]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
d67b6e9cc5407ed10d59d77530760db8c304b0b1
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
120 */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
126
127 icsk->icsk_ack.last_seg_size = 0;
128
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
131 */
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
138 *
139 * "len" is invariant segment length, including TCP header.
140 */
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
147 */
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
153 */
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
159 }
160 }
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
188 */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
223 }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246 *
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248 */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
254
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260 *
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
270 *
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
278 *
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
282 */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296 truesize >>= 1;
297 window >>= 1;
298 }
299 return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
311
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
314 */
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
319
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
324 }
325 }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 */
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
347 */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
352
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
357
358 tp->rcvq_space.space = tp->rcv_wnd;
359
360 maxwin = tcp_full_space(sk);
361
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
364
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
369 }
370
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
386
387 icsk->icsk_ack.quick = 0;
388
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
395 }
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406 */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
415
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420 *
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424 *
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
429 */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
434
435 if (m == 0)
436 m = 1;
437
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
443 *
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
448 */
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
457 }
458
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
478 {
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
489 */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
495
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
498
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
502
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505 space = max(tp->rcvq_space.space, space);
506
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
509
510 tp->rcvq_space.space = space;
511
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
515
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
519 */
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
531
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
534 }
535 }
536 }
537
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
552 */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
558
559 inet_csk_schedule_ack(sk);
560
561 tcp_measure_rcv_mss(sk, skb);
562
563 tcp_rcv_rtt_measure(tp);
564
565 now = tcp_time_stamp;
566
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
570 */
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
575
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
586 */
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
589 }
590 }
591 icsk->icsk_ack.lrcvtime = now;
592
593 TCP_ECN_check_ce(tp, skb);
594
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
603
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
617 */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
622
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
628 *
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
631 *
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
638 */
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
654 */
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 }
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
665 }
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
671 }
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
678 }
679 }
680
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
683 */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
688 *
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
696 */
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
703 */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718 */
719 void tcp_update_metrics(struct sock *sk)
720 {
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
723
724 if (sysctl_tcp_nometrics_save)
725 return;
726
727 dst_confirm(dst);
728
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
733
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
738 */
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
742 }
743
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
746
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
750 */
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756 }
757
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
762
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
767
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
773
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775 }
776
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
797 */
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 }
805
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 }
811 }
812 }
813
814 /* Numbers are taken from RFC3390.
815 *
816 * John Heffner states:
817 *
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
822 */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832 }
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
841
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
854
855 tcp_set_ca_state(sk, TCP_CA_CWR);
856 }
857 }
858
859 /*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
883
884 if (dst == NULL)
885 goto reset;
886
887 dst_confirm(dst);
888
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
895 }
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 }
901
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
904
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
907
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
912 *
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
921 */
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
925 }
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929 }
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
937
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
942 */
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947 }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
956
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
979 }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
989
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006 struct sk_buff *skb)
1007 {
1008 tcp_verify_retransmit_hint(tp, skb);
1009
1010 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017 *
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1021 *
1022 * Valid combinations are:
1023 * Tag InFlight Description
1024 * 0 1 - orig segment is in flight.
1025 * S 0 - nothing flies, orig reached receiver.
1026 * L 0 - nothing flies, orig lost by net.
1027 * R 2 - both orig and retransmit are in flight.
1028 * L|R 1 - orig is lost, retransmit is in flight.
1029 * S|R 1 - orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 * but it is equivalent to plain S and code short-curcuits it to S.
1032 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 *
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of one of three flavors:
1038 * A. Scoreboard estimator decided the packet is lost.
1039 * A'. Reno "three dupacks" marks head of queue lost.
1040 * A''. Its FACK modfication, head until snd.fack is lost.
1041 * B. SACK arrives sacking data transmitted after never retransmitted
1042 * hole was sent out.
1043 * C. SACK arrives sacking SND.NXT at the moment, when the
1044 * segment was retransmitted.
1045 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 *
1047 * It is pleasant to note, that state diagram turns out to be commutative,
1048 * so that we are allowed not to be bothered by order of our actions,
1049 * when multiple events arrive simultaneously. (see the function below).
1050 *
1051 * Reordering detection.
1052 * --------------------
1053 * Reordering metric is maximal distance, which a packet can be displaced
1054 * in packet stream. With SACKs we can estimate it:
1055 *
1056 * 1. SACK fills old hole and the corresponding segment was not
1057 * ever retransmitted -> reordering. Alas, we cannot use it
1058 * when segment was retransmitted.
1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060 * for retransmitted and already SACKed segment -> reordering..
1061 * Both of these heuristics are not used in Loss state, when we cannot
1062 * account for retransmits accurately.
1063 *
1064 * SACK block validation.
