]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
[TCP]: Update comment of SACK block validator
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending DSACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109
1110 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1111 struct tcp_sack_block_wire *sp, int num_sacks,
1112 u32 prior_snd_una)
1113 {
1114 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1115 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1116 int dup_sack = 0;
1117
1118 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1119 dup_sack = 1;
1120 tcp_dsack_seen(tp);
1121 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1122 } else if (num_sacks > 1) {
1123 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1124 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1125
1126 if (!after(end_seq_0, end_seq_1) &&
1127 !before(start_seq_0, start_seq_1)) {
1128 dup_sack = 1;
1129 tcp_dsack_seen(tp);
1130 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1131 }
1132 }
1133
1134 /* D-SACK for already forgotten data... Do dumb counting. */
1135 if (dup_sack &&
1136 !after(end_seq_0, prior_snd_una) &&
1137 after(end_seq_0, tp->undo_marker))
1138 tp->undo_retrans--;
1139
1140 return dup_sack;
1141 }
1142
1143 static int
1144 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1145 {
1146 const struct inet_connection_sock *icsk = inet_csk(sk);
1147 struct tcp_sock *tp = tcp_sk(sk);
1148 unsigned char *ptr = (skb_transport_header(ack_skb) +
1149 TCP_SKB_CB(ack_skb)->sacked);
1150 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1151 struct sk_buff *cached_skb;
1152 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1153 int reord = tp->packets_out;
1154 int prior_fackets;
1155 u32 lost_retrans = 0;
1156 int flag = 0;
1157 int found_dup_sack = 0;
1158 int cached_fack_count;
1159 int i;
1160 int first_sack_index;
1161
1162 if (!tp->sacked_out) {
1163 tp->fackets_out = 0;
1164 tp->highest_sack = tp->snd_una;
1165 }
1166 prior_fackets = tp->fackets_out;
1167
1168 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1169 num_sacks, prior_snd_una);
1170 if (found_dup_sack)
1171 flag |= FLAG_DSACKING_ACK;
1172
1173 /* Eliminate too old ACKs, but take into
1174 * account more or less fresh ones, they can
1175 * contain valid SACK info.
1176 */
1177 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1178 return 0;
1179
1180 /* SACK fastpath:
1181 * if the only SACK change is the increase of the end_seq of
1182 * the first block then only apply that SACK block
1183 * and use retrans queue hinting otherwise slowpath */
1184 flag = 1;
1185 for (i = 0; i < num_sacks; i++) {
1186 __be32 start_seq = sp[i].start_seq;
1187 __be32 end_seq = sp[i].end_seq;
1188
1189 if (i == 0) {
1190 if (tp->recv_sack_cache[i].start_seq != start_seq)
1191 flag = 0;
1192 } else {
1193 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1194 (tp->recv_sack_cache[i].end_seq != end_seq))
1195 flag = 0;
1196 }
1197 tp->recv_sack_cache[i].start_seq = start_seq;
1198 tp->recv_sack_cache[i].end_seq = end_seq;
1199 }
1200 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1201 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1202 tp->recv_sack_cache[i].start_seq = 0;
1203 tp->recv_sack_cache[i].end_seq = 0;
1204 }
1205
1206 first_sack_index = 0;
1207 if (flag)
1208 num_sacks = 1;
1209 else {
1210 int j;
1211 tp->fastpath_skb_hint = NULL;
1212
1213 /* order SACK blocks to allow in order walk of the retrans queue */
1214 for (i = num_sacks-1; i > 0; i--) {
1215 for (j = 0; j < i; j++){
1216 if (after(ntohl(sp[j].start_seq),
1217 ntohl(sp[j+1].start_seq))){
1218 struct tcp_sack_block_wire tmp;
1219
1220 tmp = sp[j];
1221 sp[j] = sp[j+1];
1222 sp[j+1] = tmp;
1223
1224 /* Track where the first SACK block goes to */
1225 if (j == first_sack_index)
1226 first_sack_index = j+1;
1227 }
1228
1229 }
1230 }
1231 }
1232
1233 /* clear flag as used for different purpose in following code */
1234 flag = 0;
1235
1236 /* Use SACK fastpath hint if valid */
1237 cached_skb = tp->fastpath_skb_hint;
1238 cached_fack_count = tp->fastpath_cnt_hint;
1239 if (!cached_skb) {
1240 cached_skb = tcp_write_queue_head(sk);
1241 cached_fack_count = 0;
1242 }
1243
1244 for (i=0; i<num_sacks; i++, sp++) {
1245 struct sk_buff *skb;
1246 __u32 start_seq = ntohl(sp->start_seq);
1247 __u32 end_seq = ntohl(sp->end_seq);
1248 int fack_count;
1249 int dup_sack = (found_dup_sack && (i == first_sack_index));
1250
1251 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1252 if (dup_sack) {
1253 if (!tp->undo_marker)
1254 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1255 else
1256 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1257 } else {
1258 /* Don't count olds caused by ACK reordering */
1259 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1260 !after(end_seq, tp->snd_una))
1261 continue;
1262 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1263 }
1264 continue;
1265 }
1266
1267 skb = cached_skb;
1268 fack_count = cached_fack_count;
1269
1270 /* Event "B" in the comment above. */
1271 if (after(end_seq, tp->high_seq))
1272 flag |= FLAG_DATA_LOST;
1273
1274 tcp_for_write_queue_from(skb, sk) {
1275 int in_sack, pcount;
1276 u8 sacked;
1277
1278 if (skb == tcp_send_head(sk))
1279 break;
1280
1281 cached_skb = skb;
1282 cached_fack_count = fack_count;
1283 if (i == first_sack_index) {
1284 tp->fastpath_skb_hint = skb;
1285 tp->fastpath_cnt_hint = fack_count;
1286 }
1287
1288 /* The retransmission queue is always in order, so
1289 * we can short-circuit the walk early.
1290 */
1291 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1292 break;
1293
1294 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1295 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1296
1297 pcount = tcp_skb_pcount(skb);
1298
1299 if (pcount > 1 && !in_sack &&
1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1301 unsigned int pkt_len;
1302
1303 in_sack = !after(start_seq,
1304 TCP_SKB_CB(skb)->seq);
1305
1306 if (!in_sack)
1307 pkt_len = (start_seq -
1308 TCP_SKB_CB(skb)->seq);
1309 else
1310 pkt_len = (end_seq -
1311 TCP_SKB_CB(skb)->seq);
1312 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1313 break;
1314 pcount = tcp_skb_pcount(skb);
1315 }
1316
1317 fack_count += pcount;
1318
1319 sacked = TCP_SKB_CB(skb)->sacked;
1320
1321 /* Account D-SACK for retransmitted packet. */
1322 if ((dup_sack && in_sack) &&
1323 (sacked & TCPCB_RETRANS) &&
1324 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1325 tp->undo_retrans--;
1326
1327 /* The frame is ACKed. */
1328 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1329 if (sacked&TCPCB_RETRANS) {
1330 if ((dup_sack && in_sack) &&
1331 (sacked&TCPCB_SACKED_ACKED))
1332 reord = min(fack_count, reord);
1333 } else {
1334 /* If it was in a hole, we detected reordering. */
1335 if (fack_count < prior_fackets &&
1336 !(sacked&TCPCB_SACKED_ACKED))
1337 reord = min(fack_count, reord);
1338 }
1339
1340 /* Nothing to do; acked frame is about to be dropped. */
1341 continue;
1342 }
1343
1344 if ((sacked&TCPCB_SACKED_RETRANS) &&
1345 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1346 (!lost_retrans || after(end_seq, lost_retrans)))
1347 lost_retrans = end_seq;
1348
1349 if (!in_sack)
1350 continue;
1351
1352 if (!(sacked&TCPCB_SACKED_ACKED)) {
1353 if (sacked & TCPCB_SACKED_RETRANS) {
1354 /* If the segment is not tagged as lost,
1355 * we do not clear RETRANS, believing
1356 * that retransmission is still in flight.
1357 */
1358 if (sacked & TCPCB_LOST) {
1359 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1360 tp->lost_out -= tcp_skb_pcount(skb);
1361 tp->retrans_out -= tcp_skb_pcount(skb);
1362
1363 /* clear lost hint */
1364 tp->retransmit_skb_hint = NULL;
1365 }
1366 } else {
1367 /* New sack for not retransmitted frame,
1368 * which was in hole. It is reordering.
1369 */
1370 if (!(sacked & TCPCB_RETRANS) &&
1371 fack_count < prior_fackets)
1372 reord = min(fack_count, reord);
1373
1374 if (sacked & TCPCB_LOST) {
1375 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1376 tp->lost_out -= tcp_skb_pcount(skb);
1377
1378 /* clear lost hint */
1379 tp->retransmit_skb_hint = NULL;
1380 }
1381 /* SACK enhanced F-RTO detection.
1382 * Set flag if and only if non-rexmitted
1383 * segments below frto_highmark are
1384 * SACKed (RFC4138; Appendix B).
1385 * Clearing correct due to in-order walk
1386 */
1387 if (after(end_seq, tp->frto_highmark)) {
1388 flag &= ~FLAG_ONLY_ORIG_SACKED;
1389 } else {
1390 if (!(sacked & TCPCB_RETRANS))
1391 flag |= FLAG_ONLY_ORIG_SACKED;
1392 }
1393 }
1394
1395 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1396 flag |= FLAG_DATA_SACKED;
1397 tp->sacked_out += tcp_skb_pcount(skb);
1398
1399 if (fack_count > tp->fackets_out)
1400 tp->fackets_out = fack_count;
1401
1402 if (after(TCP_SKB_CB(skb)->seq,
1403 tp->highest_sack))
1404 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1405 } else {
1406 if (dup_sack && (sacked&TCPCB_RETRANS))
1407 reord = min(fack_count, reord);
1408 }
1409
1410 /* D-SACK. We can detect redundant retransmission
1411 * in S|R and plain R frames and clear it.
1412 * undo_retrans is decreased above, L|R frames
1413 * are accounted above as well.
1414 */
1415 if (dup_sack &&
1416 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1417 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1418 tp->retrans_out -= tcp_skb_pcount(skb);
1419 tp->retransmit_skb_hint = NULL;
1420 }
1421 }
1422 }
1423
1424 /* Check for lost retransmit. This superb idea is
1425 * borrowed from "ratehalving". Event "C".
1426 * Later note: FACK people cheated me again 8),
1427 * we have to account for reordering! Ugly,
1428 * but should help.
1429 */
1430 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1431 struct sk_buff *skb;
1432
1433 tcp_for_write_queue(skb, sk) {
1434 if (skb == tcp_send_head(sk))
1435 break;
1436 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1437 break;
1438 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1439 continue;
1440 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1441 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1442 (tcp_is_fack(tp) ||
1443 !before(lost_retrans,
1444 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1445 tp->mss_cache))) {
1446 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1447 tp->retrans_out -= tcp_skb_pcount(skb);
1448
1449 /* clear lost hint */
1450 tp->retransmit_skb_hint = NULL;
1451
1452 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1453 tp->lost_out += tcp_skb_pcount(skb);
1454 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1455 flag |= FLAG_DATA_SACKED;
1456 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1457 }
1458 }
1459 }
1460 }
1461
1462 tcp_verify_left_out(tp);
1463
1464 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1465 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1466 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1467
1468 #if FASTRETRANS_DEBUG > 0
1469 BUG_TRAP((int)tp->sacked_out >= 0);
1470 BUG_TRAP((int)tp->lost_out >= 0);
1471 BUG_TRAP((int)tp->retrans_out >= 0);
1472 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1473 #endif
1474 return flag;
1475 }
1476
1477 /* If we receive more dupacks than we expected counting segments
1478 * in assumption of absent reordering, interpret this as reordering.
1479 * The only another reason could be bug in receiver TCP.
1480 */
1481 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1482 {
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 u32 holes;
1485
1486 holes = max(tp->lost_out, 1U);
1487 holes = min(holes, tp->packets_out);
1488
1489 if ((tp->sacked_out + holes) > tp->packets_out) {
1490 tp->sacked_out = tp->packets_out - holes;
1491 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1492 }
1493 }
1494
1495 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1496
1497 static void tcp_add_reno_sack(struct sock *sk)
1498 {
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 tp->sacked_out++;
1501 tcp_check_reno_reordering(sk, 0);
1502 tcp_verify_left_out(tp);
1503 }
1504
1505 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1506
1507 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1508 {
1509 struct tcp_sock *tp = tcp_sk(sk);
1510
1511 if (acked > 0) {
1512 /* One ACK acked hole. The rest eat duplicate ACKs. */
1513 if (acked-1 >= tp->sacked_out)
1514 tp->sacked_out = 0;
1515 else
1516 tp->sacked_out -= acked-1;
1517 }
1518 tcp_check_reno_reordering(sk, acked);
1519 tcp_verify_left_out(tp);
1520 }
1521
1522 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1523 {
1524 tp->sacked_out = 0;
1525 }
1526
1527 /* F-RTO can only be used if TCP has never retransmitted anything other than
1528 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1529 */
1530 int tcp_use_frto(struct sock *sk)
1531 {
1532 const struct tcp_sock *tp = tcp_sk(sk);
1533 struct sk_buff *skb;
1534
1535 if (!sysctl_tcp_frto)
1536 return 0;
1537
1538 if (IsSackFrto())
1539 return 1;
1540
1541 /* Avoid expensive walking of rexmit queue if possible */
1542 if (tp->retrans_out > 1)
1543 return 0;
1544
1545 skb = tcp_write_queue_head(sk);
1546 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1547 tcp_for_write_queue_from(skb, sk) {
1548 if (skb == tcp_send_head(sk))
1549 break;
1550 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1551 return 0;
1552 /* Short-circuit when first non-SACKed skb has been checked */
1553 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1554 break;
1555 }
1556 return 1;
1557 }
1558
1559 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1560 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1561 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1562 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1563 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1564 * bits are handled if the Loss state is really to be entered (in
1565 * tcp_enter_frto_loss).
1566 *
1567 * Do like tcp_enter_loss() would; when RTO expires the second time it
1568 * does:
1569 * "Reduce ssthresh if it has not yet been made inside this window."
1570 */
1571 void tcp_enter_frto(struct sock *sk)
1572 {
1573 const struct inet_connection_sock *icsk = inet_csk(sk);
1574 struct tcp_sock *tp = tcp_sk(sk);
1575 struct sk_buff *skb;
1576
1577 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1578 tp->snd_una == tp->high_seq ||
1579 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1580 !icsk->icsk_retransmits)) {
1581 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1582 /* Our state is too optimistic in ssthresh() call because cwnd
1583 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1584 * recovery has not yet completed. Pattern would be this: RTO,
1585 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1586 * up here twice).
1587 * RFC4138 should be more specific on what to do, even though
1588 * RTO is quite unlikely to occur after the first Cumulative ACK
1589 * due to back-off and complexity of triggering events ...
1590 */
1591 if (tp->frto_counter) {
1592 u32 stored_cwnd;
1593 stored_cwnd = tp->snd_cwnd;
1594 tp->snd_cwnd = 2;
1595 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1596 tp->snd_cwnd = stored_cwnd;
1597 } else {
1598 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1599 }
1600 /* ... in theory, cong.control module could do "any tricks" in
1601 * ssthresh(), which means that ca_state, lost bits and lost_out
1602 * counter would have to be faked before the call occurs. We
1603 * consider that too expensive, unlikely and hacky, so modules
1604 * using these in ssthresh() must deal these incompatibility
1605 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1606 */
1607 tcp_ca_event(sk, CA_EVENT_FRTO);
1608 }
1609
1610 tp->undo_marker = tp->snd_una;
1611 tp->undo_retrans = 0;
1612
1613 skb = tcp_write_queue_head(sk);
1614 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1615 tp->undo_marker = 0;
1616 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1617 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1618 tp->retrans_out -= tcp_skb_pcount(skb);
1619 }
1620 tcp_verify_left_out(tp);
1621
1622 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1623 * The last condition is necessary at least in tp->frto_counter case.
