tp, skb))
3133 tcp_rack_advance(tp, sacked, scb->end_seq,
3134 skb->skb_mstamp);
3135 }
3136 if (sacked & TCPCB_LOST)
3137 tp->lost_out -= acked_pcount;
3138
3139 tp->packets_out -= acked_pcount;
3140 pkts_acked += acked_pcount;
3141 tcp_rate_skb_delivered(sk, skb, sack->rate);
3142
3143 /* Initial outgoing SYN's get put onto the write_queue
3144 * just like anything else we transmit. It is not
3145 * true data, and if we misinform our callers that
3146 * this ACK acks real data, we will erroneously exit
3147 * connection startup slow start one packet too
3148 * quickly. This is severely frowned upon behavior.
3149 */
3150 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3151 flag |= FLAG_DATA_ACKED;
3152 } else {
3153 flag |= FLAG_SYN_ACKED;
3154 tp->retrans_stamp = 0;
3155 }
3156
3157 if (!fully_acked)
3158 break;
3159
3160 tcp_unlink_write_queue(skb, sk);
3161 sk_wmem_free_skb(sk, skb);
3162 if (unlikely(skb == tp->retransmit_skb_hint))
3163 tp->retransmit_skb_hint = NULL;
3164 if (unlikely(skb == tp->lost_skb_hint))
3165 tp->lost_skb_hint = NULL;
3166 }
3167
3168 if (!skb)
3169 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3170
3171 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3172 tp->snd_up = tp->snd_una;
3173
3174 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3175 flag |= FLAG_SACK_RENEGING;
3176
3177 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3178 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3179 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3180 }
3181 if (sack->first_sackt) {
3182 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3184 }
3185 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3186 ca_rtt_us, sack->rate);
3187
3188 if (flag & FLAG_ACKED) {
3189 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3190 if (unlikely(icsk->icsk_mtup.probe_size &&
3191 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3192 tcp_mtup_probe_success(sk);
3193 }
3194
3195 if (tcp_is_reno(tp)) {
3196 tcp_remove_reno_sacks(sk, pkts_acked);
3197 } else {
3198 int delta;
3199
3200 /* Non-retransmitted hole got filled? That's reordering */
3201 if (reord < prior_fackets && reord <= tp->fackets_out)
3202 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3203
3204 delta = tcp_is_fack(tp) ? pkts_acked :
3205 prior_sacked - tp->sacked_out;
3206 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3207 }
3208
3209 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3210
3211 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3212 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3213 /* Do not re-arm RTO if the sack RTT is measured from data sent
3214 * after when the head was last (re)transmitted. Otherwise the
3215 * timeout may continue to extend in loss recovery.
3216 */
3217 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3218 }
3219
3220 if (icsk->icsk_ca_ops->pkts_acked) {
3221 struct ack_sample sample = { .pkts_acked = pkts_acked,
3222 .rtt_us = sack->rate->rtt_us,
3223 .in_flight = last_in_flight };
3224
3225 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3226 }
3227
3228 #if FASTRETRANS_DEBUG > 0
3229 WARN_ON((int)tp->sacked_out < 0);
3230 WARN_ON((int)tp->lost_out < 0);
3231 WARN_ON((int)tp->retrans_out < 0);
3232 if (!tp->packets_out && tcp_is_sack(tp)) {
3233 icsk = inet_csk(sk);
3234 if (tp->lost_out) {
3235 pr_debug("Leak l=%u %d\n",
3236 tp->lost_out, icsk->icsk_ca_state);
3237 tp->lost_out = 0;
3238 }
3239 if (tp->sacked_out) {
3240 pr_debug("Leak s=%u %d\n",
3241 tp->sacked_out, icsk->icsk_ca_state);
3242 tp->sacked_out = 0;
3243 }
3244 if (tp->retrans_out) {
3245 pr_debug("Leak r=%u %d\n",
3246 tp->retrans_out, icsk->icsk_ca_state);
3247 tp->retrans_out = 0;
3248 }
3249 }
3250 #endif
3251 *acked = pkts_acked;
3252 return flag;
3253 }
3254
3255 static void tcp_ack_probe(struct sock *sk)
3256 {
3257 const struct tcp_sock *tp = tcp_sk(sk);
3258 struct inet_connection_sock *icsk = inet_csk(sk);
3259
3260 /* Was it a usable window open? */
3261
3262 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3263 icsk->icsk_backoff = 0;
3264 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3265 /* Socket must be waked up by subsequent tcp_data_snd_check().
3266 * This function is not for random using!
3267 */
3268 } else {
3269 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3270
3271 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3272 when, TCP_RTO_MAX);
3273 }
3274 }
3275
3276 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3277 {
3278 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3279 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3280 }
3281
3282 /* Decide wheather to run the increase function of congestion control. */
3283 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3284 {
3285 /* If reordering is high then always grow cwnd whenever data is
3286 * delivered regardless of its ordering. Otherwise stay conservative
3287 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3288 * new SACK or ECE mark may first advance cwnd here and later reduce
3289 * cwnd in tcp_fastretrans_alert() based on more states.
3290 */
3291 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3292 return flag & FLAG_FORWARD_PROGRESS;
3293
3294 return flag & FLAG_DATA_ACKED;
3295 }
3296
3297 /* The "ultimate" congestion control function that aims to replace the rigid
3298 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3299 * It's called toward the end of processing an ACK with precise rate
3300 * information. All transmission or retransmission are delayed afterwards.
3301 */
3302 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3303 int flag, const struct rate_sample *rs)
3304 {
3305 const struct inet_connection_sock *icsk = inet_csk(sk);
3306
3307 if (icsk->icsk_ca_ops->cong_control) {
3308 icsk->icsk_ca_ops->cong_control(sk, rs);
3309 return;
3310 }
3311
3312 if (tcp_in_cwnd_reduction(sk)) {
3313 /* Reduce cwnd if state mandates */
3314 tcp_cwnd_reduction(sk, acked_sacked, flag);
3315 } else if (tcp_may_raise_cwnd(sk, flag)) {
3316 /* Advance cwnd if state allows */
3317 tcp_cong_avoid(sk, ack, acked_sacked);
3318 }
3319 tcp_update_pacing_rate(sk);
3320 }
3321
3322 /* Check that window update is acceptable.
3323 * The function assumes that snd_una<=ack<=snd_next.
3324 */
3325 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3326 const u32 ack, const u32 ack_seq,
3327 const u32 nwin)
3328 {
3329 return after(ack, tp->snd_una) ||
3330 after(ack_seq, tp->snd_wl1) ||
3331 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3332 }
3333
3334 /* If we update tp->snd_una, also update tp->bytes_acked */
3335 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3336 {
3337 u32 delta = ack - tp->snd_una;
3338
3339 sock_owned_by_me((struct sock *)tp);
3340 tp->bytes_acked += delta;
3341 tp->snd_una = ack;
3342 }
3343
3344 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3345 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3346 {
3347 u32 delta = seq - tp->rcv_nxt;
3348
3349 sock_owned_by_me((struct sock *)tp);
3350 tp->bytes_received += delta;
3351 tp->rcv_nxt = seq;
3352 }
3353
3354 /* Update our send window.
3355 *
3356 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3357 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3358 */
3359 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3360 u32 ack_seq)
3361 {
3362 struct tcp_sock *tp = tcp_sk(sk);
3363 int flag = 0;
3364 u32 nwin = ntohs(tcp_hdr(skb)->window);
3365
3366 if (likely(!tcp_hdr(skb)->syn))
3367 nwin <<= tp->rx_opt.snd_wscale;
3368
3369 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3370 flag |= FLAG_WIN_UPDATE;
3371 tcp_update_wl(tp, ack_seq);
3372
3373 if (tp->snd_wnd != nwin) {
3374 tp->snd_wnd = nwin;
3375
3376 /* Note, it is the only place, where
3377 * fast path is recovered for sending TCP.
3378 */
3379 tp->pred_flags = 0;
3380 tcp_fast_path_check(sk);
3381
3382 if (tcp_send_head(sk))
3383 tcp_slow_start_after_idle_check(sk);
3384
3385 if (nwin > tp->max_window) {
3386 tp->max_window = nwin;
3387 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3388 }
3389 }
3390 }
3391
3392 tcp_snd_una_update(tp, ack);
3393
3394 return flag;
3395 }
3396
3397 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3398 u32 *last_oow_ack_time)
3399 {
3400 if (*last_oow_ack_time) {
3401 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3402
3403 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3404 NET_INC_STATS(net, mib_idx);
3405 return true; /* rate-limited: don't send yet! */
3406 }
3407 }
3408
3409 *last_oow_ack_time = tcp_jiffies32;
3410
3411 return false; /* not rate-limited: go ahead, send dupack now! */
3412 }
3413
3414 /* Return true if we're currently rate-limiting out-of-window ACKs and
3415 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3416 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3417 * attacks that send repeated SYNs or ACKs for the same connection. To
3418 * do this, we do not send a duplicate SYNACK or ACK if the remote
3419 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3420 */
3421 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3422 int mib_idx, u32 *last_oow_ack_time)
3423 {
3424 /* Data packets without SYNs are not likely part of an ACK loop. */
3425 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3426 !tcp_hdr(skb)->syn)
3427 return false;
3428
3429 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3430 }
3431
3432 /* RFC 5961 7 [ACK Throttling] */
3433 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3434 {
3435 /* unprotected vars, we dont care of overwrites */
3436 static u32 challenge_timestamp;
3437 static unsigned int challenge_count;
3438 struct tcp_sock *tp = tcp_sk(sk);
3439 u32 count, now;
3440
3441 /* First check our per-socket dupack rate limit. */
3442 if (__tcp_oow_rate_limited(sock_net(sk),
3443 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3444 &tp->last_oow_ack_time))
3445 return;
3446
3447 /* Then check host-wide RFC 5961 rate limit. */
3448 now = jiffies / HZ;
3449 if (now != challenge_timestamp) {
3450 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3451
3452 challenge_timestamp = now;
3453 WRITE_ONCE(challenge_count, half +
3454 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3455 }
3456 count = READ_ONCE(challenge_count);
3457 if (count > 0) {
3458 WRITE_ONCE(challenge_count, count - 1);
3459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3460 tcp_send_ack(sk);
3461 }
3462 }
3463
3464 static void tcp_store_ts_recent(struct tcp_sock *tp)
3465 {
3466 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3467 tp->rx_opt.ts_recent_stamp = get_seconds();
3468 }
3469
3470 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3471 {
3472 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3473 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3474 * extra check below makes sure this can only happen
3475 * for pure ACK frames. -DaveM
3476 *
3477 * Not only, also it occurs for expired timestamps.
3478 */
3479
3480 if (tcp_paws_check(&tp->rx_opt, 0))
3481 tcp_store_ts_recent(tp);
3482 }
3483 }
3484
3485 /* This routine deals with acks during a TLP episode.
3486 * We mark the end of a TLP episode on receiving TLP dupack or when
3487 * ack is after tlp_high_seq.
3488 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3489 */
3490 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3491 {
3492 struct tcp_sock *tp = tcp_sk(sk);
3493
3494 if (before(ack, tp->tlp_high_seq))
3495 return;
3496
3497 if (flag & FLAG_DSACKING_ACK) {
3498 /* This DSACK means original and TLP probe arrived; no loss */
3499 tp->tlp_high_seq = 0;
3500 } else if (after(ack, tp->tlp_high_seq)) {
3501 /* ACK advances: there was a loss, so reduce cwnd. Reset
3502 * tlp_high_seq in tcp_init_cwnd_reduction()
3503 */
3504 tcp_init_cwnd_reduction(sk);
3505 tcp_set_ca_state(sk, TCP_CA_CWR);
3506 tcp_end_cwnd_reduction(sk);
3507 tcp_try_keep_open(sk);
3508 NET_INC_STATS(sock_net(sk),
3509 LINUX_MIB_TCPLOSSPROBERECOVERY);
3510 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3511 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3512 /* Pure dupack: original and TLP probe arrived; no loss */
3513 tp->tlp_high_seq = 0;
3514 }
3515 }
3516
3517 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3518 {
3519 const struct inet_connection_sock *icsk = inet_csk(sk);
3520
3521 if (icsk->icsk_ca_ops->in_ack_event)
3522 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3523 }
3524
3525 /* Congestion control has updated the cwnd already. So if we're in
3526 * loss recovery then now we do any new sends (for FRTO) or
3527 * retransmits (for CA_Loss or CA_recovery) that make sense.
