]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
tcp: Revert 'process defer accept as established' changes.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95
96 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
97 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
98 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
100 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
101 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
102 #define FLAG_ECE 0x40 /* ECE in this ACK */
103 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
104 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110
111 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 {
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
128
129 icsk->icsk_ack.last_seg_size = 0;
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
134 len = skb_shinfo(skb)->gso_size ? : skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
161 }
162 }
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174 if (quickacks == 0)
175 quickacks = 2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 {
200 if (tp->ecn_flags & TCP_ECN_OK)
201 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 }
203
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 {
206 if (tcp_hdr(skb)->cwr)
207 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 }
209
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 {
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 {
217 if (tp->ecn_flags & TCP_ECN_OK) {
218 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220 /* Funny extension: if ECT is not set on a segment,
221 * it is surely retransmit. It is not in ECN RFC,
222 * but Linux follows this rule. */
223 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224 tcp_enter_quickack_mode((struct sock *)tp);
225 }
226 }
227
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 {
230 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
231 tp->ecn_flags &= ~TCP_ECN_OK;
232 }
233
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 {
236 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
237 tp->ecn_flags &= ~TCP_ECN_OK;
238 }
239
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 {
242 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
243 return 1;
244 return 0;
245 }
246
247 /* Buffer size and advertised window tuning.
248 *
249 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 */
251
252 static void tcp_fixup_sndbuf(struct sock *sk)
253 {
254 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255 sizeof(struct sk_buff);
256
257 if (sk->sk_sndbuf < 3 * sndmem)
258 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 }
260
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 *
263 * All tcp_full_space() is split to two parts: "network" buffer, allocated
264 * forward and advertised in receiver window (tp->rcv_wnd) and
265 * "application buffer", required to isolate scheduling/application
266 * latencies from network.
267 * window_clamp is maximal advertised window. It can be less than
268 * tcp_full_space(), in this case tcp_full_space() - window_clamp
269 * is reserved for "application" buffer. The less window_clamp is
270 * the smoother our behaviour from viewpoint of network, but the lower
271 * throughput and the higher sensitivity of the connection to losses. 8)
272 *
273 * rcv_ssthresh is more strict window_clamp used at "slow start"
274 * phase to predict further behaviour of this connection.
275 * It is used for two goals:
276 * - to enforce header prediction at sender, even when application
277 * requires some significant "application buffer". It is check #1.
278 * - to prevent pruning of receive queue because of misprediction
279 * of receiver window. Check #2.
280 *
281 * The scheme does not work when sender sends good segments opening
282 * window and then starts to feed us spaghetti. But it should work
283 * in common situations. Otherwise, we have to rely on queue collapsing.
284 */
285
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 {
289 struct tcp_sock *tp = tcp_sk(sk);
290 /* Optimize this! */
291 int truesize = tcp_win_from_space(skb->truesize) >> 1;
292 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293
294 while (tp->rcv_ssthresh <= window) {
295 if (truesize <= skb->len)
296 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297
298 truesize >>= 1;
299 window >>= 1;
300 }
301 return 0;
302 }
303
304 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 {
306 struct tcp_sock *tp = tcp_sk(sk);
307
308 /* Check #1 */
309 if (tp->rcv_ssthresh < tp->window_clamp &&
310 (int)tp->rcv_ssthresh < tcp_space(sk) &&
311 !tcp_memory_pressure) {
312 int incr;
313
314 /* Check #2. Increase window, if skb with such overhead
315 * will fit to rcvbuf in future.
316 */
317 if (tcp_win_from_space(skb->truesize) <= skb->len)
318 incr = 2 * tp->advmss;
319 else
320 incr = __tcp_grow_window(sk, skb);
321
322 if (incr) {
323 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324 tp->window_clamp);
325 inet_csk(sk)->icsk_ack.quick |= 1;
326 }
327 }
328 }
329
330 /* 3. Tuning rcvbuf, when connection enters established state. */
331
332 static void tcp_fixup_rcvbuf(struct sock *sk)
333 {
334 struct tcp_sock *tp = tcp_sk(sk);
335 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337 /* Try to select rcvbuf so that 4 mss-sized segments
338 * will fit to window and corresponding skbs will fit to our rcvbuf.
339 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 */
341 while (tcp_win_from_space(rcvmem) < tp->advmss)
342 rcvmem += 128;
343 if (sk->sk_rcvbuf < 4 * rcvmem)
344 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 }
346
347 /* 4. Try to fixup all. It is made immediately after connection enters
348 * established state.
349 */
350 static void tcp_init_buffer_space(struct sock *sk)
351 {
352 struct tcp_sock *tp = tcp_sk(sk);
353 int maxwin;
354
355 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356 tcp_fixup_rcvbuf(sk);
357 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358 tcp_fixup_sndbuf(sk);
359
360 tp->rcvq_space.space = tp->rcv_wnd;
361
362 maxwin = tcp_full_space(sk);
363
364 if (tp->window_clamp >= maxwin) {
365 tp->window_clamp = maxwin;
366
367 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368 tp->window_clamp = max(maxwin -
369 (maxwin >> sysctl_tcp_app_win),
370 4 * tp->advmss);
371 }
372
373 /* Force reservation of one segment. */
374 if (sysctl_tcp_app_win &&
375 tp->window_clamp > 2 * tp->advmss &&
376 tp->window_clamp + tp->advmss > maxwin)
377 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380 tp->snd_cwnd_stamp = tcp_time_stamp;
381 }
382
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock *sk)
385 {
386 struct tcp_sock *tp = tcp_sk(sk);
387 struct inet_connection_sock *icsk = inet_csk(sk);
388
389 icsk->icsk_ack.quick = 0;
390
391 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393 !tcp_memory_pressure &&
394 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396 sysctl_tcp_rmem[2]);
397 }
398 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 }
401
402 /* Initialize RCV_MSS value.
403 * RCV_MSS is an our guess about MSS used by the peer.
404 * We haven't any direct information about the MSS.
405 * It's better to underestimate the RCV_MSS rather than overestimate.
406 * Overestimations make us ACKing less frequently than needed.
407 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 */
409 void tcp_initialize_rcv_mss(struct sock *sk)
410 {
411 struct tcp_sock *tp = tcp_sk(sk);
412 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413
414 hint = min(hint, tp->rcv_wnd / 2);
415 hint = min(hint, TCP_MIN_RCVMSS);
416 hint = max(hint, TCP_MIN_MSS);
417
418 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 }
420
421 /* Receiver "autotuning" code.
422 *
423 * The algorithm for RTT estimation w/o timestamps is based on
424 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 *
427 * More detail on this code can be found at
428 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429 * though this reference is out of date. A new paper
430 * is pending.
431 */
432 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 {
434 u32 new_sample = tp->rcv_rtt_est.rtt;
435 long m = sample;
436
437 if (m == 0)
438 m = 1;
439
440 if (new_sample != 0) {
441 /* If we sample in larger samples in the non-timestamp
442 * case, we could grossly overestimate the RTT especially
443 * with chatty applications or bulk transfer apps which
444 * are stalled on filesystem I/O.
445 *
446 * Also, since we are only going for a minimum in the
447 * non-timestamp case, we do not smooth things out
448 * else with timestamps disabled convergence takes too
449 * long.
450 */
451 if (!win_dep) {
452 m -= (new_sample >> 3);
453 new_sample += m;
454 } else if (m < new_sample)
455 new_sample = m << 3;
456 } else {
457 /* No previous measure. */
458 new_sample = m << 3;
459 }
460
461 if (tp->rcv_rtt_est.rtt != new_sample)
462 tp->rcv_rtt_est.rtt = new_sample;
463 }
464
465 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 {
467 if (tp->rcv_rtt_est.time == 0)
468 goto new_measure;
469 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470 return;
471 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472
473 new_measure:
474 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
475 tp->rcv_rtt_est.time = tcp_time_stamp;
476 }
477
478 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
479 const struct sk_buff *skb)
480 {
481 struct tcp_sock *tp = tcp_sk(sk);
482 if (tp->rx_opt.rcv_tsecr &&
483 (TCP_SKB_CB(skb)->end_seq -
484 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
485 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
486 }
487
488 /*
489 * This function should be called every time data is copied to user space.
490 * It calculates the appropriate TCP receive buffer space.
491 */
492 void tcp_rcv_space_adjust(struct sock *sk)
493 {
494 struct tcp_sock *tp = tcp_sk(sk);
495 int time;
496 int space;
497
498 if (tp->rcvq_space.time == 0)
499 goto new_measure;
500
501 time = tcp_time_stamp - tp->rcvq_space.time;
502 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503 return;
504
505 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506
507 space = max(tp->rcvq_space.space, space);
508
509 if (tp->rcvq_space.space != space) {
510 int rcvmem;
511
512 tp->rcvq_space.space = space;
513
514 if (sysctl_tcp_moderate_rcvbuf &&
515 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
516 int new_clamp = space;
517
518 /* Receive space grows, normalize in order to
519 * take into account packet headers and sk_buff
520 * structure overhead.
521 */
522 space /= tp->advmss;
523 if (!space)
524 space = 1;
525 rcvmem = (tp->advmss + MAX_TCP_HEADER +
526 16 + sizeof(struct sk_buff));
527 while (tcp_win_from_space(rcvmem) < tp->advmss)
528 rcvmem += 128;
529 space *= rcvmem;
530 space = min(space, sysctl_tcp_rmem[2]);
531 if (space > sk->sk_rcvbuf) {
532 sk->sk_rcvbuf = space;
533
534 /* Make the window clamp follow along. */
535 tp->window_clamp = new_clamp;
536 }
537 }
538 }
539
540 new_measure:
541 tp->rcvq_space.seq = tp->copied_seq;
542 tp->rcvq_space.time = tcp_time_stamp;
543 }
544
545 /* There is something which you must keep in mind when you analyze the
546 * behavior of the tp->ato delayed ack timeout interval. When a
547 * connection starts up, we want to ack as quickly as possible. The
548 * problem is that "good" TCP's do slow start at the beginning of data
549 * transmission. The means that until we send the first few ACK's the
550 * sender will sit on his end and only queue most of his data, because
551 * he can only send snd_cwnd unacked packets at any given time. For
552 * each ACK we send, he increments snd_cwnd and transmits more of his
553 * queue. -DaveM
554 */
555 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 {
557 struct tcp_sock *tp = tcp_sk(sk);
558 struct inet_connection_sock *icsk = inet_csk(sk);
559 u32 now;
560
561 inet_csk_schedule_ack(sk);
562
563 tcp_measure_rcv_mss(sk, skb);
564
565 tcp_rcv_rtt_measure(tp);
566
567 now = tcp_time_stamp;
568
569 if (!icsk->icsk_ack.ato) {
570 /* The _first_ data packet received, initialize
571 * delayed ACK engine.
572 */
573 tcp_incr_quickack(sk);
574 icsk->icsk_ack.ato = TCP_ATO_MIN;
575 } else {
576 int m = now - icsk->icsk_ack.lrcvtime;
577
578 if (m <= TCP_ATO_MIN / 2) {
579 /* The fastest case is the first. */
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
581 } else if (m < icsk->icsk_ack.ato) {
582 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
583 if (icsk->icsk_ack.ato > icsk->icsk_rto)
584 icsk->icsk_ack.ato = icsk->icsk_rto;
585 } else if (m > icsk->icsk_rto) {
586 /* Too long gap. Apparently sender failed to
587 * restart window, so that we send ACKs quickly.
588 */
589 tcp_incr_quickack(sk);
590 sk_mem_reclaim(sk);
591 }
592 }
593 icsk->icsk_ack.lrcvtime = now;
594
595 TCP_ECN_check_ce(tp, skb);
596
597 if (skb->len >= 128)
598 tcp_grow_window(sk, skb);
599 }
600
601 static u32 tcp_rto_min(struct sock *sk)
602 {
603 struct dst_entry *dst = __sk_dst_get(sk);
604 u32 rto_min = TCP_RTO_MIN;
605
606 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
607 rto_min = dst_metric(dst, RTAX_RTO_MIN);
608 return rto_min;
609 }
610
611 /* Called to compute a smoothed rtt estimate. The data fed to this
612 * routine either comes from timestamps, or from segments that were
613 * known _not_ to have been retransmitted [see Karn/Partridge
614 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615 * piece by Van Jacobson.
616 * NOTE: the next three routines used to be one big routine.
617 * To save cycles in the RFC 1323 implementation it was better to break
618 * it up into three procedures. -- erics
619 */
620 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 {
622 struct tcp_sock *tp = tcp_sk(sk);
623 long m = mrtt; /* RTT */
624
625 /* The following amusing code comes from Jacobson's
626 * article in SIGCOMM '88. Note that rtt and mdev
627 * are scaled versions of rtt and mean deviation.
628 * This is designed to be as fast as possible
629 * m stands for "measurement".
630 *
631 * On a 1990 paper the rto value is changed to:
632 * RTO = rtt + 4 * mdev
633 *
634 * Funny. This algorithm seems to be very broken.
635 * These formulae increase RTO, when it should be decreased, increase
636 * too slowly, when it should be increased quickly, decrease too quickly
637 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638 * does not matter how to _calculate_ it. Seems, it was trap
639 * that VJ failed to avoid. 8)
640 */
641 if (m == 0)
642 m = 1;
643 if (tp->srtt != 0) {
644 m -= (tp->srtt >> 3); /* m is now error in rtt est */
645 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
646 if (m < 0) {
647 m = -m; /* m is now abs(error) */
648 m -= (tp->mdev >> 2); /* similar update on mdev */
649 /* This is similar to one of Eifel findings.
650 * Eifel blocks mdev updates when rtt decreases.
651 * This solution is a bit different: we use finer gain
652 * for mdev in this case (alpha*beta).
653 * Like Eifel it also prevents growth of rto,
654 * but also it limits too fast rto decreases,
655 * happening in pure Eifel.
656 */
657 if (m > 0)
658 m >>= 3;
659 } else {
660 m -= (tp->mdev >> 2); /* similar update on mdev */
661 }
662 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
663 if (tp->mdev > tp->mdev_max) {
664 tp->mdev_max = tp->mdev;
665 if (tp->mdev_max > tp->rttvar)
666 tp->rttvar = tp->mdev_max;
667 }
668 if (after(tp->snd_una, tp->rtt_seq)) {
669 if (tp->mdev_max < tp->rttvar)
670 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671 tp->rtt_seq = tp->snd_nxt;
672 tp->mdev_max = tcp_rto_min(sk);
673 }
674 } else {
675 /* no previous measure. */
676 tp->srtt = m << 3; /* take the measured time to be rtt */
677 tp->mdev = m << 1; /* make sure rto = 3*rtt */
678 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679 tp->rtt_seq = tp->snd_nxt;
680 }
681 }
682
683 /* Calculate rto without backoff. This is the second half of Van Jacobson's
684 * routine referred to above.
685 */
686 static inline void tcp_set_rto(struct sock *sk)
687 {
688 const struct tcp_sock *tp = tcp_sk(sk);
689 /* Old crap is replaced with new one. 8)
690 *
691 * More seriously:
692 * 1. If rtt variance happened to be less 50msec, it is hallucination.
693 * It cannot be less due to utterly erratic ACK generation made
694 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695 * to do with delayed acks, because at cwnd>2 true delack timeout
696 * is invisible. Actually, Linux-2.4 also generates erratic
697 * ACKs in some circumstances.
698 */
699 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700
701 /* 2. Fixups made earlier cannot be right.
702 * If we do not estimate RTO correctly without them,
703 * all the algo is pure shit and should be replaced
704 * with correct one. It is exactly, which we pretend to do.
705 */
706 }
707
708 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709 * guarantees that rto is higher.
710 */
711 static inline void tcp_bound_rto(struct sock *sk)
712 {
713 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
714 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 }
716
717 /* Save metrics learned by this TCP session.
718 This function is called only, when TCP finishes successfully
719 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720 */
721 void tcp_update_metrics(struct sock *sk)
722 {
723 struct tcp_sock *tp = tcp_sk(sk);
724 struct dst_entry *dst = __sk_dst_get(sk);
725
726 if (sysctl_tcp_nometrics_save)
727 return;
728
729 dst_confirm(dst);
730
731 if (dst && (dst->flags & DST_HOST)) {
732 const struct inet_connection_sock *icsk = inet_csk(sk);
733 int m;
734
735 if (icsk->icsk_backoff || !tp->srtt) {
736 /* This session failed to estimate rtt. Why?
737 * Probably, no packets returned in time.
738 * Reset our results.
739 */
740 if (!(dst_metric_locked(dst, RTAX_RTT)))
741 dst->metrics[RTAX_RTT - 1] = 0;
742 return;
743 }
744
745 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
746
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
750 */
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 dst->metrics[RTAX_RTT - 1] = tp->srtt;
754 else
755 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756 }
757
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 if (m < 0)
760 m = -m;
761
762 /* Scale deviation to rttvar fixed point */
763 m >>= 1;
764 if (m < tp->mdev)
765 m = tp->mdev;
766
767 if (m >= dst_metric(dst, RTAX_RTTVAR))
768 dst->metrics[RTAX_RTTVAR - 1] = m;
769 else
770 dst->metrics[RTAX_RTTVAR-1] -=
771 (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772 }
773
774 if (tp->snd_ssthresh >= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst->metrics[RTAX_SSTHRESH-1] =
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 } else {
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
794 */
795 if (!dst_metric_locked(dst, RTAX_CWND))
796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 if (dst_metric(dst, RTAX_SSTHRESH) &&
798 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 }
802
803 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 tp->reordering != sysctl_tcp_reordering)
806 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 }
808 }
809 }
810
811 /* Numbers are taken from RFC3390.
812 *
813 * John Heffner states:
814 *
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
819 */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824 if (!cwnd) {
825 if (tp->mss_cache > 1460)
826 cwnd = 2;
827 else
828 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 }
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 struct tcp_sock *tp = tcp_sk(sk);
837 const struct inet_connection_sock *icsk = inet_csk(sk);
838
839 tp->prior_ssthresh = 0;
840 tp->bytes_acked = 0;
841 if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 tp->undo_marker = 0;
843 if (set_ssthresh)
844 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 tp->snd_cwnd = min(tp->snd_cwnd,
846 tcp_packets_in_flight(tp) + 1U);
847 tp->snd_cwnd_cnt = 0;
848 tp->high_seq = tp->snd_nxt;
849 tp->snd_cwnd_stamp = tcp_time_stamp;
850 TCP_ECN_queue_cwr(tp);
851
852 tcp_set_ca_state(sk, TCP_CA_CWR);
853 }
854 }
855
856 /*
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
859 */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 /* RFC3517 uses different metric in lost marker => reset on change */
863 if (tcp_is_fack(tp))
864 tp->lost_skb_hint = NULL;
865 tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct dst_entry *dst = __sk_dst_get(sk);
880
881 if (dst == NULL)
882 goto reset;
883
884 dst_confirm(dst);
885
886 if (dst_metric_locked(dst, RTAX_CWND))
887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 if (dst_metric(dst, RTAX_SSTHRESH)) {
889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 }
893 if (dst_metric(dst, RTAX_REORDERING) &&
894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 tcp_disable_fack(tp);
896 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 }
898
899 if (dst_metric(dst, RTAX_RTT) == 0)
900 goto reset;
901
902 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 goto reset;
904
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
909 *
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
918 */
919 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
922 }
923 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 }
927 tcp_set_rto(sk);
928 tcp_bound_rto(sk);
929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 goto reset;
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
933 return;
934
935 reset:
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 */
940 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 tp->srtt = 0;
942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944 }
945 }
946
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948 const int ts)
949 {
950 struct tcp_sock *tp = tcp_sk(sk);
951 if (metric > tp->reordering) {
952 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954 /* This exciting event is worth to be remembered. 8) */
955 if (ts)
956 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957 else if (tcp_is_reno(tp))
958 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959 else if (tcp_is_fack(tp))
960 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961 else
962 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963 #if FASTRETRANS_DEBUG > 1
964 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966 tp->reordering,
967 tp->fackets_out,
968 tp->sacked_out,
969 tp->undo_marker ? tp->undo_retrans : 0);
970 #endif
971 tcp_disable_fack(tp);
972 }
973 }
974
975 /* This procedure tags the retransmission queue when SACKs arrive.