1065 * ----------------------
1066 *
1067 * SACK block range validation checks that the received SACK block fits to
1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069 * Note that SND.UNA is not included to the range though being valid because
1070 * it means that the receiver is rather inconsistent with itself reporting
1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072 * perfectly valid, however, in light of RFC2018 which explicitly states
1073 * that "SACK block MUST reflect the newest segment. Even if the newest
1074 * segment is going to be discarded ...", not that it looks very clever
1075 * in case of head skb. Due to potentional receiver driven attacks, we
1076 * choose to avoid immediate execution of a walk in write queue due to
1077 * reneging and defer head skb's loss recovery to standard loss recovery
1078 * procedure that will eventually trigger (nothing forbids us doing this).
1079 *
1080 * Implements also blockage to start_seq wrap-around. Problem lies in the
1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082 * there's no guarantee that it will be before snd_nxt (n). The problem
1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084 * wrap (s_w):
1085 *
1086 * <- outs wnd -> <- wrapzone ->
1087 * u e n u_w e_w s n_w
1088 * | | | | | | |
1089 * |<------------+------+----- TCP seqno space --------------+---------->|
1090 * ...-- <2^31 ->| |<--------...
1091 * ...---- >2^31 ------>| |<--------...
1092 *
1093 * Current code wouldn't be vulnerable but it's better still to discard such
1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 *
1099 * With D-SACK the lower bound is extended to cover sequence space below
1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101 * again, D-SACK block must not to go across snd_una (for the same reason as
1102 * for the normal SACK blocks, explained above). But there all simplicity
1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104 * fully below undo_marker they do not affect behavior in anyway and can
1105 * therefore be safely ignored. In rare cases (which are more or less
1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107 * fragmentation and packet reordering past skb's retransmission. To consider
1108 * them correctly, the acceptable range must be extended even more though
1109 * the exact amount is rather hard to quantify. However, tp->max_window can
1110 * be used as an exaggerated estimate.
1111 */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113 u32 start_seq, u32 end_seq)
1114 {
1115 /* Too far in future, or reversed (interpretation is ambiguous) */
1116 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117 return 0;
1118
1119 /* Nasty start_seq wrap-around check (see comments above) */
1120 if (!before(start_seq, tp->snd_nxt))
1121 return 0;
1122
1123 /* In outstanding window? ...This is valid exit for D-SACKs too.
1124 * start_seq == snd_una is non-sensical (see comments above)
1125 */
1126 if (after(start_seq, tp->snd_una))
1127 return 1;
1128
1129 if (!is_dsack || !tp->undo_marker)
1130 return 0;
1131
1132 /* ...Then it's D-SACK, and must reside below snd_una completely */
1133 if (!after(end_seq, tp->snd_una))
1134 return 0;
1135
1136 if (!before(start_seq, tp->undo_marker))
1137 return 1;
1138
1139 /* Too old */
1140 if (!after(end_seq, tp->undo_marker))
1141 return 0;
1142
1143 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144 * start_seq < undo_marker and end_seq >= undo_marker.
1145 */
1146 return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150 * Event "C". Later note: FACK people cheated me again 8), we have to account
1151 * for reordering! Ugly, but should help.
1152 *
1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154 * less than what is now known to be received by the other end (derived from
1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156 * retransmitted skbs to avoid some costly processing per ACKs.
1157 */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160 const struct inet_connection_sock *icsk = inet_csk(sk);
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 struct sk_buff *skb;
1163 int cnt = 0;
1164 u32 new_low_seq = tp->snd_nxt;
1165 u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168 !after(received_upto, tp->lost_retrans_low) ||
1169 icsk->icsk_ca_state != TCP_CA_Recovery)
1170 return;
1171
1172 tcp_for_write_queue(skb, sk) {
1173 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175 if (skb == tcp_send_head(sk))
1176 break;
1177 if (cnt == tp->retrans_out)
1178 break;
1179 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180 continue;
1181
1182 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183 continue;
1184
1185 if (after(received_upto, ack_seq) &&
1186 (tcp_is_fack(tp) ||
1187 !before(received_upto,
1188 ack_seq + tp->reordering * tp->mss_cache))) {
1189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190 tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192 tcp_skb_mark_lost_uncond_verify(tp, skb);
1193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194 } else {
1195 if (before(ack_seq, new_low_seq))
1196 new_low_seq = ack_seq;
1197 cnt += tcp_skb_pcount(skb);
1198 }
1199 }
1200
1201 if (tp->retrans_out)
1202 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206 struct tcp_sack_block_wire *sp, int num_sacks,
1207 u32 prior_snd_una)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212 int dup_sack = 0;
1213
1214 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215 dup_sack = 1;
1216 tcp_dsack_seen(tp);
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218 } else if (num_sacks > 1) {
1219 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222 if (!after(end_seq_0, end_seq_1) &&
1223 !before(start_seq_0, start_seq_1)) {
1224 dup_sack = 1;
1225 tcp_dsack_seen(tp);
1226 NET_INC_STATS_BH(sock_net(sk),
1227 LINUX_MIB_TCPDSACKOFORECV);
1228 }
1229 }
1230
1231 /* D-SACK for already forgotten data... Do dumb counting. */
1232 if (dup_sack &&
1233 !after(end_seq_0, prior_snd_una) &&
1234 after(end_seq_0, tp->undo_marker))
1235 tp->undo_retrans--;
1236
1237 return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241 * the incoming SACK may not exactly match but we can find smaller MSS
1242 * aligned portion of it that matches. Therefore we might need to fragment
1243 * which may fail and creates some hassle (caller must handle error case
1244 * returns).