3528 */
3529 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3530 {
3531 struct tcp_sock *tp = tcp_sk(sk);
3532
3533 if (rexmit == REXMIT_NONE)
3534 return;
3535
3536 if (unlikely(rexmit == 2)) {
3537 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3538 TCP_NAGLE_OFF);
3539 if (after(tp->snd_nxt, tp->high_seq))
3540 return;
3541 tp->frto = 0;
3542 }
3543 tcp_xmit_retransmit_queue(sk);
3544 }
3545
3546 /* This routine deals with incoming acks, but not outgoing ones. */
3547 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3548 {
3549 struct inet_connection_sock *icsk = inet_csk(sk);
3550 struct tcp_sock *tp = tcp_sk(sk);
3551 struct tcp_sacktag_state sack_state;
3552 struct rate_sample rs = { .prior_delivered = 0 };
3553 u32 prior_snd_una = tp->snd_una;
3554 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3555 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3556 bool is_dupack = false;
3557 u32 prior_fackets;
3558 int prior_packets = tp->packets_out;
3559 u32 delivered = tp->delivered;
3560 u32 lost = tp->lost;
3561 int acked = 0; /* Number of packets newly acked */
3562 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3563
3564 sack_state.first_sackt = 0;
3565 sack_state.rate = &rs;
3566
3567 /* We very likely will need to access write queue head. */
3568 prefetchw(sk->sk_write_queue.next);
3569
3570 /* If the ack is older than previous acks
3571 * then we can probably ignore it.
3572 */
3573 if (before(ack, prior_snd_una)) {
3574 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3575 if (before(ack, prior_snd_una - tp->max_window)) {
3576 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3577 tcp_send_challenge_ack(sk, skb);
3578 return -1;
3579 }
3580 goto old_ack;
3581 }
3582
3583 /* If the ack includes data we haven't sent yet, discard
3584 * this segment (RFC793 Section 3.9).
3585 */
3586 if (after(ack, tp->snd_nxt))
3587 goto invalid_ack;
3588
3589 if (after(ack, prior_snd_una)) {
3590 flag |= FLAG_SND_UNA_ADVANCED;
3591 icsk->icsk_retransmits = 0;
3592 }
3593
3594 prior_fackets = tp->fackets_out;
3595 rs.prior_in_flight = tcp_packets_in_flight(tp);
3596
3597 /* ts_recent update must be made after we are sure that the packet
3598 * is in window.
3599 */
3600 if (flag & FLAG_UPDATE_TS_RECENT)
3601 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3602
3603 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3604 /* Window is constant, pure forward advance.
3605 * No more checks are required.
3606 * Note, we use the fact that SND.UNA>=SND.WL2.
3607 */
3608 tcp_update_wl(tp, ack_seq);
3609 tcp_snd_una_update(tp, ack);
3610 flag |= FLAG_WIN_UPDATE;
3611
3612 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3613
3614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3615 } else {
3616 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3617
3618 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3619 flag |= FLAG_DATA;
3620 else
3621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3622
3623 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3624
3625 if (TCP_SKB_CB(skb)->sacked)
3626 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3627 &sack_state);
3628
3629 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3630 flag |= FLAG_ECE;
3631 ack_ev_flags |= CA_ACK_ECE;
3632 }
3633
3634 if (flag & FLAG_WIN_UPDATE)
3635 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3636
3637 tcp_in_ack_event(sk, ack_ev_flags);
3638 }
3639
3640 /* We passed data and got it acked, remove any soft error
3641 * log. Something worked...
3642 */
3643 sk->sk_err_soft = 0;
3644 icsk->icsk_probes_out = 0;
3645 tp->rcv_tstamp = tcp_jiffies32;
3646 if (!prior_packets)
3647 goto no_queue;
3648
3649 /* See if we can take anything off of the retransmit queue. */
3650 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3651 &sack_state);
3652
3653 if (tp->tlp_high_seq)
3654 tcp_process_tlp_ack(sk, ack, flag);
3655 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3656 if (flag & FLAG_SET_XMIT_TIMER)
3657 tcp_set_xmit_timer(sk);
3658
3659 if (tcp_ack_is_dubious(sk, flag)) {
3660 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3661 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3662 }
3663
3664 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3665 sk_dst_confirm(sk);
3666
3667 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3668 lost = tp->lost - lost; /* freshly marked lost */
3669 tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3670 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3671 tcp_xmit_recovery(sk, rexmit);
3672 return 1;
3673
3674 no_queue:
3675 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3676 if (flag & FLAG_DSACKING_ACK)
3677 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3678 /* If this ack opens up a zero window, clear backoff. It was
3679 * being used to time the probes, and is probably far higher than
3680 * it needs to be for normal retransmission.
3681 */
3682 if (tcp_send_head(sk))
3683 tcp_ack_probe(sk);
3684
3685 if (tp->tlp_high_seq)
3686 tcp_process_tlp_ack(sk, ack, flag);
3687 return 1;
3688
3689 invalid_ack:
3690 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3691 return -1;
3692
3693 old_ack:
3694 /* If data was SACKed, tag it and see if we should send more data.
3695 * If data was DSACKed, see if we can undo a cwnd reduction.
3696 */
3697 if (TCP_SKB_CB(skb)->sacked) {
3698 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3699 &sack_state);
3700 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3701 tcp_xmit_recovery(sk, rexmit);
3702 }
3703
3704 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3705 return 0;
3706 }
3707
3708 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3709 bool syn, struct tcp_fastopen_cookie *foc,
3710 bool exp_opt)
3711 {
3712 /* Valid only in SYN or SYN-ACK with an even length. */
3713 if (!foc || !syn || len < 0 || (len & 1))
3714 return;
3715
3716 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3717 len <= TCP_FASTOPEN_COOKIE_MAX)
3718 memcpy(foc->val, cookie, len);
3719 else if (len != 0)
3720 len = -1;
3721 foc->len = len;
3722 foc->exp = exp_opt;
3723 }
3724
3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3726 * But, this can also be called on packets in the established flow when
3727 * the fast version below fails.
3728 */
3729 void tcp_parse_options(const struct net *net,
3730 const struct sk_buff *skb,
3731 struct tcp_options_received *opt_rx, int estab,
3732 struct tcp_fastopen_cookie *foc)
3733 {
3734 const unsigned char *ptr;
3735 const struct tcphdr *th = tcp_hdr(skb);
3736 int length = (th->doff * 4) - sizeof(struct tcphdr);
3737
3738 ptr = (const unsigned char *)(th + 1);
3739 opt_rx->saw_tstamp = 0;
3740
3741 while (length > 0) {
3742 int opcode = *ptr++;
3743 int opsize;
3744
3745 switch (opcode) {
3746 case TCPOPT_EOL:
3747 return;
3748 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3749 length--;
3750 continue;
3751 default:
3752 opsize = *ptr++;
3753 if (opsize < 2) /* "silly options" */
3754 return;
3755 if (opsize > length)
3756 return; /* don't parse partial options */
3757 switch (opcode) {
3758 case TCPOPT_MSS:
3759 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3760 u16 in_mss = get_unaligned_be16(ptr);
3761 if (in_mss) {
3762 if (opt_rx->user_mss &&
3763 opt_rx->user_mss < in_mss)
3764 in_mss = opt_rx->user_mss;
3765 opt_rx->mss_clamp = in_mss;
3766 }
3767 }
3768 break;
3769 case TCPOPT_WINDOW:
3770 if (opsize == TCPOLEN_WINDOW && th->syn &&
3771 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3772 __u8 snd_wscale = *(__u8 *)ptr;
3773 opt_rx->wscale_ok = 1;
3774 if (snd_wscale > TCP_MAX_WSCALE) {
3775 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3776 __func__,
3777 snd_wscale,
3778 TCP_MAX_WSCALE);
3779 snd_wscale = TCP_MAX_WSCALE;
3780 }
3781 opt_rx->snd_wscale = snd_wscale;
3782 }
3783 break;
3784 case TCPOPT_TIMESTAMP:
3785 if ((opsize == TCPOLEN_TIMESTAMP) &&
3786 ((estab && opt_rx->tstamp_ok) ||
3787 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3788 opt_rx->saw_tstamp = 1;
3789 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3790 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3791 }
3792 break;
3793 case TCPOPT_SACK_PERM:
3794 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3795 !estab && net->ipv4.sysctl_tcp_sack) {
3796 opt_rx->sack_ok = TCP_SACK_SEEN;
3797 tcp_sack_reset(opt_rx);
3798 }
3799 break;
3800
3801 case TCPOPT_SACK:
3802 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3803 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3804 opt_rx->sack_ok) {
3805 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3806 }
3807 break;
3808 #ifdef CONFIG_TCP_MD5SIG
3809 case TCPOPT_MD5SIG:
3810 /*
3811 * The MD5 Hash has already been
3812 * checked (see tcp_v{4,6}_do_rcv()).
3813 */
3814 break;
3815 #endif
3816 case TCPOPT_FASTOPEN:
3817 tcp_parse_fastopen_option(
3818 opsize - TCPOLEN_FASTOPEN_BASE,
3819 ptr, th->syn, foc, false);
3820 break;
3821
3822 case TCPOPT_EXP:
3823 /* Fast Open option shares code 254 using a
3824 * 16 bits magic number.
3825 */
3826 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3827 get_unaligned_be16(ptr) ==
3828 TCPOPT_FASTOPEN_MAGIC)
3829 tcp_parse_fastopen_option(opsize -
3830 TCPOLEN_EXP_FASTOPEN_BASE,
3831 ptr + 2, th->syn, foc, true);
3832 break;
3833
3834 }
3835 ptr += opsize-2;
3836 length -= opsize;
3837 }
3838 }
3839 }
3840 EXPORT_SYMBOL(tcp_parse_options);
3841
3842 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3843 {
3844 const __be32 *ptr = (const __be32 *)(th + 1);
3845
3846 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3847 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3848 tp->rx_opt.saw_tstamp = 1;
3849 ++ptr;
3850 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3851 ++ptr;
3852 if (*ptr)
3853 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3854 else
3855 tp->rx_opt.rcv_tsecr = 0;
3856 return true;
3857 }
3858 return false;
3859 }
3860
3861 /* Fast parse options. This hopes to only see timestamps.
3862 * If it is wrong it falls back on tcp_parse_options().
3863 */
3864 static bool tcp_fast_parse_options(const struct net *net,
3865 const struct sk_buff *skb,
3866 const struct tcphdr *th, struct tcp_sock *tp)
3867 {
3868 /* In the spirit of fast parsing, compare doff directly to constant
3869 * values. Because equality is used, short doff can be ignored here.
3870 */
3871 if (th->doff == (sizeof(*th) / 4)) {
3872 tp->rx_opt.saw_tstamp = 0;
3873 return false;
3874 } else if (tp->rx_opt.tstamp_ok &&
3875 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3876 if (tcp_parse_aligned_timestamp(tp, th))
3877 return true;
3878 }
3879
3880 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3881 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3882 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3883
3884 return true;
3885 }
3886
3887 #ifdef CONFIG_TCP_MD5SIG
3888 /*
3889 * Parse MD5 Signature option
3890 */
3891 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3892 {
3893 int length = (th->doff << 2) - sizeof(*th);
3894 const u8 *ptr = (const u8 *)(th + 1);
3895
3896 /* If the TCP option is too short, we can short cut */
3897 if (length < TCPOLEN_MD5SIG)
3898 return NULL;
3899
3900 while (length > 0) {
3901 int opcode = *ptr++;
3902 int opsize;
3903
3904 switch (opcode) {
3905 case TCPOPT_EOL:
3906 return NULL;
3907 case TCPOPT_NOP:
3908 length--;
3909 continue;
3910 default:
3911 opsize = *ptr++;
3912 if (opsize < 2 || opsize > length)
3913 return NULL;
3914 if (opcode == TCPOPT_MD5SIG)
3915 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3916 }
3917 ptr += opsize - 2;
3918 length -= opsize;
3919 }
3920 return NULL;
3921 }
3922 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3923 #endif
3924
3925 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3926 *
3927 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3928 * it can pass through stack. So, the following predicate verifies that
3929 * this segment is not used for anything but congestion avoidance or
3930 * fast retransmit. Moreover, we even are able to eliminate most of such
3931 * second order effects, if we apply some small "replay" window (~RTO)
3932 * to timestamp space.