1624 */
1625 if (IsSackFrto() && (tp->frto_counter ||
1626 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1627 after(tp->high_seq, tp->snd_una)) {
1628 tp->frto_highmark = tp->high_seq;
1629 } else {
1630 tp->frto_highmark = tp->snd_nxt;
1631 }
1632 tcp_set_ca_state(sk, TCP_CA_Disorder);
1633 tp->high_seq = tp->snd_nxt;
1634 tp->frto_counter = 1;
1635 }
1636
1637 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1638 * which indicates that we should follow the traditional RTO recovery,
1639 * i.e. mark everything lost and do go-back-N retransmission.
1640 */
1641 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1642 {
1643 struct tcp_sock *tp = tcp_sk(sk);
1644 struct sk_buff *skb;
1645
1646 tp->lost_out = 0;
1647 tp->retrans_out = 0;
1648 if (tcp_is_reno(tp))
1649 tcp_reset_reno_sack(tp);
1650
1651 tcp_for_write_queue(skb, sk) {
1652 if (skb == tcp_send_head(sk))
1653 break;
1654 /*
1655 * Count the retransmission made on RTO correctly (only when
1656 * waiting for the first ACK and did not get it)...
1657 */
1658 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1659 /* For some reason this R-bit might get cleared? */
1660 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1661 tp->retrans_out += tcp_skb_pcount(skb);
1662 /* ...enter this if branch just for the first segment */
1663 flag |= FLAG_DATA_ACKED;
1664 } else {
1665 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1666 tp->undo_marker = 0;
1667 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1668 }
1669
1670 /* Don't lost mark skbs that were fwd transmitted after RTO */
1671 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1672 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1673 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1674 tp->lost_out += tcp_skb_pcount(skb);
1675 }
1676 }
1677 tcp_verify_left_out(tp);
1678
1679 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1680 tp->snd_cwnd_cnt = 0;
1681 tp->snd_cwnd_stamp = tcp_time_stamp;
1682 tp->frto_counter = 0;
1683
1684 tp->reordering = min_t(unsigned int, tp->reordering,
1685 sysctl_tcp_reordering);
1686 tcp_set_ca_state(sk, TCP_CA_Loss);
1687 tp->high_seq = tp->frto_highmark;
1688 TCP_ECN_queue_cwr(tp);
1689
1690 tcp_clear_retrans_hints_partial(tp);
1691 }
1692
1693 void tcp_clear_retrans(struct tcp_sock *tp)
1694 {
1695 tp->retrans_out = 0;
1696
1697 tp->fackets_out = 0;
1698 tp->sacked_out = 0;
1699 tp->lost_out = 0;
1700
1701 tp->undo_marker = 0;
1702 tp->undo_retrans = 0;
1703 }
1704
1705 /* Enter Loss state. If "how" is not zero, forget all SACK information
1706 * and reset tags completely, otherwise preserve SACKs. If receiver
1707 * dropped its ofo queue, we will know this due to reneging detection.
1708 */
1709 void tcp_enter_loss(struct sock *sk, int how)
1710 {
1711 const struct inet_connection_sock *icsk = inet_csk(sk);
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 struct sk_buff *skb;
1714 int cnt = 0;
1715
1716 /* Reduce ssthresh if it has not yet been made inside this window. */
1717 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1718 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1719 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1720 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1721 tcp_ca_event(sk, CA_EVENT_LOSS);
1722 }
1723 tp->snd_cwnd = 1;
1724 tp->snd_cwnd_cnt = 0;
1725 tp->snd_cwnd_stamp = tcp_time_stamp;
1726
1727 tp->bytes_acked = 0;
1728 tcp_clear_retrans(tp);
1729
1730 if (!how) {
1731 /* Push undo marker, if it was plain RTO and nothing
1732 * was retransmitted. */
1733 tp->undo_marker = tp->snd_una;
1734 tcp_clear_retrans_hints_partial(tp);
1735 } else {
1736 tcp_clear_all_retrans_hints(tp);
1737 }
1738
1739 tcp_for_write_queue(skb, sk) {
1740 if (skb == tcp_send_head(sk))
1741 break;
1742 cnt += tcp_skb_pcount(skb);
1743 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1744 tp->undo_marker = 0;
1745 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1746 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1747 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1748 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1749 tp->lost_out += tcp_skb_pcount(skb);
1750 } else {
1751 tp->sacked_out += tcp_skb_pcount(skb);
1752 tp->fackets_out = cnt;
1753 }
1754 }
1755 tcp_verify_left_out(tp);
1756
1757 tp->reordering = min_t(unsigned int, tp->reordering,
1758 sysctl_tcp_reordering);
1759 tcp_set_ca_state(sk, TCP_CA_Loss);
1760 tp->high_seq = tp->snd_nxt;
1761 TCP_ECN_queue_cwr(tp);
1762 /* Abort FRTO algorithm if one is in progress */
1763 tp->frto_counter = 0;
1764 }
1765
1766 static int tcp_check_sack_reneging(struct sock *sk)
1767 {
1768 struct sk_buff *skb;
1769
1770 /* If ACK arrived pointing to a remembered SACK,
1771 * it means that our remembered SACKs do not reflect
1772 * real state of receiver i.e.
1773 * receiver _host_ is heavily congested (or buggy).
1774 * Do processing similar to RTO timeout.
1775 */
1776 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1777 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1778 struct inet_connection_sock *icsk = inet_csk(sk);
1779 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1780
1781 tcp_enter_loss(sk, 1);
1782 icsk->icsk_retransmits++;
1783 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1784 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1785 icsk->icsk_rto, TCP_RTO_MAX);
1786 return 1;
1787 }
1788 return 0;
1789 }
1790
1791 static inline int tcp_fackets_out(struct tcp_sock *tp)
1792 {
1793 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1794 }
1795
1796 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1797 {
1798 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1799 }
1800
1801 static inline int tcp_head_timedout(struct sock *sk)
1802 {
1803 struct tcp_sock *tp = tcp_sk(sk);
1804
1805 return tp->packets_out &&
1806 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1807 }
1808
1809 /* Linux NewReno/SACK/FACK/ECN state machine.
1810 * --------------------------------------
1811 *
1812 * "Open" Normal state, no dubious events, fast path.
1813 * "Disorder" In all the respects it is "Open",
1814 * but requires a bit more attention. It is entered when
1815 * we see some SACKs or dupacks. It is split of "Open"
1816 * mainly to move some processing from fast path to slow one.
1817 * "CWR" CWND was reduced due to some Congestion Notification event.
1818 * It can be ECN, ICMP source quench, local device congestion.
1819 * "Recovery" CWND was reduced, we are fast-retransmitting.
1820 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1821 *
1822 * tcp_fastretrans_alert() is entered:
1823 * - each incoming ACK, if state is not "Open"
1824 * - when arrived ACK is unusual, namely:
1825 * * SACK
1826 * * Duplicate ACK.
1827 * * ECN ECE.
1828 *
1829 * Counting packets in flight is pretty simple.
1830 *
1831 * in_flight = packets_out - left_out + retrans_out
1832 *
1833 * packets_out is SND.NXT-SND.UNA counted in packets.
1834 *
1835 * retrans_out is number of retransmitted segments.
1836 *
1837 * left_out is number of segments left network, but not ACKed yet.
1838 *
1839 * left_out = sacked_out + lost_out
1840 *
1841 * sacked_out: Packets, which arrived to receiver out of order
1842 * and hence not ACKed. With SACKs this number is simply
1843 * amount of SACKed data. Even without SACKs
1844 * it is easy to give pretty reliable estimate of this number,
1845 * counting duplicate ACKs.
1846 *
1847 * lost_out: Packets lost by network. TCP has no explicit
1848 * "loss notification" feedback from network (for now).
1849 * It means that this number can be only _guessed_.
1850 * Actually, it is the heuristics to predict lossage that
1851 * distinguishes different algorithms.
1852 *
1853 * F.e. after RTO, when all the queue is considered as lost,
1854 * lost_out = packets_out and in_flight = retrans_out.
1855 *
1856 * Essentially, we have now two algorithms counting
1857 * lost packets.
1858 *
1859 * FACK: It is the simplest heuristics. As soon as we decided
1860 * that something is lost, we decide that _all_ not SACKed
1861 * packets until the most forward SACK are lost. I.e.
1862 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1863 * It is absolutely correct estimate, if network does not reorder
1864 * packets. And it loses any connection to reality when reordering
1865 * takes place. We use FACK by default until reordering
1866 * is suspected on the path to this destination.
1867 *
1868 * NewReno: when Recovery is entered, we assume that one segment
1869 * is lost (classic Reno). While we are in Recovery and
1870 * a partial ACK arrives, we assume that one more packet
1871 * is lost (NewReno). This heuristics are the same in NewReno
1872 * and SACK.
1873 *
1874 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1875 * deflation etc. CWND is real congestion window, never inflated, changes
1876 * only according to classic VJ rules.
1877 *
1878 * Really tricky (and requiring careful tuning) part of algorithm
1879 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1880 * The first determines the moment _when_ we should reduce CWND and,
1881 * hence, slow down forward transmission. In fact, it determines the moment
1882 * when we decide that hole is caused by loss, rather than by a reorder.
1883 *
1884 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1885 * holes, caused by lost packets.
1886 *
1887 * And the most logically complicated part of algorithm is undo
1888 * heuristics. We detect false retransmits due to both too early
1889 * fast retransmit (reordering) and underestimated RTO, analyzing
1890 * timestamps and D-SACKs. When we detect that some segments were
1891 * retransmitted by mistake and CWND reduction was wrong, we undo
1892 * window reduction and abort recovery phase. This logic is hidden
1893 * inside several functions named tcp_try_undo_<something>.
1894 */
1895
1896 /* This function decides, when we should leave Disordered state
1897 * and enter Recovery phase, reducing congestion window.
1898 *
1899 * Main question: may we further continue forward transmission
1900 * with the same cwnd?
1901 */
1902 static int tcp_time_to_recover(struct sock *sk)
1903 {
1904 struct tcp_sock *tp = tcp_sk(sk);
1905 __u32 packets_out;
1906
1907 /* Do not perform any recovery during FRTO algorithm */
1908 if (tp->frto_counter)
1909 return 0;
1910
1911 /* Trick#1: The loss is proven. */
1912 if (tp->lost_out)
1913 return 1;
1914
1915 /* Not-A-Trick#2 : Classic rule... */
1916 if (tcp_fackets_out(tp) > tp->reordering)
1917 return 1;
1918
1919 /* Trick#3 : when we use RFC2988 timer restart, fast
1920 * retransmit can be triggered by timeout of queue head.
1921 */
1922 if (tcp_head_timedout(sk))
1923 return 1;
1924
1925 /* Trick#4: It is still not OK... But will it be useful to delay
1926 * recovery more?
1927 */
1928 packets_out = tp->packets_out;
1929 if (packets_out <= tp->reordering &&
1930 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1931 !tcp_may_send_now(sk)) {
1932 /* We have nothing to send. This connection is limited
1933 * either by receiver window or by application.
1934 */
1935 return 1;
1936 }
1937
1938 return 0;
1939 }
1940
1941 /* RFC: This is from the original, I doubt that this is necessary at all:
1942 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1943 * retransmitted past LOST markings in the first place? I'm not fully sure
1944 * about undo and end of connection cases, which can cause R without L?
1945 */
1946 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1947 struct sk_buff *skb)
1948 {
1949 if ((tp->retransmit_skb_hint != NULL) &&
1950 before(TCP_SKB_CB(skb)->seq,
1951 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1952 tp->retransmit_skb_hint = NULL;
1953 }
1954
1955 /* Mark head of queue up as lost. */
1956 static void tcp_mark_head_lost(struct sock *sk,
1957 int packets, u32 high_seq)
1958 {
1959 struct tcp_sock *tp = tcp_sk(sk);
1960 struct sk_buff *skb;
1961 int cnt;
1962
1963 BUG_TRAP(packets <= tp->packets_out);
1964 if (tp->lost_skb_hint) {
1965 skb = tp->lost_skb_hint;
1966 cnt = tp->lost_cnt_hint;
1967 } else {
1968 skb = tcp_write_queue_head(sk);
1969 cnt = 0;
1970 }
1971
1972 tcp_for_write_queue_from(skb, sk) {
1973 if (skb == tcp_send_head(sk))
1974 break;
1975 /* TODO: do this better */
1976 /* this is not the most efficient way to do this... */
1977 tp->lost_skb_hint = skb;
1978 tp->lost_cnt_hint = cnt;
1979 cnt += tcp_skb_pcount(skb);
1980 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1981 break;
1982 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1983 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1984 tp->lost_out += tcp_skb_pcount(skb);
1985 tcp_verify_retransmit_hint(tp, skb);
1986 }
1987 }
1988 tcp_verify_left_out(tp);
1989 }
1990
1991 /* Account newly detected lost packet(s) */
1992
1993 static void tcp_update_scoreboard(struct sock *sk)
1994 {
1995 struct tcp_sock *tp = tcp_sk(sk);
1996
1997 if (tcp_is_fack(tp)) {
1998 int lost = tp->fackets_out - tp->reordering;
1999 if (lost <= 0)
2000 lost = 1;
2001 tcp_mark_head_lost(sk, lost, tp->high_seq);
2002 } else {
2003 tcp_mark_head_lost(sk, 1, tp->high_seq);
2004 }
2005
2006 /* New heuristics: it is possible only after we switched
2007 * to restart timer each time when something is ACKed.
2008 * Hence, we can detect timed out packets during fast
2009 * retransmit without falling to slow start.
2010 */
2011 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2012 struct sk_buff *skb;
2013
2014 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2015 : tcp_write_queue_head(sk);
2016
2017 tcp_for_write_queue_from(skb, sk) {
2018 if (skb == tcp_send_head(sk))
2019 break;
2020 if (!tcp_skb_timedout(sk, skb))
2021 break;
2022
2023 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
2024 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2025 tp->lost_out += tcp_skb_pcount(skb);
2026 tcp_verify_retransmit_hint(tp, skb);
2027 }
2028 }
2029
2030 tp->scoreboard_skb_hint = skb;
2031
2032 tcp_verify_left_out(tp);
2033 }
2034 }
2035
2036 /* CWND moderation, preventing bursts due to too big ACKs
2037 * in dubious situations.
2038 */
2039 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2040 {
2041 tp->snd_cwnd = min(tp->snd_cwnd,
2042 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2043 tp->snd_cwnd_stamp = tcp_time_stamp;
2044 }
2045
2046 /* Lower bound on congestion window is slow start threshold
2047 * unless congestion avoidance choice decides to overide it.
2048 */
2049 static inline u32 tcp_cwnd_min(const struct sock *sk)
2050 {
2051 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2052
2053 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2054 }
2055
2056 /* Decrease cwnd each second ack. */
2057 static void tcp_cwnd_down(struct sock *sk, int flag)
2058 {
2059 struct tcp_sock *tp = tcp_sk(sk);
2060 int decr = tp->snd_cwnd_cnt + 1;
2061
2062 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2063 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2064 tp->snd_cwnd_cnt = decr&1;
2065 decr >>= 1;
2066
2067 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2068 tp->snd_cwnd -= decr;
2069
2070 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2071 tp->snd_cwnd_stamp = tcp_time_stamp;
2072 }
2073 }
2074
2075 /* Nothing was retransmitted or returned timestamp is less
2076 * than timestamp of the first retransmission.