1245 *
1246 * FIXME: this could be merged to shift decision code
1247 */
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249 u32 start_seq, u32 end_seq)
1250 {
1251 int in_sack, err;
1252 unsigned int pkt_len;
1253 unsigned int mss;
1254
1255 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260 mss = tcp_skb_mss(skb);
1261 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
1263 if (!in_sack) {
1264 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265 if (pkt_len < mss)
1266 pkt_len = mss;
1267 } else {
1268 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269 if (pkt_len < mss)
1270 return -EINVAL;
1271 }
1272
1273 /* Round if necessary so that SACKs cover only full MSSes
1274 * and/or the remaining small portion (if present)
1275 */
1276 if (pkt_len > mss) {
1277 unsigned int new_len = (pkt_len / mss) * mss;
1278 if (!in_sack && new_len < pkt_len) {
1279 new_len += mss;
1280 if (new_len > skb->len)
1281 return 0;
1282 }
1283 pkt_len = new_len;
1284 }
1285 err = tcp_fragment(sk, skb, pkt_len, mss);
1286 if (err < 0)
1287 return err;
1288 }
1289
1290 return in_sack;
1291 }
1292
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294 int *reord, int dup_sack, int fack_count,
1295 u8 *sackedto, int pcount)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 u8 sacked = TCP_SKB_CB(skb)->sacked;
1299 int flag = 0;
1300
1301 /* Account D-SACK for retransmitted packet. */
1302 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304 tp->undo_retrans--;
1305 if (sacked & TCPCB_SACKED_ACKED)
1306 *reord = min(fack_count, *reord);
1307 }
1308
1309 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311 return flag;
1312
1313 if (!(sacked & TCPCB_SACKED_ACKED)) {
1314 if (sacked & TCPCB_SACKED_RETRANS) {
1315 /* If the segment is not tagged as lost,
1316 * we do not clear RETRANS, believing
1317 * that retransmission is still in flight.
1318 */
1319 if (sacked & TCPCB_LOST) {
1320 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321 tp->lost_out -= pcount;
1322 tp->retrans_out -= pcount;
1323 }
1324 } else {
1325 if (!(sacked & TCPCB_RETRANS)) {
1326 /* New sack for not retransmitted frame,
1327 * which was in hole. It is reordering.
1328 */
1329 if (before(TCP_SKB_CB(skb)->seq,
1330 tcp_highest_sack_seq(tp)))
1331 *reord = min(fack_count, *reord);
1332
1333 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335 flag |= FLAG_ONLY_ORIG_SACKED;
1336 }
1337
1338 if (sacked & TCPCB_LOST) {
1339 *sackedto &= ~TCPCB_LOST;
1340 tp->lost_out -= pcount;
1341 }
1342 }
1343
1344 *sackedto |= TCPCB_SACKED_ACKED;
1345 flag |= FLAG_DATA_SACKED;
1346 tp->sacked_out += pcount;
1347
1348 fack_count += pcount;
1349
1350 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352 before(TCP_SKB_CB(skb)->seq,
1353 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354 tp->lost_cnt_hint += pcount;
1355
1356 if (fack_count > tp->fackets_out)
1357 tp->fackets_out = fack_count;
1358 }
1359
1360 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361 * frames and clear it. undo_retrans is decreased above, L|R frames
1362 * are accounted above as well.
1363 */
1364 if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366 tp->retrans_out -= pcount;
1367 }
1368
1369 return flag;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373 struct sk_buff *skb, unsigned int pcount,
1374 int shifted, int fack_count, int *reord,
1375 int *flag, int mss)
1376 {
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 u8 dummy_sacked = TCP_SKB_CB(skb)->sacked; /* We discard results */
1379
1380 BUG_ON(!pcount);
1381
1382 /* Tweak before seqno plays */
1383 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385 tp->lost_cnt_hint += pcount;
1386
1387 TCP_SKB_CB(prev)->end_seq += shifted;
1388 TCP_SKB_CB(skb)->seq += shifted;
1389
1390 skb_shinfo(prev)->gso_segs += pcount;
1391 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392 skb_shinfo(skb)->gso_segs -= pcount;
1393
1394 /* When we're adding to gso_segs == 1, gso_size will be zero,
1395 * in theory this shouldn't be necessary but as long as DSACK
1396 * code can come after this skb later on it's better to keep
1397 * setting gso_size to something.