976 *
977 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978 * Packets in queue with these bits set are counted in variables
979 * sacked_out, retrans_out and lost_out, correspondingly.
980 *
981 * Valid combinations are:
982 * Tag InFlight Description
983 * 0 1 - orig segment is in flight.
984 * S 0 - nothing flies, orig reached receiver.
985 * L 0 - nothing flies, orig lost by net.
986 * R 2 - both orig and retransmit are in flight.
987 * L|R 1 - orig is lost, retransmit is in flight.
988 * S|R 1 - orig reached receiver, retrans is still in flight.
989 * (L|S|R is logically valid, it could occur when L|R is sacked,
990 * but it is equivalent to plain S and code short-curcuits it to S.
991 * L|S is logically invalid, it would mean -1 packet in flight 8))
992 *
993 * These 6 states form finite state machine, controlled by the following events:
994 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996 * 3. Loss detection event of one of three flavors:
997 * A. Scoreboard estimator decided the packet is lost.
998 * A'. Reno "three dupacks" marks head of queue lost.
999 * A''. Its FACK modfication, head until snd.fack is lost.
1000 * B. SACK arrives sacking data transmitted after never retransmitted
1001 * hole was sent out.
1002 * C. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 *
1023 * SACK block validation.
1024 * ----------------------
1025 *
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself reporting
1030 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031 * perfectly valid, however, in light of RFC2018 which explicitly states
1032 * that "SACK block MUST reflect the newest segment. Even if the newest
1033 * segment is going to be discarded ...", not that it looks very clever
1034 * in case of head skb. Due to potentional receiver driven attacks, we
1035 * choose to avoid immediate execution of a walk in write queue due to
1036 * reneging and defer head skb's loss recovery to standard loss recovery
1037 * procedure that will eventually trigger (nothing forbids us doing this).
1038 *
1039 * Implements also blockage to start_seq wrap-around. Problem lies in the
1040 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041 * there's no guarantee that it will be before snd_nxt (n). The problem
1042 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043 * wrap (s_w):
1044 *
1045 * <- outs wnd -> <- wrapzone ->
1046 * u e n u_w e_w s n_w
1047 * | | | | | | |
1048 * |<------------+------+----- TCP seqno space --------------+---------->|
1049 * ...-- <2^31 ->| |<--------...
1050 * ...---- >2^31 ------>| |<--------...
1051 *
1052 * Current code wouldn't be vulnerable but it's better still to discard such
1053 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056 * equal to the ideal case (infinite seqno space without wrap caused issues).
1057 *
1058 * With D-SACK the lower bound is extended to cover sequence space below
1059 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060 * again, D-SACK block must not to go across snd_una (for the same reason as
1061 * for the normal SACK blocks, explained above). But there all simplicity
1062 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063 * fully below undo_marker they do not affect behavior in anyway and can
1064 * therefore be safely ignored. In rare cases (which are more or less
1065 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066 * fragmentation and packet reordering past skb's retransmission. To consider
1067 * them correctly, the acceptable range must be extended even more though
1068 * the exact amount is rather hard to quantify. However, tp->max_window can
1069 * be used as an exaggerated estimate.
1070 */
1071 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1072 u32 start_seq, u32 end_seq)
1073 {
1074 /* Too far in future, or reversed (interpretation is ambiguous) */
1075 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076 return 0;
1077
1078 /* Nasty start_seq wrap-around check (see comments above) */
1079 if (!before(start_seq, tp->snd_nxt))
1080 return 0;
1081
1082 /* In outstanding window? ...This is valid exit for D-SACKs too.
1083 * start_seq == snd_una is non-sensical (see comments above)
1084 */
1085 if (after(start_seq, tp->snd_una))
1086 return 1;
1087
1088 if (!is_dsack || !tp->undo_marker)
1089 return 0;
1090
1091 /* ...Then it's D-SACK, and must reside below snd_una completely */
1092 if (!after(end_seq, tp->snd_una))
1093 return 0;
1094
1095 if (!before(start_seq, tp->undo_marker))
1096 return 1;
1097
1098 /* Too old */
1099 if (!after(end_seq, tp->undo_marker))
1100 return 0;
1101
1102 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 * start_seq < undo_marker and end_seq >= undo_marker.
1104 */
1105 return !before(start_seq, end_seq - tp->max_window);
1106 }
1107
1108 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109 * Event "C". Later note: FACK people cheated me again 8), we have to account
1110 * for reordering! Ugly, but should help.
1111 *
1112 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113 * less than what is now known to be received by the other end (derived from
1114 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115 * retransmitted skbs to avoid some costly processing per ACKs.
1116 */
1117 static void tcp_mark_lost_retrans(struct sock *sk)
1118 {
1119 const struct inet_connection_sock *icsk = inet_csk(sk);
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int cnt = 0;
1123 u32 new_low_seq = tp->snd_nxt;
1124 u32 received_upto = tcp_highest_sack_seq(tp);
1125
1126 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1127 !after(received_upto, tp->lost_retrans_low) ||
1128 icsk->icsk_ca_state != TCP_CA_Recovery)
1129 return;
1130
1131 tcp_for_write_queue(skb, sk) {
1132 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1133
1134 if (skb == tcp_send_head(sk))
1135 break;
1136 if (cnt == tp->retrans_out)
1137 break;
1138 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139 continue;
1140
1141 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1142 continue;
1143
1144 if (after(received_upto, ack_seq) &&
1145 (tcp_is_fack(tp) ||
1146 !before(received_upto,
1147 ack_seq + tp->reordering * tp->mss_cache))) {
1148 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1149 tp->retrans_out -= tcp_skb_pcount(skb);
1150
1151 /* clear lost hint */
1152 tp->retransmit_skb_hint = NULL;
1153
1154 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1155 tp->lost_out += tcp_skb_pcount(skb);
1156 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1157 }
1158 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159 } else {
1160 if (before(ack_seq, new_low_seq))
1161 new_low_seq = ack_seq;
1162 cnt += tcp_skb_pcount(skb);
1163 }
1164 }
1165
1166 if (tp->retrans_out)
1167 tp->lost_retrans_low = new_low_seq;
1168 }
1169
1170 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1171 struct tcp_sack_block_wire *sp, int num_sacks,
1172 u32 prior_snd_una)
1173 {
1174 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1175 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1176 int dup_sack = 0;
1177
1178 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1179 dup_sack = 1;
1180 tcp_dsack_seen(tp);
1181 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1182 } else if (num_sacks > 1) {
1183 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1184 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1185
1186 if (!after(end_seq_0, end_seq_1) &&
1187 !before(start_seq_0, start_seq_1)) {
1188 dup_sack = 1;
1189 tcp_dsack_seen(tp);
1190 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1191 }
1192 }
1193
1194 /* D-SACK for already forgotten data... Do dumb counting. */
1195 if (dup_sack &&
1196 !after(end_seq_0, prior_snd_una) &&
1197 after(end_seq_0, tp->undo_marker))
1198 tp->undo_retrans--;
1199
1200 return dup_sack;
1201 }
1202
1203 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204 * the incoming SACK may not exactly match but we can find smaller MSS
1205 * aligned portion of it that matches. Therefore we might need to fragment
1206 * which may fail and creates some hassle (caller must handle error case
1207 * returns).
1208 */
1209 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1210 u32 start_seq, u32 end_seq)
1211 {
1212 int in_sack, err;
1213 unsigned int pkt_len;
1214
1215 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1216 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1217
1218 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1219 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1220
1221 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1222
1223 if (!in_sack)
1224 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1225 else
1226 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1227 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1228 if (err < 0)
1229 return err;
1230 }
1231
1232 return in_sack;
1233 }
1234
1235 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1236 int *reord, int dup_sack, int fack_count)
1237 {
1238 struct tcp_sock *tp = tcp_sk(sk);
1239 u8 sacked = TCP_SKB_CB(skb)->sacked;
1240 int flag = 0;
1241
1242 /* Account D-SACK for retransmitted packet. */
1243 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1244 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1245 tp->undo_retrans--;
1246 if (sacked & TCPCB_SACKED_ACKED)
1247 *reord = min(fack_count, *reord);
1248 }
1249
1250 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1252 return flag;
1253
1254 if (!(sacked & TCPCB_SACKED_ACKED)) {
1255 if (sacked & TCPCB_SACKED_RETRANS) {
1256 /* If the segment is not tagged as lost,
1257 * we do not clear RETRANS, believing
1258 * that retransmission is still in flight.
1259 */
1260 if (sacked & TCPCB_LOST) {
1261 TCP_SKB_CB(skb)->sacked &=
1262 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1263 tp->lost_out -= tcp_skb_pcount(skb);
1264 tp->retrans_out -= tcp_skb_pcount(skb);
1265
1266 /* clear lost hint */
1267 tp->retransmit_skb_hint = NULL;
1268 }
1269 } else {
1270 if (!(sacked & TCPCB_RETRANS)) {
1271 /* New sack for not retransmitted frame,
1272 * which was in hole. It is reordering.
1273 */
1274 if (before(TCP_SKB_CB(skb)->seq,
1275 tcp_highest_sack_seq(tp)))
1276 *reord = min(fack_count, *reord);
1277
1278 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1280 flag |= FLAG_ONLY_ORIG_SACKED;
1281 }
1282
1283 if (sacked & TCPCB_LOST) {
1284 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1285 tp->lost_out -= tcp_skb_pcount(skb);
1286
1287 /* clear lost hint */
1288 tp->retransmit_skb_hint = NULL;
1289 }
1290 }
1291
1292 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293 flag |= FLAG_DATA_SACKED;
1294 tp->sacked_out += tcp_skb_pcount(skb);
1295
1296 fack_count += tcp_skb_pcount(skb);
1297
1298 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1300 before(TCP_SKB_CB(skb)->seq,
1301 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1302 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1303
1304 if (fack_count > tp->fackets_out)
1305 tp->fackets_out = fack_count;
1306
1307 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1308 tcp_advance_highest_sack(sk, skb);
1309 }
1310
1311 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1312 * frames and clear it. undo_retrans is decreased above, L|R frames
1313 * are accounted above as well.
1314 */
1315 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1316 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1317 tp->retrans_out -= tcp_skb_pcount(skb);
1318 tp->retransmit_skb_hint = NULL;
1319 }
1320
1321 return flag;
1322 }
1323
1324 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1325 struct tcp_sack_block *next_dup,
1326 u32 start_seq, u32 end_seq,
1327 int dup_sack_in, int *fack_count,
1328 int *reord, int *flag)
1329 {
1330 tcp_for_write_queue_from(skb, sk) {
1331 int in_sack = 0;
1332 int dup_sack = dup_sack_in;
1333
1334 if (skb == tcp_send_head(sk))
1335 break;
1336
1337 /* queue is in-order => we can short-circuit the walk early */
1338 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1339 break;
1340
1341 if ((next_dup != NULL) &&
1342 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1343 in_sack = tcp_match_skb_to_sack(sk, skb,
1344 next_dup->start_seq,
1345 next_dup->end_seq);
1346 if (in_sack > 0)
1347 dup_sack = 1;
1348 }
1349
1350 if (in_sack <= 0)
1351 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1352 end_seq);
1353 if (unlikely(in_sack < 0))
1354 break;
1355
1356 if (in_sack)
1357 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1358 *fack_count);
1359
1360 *fack_count += tcp_skb_pcount(skb);
1361 }
1362 return skb;
1363 }
1364
1365 /* Avoid all extra work that is being done by sacktag while walking in
1366 * a normal way
1367 */
1368 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1369 u32 skip_to_seq, int *fack_count)
1370 {
1371 tcp_for_write_queue_from(skb, sk) {
1372 if (skb == tcp_send_head(sk))
1373 break;
1374
1375 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1376 break;
1377
1378 *fack_count += tcp_skb_pcount(skb);
1379 }
1380 return skb;
1381 }
1382
1383 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384 struct sock *sk,
1385 struct tcp_sack_block *next_dup,
1386 u32 skip_to_seq,
1387 int *fack_count, int *reord,
1388 int *flag)
1389 {
1390 if (next_dup == NULL)
1391 return skb;
1392
1393 if (before(next_dup->start_seq, skip_to_seq)) {
1394 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1395 skb = tcp_sacktag_walk(skb, sk, NULL,
1396 next_dup->start_seq, next_dup->end_seq,
1397 1, fack_count, reord, flag);
1398 }
1399
1400 return skb;
1401 }
1402
1403 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404 {
1405 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406 }
1407
1408 static int
1409 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1410 u32 prior_snd_una)
1411 {
1412 const struct inet_connection_sock *icsk = inet_csk(sk);
1413 struct tcp_sock *tp = tcp_sk(sk);
1414 unsigned char *ptr = (skb_transport_header(ack_skb) +
1415 TCP_SKB_CB(ack_skb)->sacked);
1416 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417 struct tcp_sack_block sp[4];
1418 struct tcp_sack_block *cache;
1419 struct sk_buff *skb;
1420 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1421 int used_sacks;
1422 int reord = tp->packets_out;
1423 int flag = 0;
1424 int found_dup_sack = 0;
1425 int fack_count;
1426 int i, j;
1427 int first_sack_index;
1428
1429 if (!tp->sacked_out) {
1430 if (WARN_ON(tp->fackets_out))
1431 tp->fackets_out = 0;
1432 tcp_highest_sack_reset(sk);
1433 }
1434
1435 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436 num_sacks, prior_snd_una);
1437 if (found_dup_sack)
1438 flag |= FLAG_DSACKING_ACK;
1439
1440 /* Eliminate too old ACKs, but take into
1441 * account more or less fresh ones, they can
1442 * contain valid SACK info.
1443 */
1444 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445 return 0;
1446
1447 if (!tp->packets_out)
1448 goto out;
1449
1450 used_sacks = 0;
1451 first_sack_index = 0;
1452 for (i = 0; i < num_sacks; i++) {
1453 int dup_sack = !i && found_dup_sack;
1454
1455 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1456 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1457
1458 if (!tcp_is_sackblock_valid(tp, dup_sack,
1459 sp[used_sacks].start_seq,
1460 sp[used_sacks].end_seq)) {
1461 if (dup_sack) {
1462 if (!tp->undo_marker)
1463 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464 else
1465 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466 } else {
1467 /* Don't count olds caused by ACK reordering */
1468 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469 !after(sp[used_sacks].end_seq, tp->snd_una))
1470 continue;
1471 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472 }
1473 if (i == 0)
1474 first_sack_index = -1;
1475 continue;
1476 }
1477
1478 /* Ignore very old stuff early */
1479 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480 continue;
1481
1482 used_sacks++;
1483 }
1484
1485 /* order SACK blocks to allow in order walk of the retrans queue */
1486 for (i = used_sacks - 1; i > 0; i--) {
1487 for (j = 0; j < i; j++) {
1488 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1489 struct tcp_sack_block tmp;
1490
1491 tmp = sp[j];
1492 sp[j] = sp[j + 1];
1493 sp[j + 1] = tmp;
1494
1495 /* Track where the first SACK block goes to */
1496 if (j == first_sack_index)
1497 first_sack_index = j + 1;
1498 }
1499 }
1500 }
1501
1502 skb = tcp_write_queue_head(sk);
1503 fack_count = 0;
1504 i = 0;
1505
1506 if (!tp->sacked_out) {
1507 /* It's already past, so skip checking against it */
1508 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509 } else {
1510 cache = tp->recv_sack_cache;
1511 /* Skip empty blocks in at head of the cache */
1512 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513 !cache->end_seq)
1514 cache++;
1515 }
1516
1517 while (i < used_sacks) {
1518 u32 start_seq = sp[i].start_seq;
1519 u32 end_seq = sp[i].end_seq;
1520 int dup_sack = (found_dup_sack && (i == first_sack_index));
1521 struct tcp_sack_block *next_dup = NULL;
1522
1523 if (found_dup_sack && ((i + 1) == first_sack_index))
1524 next_dup = &sp[i + 1];
1525
1526 /* Event "B" in the comment above. */
1527 if (after(end_seq, tp->high_seq))
1528 flag |= FLAG_DATA_LOST;
1529
1530 /* Skip too early cached blocks */
1531 while (tcp_sack_cache_ok(tp, cache) &&
1532 !before(start_seq, cache->end_seq))
1533 cache++;
1534
1535 /* Can skip some work by looking recv_sack_cache? */
1536 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537 after(end_seq, cache->start_seq)) {
1538
1539 /* Head todo? */
1540 if (before(start_seq, cache->start_seq)) {
1541 skb = tcp_sacktag_skip(skb, sk, start_seq,
1542 &fack_count);
1543 skb = tcp_sacktag_walk(skb, sk, next_dup,
1544 start_seq,
1545 cache->start_seq,
1546 dup_sack, &fack_count,
1547 &reord, &flag);
1548 }
1549
1550 /* Rest of the block already fully processed? */
1551 if (!after(end_seq, cache->end_seq))
1552 goto advance_sp;
1553
1554 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1555 cache->end_seq,
1556 &fack_count, &reord,
1557 &flag);
1558
1559 /* ...tail remains todo... */
1560 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1561 /* ...but better entrypoint exists! */
1562 skb = tcp_highest_sack(sk);
1563 if (skb == NULL)
1564 break;
1565 fack_count = tp->fackets_out;
1566 cache++;
1567 goto walk;
1568 }
1569
1570 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1571 &fack_count);
1572 /* Check overlap against next cached too (past this one already) */
1573 cache++;
1574 continue;
1575 }
1576
1577 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1578 skb = tcp_highest_sack(sk);
1579 if (skb == NULL)
1580 break;
1581 fack_count = tp->fackets_out;
1582 }
1583 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1584
1585 walk:
1586 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1587 dup_sack, &fack_count, &reord, &flag);
1588
1589 advance_sp:
1590 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591 * due to in-order walk
1592 */
1593 if (after(end_seq, tp->frto_highmark))
1594 flag &= ~FLAG_ONLY_ORIG_SACKED;
1595
1596 i++;
1597 }
1598
1599 /* Clear the head of the cache sack blocks so we can skip it next time */
1600 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1601 tp->recv_sack_cache[i].start_seq = 0;
1602 tp->recv_sack_cache[i].end_seq = 0;
1603 }
1604 for (j = 0; j < used_sacks; j++)
1605 tp->recv_sack_cache[i++] = sp[j];
1606
1607 tcp_mark_lost_retrans(sk);
1608
1609 tcp_verify_left_out(tp);
1610
1611 if ((reord < tp->fackets_out) &&
1612 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1613 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1614 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1615
1616 out:
1617
1618 #if FASTRETRANS_DEBUG > 0
1619 BUG_TRAP((int)tp->sacked_out >= 0);
1620 BUG_TRAP((int)tp->lost_out >= 0);
1621 BUG_TRAP((int)tp->retrans_out >= 0);
1622 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1623 #endif
1624 return flag;
1625 }
1626
1627 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1628 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1629 */
1630 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1631 {
1632 u32 holes;
1633
1634 holes = max(tp->lost_out, 1U);
1635 holes = min(holes, tp->packets_out);
1636
1637 if ((tp->sacked_out + holes) > tp->packets_out) {
1638 tp->sacked_out = tp->packets_out - holes;
1639 return 1;
1640 }
1641 return 0;
1642 }
1643
1644 /* If we receive more dupacks than we expected counting segments
1645 * in assumption of absent reordering, interpret this as reordering.