2077 */
2078 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2079 {
2080 return !tp->retrans_stamp ||
2081 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2082 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2083 }
2084
2085 /* Undo procedures. */
2086
2087 #if FASTRETRANS_DEBUG > 1
2088 static void DBGUNDO(struct sock *sk, const char *msg)
2089 {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 struct inet_sock *inet = inet_sk(sk);
2092
2093 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2094 msg,
2095 NIPQUAD(inet->daddr), ntohs(inet->dport),
2096 tp->snd_cwnd, tcp_left_out(tp),
2097 tp->snd_ssthresh, tp->prior_ssthresh,
2098 tp->packets_out);
2099 }
2100 #else
2101 #define DBGUNDO(x...) do { } while (0)
2102 #endif
2103
2104 static void tcp_undo_cwr(struct sock *sk, const int undo)
2105 {
2106 struct tcp_sock *tp = tcp_sk(sk);
2107
2108 if (tp->prior_ssthresh) {
2109 const struct inet_connection_sock *icsk = inet_csk(sk);
2110
2111 if (icsk->icsk_ca_ops->undo_cwnd)
2112 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2113 else
2114 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2115
2116 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2117 tp->snd_ssthresh = tp->prior_ssthresh;
2118 TCP_ECN_withdraw_cwr(tp);
2119 }
2120 } else {
2121 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2122 }
2123 tcp_moderate_cwnd(tp);
2124 tp->snd_cwnd_stamp = tcp_time_stamp;
2125
2126 /* There is something screwy going on with the retrans hints after
2127 an undo */
2128 tcp_clear_all_retrans_hints(tp);
2129 }
2130
2131 static inline int tcp_may_undo(struct tcp_sock *tp)
2132 {
2133 return tp->undo_marker &&
2134 (!tp->undo_retrans || tcp_packet_delayed(tp));
2135 }
2136
2137 /* People celebrate: "We love our President!" */
2138 static int tcp_try_undo_recovery(struct sock *sk)
2139 {
2140 struct tcp_sock *tp = tcp_sk(sk);
2141
2142 if (tcp_may_undo(tp)) {
2143 /* Happy end! We did not retransmit anything
2144 * or our original transmission succeeded.
2145 */
2146 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2147 tcp_undo_cwr(sk, 1);
2148 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2149 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2150 else
2151 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2152 tp->undo_marker = 0;
2153 }
2154 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2155 /* Hold old state until something *above* high_seq
2156 * is ACKed. For Reno it is MUST to prevent false
2157 * fast retransmits (RFC2582). SACK TCP is safe. */
2158 tcp_moderate_cwnd(tp);
2159 return 1;
2160 }
2161 tcp_set_ca_state(sk, TCP_CA_Open);
2162 return 0;
2163 }
2164
2165 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2166 static void tcp_try_undo_dsack(struct sock *sk)
2167 {
2168 struct tcp_sock *tp = tcp_sk(sk);
2169
2170 if (tp->undo_marker && !tp->undo_retrans) {
2171 DBGUNDO(sk, "D-SACK");
2172 tcp_undo_cwr(sk, 1);
2173 tp->undo_marker = 0;
2174 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2175 }
2176 }
2177
2178 /* Undo during fast recovery after partial ACK. */
2179
2180 static int tcp_try_undo_partial(struct sock *sk, int acked)
2181 {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 /* Partial ACK arrived. Force Hoe's retransmit. */
2184 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2185
2186 if (tcp_may_undo(tp)) {
2187 /* Plain luck! Hole if filled with delayed
2188 * packet, rather than with a retransmit.
2189 */
2190 if (tp->retrans_out == 0)
2191 tp->retrans_stamp = 0;
2192
2193 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2194
2195 DBGUNDO(sk, "Hoe");
2196 tcp_undo_cwr(sk, 0);
2197 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2198
2199 /* So... Do not make Hoe's retransmit yet.
2200 * If the first packet was delayed, the rest
2201 * ones are most probably delayed as well.
2202 */
2203 failed = 0;
2204 }
2205 return failed;
2206 }
2207
2208 /* Undo during loss recovery after partial ACK. */
2209 static int tcp_try_undo_loss(struct sock *sk)
2210 {
2211 struct tcp_sock *tp = tcp_sk(sk);
2212
2213 if (tcp_may_undo(tp)) {
2214 struct sk_buff *skb;
2215 tcp_for_write_queue(skb, sk) {
2216 if (skb == tcp_send_head(sk))
2217 break;
2218 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2219 }
2220
2221 tcp_clear_all_retrans_hints(tp);
2222
2223 DBGUNDO(sk, "partial loss");
2224 tp->lost_out = 0;
2225 tcp_undo_cwr(sk, 1);
2226 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2227 inet_csk(sk)->icsk_retransmits = 0;
2228 tp->undo_marker = 0;
2229 if (tcp_is_sack(tp))
2230 tcp_set_ca_state(sk, TCP_CA_Open);
2231 return 1;
2232 }
2233 return 0;
2234 }
2235
2236 static inline void tcp_complete_cwr(struct sock *sk)
2237 {
2238 struct tcp_sock *tp = tcp_sk(sk);
2239 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2240 tp->snd_cwnd_stamp = tcp_time_stamp;
2241 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2242 }
2243
2244 static void tcp_try_to_open(struct sock *sk, int flag)
2245 {
2246 struct tcp_sock *tp = tcp_sk(sk);
2247
2248 tcp_verify_left_out(tp);
2249
2250 if (tp->retrans_out == 0)
2251 tp->retrans_stamp = 0;
2252
2253 if (flag&FLAG_ECE)
2254 tcp_enter_cwr(sk, 1);
2255
2256 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2257 int state = TCP_CA_Open;
2258
2259 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2260 state = TCP_CA_Disorder;
2261
2262 if (inet_csk(sk)->icsk_ca_state != state) {
2263 tcp_set_ca_state(sk, state);
2264 tp->high_seq = tp->snd_nxt;
2265 }
2266 tcp_moderate_cwnd(tp);
2267 } else {
2268 tcp_cwnd_down(sk, flag);
2269 }
2270 }
2271
2272 static void tcp_mtup_probe_failed(struct sock *sk)
2273 {
2274 struct inet_connection_sock *icsk = inet_csk(sk);
2275
2276 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2277 icsk->icsk_mtup.probe_size = 0;
2278 }
2279
2280 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2281 {
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 struct inet_connection_sock *icsk = inet_csk(sk);
2284
2285 /* FIXME: breaks with very large cwnd */
2286 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2287 tp->snd_cwnd = tp->snd_cwnd *
2288 tcp_mss_to_mtu(sk, tp->mss_cache) /
2289 icsk->icsk_mtup.probe_size;
2290 tp->snd_cwnd_cnt = 0;
2291 tp->snd_cwnd_stamp = tcp_time_stamp;
2292 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2293
2294 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2295 icsk->icsk_mtup.probe_size = 0;
2296 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2297 }
2298
2299
2300 /* Process an event, which can update packets-in-flight not trivially.
2301 * Main goal of this function is to calculate new estimate for left_out,
2302 * taking into account both packets sitting in receiver's buffer and
2303 * packets lost by network.
2304 *
2305 * Besides that it does CWND reduction, when packet loss is detected
2306 * and changes state of machine.
2307 *
2308 * It does _not_ decide what to send, it is made in function
2309 * tcp_xmit_retransmit_queue().
2310 */
2311 static void
2312 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2313 {
2314 struct inet_connection_sock *icsk = inet_csk(sk);
2315 struct tcp_sock *tp = tcp_sk(sk);
2316 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2317 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2318 (tp->fackets_out > tp->reordering));
2319
2320 /* Some technical things:
2321 * 1. Reno does not count dupacks (sacked_out) automatically. */
2322 if (!tp->packets_out)
2323 tp->sacked_out = 0;
2324
2325 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2326 tp->fackets_out = 0;
2327
2328 /* Now state machine starts.
2329 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2330 if (flag&FLAG_ECE)
2331 tp->prior_ssthresh = 0;
2332
2333 /* B. In all the states check for reneging SACKs. */
2334 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2335 return;
2336
2337 /* C. Process data loss notification, provided it is valid. */
2338 if ((flag&FLAG_DATA_LOST) &&
2339 before(tp->snd_una, tp->high_seq) &&
2340 icsk->icsk_ca_state != TCP_CA_Open &&
2341 tp->fackets_out > tp->reordering) {
2342 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2343 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2344 }
2345
2346 /* D. Check consistency of the current state. */
2347 tcp_verify_left_out(tp);
2348
2349 /* E. Check state exit conditions. State can be terminated
2350 * when high_seq is ACKed. */
2351 if (icsk->icsk_ca_state == TCP_CA_Open) {
2352 BUG_TRAP(tp->retrans_out == 0);
2353 tp->retrans_stamp = 0;
2354 } else if (!before(tp->snd_una, tp->high_seq)) {
2355 switch (icsk->icsk_ca_state) {
2356 case TCP_CA_Loss:
2357 icsk->icsk_retransmits = 0;
2358 if (tcp_try_undo_recovery(sk))
2359 return;
2360 break;
2361
2362 case TCP_CA_CWR:
2363 /* CWR is to be held something *above* high_seq
2364 * is ACKed for CWR bit to reach receiver. */
2365 if (tp->snd_una != tp->high_seq) {
2366 tcp_complete_cwr(sk);
2367 tcp_set_ca_state(sk, TCP_CA_Open);
2368 }
2369 break;
2370
2371 case TCP_CA_Disorder:
2372 tcp_try_undo_dsack(sk);
2373 if (!tp->undo_marker ||
2374 /* For SACK case do not Open to allow to undo
2375 * catching for all duplicate ACKs. */
2376 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2377 tp->undo_marker = 0;
2378 tcp_set_ca_state(sk, TCP_CA_Open);
2379 }
2380 break;
2381
2382 case TCP_CA_Recovery:
2383 if (tcp_is_reno(tp))
2384 tcp_reset_reno_sack(tp);
2385 if (tcp_try_undo_recovery(sk))
2386 return;
2387 tcp_complete_cwr(sk);
2388 break;
2389 }
2390 }
2391
2392 /* F. Process state. */
2393 switch (icsk->icsk_ca_state) {
2394 case TCP_CA_Recovery:
2395 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2396 if (tcp_is_reno(tp) && is_dupack)
2397 tcp_add_reno_sack(sk);
2398 } else
2399 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2400 break;
2401 case TCP_CA_Loss:
2402 if (flag&FLAG_DATA_ACKED)
2403 icsk->icsk_retransmits = 0;
2404 if (!tcp_try_undo_loss(sk)) {
2405 tcp_moderate_cwnd(tp);
2406 tcp_xmit_retransmit_queue(sk);
2407 return;
2408 }
2409 if (icsk->icsk_ca_state != TCP_CA_Open)
2410 return;
2411 /* Loss is undone; fall through to processing in Open state. */
2412 default:
2413 if (tcp_is_reno(tp)) {
2414 if (flag & FLAG_SND_UNA_ADVANCED)
2415 tcp_reset_reno_sack(tp);
2416 if (is_dupack)
2417 tcp_add_reno_sack(sk);
2418 }
2419
2420 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2421 tcp_try_undo_dsack(sk);
2422
2423 if (!tcp_time_to_recover(sk)) {
2424 tcp_try_to_open(sk, flag);
2425 return;
2426 }
2427
2428 /* MTU probe failure: don't reduce cwnd */
2429 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2430 icsk->icsk_mtup.probe_size &&
2431 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2432 tcp_mtup_probe_failed(sk);
2433 /* Restores the reduction we did in tcp_mtup_probe() */
2434 tp->snd_cwnd++;
2435 tcp_simple_retransmit(sk);
2436 return;
2437 }
2438
2439 /* Otherwise enter Recovery state */
2440
2441 if (tcp_is_reno(tp))
2442 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2443 else
2444 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2445
2446 tp->high_seq = tp->snd_nxt;
2447 tp->prior_ssthresh = 0;
2448 tp->undo_marker = tp->snd_una;
2449 tp->undo_retrans = tp->retrans_out;
2450
2451 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2452 if (!(flag&FLAG_ECE))
2453 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2454 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2455 TCP_ECN_queue_cwr(tp);
2456 }
2457
2458 tp->bytes_acked = 0;
2459 tp->snd_cwnd_cnt = 0;
2460 tcp_set_ca_state(sk, TCP_CA_Recovery);
2461 }
2462
2463 if (do_lost || tcp_head_timedout(sk))
2464 tcp_update_scoreboard(sk);
2465 tcp_cwnd_down(sk, flag);
2466 tcp_xmit_retransmit_queue(sk);
2467 }
2468
2469 /* Read draft-ietf-tcplw-high-performance before mucking
2470 * with this code. (Supersedes RFC1323)
2471 */
2472 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2473 {
2474 /* RTTM Rule: A TSecr value received in a segment is used to
2475 * update the averaged RTT measurement only if the segment
2476 * acknowledges some new data, i.e., only if it advances the
2477 * left edge of the send window.
2478 *
2479 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2480 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2481 *
2482 * Changed: reset backoff as soon as we see the first valid sample.
2483 * If we do not, we get strongly overestimated rto. With timestamps
2484 * samples are accepted even from very old segments: f.e., when rtt=1
2485 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2486 * answer arrives rto becomes 120 seconds! If at least one of segments
2487 * in window is lost... Voila. --ANK (010210)
2488 */
2489 struct tcp_sock *tp = tcp_sk(sk);
2490 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2491 tcp_rtt_estimator(sk, seq_rtt);
2492 tcp_set_rto(sk);
2493 inet_csk(sk)->icsk_backoff = 0;
2494 tcp_bound_rto(sk);
2495 }
2496
2497 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2498 {
2499 /* We don't have a timestamp. Can only use
2500 * packets that are not retransmitted to determine
2501 * rtt estimates. Also, we must not reset the
2502 * backoff for rto until we get a non-retransmitted
2503 * packet. This allows us to deal with a situation
2504 * where the network delay has increased suddenly.
2505 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2506 */
2507
2508 if (flag & FLAG_RETRANS_DATA_ACKED)
2509 return;
2510
2511 tcp_rtt_estimator(sk, seq_rtt);
2512 tcp_set_rto(sk);
2513 inet_csk(sk)->icsk_backoff = 0;
2514 tcp_bound_rto(sk);
2515 }
2516
2517 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2518 const s32 seq_rtt)
2519 {
2520 const struct tcp_sock *tp = tcp_sk(sk);
2521 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2522 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2523 tcp_ack_saw_tstamp(sk, flag);
2524 else if (seq_rtt >= 0)
2525 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2526 }
2527
2528 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2529 u32 in_flight, int good)
2530 {
2531 const struct inet_connection_sock *icsk = inet_csk(sk);
2532 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2533 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2534 }
2535
2536 /* Restart timer after forward progress on connection.
2537 * RFC2988 recommends to restart timer to now+rto.