1398 */
1399 if (!skb_shinfo(prev)->gso_size) {
1400 skb_shinfo(prev)->gso_size = mss;
1401 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402 }
1403
1404 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405 if (skb_shinfo(skb)->gso_segs <= 1) {
1406 skb_shinfo(skb)->gso_size = 0;
1407 skb_shinfo(skb)->gso_type = 0;
1408 }
1409
1410 *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1411 pcount);
1412
1413 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416 if (skb->len > 0) {
1417 BUG_ON(!tcp_skb_pcount(skb));
1418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419 return 0;
1420 }
1421
1422 /* Whole SKB was eaten :-) */
1423
1424 if (skb == tp->retransmit_skb_hint)
1425 tp->retransmit_skb_hint = prev;
1426 if (skb == tp->scoreboard_skb_hint)
1427 tp->scoreboard_skb_hint = prev;
1428 if (skb == tp->lost_skb_hint) {
1429 tp->lost_skb_hint = prev;
1430 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431 }
1432
1433 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434 if (skb == tcp_highest_sack(sk))
1435 tcp_advance_highest_sack(sk, skb);
1436
1437 tcp_unlink_write_queue(skb, sk);
1438 sk_wmem_free_skb(sk, skb);
1439
1440 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441
1442 return 1;
1443 }
1444
1445 /* I wish gso_size would have a bit more sane initialization than
1446 * something-or-zero which complicates things
1447 */
1448 static int tcp_shift_mss(struct sk_buff *skb)
1449 {
1450 int mss = tcp_skb_mss(skb);
1451
1452 if (!mss)
1453 mss = skb->len;
1454
1455 return mss;
1456 }
1457
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1460 {
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462 }
1463
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1466 */
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468 u32 start_seq, u32 end_seq,
1469 int dup_sack, int *fack_count,
1470 int *reord, int *flag)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1478
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1481
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
1484 (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1491
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1496
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1499
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
1506 mss = tcp_shift_mss(skb);
1507
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1510 */
1511 if (mss != tcp_shift_mss(prev))
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1519 */
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1522
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1528 *
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1535 */
1536 goto fallback;
1537 }
1538
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1542
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1546 */
1547 mss = tcp_skb_mss(skb);
1548
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1551 */
1552 if (mss != tcp_shift_mss(prev))
1553 goto fallback;
1554
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1562 }
1563 }
1564
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
1567 if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1568 flag, mss))
1569 goto out;
1570
1571 /* Hole filled allows collapsing with the next as well, this is very
1572 * useful when hole on every nth skb pattern happens
1573 */
1574 if (prev == tcp_write_queue_tail(sk))
1575 goto out;
1576 skb = tcp_write_queue_next(sk, prev);
1577
1578 if (!skb_can_shift(skb))
1579 goto out;
1580 if (skb == tcp_send_head(sk))
1581 goto out;
1582 if ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1583 goto out;
1584
1585 len = skb->len;
1586 if (skb_shift(prev, skb, len)) {
1587 pcount += tcp_skb_pcount(skb);
1588 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1589 *fack_count, reord, flag, mss);
1590 }
1591
1592 out:
1593 *fack_count += pcount;
1594 return prev;
1595
1596 noop:
1597 return skb;
1598
1599 fallback:
1600 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1601 return NULL;
1602 }
1603
1604 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1605 struct tcp_sack_block *next_dup,
1606 u32 start_seq, u32 end_seq,
1607 int dup_sack_in, int *fack_count,
1608 int *reord, int *flag)
1609 {
1610 struct tcp_sock *tp = tcp_sk(sk);
1611 struct sk_buff *tmp;
1612
1613 tcp_for_write_queue_from(skb, sk) {
1614 int in_sack = 0;
1615 int dup_sack = dup_sack_in;
1616
1617 if (skb == tcp_send_head(sk))
1618 break;
1619
1620 /* queue is in-order => we can short-circuit the walk early */
1621 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1622 break;
1623
1624 if ((next_dup != NULL) &&
1625 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1626 in_sack = tcp_match_skb_to_sack(sk, skb,
1627 next_dup->start_seq,
1628 next_dup->end_seq);
1629 if (in_sack > 0)
1630 dup_sack = 1;
1631 }
1632
1633 /* skb reference here is a bit tricky to get right, since
1634 * shifting can eat and free both this skb and the next,
1635 * so not even _safe variant of the loop is enough.