3933 *
3934 * All these measures still do not guarantee that we reject wrapped ACKs
3935 * on networks with high bandwidth, when sequence space is recycled fastly,
3936 * but it guarantees that such events will be very rare and do not affect
3937 * connection seriously. This doesn't look nice, but alas, PAWS is really
3938 * buggy extension.
3939 *
3940 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3941 * states that events when retransmit arrives after original data are rare.
3942 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3943 * the biggest problem on large power networks even with minor reordering.
3944 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3945 * up to bandwidth of 18Gigabit/sec. 8) ]
3946 */
3947
3948 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3949 {
3950 const struct tcp_sock *tp = tcp_sk(sk);
3951 const struct tcphdr *th = tcp_hdr(skb);
3952 u32 seq = TCP_SKB_CB(skb)->seq;
3953 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3954
3955 return (/* 1. Pure ACK with correct sequence number. */
3956 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3957
3958 /* 2. ... and duplicate ACK. */
3959 ack == tp->snd_una &&
3960
3961 /* 3. ... and does not update window. */
3962 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3963
3964 /* 4. ... and sits in replay window. */
3965 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3966 }
3967
3968 static inline bool tcp_paws_discard(const struct sock *sk,
3969 const struct sk_buff *skb)
3970 {
3971 const struct tcp_sock *tp = tcp_sk(sk);
3972
3973 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3974 !tcp_disordered_ack(sk, skb);
3975 }
3976
3977 /* Check segment sequence number for validity.
3978 *
3979 * Segment controls are considered valid, if the segment
3980 * fits to the window after truncation to the window. Acceptability
3981 * of data (and SYN, FIN, of course) is checked separately.
3982 * See tcp_data_queue(), for example.
3983 *
3984 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3985 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3986 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3987 * (borrowed from freebsd)
3988 */
3989
3990 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3991 {
3992 return !before(end_seq, tp->rcv_wup) &&
3993 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3994 }
3995
3996 /* When we get a reset we do this. */
3997 void tcp_reset(struct sock *sk)
3998 {
3999 /* We want the right error as BSD sees it (and indeed as we do). */
4000 switch (sk->sk_state) {
4001 case TCP_SYN_SENT:
4002 sk->sk_err = ECONNREFUSED;
4003 break;
4004 case TCP_CLOSE_WAIT:
4005 sk->sk_err = EPIPE;
4006 break;
4007 case TCP_CLOSE:
4008 return;
4009 default:
4010 sk->sk_err = ECONNRESET;
4011 }
4012 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4013 smp_wmb();
4014
4015 tcp_done(sk);
4016
4017 if (!sock_flag(sk, SOCK_DEAD))
4018 sk->sk_error_report(sk);
4019 }
4020
4021 /*
4022 * Process the FIN bit. This now behaves as it is supposed to work
4023 * and the FIN takes effect when it is validly part of sequence
4024 * space. Not before when we get holes.
4025 *
4026 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4027 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4028 * TIME-WAIT)
4029 *
4030 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4031 * close and we go into CLOSING (and later onto TIME-WAIT)
4032 *
4033 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4034 */
4035 void tcp_fin(struct sock *sk)
4036 {
4037 struct tcp_sock *tp = tcp_sk(sk);
4038
4039 inet_csk_schedule_ack(sk);
4040
4041 sk->sk_shutdown |= RCV_SHUTDOWN;
4042 sock_set_flag(sk, SOCK_DONE);
4043
4044 switch (sk->sk_state) {
4045 case TCP_SYN_RECV:
4046 case TCP_ESTABLISHED:
4047 /* Move to CLOSE_WAIT */
4048 tcp_set_state(sk, TCP_CLOSE_WAIT);
4049 inet_csk(sk)->icsk_ack.pingpong = 1;
4050 break;
4051
4052 case TCP_CLOSE_WAIT:
4053 case TCP_CLOSING:
4054 /* Received a retransmission of the FIN, do
4055 * nothing.
4056 */
4057 break;
4058 case TCP_LAST_ACK:
4059 /* RFC793: Remain in the LAST-ACK state. */
4060 break;
4061
4062 case TCP_FIN_WAIT1:
4063 /* This case occurs when a simultaneous close
4064 * happens, we must ack the received FIN and
4065 * enter the CLOSING state.
4066 */
4067 tcp_send_ack(sk);
4068 tcp_set_state(sk, TCP_CLOSING);
4069 break;
4070 case TCP_FIN_WAIT2:
4071 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4072 tcp_send_ack(sk);
4073 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4074 break;
4075 default:
4076 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4077 * cases we should never reach this piece of code.
4078 */
4079 pr_err("%s: Impossible, sk->sk_state=%d\n",
4080 __func__, sk->sk_state);
4081 break;
4082 }
4083
4084 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4085 * Probably, we should reset in this case. For now drop them.
4086 */
4087 skb_rbtree_purge(&tp->out_of_order_queue);
4088 if (tcp_is_sack(tp))
4089 tcp_sack_reset(&tp->rx_opt);
4090 sk_mem_reclaim(sk);
4091
4092 if (!sock_flag(sk, SOCK_DEAD)) {
4093 sk->sk_state_change(sk);
4094
4095 /* Do not send POLL_HUP for half duplex close. */
4096 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4097 sk->sk_state == TCP_CLOSE)
4098 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4099 else
4100 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4101 }
4102 }
4103
4104 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4105 u32 end_seq)
4106 {
4107 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4108 if (before(seq, sp->start_seq))
4109 sp->start_seq = seq;
4110 if (after(end_seq, sp->end_seq))
4111 sp->end_seq = end_seq;
4112 return true;
4113 }
4114 return false;
4115 }
4116
4117 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4118 {
4119 struct tcp_sock *tp = tcp_sk(sk);
4120
4121 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4122 int mib_idx;
4123
4124 if (before(seq, tp->rcv_nxt))
4125 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4126 else
4127 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4128
4129 NET_INC_STATS(sock_net(sk), mib_idx);
4130
4131 tp->rx_opt.dsack = 1;
4132 tp->duplicate_sack[0].start_seq = seq;
4133 tp->duplicate_sack[0].end_seq = end_seq;
4134 }
4135 }
4136
4137 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4138 {
4139 struct tcp_sock *tp = tcp_sk(sk);
4140
4141 if (!tp->rx_opt.dsack)
4142 tcp_dsack_set(sk, seq, end_seq);
4143 else
4144 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4145 }
4146
4147 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4148 {
4149 struct tcp_sock *tp = tcp_sk(sk);
4150
4151 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4152 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4153 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4154 tcp_enter_quickack_mode(sk);
4155
4156 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4157 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4158
4159 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4160 end_seq = tp->rcv_nxt;
4161 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4162 }
4163 }
4164
4165 tcp_send_ack(sk);
4166 }
4167
4168 /* These routines update the SACK block as out-of-order packets arrive or
4169 * in-order packets close up the sequence space.
4170 */
4171 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4172 {
4173 int this_sack;
4174 struct tcp_sack_block *sp = &tp->selective_acks[0];
4175 struct tcp_sack_block *swalk = sp + 1;
4176
4177 /* See if the recent change to the first SACK eats into
4178 * or hits the sequence space of other SACK blocks, if so coalesce.
4179 */
4180 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4181 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4182 int i;
4183
4184 /* Zap SWALK, by moving every further SACK up by one slot.
4185 * Decrease num_sacks.
4186 */
4187 tp->rx_opt.num_sacks--;
4188 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4189 sp[i] = sp[i + 1];
4190 continue;
4191 }
4192 this_sack++, swalk++;
4193 }
4194 }
4195
4196 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4197 {
4198 struct tcp_sock *tp = tcp_sk(sk);
4199 struct tcp_sack_block *sp = &tp->selective_acks[0];
4200 int cur_sacks = tp->rx_opt.num_sacks;
4201 int this_sack;
4202
4203 if (!cur_sacks)
4204 goto new_sack;
4205
4206 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4207 if (tcp_sack_extend(sp, seq, end_seq)) {
4208 /* Rotate this_sack to the first one. */
4209 for (; this_sack > 0; this_sack--, sp--)
4210 swap(*sp, *(sp - 1));
4211 if (cur_sacks > 1)
4212 tcp_sack_maybe_coalesce(tp);
4213 return;
4214 }
4215 }
4216
4217 /* Could not find an adjacent existing SACK, build a new one,
4218 * put it at the front, and shift everyone else down. We
4219 * always know there is at least one SACK present already here.
4220 *
4221 * If the sack array is full, forget about the last one.
4222 */
4223 if (this_sack >= TCP_NUM_SACKS) {
4224 this_sack--;
4225 tp->rx_opt.num_sacks--;
4226 sp--;
4227 }
4228 for (; this_sack > 0; this_sack--, sp--)
4229 *sp = *(sp - 1);
4230
4231 new_sack:
4232 /* Build the new head SACK, and we're done. */
4233 sp->start_seq = seq;
4234 sp->end_seq = end_seq;
4235 tp->rx_opt.num_sacks++;
4236 }
4237
4238 /* RCV.NXT advances, some SACKs should be eaten. */
4239
4240 static void tcp_sack_remove(struct tcp_sock *tp)
4241 {
4242 struct tcp_sack_block *sp = &tp->selective_acks[0];
4243 int num_sacks = tp->rx_opt.num_sacks;
4244 int this_sack;
4245
4246 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4247 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4248 tp->rx_opt.num_sacks = 0;
4249 return;
4250 }
4251
4252 for (this_sack = 0; this_sack < num_sacks;) {
4253 /* Check if the start of the sack is covered by RCV.NXT. */
4254 if (!before(tp->rcv_nxt, sp->start_seq)) {
4255 int i;
4256
4257 /* RCV.NXT must cover all the block! */
4258 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4259
4260 /* Zap this SACK, by moving forward any other SACKS. */
4261 for (i = this_sack+1; i < num_sacks; i++)
4262 tp->selective_acks[i-1] = tp->selective_acks[i];
4263 num_sacks--;
4264 continue;
4265 }
4266 this_sack++;
4267 sp++;
4268 }
4269 tp->rx_opt.num_sacks = num_sacks;
4270 }
4271
4272 enum tcp_queue {
4273 OOO_QUEUE,
4274 RCV_QUEUE,
4275 };
4276
4277 /**
4278 * tcp_try_coalesce - try to merge skb to prior one
4279 * @sk: socket
4280 * @dest: destination queue
4281 * @to: prior buffer
4282 * @from: buffer to add in queue
4283 * @fragstolen: pointer to boolean
4284 *
4285 * Before queueing skb @from after @to, try to merge them
4286 * to reduce overall memory use and queue lengths, if cost is small.
4287 * Packets in ofo or receive queues can stay a long time.
4288 * Better try to coalesce them right now to avoid future collapses.
4289 * Returns true if caller should free @from instead of queueing it
4290 */
4291 static bool tcp_try_coalesce(struct sock *sk,
4292 enum tcp_queue dest,
4293 struct sk_buff *to,
4294 struct sk_buff *from,
4295 bool *fragstolen)
4296 {
4297 int delta;
4298
4299 *fragstolen = false;
4300
4301 /* Its possible this segment overlaps with prior segment in queue */
4302 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4303 return false;
4304
4305 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4306 return false;
4307
4308 atomic_add(delta, &sk->sk_rmem_alloc);
4309 sk_mem_charge(sk, delta);
4310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4311 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4312 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4313 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4314
4315 if (TCP_SKB_CB(from)->has_rxtstamp) {
4316 TCP_SKB_CB(to)->has_rxtstamp = true;
4317 if (dest == OOO_QUEUE)
4318 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4319 else
4320 to->tstamp = from->tstamp;
4321 }
4322
4323 return true;
4324 }
4325
4326 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4327 {
4328 sk_drops_add(sk, skb);
4329 __kfree_skb(skb);
4330 }
4331
4332 /* This one checks to see if we can put data from the
4333 * out_of_order queue into the receive_queue.