2538 */
2539 static void tcp_rearm_rto(struct sock *sk)
2540 {
2541 struct tcp_sock *tp = tcp_sk(sk);
2542
2543 if (!tp->packets_out) {
2544 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2545 } else {
2546 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2547 }
2548 }
2549
2550 /* If we get here, the whole TSO packet has not been acked. */
2551 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2552 {
2553 struct tcp_sock *tp = tcp_sk(sk);
2554 u32 packets_acked;
2555
2556 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2557
2558 packets_acked = tcp_skb_pcount(skb);
2559 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2560 return 0;
2561 packets_acked -= tcp_skb_pcount(skb);
2562
2563 if (packets_acked) {
2564 BUG_ON(tcp_skb_pcount(skb) == 0);
2565 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2566 }
2567
2568 return packets_acked;
2569 }
2570
2571 /* Remove acknowledged frames from the retransmission queue. If our packet
2572 * is before the ack sequence we can discard it as it's confirmed to have
2573 * arrived at the other end.
2574 */
2575 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 const struct inet_connection_sock *icsk = inet_csk(sk);
2579 struct sk_buff *skb;
2580 u32 now = tcp_time_stamp;
2581 int fully_acked = 1;
2582 int flag = 0;
2583 int prior_packets = tp->packets_out;
2584 s32 seq_rtt = -1;
2585 ktime_t last_ackt = net_invalid_timestamp();
2586
2587 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2588 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2589 u32 end_seq;
2590 u32 packets_acked;
2591 u8 sacked = scb->sacked;
2592
2593 if (after(scb->end_seq, tp->snd_una)) {
2594 if (tcp_skb_pcount(skb) == 1 ||
2595 !after(tp->snd_una, scb->seq))
2596 break;
2597
2598 packets_acked = tcp_tso_acked(sk, skb);
2599 if (!packets_acked)
2600 break;
2601
2602 fully_acked = 0;
2603 end_seq = tp->snd_una;
2604 } else {
2605 packets_acked = tcp_skb_pcount(skb);
2606 end_seq = scb->end_seq;
2607 }
2608
2609 /* MTU probing checks */
2610 if (fully_acked && icsk->icsk_mtup.probe_size &&
2611 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2612 tcp_mtup_probe_success(sk, skb);
2613 }
2614
2615 if (sacked) {
2616 if (sacked & TCPCB_RETRANS) {
2617 if (sacked & TCPCB_SACKED_RETRANS)
2618 tp->retrans_out -= packets_acked;
2619 flag |= FLAG_RETRANS_DATA_ACKED;
2620 seq_rtt = -1;
2621 if ((flag & FLAG_DATA_ACKED) ||
2622 (packets_acked > 1))
2623 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2624 } else if (seq_rtt < 0) {
2625 seq_rtt = now - scb->when;
2626 if (fully_acked)
2627 last_ackt = skb->tstamp;
2628 }
2629
2630 if (sacked & TCPCB_SACKED_ACKED)
2631 tp->sacked_out -= packets_acked;
2632 if (sacked & TCPCB_LOST)
2633 tp->lost_out -= packets_acked;
2634
2635 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2636 !before(end_seq, tp->snd_up))
2637 tp->urg_mode = 0;
2638 } else if (seq_rtt < 0) {
2639 seq_rtt = now - scb->when;
2640 if (fully_acked)
2641 last_ackt = skb->tstamp;
2642 }
2643 tp->packets_out -= packets_acked;
2644
2645 /* Initial outgoing SYN's get put onto the write_queue
2646 * just like anything else we transmit. It is not
2647 * true data, and if we misinform our callers that
2648 * this ACK acks real data, we will erroneously exit
2649 * connection startup slow start one packet too
2650 * quickly. This is severely frowned upon behavior.
2651 */
2652 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2653 flag |= FLAG_DATA_ACKED;
2654 } else {
2655 flag |= FLAG_SYN_ACKED;
2656 tp->retrans_stamp = 0;
2657 }
2658
2659 if (!fully_acked)
2660 break;
2661
2662 tcp_unlink_write_queue(skb, sk);
2663 sk_stream_free_skb(sk, skb);
2664 tcp_clear_all_retrans_hints(tp);
2665 }
2666
2667 if (flag & FLAG_ACKED) {
2668 u32 pkts_acked = prior_packets - tp->packets_out;
2669 const struct tcp_congestion_ops *ca_ops
2670 = inet_csk(sk)->icsk_ca_ops;
2671
2672 tcp_ack_update_rtt(sk, flag, seq_rtt);
2673 tcp_rearm_rto(sk);
2674
2675 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2676 /* hint's skb might be NULL but we don't need to care */
2677 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2678 tp->fastpath_cnt_hint);
2679 if (tcp_is_reno(tp))
2680 tcp_remove_reno_sacks(sk, pkts_acked);
2681
2682 if (ca_ops->pkts_acked) {
2683 s32 rtt_us = -1;
2684
2685 /* Is the ACK triggering packet unambiguous? */
2686 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2687 /* High resolution needed and available? */
2688 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2689 !ktime_equal(last_ackt,
2690 net_invalid_timestamp()))
2691 rtt_us = ktime_us_delta(ktime_get_real(),
2692 last_ackt);
2693 else if (seq_rtt > 0)
2694 rtt_us = jiffies_to_usecs(seq_rtt);
2695 }
2696
2697 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2698 }
2699 }
2700
2701 #if FASTRETRANS_DEBUG > 0
2702 BUG_TRAP((int)tp->sacked_out >= 0);
2703 BUG_TRAP((int)tp->lost_out >= 0);
2704 BUG_TRAP((int)tp->retrans_out >= 0);
2705 if (!tp->packets_out && tcp_is_sack(tp)) {
2706 const struct inet_connection_sock *icsk = inet_csk(sk);
2707 if (tp->lost_out) {
2708 printk(KERN_DEBUG "Leak l=%u %d\n",
2709 tp->lost_out, icsk->icsk_ca_state);
2710 tp->lost_out = 0;
2711 }
2712 if (tp->sacked_out) {
2713 printk(KERN_DEBUG "Leak s=%u %d\n",
2714 tp->sacked_out, icsk->icsk_ca_state);
2715 tp->sacked_out = 0;
2716 }
2717 if (tp->retrans_out) {
2718 printk(KERN_DEBUG "Leak r=%u %d\n",
2719 tp->retrans_out, icsk->icsk_ca_state);
2720 tp->retrans_out = 0;
2721 }
2722 }
2723 #endif
2724 *seq_rtt_p = seq_rtt;
2725 return flag;
2726 }
2727
2728 static void tcp_ack_probe(struct sock *sk)
2729 {
2730 const struct tcp_sock *tp = tcp_sk(sk);
2731 struct inet_connection_sock *icsk = inet_csk(sk);
2732
2733 /* Was it a usable window open? */
2734
2735 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2736 tp->snd_una + tp->snd_wnd)) {
2737 icsk->icsk_backoff = 0;
2738 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2739 /* Socket must be waked up by subsequent tcp_data_snd_check().
2740 * This function is not for random using!
2741 */
2742 } else {
2743 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2744 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2745 TCP_RTO_MAX);
2746 }
2747 }
2748
2749 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2750 {
2751 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2752 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2753 }
2754
2755 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2756 {
2757 const struct tcp_sock *tp = tcp_sk(sk);
2758 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2759 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2760 }
2761
2762 /* Check that window update is acceptable.
2763 * The function assumes that snd_una<=ack<=snd_next.
2764 */
2765 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2766 const u32 ack_seq, const u32 nwin)
2767 {
2768 return (after(ack, tp->snd_una) ||
2769 after(ack_seq, tp->snd_wl1) ||
2770 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2771 }
2772
2773 /* Update our send window.
2774 *
2775 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2776 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2777 */
2778 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2779 u32 ack_seq)
2780 {
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 int flag = 0;
2783 u32 nwin = ntohs(tcp_hdr(skb)->window);
2784
2785 if (likely(!tcp_hdr(skb)->syn))
2786 nwin <<= tp->rx_opt.snd_wscale;
2787
2788 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2789 flag |= FLAG_WIN_UPDATE;
2790 tcp_update_wl(tp, ack, ack_seq);
2791
2792 if (tp->snd_wnd != nwin) {
2793 tp->snd_wnd = nwin;
2794
2795 /* Note, it is the only place, where
2796 * fast path is recovered for sending TCP.
2797 */
2798 tp->pred_flags = 0;
2799 tcp_fast_path_check(sk);
2800
2801 if (nwin > tp->max_window) {
2802 tp->max_window = nwin;
2803 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2804 }
2805 }
2806 }
2807
2808 tp->snd_una = ack;
2809
2810 return flag;
2811 }
2812
2813 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2814 * continue in congestion avoidance.
2815 */
2816 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2817 {
2818 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2819 tp->snd_cwnd_cnt = 0;
2820 TCP_ECN_queue_cwr(tp);
2821 tcp_moderate_cwnd(tp);
2822 }
2823
2824 /* A conservative spurious RTO response algorithm: reduce cwnd using
2825 * rate halving and continue in congestion avoidance.
2826 */
2827 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2828 {
2829 tcp_enter_cwr(sk, 0);
2830 }
2831
2832 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2833 {
2834 if (flag&FLAG_ECE)
2835 tcp_ratehalving_spur_to_response(sk);
2836 else
2837 tcp_undo_cwr(sk, 1);
2838 }
2839
2840 /* F-RTO spurious RTO detection algorithm (RFC4138)
2841 *
2842 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2843 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2844 * window (but not to or beyond highest sequence sent before RTO):
2845 * On First ACK, send two new segments out.
2846 * On Second ACK, RTO was likely spurious. Do spurious response (response
2847 * algorithm is not part of the F-RTO detection algorithm
2848 * given in RFC4138 but can be selected separately).
2849 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2850 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2851 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2852 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2853 *
2854 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2855 * original window even after we transmit two new data segments.
2856 *
2857 * SACK version:
2858 * on first step, wait until first cumulative ACK arrives, then move to
2859 * the second step. In second step, the next ACK decides.
2860 *
2861 * F-RTO is implemented (mainly) in four functions:
2862 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2863 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2864 * called when tcp_use_frto() showed green light
2865 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2866 * - tcp_enter_frto_loss() is called if there is not enough evidence
2867 * to prove that the RTO is indeed spurious. It transfers the control
2868 * from F-RTO to the conventional RTO recovery
2869 */
2870 static int tcp_process_frto(struct sock *sk, int flag)
2871 {
2872 struct tcp_sock *tp = tcp_sk(sk);
2873
2874 tcp_verify_left_out(tp);
2875
2876 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2877 if (flag&FLAG_DATA_ACKED)
2878 inet_csk(sk)->icsk_retransmits = 0;
2879
2880 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2881 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2882 tp->undo_marker = 0;
2883
2884 if (!before(tp->snd_una, tp->frto_highmark)) {
2885 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2886 return 1;
2887 }
2888
2889 if (!IsSackFrto() || tcp_is_reno(tp)) {
2890 /* RFC4138 shortcoming in step 2; should also have case c):
2891 * ACK isn't duplicate nor advances window, e.g., opposite dir
2892 * data, winupdate
2893 */
2894 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2895 return 1;
2896
2897 if (!(flag&FLAG_DATA_ACKED)) {
2898 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2899 flag);
2900 return 1;
2901 }
2902 } else {
2903 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2904 /* Prevent sending of new data. */
2905 tp->snd_cwnd = min(tp->snd_cwnd,
2906 tcp_packets_in_flight(tp));
2907 return 1;
2908 }
2909
2910 if ((tp->frto_counter >= 2) &&
2911 (!(flag&FLAG_FORWARD_PROGRESS) ||
2912 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2913 /* RFC4138 shortcoming (see comment above) */
2914 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2915 return 1;
2916
2917 tcp_enter_frto_loss(sk, 3, flag);
2918 return 1;
2919 }
2920 }
2921
2922 if (tp->frto_counter == 1) {
2923 /* Sending of the next skb must be allowed or no FRTO */
2924 if (!tcp_send_head(sk) ||
2925 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2926 tp->snd_una + tp->snd_wnd)) {
2927 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2928 flag);
2929 return 1;
2930 }
2931
2932 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2933 tp->frto_counter = 2;
2934 return 1;
2935 } else {
2936 switch (sysctl_tcp_frto_response) {
2937 case 2:
2938 tcp_undo_spur_to_response(sk, flag);
2939 break;
2940 case 1:
2941 tcp_conservative_spur_to_response(tp);
2942 break;
2943 default:
2944 tcp_ratehalving_spur_to_response(sk);
2945 break;
2946 }
2947 tp->frto_counter = 0;
2948 tp->undo_marker = 0;
2949 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
2950 }
2951 return 0;
2952 }
2953
2954 /* This routine deals with incoming acks, but not outgoing ones. */
2955 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2956 {
2957 struct inet_connection_sock *icsk = inet_csk(sk);
2958 struct tcp_sock *tp = tcp_sk(sk);
2959 u32 prior_snd_una = tp->snd_una;
2960 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2961 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2962 u32 prior_in_flight;
2963 s32 seq_rtt;
2964 int prior_packets;
2965 int frto_cwnd = 0;
2966
2967 /* If the ack is newer than sent or older than previous acks
2968 * then we can probably ignore it.
2969 */
2970 if (after(ack, tp->snd_nxt))
2971 goto uninteresting_ack;
2972
2973 if (before(ack, prior_snd_una))
2974 goto old_ack;
2975
2976 if (after(ack, prior_snd_una))
2977 flag |= FLAG_SND_UNA_ADVANCED;
2978
2979 if (sysctl_tcp_abc) {
2980 if (icsk->icsk_ca_state < TCP_CA_CWR)
2981 tp->bytes_acked += ack - prior_snd_una;
2982 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2983 /* we assume just one segment left network */
2984 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2985 }
2986
2987 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2988 /* Window is constant, pure forward advance.
2989 * No more checks are required.
2990 * Note, we use the fact that SND.UNA>=SND.WL2.
2991 */
2992 tcp_update_wl(tp, ack, ack_seq);
2993 tp->snd_una = ack;
2994 flag |= FLAG_WIN_UPDATE;
2995
2996 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2997
2998 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2999 } else {
3000 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3001 flag |= FLAG_DATA;
3002 else
3003 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3004
3005 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3006
3007 if (TCP_SKB_CB(skb)->sacked)
3008 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3009
3010 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3011 flag |= FLAG_ECE;
3012
3013 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3014 }
3015
3016 /* We passed data and got it acked, remove any soft error
3017 * log. Something worked...
3018 */
3019 sk->sk_err_soft = 0;
3020 tp->rcv_tstamp = tcp_time_stamp;
3021 prior_packets = tp->packets_out;
3022 if (!prior_packets)
3023 goto no_queue;
3024
3025 prior_in_flight = tcp_packets_in_flight(tp);
3026
3027 /* See if we can take anything off of the retransmit queue. */
3028 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3029
3030 if (tp->frto_counter)
3031 frto_cwnd = tcp_process_frto(sk, flag);
3032
3033 if (tcp_ack_is_dubious(sk, flag)) {
3034 /* Advance CWND, if state allows this. */
3035 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3036 tcp_may_raise_cwnd(sk, flag))
3037 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3038 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3039 } else {
3040 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3041 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3042 }
3043
3044 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3045 dst_confirm(sk->sk_dst_cache);
3046
3047 return 1;
3048
3049 no_queue:
3050 icsk->icsk_probes_out = 0;
3051
3052 /* If this ack opens up a zero window, clear backoff. It was
3053 * being used to time the probes, and is probably far higher than
3054 * it needs to be for normal retransmission.