1646 * The only another reason could be bug in receiver TCP.
1647 */
1648 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1649 {
1650 struct tcp_sock *tp = tcp_sk(sk);
1651 if (tcp_limit_reno_sacked(tp))
1652 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1653 }
1654
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1656
1657 static void tcp_add_reno_sack(struct sock *sk)
1658 {
1659 struct tcp_sock *tp = tcp_sk(sk);
1660 tp->sacked_out++;
1661 tcp_check_reno_reordering(sk, 0);
1662 tcp_verify_left_out(tp);
1663 }
1664
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1666
1667 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1668 {
1669 struct tcp_sock *tp = tcp_sk(sk);
1670
1671 if (acked > 0) {
1672 /* One ACK acked hole. The rest eat duplicate ACKs. */
1673 if (acked - 1 >= tp->sacked_out)
1674 tp->sacked_out = 0;
1675 else
1676 tp->sacked_out -= acked - 1;
1677 }
1678 tcp_check_reno_reordering(sk, acked);
1679 tcp_verify_left_out(tp);
1680 }
1681
1682 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1683 {
1684 tp->sacked_out = 0;
1685 }
1686
1687 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1688 {
1689 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1690 }
1691
1692 /* F-RTO can only be used if TCP has never retransmitted anything other than
1693 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1694 */
1695 int tcp_use_frto(struct sock *sk)
1696 {
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 struct sk_buff *skb;
1700
1701 if (!sysctl_tcp_frto)
1702 return 0;
1703
1704 /* MTU probe and F-RTO won't really play nicely along currently */
1705 if (icsk->icsk_mtup.probe_size)
1706 return 0;
1707
1708 if (tcp_is_sackfrto(tp))
1709 return 1;
1710
1711 /* Avoid expensive walking of rexmit queue if possible */
1712 if (tp->retrans_out > 1)
1713 return 0;
1714
1715 skb = tcp_write_queue_head(sk);
1716 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1717 tcp_for_write_queue_from(skb, sk) {
1718 if (skb == tcp_send_head(sk))
1719 break;
1720 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721 return 0;
1722 /* Short-circuit when first non-SACKed skb has been checked */
1723 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1724 break;
1725 }
1726 return 1;
1727 }
1728
1729 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734 * bits are handled if the Loss state is really to be entered (in
1735 * tcp_enter_frto_loss).
1736 *
1737 * Do like tcp_enter_loss() would; when RTO expires the second time it
1738 * does:
1739 * "Reduce ssthresh if it has not yet been made inside this window."
1740 */
1741 void tcp_enter_frto(struct sock *sk)
1742 {
1743 const struct inet_connection_sock *icsk = inet_csk(sk);
1744 struct tcp_sock *tp = tcp_sk(sk);
1745 struct sk_buff *skb;
1746
1747 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1748 tp->snd_una == tp->high_seq ||
1749 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1750 !icsk->icsk_retransmits)) {
1751 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752 /* Our state is too optimistic in ssthresh() call because cwnd
1753 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754 * recovery has not yet completed. Pattern would be this: RTO,
1755 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1756 * up here twice).
1757 * RFC4138 should be more specific on what to do, even though
1758 * RTO is quite unlikely to occur after the first Cumulative ACK
1759 * due to back-off and complexity of triggering events ...
1760 */
1761 if (tp->frto_counter) {
1762 u32 stored_cwnd;
1763 stored_cwnd = tp->snd_cwnd;
1764 tp->snd_cwnd = 2;
1765 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766 tp->snd_cwnd = stored_cwnd;
1767 } else {
1768 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1769 }
1770 /* ... in theory, cong.control module could do "any tricks" in
1771 * ssthresh(), which means that ca_state, lost bits and lost_out
1772 * counter would have to be faked before the call occurs. We
1773 * consider that too expensive, unlikely and hacky, so modules
1774 * using these in ssthresh() must deal these incompatibility
1775 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1776 */
1777 tcp_ca_event(sk, CA_EVENT_FRTO);
1778 }
1779
1780 tp->undo_marker = tp->snd_una;
1781 tp->undo_retrans = 0;
1782
1783 skb = tcp_write_queue_head(sk);
1784 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1785 tp->undo_marker = 0;
1786 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1787 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1788 tp->retrans_out -= tcp_skb_pcount(skb);
1789 }
1790 tcp_verify_left_out(tp);
1791
1792 /* Too bad if TCP was application limited */
1793 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1794
1795 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1796 * The last condition is necessary at least in tp->frto_counter case.
1797 */
1798 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1799 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1800 after(tp->high_seq, tp->snd_una)) {
1801 tp->frto_highmark = tp->high_seq;
1802 } else {
1803 tp->frto_highmark = tp->snd_nxt;
1804 }
1805 tcp_set_ca_state(sk, TCP_CA_Disorder);
1806 tp->high_seq = tp->snd_nxt;
1807 tp->frto_counter = 1;
1808 }
1809
1810 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811 * which indicates that we should follow the traditional RTO recovery,
1812 * i.e. mark everything lost and do go-back-N retransmission.
1813 */
1814 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1815 {
1816 struct tcp_sock *tp = tcp_sk(sk);
1817 struct sk_buff *skb;
1818
1819 tp->lost_out = 0;
1820 tp->retrans_out = 0;
1821 if (tcp_is_reno(tp))
1822 tcp_reset_reno_sack(tp);
1823
1824 tcp_for_write_queue(skb, sk) {
1825 if (skb == tcp_send_head(sk))
1826 break;
1827
1828 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1829 /*
1830 * Count the retransmission made on RTO correctly (only when
1831 * waiting for the first ACK and did not get it)...
1832 */
1833 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1834 /* For some reason this R-bit might get cleared? */
1835 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1836 tp->retrans_out += tcp_skb_pcount(skb);
1837 /* ...enter this if branch just for the first segment */
1838 flag |= FLAG_DATA_ACKED;
1839 } else {
1840 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1841 tp->undo_marker = 0;
1842 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843 }
1844
1845 /* Marking forward transmissions that were made after RTO lost
1846 * can cause unnecessary retransmissions in some scenarios,
1847 * SACK blocks will mitigate that in some but not in all cases.
1848 * We used to not mark them but it was causing break-ups with
1849 * receivers that do only in-order receival.
1850 *
1851 * TODO: we could detect presence of such receiver and select
1852 * different behavior per flow.
1853 */
1854 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1855 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1856 tp->lost_out += tcp_skb_pcount(skb);
1857 }
1858 }
1859 tcp_verify_left_out(tp);
1860
1861 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1862 tp->snd_cwnd_cnt = 0;
1863 tp->snd_cwnd_stamp = tcp_time_stamp;
1864 tp->frto_counter = 0;
1865 tp->bytes_acked = 0;
1866
1867 tp->reordering = min_t(unsigned int, tp->reordering,
1868 sysctl_tcp_reordering);
1869 tcp_set_ca_state(sk, TCP_CA_Loss);
1870 tp->high_seq = tp->snd_nxt;
1871 TCP_ECN_queue_cwr(tp);
1872
1873 tcp_clear_retrans_hints_partial(tp);
1874 }
1875
1876 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1877 {
1878 tp->retrans_out = 0;
1879 tp->lost_out = 0;
1880
1881 tp->undo_marker = 0;
1882 tp->undo_retrans = 0;
1883 }
1884
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887 tcp_clear_retrans_partial(tp);
1888
1889 tp->fackets_out = 0;
1890 tp->sacked_out = 0;
1891 }
1892
1893 /* Enter Loss state. If "how" is not zero, forget all SACK information
1894 * and reset tags completely, otherwise preserve SACKs. If receiver
1895 * dropped its ofo queue, we will know this due to reneging detection.
1896 */
1897 void tcp_enter_loss(struct sock *sk, int how)
1898 {
1899 const struct inet_connection_sock *icsk = inet_csk(sk);
1900 struct tcp_sock *tp = tcp_sk(sk);
1901 struct sk_buff *skb;
1902
1903 /* Reduce ssthresh if it has not yet been made inside this window. */
1904 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1905 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1906 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908 tcp_ca_event(sk, CA_EVENT_LOSS);
1909 }
1910 tp->snd_cwnd = 1;
1911 tp->snd_cwnd_cnt = 0;
1912 tp->snd_cwnd_stamp = tcp_time_stamp;
1913
1914 tp->bytes_acked = 0;
1915 tcp_clear_retrans_partial(tp);
1916
1917 if (tcp_is_reno(tp))
1918 tcp_reset_reno_sack(tp);
1919
1920 if (!how) {
1921 /* Push undo marker, if it was plain RTO and nothing
1922 * was retransmitted. */
1923 tp->undo_marker = tp->snd_una;
1924 tcp_clear_retrans_hints_partial(tp);
1925 } else {
1926 tp->sacked_out = 0;
1927 tp->fackets_out = 0;
1928 tcp_clear_all_retrans_hints(tp);
1929 }
1930
1931 tcp_for_write_queue(skb, sk) {
1932 if (skb == tcp_send_head(sk))
1933 break;
1934
1935 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1936 tp->undo_marker = 0;
1937 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1938 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1939 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1940 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1941 tp->lost_out += tcp_skb_pcount(skb);
1942 }
1943 }
1944 tcp_verify_left_out(tp);
1945
1946 tp->reordering = min_t(unsigned int, tp->reordering,
1947 sysctl_tcp_reordering);
1948 tcp_set_ca_state(sk, TCP_CA_Loss);
1949 tp->high_seq = tp->snd_nxt;
1950 TCP_ECN_queue_cwr(tp);
1951 /* Abort F-RTO algorithm if one is in progress */
1952 tp->frto_counter = 0;
1953 }
1954
1955 /* If ACK arrived pointing to a remembered SACK, it means that our
1956 * remembered SACKs do not reflect real state of receiver i.e.
1957 * receiver _host_ is heavily congested (or buggy).
1958 *
1959 * Do processing similar to RTO timeout.
1960 */
1961 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963 if (flag & FLAG_SACK_RENEGING) {
1964 struct inet_connection_sock *icsk = inet_csk(sk);
1965 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1966
1967 tcp_enter_loss(sk, 1);
1968 icsk->icsk_retransmits++;
1969 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1970 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1971 icsk->icsk_rto, TCP_RTO_MAX);
1972 return 1;
1973 }
1974 return 0;
1975 }
1976
1977 static inline int tcp_fackets_out(struct tcp_sock *tp)
1978 {
1979 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980 }
1981
1982 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983 * counter when SACK is enabled (without SACK, sacked_out is used for
1984 * that purpose).
1985 *
1986 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987 * segments up to the highest received SACK block so far and holes in
1988 * between them.
1989 *
1990 * With reordering, holes may still be in flight, so RFC3517 recovery
1991 * uses pure sacked_out (total number of SACKed segments) even though
1992 * it violates the RFC that uses duplicate ACKs, often these are equal
1993 * but when e.g. out-of-window ACKs or packet duplication occurs,
1994 * they differ. Since neither occurs due to loss, TCP should really
1995 * ignore them.
1996 */
1997 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1998 {
1999 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000 }
2001
2002 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2003 {
2004 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2005 }
2006
2007 static inline int tcp_head_timedout(struct sock *sk)
2008 {
2009 struct tcp_sock *tp = tcp_sk(sk);
2010
2011 return tp->packets_out &&
2012 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2013 }
2014
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2017 *
2018 * "Open" Normal state, no dubious events, fast path.
2019 * "Disorder" In all the respects it is "Open",
2020 * but requires a bit more attention. It is entered when
2021 * we see some SACKs or dupacks. It is split of "Open"
2022 * mainly to move some processing from fast path to slow one.
2023 * "CWR" CWND was reduced due to some Congestion Notification event.
2024 * It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery" CWND was reduced, we are fast-retransmitting.
2026 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2027 *
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2031 * * SACK
2032 * * Duplicate ACK.
2033 * * ECN ECE.
2034 *
2035 * Counting packets in flight is pretty simple.
2036 *
2037 * in_flight = packets_out - left_out + retrans_out
2038 *
2039 * packets_out is SND.NXT-SND.UNA counted in packets.
2040 *
2041 * retrans_out is number of retransmitted segments.
2042 *
2043 * left_out is number of segments left network, but not ACKed yet.
2044 *
2045 * left_out = sacked_out + lost_out
2046 *
2047 * sacked_out: Packets, which arrived to receiver out of order
2048 * and hence not ACKed. With SACKs this number is simply
2049 * amount of SACKed data. Even without SACKs
2050 * it is easy to give pretty reliable estimate of this number,
2051 * counting duplicate ACKs.
2052 *
2053 * lost_out: Packets lost by network. TCP has no explicit
2054 * "loss notification" feedback from network (for now).
2055 * It means that this number can be only _guessed_.
2056 * Actually, it is the heuristics to predict lossage that
2057 * distinguishes different algorithms.
2058 *
2059 * F.e. after RTO, when all the queue is considered as lost,
2060 * lost_out = packets_out and in_flight = retrans_out.
2061 *
2062 * Essentially, we have now two algorithms counting
2063 * lost packets.
2064 *
2065 * FACK: It is the simplest heuristics. As soon as we decided
2066 * that something is lost, we decide that _all_ not SACKed
2067 * packets until the most forward SACK are lost. I.e.
2068 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 * It is absolutely correct estimate, if network does not reorder
2070 * packets. And it loses any connection to reality when reordering
2071 * takes place. We use FACK by default until reordering
2072 * is suspected on the path to this destination.
2073 *
2074 * NewReno: when Recovery is entered, we assume that one segment
2075 * is lost (classic Reno). While we are in Recovery and
2076 * a partial ACK arrives, we assume that one more packet
2077 * is lost (NewReno). This heuristics are the same in NewReno
2078 * and SACK.
2079 *
2080 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 * deflation etc. CWND is real congestion window, never inflated, changes
2082 * only according to classic VJ rules.
2083 *
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2089 *
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2092 *
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2100 */
2101
2102 /* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2104 *
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2107 */
2108 static int tcp_time_to_recover(struct sock *sk)
2109 {
2110 struct tcp_sock *tp = tcp_sk(sk);
2111 __u32 packets_out;
2112
2113 /* Do not perform any recovery during F-RTO algorithm */
2114 if (tp->frto_counter)
2115 return 0;
2116
2117 /* Trick#1: The loss is proven. */
2118 if (tp->lost_out)
2119 return 1;
2120
2121 /* Not-A-Trick#2 : Classic rule... */
2122 if (tcp_dupack_heurestics(tp) > tp->reordering)
2123 return 1;
2124
2125 /* Trick#3 : when we use RFC2988 timer restart, fast
2126 * retransmit can be triggered by timeout of queue head.
2127 */
2128 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2129 return 1;
2130
2131 /* Trick#4: It is still not OK... But will it be useful to delay
2132 * recovery more?
2133 */
2134 packets_out = tp->packets_out;
2135 if (packets_out <= tp->reordering &&
2136 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2137 !tcp_may_send_now(sk)) {
2138 /* We have nothing to send. This connection is limited
2139 * either by receiver window or by application.
2140 */
2141 return 1;
2142 }
2143
2144 return 0;
2145 }
2146
2147 /* RFC: This is from the original, I doubt that this is necessary at all:
2148 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149 * retransmitted past LOST markings in the first place? I'm not fully sure
2150 * about undo and end of connection cases, which can cause R without L?
2151 */
2152 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2153 {
2154 if ((tp->retransmit_skb_hint != NULL) &&
2155 before(TCP_SKB_CB(skb)->seq,
2156 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2157 tp->retransmit_skb_hint = NULL;
2158 }
2159
2160 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161 * is against sacked "cnt", otherwise it's against facked "cnt"
2162 */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets)
2164 {
2165 struct tcp_sock *tp = tcp_sk(sk);
2166 struct sk_buff *skb;
2167 int cnt, oldcnt;
2168 int err;
2169 unsigned int mss;
2170
2171 BUG_TRAP(packets <= tp->packets_out);
2172 if (tp->lost_skb_hint) {
2173 skb = tp->lost_skb_hint;
2174 cnt = tp->lost_cnt_hint;
2175 } else {
2176 skb = tcp_write_queue_head(sk);
2177 cnt = 0;
2178 }
2179
2180 tcp_for_write_queue_from(skb, sk) {
2181 if (skb == tcp_send_head(sk))
2182 break;
2183 /* TODO: do this better */
2184 /* this is not the most efficient way to do this... */
2185 tp->lost_skb_hint = skb;
2186 tp->lost_cnt_hint = cnt;
2187
2188 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2189 break;
2190
2191 oldcnt = cnt;
2192 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2193 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2194 cnt += tcp_skb_pcount(skb);
2195
2196 if (cnt > packets) {
2197 if (tcp_is_sack(tp) || (oldcnt >= packets))
2198 break;
2199
2200 mss = skb_shinfo(skb)->gso_size;
2201 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2202 if (err < 0)
2203 break;
2204 cnt = packets;
2205 }
2206
2207 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209 tp->lost_out += tcp_skb_pcount(skb);
2210 tcp_verify_retransmit_hint(tp, skb);
2211 }
2212 }
2213 tcp_verify_left_out(tp);
2214 }
2215
2216 /* Account newly detected lost packet(s) */
2217
2218 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2219 {
2220 struct tcp_sock *tp = tcp_sk(sk);
2221
2222 if (tcp_is_reno(tp)) {
2223 tcp_mark_head_lost(sk, 1);
2224 } else if (tcp_is_fack(tp)) {
2225 int lost = tp->fackets_out - tp->reordering;
2226 if (lost <= 0)
2227 lost = 1;
2228 tcp_mark_head_lost(sk, lost);
2229 } else {
2230 int sacked_upto = tp->sacked_out - tp->reordering;
2231 if (sacked_upto < fast_rexmit)
2232 sacked_upto = fast_rexmit;
2233 tcp_mark_head_lost(sk, sacked_upto);
2234 }
2235
2236 /* New heuristics: it is possible only after we switched
2237 * to restart timer each time when something is ACKed.
2238 * Hence, we can detect timed out packets during fast
2239 * retransmit without falling to slow start.