4334 */
4335 static void tcp_ofo_queue(struct sock *sk)
4336 {
4337 struct tcp_sock *tp = tcp_sk(sk);
4338 __u32 dsack_high = tp->rcv_nxt;
4339 bool fin, fragstolen, eaten;
4340 struct sk_buff *skb, *tail;
4341 struct rb_node *p;
4342
4343 p = rb_first(&tp->out_of_order_queue);
4344 while (p) {
4345 skb = rb_entry(p, struct sk_buff, rbnode);
4346 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4347 break;
4348
4349 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4350 __u32 dsack = dsack_high;
4351 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4352 dsack_high = TCP_SKB_CB(skb)->end_seq;
4353 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4354 }
4355 p = rb_next(p);
4356 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4357 /* Replace tstamp which was stomped by rbnode */
4358 if (TCP_SKB_CB(skb)->has_rxtstamp)
4359 skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4360
4361 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4362 SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 tcp_drop(sk, skb);
4364 continue;
4365 }
4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 TCP_SKB_CB(skb)->end_seq);
4369
4370 tail = skb_peek_tail(&sk->sk_receive_queue);
4371 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4372 tail, skb, &fragstolen);
4373 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4374 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4375 if (!eaten)
4376 __skb_queue_tail(&sk->sk_receive_queue, skb);
4377 else
4378 kfree_skb_partial(skb, fragstolen);
4379
4380 if (unlikely(fin)) {
4381 tcp_fin(sk);
4382 /* tcp_fin() purges tp->out_of_order_queue,
4383 * so we must end this loop right now.
4384 */
4385 break;
4386 }
4387 }
4388 }
4389
4390 static bool tcp_prune_ofo_queue(struct sock *sk);
4391 static int tcp_prune_queue(struct sock *sk);
4392
4393 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4394 unsigned int size)
4395 {
4396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4397 !sk_rmem_schedule(sk, skb, size)) {
4398
4399 if (tcp_prune_queue(sk) < 0)
4400 return -1;
4401
4402 while (!sk_rmem_schedule(sk, skb, size)) {
4403 if (!tcp_prune_ofo_queue(sk))
4404 return -1;
4405 }
4406 }
4407 return 0;
4408 }
4409
4410 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4411 {
4412 struct tcp_sock *tp = tcp_sk(sk);
4413 struct rb_node **p, *q, *parent;
4414 struct sk_buff *skb1;
4415 u32 seq, end_seq;
4416 bool fragstolen;
4417
4418 tcp_ecn_check_ce(tp, skb);
4419
4420 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4422 tcp_drop(sk, skb);
4423 return;
4424 }
4425
4426 /* Stash tstamp to avoid being stomped on by rbnode */
4427 if (TCP_SKB_CB(skb)->has_rxtstamp)
4428 TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4429
4430 /* Disable header prediction. */
4431 tp->pred_flags = 0;
4432 inet_csk_schedule_ack(sk);
4433
4434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4435 seq = TCP_SKB_CB(skb)->seq;
4436 end_seq = TCP_SKB_CB(skb)->end_seq;
4437 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4438 tp->rcv_nxt, seq, end_seq);
4439
4440 p = &tp->out_of_order_queue.rb_node;
4441 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4442 /* Initial out of order segment, build 1 SACK. */
4443 if (tcp_is_sack(tp)) {
4444 tp->rx_opt.num_sacks = 1;
4445 tp->selective_acks[0].start_seq = seq;
4446 tp->selective_acks[0].end_seq = end_seq;
4447 }
4448 rb_link_node(&skb->rbnode, NULL, p);
4449 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4450 tp->ooo_last_skb = skb;
4451 goto end;
4452 }
4453
4454 /* In the typical case, we are adding an skb to the end of the list.
4455 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4456 */
4457 if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
4458 skb, &fragstolen)) {
4459 coalesce_done:
4460 tcp_grow_window(sk, skb);
4461 kfree_skb_partial(skb, fragstolen);
4462 skb = NULL;
4463 goto add_sack;
4464 }
4465 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4466 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4467 parent = &tp->ooo_last_skb->rbnode;
4468 p = &parent->rb_right;
4469 goto insert;
4470 }
4471
4472 /* Find place to insert this segment. Handle overlaps on the way. */
4473 parent = NULL;
4474 while (*p) {
4475 parent = *p;
4476 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4477 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4478 p = &parent->rb_left;
4479 continue;
4480 }
4481 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 /* All the bits are present. Drop. */
4484 NET_INC_STATS(sock_net(sk),
4485 LINUX_MIB_TCPOFOMERGE);
4486 __kfree_skb(skb);
4487 skb = NULL;
4488 tcp_dsack_set(sk, seq, end_seq);
4489 goto add_sack;
4490 }
4491 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4492 /* Partial overlap. */
4493 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4494 } else {
4495 /* skb's seq == skb1's seq and skb covers skb1.
4496 * Replace skb1 with skb.
4497 */
4498 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4499 &tp->out_of_order_queue);
4500 tcp_dsack_extend(sk,
4501 TCP_SKB_CB(skb1)->seq,
4502 TCP_SKB_CB(skb1)->end_seq);
4503 NET_INC_STATS(sock_net(sk),
4504 LINUX_MIB_TCPOFOMERGE);
4505 __kfree_skb(skb1);
4506 goto merge_right;
4507 }
4508 } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
4509 skb, &fragstolen)) {
4510 goto coalesce_done;
4511 }
4512 p = &parent->rb_right;
4513 }
4514 insert:
4515 /* Insert segment into RB tree. */
4516 rb_link_node(&skb->rbnode, parent, p);
4517 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4518
4519 merge_right:
4520 /* Remove other segments covered by skb. */
4521 while ((q = rb_next(&skb->rbnode)) != NULL) {
4522 skb1 = rb_entry(q, struct sk_buff, rbnode);
4523
4524 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4525 break;
4526 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4527 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4528 end_seq);
4529 break;
4530 }
4531 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4532 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4533 TCP_SKB_CB(skb1)->end_seq);
4534 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4535 tcp_drop(sk, skb1);
4536 }
4537 /* If there is no skb after us, we are the last_skb ! */
4538 if (!q)
4539 tp->ooo_last_skb = skb;
4540
4541 add_sack:
4542 if (tcp_is_sack(tp))
4543 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4544 end:
4545 if (skb) {
4546 tcp_grow_window(sk, skb);
4547 skb_condense(skb);
4548 skb_set_owner_r(skb, sk);
4549 }
4550 }
4551
4552 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4553 bool *fragstolen)
4554 {
4555 int eaten;
4556 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4557
4558 __skb_pull(skb, hdrlen);
4559 eaten = (tail &&
4560 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4561 skb, fragstolen)) ? 1 : 0;
4562 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4563 if (!eaten) {
4564 __skb_queue_tail(&sk->sk_receive_queue, skb);
4565 skb_set_owner_r(skb, sk);
4566 }
4567 return eaten;
4568 }
4569
4570 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4571 {
4572 struct sk_buff *skb;
4573 int err = -ENOMEM;
4574 int data_len = 0;
4575 bool fragstolen;
4576
4577 if (size == 0)
4578 return 0;
4579
4580 if (size > PAGE_SIZE) {
4581 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4582
4583 data_len = npages << PAGE_SHIFT;
4584 size = data_len + (size & ~PAGE_MASK);
4585 }
4586 skb = alloc_skb_with_frags(size - data_len, data_len,
4587 PAGE_ALLOC_COSTLY_ORDER,
4588 &err, sk->sk_allocation);
4589 if (!skb)
4590 goto err;
4591
4592 skb_put(skb, size - data_len);
4593 skb->data_len = data_len;
4594 skb->len = size;
4595
4596 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4597 goto err_free;
4598
4599 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4600 if (err)
4601 goto err_free;
4602
4603 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4604 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4605 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4606
4607 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4608 WARN_ON_ONCE(fragstolen); /* should not happen */
4609 __kfree_skb(skb);
4610 }
4611 return size;
4612
4613 err_free:
4614 kfree_skb(skb);
4615 err:
4616 return err;
4617
4618 }
4619
4620 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4621 {
4622 struct tcp_sock *tp = tcp_sk(sk);
4623 bool fragstolen;
4624 int eaten;
4625
4626 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4627 __kfree_skb(skb);
4628 return;
4629 }
4630 skb_dst_drop(skb);
4631 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4632
4633 tcp_ecn_accept_cwr(tp, skb);
4634
4635 tp->rx_opt.dsack = 0;
4636
4637 /* Queue data for delivery to the user.
4638 * Packets in sequence go to the receive queue.
4639 * Out of sequence packets to the out_of_order_queue.
4640 */
4641 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4642 if (tcp_receive_window(tp) == 0)
4643 goto out_of_window;
4644
4645 /* Ok. In sequence. In window. */
4646 queue_and_out:
4647 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4648 sk_forced_mem_schedule(sk, skb->truesize);
4649 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4650 goto drop;
4651
4652 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4653 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4654 if (skb->len)
4655 tcp_event_data_recv(sk, skb);
4656 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4657 tcp_fin(sk);
4658
4659 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4660 tcp_ofo_queue(sk);
4661
4662 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4663 * gap in queue is filled.
4664 */
4665 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4666 inet_csk(sk)->icsk_ack.pingpong = 0;
4667 }
4668
4669 if (tp->rx_opt.num_sacks)
4670 tcp_sack_remove(tp);
4671
4672 tcp_fast_path_check(sk);
4673
4674 if (eaten > 0)
4675 kfree_skb_partial(skb, fragstolen);
4676 if (!sock_flag(sk, SOCK_DEAD))
4677 sk->sk_data_ready(sk);
4678 return;
4679 }
4680
4681 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4682 /* A retransmit, 2nd most common case. Force an immediate ack. */
4683 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4684 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4685
4686 out_of_window:
4687 tcp_enter_quickack_mode(sk);
4688 inet_csk_schedule_ack(sk);
4689 drop:
4690 tcp_drop(sk, skb);
4691 return;
4692 }
4693
4694 /* Out of window. F.e. zero window probe. */
4695 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4696 goto out_of_window;
4697
4698 tcp_enter_quickack_mode(sk);
4699
4700 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4701 /* Partial packet, seq < rcv_next < end_seq */
4702 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4703 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4704 TCP_SKB_CB(skb)->end_seq);
4705
4706 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4707
4708 /* If window is closed, drop tail of packet. But after
4709 * remembering D-SACK for its head made in previous line.
4710 */
4711 if (!tcp_receive_window(tp))
4712 goto out_of_window;
4713 goto queue_and_out;
4714 }
4715
4716 tcp_data_queue_ofo(sk, skb);
4717 }
4718
4719 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4720 {
4721 if (list)
4722 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4723
4724 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4725 }
4726
4727 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4728 struct sk_buff_head *list,
4729 struct rb_root *root)
4730 {
4731 struct sk_buff *next = tcp_skb_next(skb, list);
4732
4733 if (list)
4734 __skb_unlink(skb, list);
4735 else
4736 rb_erase(&skb->rbnode, root);
4737
4738 __kfree_skb(skb);
4739 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4740
4741 return next;
4742 }
4743
4744 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4745 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4746 {
4747 struct rb_node **p = &root->rb_node;
4748 struct rb_node *parent = NULL;
4749 struct sk_buff *skb1;
4750
4751 while (*p) {
4752 parent = *p;
4753 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4754 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4755 p = &parent->rb_left;
4756 else
4757 p = &parent->rb_right;
4758 }
4759 rb_link_node(&skb->rbnode, parent, p);
4760 rb_insert_color(&skb->rbnode, root);
4761 }
4762
4763 /* Collapse contiguous sequence of skbs head..tail with
4764 * sequence numbers start..end.
4765 *
4766 * If tail is NULL, this means until the end of the queue.
4767 *
4768 * Segments with FIN/SYN are not collapsed (only because this
4769 * simplifies code)
4770 */
4771 static void
4772 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4773 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4774 {
4775 struct sk_buff *skb = head, *n;
4776 struct sk_buff_head tmp;
4777 bool end_of_skbs;
4778
4779 /* First, check that queue is collapsible and find
4780 * the point where collapsing can be useful.
4781 */
4782 restart:
4783 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4784 n = tcp_skb_next(skb, list);
4785
4786 /* No new bits? It is possible on ofo queue. */
4787 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4788 skb = tcp_collapse_one(sk, skb, list, root);
4789 if (!skb)
4790 break;
4791 goto restart;
4792 }
4793
4794 /* The first skb to collapse is:
4795 * - not SYN/FIN and
4796 * - bloated or contains data before "start" or
4797 * overlaps to the next one.