3055 */
3056 if (tcp_send_head(sk))
3057 tcp_ack_probe(sk);
3058 return 1;
3059
3060 old_ack:
3061 if (TCP_SKB_CB(skb)->sacked)
3062 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3063
3064 uninteresting_ack:
3065 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3066 return 0;
3067 }
3068
3069
3070 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3071 * But, this can also be called on packets in the established flow when
3072 * the fast version below fails.
3073 */
3074 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3075 {
3076 unsigned char *ptr;
3077 struct tcphdr *th = tcp_hdr(skb);
3078 int length=(th->doff*4)-sizeof(struct tcphdr);
3079
3080 ptr = (unsigned char *)(th + 1);
3081 opt_rx->saw_tstamp = 0;
3082
3083 while (length > 0) {
3084 int opcode=*ptr++;
3085 int opsize;
3086
3087 switch (opcode) {
3088 case TCPOPT_EOL:
3089 return;
3090 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3091 length--;
3092 continue;
3093 default:
3094 opsize=*ptr++;
3095 if (opsize < 2) /* "silly options" */
3096 return;
3097 if (opsize > length)
3098 return; /* don't parse partial options */
3099 switch (opcode) {
3100 case TCPOPT_MSS:
3101 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3102 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3103 if (in_mss) {
3104 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3105 in_mss = opt_rx->user_mss;
3106 opt_rx->mss_clamp = in_mss;
3107 }
3108 }
3109 break;
3110 case TCPOPT_WINDOW:
3111 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3112 if (sysctl_tcp_window_scaling) {
3113 __u8 snd_wscale = *(__u8 *) ptr;
3114 opt_rx->wscale_ok = 1;
3115 if (snd_wscale > 14) {
3116 if (net_ratelimit())
3117 printk(KERN_INFO "tcp_parse_options: Illegal window "
3118 "scaling value %d >14 received.\n",
3119 snd_wscale);
3120 snd_wscale = 14;
3121 }
3122 opt_rx->snd_wscale = snd_wscale;
3123 }
3124 break;
3125 case TCPOPT_TIMESTAMP:
3126 if (opsize==TCPOLEN_TIMESTAMP) {
3127 if ((estab && opt_rx->tstamp_ok) ||
3128 (!estab && sysctl_tcp_timestamps)) {
3129 opt_rx->saw_tstamp = 1;
3130 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3131 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3132 }
3133 }
3134 break;
3135 case TCPOPT_SACK_PERM:
3136 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3137 if (sysctl_tcp_sack) {
3138 opt_rx->sack_ok = 1;
3139 tcp_sack_reset(opt_rx);
3140 }
3141 }
3142 break;
3143
3144 case TCPOPT_SACK:
3145 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3146 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3147 opt_rx->sack_ok) {
3148 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3149 }
3150 break;
3151 #ifdef CONFIG_TCP_MD5SIG
3152 case TCPOPT_MD5SIG:
3153 /*
3154 * The MD5 Hash has already been
3155 * checked (see tcp_v{4,6}_do_rcv()).
3156 */
3157 break;
3158 #endif
3159 }
3160
3161 ptr+=opsize-2;
3162 length-=opsize;
3163 }
3164 }
3165 }
3166
3167 /* Fast parse options. This hopes to only see timestamps.
3168 * If it is wrong it falls back on tcp_parse_options().
3169 */
3170 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3171 struct tcp_sock *tp)
3172 {
3173 if (th->doff == sizeof(struct tcphdr)>>2) {
3174 tp->rx_opt.saw_tstamp = 0;
3175 return 0;
3176 } else if (tp->rx_opt.tstamp_ok &&
3177 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3178 __be32 *ptr = (__be32 *)(th + 1);
3179 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3180 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3181 tp->rx_opt.saw_tstamp = 1;
3182 ++ptr;
3183 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3184 ++ptr;
3185 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3186 return 1;
3187 }
3188 }
3189 tcp_parse_options(skb, &tp->rx_opt, 1);
3190 return 1;
3191 }
3192
3193 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3194 {
3195 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3196 tp->rx_opt.ts_recent_stamp = get_seconds();
3197 }
3198
3199 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3200 {
3201 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3202 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3203 * extra check below makes sure this can only happen
3204 * for pure ACK frames. -DaveM
3205 *
3206 * Not only, also it occurs for expired timestamps.
3207 */
3208
3209 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3210 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3211 tcp_store_ts_recent(tp);
3212 }
3213 }
3214
3215 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3216 *
3217 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3218 * it can pass through stack. So, the following predicate verifies that
3219 * this segment is not used for anything but congestion avoidance or
3220 * fast retransmit. Moreover, we even are able to eliminate most of such
3221 * second order effects, if we apply some small "replay" window (~RTO)
3222 * to timestamp space.
3223 *
3224 * All these measures still do not guarantee that we reject wrapped ACKs
3225 * on networks with high bandwidth, when sequence space is recycled fastly,
3226 * but it guarantees that such events will be very rare and do not affect
3227 * connection seriously. This doesn't look nice, but alas, PAWS is really
3228 * buggy extension.
3229 *
3230 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3231 * states that events when retransmit arrives after original data are rare.
3232 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3233 * the biggest problem on large power networks even with minor reordering.
3234 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3235 * up to bandwidth of 18Gigabit/sec. 8) ]
3236 */
3237
3238 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3239 {
3240 struct tcp_sock *tp = tcp_sk(sk);
3241 struct tcphdr *th = tcp_hdr(skb);
3242 u32 seq = TCP_SKB_CB(skb)->seq;
3243 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3244
3245 return (/* 1. Pure ACK with correct sequence number. */
3246 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3247
3248 /* 2. ... and duplicate ACK. */
3249 ack == tp->snd_una &&
3250
3251 /* 3. ... and does not update window. */
3252 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3253
3254 /* 4. ... and sits in replay window. */
3255 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3256 }
3257
3258 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3259 {
3260 const struct tcp_sock *tp = tcp_sk(sk);
3261 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3262 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3263 !tcp_disordered_ack(sk, skb));
3264 }
3265
3266 /* Check segment sequence number for validity.
3267 *
3268 * Segment controls are considered valid, if the segment
3269 * fits to the window after truncation to the window. Acceptability
3270 * of data (and SYN, FIN, of course) is checked separately.
3271 * See tcp_data_queue(), for example.
3272 *
3273 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3274 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3275 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3276 * (borrowed from freebsd)
3277 */
3278
3279 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3280 {
3281 return !before(end_seq, tp->rcv_wup) &&
3282 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3283 }
3284
3285 /* When we get a reset we do this. */
3286 static void tcp_reset(struct sock *sk)
3287 {
3288 /* We want the right error as BSD sees it (and indeed as we do). */
3289 switch (sk->sk_state) {
3290 case TCP_SYN_SENT:
3291 sk->sk_err = ECONNREFUSED;
3292 break;
3293 case TCP_CLOSE_WAIT:
3294 sk->sk_err = EPIPE;
3295 break;
3296 case TCP_CLOSE:
3297 return;
3298 default:
3299 sk->sk_err = ECONNRESET;
3300 }
3301
3302 if (!sock_flag(sk, SOCK_DEAD))
3303 sk->sk_error_report(sk);
3304
3305 tcp_done(sk);
3306 }
3307
3308 /*
3309 * Process the FIN bit. This now behaves as it is supposed to work
3310 * and the FIN takes effect when it is validly part of sequence
3311 * space. Not before when we get holes.
3312 *
3313 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3314 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3315 * TIME-WAIT)
3316 *
3317 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3318 * close and we go into CLOSING (and later onto TIME-WAIT)
3319 *
3320 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3321 */
3322 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325
3326 inet_csk_schedule_ack(sk);
3327
3328 sk->sk_shutdown |= RCV_SHUTDOWN;
3329 sock_set_flag(sk, SOCK_DONE);
3330
3331 switch (sk->sk_state) {
3332 case TCP_SYN_RECV:
3333 case TCP_ESTABLISHED:
3334 /* Move to CLOSE_WAIT */
3335 tcp_set_state(sk, TCP_CLOSE_WAIT);
3336 inet_csk(sk)->icsk_ack.pingpong = 1;
3337 break;
3338
3339 case TCP_CLOSE_WAIT:
3340 case TCP_CLOSING:
3341 /* Received a retransmission of the FIN, do
3342 * nothing.
3343 */
3344 break;
3345 case TCP_LAST_ACK:
3346 /* RFC793: Remain in the LAST-ACK state. */
3347 break;
3348
3349 case TCP_FIN_WAIT1:
3350 /* This case occurs when a simultaneous close
3351 * happens, we must ack the received FIN and
3352 * enter the CLOSING state.
3353 */
3354 tcp_send_ack(sk);
3355 tcp_set_state(sk, TCP_CLOSING);
3356 break;
3357 case TCP_FIN_WAIT2:
3358 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3359 tcp_send_ack(sk);
3360 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3361 break;
3362 default:
3363 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3364 * cases we should never reach this piece of code.
3365 */
3366 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3367 __FUNCTION__, sk->sk_state);
3368 break;
3369 }
3370
3371 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3372 * Probably, we should reset in this case. For now drop them.
3373 */
3374 __skb_queue_purge(&tp->out_of_order_queue);
3375 if (tcp_is_sack(tp))
3376 tcp_sack_reset(&tp->rx_opt);
3377 sk_stream_mem_reclaim(sk);
3378
3379 if (!sock_flag(sk, SOCK_DEAD)) {
3380 sk->sk_state_change(sk);
3381
3382 /* Do not send POLL_HUP for half duplex close. */
3383 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3384 sk->sk_state == TCP_CLOSE)
3385 sk_wake_async(sk, 1, POLL_HUP);
3386 else
3387 sk_wake_async(sk, 1, POLL_IN);
3388 }
3389 }
3390
3391 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3392 {
3393 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3394 if (before(seq, sp->start_seq))
3395 sp->start_seq = seq;
3396 if (after(end_seq, sp->end_seq))
3397 sp->end_seq = end_seq;
3398 return 1;
3399 }
3400 return 0;
3401 }
3402
3403 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3404 {
3405 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3406 if (before(seq, tp->rcv_nxt))
3407 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3408 else
3409 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3410
3411 tp->rx_opt.dsack = 1;
3412 tp->duplicate_sack[0].start_seq = seq;
3413 tp->duplicate_sack[0].end_seq = end_seq;
3414 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3415 }
3416 }
3417
3418 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3419 {
3420 if (!tp->rx_opt.dsack)
3421 tcp_dsack_set(tp, seq, end_seq);
3422 else
3423 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3424 }
3425
3426 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3427 {
3428 struct tcp_sock *tp = tcp_sk(sk);
3429
3430 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3431 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3432 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3433 tcp_enter_quickack_mode(sk);
3434
3435 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3436 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3437
3438 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3439 end_seq = tp->rcv_nxt;
3440 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3441 }
3442 }
3443
3444 tcp_send_ack(sk);
3445 }
3446
3447 /* These routines update the SACK block as out-of-order packets arrive or
3448 * in-order packets close up the sequence space.
3449 */
3450 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3451 {
3452 int this_sack;
3453 struct tcp_sack_block *sp = &tp->selective_acks[0];
3454 struct tcp_sack_block *swalk = sp+1;
3455
3456 /* See if the recent change to the first SACK eats into
3457 * or hits the sequence space of other SACK blocks, if so coalesce.
3458 */
3459 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3460 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3461 int i;
3462
3463 /* Zap SWALK, by moving every further SACK up by one slot.
3464 * Decrease num_sacks.
3465 */
3466 tp->rx_opt.num_sacks--;
3467 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3468 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3469 sp[i] = sp[i+1];
3470 continue;
3471 }
3472 this_sack++, swalk++;
3473 }
3474 }
3475
3476 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3477 {
3478 __u32 tmp;
3479
3480 tmp = sack1->start_seq;
3481 sack1->start_seq = sack2->start_seq;
3482 sack2->start_seq = tmp;
3483
3484 tmp = sack1->end_seq;
3485 sack1->end_seq = sack2->end_seq;
3486 sack2->end_seq = tmp;
3487 }
3488
3489 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3490 {
3491 struct tcp_sock *tp = tcp_sk(sk);
3492 struct tcp_sack_block *sp = &tp->selective_acks[0];
3493 int cur_sacks = tp->rx_opt.num_sacks;
3494 int this_sack;
3495
3496 if (!cur_sacks)
3497 goto new_sack;
3498
3499 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3500 if (tcp_sack_extend(sp, seq, end_seq)) {
3501 /* Rotate this_sack to the first one. */
3502 for (; this_sack>0; this_sack--, sp--)
3503 tcp_sack_swap(sp, sp-1);
3504 if (cur_sacks > 1)
3505 tcp_sack_maybe_coalesce(tp);
3506 return;
3507 }
3508 }
3509
3510 /* Could not find an adjacent existing SACK, build a new one,
3511 * put it at the front, and shift everyone else down. We
3512 * always know there is at least one SACK present already here.
3513 *
3514 * If the sack array is full, forget about the last one.
3515 */
3516 if (this_sack >= 4) {
3517 this_sack--;
3518 tp->rx_opt.num_sacks--;
3519 sp--;
3520 }
3521 for (; this_sack > 0; this_sack--, sp--)
3522 *sp = *(sp-1);
3523
3524 new_sack:
3525 /* Build the new head SACK, and we're done. */
3526 sp->start_seq = seq;
3527 sp->end_seq = end_seq;
3528 tp->rx_opt.num_sacks++;
3529 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3530 }
3531
3532 /* RCV.NXT advances, some SACKs should be eaten. */
3533
3534 static void tcp_sack_remove(struct tcp_sock *tp)
3535 {
3536 struct tcp_sack_block *sp = &tp->selective_acks[0];
3537 int num_sacks = tp->rx_opt.num_sacks;
3538 int this_sack;
3539
3540 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3541 if (skb_queue_empty(&tp->out_of_order_queue)) {
3542 tp->rx_opt.num_sacks = 0;
3543 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3544 return;
3545 }
3546
3547 for (this_sack = 0; this_sack < num_sacks; ) {
3548 /* Check if the start of the sack is covered by RCV.NXT. */
3549 if (!before(tp->rcv_nxt, sp->start_seq)) {
3550 int i;
3551
3552 /* RCV.NXT must cover all the block! */
3553 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3554
3555 /* Zap this SACK, by moving forward any other SACKS. */
3556 for (i=this_sack+1; i < num_sacks; i++)
3557 tp->selective_acks[i-1] = tp->selective_acks[i];
3558 num_sacks--;
3559 continue;
3560 }
3561 this_sack++;
3562 sp++;
3563 }
3564 if (num_sacks != tp->rx_opt.num_sacks) {
3565 tp->rx_opt.num_sacks = num_sacks;
3566 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3567 }
3568 }
3569
3570 /* This one checks to see if we can put data from the
3571 * out_of_order queue into the receive_queue.