1636 */
1637 if (in_sack <= 0) {
1638 tmp = tcp_shift_skb_data(sk, skb, start_seq,
1639 end_seq, dup_sack,
1640 fack_count, reord, flag);
1641 if (tmp != NULL) {
1642 if (tmp != skb) {
1643 skb = tmp;
1644 continue;
1645 }
1646
1647 in_sack = 0;
1648 } else {
1649 in_sack = tcp_match_skb_to_sack(sk, skb,
1650 start_seq,
1651 end_seq);
1652 }
1653 }
1654
1655 if (unlikely(in_sack < 0))
1656 break;
1657
1658 if (in_sack) {
1659 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1660 *fack_count,
1661 &(TCP_SKB_CB(skb)->sacked),
1662 tcp_skb_pcount(skb));
1663
1664 if (!before(TCP_SKB_CB(skb)->seq,
1665 tcp_highest_sack_seq(tp)))
1666 tcp_advance_highest_sack(sk, skb);
1667 }
1668
1669 *fack_count += tcp_skb_pcount(skb);
1670 }
1671 return skb;
1672 }
1673
1674 /* Avoid all extra work that is being done by sacktag while walking in
1675 * a normal way
1676 */
1677 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1678 u32 skip_to_seq, int *fack_count)
1679 {
1680 tcp_for_write_queue_from(skb, sk) {
1681 if (skb == tcp_send_head(sk))
1682 break;
1683
1684 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1685 break;
1686
1687 *fack_count += tcp_skb_pcount(skb);
1688 }
1689 return skb;
1690 }
1691
1692 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1693 struct sock *sk,
1694 struct tcp_sack_block *next_dup,
1695 u32 skip_to_seq,
1696 int *fack_count, int *reord,
1697 int *flag)
1698 {
1699 if (next_dup == NULL)
1700 return skb;
1701
1702 if (before(next_dup->start_seq, skip_to_seq)) {
1703 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1704 skb = tcp_sacktag_walk(skb, sk, NULL,
1705 next_dup->start_seq, next_dup->end_seq,
1706 1, fack_count, reord, flag);
1707 }
1708
1709 return skb;
1710 }
1711
1712 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1713 {
1714 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1715 }
1716
1717 static int
1718 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1719 u32 prior_snd_una)
1720 {
1721 const struct inet_connection_sock *icsk = inet_csk(sk);
1722 struct tcp_sock *tp = tcp_sk(sk);
1723 unsigned char *ptr = (skb_transport_header(ack_skb) +
1724 TCP_SKB_CB(ack_skb)->sacked);
1725 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1726 struct tcp_sack_block sp[TCP_NUM_SACKS];
1727 struct tcp_sack_block *cache;
1728 struct sk_buff *skb;
1729 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1730 int used_sacks;
1731 int reord = tp->packets_out;
1732 int flag = 0;
1733 int found_dup_sack = 0;
1734 int fack_count;
1735 int i, j;
1736 int first_sack_index;
1737
1738 if (!tp->sacked_out) {
1739 if (WARN_ON(tp->fackets_out))
1740 tp->fackets_out = 0;
1741 tcp_highest_sack_reset(sk);
1742 }
1743
1744 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1745 num_sacks, prior_snd_una);
1746 if (found_dup_sack)
1747 flag |= FLAG_DSACKING_ACK;
1748
1749 /* Eliminate too old ACKs, but take into
1750 * account more or less fresh ones, they can
1751 * contain valid SACK info.
1752 */
1753 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1754 return 0;
1755
1756 if (!tp->packets_out)
1757 goto out;
1758
1759 used_sacks = 0;
1760 first_sack_index = 0;
1761 for (i = 0; i < num_sacks; i++) {
1762 int dup_sack = !i && found_dup_sack;
1763
1764 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1765 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1766
1767 if (!tcp_is_sackblock_valid(tp, dup_sack,
1768 sp[used_sacks].start_seq,
1769 sp[used_sacks].end_seq)) {
1770 int mib_idx;
1771
1772 if (dup_sack) {
1773 if (!tp->undo_marker)
1774 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1775 else
1776 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1777 } else {
1778 /* Don't count olds caused by ACK reordering */
1779 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1780 !after(sp[used_sacks].end_seq, tp->snd_una))
1781 continue;
1782 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1783 }
1784
1785 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1786 if (i == 0)
1787 first_sack_index = -1;
1788 continue;
1789 }
1790
1791 /* Ignore very old stuff early */
1792 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1793 continue;
1794
1795 used_sacks++;
1796 }
1797
1798 /* order SACK blocks to allow in order walk of the retrans queue */
1799 for (i = used_sacks - 1; i > 0; i--) {
1800 for (j = 0; j < i; j++) {
1801 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1802 struct tcp_sack_block tmp;