4798 */
4799 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4800 (tcp_win_from_space(skb->truesize) > skb->len ||
4801 before(TCP_SKB_CB(skb)->seq, start))) {
4802 end_of_skbs = false;
4803 break;
4804 }
4805
4806 if (n && n != tail &&
4807 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4808 end_of_skbs = false;
4809 break;
4810 }
4811
4812 /* Decided to skip this, advance start seq. */
4813 start = TCP_SKB_CB(skb)->end_seq;
4814 }
4815 if (end_of_skbs ||
4816 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4817 return;
4818
4819 __skb_queue_head_init(&tmp);
4820
4821 while (before(start, end)) {
4822 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4823 struct sk_buff *nskb;
4824
4825 nskb = alloc_skb(copy, GFP_ATOMIC);
4826 if (!nskb)
4827 break;
4828
4829 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4830 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4831 if (list)
4832 __skb_queue_before(list, skb, nskb);
4833 else
4834 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4835 skb_set_owner_r(nskb, sk);
4836
4837 /* Copy data, releasing collapsed skbs. */
4838 while (copy > 0) {
4839 int offset = start - TCP_SKB_CB(skb)->seq;
4840 int size = TCP_SKB_CB(skb)->end_seq - start;
4841
4842 BUG_ON(offset < 0);
4843 if (size > 0) {
4844 size = min(copy, size);
4845 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4846 BUG();
4847 TCP_SKB_CB(nskb)->end_seq += size;
4848 copy -= size;
4849 start += size;
4850 }
4851 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4852 skb = tcp_collapse_one(sk, skb, list, root);
4853 if (!skb ||
4854 skb == tail ||
4855 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4856 goto end;
4857 }
4858 }
4859 }
4860 end:
4861 skb_queue_walk_safe(&tmp, skb, n)
4862 tcp_rbtree_insert(root, skb);
4863 }
4864
4865 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4866 * and tcp_collapse() them until all the queue is collapsed.
4867 */
4868 static void tcp_collapse_ofo_queue(struct sock *sk)
4869 {
4870 struct tcp_sock *tp = tcp_sk(sk);
4871 struct sk_buff *skb, *head;
4872 struct rb_node *p;
4873 u32 start, end;
4874
4875 p = rb_first(&tp->out_of_order_queue);
4876 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4877 new_range:
4878 if (!skb) {
4879 p = rb_last(&tp->out_of_order_queue);
4880 /* Note: This is possible p is NULL here. We do not
4881 * use rb_entry_safe(), as ooo_last_skb is valid only
4882 * if rbtree is not empty.
4883 */
4884 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4885 return;
4886 }
4887 start = TCP_SKB_CB(skb)->seq;
4888 end = TCP_SKB_CB(skb)->end_seq;
4889
4890 for (head = skb;;) {
4891 skb = tcp_skb_next(skb, NULL);
4892
4893 /* Range is terminated when we see a gap or when
4894 * we are at the queue end.
4895 */
4896 if (!skb ||
4897 after(TCP_SKB_CB(skb)->seq, end) ||
4898 before(TCP_SKB_CB(skb)->end_seq, start)) {
4899 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4900 head, skb, start, end);
4901 goto new_range;
4902 }
4903
4904 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4905 start = TCP_SKB_CB(skb)->seq;
4906 if (after(TCP_SKB_CB(skb)->end_seq, end))
4907 end = TCP_SKB_CB(skb)->end_seq;
4908 }
4909 }
4910
4911 /*
4912 * Clean the out-of-order queue to make room.
4913 * We drop high sequences packets to :
4914 * 1) Let a chance for holes to be filled.
4915 * 2) not add too big latencies if thousands of packets sit there.
4916 * (But if application shrinks SO_RCVBUF, we could still end up
4917 * freeing whole queue here)
4918 *
4919 * Return true if queue has shrunk.
4920 */
4921 static bool tcp_prune_ofo_queue(struct sock *sk)
4922 {
4923 struct tcp_sock *tp = tcp_sk(sk);
4924 struct rb_node *node, *prev;
4925
4926 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4927 return false;
4928
4929 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4930 node = &tp->ooo_last_skb->rbnode;
4931 do {
4932 prev = rb_prev(node);
4933 rb_erase(node, &tp->out_of_order_queue);
4934 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4935 sk_mem_reclaim(sk);
4936 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4937 !tcp_under_memory_pressure(sk))
4938 break;
4939 node = prev;
4940 } while (node);
4941 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4942
4943 /* Reset SACK state. A conforming SACK implementation will
4944 * do the same at a timeout based retransmit. When a connection
4945 * is in a sad state like this, we care only about integrity
4946 * of the connection not performance.
4947 */
4948 if (tp->rx_opt.sack_ok)
4949 tcp_sack_reset(&tp->rx_opt);
4950 return true;
4951 }
4952
4953 /* Reduce allocated memory if we can, trying to get
4954 * the socket within its memory limits again.
4955 *
4956 * Return less than zero if we should start dropping frames
4957 * until the socket owning process reads some of the data
4958 * to stabilize the situation.
4959 */
4960 static int tcp_prune_queue(struct sock *sk)
4961 {
4962 struct tcp_sock *tp = tcp_sk(sk);
4963
4964 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4965
4966 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4967
4968 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4969 tcp_clamp_window(sk);
4970 else if (tcp_under_memory_pressure(sk))
4971 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4972
4973 tcp_collapse_ofo_queue(sk);
4974 if (!skb_queue_empty(&sk->sk_receive_queue))
4975 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4976 skb_peek(&sk->sk_receive_queue),
4977 NULL,
4978 tp->copied_seq, tp->rcv_nxt);
4979 sk_mem_reclaim(sk);
4980
4981 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4982 return 0;
4983
4984 /* Collapsing did not help, destructive actions follow.
4985 * This must not ever occur. */
4986
4987 tcp_prune_ofo_queue(sk);
4988
4989 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4990 return 0;
4991
4992 /* If we are really being abused, tell the caller to silently
4993 * drop receive data on the floor. It will get retransmitted
4994 * and hopefully then we'll have sufficient space.
4995 */
4996 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4997
4998 /* Massive buffer overcommit. */
4999 tp->pred_flags = 0;
5000 return -1;
5001 }
5002
5003 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5004 {
5005 const struct tcp_sock *tp = tcp_sk(sk);
5006
5007 /* If the user specified a specific send buffer setting, do
5008 * not modify it.
5009 */
5010 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5011 return false;
5012
5013 /* If we are under global TCP memory pressure, do not expand. */
5014 if (tcp_under_memory_pressure(sk))
5015 return false;
5016
5017 /* If we are under soft global TCP memory pressure, do not expand. */
5018 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5019 return false;
5020
5021 /* If we filled the congestion window, do not expand. */
5022 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5023 return false;
5024
5025 return true;
5026 }
5027
5028 /* When incoming ACK allowed to free some skb from write_queue,
5029 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5030 * on the exit from tcp input handler.
5031 *
5032 * PROBLEM: sndbuf expansion does not work well with largesend.
5033 */
5034 static void tcp_new_space(struct sock *sk)
5035 {
5036 struct tcp_sock *tp = tcp_sk(sk);
5037
5038 if (tcp_should_expand_sndbuf(sk)) {
5039 tcp_sndbuf_expand(sk);
5040 tp->snd_cwnd_stamp = tcp_jiffies32;
5041 }
5042
5043 sk->sk_write_space(sk);
5044 }
5045
5046 static void tcp_check_space(struct sock *sk)
5047 {
5048 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5049 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5050 /* pairs with tcp_poll() */
5051 smp_mb();
5052 if (sk->sk_socket &&
5053 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5054 tcp_new_space(sk);
5055 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5057 }
5058 }
5059 }
5060
5061 static inline void tcp_data_snd_check(struct sock *sk)
5062 {
5063 tcp_push_pending_frames(sk);
5064 tcp_check_space(sk);
5065 }
5066
5067 /*
5068 * Check if sending an ack is needed.
5069 */
5070 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5071 {
5072 struct tcp_sock *tp = tcp_sk(sk);
5073
5074 /* More than one full frame received... */
5075 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5076 /* ... and right edge of window advances far enough.
5077 * (tcp_recvmsg() will send ACK otherwise). Or...
5078 */
5079 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5080 /* We ACK each frame or... */
5081 tcp_in_quickack_mode(sk) ||
5082 /* We have out of order data. */
5083 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5084 /* Then ack it now */
5085 tcp_send_ack(sk);
5086 } else {
5087 /* Else, send delayed ack. */
5088 tcp_send_delayed_ack(sk);
5089 }
5090 }
5091
5092 static inline void tcp_ack_snd_check(struct sock *sk)
5093 {
5094 if (!inet_csk_ack_scheduled(sk)) {
5095 /* We sent a data segment already. */
5096 return;
5097 }
5098 __tcp_ack_snd_check(sk, 1);
5099 }
5100
5101 /*
5102 * This routine is only called when we have urgent data
5103 * signaled. Its the 'slow' part of tcp_urg. It could be
5104 * moved inline now as tcp_urg is only called from one
5105 * place. We handle URGent data wrong. We have to - as
5106 * BSD still doesn't use the correction from RFC961.
5107 * For 1003.1g we should support a new option TCP_STDURG to permit
5108 * either form (or just set the sysctl tcp_stdurg).
5109 */
5110
5111 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5112 {
5113 struct tcp_sock *tp = tcp_sk(sk);
5114 u32 ptr = ntohs(th->urg_ptr);
5115
5116 if (ptr && !sysctl_tcp_stdurg)
5117 ptr--;
5118 ptr += ntohl(th->seq);
5119
5120 /* Ignore urgent data that we've already seen and read. */
5121 if (after(tp->copied_seq, ptr))
5122 return;
5123
5124 /* Do not replay urg ptr.
5125 *
5126 * NOTE: interesting situation not covered by specs.
5127 * Misbehaving sender may send urg ptr, pointing to segment,
5128 * which we already have in ofo queue. We are not able to fetch
5129 * such data and will stay in TCP_URG_NOTYET until will be eaten
5130 * by recvmsg(). Seems, we are not obliged to handle such wicked
5131 * situations. But it is worth to think about possibility of some
5132 * DoSes using some hypothetical application level deadlock.
5133 */
5134 if (before(ptr, tp->rcv_nxt))
5135 return;
5136
5137 /* Do we already have a newer (or duplicate) urgent pointer? */
5138 if (tp->urg_data && !after(ptr, tp->urg_seq))
5139 return;
5140
5141 /* Tell the world about our new urgent pointer. */
5142 sk_send_sigurg(sk);
5143
5144 /* We may be adding urgent data when the last byte read was
5145 * urgent. To do this requires some care. We cannot just ignore
5146 * tp->copied_seq since we would read the last urgent byte again
5147 * as data, nor can we alter copied_seq until this data arrives
5148 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5149 *
5150 * NOTE. Double Dutch. Rendering to plain English: author of comment
5151 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5152 * and expect that both A and B disappear from stream. This is _wrong_.
5153 * Though this happens in BSD with high probability, this is occasional.
5154 * Any application relying on this is buggy. Note also, that fix "works"
5155 * only in this artificial test. Insert some normal data between A and B and we will
5156 * decline of BSD again. Verdict: it is better to remove to trap
5157 * buggy users.
5158 */
5159 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5160 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5161 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5162 tp->copied_seq++;
5163 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5164 __skb_unlink(skb, &sk->sk_receive_queue);
5165 __kfree_skb(skb);
5166 }
5167 }
5168
5169 tp->urg_data = TCP_URG_NOTYET;
5170 tp->urg_seq = ptr;
5171
5172 /* Disable header prediction. */
5173 tp->pred_flags = 0;
5174 }
5175
5176 /* This is the 'fast' part of urgent handling. */
5177 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5178 {
5179 struct tcp_sock *tp = tcp_sk(sk);
5180
5181 /* Check if we get a new urgent pointer - normally not. */
5182 if (th->urg)
5183 tcp_check_urg(sk, th);
5184
5185 /* Do we wait for any urgent data? - normally not... */
5186 if (tp->urg_data == TCP_URG_NOTYET) {
5187 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5188 th->syn;
5189
5190 /* Is the urgent pointer pointing into this packet? */
5191 if (ptr < skb->len) {
5192 u8 tmp;
5193 if (skb_copy_bits(skb, ptr, &tmp, 1))
5194 BUG();
5195 tp->urg_data = TCP_URG_VALID | tmp;
5196 if (!sock_flag(sk, SOCK_DEAD))
5197 sk->sk_data_ready(sk);
5198 }
5199 }
5200 }
5201
5202 /* Accept RST for rcv_nxt - 1 after a FIN.