2240 */
2241 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2242 struct sk_buff *skb;
2243
2244 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2245 : tcp_write_queue_head(sk);
2246
2247 tcp_for_write_queue_from(skb, sk) {
2248 if (skb == tcp_send_head(sk))
2249 break;
2250 if (!tcp_skb_timedout(sk, skb))
2251 break;
2252
2253 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2254 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255 tp->lost_out += tcp_skb_pcount(skb);
2256 tcp_verify_retransmit_hint(tp, skb);
2257 }
2258 }
2259
2260 tp->scoreboard_skb_hint = skb;
2261
2262 tcp_verify_left_out(tp);
2263 }
2264 }
2265
2266 /* CWND moderation, preventing bursts due to too big ACKs
2267 * in dubious situations.
2268 */
2269 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2270 {
2271 tp->snd_cwnd = min(tp->snd_cwnd,
2272 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2273 tp->snd_cwnd_stamp = tcp_time_stamp;
2274 }
2275
2276 /* Lower bound on congestion window is slow start threshold
2277 * unless congestion avoidance choice decides to overide it.
2278 */
2279 static inline u32 tcp_cwnd_min(const struct sock *sk)
2280 {
2281 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2282
2283 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2284 }
2285
2286 /* Decrease cwnd each second ack. */
2287 static void tcp_cwnd_down(struct sock *sk, int flag)
2288 {
2289 struct tcp_sock *tp = tcp_sk(sk);
2290 int decr = tp->snd_cwnd_cnt + 1;
2291
2292 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2293 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2294 tp->snd_cwnd_cnt = decr & 1;
2295 decr >>= 1;
2296
2297 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2298 tp->snd_cwnd -= decr;
2299
2300 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2301 tp->snd_cwnd_stamp = tcp_time_stamp;
2302 }
2303 }
2304
2305 /* Nothing was retransmitted or returned timestamp is less
2306 * than timestamp of the first retransmission.
2307 */
2308 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2309 {
2310 return !tp->retrans_stamp ||
2311 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313 }
2314
2315 /* Undo procedures. */
2316
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320 struct tcp_sock *tp = tcp_sk(sk);
2321 struct inet_sock *inet = inet_sk(sk);
2322
2323 if (sk->sk_family == AF_INET) {
2324 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325 msg,
2326 NIPQUAD(inet->daddr), ntohs(inet->dport),
2327 tp->snd_cwnd, tcp_left_out(tp),
2328 tp->snd_ssthresh, tp->prior_ssthresh,
2329 tp->packets_out);
2330 }
2331 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332 else if (sk->sk_family == AF_INET6) {
2333 struct ipv6_pinfo *np = inet6_sk(sk);
2334 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2335 msg,
2336 NIP6(np->daddr), ntohs(inet->dport),
2337 tp->snd_cwnd, tcp_left_out(tp),
2338 tp->snd_ssthresh, tp->prior_ssthresh,
2339 tp->packets_out);
2340 }
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346
2347 static void tcp_undo_cwr(struct sock *sk, const int undo)
2348 {
2349 struct tcp_sock *tp = tcp_sk(sk);
2350
2351 if (tp->prior_ssthresh) {
2352 const struct inet_connection_sock *icsk = inet_csk(sk);
2353
2354 if (icsk->icsk_ca_ops->undo_cwnd)
2355 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356 else
2357 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2358
2359 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2360 tp->snd_ssthresh = tp->prior_ssthresh;
2361 TCP_ECN_withdraw_cwr(tp);
2362 }
2363 } else {
2364 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2365 }
2366 tcp_moderate_cwnd(tp);
2367 tp->snd_cwnd_stamp = tcp_time_stamp;
2368
2369 /* There is something screwy going on with the retrans hints after
2370 an undo */
2371 tcp_clear_all_retrans_hints(tp);
2372 }
2373
2374 static inline int tcp_may_undo(struct tcp_sock *tp)
2375 {
2376 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378
2379 /* People celebrate: "We love our President!" */
2380 static int tcp_try_undo_recovery(struct sock *sk)
2381 {
2382 struct tcp_sock *tp = tcp_sk(sk);
2383
2384 if (tcp_may_undo(tp)) {
2385 /* Happy end! We did not retransmit anything
2386 * or our original transmission succeeded.
2387 */
2388 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389 tcp_undo_cwr(sk, 1);
2390 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2392 else
2393 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2394 tp->undo_marker = 0;
2395 }
2396 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2397 /* Hold old state until something *above* high_seq
2398 * is ACKed. For Reno it is MUST to prevent false
2399 * fast retransmits (RFC2582). SACK TCP is safe. */
2400 tcp_moderate_cwnd(tp);
2401 return 1;
2402 }
2403 tcp_set_ca_state(sk, TCP_CA_Open);
2404 return 0;
2405 }
2406
2407 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408 static void tcp_try_undo_dsack(struct sock *sk)
2409 {
2410 struct tcp_sock *tp = tcp_sk(sk);
2411
2412 if (tp->undo_marker && !tp->undo_retrans) {
2413 DBGUNDO(sk, "D-SACK");
2414 tcp_undo_cwr(sk, 1);
2415 tp->undo_marker = 0;
2416 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2417 }
2418 }
2419
2420 /* Undo during fast recovery after partial ACK. */
2421
2422 static int tcp_try_undo_partial(struct sock *sk, int acked)
2423 {
2424 struct tcp_sock *tp = tcp_sk(sk);
2425 /* Partial ACK arrived. Force Hoe's retransmit. */
2426 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2427
2428 if (tcp_may_undo(tp)) {
2429 /* Plain luck! Hole if filled with delayed
2430 * packet, rather than with a retransmit.
2431 */
2432 if (tp->retrans_out == 0)
2433 tp->retrans_stamp = 0;
2434
2435 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2436
2437 DBGUNDO(sk, "Hoe");
2438 tcp_undo_cwr(sk, 0);
2439 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2440
2441 /* So... Do not make Hoe's retransmit yet.
2442 * If the first packet was delayed, the rest
2443 * ones are most probably delayed as well.
2444 */
2445 failed = 0;
2446 }
2447 return failed;
2448 }
2449
2450 /* Undo during loss recovery after partial ACK. */
2451 static int tcp_try_undo_loss(struct sock *sk)
2452 {
2453 struct tcp_sock *tp = tcp_sk(sk);
2454
2455 if (tcp_may_undo(tp)) {
2456 struct sk_buff *skb;
2457 tcp_for_write_queue(skb, sk) {
2458 if (skb == tcp_send_head(sk))
2459 break;
2460 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2461 }
2462
2463 tcp_clear_all_retrans_hints(tp);
2464
2465 DBGUNDO(sk, "partial loss");
2466 tp->lost_out = 0;
2467 tcp_undo_cwr(sk, 1);
2468 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2469 inet_csk(sk)->icsk_retransmits = 0;
2470 tp->undo_marker = 0;
2471 if (tcp_is_sack(tp))
2472 tcp_set_ca_state(sk, TCP_CA_Open);
2473 return 1;
2474 }
2475 return 0;
2476 }
2477
2478 static inline void tcp_complete_cwr(struct sock *sk)
2479 {
2480 struct tcp_sock *tp = tcp_sk(sk);
2481 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2482 tp->snd_cwnd_stamp = tcp_time_stamp;
2483 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2484 }
2485
2486 static void tcp_try_keep_open(struct sock *sk)
2487 {
2488 struct tcp_sock *tp = tcp_sk(sk);
2489 int state = TCP_CA_Open;
2490
2491 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2492 state = TCP_CA_Disorder;
2493
2494 if (inet_csk(sk)->icsk_ca_state != state) {
2495 tcp_set_ca_state(sk, state);
2496 tp->high_seq = tp->snd_nxt;
2497 }
2498 }
2499
2500 static void tcp_try_to_open(struct sock *sk, int flag)
2501 {
2502 struct tcp_sock *tp = tcp_sk(sk);
2503
2504 tcp_verify_left_out(tp);
2505
2506 if (!tp->frto_counter && tp->retrans_out == 0)
2507 tp->retrans_stamp = 0;
2508
2509 if (flag & FLAG_ECE)
2510 tcp_enter_cwr(sk, 1);
2511
2512 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2513 tcp_try_keep_open(sk);
2514 tcp_moderate_cwnd(tp);
2515 } else {
2516 tcp_cwnd_down(sk, flag);
2517 }
2518 }
2519
2520 static void tcp_mtup_probe_failed(struct sock *sk)
2521 {
2522 struct inet_connection_sock *icsk = inet_csk(sk);
2523
2524 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2525 icsk->icsk_mtup.probe_size = 0;
2526 }
2527
2528 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2529 {
2530 struct tcp_sock *tp = tcp_sk(sk);
2531 struct inet_connection_sock *icsk = inet_csk(sk);
2532
2533 /* FIXME: breaks with very large cwnd */
2534 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2535 tp->snd_cwnd = tp->snd_cwnd *
2536 tcp_mss_to_mtu(sk, tp->mss_cache) /
2537 icsk->icsk_mtup.probe_size;
2538 tp->snd_cwnd_cnt = 0;
2539 tp->snd_cwnd_stamp = tcp_time_stamp;
2540 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2541
2542 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2543 icsk->icsk_mtup.probe_size = 0;
2544 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2545 }
2546
2547 /* Process an event, which can update packets-in-flight not trivially.
2548 * Main goal of this function is to calculate new estimate for left_out,
2549 * taking into account both packets sitting in receiver's buffer and
2550 * packets lost by network.
2551 *
2552 * Besides that it does CWND reduction, when packet loss is detected
2553 * and changes state of machine.
2554 *
2555 * It does _not_ decide what to send, it is made in function
2556 * tcp_xmit_retransmit_queue().
2557 */
2558 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2559 {
2560 struct inet_connection_sock *icsk = inet_csk(sk);
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2563 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2564 (tcp_fackets_out(tp) > tp->reordering));
2565 int fast_rexmit = 0;
2566
2567 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2568 tp->sacked_out = 0;
2569 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2570 tp->fackets_out = 0;
2571
2572 /* Now state machine starts.
2573 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2574 if (flag & FLAG_ECE)
2575 tp->prior_ssthresh = 0;
2576
2577 /* B. In all the states check for reneging SACKs. */
2578 if (tcp_check_sack_reneging(sk, flag))
2579 return;
2580
2581 /* C. Process data loss notification, provided it is valid. */
2582 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2583 before(tp->snd_una, tp->high_seq) &&
2584 icsk->icsk_ca_state != TCP_CA_Open &&
2585 tp->fackets_out > tp->reordering) {
2586 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2587 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2588 }
2589
2590 /* D. Check consistency of the current state. */
2591 tcp_verify_left_out(tp);
2592
2593 /* E. Check state exit conditions. State can be terminated
2594 * when high_seq is ACKed. */
2595 if (icsk->icsk_ca_state == TCP_CA_Open) {
2596 BUG_TRAP(tp->retrans_out == 0);
2597 tp->retrans_stamp = 0;
2598 } else if (!before(tp->snd_una, tp->high_seq)) {
2599 switch (icsk->icsk_ca_state) {
2600 case TCP_CA_Loss:
2601 icsk->icsk_retransmits = 0;
2602 if (tcp_try_undo_recovery(sk))
2603 return;
2604 break;
2605
2606 case TCP_CA_CWR:
2607 /* CWR is to be held something *above* high_seq
2608 * is ACKed for CWR bit to reach receiver. */
2609 if (tp->snd_una != tp->high_seq) {
2610 tcp_complete_cwr(sk);
2611 tcp_set_ca_state(sk, TCP_CA_Open);
2612 }
2613 break;
2614
2615 case TCP_CA_Disorder:
2616 tcp_try_undo_dsack(sk);
2617 if (!tp->undo_marker ||
2618 /* For SACK case do not Open to allow to undo
2619 * catching for all duplicate ACKs. */
2620 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2621 tp->undo_marker = 0;
2622 tcp_set_ca_state(sk, TCP_CA_Open);
2623 }
2624 break;
2625
2626 case TCP_CA_Recovery:
2627 if (tcp_is_reno(tp))
2628 tcp_reset_reno_sack(tp);
2629 if (tcp_try_undo_recovery(sk))
2630 return;
2631 tcp_complete_cwr(sk);
2632 break;
2633 }
2634 }
2635
2636 /* F. Process state. */
2637 switch (icsk->icsk_ca_state) {
2638 case TCP_CA_Recovery:
2639 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2640 if (tcp_is_reno(tp) && is_dupack)
2641 tcp_add_reno_sack(sk);
2642 } else
2643 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2644 break;
2645 case TCP_CA_Loss:
2646 if (flag & FLAG_DATA_ACKED)
2647 icsk->icsk_retransmits = 0;
2648 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2649 tcp_reset_reno_sack(tp);
2650 if (!tcp_try_undo_loss(sk)) {
2651 tcp_moderate_cwnd(tp);
2652 tcp_xmit_retransmit_queue(sk);
2653 return;
2654 }
2655 if (icsk->icsk_ca_state != TCP_CA_Open)
2656 return;
2657 /* Loss is undone; fall through to processing in Open state. */
2658 default:
2659 if (tcp_is_reno(tp)) {
2660 if (flag & FLAG_SND_UNA_ADVANCED)
2661 tcp_reset_reno_sack(tp);
2662 if (is_dupack)
2663 tcp_add_reno_sack(sk);
2664 }
2665
2666 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2667 tcp_try_undo_dsack(sk);
2668
2669 if (!tcp_time_to_recover(sk)) {
2670 tcp_try_to_open(sk, flag);
2671 return;
2672 }
2673
2674 /* MTU probe failure: don't reduce cwnd */
2675 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2676 icsk->icsk_mtup.probe_size &&
2677 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2678 tcp_mtup_probe_failed(sk);
2679 /* Restores the reduction we did in tcp_mtup_probe() */
2680 tp->snd_cwnd++;
2681 tcp_simple_retransmit(sk);
2682 return;
2683 }
2684
2685 /* Otherwise enter Recovery state */
2686
2687 if (tcp_is_reno(tp))
2688 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2689 else
2690 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2691
2692 tp->high_seq = tp->snd_nxt;
2693 tp->prior_ssthresh = 0;
2694 tp->undo_marker = tp->snd_una;
2695 tp->undo_retrans = tp->retrans_out;
2696
2697 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2698 if (!(flag & FLAG_ECE))
2699 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2700 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2701 TCP_ECN_queue_cwr(tp);
2702 }
2703
2704 tp->bytes_acked = 0;
2705 tp->snd_cwnd_cnt = 0;
2706 tcp_set_ca_state(sk, TCP_CA_Recovery);
2707 fast_rexmit = 1;
2708 }
2709
2710 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2711 tcp_update_scoreboard(sk, fast_rexmit);
2712 tcp_cwnd_down(sk, flag);
2713 tcp_xmit_retransmit_queue(sk);
2714 }
2715
2716 /* Read draft-ietf-tcplw-high-performance before mucking
2717 * with this code. (Supersedes RFC1323)
2718 */
2719 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2720 {
2721 /* RTTM Rule: A TSecr value received in a segment is used to
2722 * update the averaged RTT measurement only if the segment
2723 * acknowledges some new data, i.e., only if it advances the
2724 * left edge of the send window.
2725 *
2726 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2727 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2728 *
2729 * Changed: reset backoff as soon as we see the first valid sample.
2730 * If we do not, we get strongly overestimated rto. With timestamps
2731 * samples are accepted even from very old segments: f.e., when rtt=1
2732 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2733 * answer arrives rto becomes 120 seconds! If at least one of segments
2734 * in window is lost... Voila. --ANK (010210)
2735 */
2736 struct tcp_sock *tp = tcp_sk(sk);
2737 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2738 tcp_rtt_estimator(sk, seq_rtt);
2739 tcp_set_rto(sk);
2740 inet_csk(sk)->icsk_backoff = 0;
2741 tcp_bound_rto(sk);
2742 }
2743
2744 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2745 {
2746 /* We don't have a timestamp. Can only use
2747 * packets that are not retransmitted to determine
2748 * rtt estimates. Also, we must not reset the
2749 * backoff for rto until we get a non-retransmitted
2750 * packet. This allows us to deal with a situation
2751 * where the network delay has increased suddenly.
2752 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2753 */
2754
2755 if (flag & FLAG_RETRANS_DATA_ACKED)
2756 return;
2757
2758 tcp_rtt_estimator(sk, seq_rtt);
2759 tcp_set_rto(sk);
2760 inet_csk(sk)->icsk_backoff = 0;
2761 tcp_bound_rto(sk);
2762 }
2763
2764 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2765 const s32 seq_rtt)
2766 {
2767 const struct tcp_sock *tp = tcp_sk(sk);
2768 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2769 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2770 tcp_ack_saw_tstamp(sk, flag);
2771 else if (seq_rtt >= 0)
2772 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2773 }
2774
2775 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2776 {
2777 const struct inet_connection_sock *icsk = inet_csk(sk);
2778 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2779 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2780 }
2781
2782 /* Restart timer after forward progress on connection.
2783 * RFC2988 recommends to restart timer to now+rto.
2784 */
2785 static void tcp_rearm_rto(struct sock *sk)
2786 {
2787 struct tcp_sock *tp = tcp_sk(sk);
2788
2789 if (!tp->packets_out) {
2790 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2791 } else {
2792 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2793 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2794 }
2795 }
2796
2797 /* If we get here, the whole TSO packet has not been acked. */
2798 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2799 {
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 u32 packets_acked;
2802
2803 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2804
2805 packets_acked = tcp_skb_pcount(skb);
2806 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2807 return 0;
2808 packets_acked -= tcp_skb_pcount(skb);
2809
2810 if (packets_acked) {
2811 BUG_ON(tcp_skb_pcount(skb) == 0);
2812 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2813 }
2814
2815 return packets_acked;
2816 }
2817
2818 /* Remove acknowledged frames from the retransmission queue. If our packet
2819 * is before the ack sequence we can discard it as it's confirmed to have
2820 * arrived at the other end.
2821 */
2822 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2823 {
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 const struct inet_connection_sock *icsk = inet_csk(sk);
2826 struct sk_buff *skb;
2827 u32 now = tcp_time_stamp;
2828 int fully_acked = 1;
2829 int flag = 0;
2830 u32 pkts_acked = 0;
2831 u32 reord = tp->packets_out;
2832 s32 seq_rtt = -1;
2833 s32 ca_seq_rtt = -1;
2834 ktime_t last_ackt = net_invalid_timestamp();
2835
2836 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2837 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2838 u32 end_seq;
2839 u32 acked_pcount;
2840 u8 sacked = scb->sacked;
2841
2842 /* Determine how many packets and what bytes were acked, tso and else */
2843 if (after(scb->end_seq, tp->snd_una)) {
2844 if (tcp_skb_pcount(skb) == 1 ||
2845 !after(tp->snd_una, scb->seq))
2846 break;
2847
2848 acked_pcount = tcp_tso_acked(sk, skb);
2849 if (!acked_pcount)
2850 break;
2851
2852 fully_acked = 0;
2853 end_seq = tp->snd_una;
2854 } else {
2855 acked_pcount = tcp_skb_pcount(skb);
2856 end_seq = scb->end_seq;
2857 }
2858
2859 /* MTU probing checks */
2860 if (fully_acked && icsk->icsk_mtup.probe_size &&
2861 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2862 tcp_mtup_probe_success(sk, skb);
2863 }
2864
2865 if (sacked & TCPCB_RETRANS) {
2866 if (sacked & TCPCB_SACKED_RETRANS)
2867 tp->retrans_out -= acked_pcount;
2868 flag |= FLAG_RETRANS_DATA_ACKED;
2869 ca_seq_rtt = -1;
2870 seq_rtt = -1;
2871 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2872 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2873 } else {
2874 ca_seq_rtt = now - scb->when;
2875 last_ackt = skb->tstamp;
2876 if (seq_rtt < 0) {
2877 seq_rtt = ca_seq_rtt;
2878 }
2879 if (!(sacked & TCPCB_SACKED_ACKED))
2880 reord = min(pkts_acked, reord);
2881 }
2882
2883 if (sacked & TCPCB_SACKED_ACKED)
2884 tp->sacked_out -= acked_pcount;
2885 if (sacked & TCPCB_LOST)
2886 tp->lost_out -= acked_pcount;
2887
2888 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2889 tp->urg_mode = 0;
2890
2891 tp->packets_out -= acked_pcount;
2892 pkts_acked += acked_pcount;
2893
2894 /* Initial outgoing SYN's get put onto the write_queue
2895 * just like anything else we transmit. It is not
2896 * true data, and if we misinform our callers that
2897 * this ACK acks real data, we will erroneously exit
2898 * connection startup slow start one packet too
2899 * quickly. This is severely frowned upon behavior.