1803
1804 tmp = sp[j];
1805 sp[j] = sp[j + 1];
1806 sp[j + 1] = tmp;
1807
1808 /* Track where the first SACK block goes to */
1809 if (j == first_sack_index)
1810 first_sack_index = j + 1;
1811 }
1812 }
1813 }
1814
1815 skb = tcp_write_queue_head(sk);
1816 fack_count = 0;
1817 i = 0;
1818
1819 if (!tp->sacked_out) {
1820 /* It's already past, so skip checking against it */
1821 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1822 } else {
1823 cache = tp->recv_sack_cache;
1824 /* Skip empty blocks in at head of the cache */
1825 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1826 !cache->end_seq)
1827 cache++;
1828 }
1829
1830 while (i < used_sacks) {
1831 u32 start_seq = sp[i].start_seq;
1832 u32 end_seq = sp[i].end_seq;
1833 int dup_sack = (found_dup_sack && (i == first_sack_index));
1834 struct tcp_sack_block *next_dup = NULL;
1835
1836 if (found_dup_sack && ((i + 1) == first_sack_index))
1837 next_dup = &sp[i + 1];
1838
1839 /* Event "B" in the comment above. */
1840 if (after(end_seq, tp->high_seq))
1841 flag |= FLAG_DATA_LOST;
1842
1843 /* Skip too early cached blocks */
1844 while (tcp_sack_cache_ok(tp, cache) &&
1845 !before(start_seq, cache->end_seq))
1846 cache++;
1847
1848 /* Can skip some work by looking recv_sack_cache? */
1849 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1850 after(end_seq, cache->start_seq)) {
1851
1852 /* Head todo? */
1853 if (before(start_seq, cache->start_seq)) {
1854 skb = tcp_sacktag_skip(skb, sk, start_seq,
1855 &fack_count);
1856 skb = tcp_sacktag_walk(skb, sk, next_dup,
1857 start_seq,
1858 cache->start_seq,
1859 dup_sack, &fack_count,
1860 &reord, &flag);
1861 }
1862
1863 /* Rest of the block already fully processed? */
1864 if (!after(end_seq, cache->end_seq))
1865 goto advance_sp;
1866
1867 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1868 cache->end_seq,
1869 &fack_count, &reord,
1870 &flag);
1871
1872 /* ...tail remains todo... */
1873 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1874 /* ...but better entrypoint exists! */
1875 skb = tcp_highest_sack(sk);
1876 if (skb == NULL)
1877 break;
1878 fack_count = tp->fackets_out;
1879 cache++;
1880 goto walk;
1881 }
1882
1883 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1884 &fack_count);
1885 /* Check overlap against next cached too (past this one already) */
1886 cache++;
1887 continue;
1888 }
1889
1890 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1891 skb = tcp_highest_sack(sk);
1892 if (skb == NULL)
1893 break;
1894 fack_count = tp->fackets_out;
1895 }
1896 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1897
1898 walk:
1899 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1900 dup_sack, &fack_count, &reord, &flag);
1901
1902 advance_sp:
1903 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1904 * due to in-order walk
1905 */
1906 if (after(end_seq, tp->frto_highmark))
1907 flag &= ~FLAG_ONLY_ORIG_SACKED;
1908
1909 i++;
1910 }
1911
1912 /* Clear the head of the cache sack blocks so we can skip it next time */
1913 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1914 tp->recv_sack_cache[i].start_seq = 0;
1915 tp->recv_sack_cache[i].end_seq = 0;
1916 }
1917 for (j = 0; j < used_sacks; j++)
1918 tp->recv_sack_cache[i++] = sp[j];
1919
1920 tcp_mark_lost_retrans(sk);
1921
1922 tcp_verify_left_out(tp);
1923
1924 if ((reord < tp->fackets_out) &&
1925 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1926 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1927 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1928
1929 out:
1930
1931 #if FASTRETRANS_DEBUG > 0
1932 WARN_ON((int)tp->sacked_out < 0);
1933 WARN_ON((int)tp->lost_out < 0);
1934 WARN_ON((int)tp->retrans_out < 0);
1935 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1936 #endif
1937 return flag;
1938 }
1939
1940 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1941 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1942 */
1943 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1944 {
1945 u32 holes;
1946
1947 holes = max(tp->lost_out, 1U);
1948 holes = min(holes, tp->packets_out);
1949
1950 if ((tp->sacked_out + holes) > tp->packets_out) {
1951 tp->sacked_out = tp->packets_out - holes;
1952 return 1;
1953 }
1954 return 0;
1955 }
1956
1957 /* If we receive more dupacks than we expected counting segments
1958 * in assumption of absent reordering, interpret this as reordering.
1959 * The only another reason could be bug in receiver TCP.