3572 */
3573 static void tcp_ofo_queue(struct sock *sk)
3574 {
3575 struct tcp_sock *tp = tcp_sk(sk);
3576 __u32 dsack_high = tp->rcv_nxt;
3577 struct sk_buff *skb;
3578
3579 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3580 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3581 break;
3582
3583 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3584 __u32 dsack = dsack_high;
3585 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3586 dsack_high = TCP_SKB_CB(skb)->end_seq;
3587 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3588 }
3589
3590 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3591 SOCK_DEBUG(sk, "ofo packet was already received \n");
3592 __skb_unlink(skb, &tp->out_of_order_queue);
3593 __kfree_skb(skb);
3594 continue;
3595 }
3596 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3597 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3598 TCP_SKB_CB(skb)->end_seq);
3599
3600 __skb_unlink(skb, &tp->out_of_order_queue);
3601 __skb_queue_tail(&sk->sk_receive_queue, skb);
3602 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3603 if (tcp_hdr(skb)->fin)
3604 tcp_fin(skb, sk, tcp_hdr(skb));
3605 }
3606 }
3607
3608 static int tcp_prune_queue(struct sock *sk);
3609
3610 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3611 {
3612 struct tcphdr *th = tcp_hdr(skb);
3613 struct tcp_sock *tp = tcp_sk(sk);
3614 int eaten = -1;
3615
3616 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3617 goto drop;
3618
3619 __skb_pull(skb, th->doff*4);
3620
3621 TCP_ECN_accept_cwr(tp, skb);
3622
3623 if (tp->rx_opt.dsack) {
3624 tp->rx_opt.dsack = 0;
3625 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3626 4 - tp->rx_opt.tstamp_ok);
3627 }
3628
3629 /* Queue data for delivery to the user.
3630 * Packets in sequence go to the receive queue.
3631 * Out of sequence packets to the out_of_order_queue.
3632 */
3633 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3634 if (tcp_receive_window(tp) == 0)
3635 goto out_of_window;
3636
3637 /* Ok. In sequence. In window. */
3638 if (tp->ucopy.task == current &&
3639 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3640 sock_owned_by_user(sk) && !tp->urg_data) {
3641 int chunk = min_t(unsigned int, skb->len,
3642 tp->ucopy.len);
3643
3644 __set_current_state(TASK_RUNNING);
3645
3646 local_bh_enable();
3647 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3648 tp->ucopy.len -= chunk;
3649 tp->copied_seq += chunk;
3650 eaten = (chunk == skb->len && !th->fin);
3651 tcp_rcv_space_adjust(sk);
3652 }
3653 local_bh_disable();
3654 }
3655
3656 if (eaten <= 0) {
3657 queue_and_out:
3658 if (eaten < 0 &&
3659 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3660 !sk_stream_rmem_schedule(sk, skb))) {
3661 if (tcp_prune_queue(sk) < 0 ||
3662 !sk_stream_rmem_schedule(sk, skb))
3663 goto drop;
3664 }
3665 sk_stream_set_owner_r(skb, sk);
3666 __skb_queue_tail(&sk->sk_receive_queue, skb);
3667 }
3668 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3669 if (skb->len)
3670 tcp_event_data_recv(sk, skb);
3671 if (th->fin)
3672 tcp_fin(skb, sk, th);
3673
3674 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3675 tcp_ofo_queue(sk);
3676
3677 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3678 * gap in queue is filled.
3679 */
3680 if (skb_queue_empty(&tp->out_of_order_queue))
3681 inet_csk(sk)->icsk_ack.pingpong = 0;
3682 }
3683
3684 if (tp->rx_opt.num_sacks)
3685 tcp_sack_remove(tp);
3686
3687 tcp_fast_path_check(sk);
3688
3689 if (eaten > 0)
3690 __kfree_skb(skb);
3691 else if (!sock_flag(sk, SOCK_DEAD))
3692 sk->sk_data_ready(sk, 0);
3693 return;
3694 }
3695
3696 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3697 /* A retransmit, 2nd most common case. Force an immediate ack. */
3698 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3699 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3700
3701 out_of_window:
3702 tcp_enter_quickack_mode(sk);
3703 inet_csk_schedule_ack(sk);
3704 drop:
3705 __kfree_skb(skb);
3706 return;
3707 }
3708
3709 /* Out of window. F.e. zero window probe. */
3710 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3711 goto out_of_window;
3712
3713 tcp_enter_quickack_mode(sk);
3714
3715 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3716 /* Partial packet, seq < rcv_next < end_seq */
3717 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3718 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3719 TCP_SKB_CB(skb)->end_seq);
3720
3721 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3722
3723 /* If window is closed, drop tail of packet. But after
3724 * remembering D-SACK for its head made in previous line.
3725 */
3726 if (!tcp_receive_window(tp))
3727 goto out_of_window;
3728 goto queue_and_out;
3729 }
3730
3731 TCP_ECN_check_ce(tp, skb);
3732
3733 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3734 !sk_stream_rmem_schedule(sk, skb)) {
3735 if (tcp_prune_queue(sk) < 0 ||
3736 !sk_stream_rmem_schedule(sk, skb))
3737 goto drop;
3738 }
3739
3740 /* Disable header prediction. */
3741 tp->pred_flags = 0;
3742 inet_csk_schedule_ack(sk);
3743
3744 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3745 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3746
3747 sk_stream_set_owner_r(skb, sk);
3748
3749 if (!skb_peek(&tp->out_of_order_queue)) {
3750 /* Initial out of order segment, build 1 SACK. */
3751 if (tcp_is_sack(tp)) {
3752 tp->rx_opt.num_sacks = 1;
3753 tp->rx_opt.dsack = 0;
3754 tp->rx_opt.eff_sacks = 1;
3755 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3756 tp->selective_acks[0].end_seq =
3757 TCP_SKB_CB(skb)->end_seq;
3758 }
3759 __skb_queue_head(&tp->out_of_order_queue,skb);
3760 } else {
3761 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3762 u32 seq = TCP_SKB_CB(skb)->seq;
3763 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3764
3765 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3766 __skb_append(skb1, skb, &tp->out_of_order_queue);
3767
3768 if (!tp->rx_opt.num_sacks ||
3769 tp->selective_acks[0].end_seq != seq)
3770 goto add_sack;
3771
3772 /* Common case: data arrive in order after hole. */
3773 tp->selective_acks[0].end_seq = end_seq;
3774 return;
3775 }
3776
3777 /* Find place to insert this segment. */
3778 do {
3779 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3780 break;
3781 } while ((skb1 = skb1->prev) !=
3782 (struct sk_buff*)&tp->out_of_order_queue);
3783
3784 /* Do skb overlap to previous one? */
3785 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3786 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3787 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3788 /* All the bits are present. Drop. */
3789 __kfree_skb(skb);
3790 tcp_dsack_set(tp, seq, end_seq);
3791 goto add_sack;
3792 }
3793 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3794 /* Partial overlap. */
3795 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3796 } else {
3797 skb1 = skb1->prev;
3798 }
3799 }
3800 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3801
3802 /* And clean segments covered by new one as whole. */
3803 while ((skb1 = skb->next) !=
3804 (struct sk_buff*)&tp->out_of_order_queue &&
3805 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3806 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3807 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3808 break;
3809 }
3810 __skb_unlink(skb1, &tp->out_of_order_queue);
3811 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3812 __kfree_skb(skb1);
3813 }
3814
3815 add_sack:
3816 if (tcp_is_sack(tp))
3817 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3818 }
3819 }
3820
3821 /* Collapse contiguous sequence of skbs head..tail with
3822 * sequence numbers start..end.
3823 * Segments with FIN/SYN are not collapsed (only because this
3824 * simplifies code)
3825 */
3826 static void
3827 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3828 struct sk_buff *head, struct sk_buff *tail,
3829 u32 start, u32 end)
3830 {
3831 struct sk_buff *skb;
3832
3833 /* First, check that queue is collapsible and find
3834 * the point where collapsing can be useful. */
3835 for (skb = head; skb != tail; ) {
3836 /* No new bits? It is possible on ofo queue. */
3837 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3838 struct sk_buff *next = skb->next;
3839 __skb_unlink(skb, list);
3840 __kfree_skb(skb);
3841 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3842 skb = next;
3843 continue;
3844 }
3845
3846 /* The first skb to collapse is:
3847 * - not SYN/FIN and
3848 * - bloated or contains data before "start" or
3849 * overlaps to the next one.
3850 */
3851 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3852 (tcp_win_from_space(skb->truesize) > skb->len ||
3853 before(TCP_SKB_CB(skb)->seq, start) ||
3854 (skb->next != tail &&
3855 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3856 break;
3857
3858 /* Decided to skip this, advance start seq. */
3859 start = TCP_SKB_CB(skb)->end_seq;
3860 skb = skb->next;
3861 }
3862 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3863 return;
3864
3865 while (before(start, end)) {
3866 struct sk_buff *nskb;
3867 int header = skb_headroom(skb);
3868 int copy = SKB_MAX_ORDER(header, 0);
3869
3870 /* Too big header? This can happen with IPv6. */
3871 if (copy < 0)
3872 return;
3873 if (end-start < copy)
3874 copy = end-start;
3875 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3876 if (!nskb)
3877 return;
3878
3879 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3880 skb_set_network_header(nskb, (skb_network_header(skb) -
3881 skb->head));
3882 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3883 skb->head));
3884 skb_reserve(nskb, header);
3885 memcpy(nskb->head, skb->head, header);
3886 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3887 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3888 __skb_insert(nskb, skb->prev, skb, list);
3889 sk_stream_set_owner_r(nskb, sk);
3890
3891 /* Copy data, releasing collapsed skbs. */
3892 while (copy > 0) {
3893 int offset = start - TCP_SKB_CB(skb)->seq;
3894 int size = TCP_SKB_CB(skb)->end_seq - start;
3895
3896 BUG_ON(offset < 0);
3897 if (size > 0) {
3898 size = min(copy, size);
3899 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3900 BUG();
3901 TCP_SKB_CB(nskb)->end_seq += size;
3902 copy -= size;
3903 start += size;
3904 }
3905 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3906 struct sk_buff *next = skb->next;
3907 __skb_unlink(skb, list);
3908 __kfree_skb(skb);
3909 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3910 skb = next;
3911 if (skb == tail ||
3912 tcp_hdr(skb)->syn ||
3913 tcp_hdr(skb)->fin)
3914 return;
3915 }
3916 }
3917 }
3918 }
3919
3920 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3921 * and tcp_collapse() them until all the queue is collapsed.
3922 */
3923 static void tcp_collapse_ofo_queue(struct sock *sk)
3924 {
3925 struct tcp_sock *tp = tcp_sk(sk);
3926 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3927 struct sk_buff *head;
3928 u32 start, end;
3929
3930 if (skb == NULL)
3931 return;
3932
3933 start = TCP_SKB_CB(skb)->seq;
3934 end = TCP_SKB_CB(skb)->end_seq;
3935 head = skb;
3936
3937 for (;;) {
3938 skb = skb->next;
3939
3940 /* Segment is terminated when we see gap or when
3941 * we are at the end of all the queue. */
3942 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3943 after(TCP_SKB_CB(skb)->seq, end) ||
3944 before(TCP_SKB_CB(skb)->end_seq, start)) {
3945 tcp_collapse(sk, &tp->out_of_order_queue,
3946 head, skb, start, end);
3947 head = skb;
3948 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3949 break;
3950 /* Start new segment */
3951 start = TCP_SKB_CB(skb)->seq;
3952 end = TCP_SKB_CB(skb)->end_seq;
3953 } else {
3954 if (before(TCP_SKB_CB(skb)->seq, start))
3955 start = TCP_SKB_CB(skb)->seq;
3956 if (after(TCP_SKB_CB(skb)->end_seq, end))
3957 end = TCP_SKB_CB(skb)->end_seq;
3958 }
3959 }
3960 }
3961
3962 /* Reduce allocated memory if we can, trying to get
3963 * the socket within its memory limits again.
3964 *
3965 * Return less than zero if we should start dropping frames
3966 * until the socket owning process reads some of the data
3967 * to stabilize the situation.
3968 */
3969 static int tcp_prune_queue(struct sock *sk)
3970 {
3971 struct tcp_sock *tp = tcp_sk(sk);
3972
3973 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3974
3975 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3976
3977 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3978 tcp_clamp_window(sk);
3979 else if (tcp_memory_pressure)
3980 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3981
3982 tcp_collapse_ofo_queue(sk);
3983 tcp_collapse(sk, &sk->sk_receive_queue,
3984 sk->sk_receive_queue.next,
3985 (struct sk_buff*)&sk->sk_receive_queue,
3986 tp->copied_seq, tp->rcv_nxt);
3987 sk_stream_mem_reclaim(sk);
3988
3989 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3990 return 0;
3991
3992 /* Collapsing did not help, destructive actions follow.
3993 * This must not ever occur. */
3994
3995 /* First, purge the out_of_order queue. */
3996 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3997 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3998 __skb_queue_purge(&tp->out_of_order_queue);
3999
4000 /* Reset SACK state. A conforming SACK implementation will
4001 * do the same at a timeout based retransmit. When a connection
4002 * is in a sad state like this, we care only about integrity
4003 * of the connection not performance.
4004 */
4005 if (tcp_is_sack(tp))
4006 tcp_sack_reset(&tp->rx_opt);
4007 sk_stream_mem_reclaim(sk);
4008 }
4009
4010 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4011 return 0;
4012
4013 /* If we are really being abused, tell the caller to silently
4014 * drop receive data on the floor. It will get retransmitted
4015 * and hopefully then we'll have sufficient space.
4016 */
4017 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4018
4019 /* Massive buffer overcommit. */
4020 tp->pred_flags = 0;
4021 return -1;
4022 }
4023
4024
4025 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4026 * As additional protections, we do not touch cwnd in retransmission phases,
4027 * and if application hit its sndbuf limit recently.
4028 */
4029 void tcp_cwnd_application_limited(struct sock *sk)
4030 {
4031 struct tcp_sock *tp = tcp_sk(sk);
4032
4033 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4034 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4035 /* Limited by application or receiver window. */
4036 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4037 u32 win_used = max(tp->snd_cwnd_used, init_win);
4038 if (win_used < tp->snd_cwnd) {
4039 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4040 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4041 }
4042 tp->snd_cwnd_used = 0;
4043 }
4044 tp->snd_cwnd_stamp = tcp_time_stamp;
4045 }
4046
4047 static int tcp_should_expand_sndbuf(struct sock *sk)
4048 {
4049 struct tcp_sock *tp = tcp_sk(sk);
4050
4051 /* If the user specified a specific send buffer setting, do
4052 * not modify it.
4053 */
4054 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4055 return 0;
4056
4057 /* If we are under global TCP memory pressure, do not expand. */
4058 if (tcp_memory_pressure)
4059 return 0;
4060
4061 /* If we are under soft global TCP memory pressure, do not expand. */
4062 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4063 return 0;
4064
4065 /* If we filled the congestion window, do not expand. */
4066 if (tp->packets_out >= tp->snd_cwnd)
4067 return 0;
4068
4069 return 1;
4070 }
4071
4072 /* When incoming ACK allowed to free some skb from write_queue,
4073 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4074 * on the exit from tcp input handler.
4075 *
4076 * PROBLEM: sndbuf expansion does not work well with largesend.
4077 */
4078 static void tcp_new_space(struct sock *sk)
4079 {
4080 struct tcp_sock *tp = tcp_sk(sk);
4081
4082 if (tcp_should_expand_sndbuf(sk)) {
4083 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4084 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4085 demanded = max_t(unsigned int, tp->snd_cwnd,
4086 tp->reordering + 1);
4087 sndmem *= 2*demanded;
4088 if (sndmem > sk->sk_sndbuf)
4089 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4090 tp->snd_cwnd_stamp = tcp_time_stamp;
4091 }
4092
4093 sk->sk_write_space(sk);
4094 }
4095
4096 static void tcp_check_space(struct sock *sk)
4097 {
4098 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4099 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4100 if (sk->sk_socket &&
4101 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4102 tcp_new_space(sk);
4103 }
4104 }
4105
4106 static inline void tcp_data_snd_check(struct sock *sk)
4107 {
4108 tcp_push_pending_frames(sk);
4109 tcp_check_space(sk);
4110 }
4111
4112 /*
4113 * Check if sending an ack is needed.