2900 */
2901 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2902 flag |= FLAG_DATA_ACKED;
2903 } else {
2904 flag |= FLAG_SYN_ACKED;
2905 tp->retrans_stamp = 0;
2906 }
2907
2908 if (!fully_acked)
2909 break;
2910
2911 tcp_unlink_write_queue(skb, sk);
2912 sk_wmem_free_skb(sk, skb);
2913 tcp_clear_all_retrans_hints(tp);
2914 }
2915
2916 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2917 flag |= FLAG_SACK_RENEGING;
2918
2919 if (flag & FLAG_ACKED) {
2920 const struct tcp_congestion_ops *ca_ops
2921 = inet_csk(sk)->icsk_ca_ops;
2922
2923 tcp_ack_update_rtt(sk, flag, seq_rtt);
2924 tcp_rearm_rto(sk);
2925
2926 if (tcp_is_reno(tp)) {
2927 tcp_remove_reno_sacks(sk, pkts_acked);
2928 } else {
2929 /* Non-retransmitted hole got filled? That's reordering */
2930 if (reord < prior_fackets)
2931 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2932 }
2933
2934 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2935
2936 if (ca_ops->pkts_acked) {
2937 s32 rtt_us = -1;
2938
2939 /* Is the ACK triggering packet unambiguous? */
2940 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2941 /* High resolution needed and available? */
2942 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2943 !ktime_equal(last_ackt,
2944 net_invalid_timestamp()))
2945 rtt_us = ktime_us_delta(ktime_get_real(),
2946 last_ackt);
2947 else if (ca_seq_rtt > 0)
2948 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2949 }
2950
2951 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2952 }
2953 }
2954
2955 #if FASTRETRANS_DEBUG > 0
2956 BUG_TRAP((int)tp->sacked_out >= 0);
2957 BUG_TRAP((int)tp->lost_out >= 0);
2958 BUG_TRAP((int)tp->retrans_out >= 0);
2959 if (!tp->packets_out && tcp_is_sack(tp)) {
2960 icsk = inet_csk(sk);
2961 if (tp->lost_out) {
2962 printk(KERN_DEBUG "Leak l=%u %d\n",
2963 tp->lost_out, icsk->icsk_ca_state);
2964 tp->lost_out = 0;
2965 }
2966 if (tp->sacked_out) {
2967 printk(KERN_DEBUG "Leak s=%u %d\n",
2968 tp->sacked_out, icsk->icsk_ca_state);
2969 tp->sacked_out = 0;
2970 }
2971 if (tp->retrans_out) {
2972 printk(KERN_DEBUG "Leak r=%u %d\n",
2973 tp->retrans_out, icsk->icsk_ca_state);
2974 tp->retrans_out = 0;
2975 }
2976 }
2977 #endif
2978 return flag;
2979 }
2980
2981 static void tcp_ack_probe(struct sock *sk)
2982 {
2983 const struct tcp_sock *tp = tcp_sk(sk);
2984 struct inet_connection_sock *icsk = inet_csk(sk);
2985
2986 /* Was it a usable window open? */
2987
2988 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2989 icsk->icsk_backoff = 0;
2990 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2991 /* Socket must be waked up by subsequent tcp_data_snd_check().
2992 * This function is not for random using!
2993 */
2994 } else {
2995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2996 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2997 TCP_RTO_MAX);
2998 }
2999 }
3000
3001 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3002 {
3003 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3004 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3005 }
3006
3007 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3008 {
3009 const struct tcp_sock *tp = tcp_sk(sk);
3010 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3011 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3012 }
3013
3014 /* Check that window update is acceptable.
3015 * The function assumes that snd_una<=ack<=snd_next.
3016 */
3017 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3018 const u32 ack, const u32 ack_seq,
3019 const u32 nwin)
3020 {
3021 return (after(ack, tp->snd_una) ||
3022 after(ack_seq, tp->snd_wl1) ||
3023 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3024 }
3025
3026 /* Update our send window.
3027 *
3028 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3029 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3030 */
3031 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3032 u32 ack_seq)
3033 {
3034 struct tcp_sock *tp = tcp_sk(sk);
3035 int flag = 0;
3036 u32 nwin = ntohs(tcp_hdr(skb)->window);
3037
3038 if (likely(!tcp_hdr(skb)->syn))
3039 nwin <<= tp->rx_opt.snd_wscale;
3040
3041 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3042 flag |= FLAG_WIN_UPDATE;
3043 tcp_update_wl(tp, ack, ack_seq);
3044
3045 if (tp->snd_wnd != nwin) {
3046 tp->snd_wnd = nwin;
3047
3048 /* Note, it is the only place, where
3049 * fast path is recovered for sending TCP.
3050 */
3051 tp->pred_flags = 0;
3052 tcp_fast_path_check(sk);
3053
3054 if (nwin > tp->max_window) {
3055 tp->max_window = nwin;
3056 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3057 }
3058 }
3059 }
3060
3061 tp->snd_una = ack;
3062
3063 return flag;
3064 }
3065
3066 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3067 * continue in congestion avoidance.
3068 */
3069 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3070 {
3071 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3072 tp->snd_cwnd_cnt = 0;
3073 tp->bytes_acked = 0;
3074 TCP_ECN_queue_cwr(tp);
3075 tcp_moderate_cwnd(tp);
3076 }
3077
3078 /* A conservative spurious RTO response algorithm: reduce cwnd using
3079 * rate halving and continue in congestion avoidance.
3080 */
3081 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3082 {
3083 tcp_enter_cwr(sk, 0);
3084 }
3085
3086 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3087 {
3088 if (flag & FLAG_ECE)
3089 tcp_ratehalving_spur_to_response(sk);
3090 else
3091 tcp_undo_cwr(sk, 1);
3092 }
3093
3094 /* F-RTO spurious RTO detection algorithm (RFC4138)
3095 *
3096 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3097 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3098 * window (but not to or beyond highest sequence sent before RTO):
3099 * On First ACK, send two new segments out.
3100 * On Second ACK, RTO was likely spurious. Do spurious response (response
3101 * algorithm is not part of the F-RTO detection algorithm
3102 * given in RFC4138 but can be selected separately).
3103 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3104 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3105 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3106 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3107 *
3108 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3109 * original window even after we transmit two new data segments.
3110 *
3111 * SACK version:
3112 * on first step, wait until first cumulative ACK arrives, then move to
3113 * the second step. In second step, the next ACK decides.
3114 *
3115 * F-RTO is implemented (mainly) in four functions:
3116 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3117 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3118 * called when tcp_use_frto() showed green light
3119 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3120 * - tcp_enter_frto_loss() is called if there is not enough evidence
3121 * to prove that the RTO is indeed spurious. It transfers the control
3122 * from F-RTO to the conventional RTO recovery
3123 */
3124 static int tcp_process_frto(struct sock *sk, int flag)
3125 {
3126 struct tcp_sock *tp = tcp_sk(sk);
3127
3128 tcp_verify_left_out(tp);
3129
3130 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3131 if (flag & FLAG_DATA_ACKED)
3132 inet_csk(sk)->icsk_retransmits = 0;
3133
3134 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3135 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3136 tp->undo_marker = 0;
3137
3138 if (!before(tp->snd_una, tp->frto_highmark)) {
3139 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3140 return 1;
3141 }
3142
3143 if (!tcp_is_sackfrto(tp)) {
3144 /* RFC4138 shortcoming in step 2; should also have case c):
3145 * ACK isn't duplicate nor advances window, e.g., opposite dir
3146 * data, winupdate
3147 */
3148 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3149 return 1;
3150
3151 if (!(flag & FLAG_DATA_ACKED)) {
3152 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3153 flag);
3154 return 1;
3155 }
3156 } else {
3157 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3158 /* Prevent sending of new data. */
3159 tp->snd_cwnd = min(tp->snd_cwnd,
3160 tcp_packets_in_flight(tp));
3161 return 1;
3162 }
3163
3164 if ((tp->frto_counter >= 2) &&
3165 (!(flag & FLAG_FORWARD_PROGRESS) ||
3166 ((flag & FLAG_DATA_SACKED) &&
3167 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3168 /* RFC4138 shortcoming (see comment above) */
3169 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3170 (flag & FLAG_NOT_DUP))
3171 return 1;
3172
3173 tcp_enter_frto_loss(sk, 3, flag);
3174 return 1;
3175 }
3176 }
3177
3178 if (tp->frto_counter == 1) {
3179 /* tcp_may_send_now needs to see updated state */
3180 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3181 tp->frto_counter = 2;
3182
3183 if (!tcp_may_send_now(sk))
3184 tcp_enter_frto_loss(sk, 2, flag);
3185
3186 return 1;
3187 } else {
3188 switch (sysctl_tcp_frto_response) {
3189 case 2:
3190 tcp_undo_spur_to_response(sk, flag);
3191 break;
3192 case 1:
3193 tcp_conservative_spur_to_response(tp);
3194 break;
3195 default:
3196 tcp_ratehalving_spur_to_response(sk);
3197 break;
3198 }
3199 tp->frto_counter = 0;
3200 tp->undo_marker = 0;
3201 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3202 }
3203 return 0;
3204 }
3205
3206 /* This routine deals with incoming acks, but not outgoing ones. */
3207 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3208 {
3209 struct inet_connection_sock *icsk = inet_csk(sk);
3210 struct tcp_sock *tp = tcp_sk(sk);
3211 u32 prior_snd_una = tp->snd_una;
3212 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3213 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3214 u32 prior_in_flight;
3215 u32 prior_fackets;
3216 int prior_packets;
3217 int frto_cwnd = 0;
3218
3219 /* If the ack is newer than sent or older than previous acks
3220 * then we can probably ignore it.
3221 */
3222 if (after(ack, tp->snd_nxt))
3223 goto uninteresting_ack;
3224
3225 if (before(ack, prior_snd_una))
3226 goto old_ack;
3227
3228 if (after(ack, prior_snd_una))
3229 flag |= FLAG_SND_UNA_ADVANCED;
3230
3231 if (sysctl_tcp_abc) {
3232 if (icsk->icsk_ca_state < TCP_CA_CWR)
3233 tp->bytes_acked += ack - prior_snd_una;
3234 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3235 /* we assume just one segment left network */
3236 tp->bytes_acked += min(ack - prior_snd_una,
3237 tp->mss_cache);
3238 }
3239
3240 prior_fackets = tp->fackets_out;
3241 prior_in_flight = tcp_packets_in_flight(tp);
3242
3243 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3244 /* Window is constant, pure forward advance.
3245 * No more checks are required.
3246 * Note, we use the fact that SND.UNA>=SND.WL2.
3247 */
3248 tcp_update_wl(tp, ack, ack_seq);
3249 tp->snd_una = ack;
3250 flag |= FLAG_WIN_UPDATE;
3251
3252 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3253
3254 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3255 } else {
3256 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3257 flag |= FLAG_DATA;
3258 else
3259 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3260
3261 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3262
3263 if (TCP_SKB_CB(skb)->sacked)
3264 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3265
3266 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3267 flag |= FLAG_ECE;
3268
3269 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3270 }
3271
3272 /* We passed data and got it acked, remove any soft error
3273 * log. Something worked...
3274 */
3275 sk->sk_err_soft = 0;
3276 tp->rcv_tstamp = tcp_time_stamp;
3277 prior_packets = tp->packets_out;
3278 if (!prior_packets)
3279 goto no_queue;
3280
3281 /* See if we can take anything off of the retransmit queue. */
3282 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3283
3284 if (tp->frto_counter)
3285 frto_cwnd = tcp_process_frto(sk, flag);
3286 /* Guarantee sacktag reordering detection against wrap-arounds */
3287 if (before(tp->frto_highmark, tp->snd_una))
3288 tp->frto_highmark = 0;
3289
3290 if (tcp_ack_is_dubious(sk, flag)) {
3291 /* Advance CWND, if state allows this. */
3292 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3293 tcp_may_raise_cwnd(sk, flag))
3294 tcp_cong_avoid(sk, ack, prior_in_flight);
3295 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3296 flag);
3297 } else {
3298 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3299 tcp_cong_avoid(sk, ack, prior_in_flight);
3300 }
3301
3302 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3303 dst_confirm(sk->sk_dst_cache);
3304
3305 return 1;
3306
3307 no_queue:
3308 icsk->icsk_probes_out = 0;
3309
3310 /* If this ack opens up a zero window, clear backoff. It was
3311 * being used to time the probes, and is probably far higher than
3312 * it needs to be for normal retransmission.
3313 */
3314 if (tcp_send_head(sk))
3315 tcp_ack_probe(sk);
3316 return 1;
3317
3318 old_ack:
3319 if (TCP_SKB_CB(skb)->sacked) {
3320 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3321 if (icsk->icsk_ca_state == TCP_CA_Open)
3322 tcp_try_keep_open(sk);
3323 }
3324
3325 uninteresting_ack:
3326 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3327 return 0;
3328 }
3329
3330 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3331 * But, this can also be called on packets in the established flow when
3332 * the fast version below fails.
3333 */
3334 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3335 int estab)
3336 {
3337 unsigned char *ptr;
3338 struct tcphdr *th = tcp_hdr(skb);
3339 int length = (th->doff * 4) - sizeof(struct tcphdr);
3340
3341 ptr = (unsigned char *)(th + 1);
3342 opt_rx->saw_tstamp = 0;
3343
3344 while (length > 0) {
3345 int opcode = *ptr++;
3346 int opsize;
3347
3348 switch (opcode) {
3349 case TCPOPT_EOL:
3350 return;
3351 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3352 length--;
3353 continue;
3354 default:
3355 opsize = *ptr++;
3356 if (opsize < 2) /* "silly options" */
3357 return;
3358 if (opsize > length)
3359 return; /* don't parse partial options */
3360 switch (opcode) {
3361 case TCPOPT_MSS:
3362 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3363 u16 in_mss = get_unaligned_be16(ptr);
3364 if (in_mss) {
3365 if (opt_rx->user_mss &&
3366 opt_rx->user_mss < in_mss)
3367 in_mss = opt_rx->user_mss;
3368 opt_rx->mss_clamp = in_mss;
3369 }
3370 }
3371 break;
3372 case TCPOPT_WINDOW:
3373 if (opsize == TCPOLEN_WINDOW && th->syn &&
3374 !estab && sysctl_tcp_window_scaling) {
3375 __u8 snd_wscale = *(__u8 *)ptr;
3376 opt_rx->wscale_ok = 1;
3377 if (snd_wscale > 14) {
3378 if (net_ratelimit())
3379 printk(KERN_INFO "tcp_parse_options: Illegal window "
3380 "scaling value %d >14 received.\n",
3381 snd_wscale);
3382 snd_wscale = 14;
3383 }
3384 opt_rx->snd_wscale = snd_wscale;
3385 }
3386 break;
3387 case TCPOPT_TIMESTAMP:
3388 if ((opsize == TCPOLEN_TIMESTAMP) &&
3389 ((estab && opt_rx->tstamp_ok) ||
3390 (!estab && sysctl_tcp_timestamps))) {
3391 opt_rx->saw_tstamp = 1;
3392 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3393 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3394 }
3395 break;
3396 case TCPOPT_SACK_PERM:
3397 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3398 !estab && sysctl_tcp_sack) {
3399 opt_rx->sack_ok = 1;
3400 tcp_sack_reset(opt_rx);
3401 }
3402 break;
3403
3404 case TCPOPT_SACK:
3405 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3406 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3407 opt_rx->sack_ok) {
3408 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3409 }
3410 break;
3411 #ifdef CONFIG_TCP_MD5SIG
3412 case TCPOPT_MD5SIG:
3413 /*
3414 * The MD5 Hash has already been
3415 * checked (see tcp_v{4,6}_do_rcv()).
3416 */
3417 break;
3418 #endif
3419 }
3420
3421 ptr += opsize-2;
3422 length -= opsize;
3423 }
3424 }
3425 }
3426
3427 /* Fast parse options. This hopes to only see timestamps.
3428 * If it is wrong it falls back on tcp_parse_options().
3429 */
3430 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3431 struct tcp_sock *tp)
3432 {
3433 if (th->doff == sizeof(struct tcphdr) >> 2) {
3434 tp->rx_opt.saw_tstamp = 0;
3435 return 0;
3436 } else if (tp->rx_opt.tstamp_ok &&
3437 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3438 __be32 *ptr = (__be32 *)(th + 1);
3439 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3440 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3441 tp->rx_opt.saw_tstamp = 1;
3442 ++ptr;
3443 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3444 ++ptr;
3445 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3446 return 1;
3447 }
3448 }
3449 tcp_parse_options(skb, &tp->rx_opt, 1);
3450 return 1;
3451 }
3452
3453 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3454 {
3455 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3456 tp->rx_opt.ts_recent_stamp = get_seconds();
3457 }
3458
3459 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3460 {
3461 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3462 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3463 * extra check below makes sure this can only happen
3464 * for pure ACK frames. -DaveM
3465 *
3466 * Not only, also it occurs for expired timestamps.
3467 */
3468
3469 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3470 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3471 tcp_store_ts_recent(tp);
3472 }
3473 }
3474
3475 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3476 *
3477 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3478 * it can pass through stack. So, the following predicate verifies that
3479 * this segment is not used for anything but congestion avoidance or
3480 * fast retransmit. Moreover, we even are able to eliminate most of such
3481 * second order effects, if we apply some small "replay" window (~RTO)
3482 * to timestamp space.
3483 *
3484 * All these measures still do not guarantee that we reject wrapped ACKs
3485 * on networks with high bandwidth, when sequence space is recycled fastly,
3486 * but it guarantees that such events will be very rare and do not affect
3487 * connection seriously. This doesn't look nice, but alas, PAWS is really
3488 * buggy extension.
3489 *
3490 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3491 * states that events when retransmit arrives after original data are rare.
3492 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3493 * the biggest problem on large power networks even with minor reordering.