1960 */
1961 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1962 {
1963 struct tcp_sock *tp = tcp_sk(sk);
1964 if (tcp_limit_reno_sacked(tp))
1965 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1966 }
1967
1968 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1969
1970 static void tcp_add_reno_sack(struct sock *sk)
1971 {
1972 struct tcp_sock *tp = tcp_sk(sk);
1973 tp->sacked_out++;
1974 tcp_check_reno_reordering(sk, 0);
1975 tcp_verify_left_out(tp);
1976 }
1977
1978 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1979
1980 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1981 {
1982 struct tcp_sock *tp = tcp_sk(sk);
1983
1984 if (acked > 0) {
1985 /* One ACK acked hole. The rest eat duplicate ACKs. */
1986 if (acked - 1 >= tp->sacked_out)
1987 tp->sacked_out = 0;
1988 else
1989 tp->sacked_out -= acked - 1;
1990 }
1991 tcp_check_reno_reordering(sk, acked);
1992 tcp_verify_left_out(tp);
1993 }
1994
1995 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1996 {
1997 tp->sacked_out = 0;
1998 }
1999
2000 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2001 {
2002 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2003 }
2004
2005 /* F-RTO can only be used if TCP has never retransmitted anything other than
2006 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2007 */
2008 int tcp_use_frto(struct sock *sk)
2009 {
2010 const struct tcp_sock *tp = tcp_sk(sk);
2011 const struct inet_connection_sock *icsk = inet_csk(sk);
2012 struct sk_buff *skb;
2013
2014 if (!sysctl_tcp_frto)
2015 return 0;
2016
2017 /* MTU probe and F-RTO won't really play nicely along currently */
2018 if (icsk->icsk_mtup.probe_size)
2019 return 0;
2020
2021 if (tcp_is_sackfrto(tp))
2022 return 1;
2023
2024 /* Avoid expensive walking of rexmit queue if possible */
2025 if (tp->retrans_out > 1)
2026 return 0;
2027
2028 skb = tcp_write_queue_head(sk);
2029 if (tcp_skb_is_last(sk, skb))
2030 return 1;
2031 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2032 tcp_for_write_queue_from(skb, sk) {
2033 if (skb == tcp_send_head(sk))
2034 break;
2035 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2036 return 0;
2037 /* Short-circuit when first non-SACKed skb has been checked */
2038 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2039 break;
2040 }
2041 return 1;
2042 }
2043
2044 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2045 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2046 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2047 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2048 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2049 * bits are handled if the Loss state is really to be entered (in
2050 * tcp_enter_frto_loss).
2051 *
2052 * Do like tcp_enter_loss() would; when RTO expires the second time it
2053 * does:
2054 * "Reduce ssthresh if it has not yet been made inside this window."
2055 */
2056 void tcp_enter_frto(struct sock *sk)
2057 {
2058 const struct inet_connection_sock *icsk = inet_csk(sk);
2059 struct tcp_sock *tp = tcp_sk(sk);
2060 struct sk_buff *skb;
2061
2062 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2063 tp->snd_una == tp->high_seq ||
2064 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2065 !icsk->icsk_retransmits)) {
2066 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2067 /* Our state is too optimistic in ssthresh() call because cwnd
2068 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2069 * recovery has not yet completed. Pattern would be this: RTO,
2070 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2071 * up here twice).
2072 * RFC4138 should be more specific on what to do, even though
2073 * RTO is quite unlikely to occur after the first Cumulative ACK
2074 * due to back-off and complexity of triggering events ...
2075 */
2076 if (tp->frto_counter) {
2077 u32 stored_cwnd;
2078 stored_cwnd = tp->snd_cwnd;
2079 tp->snd_cwnd = 2;
2080 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 tp->snd_cwnd = stored_cwnd;
2082 } else {
2083 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2084 }
2085 /* ... in theory, cong.control module could do "any tricks" in
2086 * ssthresh(), which means that ca_state, lost bits and lost_out
2087 * counter would have to be faked before the call occurs. We
2088 * consider that too expensive, unlikely and hacky, so modules
2089 * using these in ssthresh() must deal these incompatibility
2090 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2091 */
2092 tcp_ca_event(sk, CA_EVENT_FRTO);
2093 }
2094
2095 tp->undo_marker = tp->snd_una;
2096 tp->undo_retrans = 0;
2097
2098 skb = tcp_write_queue_head(sk);
2099 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2100 tp->undo_marker = 0;
2101 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2102 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2103 tp->retrans_out -= tcp_skb_pcount(skb);
2104 }
2105 tcp_verify_left_out(tp);
2106
2107 /* Too bad if TCP was application limited */
2108 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2109
2110 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2111 * The last condition is necessary at least in tp->frto_counter case.
2112 */
2113 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2114 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2115 after(tp->high_seq, tp->snd_una)) {
2116 tp->frto_highmark = tp->high_seq;
2117 } else {
2118 tp->frto_highmark = tp->snd_nxt;
2119 }
2120 tcp_set_ca_state(sk, TCP_CA_Disorder);
2121 tp->high_seq = tp->snd_nxt;
2122 tp->frto_counter = 1;
2123 }
2124
2125 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2126 * which indicates that we should follow the traditional RTO recovery,
2127 * i.e. mark everything lost and do go-back-N retransmission.