5203 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5204 * FIN is sent followed by a RST packet. The RST is sent with the same
5205 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5206 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5207 * ACKs on the closed socket. In addition middleboxes can drop either the
5208 * challenge ACK or a subsequent RST.
5209 */
5210 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5211 {
5212 struct tcp_sock *tp = tcp_sk(sk);
5213
5214 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5215 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5216 TCPF_CLOSING));
5217 }
5218
5219 /* Does PAWS and seqno based validation of an incoming segment, flags will
5220 * play significant role here.
5221 */
5222 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5223 const struct tcphdr *th, int syn_inerr)
5224 {
5225 struct tcp_sock *tp = tcp_sk(sk);
5226 bool rst_seq_match = false;
5227
5228 /* RFC1323: H1. Apply PAWS check first. */
5229 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5230 tp->rx_opt.saw_tstamp &&
5231 tcp_paws_discard(sk, skb)) {
5232 if (!th->rst) {
5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5234 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5235 LINUX_MIB_TCPACKSKIPPEDPAWS,
5236 &tp->last_oow_ack_time))
5237 tcp_send_dupack(sk, skb);
5238 goto discard;
5239 }
5240 /* Reset is accepted even if it did not pass PAWS. */
5241 }
5242
5243 /* Step 1: check sequence number */
5244 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5245 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5246 * (RST) segments are validated by checking their SEQ-fields."
5247 * And page 69: "If an incoming segment is not acceptable,
5248 * an acknowledgment should be sent in reply (unless the RST
5249 * bit is set, if so drop the segment and return)".
5250 */
5251 if (!th->rst) {
5252 if (th->syn)
5253 goto syn_challenge;
5254 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5255 LINUX_MIB_TCPACKSKIPPEDSEQ,
5256 &tp->last_oow_ack_time))
5257 tcp_send_dupack(sk, skb);
5258 } else if (tcp_reset_check(sk, skb)) {
5259 tcp_reset(sk);
5260 }
5261 goto discard;
5262 }
5263
5264 /* Step 2: check RST bit */
5265 if (th->rst) {
5266 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5267 * FIN and SACK too if available):
5268 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5269 * the right-most SACK block,
5270 * then
5271 * RESET the connection
5272 * else
5273 * Send a challenge ACK
5274 */
5275 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5276 tcp_reset_check(sk, skb)) {
5277 rst_seq_match = true;
5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 int max_sack = sp[0].end_seq;
5281 int this_sack;
5282
5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5284 ++this_sack) {
5285 max_sack = after(sp[this_sack].end_seq,
5286 max_sack) ?
5287 sp[this_sack].end_seq : max_sack;
5288 }
5289
5290 if (TCP_SKB_CB(skb)->seq == max_sack)
5291 rst_seq_match = true;
5292 }
5293
5294 if (rst_seq_match)
5295 tcp_reset(sk);
5296 else {
5297 /* Disable TFO if RST is out-of-order
5298 * and no data has been received
5299 * for current active TFO socket
5300 */
5301 if (tp->syn_fastopen && !tp->data_segs_in &&
5302 sk->sk_state == TCP_ESTABLISHED)
5303 tcp_fastopen_active_disable(sk);
5304 tcp_send_challenge_ack(sk, skb);
5305 }
5306 goto discard;
5307 }
5308
5309 /* step 3: check security and precedence [ignored] */
5310
5311 /* step 4: Check for a SYN
5312 * RFC 5961 4.2 : Send a challenge ack
5313 */
5314 if (th->syn) {
5315 syn_challenge:
5316 if (syn_inerr)
5317 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5319 tcp_send_challenge_ack(sk, skb);
5320 goto discard;
5321 }
5322
5323 return true;
5324
5325 discard:
5326 tcp_drop(sk, skb);
5327 return false;
5328 }
5329
5330 /*
5331 * TCP receive function for the ESTABLISHED state.
5332 *
5333 * It is split into a fast path and a slow path. The fast path is
5334 * disabled when:
5335 * - A zero window was announced from us - zero window probing
5336 * is only handled properly in the slow path.
5337 * - Out of order segments arrived.
5338 * - Urgent data is expected.
5339 * - There is no buffer space left
5340 * - Unexpected TCP flags/window values/header lengths are received
5341 * (detected by checking the TCP header against pred_flags)
5342 * - Data is sent in both directions. Fast path only supports pure senders
5343 * or pure receivers (this means either the sequence number or the ack
5344 * value must stay constant)
5345 * - Unexpected TCP option.
5346 *
5347 * When these conditions are not satisfied it drops into a standard
5348 * receive procedure patterned after RFC793 to handle all cases.
5349 * The first three cases are guaranteed by proper pred_flags setting,
5350 * the rest is checked inline. Fast processing is turned on in
5351 * tcp_data_queue when everything is OK.
5352 */
5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5354 const struct tcphdr *th)
5355 {
5356 unsigned int len = skb->len;
5357 struct tcp_sock *tp = tcp_sk(sk);
5358
5359 tcp_mstamp_refresh(tp);
5360 if (unlikely(!sk->sk_rx_dst))
5361 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5362 /*
5363 * Header prediction.
5364 * The code loosely follows the one in the famous
5365 * "30 instruction TCP receive" Van Jacobson mail.
5366 *
5367 * Van's trick is to deposit buffers into socket queue
5368 * on a device interrupt, to call tcp_recv function
5369 * on the receive process context and checksum and copy
5370 * the buffer to user space. smart...
5371 *
5372 * Our current scheme is not silly either but we take the
5373 * extra cost of the net_bh soft interrupt processing...
5374 * We do checksum and copy also but from device to kernel.
5375 */
5376
5377 tp->rx_opt.saw_tstamp = 0;
5378
5379 /* pred_flags is 0xS?10 << 16 + snd_wnd
5380 * if header_prediction is to be made
5381 * 'S' will always be tp->tcp_header_len >> 2
5382 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5383 * turn it off (when there are holes in the receive
5384 * space for instance)
5385 * PSH flag is ignored.
5386 */
5387
5388 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5389 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5390 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5391 int tcp_header_len = tp->tcp_header_len;
5392
5393 /* Timestamp header prediction: tcp_header_len
5394 * is automatically equal to th->doff*4 due to pred_flags
5395 * match.
5396 */
5397
5398 /* Check timestamp */
5399 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5400 /* No? Slow path! */
5401 if (!tcp_parse_aligned_timestamp(tp, th))
5402 goto slow_path;
5403
5404 /* If PAWS failed, check it more carefully in slow path */
5405 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5406 goto slow_path;
5407
5408 /* DO NOT update ts_recent here, if checksum fails
5409 * and timestamp was corrupted part, it will result
5410 * in a hung connection since we will drop all
5411 * future packets due to the PAWS test.
5412 */
5413 }
5414
5415 if (len <= tcp_header_len) {
5416 /* Bulk data transfer: sender */
5417 if (len == tcp_header_len) {
5418 /* Predicted packet is in window by definition.
5419 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 * Hence, check seq<=rcv_wup reduces to:
5421 */
5422 if (tcp_header_len ==
5423 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424 tp->rcv_nxt == tp->rcv_wup)
5425 tcp_store_ts_recent(tp);
5426
5427 /* We know that such packets are checksummed
5428 * on entry.
5429 */
5430 tcp_ack(sk, skb, 0);
5431 __kfree_skb(skb);
5432 tcp_data_snd_check(sk);
5433 return;
5434 } else { /* Header too small */
5435 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5436 goto discard;
5437 }
5438 } else {
5439 int eaten = 0;
5440 bool fragstolen = false;
5441
5442 if (tcp_checksum_complete(skb))
5443 goto csum_error;
5444
5445 if ((int)skb->truesize > sk->sk_forward_alloc)
5446 goto step5;
5447
5448 /* Predicted packet is in window by definition.
5449 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5450 * Hence, check seq<=rcv_wup reduces to:
5451 */
5452 if (tcp_header_len ==
5453 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5454 tp->rcv_nxt == tp->rcv_wup)
5455 tcp_store_ts_recent(tp);
5456
5457 tcp_rcv_rtt_measure_ts(sk, skb);
5458
5459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5460
5461 /* Bulk data transfer: receiver */
5462 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5463 &fragstolen);
5464
5465 tcp_event_data_recv(sk, skb);
5466
5467 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5468 /* Well, only one small jumplet in fast path... */
5469 tcp_ack(sk, skb, FLAG_DATA);
5470 tcp_data_snd_check(sk);
5471 if (!inet_csk_ack_scheduled(sk))
5472 goto no_ack;
5473 }
5474
5475 __tcp_ack_snd_check(sk, 0);
5476 no_ack:
5477 if (eaten)
5478 kfree_skb_partial(skb, fragstolen);
5479 sk->sk_data_ready(sk);
5480 return;
5481 }
5482 }
5483
5484 slow_path:
5485 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5486 goto csum_error;
5487
5488 if (!th->ack && !th->rst && !th->syn)
5489 goto discard;
5490
5491 /*
5492 * Standard slow path.
5493 */
5494
5495 if (!tcp_validate_incoming(sk, skb, th, 1))
5496 return;
5497
5498 step5:
5499 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5500 goto discard;
5501
5502 tcp_rcv_rtt_measure_ts(sk, skb);
5503
5504 /* Process urgent data. */
5505 tcp_urg(sk, skb, th);
5506
5507 /* step 7: process the segment text */
5508 tcp_data_queue(sk, skb);
5509
5510 tcp_data_snd_check(sk);
5511 tcp_ack_snd_check(sk);
5512 return;
5513
5514 csum_error:
5515 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5516 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5517
5518 discard:
5519 tcp_drop(sk, skb);
5520 }
5521 EXPORT_SYMBOL(tcp_rcv_established);
5522
5523 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5524 {
5525 struct tcp_sock *tp = tcp_sk(sk);
5526 struct inet_connection_sock *icsk = inet_csk(sk);
5527
5528 tcp_set_state(sk, TCP_ESTABLISHED);
5529 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5530
5531 if (skb) {
5532 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5533 security_inet_conn_established(sk, skb);
5534 }
5535
5536 /* Make sure socket is routed, for correct metrics. */
5537 icsk->icsk_af_ops->rebuild_header(sk);
5538
5539 tcp_init_metrics(sk);
5540 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5541 tcp_init_congestion_control(sk);
5542
5543 /* Prevent spurious tcp_cwnd_restart() on first data
5544 * packet.
5545 */
5546 tp->lsndtime = tcp_jiffies32;
5547
5548 tcp_init_buffer_space(sk);
5549
5550 if (sock_flag(sk, SOCK_KEEPOPEN))
5551 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5552
5553 if (!tp->rx_opt.snd_wscale)
5554 __tcp_fast_path_on(tp, tp->snd_wnd);
5555 else
5556 tp->pred_flags = 0;
5557 }
5558
5559 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5560 struct tcp_fastopen_cookie *cookie)
5561 {
5562 struct tcp_sock *tp = tcp_sk(sk);
5563 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5564 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5565 bool syn_drop = false;
5566
5567 if (mss == tp->rx_opt.user_mss) {
5568 struct tcp_options_received opt;
5569
5570 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5571 tcp_clear_options(&opt);
5572 opt.user_mss = opt.mss_clamp = 0;
5573 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5574 mss = opt.mss_clamp;
5575 }
5576
5577 if (!tp->syn_fastopen) {
5578 /* Ignore an unsolicited cookie */
5579 cookie->len = -1;
5580 } else if (tp->total_retrans) {
5581 /* SYN timed out and the SYN-ACK neither has a cookie nor
5582 * acknowledges data. Presumably the remote received only
5583 * the retransmitted (regular) SYNs: either the original
5584 * SYN-data or the corresponding SYN-ACK was dropped.
5585 */
5586 syn_drop = (cookie->len < 0 && data);
5587 } else if (cookie->len < 0 && !tp->syn_data) {
5588 /* We requested a cookie but didn't get it. If we did not use
5589 * the (old) exp opt format then try so next time (try_exp=1).