3494 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3495 * up to bandwidth of 18Gigabit/sec. 8) ]
3496 */
3497
3498 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3499 {
3500 struct tcp_sock *tp = tcp_sk(sk);
3501 struct tcphdr *th = tcp_hdr(skb);
3502 u32 seq = TCP_SKB_CB(skb)->seq;
3503 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3504
3505 return (/* 1. Pure ACK with correct sequence number. */
3506 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3507
3508 /* 2. ... and duplicate ACK. */
3509 ack == tp->snd_una &&
3510
3511 /* 3. ... and does not update window. */
3512 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3513
3514 /* 4. ... and sits in replay window. */
3515 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3516 }
3517
3518 static inline int tcp_paws_discard(const struct sock *sk,
3519 const struct sk_buff *skb)
3520 {
3521 const struct tcp_sock *tp = tcp_sk(sk);
3522 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3523 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3524 !tcp_disordered_ack(sk, skb));
3525 }
3526
3527 /* Check segment sequence number for validity.
3528 *
3529 * Segment controls are considered valid, if the segment
3530 * fits to the window after truncation to the window. Acceptability
3531 * of data (and SYN, FIN, of course) is checked separately.
3532 * See tcp_data_queue(), for example.
3533 *
3534 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3535 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3536 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3537 * (borrowed from freebsd)
3538 */
3539
3540 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3541 {
3542 return !before(end_seq, tp->rcv_wup) &&
3543 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3544 }
3545
3546 /* When we get a reset we do this. */
3547 static void tcp_reset(struct sock *sk)
3548 {
3549 /* We want the right error as BSD sees it (and indeed as we do). */
3550 switch (sk->sk_state) {
3551 case TCP_SYN_SENT:
3552 sk->sk_err = ECONNREFUSED;
3553 break;
3554 case TCP_CLOSE_WAIT:
3555 sk->sk_err = EPIPE;
3556 break;
3557 case TCP_CLOSE:
3558 return;
3559 default:
3560 sk->sk_err = ECONNRESET;
3561 }
3562
3563 if (!sock_flag(sk, SOCK_DEAD))
3564 sk->sk_error_report(sk);
3565
3566 tcp_done(sk);
3567 }
3568
3569 /*
3570 * Process the FIN bit. This now behaves as it is supposed to work
3571 * and the FIN takes effect when it is validly part of sequence
3572 * space. Not before when we get holes.
3573 *
3574 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3575 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3576 * TIME-WAIT)
3577 *
3578 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3579 * close and we go into CLOSING (and later onto TIME-WAIT)
3580 *
3581 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3582 */
3583 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3584 {
3585 struct tcp_sock *tp = tcp_sk(sk);
3586
3587 inet_csk_schedule_ack(sk);
3588
3589 sk->sk_shutdown |= RCV_SHUTDOWN;
3590 sock_set_flag(sk, SOCK_DONE);
3591
3592 switch (sk->sk_state) {
3593 case TCP_SYN_RECV:
3594 case TCP_ESTABLISHED:
3595 /* Move to CLOSE_WAIT */
3596 tcp_set_state(sk, TCP_CLOSE_WAIT);
3597 inet_csk(sk)->icsk_ack.pingpong = 1;
3598 break;
3599
3600 case TCP_CLOSE_WAIT:
3601 case TCP_CLOSING:
3602 /* Received a retransmission of the FIN, do
3603 * nothing.
3604 */
3605 break;
3606 case TCP_LAST_ACK:
3607 /* RFC793: Remain in the LAST-ACK state. */
3608 break;
3609
3610 case TCP_FIN_WAIT1:
3611 /* This case occurs when a simultaneous close
3612 * happens, we must ack the received FIN and
3613 * enter the CLOSING state.
3614 */
3615 tcp_send_ack(sk);
3616 tcp_set_state(sk, TCP_CLOSING);
3617 break;
3618 case TCP_FIN_WAIT2:
3619 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3620 tcp_send_ack(sk);
3621 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3622 break;
3623 default:
3624 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3625 * cases we should never reach this piece of code.
3626 */
3627 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3628 __func__, sk->sk_state);
3629 break;
3630 }
3631
3632 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3633 * Probably, we should reset in this case. For now drop them.
3634 */
3635 __skb_queue_purge(&tp->out_of_order_queue);
3636 if (tcp_is_sack(tp))
3637 tcp_sack_reset(&tp->rx_opt);
3638 sk_mem_reclaim(sk);
3639
3640 if (!sock_flag(sk, SOCK_DEAD)) {
3641 sk->sk_state_change(sk);
3642
3643 /* Do not send POLL_HUP for half duplex close. */
3644 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3645 sk->sk_state == TCP_CLOSE)
3646 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3647 else
3648 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3649 }
3650 }
3651
3652 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3653 u32 end_seq)
3654 {
3655 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3656 if (before(seq, sp->start_seq))
3657 sp->start_seq = seq;
3658 if (after(end_seq, sp->end_seq))
3659 sp->end_seq = end_seq;
3660 return 1;
3661 }
3662 return 0;
3663 }
3664
3665 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3666 {
3667 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3668 if (before(seq, tp->rcv_nxt))
3669 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3670 else
3671 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3672
3673 tp->rx_opt.dsack = 1;
3674 tp->duplicate_sack[0].start_seq = seq;
3675 tp->duplicate_sack[0].end_seq = end_seq;
3676 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3677 4 - tp->rx_opt.tstamp_ok);
3678 }
3679 }
3680
3681 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3682 {
3683 if (!tp->rx_opt.dsack)
3684 tcp_dsack_set(tp, seq, end_seq);
3685 else
3686 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3687 }
3688
3689 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3690 {
3691 struct tcp_sock *tp = tcp_sk(sk);
3692
3693 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3694 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3695 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3696 tcp_enter_quickack_mode(sk);
3697
3698 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3699 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3700
3701 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3702 end_seq = tp->rcv_nxt;
3703 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3704 }
3705 }
3706
3707 tcp_send_ack(sk);
3708 }
3709
3710 /* These routines update the SACK block as out-of-order packets arrive or
3711 * in-order packets close up the sequence space.
3712 */
3713 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3714 {
3715 int this_sack;
3716 struct tcp_sack_block *sp = &tp->selective_acks[0];
3717 struct tcp_sack_block *swalk = sp + 1;
3718
3719 /* See if the recent change to the first SACK eats into
3720 * or hits the sequence space of other SACK blocks, if so coalesce.
3721 */
3722 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3723 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3724 int i;
3725
3726 /* Zap SWALK, by moving every further SACK up by one slot.
3727 * Decrease num_sacks.
3728 */
3729 tp->rx_opt.num_sacks--;
3730 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3731 tp->rx_opt.dsack,
3732 4 - tp->rx_opt.tstamp_ok);
3733 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3734 sp[i] = sp[i + 1];
3735 continue;
3736 }
3737 this_sack++, swalk++;
3738 }
3739 }
3740
3741 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3742 struct tcp_sack_block *sack2)
3743 {
3744 __u32 tmp;
3745
3746 tmp = sack1->start_seq;
3747 sack1->start_seq = sack2->start_seq;
3748 sack2->start_seq = tmp;
3749
3750 tmp = sack1->end_seq;
3751 sack1->end_seq = sack2->end_seq;
3752 sack2->end_seq = tmp;
3753 }
3754
3755 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3756 {
3757 struct tcp_sock *tp = tcp_sk(sk);
3758 struct tcp_sack_block *sp = &tp->selective_acks[0];
3759 int cur_sacks = tp->rx_opt.num_sacks;
3760 int this_sack;
3761
3762 if (!cur_sacks)
3763 goto new_sack;
3764
3765 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3766 if (tcp_sack_extend(sp, seq, end_seq)) {
3767 /* Rotate this_sack to the first one. */
3768 for (; this_sack > 0; this_sack--, sp--)
3769 tcp_sack_swap(sp, sp - 1);
3770 if (cur_sacks > 1)
3771 tcp_sack_maybe_coalesce(tp);
3772 return;
3773 }
3774 }
3775
3776 /* Could not find an adjacent existing SACK, build a new one,
3777 * put it at the front, and shift everyone else down. We
3778 * always know there is at least one SACK present already here.
3779 *
3780 * If the sack array is full, forget about the last one.
3781 */
3782 if (this_sack >= 4) {
3783 this_sack--;
3784 tp->rx_opt.num_sacks--;
3785 sp--;
3786 }
3787 for (; this_sack > 0; this_sack--, sp--)
3788 *sp = *(sp - 1);
3789
3790 new_sack:
3791 /* Build the new head SACK, and we're done. */
3792 sp->start_seq = seq;
3793 sp->end_seq = end_seq;
3794 tp->rx_opt.num_sacks++;
3795 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3796 4 - tp->rx_opt.tstamp_ok);
3797 }
3798
3799 /* RCV.NXT advances, some SACKs should be eaten. */
3800
3801 static void tcp_sack_remove(struct tcp_sock *tp)
3802 {
3803 struct tcp_sack_block *sp = &tp->selective_acks[0];
3804 int num_sacks = tp->rx_opt.num_sacks;
3805 int this_sack;
3806
3807 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3808 if (skb_queue_empty(&tp->out_of_order_queue)) {
3809 tp->rx_opt.num_sacks = 0;
3810 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3811 return;
3812 }
3813
3814 for (this_sack = 0; this_sack < num_sacks;) {
3815 /* Check if the start of the sack is covered by RCV.NXT. */
3816 if (!before(tp->rcv_nxt, sp->start_seq)) {
3817 int i;
3818
3819 /* RCV.NXT must cover all the block! */
3820 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3821
3822 /* Zap this SACK, by moving forward any other SACKS. */
3823 for (i=this_sack+1; i < num_sacks; i++)
3824 tp->selective_acks[i-1] = tp->selective_acks[i];
3825 num_sacks--;
3826 continue;
3827 }
3828 this_sack++;
3829 sp++;
3830 }
3831 if (num_sacks != tp->rx_opt.num_sacks) {
3832 tp->rx_opt.num_sacks = num_sacks;
3833 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3834 tp->rx_opt.dsack,
3835 4 - tp->rx_opt.tstamp_ok);
3836 }
3837 }
3838
3839 /* This one checks to see if we can put data from the
3840 * out_of_order queue into the receive_queue.
3841 */
3842 static void tcp_ofo_queue(struct sock *sk)
3843 {
3844 struct tcp_sock *tp = tcp_sk(sk);
3845 __u32 dsack_high = tp->rcv_nxt;
3846 struct sk_buff *skb;
3847
3848 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3849 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3850 break;
3851
3852 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3853 __u32 dsack = dsack_high;
3854 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3855 dsack_high = TCP_SKB_CB(skb)->end_seq;
3856 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3857 }
3858
3859 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3860 SOCK_DEBUG(sk, "ofo packet was already received \n");
3861 __skb_unlink(skb, &tp->out_of_order_queue);
3862 __kfree_skb(skb);
3863 continue;
3864 }
3865 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3866 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3867 TCP_SKB_CB(skb)->end_seq);
3868
3869 __skb_unlink(skb, &tp->out_of_order_queue);
3870 __skb_queue_tail(&sk->sk_receive_queue, skb);
3871 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3872 if (tcp_hdr(skb)->fin)
3873 tcp_fin(skb, sk, tcp_hdr(skb));
3874 }
3875 }
3876
3877 static int tcp_prune_ofo_queue(struct sock *sk);
3878 static int tcp_prune_queue(struct sock *sk);
3879
3880 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3881 {
3882 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3883 !sk_rmem_schedule(sk, size)) {
3884
3885 if (tcp_prune_queue(sk) < 0)
3886 return -1;
3887
3888 if (!sk_rmem_schedule(sk, size)) {
3889 if (!tcp_prune_ofo_queue(sk))
3890 return -1;
3891
3892 if (!sk_rmem_schedule(sk, size))
3893 return -1;
3894 }
3895 }
3896 return 0;
3897 }
3898
3899 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3900 {
3901 struct tcphdr *th = tcp_hdr(skb);
3902 struct tcp_sock *tp = tcp_sk(sk);
3903 int eaten = -1;
3904
3905 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3906 goto drop;
3907
3908 __skb_pull(skb, th->doff * 4);
3909
3910 TCP_ECN_accept_cwr(tp, skb);
3911
3912 if (tp->rx_opt.dsack) {
3913 tp->rx_opt.dsack = 0;
3914 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3915 4 - tp->rx_opt.tstamp_ok);
3916 }
3917
3918 /* Queue data for delivery to the user.
3919 * Packets in sequence go to the receive queue.
3920 * Out of sequence packets to the out_of_order_queue.
3921 */
3922 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3923 if (tcp_receive_window(tp) == 0)
3924 goto out_of_window;
3925
3926 /* Ok. In sequence. In window. */
3927 if (tp->ucopy.task == current &&
3928 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3929 sock_owned_by_user(sk) && !tp->urg_data) {
3930 int chunk = min_t(unsigned int, skb->len,
3931 tp->ucopy.len);
3932
3933 __set_current_state(TASK_RUNNING);
3934
3935 local_bh_enable();
3936 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3937 tp->ucopy.len -= chunk;
3938 tp->copied_seq += chunk;
3939 eaten = (chunk == skb->len && !th->fin);
3940 tcp_rcv_space_adjust(sk);
3941 }
3942 local_bh_disable();
3943 }
3944
3945 if (eaten <= 0) {
3946 queue_and_out:
3947 if (eaten < 0 &&
3948 tcp_try_rmem_schedule(sk, skb->truesize))
3949 goto drop;
3950
3951 skb_set_owner_r(skb, sk);
3952 __skb_queue_tail(&sk->sk_receive_queue, skb);
3953 }
3954 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3955 if (skb->len)
3956 tcp_event_data_recv(sk, skb);
3957 if (th->fin)
3958 tcp_fin(skb, sk, th);
3959
3960 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3961 tcp_ofo_queue(sk);
3962
3963 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3964 * gap in queue is filled.
3965 */
3966 if (skb_queue_empty(&tp->out_of_order_queue))
3967 inet_csk(sk)->icsk_ack.pingpong = 0;
3968 }
3969
3970 if (tp->rx_opt.num_sacks)
3971 tcp_sack_remove(tp);
3972
3973 tcp_fast_path_check(sk);
3974
3975 if (eaten > 0)
3976 __kfree_skb(skb);
3977 else if (!sock_flag(sk, SOCK_DEAD))
3978 sk->sk_data_ready(sk, 0);
3979 return;
3980 }
3981
3982 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3983 /* A retransmit, 2nd most common case. Force an immediate ack. */
3984 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3985 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3986
3987 out_of_window:
3988 tcp_enter_quickack_mode(sk);
3989 inet_csk_schedule_ack(sk);
3990 drop:
3991 __kfree_skb(skb);
3992 return;
3993 }
3994
3995 /* Out of window. F.e. zero window probe. */
3996 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3997 goto out_of_window;
3998
3999 tcp_enter_quickack_mode(sk);
4000
4001 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4002 /* Partial packet, seq < rcv_next < end_seq */
4003 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4004 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4005 TCP_SKB_CB(skb)->end_seq);
4006
4007 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4008
4009 /* If window is closed, drop tail of packet. But after
4010 * remembering D-SACK for its head made in previous line.
4011 */
4012 if (!tcp_receive_window(tp))
4013 goto out_of_window;
4014 goto queue_and_out;
4015 }
4016
4017 TCP_ECN_check_ce(tp, skb);
4018
4019 if (tcp_try_rmem_schedule(sk, skb->truesize))
4020 goto drop;
4021
4022 /* Disable header prediction. */
4023 tp->pred_flags = 0;
4024 inet_csk_schedule_ack(sk);
4025
4026 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4027 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4028
4029 skb_set_owner_r(skb, sk);
4030
4031 if (!skb_peek(&tp->out_of_order_queue)) {
4032 /* Initial out of order segment, build 1 SACK. */
4033 if (tcp_is_sack(tp)) {
4034 tp->rx_opt.num_sacks = 1;
4035 tp->rx_opt.dsack = 0;
4036 tp->rx_opt.eff_sacks = 1;
4037 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4038 tp->selective_acks[0].end_seq =
4039 TCP_SKB_CB(skb)->end_seq;
4040 }
4041 __skb_queue_head(&tp->out_of_order_queue, skb);
4042 } else {
4043 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4044 u32 seq = TCP_SKB_CB(skb)->seq;
4045 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4046
4047 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4048 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4049
4050 if (!tp->rx_opt.num_sacks ||
4051 tp->selective_acks[0].end_seq != seq)
4052 goto add_sack;
4053
4054 /* Common case: data arrive in order after hole. */
4055 tp->selective_acks[0].end_seq = end_seq;
4056 return;
4057 }
4058
4059 /* Find place to insert this segment. */
4060 do {
4061 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4062 break;
4063 } while ((skb1 = skb1->prev) !=
4064 (struct sk_buff *)&tp->out_of_order_queue);
4065
4066 /* Do skb overlap to previous one? */
4067 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4068 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4069 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070 /* All the bits are present. Drop. */
4071 __kfree_skb(skb);
4072 tcp_dsack_set(tp, seq, end_seq);
4073 goto add_sack;
4074 }
4075 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4076 /* Partial overlap. */
4077 tcp_dsack_set(tp, seq,
4078 TCP_SKB_CB(skb1)->end_seq);
4079 } else {
4080 skb1 = skb1->prev;
4081 }
4082 }
4083 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4084
4085 /* And clean segments covered by new one as whole. */
4086 while ((skb1 = skb->next) !=
4087 (struct sk_buff *)&tp->out_of_order_queue &&
4088 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4089 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4090 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4091 end_seq);
4092 break;
4093 }
4094 __skb_unlink(skb1, &tp->out_of_order_queue);
4095 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4096 TCP_SKB_CB(skb1)->end_seq);
4097 __kfree_skb(skb1);
4098 }
4099
4100 add_sack:
4101 if (tcp_is_sack(tp))
4102 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4103 }
4104 }
4105
4106 /* Collapse contiguous sequence of skbs head..tail with
4107 * sequence numbers start..end.
4108 * Segments with FIN/SYN are not collapsed (only because this
4109 * simplifies code)
4110 */
4111 static void
4112 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4113 struct sk_buff *head, struct sk_buff *tail,
4114 u32 start, u32 end)
4115 {
4116 struct sk_buff *skb;
4117
4118 /* First, check that queue is collapsible and find
4119 * the point where collapsing can be useful. */
4120 for (skb = head; skb != tail;) {
4121 /* No new bits? It is possible on ofo queue. */
4122 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4123 struct sk_buff *next = skb->next;
4124 __skb_unlink(skb, list);
4125 __kfree_skb(skb);
4126 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4127 skb = next;
4128 continue;
4129 }
4130
4131 /* The first skb to collapse is:
4132 * - not SYN/FIN and
4133 * - bloated or contains data before "start" or
4134 * overlaps to the next one.