4114 */
4115 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4116 {
4117 struct tcp_sock *tp = tcp_sk(sk);
4118
4119 /* More than one full frame received... */
4120 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4121 /* ... and right edge of window advances far enough.
4122 * (tcp_recvmsg() will send ACK otherwise). Or...
4123 */
4124 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4125 /* We ACK each frame or... */
4126 tcp_in_quickack_mode(sk) ||
4127 /* We have out of order data. */
4128 (ofo_possible &&
4129 skb_peek(&tp->out_of_order_queue))) {
4130 /* Then ack it now */
4131 tcp_send_ack(sk);
4132 } else {
4133 /* Else, send delayed ack. */
4134 tcp_send_delayed_ack(sk);
4135 }
4136 }
4137
4138 static inline void tcp_ack_snd_check(struct sock *sk)
4139 {
4140 if (!inet_csk_ack_scheduled(sk)) {
4141 /* We sent a data segment already. */
4142 return;
4143 }
4144 __tcp_ack_snd_check(sk, 1);
4145 }
4146
4147 /*
4148 * This routine is only called when we have urgent data
4149 * signaled. Its the 'slow' part of tcp_urg. It could be
4150 * moved inline now as tcp_urg is only called from one
4151 * place. We handle URGent data wrong. We have to - as
4152 * BSD still doesn't use the correction from RFC961.
4153 * For 1003.1g we should support a new option TCP_STDURG to permit
4154 * either form (or just set the sysctl tcp_stdurg).
4155 */
4156
4157 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4158 {
4159 struct tcp_sock *tp = tcp_sk(sk);
4160 u32 ptr = ntohs(th->urg_ptr);
4161
4162 if (ptr && !sysctl_tcp_stdurg)
4163 ptr--;
4164 ptr += ntohl(th->seq);
4165
4166 /* Ignore urgent data that we've already seen and read. */
4167 if (after(tp->copied_seq, ptr))
4168 return;
4169
4170 /* Do not replay urg ptr.
4171 *
4172 * NOTE: interesting situation not covered by specs.
4173 * Misbehaving sender may send urg ptr, pointing to segment,
4174 * which we already have in ofo queue. We are not able to fetch
4175 * such data and will stay in TCP_URG_NOTYET until will be eaten
4176 * by recvmsg(). Seems, we are not obliged to handle such wicked
4177 * situations. But it is worth to think about possibility of some
4178 * DoSes using some hypothetical application level deadlock.
4179 */
4180 if (before(ptr, tp->rcv_nxt))
4181 return;
4182
4183 /* Do we already have a newer (or duplicate) urgent pointer? */
4184 if (tp->urg_data && !after(ptr, tp->urg_seq))
4185 return;
4186
4187 /* Tell the world about our new urgent pointer. */
4188 sk_send_sigurg(sk);
4189
4190 /* We may be adding urgent data when the last byte read was
4191 * urgent. To do this requires some care. We cannot just ignore
4192 * tp->copied_seq since we would read the last urgent byte again
4193 * as data, nor can we alter copied_seq until this data arrives
4194 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4195 *
4196 * NOTE. Double Dutch. Rendering to plain English: author of comment
4197 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4198 * and expect that both A and B disappear from stream. This is _wrong_.
4199 * Though this happens in BSD with high probability, this is occasional.
4200 * Any application relying on this is buggy. Note also, that fix "works"
4201 * only in this artificial test. Insert some normal data between A and B and we will
4202 * decline of BSD again. Verdict: it is better to remove to trap
4203 * buggy users.
4204 */
4205 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4206 !sock_flag(sk, SOCK_URGINLINE) &&
4207 tp->copied_seq != tp->rcv_nxt) {
4208 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4209 tp->copied_seq++;
4210 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4211 __skb_unlink(skb, &sk->sk_receive_queue);
4212 __kfree_skb(skb);
4213 }
4214 }
4215
4216 tp->urg_data = TCP_URG_NOTYET;
4217 tp->urg_seq = ptr;
4218
4219 /* Disable header prediction. */
4220 tp->pred_flags = 0;
4221 }
4222
4223 /* This is the 'fast' part of urgent handling. */
4224 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4225 {
4226 struct tcp_sock *tp = tcp_sk(sk);
4227
4228 /* Check if we get a new urgent pointer - normally not. */
4229 if (th->urg)
4230 tcp_check_urg(sk,th);
4231
4232 /* Do we wait for any urgent data? - normally not... */
4233 if (tp->urg_data == TCP_URG_NOTYET) {
4234 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4235 th->syn;
4236
4237 /* Is the urgent pointer pointing into this packet? */
4238 if (ptr < skb->len) {
4239 u8 tmp;
4240 if (skb_copy_bits(skb, ptr, &tmp, 1))
4241 BUG();
4242 tp->urg_data = TCP_URG_VALID | tmp;
4243 if (!sock_flag(sk, SOCK_DEAD))
4244 sk->sk_data_ready(sk, 0);
4245 }
4246 }
4247 }
4248
4249 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4250 {
4251 struct tcp_sock *tp = tcp_sk(sk);
4252 int chunk = skb->len - hlen;
4253 int err;
4254
4255 local_bh_enable();
4256 if (skb_csum_unnecessary(skb))
4257 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4258 else
4259 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4260 tp->ucopy.iov);
4261
4262 if (!err) {
4263 tp->ucopy.len -= chunk;
4264 tp->copied_seq += chunk;
4265 tcp_rcv_space_adjust(sk);
4266 }
4267
4268 local_bh_disable();
4269 return err;
4270 }
4271
4272 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4273 {
4274 __sum16 result;
4275
4276 if (sock_owned_by_user(sk)) {
4277 local_bh_enable();
4278 result = __tcp_checksum_complete(skb);
4279 local_bh_disable();
4280 } else {
4281 result = __tcp_checksum_complete(skb);
4282 }
4283 return result;
4284 }
4285
4286 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4287 {
4288 return !skb_csum_unnecessary(skb) &&
4289 __tcp_checksum_complete_user(sk, skb);
4290 }
4291
4292 #ifdef CONFIG_NET_DMA
4293 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4294 {
4295 struct tcp_sock *tp = tcp_sk(sk);
4296 int chunk = skb->len - hlen;
4297 int dma_cookie;
4298 int copied_early = 0;
4299
4300 if (tp->ucopy.wakeup)
4301 return 0;
4302
4303 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4304 tp->ucopy.dma_chan = get_softnet_dma();
4305
4306 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4307
4308 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4309 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4310
4311 if (dma_cookie < 0)
4312 goto out;
4313
4314 tp->ucopy.dma_cookie = dma_cookie;
4315 copied_early = 1;
4316
4317 tp->ucopy.len -= chunk;
4318 tp->copied_seq += chunk;
4319 tcp_rcv_space_adjust(sk);
4320
4321 if ((tp->ucopy.len == 0) ||
4322 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4323 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4324 tp->ucopy.wakeup = 1;
4325 sk->sk_data_ready(sk, 0);
4326 }
4327 } else if (chunk > 0) {
4328 tp->ucopy.wakeup = 1;
4329 sk->sk_data_ready(sk, 0);
4330 }
4331 out:
4332 return copied_early;
4333 }
4334 #endif /* CONFIG_NET_DMA */
4335
4336 /*
4337 * TCP receive function for the ESTABLISHED state.
4338 *
4339 * It is split into a fast path and a slow path. The fast path is
4340 * disabled when:
4341 * - A zero window was announced from us - zero window probing
4342 * is only handled properly in the slow path.
4343 * - Out of order segments arrived.
4344 * - Urgent data is expected.
4345 * - There is no buffer space left
4346 * - Unexpected TCP flags/window values/header lengths are received
4347 * (detected by checking the TCP header against pred_flags)
4348 * - Data is sent in both directions. Fast path only supports pure senders
4349 * or pure receivers (this means either the sequence number or the ack
4350 * value must stay constant)
4351 * - Unexpected TCP option.
4352 *
4353 * When these conditions are not satisfied it drops into a standard
4354 * receive procedure patterned after RFC793 to handle all cases.
4355 * The first three cases are guaranteed by proper pred_flags setting,
4356 * the rest is checked inline. Fast processing is turned on in
4357 * tcp_data_queue when everything is OK.
4358 */
4359 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4360 struct tcphdr *th, unsigned len)
4361 {
4362 struct tcp_sock *tp = tcp_sk(sk);
4363
4364 /*
4365 * Header prediction.
4366 * The code loosely follows the one in the famous
4367 * "30 instruction TCP receive" Van Jacobson mail.
4368 *
4369 * Van's trick is to deposit buffers into socket queue
4370 * on a device interrupt, to call tcp_recv function
4371 * on the receive process context and checksum and copy
4372 * the buffer to user space. smart...
4373 *
4374 * Our current scheme is not silly either but we take the
4375 * extra cost of the net_bh soft interrupt processing...
4376 * We do checksum and copy also but from device to kernel.
4377 */
4378
4379 tp->rx_opt.saw_tstamp = 0;
4380
4381 /* pred_flags is 0xS?10 << 16 + snd_wnd
4382 * if header_prediction is to be made
4383 * 'S' will always be tp->tcp_header_len >> 2
4384 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4385 * turn it off (when there are holes in the receive
4386 * space for instance)
4387 * PSH flag is ignored.
4388 */
4389
4390 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4391 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4392 int tcp_header_len = tp->tcp_header_len;
4393
4394 /* Timestamp header prediction: tcp_header_len
4395 * is automatically equal to th->doff*4 due to pred_flags
4396 * match.
4397 */
4398
4399 /* Check timestamp */
4400 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4401 __be32 *ptr = (__be32 *)(th + 1);
4402
4403 /* No? Slow path! */
4404 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4405 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4406 goto slow_path;
4407
4408 tp->rx_opt.saw_tstamp = 1;
4409 ++ptr;
4410 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4411 ++ptr;
4412 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4413
4414 /* If PAWS failed, check it more carefully in slow path */
4415 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4416 goto slow_path;
4417
4418 /* DO NOT update ts_recent here, if checksum fails
4419 * and timestamp was corrupted part, it will result
4420 * in a hung connection since we will drop all
4421 * future packets due to the PAWS test.
4422 */
4423 }
4424
4425 if (len <= tcp_header_len) {
4426 /* Bulk data transfer: sender */
4427 if (len == tcp_header_len) {
4428 /* Predicted packet is in window by definition.
4429 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4430 * Hence, check seq<=rcv_wup reduces to:
4431 */
4432 if (tcp_header_len ==
4433 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4434 tp->rcv_nxt == tp->rcv_wup)
4435 tcp_store_ts_recent(tp);
4436
4437 /* We know that such packets are checksummed
4438 * on entry.
4439 */
4440 tcp_ack(sk, skb, 0);
4441 __kfree_skb(skb);
4442 tcp_data_snd_check(sk);
4443 return 0;
4444 } else { /* Header too small */
4445 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4446 goto discard;
4447 }
4448 } else {
4449 int eaten = 0;
4450 int copied_early = 0;
4451
4452 if (tp->copied_seq == tp->rcv_nxt &&
4453 len - tcp_header_len <= tp->ucopy.len) {
4454 #ifdef CONFIG_NET_DMA
4455 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4456 copied_early = 1;
4457 eaten = 1;
4458 }
4459 #endif
4460 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4461 __set_current_state(TASK_RUNNING);
4462
4463 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4464 eaten = 1;
4465 }
4466 if (eaten) {
4467 /* Predicted packet is in window by definition.
4468 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4469 * Hence, check seq<=rcv_wup reduces to:
4470 */
4471 if (tcp_header_len ==
4472 (sizeof(struct tcphdr) +
4473 TCPOLEN_TSTAMP_ALIGNED) &&
4474 tp->rcv_nxt == tp->rcv_wup)
4475 tcp_store_ts_recent(tp);
4476
4477 tcp_rcv_rtt_measure_ts(sk, skb);
4478
4479 __skb_pull(skb, tcp_header_len);
4480 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4481 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4482 }
4483 if (copied_early)
4484 tcp_cleanup_rbuf(sk, skb->len);
4485 }
4486 if (!eaten) {
4487 if (tcp_checksum_complete_user(sk, skb))
4488 goto csum_error;
4489
4490 /* Predicted packet is in window by definition.
4491 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4492 * Hence, check seq<=rcv_wup reduces to:
4493 */
4494 if (tcp_header_len ==
4495 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4496 tp->rcv_nxt == tp->rcv_wup)
4497 tcp_store_ts_recent(tp);
4498
4499 tcp_rcv_rtt_measure_ts(sk, skb);
4500
4501 if ((int)skb->truesize > sk->sk_forward_alloc)
4502 goto step5;
4503
4504 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4505
4506 /* Bulk data transfer: receiver */
4507 __skb_pull(skb,tcp_header_len);
4508 __skb_queue_tail(&sk->sk_receive_queue, skb);
4509 sk_stream_set_owner_r(skb, sk);
4510 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4511 }
4512
4513 tcp_event_data_recv(sk, skb);
4514
4515 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4516 /* Well, only one small jumplet in fast path... */
4517 tcp_ack(sk, skb, FLAG_DATA);
4518 tcp_data_snd_check(sk);
4519 if (!inet_csk_ack_scheduled(sk))
4520 goto no_ack;
4521 }
4522
4523 __tcp_ack_snd_check(sk, 0);
4524 no_ack:
4525 #ifdef CONFIG_NET_DMA
4526 if (copied_early)
4527 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4528 else
4529 #endif
4530 if (eaten)
4531 __kfree_skb(skb);
4532 else
4533 sk->sk_data_ready(sk, 0);
4534 return 0;
4535 }
4536 }
4537
4538 slow_path:
4539 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4540 goto csum_error;
4541
4542 /*
4543 * RFC1323: H1. Apply PAWS check first.
4544 */
4545 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4546 tcp_paws_discard(sk, skb)) {
4547 if (!th->rst) {
4548 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4549 tcp_send_dupack(sk, skb);
4550 goto discard;
4551 }
4552 /* Resets are accepted even if PAWS failed.
4553
4554 ts_recent update must be made after we are sure
4555 that the packet is in window.
4556 */
4557 }
4558
4559 /*
4560 * Standard slow path.
4561 */
4562
4563 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4564 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4565 * (RST) segments are validated by checking their SEQ-fields."
4566 * And page 69: "If an incoming segment is not acceptable,
4567 * an acknowledgment should be sent in reply (unless the RST bit
4568 * is set, if so drop the segment and return)".
4569 */
4570 if (!th->rst)
4571 tcp_send_dupack(sk, skb);
4572 goto discard;
4573 }
4574
4575 if (th->rst) {
4576 tcp_reset(sk);
4577 goto discard;
4578 }
4579
4580 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4581
4582 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4583 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4584 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4585 tcp_reset(sk);
4586 return 1;
4587 }
4588
4589 step5:
4590 if (th->ack)
4591 tcp_ack(sk, skb, FLAG_SLOWPATH);
4592
4593 tcp_rcv_rtt_measure_ts(sk, skb);
4594
4595 /* Process urgent data. */
4596 tcp_urg(sk, skb, th);
4597
4598 /* step 7: process the segment text */
4599 tcp_data_queue(sk, skb);
4600
4601 tcp_data_snd_check(sk);
4602 tcp_ack_snd_check(sk);
4603 return 0;
4604
4605 csum_error:
4606 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4607
4608 discard:
4609 __kfree_skb(skb);
4610 return 0;
4611 }
4612
4613 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4614 struct tcphdr *th, unsigned len)
4615 {
4616 struct tcp_sock *tp = tcp_sk(sk);
4617 struct inet_connection_sock *icsk = inet_csk(sk);
4618 int saved_clamp = tp->rx_opt.mss_clamp;
4619
4620 tcp_parse_options(skb, &tp->rx_opt, 0);
4621
4622 if (th->ack) {
4623 /* rfc793:
4624 * "If the state is SYN-SENT then
4625 * first check the ACK bit
4626 * If the ACK bit is set
4627 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4628 * a reset (unless the RST bit is set, if so drop
4629 * the segment and return)"
4630 *
4631 * We do not send data with SYN, so that RFC-correct
4632 * test reduces to:
4633 */
4634 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4635 goto reset_and_undo;
4636
4637 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4638 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4639 tcp_time_stamp)) {
4640 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4641 goto reset_and_undo;
4642 }
4643
4644 /* Now ACK is acceptable.