5590 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5591 */
5592 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5593 }
5594
5595 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5596
5597 if (data) { /* Retransmit unacked data in SYN */
5598 tcp_for_write_queue_from(data, sk) {
5599 if (data == tcp_send_head(sk) ||
5600 __tcp_retransmit_skb(sk, data, 1))
5601 break;
5602 }
5603 tcp_rearm_rto(sk);
5604 NET_INC_STATS(sock_net(sk),
5605 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5606 return true;
5607 }
5608 tp->syn_data_acked = tp->syn_data;
5609 if (tp->syn_data_acked)
5610 NET_INC_STATS(sock_net(sk),
5611 LINUX_MIB_TCPFASTOPENACTIVE);
5612
5613 tcp_fastopen_add_skb(sk, synack);
5614
5615 return false;
5616 }
5617
5618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5619 const struct tcphdr *th)
5620 {
5621 struct inet_connection_sock *icsk = inet_csk(sk);
5622 struct tcp_sock *tp = tcp_sk(sk);
5623 struct tcp_fastopen_cookie foc = { .len = -1 };
5624 int saved_clamp = tp->rx_opt.mss_clamp;
5625 bool fastopen_fail;
5626
5627 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5628 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5629 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5630
5631 if (th->ack) {
5632 /* rfc793:
5633 * "If the state is SYN-SENT then
5634 * first check the ACK bit
5635 * If the ACK bit is set
5636 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5637 * a reset (unless the RST bit is set, if so drop
5638 * the segment and return)"
5639 */
5640 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5641 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5642 goto reset_and_undo;
5643
5644 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5645 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5646 tcp_time_stamp(tp))) {
5647 NET_INC_STATS(sock_net(sk),
5648 LINUX_MIB_PAWSACTIVEREJECTED);
5649 goto reset_and_undo;
5650 }
5651
5652 /* Now ACK is acceptable.
5653 *
5654 * "If the RST bit is set
5655 * If the ACK was acceptable then signal the user "error:
5656 * connection reset", drop the segment, enter CLOSED state,
5657 * delete TCB, and return."
5658 */
5659
5660 if (th->rst) {
5661 tcp_reset(sk);
5662 goto discard;
5663 }
5664
5665 /* rfc793:
5666 * "fifth, if neither of the SYN or RST bits is set then
5667 * drop the segment and return."
5668 *
5669 * See note below!
5670 * --ANK(990513)
5671 */
5672 if (!th->syn)
5673 goto discard_and_undo;
5674
5675 /* rfc793:
5676 * "If the SYN bit is on ...
5677 * are acceptable then ...
5678 * (our SYN has been ACKed), change the connection
5679 * state to ESTABLISHED..."
5680 */
5681
5682 tcp_ecn_rcv_synack(tp, th);
5683
5684 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5685 tcp_ack(sk, skb, FLAG_SLOWPATH);
5686
5687 /* Ok.. it's good. Set up sequence numbers and
5688 * move to established.
5689 */
5690 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5691 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5692
5693 /* RFC1323: The window in SYN & SYN/ACK segments is
5694 * never scaled.
5695 */
5696 tp->snd_wnd = ntohs(th->window);
5697
5698 if (!tp->rx_opt.wscale_ok) {
5699 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5700 tp->window_clamp = min(tp->window_clamp, 65535U);
5701 }
5702
5703 if (tp->rx_opt.saw_tstamp) {
5704 tp->rx_opt.tstamp_ok = 1;
5705 tp->tcp_header_len =
5706 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5707 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5708 tcp_store_ts_recent(tp);
5709 } else {
5710 tp->tcp_header_len = sizeof(struct tcphdr);
5711 }
5712
5713 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5714 tcp_enable_fack(tp);
5715
5716 tcp_mtup_init(sk);
5717 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5718 tcp_initialize_rcv_mss(sk);
5719
5720 /* Remember, tcp_poll() does not lock socket!
5721 * Change state from SYN-SENT only after copied_seq
5722 * is initialized. */
5723 tp->copied_seq = tp->rcv_nxt;
5724
5725 smp_mb();
5726
5727 tcp_finish_connect(sk, skb);
5728
5729 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5730 tcp_rcv_fastopen_synack(sk, skb, &foc);
5731
5732 if (!sock_flag(sk, SOCK_DEAD)) {
5733 sk->sk_state_change(sk);
5734 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5735 }
5736 if (fastopen_fail)
5737 return -1;
5738 if (sk->sk_write_pending ||
5739 icsk->icsk_accept_queue.rskq_defer_accept ||
5740 icsk->icsk_ack.pingpong) {
5741 /* Save one ACK. Data will be ready after
5742 * several ticks, if write_pending is set.
5743 *
5744 * It may be deleted, but with this feature tcpdumps
5745 * look so _wonderfully_ clever, that I was not able
5746 * to stand against the temptation 8) --ANK
5747 */
5748 inet_csk_schedule_ack(sk);
5749 tcp_enter_quickack_mode(sk);
5750 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5751 TCP_DELACK_MAX, TCP_RTO_MAX);
5752
5753 discard:
5754 tcp_drop(sk, skb);
5755 return 0;
5756 } else {
5757 tcp_send_ack(sk);
5758 }
5759 return -1;
5760 }
5761
5762 /* No ACK in the segment */
5763
5764 if (th->rst) {
5765 /* rfc793:
5766 * "If the RST bit is set
5767 *
5768 * Otherwise (no ACK) drop the segment and return."
5769 */
5770
5771 goto discard_and_undo;
5772 }
5773
5774 /* PAWS check. */
5775 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5776 tcp_paws_reject(&tp->rx_opt, 0))
5777 goto discard_and_undo;
5778
5779 if (th->syn) {
5780 /* We see SYN without ACK. It is attempt of
5781 * simultaneous connect with crossed SYNs.
5782 * Particularly, it can be connect to self.
5783 */
5784 tcp_set_state(sk, TCP_SYN_RECV);
5785
5786 if (tp->rx_opt.saw_tstamp) {
5787 tp->rx_opt.tstamp_ok = 1;
5788 tcp_store_ts_recent(tp);
5789 tp->tcp_header_len =
5790 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5791 } else {
5792 tp->tcp_header_len = sizeof(struct tcphdr);
5793 }
5794
5795 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5796 tp->copied_seq = tp->rcv_nxt;
5797 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5798
5799 /* RFC1323: The window in SYN & SYN/ACK segments is
5800 * never scaled.
5801 */
5802 tp->snd_wnd = ntohs(th->window);
5803 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5804 tp->max_window = tp->snd_wnd;
5805
5806 tcp_ecn_rcv_syn(tp, th);
5807
5808 tcp_mtup_init(sk);
5809 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5810 tcp_initialize_rcv_mss(sk);
5811
5812 tcp_send_synack(sk);
5813 #if 0
5814 /* Note, we could accept data and URG from this segment.
5815 * There are no obstacles to make this (except that we must
5816 * either change tcp_recvmsg() to prevent it from returning data
5817 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5818 *
5819 * However, if we ignore data in ACKless segments sometimes,
5820 * we have no reasons to accept it sometimes.
5821 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5822 * is not flawless. So, discard packet for sanity.
5823 * Uncomment this return to process the data.
5824 */
5825 return -1;
5826 #else
5827 goto discard;
5828 #endif
5829 }
5830 /* "fifth, if neither of the SYN or RST bits is set then
5831 * drop the segment and return."
5832 */
5833
5834 discard_and_undo:
5835 tcp_clear_options(&tp->rx_opt);
5836 tp->rx_opt.mss_clamp = saved_clamp;
5837 goto discard;
5838
5839 reset_and_undo:
5840 tcp_clear_options(&tp->rx_opt);
5841 tp->rx_opt.mss_clamp = saved_clamp;
5842 return 1;
5843 }
5844
5845 /*
5846 * This function implements the receiving procedure of RFC 793 for
5847 * all states except ESTABLISHED and TIME_WAIT.
5848 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5849 * address independent.
5850 */
5851
5852 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5853 {
5854 struct tcp_sock *tp = tcp_sk(sk);
5855 struct inet_connection_sock *icsk = inet_csk(sk);
5856 const struct tcphdr *th = tcp_hdr(skb);
5857 struct request_sock *req;
5858 int queued = 0;
5859 bool acceptable;
5860
5861 switch (sk->sk_state) {
5862 case TCP_CLOSE:
5863 goto discard;
5864
5865 case TCP_LISTEN:
5866 if (th->ack)
5867 return 1;
5868
5869 if (th->rst)
5870 goto discard;
5871
5872 if (th->syn) {
5873 if (th->fin)
5874 goto discard;
5875 /* It is possible that we process SYN packets from backlog,
5876 * so we need to make sure to disable BH right there.
5877 */
5878 local_bh_disable();
5879 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5880 local_bh_enable();
5881
5882 if (!acceptable)
5883 return 1;
5884 consume_skb(skb);
5885 return 0;
5886 }
5887 goto discard;
5888
5889 case TCP_SYN_SENT:
5890 tp->rx_opt.saw_tstamp = 0;
5891 tcp_mstamp_refresh(tp);
5892 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5893 if (queued >= 0)
5894 return queued;
5895
5896 /* Do step6 onward by hand. */
5897 tcp_urg(sk, skb, th);
5898 __kfree_skb(skb);
5899 tcp_data_snd_check(sk);
5900 return 0;
5901 }
5902
5903 tcp_mstamp_refresh(tp);
5904 tp->rx_opt.saw_tstamp = 0;
5905 req = tp->fastopen_rsk;
5906 if (req) {
5907 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5908 sk->sk_state != TCP_FIN_WAIT1);
5909
5910 if (!tcp_check_req(sk, skb, req, true))
5911 goto discard;
5912 }
5913
5914 if (!th->ack && !th->rst && !th->syn)
5915 goto discard;
5916
5917 if (!tcp_validate_incoming(sk, skb, th, 0))
5918 return 0;
5919
5920 /* step 5: check the ACK field */
5921 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5922 FLAG_UPDATE_TS_RECENT |
5923 FLAG_NO_CHALLENGE_ACK) > 0;
5924
5925 if (!acceptable) {
5926 if (sk->sk_state == TCP_SYN_RECV)
5927 return 1; /* send one RST */
5928 tcp_send_challenge_ack(sk, skb);
5929 goto discard;
5930 }
5931 switch (sk->sk_state) {
5932 case TCP_SYN_RECV:
5933 if (!tp->srtt_us)
5934 tcp_synack_rtt_meas(sk, req);
5935
5936 /* Once we leave TCP_SYN_RECV, we no longer need req
5937 * so release it.
5938 */
5939 if (req) {
5940 inet_csk(sk)->icsk_retransmits = 0;
5941 reqsk_fastopen_remove(sk, req, false);
5942 } else {
5943 /* Make sure socket is routed, for correct metrics. */
5944 icsk->icsk_af_ops->rebuild_header(sk);
5945 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5946 tcp_init_congestion_control(sk);
5947
5948 tcp_mtup_init(sk);
5949 tp->copied_seq = tp->rcv_nxt;
5950 tcp_init_buffer_space(sk);
5951 }
5952 smp_mb();
5953 tcp_set_state(sk, TCP_ESTABLISHED);
5954 sk->sk_state_change(sk);
5955
5956 /* Note, that this wakeup is only for marginal crossed SYN case.
5957 * Passively open sockets are not waked up, because
5958 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5959 */
5960 if (sk->sk_socket)
5961 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5962
5963 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5964 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5965 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5966
5967 if (tp->rx_opt.tstamp_ok)
5968 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5969
5970 if (req) {
5971 /* Re-arm the timer because data may have been sent out.
5972 * This is similar to the regular data transmission case
5973 * when new data has just been ack'ed.
5974 *
5975 * (TFO) - we could try to be more aggressive and
5976 * retransmitting any data sooner based on when they
5977 * are sent out.
5978 */
5979 tcp_rearm_rto(sk);
5980 } else
5981 tcp_init_metrics(sk);
5982
5983 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5984 tcp_update_pacing_rate(sk);
5985
5986 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5987 tp->lsndtime = tcp_jiffies32;
5988
5989 tcp_initialize_rcv_mss(sk);
5990 tcp_fast_path_on(tp);
5991 break;
5992
5993 case TCP_FIN_WAIT1: {
5994 int tmo;
5995
5996 /* If we enter the TCP_FIN_WAIT1 state and we are a
5997 * Fast Open socket and this is the first acceptable
5998 * ACK we have received, this would have acknowledged
5999 * our SYNACK so stop the SYNACK timer.