4135 */
4136 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4137 (tcp_win_from_space(skb->truesize) > skb->len ||
4138 before(TCP_SKB_CB(skb)->seq, start) ||
4139 (skb->next != tail &&
4140 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4141 break;
4142
4143 /* Decided to skip this, advance start seq. */
4144 start = TCP_SKB_CB(skb)->end_seq;
4145 skb = skb->next;
4146 }
4147 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4148 return;
4149
4150 while (before(start, end)) {
4151 struct sk_buff *nskb;
4152 unsigned int header = skb_headroom(skb);
4153 int copy = SKB_MAX_ORDER(header, 0);
4154
4155 /* Too big header? This can happen with IPv6. */
4156 if (copy < 0)
4157 return;
4158 if (end - start < copy)
4159 copy = end - start;
4160 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4161 if (!nskb)
4162 return;
4163
4164 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4165 skb_set_network_header(nskb, (skb_network_header(skb) -
4166 skb->head));
4167 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4168 skb->head));
4169 skb_reserve(nskb, header);
4170 memcpy(nskb->head, skb->head, header);
4171 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4172 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4173 __skb_insert(nskb, skb->prev, skb, list);
4174 skb_set_owner_r(nskb, sk);
4175
4176 /* Copy data, releasing collapsed skbs. */
4177 while (copy > 0) {
4178 int offset = start - TCP_SKB_CB(skb)->seq;
4179 int size = TCP_SKB_CB(skb)->end_seq - start;
4180
4181 BUG_ON(offset < 0);
4182 if (size > 0) {
4183 size = min(copy, size);
4184 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4185 BUG();
4186 TCP_SKB_CB(nskb)->end_seq += size;
4187 copy -= size;
4188 start += size;
4189 }
4190 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4191 struct sk_buff *next = skb->next;
4192 __skb_unlink(skb, list);
4193 __kfree_skb(skb);
4194 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4195 skb = next;
4196 if (skb == tail ||
4197 tcp_hdr(skb)->syn ||
4198 tcp_hdr(skb)->fin)
4199 return;
4200 }
4201 }
4202 }
4203 }
4204
4205 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4206 * and tcp_collapse() them until all the queue is collapsed.
4207 */
4208 static void tcp_collapse_ofo_queue(struct sock *sk)
4209 {
4210 struct tcp_sock *tp = tcp_sk(sk);
4211 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4212 struct sk_buff *head;
4213 u32 start, end;
4214
4215 if (skb == NULL)
4216 return;
4217
4218 start = TCP_SKB_CB(skb)->seq;
4219 end = TCP_SKB_CB(skb)->end_seq;
4220 head = skb;
4221
4222 for (;;) {
4223 skb = skb->next;
4224
4225 /* Segment is terminated when we see gap or when
4226 * we are at the end of all the queue. */
4227 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4228 after(TCP_SKB_CB(skb)->seq, end) ||
4229 before(TCP_SKB_CB(skb)->end_seq, start)) {
4230 tcp_collapse(sk, &tp->out_of_order_queue,
4231 head, skb, start, end);
4232 head = skb;
4233 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4234 break;
4235 /* Start new segment */
4236 start = TCP_SKB_CB(skb)->seq;
4237 end = TCP_SKB_CB(skb)->end_seq;
4238 } else {
4239 if (before(TCP_SKB_CB(skb)->seq, start))
4240 start = TCP_SKB_CB(skb)->seq;
4241 if (after(TCP_SKB_CB(skb)->end_seq, end))
4242 end = TCP_SKB_CB(skb)->end_seq;
4243 }
4244 }
4245 }
4246
4247 /*
4248 * Purge the out-of-order queue.
4249 * Return true if queue was pruned.
4250 */
4251 static int tcp_prune_ofo_queue(struct sock *sk)
4252 {
4253 struct tcp_sock *tp = tcp_sk(sk);
4254 int res = 0;
4255
4256 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4257 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4258 __skb_queue_purge(&tp->out_of_order_queue);
4259
4260 /* Reset SACK state. A conforming SACK implementation will
4261 * do the same at a timeout based retransmit. When a connection
4262 * is in a sad state like this, we care only about integrity
4263 * of the connection not performance.
4264 */
4265 if (tp->rx_opt.sack_ok)
4266 tcp_sack_reset(&tp->rx_opt);
4267 sk_mem_reclaim(sk);
4268 res = 1;
4269 }
4270 return res;
4271 }
4272
4273 /* Reduce allocated memory if we can, trying to get
4274 * the socket within its memory limits again.
4275 *
4276 * Return less than zero if we should start dropping frames
4277 * until the socket owning process reads some of the data
4278 * to stabilize the situation.
4279 */
4280 static int tcp_prune_queue(struct sock *sk)
4281 {
4282 struct tcp_sock *tp = tcp_sk(sk);
4283
4284 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4285
4286 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4287
4288 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4289 tcp_clamp_window(sk);
4290 else if (tcp_memory_pressure)
4291 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4292
4293 tcp_collapse_ofo_queue(sk);
4294 tcp_collapse(sk, &sk->sk_receive_queue,
4295 sk->sk_receive_queue.next,
4296 (struct sk_buff *)&sk->sk_receive_queue,
4297 tp->copied_seq, tp->rcv_nxt);
4298 sk_mem_reclaim(sk);
4299
4300 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4301 return 0;
4302
4303 /* Collapsing did not help, destructive actions follow.
4304 * This must not ever occur. */
4305
4306 tcp_prune_ofo_queue(sk);
4307
4308 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4309 return 0;
4310
4311 /* If we are really being abused, tell the caller to silently
4312 * drop receive data on the floor. It will get retransmitted
4313 * and hopefully then we'll have sufficient space.
4314 */
4315 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4316
4317 /* Massive buffer overcommit. */
4318 tp->pred_flags = 0;
4319 return -1;
4320 }
4321
4322 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4323 * As additional protections, we do not touch cwnd in retransmission phases,
4324 * and if application hit its sndbuf limit recently.
4325 */
4326 void tcp_cwnd_application_limited(struct sock *sk)
4327 {
4328 struct tcp_sock *tp = tcp_sk(sk);
4329
4330 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4331 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4332 /* Limited by application or receiver window. */
4333 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4334 u32 win_used = max(tp->snd_cwnd_used, init_win);
4335 if (win_used < tp->snd_cwnd) {
4336 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4337 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4338 }
4339 tp->snd_cwnd_used = 0;
4340 }
4341 tp->snd_cwnd_stamp = tcp_time_stamp;
4342 }
4343
4344 static int tcp_should_expand_sndbuf(struct sock *sk)
4345 {
4346 struct tcp_sock *tp = tcp_sk(sk);
4347
4348 /* If the user specified a specific send buffer setting, do
4349 * not modify it.
4350 */
4351 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4352 return 0;
4353
4354 /* If we are under global TCP memory pressure, do not expand. */
4355 if (tcp_memory_pressure)
4356 return 0;
4357
4358 /* If we are under soft global TCP memory pressure, do not expand. */
4359 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4360 return 0;
4361
4362 /* If we filled the congestion window, do not expand. */
4363 if (tp->packets_out >= tp->snd_cwnd)
4364 return 0;
4365
4366 return 1;
4367 }
4368
4369 /* When incoming ACK allowed to free some skb from write_queue,
4370 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4371 * on the exit from tcp input handler.
4372 *
4373 * PROBLEM: sndbuf expansion does not work well with largesend.
4374 */
4375 static void tcp_new_space(struct sock *sk)
4376 {
4377 struct tcp_sock *tp = tcp_sk(sk);
4378
4379 if (tcp_should_expand_sndbuf(sk)) {
4380 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4381 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4382 demanded = max_t(unsigned int, tp->snd_cwnd,
4383 tp->reordering + 1);
4384 sndmem *= 2 * demanded;
4385 if (sndmem > sk->sk_sndbuf)
4386 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4387 tp->snd_cwnd_stamp = tcp_time_stamp;
4388 }
4389
4390 sk->sk_write_space(sk);
4391 }
4392
4393 static void tcp_check_space(struct sock *sk)
4394 {
4395 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4396 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4397 if (sk->sk_socket &&
4398 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4399 tcp_new_space(sk);
4400 }
4401 }
4402
4403 static inline void tcp_data_snd_check(struct sock *sk)
4404 {
4405 tcp_push_pending_frames(sk);
4406 tcp_check_space(sk);
4407 }
4408
4409 /*
4410 * Check if sending an ack is needed.
4411 */
4412 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4413 {
4414 struct tcp_sock *tp = tcp_sk(sk);
4415
4416 /* More than one full frame received... */
4417 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4418 /* ... and right edge of window advances far enough.
4419 * (tcp_recvmsg() will send ACK otherwise). Or...
4420 */
4421 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4422 /* We ACK each frame or... */
4423 tcp_in_quickack_mode(sk) ||
4424 /* We have out of order data. */
4425 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4426 /* Then ack it now */
4427 tcp_send_ack(sk);
4428 } else {
4429 /* Else, send delayed ack. */
4430 tcp_send_delayed_ack(sk);
4431 }
4432 }
4433
4434 static inline void tcp_ack_snd_check(struct sock *sk)
4435 {
4436 if (!inet_csk_ack_scheduled(sk)) {
4437 /* We sent a data segment already. */
4438 return;
4439 }
4440 __tcp_ack_snd_check(sk, 1);
4441 }
4442
4443 /*
4444 * This routine is only called when we have urgent data
4445 * signaled. Its the 'slow' part of tcp_urg. It could be
4446 * moved inline now as tcp_urg is only called from one
4447 * place. We handle URGent data wrong. We have to - as
4448 * BSD still doesn't use the correction from RFC961.
4449 * For 1003.1g we should support a new option TCP_STDURG to permit
4450 * either form (or just set the sysctl tcp_stdurg).
4451 */
4452
4453 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4454 {
4455 struct tcp_sock *tp = tcp_sk(sk);
4456 u32 ptr = ntohs(th->urg_ptr);
4457
4458 if (ptr && !sysctl_tcp_stdurg)
4459 ptr--;
4460 ptr += ntohl(th->seq);
4461
4462 /* Ignore urgent data that we've already seen and read. */
4463 if (after(tp->copied_seq, ptr))
4464 return;
4465
4466 /* Do not replay urg ptr.
4467 *
4468 * NOTE: interesting situation not covered by specs.
4469 * Misbehaving sender may send urg ptr, pointing to segment,
4470 * which we already have in ofo queue. We are not able to fetch
4471 * such data and will stay in TCP_URG_NOTYET until will be eaten
4472 * by recvmsg(). Seems, we are not obliged to handle such wicked
4473 * situations. But it is worth to think about possibility of some
4474 * DoSes using some hypothetical application level deadlock.
4475 */
4476 if (before(ptr, tp->rcv_nxt))
4477 return;
4478
4479 /* Do we already have a newer (or duplicate) urgent pointer? */
4480 if (tp->urg_data && !after(ptr, tp->urg_seq))
4481 return;
4482
4483 /* Tell the world about our new urgent pointer. */
4484 sk_send_sigurg(sk);
4485
4486 /* We may be adding urgent data when the last byte read was
4487 * urgent. To do this requires some care. We cannot just ignore
4488 * tp->copied_seq since we would read the last urgent byte again
4489 * as data, nor can we alter copied_seq until this data arrives
4490 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4491 *
4492 * NOTE. Double Dutch. Rendering to plain English: author of comment
4493 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4494 * and expect that both A and B disappear from stream. This is _wrong_.
4495 * Though this happens in BSD with high probability, this is occasional.
4496 * Any application relying on this is buggy. Note also, that fix "works"
4497 * only in this artificial test. Insert some normal data between A and B and we will
4498 * decline of BSD again. Verdict: it is better to remove to trap
4499 * buggy users.
4500 */
4501 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4502 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4503 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4504 tp->copied_seq++;
4505 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4506 __skb_unlink(skb, &sk->sk_receive_queue);
4507 __kfree_skb(skb);
4508 }
4509 }
4510
4511 tp->urg_data = TCP_URG_NOTYET;
4512 tp->urg_seq = ptr;
4513
4514 /* Disable header prediction. */
4515 tp->pred_flags = 0;
4516 }
4517
4518 /* This is the 'fast' part of urgent handling. */
4519 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4520 {
4521 struct tcp_sock *tp = tcp_sk(sk);
4522
4523 /* Check if we get a new urgent pointer - normally not. */
4524 if (th->urg)
4525 tcp_check_urg(sk, th);
4526
4527 /* Do we wait for any urgent data? - normally not... */
4528 if (tp->urg_data == TCP_URG_NOTYET) {
4529 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4530 th->syn;
4531
4532 /* Is the urgent pointer pointing into this packet? */
4533 if (ptr < skb->len) {
4534 u8 tmp;
4535 if (skb_copy_bits(skb, ptr, &tmp, 1))
4536 BUG();
4537 tp->urg_data = TCP_URG_VALID | tmp;
4538 if (!sock_flag(sk, SOCK_DEAD))
4539 sk->sk_data_ready(sk, 0);
4540 }
4541 }
4542 }
4543
4544 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4545 {
4546 struct tcp_sock *tp = tcp_sk(sk);
4547 int chunk = skb->len - hlen;
4548 int err;
4549
4550 local_bh_enable();
4551 if (skb_csum_unnecessary(skb))
4552 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4553 else
4554 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4555 tp->ucopy.iov);
4556
4557 if (!err) {
4558 tp->ucopy.len -= chunk;
4559 tp->copied_seq += chunk;
4560 tcp_rcv_space_adjust(sk);
4561 }
4562
4563 local_bh_disable();
4564 return err;
4565 }
4566
4567 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4568 struct sk_buff *skb)
4569 {
4570 __sum16 result;
4571
4572 if (sock_owned_by_user(sk)) {
4573 local_bh_enable();
4574 result = __tcp_checksum_complete(skb);
4575 local_bh_disable();
4576 } else {
4577 result = __tcp_checksum_complete(skb);
4578 }
4579 return result;
4580 }
4581
4582 static inline int tcp_checksum_complete_user(struct sock *sk,
4583 struct sk_buff *skb)
4584 {
4585 return !skb_csum_unnecessary(skb) &&
4586 __tcp_checksum_complete_user(sk, skb);
4587 }
4588
4589 #ifdef CONFIG_NET_DMA
4590 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4591 int hlen)
4592 {
4593 struct tcp_sock *tp = tcp_sk(sk);
4594 int chunk = skb->len - hlen;
4595 int dma_cookie;
4596 int copied_early = 0;
4597
4598 if (tp->ucopy.wakeup)
4599 return 0;
4600
4601 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4602 tp->ucopy.dma_chan = get_softnet_dma();
4603
4604 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4605
4606 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4607 skb, hlen,
4608 tp->ucopy.iov, chunk,
4609 tp->ucopy.pinned_list);
4610
4611 if (dma_cookie < 0)
4612 goto out;
4613
4614 tp->ucopy.dma_cookie = dma_cookie;
4615 copied_early = 1;
4616
4617 tp->ucopy.len -= chunk;
4618 tp->copied_seq += chunk;
4619 tcp_rcv_space_adjust(sk);
4620
4621 if ((tp->ucopy.len == 0) ||
4622 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4623 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4624 tp->ucopy.wakeup = 1;
4625 sk->sk_data_ready(sk, 0);
4626 }
4627 } else if (chunk > 0) {
4628 tp->ucopy.wakeup = 1;
4629 sk->sk_data_ready(sk, 0);
4630 }
4631 out:
4632 return copied_early;
4633 }
4634 #endif /* CONFIG_NET_DMA */
4635
4636 /*
4637 * TCP receive function for the ESTABLISHED state.
4638 *
4639 * It is split into a fast path and a slow path. The fast path is
4640 * disabled when:
4641 * - A zero window was announced from us - zero window probing
4642 * is only handled properly in the slow path.
4643 * - Out of order segments arrived.
4644 * - Urgent data is expected.
4645 * - There is no buffer space left
4646 * - Unexpected TCP flags/window values/header lengths are received
4647 * (detected by checking the TCP header against pred_flags)
4648 * - Data is sent in both directions. Fast path only supports pure senders
4649 * or pure receivers (this means either the sequence number or the ack
4650 * value must stay constant)
4651 * - Unexpected TCP option.
4652 *
4653 * When these conditions are not satisfied it drops into a standard
4654 * receive procedure patterned after RFC793 to handle all cases.
4655 * The first three cases are guaranteed by proper pred_flags setting,
4656 * the rest is checked inline. Fast processing is turned on in
4657 * tcp_data_queue when everything is OK.
4658 */
4659 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4660 struct tcphdr *th, unsigned len)
4661 {
4662 struct tcp_sock *tp = tcp_sk(sk);
4663
4664 /*
4665 * Header prediction.
4666 * The code loosely follows the one in the famous
4667 * "30 instruction TCP receive" Van Jacobson mail.
4668 *
4669 * Van's trick is to deposit buffers into socket queue
4670 * on a device interrupt, to call tcp_recv function
4671 * on the receive process context and checksum and copy
4672 * the buffer to user space. smart...
4673 *
4674 * Our current scheme is not silly either but we take the
4675 * extra cost of the net_bh soft interrupt processing...
4676 * We do checksum and copy also but from device to kernel.
4677 */
4678
4679 tp->rx_opt.saw_tstamp = 0;
4680
4681 /* pred_flags is 0xS?10 << 16 + snd_wnd
4682 * if header_prediction is to be made
4683 * 'S' will always be tp->tcp_header_len >> 2
4684 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4685 * turn it off (when there are holes in the receive
4686 * space for instance)
4687 * PSH flag is ignored.
4688 */
4689
4690 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4691 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4692 int tcp_header_len = tp->tcp_header_len;
4693
4694 /* Timestamp header prediction: tcp_header_len
4695 * is automatically equal to th->doff*4 due to pred_flags
4696 * match.
4697 */
4698
4699 /* Check timestamp */
4700 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4701 __be32 *ptr = (__be32 *)(th + 1);
4702
4703 /* No? Slow path! */
4704 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4705 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4706 goto slow_path;
4707
4708 tp->rx_opt.saw_tstamp = 1;
4709 ++ptr;
4710 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4711 ++ptr;
4712 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4713
4714 /* If PAWS failed, check it more carefully in slow path */
4715 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4716 goto slow_path;
4717
4718 /* DO NOT update ts_recent here, if checksum fails
4719 * and timestamp was corrupted part, it will result
4720 * in a hung connection since we will drop all
4721 * future packets due to the PAWS test.
4722 */
4723 }
4724
4725 if (len <= tcp_header_len) {
4726 /* Bulk data transfer: sender */
4727 if (len == tcp_header_len) {
4728 /* Predicted packet is in window by definition.
4729 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4730 * Hence, check seq<=rcv_wup reduces to:
4731 */
4732 if (tcp_header_len ==
4733 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4734 tp->rcv_nxt == tp->rcv_wup)
4735 tcp_store_ts_recent(tp);
4736
4737 /* We know that such packets are checksummed
4738 * on entry.
4739 */
4740 tcp_ack(sk, skb, 0);
4741 __kfree_skb(skb);
4742 tcp_data_snd_check(sk);
4743 return 0;
4744 } else { /* Header too small */
4745 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4746 goto discard;
4747 }
4748 } else {
4749 int eaten = 0;
4750 int copied_early = 0;
4751
4752 if (tp->copied_seq == tp->rcv_nxt &&
4753 len - tcp_header_len <= tp->ucopy.len) {
4754 #ifdef CONFIG_NET_DMA
4755 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4756 copied_early = 1;
4757 eaten = 1;
4758 }
4759 #endif
4760 if (tp->ucopy.task == current &&
4761 sock_owned_by_user(sk) && !copied_early) {
4762 __set_current_state(TASK_RUNNING);
4763
4764 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4765 eaten = 1;
4766 }
4767 if (eaten) {
4768 /* Predicted packet is in window by definition.