4645 *
4646 * "If the RST bit is set
4647 * If the ACK was acceptable then signal the user "error:
4648 * connection reset", drop the segment, enter CLOSED state,
4649 * delete TCB, and return."
4650 */
4651
4652 if (th->rst) {
4653 tcp_reset(sk);
4654 goto discard;
4655 }
4656
4657 /* rfc793:
4658 * "fifth, if neither of the SYN or RST bits is set then
4659 * drop the segment and return."
4660 *
4661 * See note below!
4662 * --ANK(990513)
4663 */
4664 if (!th->syn)
4665 goto discard_and_undo;
4666
4667 /* rfc793:
4668 * "If the SYN bit is on ...
4669 * are acceptable then ...
4670 * (our SYN has been ACKed), change the connection
4671 * state to ESTABLISHED..."
4672 */
4673
4674 TCP_ECN_rcv_synack(tp, th);
4675
4676 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4677 tcp_ack(sk, skb, FLAG_SLOWPATH);
4678
4679 /* Ok.. it's good. Set up sequence numbers and
4680 * move to established.
4681 */
4682 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4683 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4684
4685 /* RFC1323: The window in SYN & SYN/ACK segments is
4686 * never scaled.
4687 */
4688 tp->snd_wnd = ntohs(th->window);
4689 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4690
4691 if (!tp->rx_opt.wscale_ok) {
4692 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4693 tp->window_clamp = min(tp->window_clamp, 65535U);
4694 }
4695
4696 if (tp->rx_opt.saw_tstamp) {
4697 tp->rx_opt.tstamp_ok = 1;
4698 tp->tcp_header_len =
4699 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4700 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4701 tcp_store_ts_recent(tp);
4702 } else {
4703 tp->tcp_header_len = sizeof(struct tcphdr);
4704 }
4705
4706 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4707 tcp_enable_fack(tp);
4708
4709 tcp_mtup_init(sk);
4710 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4711 tcp_initialize_rcv_mss(sk);
4712
4713 /* Remember, tcp_poll() does not lock socket!
4714 * Change state from SYN-SENT only after copied_seq
4715 * is initialized. */
4716 tp->copied_seq = tp->rcv_nxt;
4717 smp_mb();
4718 tcp_set_state(sk, TCP_ESTABLISHED);
4719
4720 security_inet_conn_established(sk, skb);
4721
4722 /* Make sure socket is routed, for correct metrics. */
4723 icsk->icsk_af_ops->rebuild_header(sk);
4724
4725 tcp_init_metrics(sk);
4726
4727 tcp_init_congestion_control(sk);
4728
4729 /* Prevent spurious tcp_cwnd_restart() on first data
4730 * packet.
4731 */
4732 tp->lsndtime = tcp_time_stamp;
4733
4734 tcp_init_buffer_space(sk);
4735
4736 if (sock_flag(sk, SOCK_KEEPOPEN))
4737 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4738
4739 if (!tp->rx_opt.snd_wscale)
4740 __tcp_fast_path_on(tp, tp->snd_wnd);
4741 else
4742 tp->pred_flags = 0;
4743
4744 if (!sock_flag(sk, SOCK_DEAD)) {
4745 sk->sk_state_change(sk);
4746 sk_wake_async(sk, 0, POLL_OUT);
4747 }
4748
4749 if (sk->sk_write_pending ||
4750 icsk->icsk_accept_queue.rskq_defer_accept ||
4751 icsk->icsk_ack.pingpong) {
4752 /* Save one ACK. Data will be ready after
4753 * several ticks, if write_pending is set.
4754 *
4755 * It may be deleted, but with this feature tcpdumps
4756 * look so _wonderfully_ clever, that I was not able
4757 * to stand against the temptation 8) --ANK
4758 */
4759 inet_csk_schedule_ack(sk);
4760 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4761 icsk->icsk_ack.ato = TCP_ATO_MIN;
4762 tcp_incr_quickack(sk);
4763 tcp_enter_quickack_mode(sk);
4764 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4765 TCP_DELACK_MAX, TCP_RTO_MAX);
4766
4767 discard:
4768 __kfree_skb(skb);
4769 return 0;
4770 } else {
4771 tcp_send_ack(sk);
4772 }
4773 return -1;
4774 }
4775
4776 /* No ACK in the segment */
4777
4778 if (th->rst) {
4779 /* rfc793:
4780 * "If the RST bit is set
4781 *
4782 * Otherwise (no ACK) drop the segment and return."
4783 */
4784
4785 goto discard_and_undo;
4786 }
4787
4788 /* PAWS check. */
4789 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4790 goto discard_and_undo;
4791
4792 if (th->syn) {
4793 /* We see SYN without ACK. It is attempt of
4794 * simultaneous connect with crossed SYNs.
4795 * Particularly, it can be connect to self.
4796 */
4797 tcp_set_state(sk, TCP_SYN_RECV);
4798
4799 if (tp->rx_opt.saw_tstamp) {
4800 tp->rx_opt.tstamp_ok = 1;
4801 tcp_store_ts_recent(tp);
4802 tp->tcp_header_len =
4803 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4804 } else {
4805 tp->tcp_header_len = sizeof(struct tcphdr);
4806 }
4807
4808 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4809 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4810
4811 /* RFC1323: The window in SYN & SYN/ACK segments is
4812 * never scaled.
4813 */
4814 tp->snd_wnd = ntohs(th->window);
4815 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4816 tp->max_window = tp->snd_wnd;
4817
4818 TCP_ECN_rcv_syn(tp, th);
4819
4820 tcp_mtup_init(sk);
4821 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4822 tcp_initialize_rcv_mss(sk);
4823
4824
4825 tcp_send_synack(sk);
4826 #if 0
4827 /* Note, we could accept data and URG from this segment.
4828 * There are no obstacles to make this.
4829 *
4830 * However, if we ignore data in ACKless segments sometimes,
4831 * we have no reasons to accept it sometimes.
4832 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4833 * is not flawless. So, discard packet for sanity.
4834 * Uncomment this return to process the data.
4835 */
4836 return -1;
4837 #else
4838 goto discard;
4839 #endif
4840 }
4841 /* "fifth, if neither of the SYN or RST bits is set then
4842 * drop the segment and return."
4843 */
4844
4845 discard_and_undo:
4846 tcp_clear_options(&tp->rx_opt);
4847 tp->rx_opt.mss_clamp = saved_clamp;
4848 goto discard;
4849
4850 reset_and_undo:
4851 tcp_clear_options(&tp->rx_opt);
4852 tp->rx_opt.mss_clamp = saved_clamp;
4853 return 1;
4854 }
4855
4856
4857 /*
4858 * This function implements the receiving procedure of RFC 793 for
4859 * all states except ESTABLISHED and TIME_WAIT.
4860 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4861 * address independent.
4862 */
4863
4864 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4865 struct tcphdr *th, unsigned len)
4866 {
4867 struct tcp_sock *tp = tcp_sk(sk);
4868 struct inet_connection_sock *icsk = inet_csk(sk);
4869 int queued = 0;
4870
4871 tp->rx_opt.saw_tstamp = 0;
4872
4873 switch (sk->sk_state) {
4874 case TCP_CLOSE:
4875 goto discard;
4876
4877 case TCP_LISTEN:
4878 if (th->ack)
4879 return 1;
4880
4881 if (th->rst)
4882 goto discard;
4883
4884 if (th->syn) {
4885 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4886 return 1;
4887
4888 /* Now we have several options: In theory there is
4889 * nothing else in the frame. KA9Q has an option to
4890 * send data with the syn, BSD accepts data with the
4891 * syn up to the [to be] advertised window and
4892 * Solaris 2.1 gives you a protocol error. For now
4893 * we just ignore it, that fits the spec precisely
4894 * and avoids incompatibilities. It would be nice in
4895 * future to drop through and process the data.
4896 *
4897 * Now that TTCP is starting to be used we ought to
4898 * queue this data.
4899 * But, this leaves one open to an easy denial of
4900 * service attack, and SYN cookies can't defend
4901 * against this problem. So, we drop the data
4902 * in the interest of security over speed unless
4903 * it's still in use.
4904 */
4905 kfree_skb(skb);
4906 return 0;
4907 }
4908 goto discard;
4909
4910 case TCP_SYN_SENT:
4911 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4912 if (queued >= 0)
4913 return queued;
4914
4915 /* Do step6 onward by hand. */
4916 tcp_urg(sk, skb, th);
4917 __kfree_skb(skb);
4918 tcp_data_snd_check(sk);
4919 return 0;
4920 }
4921
4922 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4923 tcp_paws_discard(sk, skb)) {
4924 if (!th->rst) {
4925 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4926 tcp_send_dupack(sk, skb);
4927 goto discard;
4928 }
4929 /* Reset is accepted even if it did not pass PAWS. */
4930 }
4931
4932 /* step 1: check sequence number */
4933 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4934 if (!th->rst)
4935 tcp_send_dupack(sk, skb);
4936 goto discard;
4937 }
4938
4939 /* step 2: check RST bit */
4940 if (th->rst) {
4941 tcp_reset(sk);
4942 goto discard;
4943 }
4944
4945 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4946
4947 /* step 3: check security and precedence [ignored] */
4948
4949 /* step 4:
4950 *
4951 * Check for a SYN in window.
4952 */
4953 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4954 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4955 tcp_reset(sk);
4956 return 1;
4957 }
4958
4959 /* step 5: check the ACK field */
4960 if (th->ack) {
4961 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4962
4963 switch (sk->sk_state) {
4964 case TCP_SYN_RECV:
4965 if (acceptable) {
4966 tp->copied_seq = tp->rcv_nxt;
4967 smp_mb();
4968 tcp_set_state(sk, TCP_ESTABLISHED);
4969 sk->sk_state_change(sk);
4970
4971 /* Note, that this wakeup is only for marginal
4972 * crossed SYN case. Passively open sockets
4973 * are not waked up, because sk->sk_sleep ==
4974 * NULL and sk->sk_socket == NULL.
4975 */
4976 if (sk->sk_socket) {
4977 sk_wake_async(sk,0,POLL_OUT);
4978 }
4979
4980 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4981 tp->snd_wnd = ntohs(th->window) <<
4982 tp->rx_opt.snd_wscale;
4983 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4984 TCP_SKB_CB(skb)->seq);
4985
4986 /* tcp_ack considers this ACK as duplicate
4987 * and does not calculate rtt.
4988 * Fix it at least with timestamps.
4989 */
4990 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4991 !tp->srtt)
4992 tcp_ack_saw_tstamp(sk, 0);
4993
4994 if (tp->rx_opt.tstamp_ok)
4995 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4996
4997 /* Make sure socket is routed, for
4998 * correct metrics.
4999 */
5000 icsk->icsk_af_ops->rebuild_header(sk);
5001
5002 tcp_init_metrics(sk);
5003
5004 tcp_init_congestion_control(sk);
5005
5006 /* Prevent spurious tcp_cwnd_restart() on
5007 * first data packet.
5008 */
5009 tp->lsndtime = tcp_time_stamp;
5010
5011 tcp_mtup_init(sk);
5012 tcp_initialize_rcv_mss(sk);
5013 tcp_init_buffer_space(sk);
5014 tcp_fast_path_on(tp);
5015 } else {
5016 return 1;
5017 }
5018 break;
5019
5020 case TCP_FIN_WAIT1:
5021 if (tp->snd_una == tp->write_seq) {
5022 tcp_set_state(sk, TCP_FIN_WAIT2);
5023 sk->sk_shutdown |= SEND_SHUTDOWN;
5024 dst_confirm(sk->sk_dst_cache);
5025
5026 if (!sock_flag(sk, SOCK_DEAD))
5027 /* Wake up lingering close() */
5028 sk->sk_state_change(sk);
5029 else {
5030 int tmo;
5031
5032 if (tp->linger2 < 0 ||
5033 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5034 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5035 tcp_done(sk);
5036 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5037 return 1;
5038 }
5039
5040 tmo = tcp_fin_time(sk);
5041 if (tmo > TCP_TIMEWAIT_LEN) {
5042 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5043 } else if (th->fin || sock_owned_by_user(sk)) {
5044 /* Bad case. We could lose such FIN otherwise.
5045 * It is not a big problem, but it looks confusing
5046 * and not so rare event. We still can lose it now,
5047 * if it spins in bh_lock_sock(), but it is really
5048 * marginal case.
5049 */
5050 inet_csk_reset_keepalive_timer(sk, tmo);
5051 } else {
5052 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5053 goto discard;
5054 }
5055 }
5056 }
5057 break;
5058
5059 case TCP_CLOSING:
5060 if (tp->snd_una == tp->write_seq) {
5061 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5062 goto discard;
5063 }
5064 break;
5065
5066 case TCP_LAST_ACK:
5067 if (tp->snd_una == tp->write_seq) {
5068 tcp_update_metrics(sk);
5069 tcp_done(sk);
5070 goto discard;
5071 }
5072 break;
5073 }
5074 } else
5075 goto discard;
5076
5077 /* step 6: check the URG bit */
5078 tcp_urg(sk, skb, th);
5079
5080 /* step 7: process the segment text */
5081 switch (sk->sk_state) {
5082 case TCP_CLOSE_WAIT:
5083 case TCP_CLOSING:
5084 case TCP_LAST_ACK:
5085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5086 break;
5087 case TCP_FIN_WAIT1:
5088 case TCP_FIN_WAIT2:
5089 /* RFC 793 says to queue data in these states,
5090 * RFC 1122 says we MUST send a reset.
5091 * BSD 4.4 also does reset.
5092 */
5093 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5094 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5095 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5096 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5097 tcp_reset(sk);
5098 return 1;
5099 }
5100 }
5101 /* Fall through */
5102 case TCP_ESTABLISHED:
5103 tcp_data_queue(sk, skb);
5104 queued = 1;
5105 break;
5106 }
5107
5108 /* tcp_data could move socket to TIME-WAIT */
5109 if (sk->sk_state != TCP_CLOSE) {
5110 tcp_data_snd_check(sk);
5111 tcp_ack_snd_check(sk);
5112 }
5113
5114 if (!queued) {
5115 discard:
5116 __kfree_skb(skb);
5117 }
5118 return 0;
5119 }
5120
5121 EXPORT_SYMBOL(sysctl_tcp_ecn);
5122 EXPORT_SYMBOL(sysctl_tcp_reordering);
5123 EXPORT_SYMBOL(tcp_parse_options);
5124 EXPORT_SYMBOL(tcp_rcv_established);
5125 EXPORT_SYMBOL(tcp_rcv_state_process);
5126 EXPORT_SYMBOL(tcp_initialize_rcv_mss);