6000 */
6001 if (req) {
6002 /* We no longer need the request sock. */
6003 reqsk_fastopen_remove(sk, req, false);
6004 tcp_rearm_rto(sk);
6005 }
6006 if (tp->snd_una != tp->write_seq)
6007 break;
6008
6009 tcp_set_state(sk, TCP_FIN_WAIT2);
6010 sk->sk_shutdown |= SEND_SHUTDOWN;
6011
6012 sk_dst_confirm(sk);
6013
6014 if (!sock_flag(sk, SOCK_DEAD)) {
6015 /* Wake up lingering close() */
6016 sk->sk_state_change(sk);
6017 break;
6018 }
6019
6020 if (tp->linger2 < 0) {
6021 tcp_done(sk);
6022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6023 return 1;
6024 }
6025 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6026 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6027 /* Receive out of order FIN after close() */
6028 if (tp->syn_fastopen && th->fin)
6029 tcp_fastopen_active_disable(sk);
6030 tcp_done(sk);
6031 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6032 return 1;
6033 }
6034
6035 tmo = tcp_fin_time(sk);
6036 if (tmo > TCP_TIMEWAIT_LEN) {
6037 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6038 } else if (th->fin || sock_owned_by_user(sk)) {
6039 /* Bad case. We could lose such FIN otherwise.
6040 * It is not a big problem, but it looks confusing
6041 * and not so rare event. We still can lose it now,
6042 * if it spins in bh_lock_sock(), but it is really
6043 * marginal case.
6044 */
6045 inet_csk_reset_keepalive_timer(sk, tmo);
6046 } else {
6047 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6048 goto discard;
6049 }
6050 break;
6051 }
6052
6053 case TCP_CLOSING:
6054 if (tp->snd_una == tp->write_seq) {
6055 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6056 goto discard;
6057 }
6058 break;
6059
6060 case TCP_LAST_ACK:
6061 if (tp->snd_una == tp->write_seq) {
6062 tcp_update_metrics(sk);
6063 tcp_done(sk);
6064 goto discard;
6065 }
6066 break;
6067 }
6068
6069 /* step 6: check the URG bit */
6070 tcp_urg(sk, skb, th);
6071
6072 /* step 7: process the segment text */
6073 switch (sk->sk_state) {
6074 case TCP_CLOSE_WAIT:
6075 case TCP_CLOSING:
6076 case TCP_LAST_ACK:
6077 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6078 break;
6079 case TCP_FIN_WAIT1:
6080 case TCP_FIN_WAIT2:
6081 /* RFC 793 says to queue data in these states,
6082 * RFC 1122 says we MUST send a reset.
6083 * BSD 4.4 also does reset.
6084 */
6085 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6086 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6087 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6089 tcp_reset(sk);
6090 return 1;
6091 }
6092 }
6093 /* Fall through */
6094 case TCP_ESTABLISHED:
6095 tcp_data_queue(sk, skb);
6096 queued = 1;
6097 break;
6098 }
6099
6100 /* tcp_data could move socket to TIME-WAIT */
6101 if (sk->sk_state != TCP_CLOSE) {
6102 tcp_data_snd_check(sk);
6103 tcp_ack_snd_check(sk);
6104 }
6105
6106 if (!queued) {
6107 discard:
6108 tcp_drop(sk, skb);
6109 }
6110 return 0;
6111 }
6112 EXPORT_SYMBOL(tcp_rcv_state_process);
6113
6114 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6115 {
6116 struct inet_request_sock *ireq = inet_rsk(req);
6117
6118 if (family == AF_INET)
6119 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6120 &ireq->ir_rmt_addr, port);
6121 #if IS_ENABLED(CONFIG_IPV6)
6122 else if (family == AF_INET6)
6123 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6124 &ireq->ir_v6_rmt_addr, port);
6125 #endif
6126 }
6127
6128 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6129 *
6130 * If we receive a SYN packet with these bits set, it means a
6131 * network is playing bad games with TOS bits. In order to
6132 * avoid possible false congestion notifications, we disable
6133 * TCP ECN negotiation.
6134 *
6135 * Exception: tcp_ca wants ECN. This is required for DCTCP
6136 * congestion control: Linux DCTCP asserts ECT on all packets,
6137 * including SYN, which is most optimal solution; however,
6138 * others, such as FreeBSD do not.
6139 */
6140 static void tcp_ecn_create_request(struct request_sock *req,
6141 const struct sk_buff *skb,
6142 const struct sock *listen_sk,
6143 const struct dst_entry *dst)
6144 {
6145 const struct tcphdr *th = tcp_hdr(skb);
6146 const struct net *net = sock_net(listen_sk);
6147 bool th_ecn = th->ece && th->cwr;
6148 bool ect, ecn_ok;
6149 u32 ecn_ok_dst;
6150
6151 if (!th_ecn)
6152 return;
6153
6154 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6155 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6156 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6157
6158 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6159 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6160 tcp_bpf_ca_needs_ecn((struct sock *)req))
6161 inet_rsk(req)->ecn_ok = 1;
6162 }
6163
6164 static void tcp_openreq_init(struct request_sock *req,
6165 const struct tcp_options_received *rx_opt,
6166 struct sk_buff *skb, const struct sock *sk)
6167 {
6168 struct inet_request_sock *ireq = inet_rsk(req);
6169
6170 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6171 req->cookie_ts = 0;
6172 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6173 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6174 tcp_rsk(req)->snt_synack = tcp_clock_us();
6175 tcp_rsk(req)->last_oow_ack_time = 0;
6176 req->mss = rx_opt->mss_clamp;
6177 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6178 ireq->tstamp_ok = rx_opt->tstamp_ok;
6179 ireq->sack_ok = rx_opt->sack_ok;
6180 ireq->snd_wscale = rx_opt->snd_wscale;
6181 ireq->wscale_ok = rx_opt->wscale_ok;
6182 ireq->acked = 0;
6183 ireq->ecn_ok = 0;
6184 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6185 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6186 ireq->ir_mark = inet_request_mark(sk, skb);
6187 }
6188
6189 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6190 struct sock *sk_listener,
6191 bool attach_listener)
6192 {
6193 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6194 attach_listener);
6195
6196 if (req) {
6197 struct inet_request_sock *ireq = inet_rsk(req);
6198
6199 kmemcheck_annotate_bitfield(ireq, flags);
6200 ireq->ireq_opt = NULL;
6201 #if IS_ENABLED(CONFIG_IPV6)
6202 ireq->pktopts = NULL;
6203 #endif
6204 atomic64_set(&ireq->ir_cookie, 0);
6205 ireq->ireq_state = TCP_NEW_SYN_RECV;
6206 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6207 ireq->ireq_family = sk_listener->sk_family;
6208 }
6209
6210 return req;
6211 }
6212 EXPORT_SYMBOL(inet_reqsk_alloc);
6213
6214 /*
6215 * Return true if a syncookie should be sent
6216 */
6217 static bool tcp_syn_flood_action(const struct sock *sk,
6218 const struct sk_buff *skb,
6219 const char *proto)
6220 {
6221 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6222 const char *msg = "Dropping request";
6223 bool want_cookie = false;
6224 struct net *net = sock_net(sk);
6225
6226 #ifdef CONFIG_SYN_COOKIES
6227 if (net->ipv4.sysctl_tcp_syncookies) {
6228 msg = "Sending cookies";
6229 want_cookie = true;
6230 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6231 } else
6232 #endif
6233 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6234
6235 if (!queue->synflood_warned &&
6236 net->ipv4.sysctl_tcp_syncookies != 2 &&
6237 xchg(&queue->synflood_warned, 1) == 0)
6238 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6239 proto, ntohs(tcp_hdr(skb)->dest), msg);
6240
6241 return want_cookie;
6242 }
6243
6244 static void tcp_reqsk_record_syn(const struct sock *sk,
6245 struct request_sock *req,
6246 const struct sk_buff *skb)
6247 {
6248 if (tcp_sk(sk)->save_syn) {
6249 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6250 u32 *copy;
6251
6252 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6253 if (copy) {
6254 copy[0] = len;
6255 memcpy(&copy[1], skb_network_header(skb), len);
6256 req->saved_syn = copy;
6257 }
6258 }
6259 }
6260
6261 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6262 const struct tcp_request_sock_ops *af_ops,
6263 struct sock *sk, struct sk_buff *skb)
6264 {
6265 struct tcp_fastopen_cookie foc = { .len = -1 };
6266 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6267 struct tcp_options_received tmp_opt;
6268 struct tcp_sock *tp = tcp_sk(sk);
6269 struct net *net = sock_net(sk);
6270 struct sock *fastopen_sk = NULL;
6271 struct request_sock *req;
6272 bool want_cookie = false;
6273 struct dst_entry *dst;
6274 struct flowi fl;
6275
6276 /* TW buckets are converted to open requests without
6277 * limitations, they conserve resources and peer is
6278 * evidently real one.
6279 */
6280 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6281 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6282 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6283 if (!want_cookie)
6284 goto drop;
6285 }
6286
6287 if (sk_acceptq_is_full(sk)) {
6288 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6289 goto drop;
6290 }
6291
6292 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6293 if (!req)
6294 goto drop;
6295
6296 tcp_rsk(req)->af_specific = af_ops;
6297 tcp_rsk(req)->ts_off = 0;
6298
6299 tcp_clear_options(&tmp_opt);
6300 tmp_opt.mss_clamp = af_ops->mss_clamp;
6301 tmp_opt.user_mss = tp->rx_opt.user_mss;
6302 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6303 want_cookie ? NULL : &foc);
6304
6305 if (want_cookie && !tmp_opt.saw_tstamp)
6306 tcp_clear_options(&tmp_opt);
6307
6308 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6309 tcp_openreq_init(req, &tmp_opt, skb, sk);
6310 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6311
6312 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6313 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6314
6315 af_ops->init_req(req, sk, skb);
6316
6317 if (security_inet_conn_request(sk, skb, req))
6318 goto drop_and_free;
6319
6320 if (tmp_opt.tstamp_ok)
6321 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6322
6323 dst = af_ops->route_req(sk, &fl, req);
6324 if (!dst)
6325 goto drop_and_free;
6326
6327 if (!want_cookie && !isn) {
6328 /* Kill the following clause, if you dislike this way. */
6329 if (!net->ipv4.sysctl_tcp_syncookies &&
6330 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6331 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6332 !tcp_peer_is_proven(req, dst)) {
6333 /* Without syncookies last quarter of
6334 * backlog is filled with destinations,
6335 * proven to be alive.
6336 * It means that we continue to communicate
6337 * to destinations, already remembered
6338 * to the moment of synflood.
6339 */
6340 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6341 rsk_ops->family);
6342 goto drop_and_release;
6343 }
6344
6345 isn = af_ops->init_seq(skb);
6346 }
6347
6348 tcp_ecn_create_request(req, skb, sk, dst);
6349
6350 if (want_cookie) {
6351 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6352 req->cookie_ts = tmp_opt.tstamp_ok;
6353 if (!tmp_opt.tstamp_ok)
6354 inet_rsk(req)->ecn_ok = 0;
6355 }
6356
6357 tcp_rsk(req)->snt_isn = isn;
6358 tcp_rsk(req)->txhash = net_tx_rndhash();
6359 tcp_openreq_init_rwin(req, sk, dst);
6360 if (!want_cookie) {
6361 tcp_reqsk_record_syn(sk, req, skb);
6362 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6363 }
6364 if (fastopen_sk) {
6365 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6366 &foc, TCP_SYNACK_FASTOPEN);
6367 /* Add the child socket directly into the accept queue */
6368 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6369 sk->sk_data_ready(sk);
6370 bh_unlock_sock(fastopen_sk);
6371 sock_put(fastopen_sk);
6372 } else {
6373 tcp_rsk(req)->tfo_listener = false;
6374 if (!want_cookie)
6375 inet_csk_reqsk_queue_hash_add(sk, req,
6376 tcp_timeout_init((struct sock *)req));
6377 af_ops->send_synack(sk, dst, &fl, req, &foc,
6378 !want_cookie ? TCP_SYNACK_NORMAL :
6379 TCP_SYNACK_COOKIE);
6380 if (want_cookie) {
6381 reqsk_free(req);
6382 return 0;
6383 }
6384 }
6385 reqsk_put(req);
6386 return 0;
6387
6388 drop_and_release:
6389 dst_release(dst);
6390 drop_and_free:
6391 reqsk_free(req);
6392 drop:
6393 tcp_listendrop(sk);
6394 return 0;
6395 }
6396 EXPORT_SYMBOL(tcp_conn_request);