4769 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4770 * Hence, check seq<=rcv_wup reduces to:
4771 */
4772 if (tcp_header_len ==
4773 (sizeof(struct tcphdr) +
4774 TCPOLEN_TSTAMP_ALIGNED) &&
4775 tp->rcv_nxt == tp->rcv_wup)
4776 tcp_store_ts_recent(tp);
4777
4778 tcp_rcv_rtt_measure_ts(sk, skb);
4779
4780 __skb_pull(skb, tcp_header_len);
4781 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4782 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4783 }
4784 if (copied_early)
4785 tcp_cleanup_rbuf(sk, skb->len);
4786 }
4787 if (!eaten) {
4788 if (tcp_checksum_complete_user(sk, skb))
4789 goto csum_error;
4790
4791 /* Predicted packet is in window by definition.
4792 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4793 * Hence, check seq<=rcv_wup reduces to:
4794 */
4795 if (tcp_header_len ==
4796 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4797 tp->rcv_nxt == tp->rcv_wup)
4798 tcp_store_ts_recent(tp);
4799
4800 tcp_rcv_rtt_measure_ts(sk, skb);
4801
4802 if ((int)skb->truesize > sk->sk_forward_alloc)
4803 goto step5;
4804
4805 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4806
4807 /* Bulk data transfer: receiver */
4808 __skb_pull(skb, tcp_header_len);
4809 __skb_queue_tail(&sk->sk_receive_queue, skb);
4810 skb_set_owner_r(skb, sk);
4811 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4812 }
4813
4814 tcp_event_data_recv(sk, skb);
4815
4816 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4817 /* Well, only one small jumplet in fast path... */
4818 tcp_ack(sk, skb, FLAG_DATA);
4819 tcp_data_snd_check(sk);
4820 if (!inet_csk_ack_scheduled(sk))
4821 goto no_ack;
4822 }
4823
4824 __tcp_ack_snd_check(sk, 0);
4825 no_ack:
4826 #ifdef CONFIG_NET_DMA
4827 if (copied_early)
4828 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4829 else
4830 #endif
4831 if (eaten)
4832 __kfree_skb(skb);
4833 else
4834 sk->sk_data_ready(sk, 0);
4835 return 0;
4836 }
4837 }
4838
4839 slow_path:
4840 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4841 goto csum_error;
4842
4843 /*
4844 * RFC1323: H1. Apply PAWS check first.
4845 */
4846 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4847 tcp_paws_discard(sk, skb)) {
4848 if (!th->rst) {
4849 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4850 tcp_send_dupack(sk, skb);
4851 goto discard;
4852 }
4853 /* Resets are accepted even if PAWS failed.
4854
4855 ts_recent update must be made after we are sure
4856 that the packet is in window.
4857 */
4858 }
4859
4860 /*
4861 * Standard slow path.
4862 */
4863
4864 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4865 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4866 * (RST) segments are validated by checking their SEQ-fields."
4867 * And page 69: "If an incoming segment is not acceptable,
4868 * an acknowledgment should be sent in reply (unless the RST bit
4869 * is set, if so drop the segment and return)".
4870 */
4871 if (!th->rst)
4872 tcp_send_dupack(sk, skb);
4873 goto discard;
4874 }
4875
4876 if (th->rst) {
4877 tcp_reset(sk);
4878 goto discard;
4879 }
4880
4881 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4882
4883 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4884 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4885 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4886 tcp_reset(sk);
4887 return 1;
4888 }
4889
4890 step5:
4891 if (th->ack)
4892 tcp_ack(sk, skb, FLAG_SLOWPATH);
4893
4894 tcp_rcv_rtt_measure_ts(sk, skb);
4895
4896 /* Process urgent data. */
4897 tcp_urg(sk, skb, th);
4898
4899 /* step 7: process the segment text */
4900 tcp_data_queue(sk, skb);
4901
4902 tcp_data_snd_check(sk);
4903 tcp_ack_snd_check(sk);
4904 return 0;
4905
4906 csum_error:
4907 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4908
4909 discard:
4910 __kfree_skb(skb);
4911 return 0;
4912 }
4913
4914 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4915 struct tcphdr *th, unsigned len)
4916 {
4917 struct tcp_sock *tp = tcp_sk(sk);
4918 struct inet_connection_sock *icsk = inet_csk(sk);
4919 int saved_clamp = tp->rx_opt.mss_clamp;
4920
4921 tcp_parse_options(skb, &tp->rx_opt, 0);
4922
4923 if (th->ack) {
4924 /* rfc793:
4925 * "If the state is SYN-SENT then
4926 * first check the ACK bit
4927 * If the ACK bit is set
4928 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4929 * a reset (unless the RST bit is set, if so drop
4930 * the segment and return)"
4931 *
4932 * We do not send data with SYN, so that RFC-correct
4933 * test reduces to:
4934 */
4935 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4936 goto reset_and_undo;
4937
4938 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4939 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4940 tcp_time_stamp)) {
4941 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4942 goto reset_and_undo;
4943 }
4944
4945 /* Now ACK is acceptable.
4946 *
4947 * "If the RST bit is set
4948 * If the ACK was acceptable then signal the user "error:
4949 * connection reset", drop the segment, enter CLOSED state,
4950 * delete TCB, and return."
4951 */
4952
4953 if (th->rst) {
4954 tcp_reset(sk);
4955 goto discard;
4956 }
4957
4958 /* rfc793:
4959 * "fifth, if neither of the SYN or RST bits is set then
4960 * drop the segment and return."
4961 *
4962 * See note below!
4963 * --ANK(990513)
4964 */
4965 if (!th->syn)
4966 goto discard_and_undo;
4967
4968 /* rfc793:
4969 * "If the SYN bit is on ...
4970 * are acceptable then ...
4971 * (our SYN has been ACKed), change the connection
4972 * state to ESTABLISHED..."
4973 */
4974
4975 TCP_ECN_rcv_synack(tp, th);
4976
4977 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4978 tcp_ack(sk, skb, FLAG_SLOWPATH);
4979
4980 /* Ok.. it's good. Set up sequence numbers and
4981 * move to established.
4982 */
4983 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4984 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4985
4986 /* RFC1323: The window in SYN & SYN/ACK segments is
4987 * never scaled.
4988 */
4989 tp->snd_wnd = ntohs(th->window);
4990 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4991
4992 if (!tp->rx_opt.wscale_ok) {
4993 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4994 tp->window_clamp = min(tp->window_clamp, 65535U);
4995 }
4996
4997 if (tp->rx_opt.saw_tstamp) {
4998 tp->rx_opt.tstamp_ok = 1;
4999 tp->tcp_header_len =
5000 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5001 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5002 tcp_store_ts_recent(tp);
5003 } else {
5004 tp->tcp_header_len = sizeof(struct tcphdr);
5005 }
5006
5007 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5008 tcp_enable_fack(tp);
5009
5010 tcp_mtup_init(sk);
5011 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5012 tcp_initialize_rcv_mss(sk);
5013
5014 /* Remember, tcp_poll() does not lock socket!
5015 * Change state from SYN-SENT only after copied_seq
5016 * is initialized. */
5017 tp->copied_seq = tp->rcv_nxt;
5018 smp_mb();
5019 tcp_set_state(sk, TCP_ESTABLISHED);
5020
5021 security_inet_conn_established(sk, skb);
5022
5023 /* Make sure socket is routed, for correct metrics. */
5024 icsk->icsk_af_ops->rebuild_header(sk);
5025
5026 tcp_init_metrics(sk);
5027
5028 tcp_init_congestion_control(sk);
5029
5030 /* Prevent spurious tcp_cwnd_restart() on first data
5031 * packet.
5032 */
5033 tp->lsndtime = tcp_time_stamp;
5034
5035 tcp_init_buffer_space(sk);
5036
5037 if (sock_flag(sk, SOCK_KEEPOPEN))
5038 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5039
5040 if (!tp->rx_opt.snd_wscale)
5041 __tcp_fast_path_on(tp, tp->snd_wnd);
5042 else
5043 tp->pred_flags = 0;
5044
5045 if (!sock_flag(sk, SOCK_DEAD)) {
5046 sk->sk_state_change(sk);
5047 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5048 }
5049
5050 if (sk->sk_write_pending ||
5051 icsk->icsk_accept_queue.rskq_defer_accept ||
5052 icsk->icsk_ack.pingpong) {
5053 /* Save one ACK. Data will be ready after
5054 * several ticks, if write_pending is set.
5055 *
5056 * It may be deleted, but with this feature tcpdumps
5057 * look so _wonderfully_ clever, that I was not able
5058 * to stand against the temptation 8) --ANK
5059 */
5060 inet_csk_schedule_ack(sk);
5061 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5062 icsk->icsk_ack.ato = TCP_ATO_MIN;
5063 tcp_incr_quickack(sk);
5064 tcp_enter_quickack_mode(sk);
5065 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5066 TCP_DELACK_MAX, TCP_RTO_MAX);
5067
5068 discard:
5069 __kfree_skb(skb);
5070 return 0;
5071 } else {
5072 tcp_send_ack(sk);
5073 }
5074 return -1;
5075 }
5076
5077 /* No ACK in the segment */
5078
5079 if (th->rst) {
5080 /* rfc793:
5081 * "If the RST bit is set
5082 *
5083 * Otherwise (no ACK) drop the segment and return."
5084 */
5085
5086 goto discard_and_undo;
5087 }
5088
5089 /* PAWS check. */
5090 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5091 tcp_paws_check(&tp->rx_opt, 0))
5092 goto discard_and_undo;
5093
5094 if (th->syn) {
5095 /* We see SYN without ACK. It is attempt of
5096 * simultaneous connect with crossed SYNs.
5097 * Particularly, it can be connect to self.
5098 */
5099 tcp_set_state(sk, TCP_SYN_RECV);
5100
5101 if (tp->rx_opt.saw_tstamp) {
5102 tp->rx_opt.tstamp_ok = 1;
5103 tcp_store_ts_recent(tp);
5104 tp->tcp_header_len =
5105 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5106 } else {
5107 tp->tcp_header_len = sizeof(struct tcphdr);
5108 }
5109
5110 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5111 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5112
5113 /* RFC1323: The window in SYN & SYN/ACK segments is
5114 * never scaled.
5115 */
5116 tp->snd_wnd = ntohs(th->window);
5117 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5118 tp->max_window = tp->snd_wnd;
5119
5120 TCP_ECN_rcv_syn(tp, th);
5121
5122 tcp_mtup_init(sk);
5123 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5124 tcp_initialize_rcv_mss(sk);
5125
5126 tcp_send_synack(sk);
5127 #if 0
5128 /* Note, we could accept data and URG from this segment.
5129 * There are no obstacles to make this.
5130 *
5131 * However, if we ignore data in ACKless segments sometimes,
5132 * we have no reasons to accept it sometimes.
5133 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5134 * is not flawless. So, discard packet for sanity.
5135 * Uncomment this return to process the data.
5136 */
5137 return -1;
5138 #else
5139 goto discard;
5140 #endif
5141 }
5142 /* "fifth, if neither of the SYN or RST bits is set then
5143 * drop the segment and return."
5144 */
5145
5146 discard_and_undo:
5147 tcp_clear_options(&tp->rx_opt);
5148 tp->rx_opt.mss_clamp = saved_clamp;
5149 goto discard;
5150
5151 reset_and_undo:
5152 tcp_clear_options(&tp->rx_opt);
5153 tp->rx_opt.mss_clamp = saved_clamp;
5154 return 1;
5155 }
5156
5157 /*
5158 * This function implements the receiving procedure of RFC 793 for
5159 * all states except ESTABLISHED and TIME_WAIT.
5160 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5161 * address independent.
5162 */
5163
5164 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5165 struct tcphdr *th, unsigned len)
5166 {
5167 struct tcp_sock *tp = tcp_sk(sk);
5168 struct inet_connection_sock *icsk = inet_csk(sk);
5169 int queued = 0;
5170
5171 tp->rx_opt.saw_tstamp = 0;
5172
5173 switch (sk->sk_state) {
5174 case TCP_CLOSE:
5175 goto discard;
5176
5177 case TCP_LISTEN:
5178 if (th->ack)
5179 return 1;
5180
5181 if (th->rst)
5182 goto discard;
5183
5184 if (th->syn) {
5185 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5186 return 1;
5187
5188 /* Now we have several options: In theory there is
5189 * nothing else in the frame. KA9Q has an option to
5190 * send data with the syn, BSD accepts data with the
5191 * syn up to the [to be] advertised window and
5192 * Solaris 2.1 gives you a protocol error. For now
5193 * we just ignore it, that fits the spec precisely
5194 * and avoids incompatibilities. It would be nice in
5195 * future to drop through and process the data.
5196 *
5197 * Now that TTCP is starting to be used we ought to
5198 * queue this data.
5199 * But, this leaves one open to an easy denial of
5200 * service attack, and SYN cookies can't defend
5201 * against this problem. So, we drop the data
5202 * in the interest of security over speed unless
5203 * it's still in use.
5204 */
5205 kfree_skb(skb);
5206 return 0;
5207 }
5208 goto discard;
5209
5210 case TCP_SYN_SENT:
5211 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5212 if (queued >= 0)
5213 return queued;
5214
5215 /* Do step6 onward by hand. */
5216 tcp_urg(sk, skb, th);
5217 __kfree_skb(skb);
5218 tcp_data_snd_check(sk);
5219 return 0;
5220 }
5221
5222 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5223 tcp_paws_discard(sk, skb)) {
5224 if (!th->rst) {
5225 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5226 tcp_send_dupack(sk, skb);
5227 goto discard;
5228 }
5229 /* Reset is accepted even if it did not pass PAWS. */
5230 }
5231
5232 /* step 1: check sequence number */
5233 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5234 if (!th->rst)
5235 tcp_send_dupack(sk, skb);
5236 goto discard;
5237 }
5238
5239 /* step 2: check RST bit */
5240 if (th->rst) {
5241 tcp_reset(sk);
5242 goto discard;
5243 }
5244
5245 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5246
5247 /* step 3: check security and precedence [ignored] */
5248
5249 /* step 4:
5250 *
5251 * Check for a SYN in window.
5252 */
5253 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5254 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5255 tcp_reset(sk);
5256 return 1;
5257 }
5258
5259 /* step 5: check the ACK field */
5260 if (th->ack) {
5261 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5262
5263 switch (sk->sk_state) {
5264 case TCP_SYN_RECV:
5265 if (acceptable) {
5266 tp->copied_seq = tp->rcv_nxt;
5267 smp_mb();
5268 tcp_set_state(sk, TCP_ESTABLISHED);
5269 sk->sk_state_change(sk);
5270
5271 /* Note, that this wakeup is only for marginal
5272 * crossed SYN case. Passively open sockets
5273 * are not waked up, because sk->sk_sleep ==
5274 * NULL and sk->sk_socket == NULL.
5275 */
5276 if (sk->sk_socket)
5277 sk_wake_async(sk,
5278 SOCK_WAKE_IO, POLL_OUT);
5279
5280 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5281 tp->snd_wnd = ntohs(th->window) <<
5282 tp->rx_opt.snd_wscale;
5283 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5284 TCP_SKB_CB(skb)->seq);
5285
5286 /* tcp_ack considers this ACK as duplicate
5287 * and does not calculate rtt.
5288 * Fix it at least with timestamps.
5289 */
5290 if (tp->rx_opt.saw_tstamp &&
5291 tp->rx_opt.rcv_tsecr && !tp->srtt)
5292 tcp_ack_saw_tstamp(sk, 0);
5293
5294 if (tp->rx_opt.tstamp_ok)
5295 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5296
5297 /* Make sure socket is routed, for
5298 * correct metrics.
5299 */
5300 icsk->icsk_af_ops->rebuild_header(sk);
5301
5302 tcp_init_metrics(sk);
5303
5304 tcp_init_congestion_control(sk);
5305
5306 /* Prevent spurious tcp_cwnd_restart() on
5307 * first data packet.
5308 */
5309 tp->lsndtime = tcp_time_stamp;
5310
5311 tcp_mtup_init(sk);
5312 tcp_initialize_rcv_mss(sk);
5313 tcp_init_buffer_space(sk);
5314 tcp_fast_path_on(tp);
5315 } else {
5316 return 1;
5317 }
5318 break;
5319
5320 case TCP_FIN_WAIT1:
5321 if (tp->snd_una == tp->write_seq) {
5322 tcp_set_state(sk, TCP_FIN_WAIT2);
5323 sk->sk_shutdown |= SEND_SHUTDOWN;
5324 dst_confirm(sk->sk_dst_cache);
5325
5326 if (!sock_flag(sk, SOCK_DEAD))
5327 /* Wake up lingering close() */
5328 sk->sk_state_change(sk);
5329 else {
5330 int tmo;
5331
5332 if (tp->linger2 < 0 ||
5333 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5334 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5335 tcp_done(sk);
5336 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5337 return 1;
5338 }
5339
5340 tmo = tcp_fin_time(sk);
5341 if (tmo > TCP_TIMEWAIT_LEN) {
5342 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5343 } else if (th->fin || sock_owned_by_user(sk)) {
5344 /* Bad case. We could lose such FIN otherwise.
5345 * It is not a big problem, but it looks confusing
5346 * and not so rare event. We still can lose it now,
5347 * if it spins in bh_lock_sock(), but it is really
5348 * marginal case.
5349 */
5350 inet_csk_reset_keepalive_timer(sk, tmo);
5351 } else {
5352 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5353 goto discard;
5354 }
5355 }
5356 }
5357 break;
5358
5359 case TCP_CLOSING:
5360 if (tp->snd_una == tp->write_seq) {
5361 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5362 goto discard;
5363 }
5364 break;
5365
5366 case TCP_LAST_ACK:
5367 if (tp->snd_una == tp->write_seq) {
5368 tcp_update_metrics(sk);
5369 tcp_done(sk);
5370 goto discard;
5371 }
5372 break;
5373 }
5374 } else
5375 goto discard;
5376
5377 /* step 6: check the URG bit */
5378 tcp_urg(sk, skb, th);
5379
5380 /* step 7: process the segment text */
5381 switch (sk->sk_state) {
5382 case TCP_CLOSE_WAIT:
5383 case TCP_CLOSING:
5384 case TCP_LAST_ACK:
5385 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5386 break;
5387 case TCP_FIN_WAIT1:
5388 case TCP_FIN_WAIT2:
5389 /* RFC 793 says to queue data in these states,
5390 * RFC 1122 says we MUST send a reset.
5391 * BSD 4.4 also does reset.
5392 */
5393 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5394 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5395 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5396 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5397 tcp_reset(sk);
5398 return 1;
5399 }
5400 }
5401 /* Fall through */
5402 case TCP_ESTABLISHED:
5403 tcp_data_queue(sk, skb);
5404 queued = 1;
5405 break;
5406 }
5407
5408 /* tcp_data could move socket to TIME-WAIT */
5409 if (sk->sk_state != TCP_CLOSE) {
5410 tcp_data_snd_check(sk);
5411 tcp_ack_snd_check(sk);
5412 }
5413
5414 if (!queued) {
5415 discard:
5416 __kfree_skb(skb);
5417 }
5418 return 0;
5419 }
5420
5421 EXPORT_SYMBOL(sysctl_tcp_ecn);
5422 EXPORT_SYMBOL(sysctl_tcp_reordering);
5423 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5424 EXPORT_SYMBOL(tcp_parse_options);
5425 EXPORT_SYMBOL(tcp_rcv_established);
5426 EXPORT_SYMBOL(tcp_rcv_state_process);
5427 EXPORT_SYMBOL(tcp_initialize_rcv_mss);