2128 */
2129 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2130 {
2131 struct tcp_sock *tp = tcp_sk(sk);
2132 struct sk_buff *skb;
2133
2134 tp->lost_out = 0;
2135 tp->retrans_out = 0;
2136 if (tcp_is_reno(tp))
2137 tcp_reset_reno_sack(tp);
2138
2139 tcp_for_write_queue(skb, sk) {
2140 if (skb == tcp_send_head(sk))
2141 break;
2142
2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2144 /*
2145 * Count the retransmission made on RTO correctly (only when
2146 * waiting for the first ACK and did not get it)...
2147 */
2148 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2149 /* For some reason this R-bit might get cleared? */
2150 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2151 tp->retrans_out += tcp_skb_pcount(skb);
2152 /* ...enter this if branch just for the first segment */
2153 flag |= FLAG_DATA_ACKED;
2154 } else {
2155 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2156 tp->undo_marker = 0;
2157 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2158 }
2159
2160 /* Marking forward transmissions that were made after RTO lost
2161 * can cause unnecessary retransmissions in some scenarios,
2162 * SACK blocks will mitigate that in some but not in all cases.
2163 * We used to not mark them but it was causing break-ups with
2164 * receivers that do only in-order receival.
2165 *
2166 * TODO: we could detect presence of such receiver and select
2167 * different behavior per flow.
2168 */
2169 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2170 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2171 tp->lost_out += tcp_skb_pcount(skb);
2172 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2173 }
2174 }
2175 tcp_verify_left_out(tp);
2176
2177 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2178 tp->snd_cwnd_cnt = 0;
2179 tp->snd_cwnd_stamp = tcp_time_stamp;
2180 tp->frto_counter = 0;
2181 tp->bytes_acked = 0;
2182
2183 tp->reordering = min_t(unsigned int, tp->reordering,
2184 sysctl_tcp_reordering);
2185 tcp_set_ca_state(sk, TCP_CA_Loss);
2186 tp->high_seq = tp->snd_nxt;
2187 TCP_ECN_queue_cwr(tp);
2188
2189 tcp_clear_all_retrans_hints(tp);
2190 }
2191
2192 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2193 {
2194 tp->retrans_out = 0;
2195 tp->lost_out = 0;
2196
2197 tp->undo_marker = 0;
2198 tp->undo_retrans = 0;
2199 }
2200
2201 void tcp_clear_retrans(struct tcp_sock *tp)
2202 {
2203 tcp_clear_retrans_partial(tp);
2204
2205 tp->fackets_out = 0;
2206 tp->sacked_out = 0;
2207 }
2208
2209 /* Enter Loss state. If "how" is not zero, forget all SACK information
2210 * and reset tags completely, otherwise preserve SACKs. If receiver
2211 * dropped its ofo queue, we will know this due to reneging detection.
2212 */
2213 void tcp_enter_loss(struct sock *sk, int how)
2214 {
2215 const struct inet_connection_sock *icsk = inet_csk(sk);
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 struct sk_buff *skb;
2218
2219 /* Reduce ssthresh if it has not yet been made inside this window. */
2220 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2221 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2222 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2223 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2224 tcp_ca_event(sk, CA_EVENT_LOSS);
2225 }
2226 tp->snd_cwnd = 1;
2227 tp->snd_cwnd_cnt = 0;
2228 tp->snd_cwnd_stamp = tcp_time_stamp;
2229
2230 tp->bytes_acked = 0;
2231 tcp_clear_retrans_partial(tp);
2232
2233 if (tcp_is_reno(tp))
2234 tcp_reset_reno_sack(tp);
2235
2236 if (!how) {
2237 /* Push undo marker, if it was plain RTO and nothing
2238 * was retransmitted. */
2239 tp->undo_marker = tp->snd_una;
2240 } else {
2241 tp->sacked_out = 0;
2242 tp->fackets_out = 0;
2243 }
2244 tcp_clear_all_retrans_hints(tp);
2245
2246 tcp_for_write_queue(skb, sk) {
2247 if (skb == tcp_send_head(sk))
2248 break;
2249
2250 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2251 tp->undo_marker = 0;
2252 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2253 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2254 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2255 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2256 tp->lost_out += tcp_skb_pcount(skb);
2257 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2258 }
2259 }
2260 tcp_verify_left_out(tp);
2261
2262 tp->reordering = min_t(unsigned int, tp->reordering,
2263 sysctl_tcp_reordering);
2264 tcp_set_ca_state(sk, TCP_CA_Loss);
2265 tp->high_seq = tp->snd_nxt;
2266 TCP_ECN_queue_cwr(tp);
2267 /* Abort F-RTO algorithm if one is in progress */
2268 tp->frto_counter = 0;
2269 }
2270
2271 /* If ACK arrived pointing to a remembered SACK, it means that our
2272 * remembered SACKs do not reflect real state of receiver i.e.
2273 * receiver _host_ is heavily congested (or buggy).
2274 *
2275 * Do processing similar to RTO timeout.
2276 */
2277 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2278 {
2279 if (flag & FLAG_SACK_RENEGING) {
2280 struct inet_connection_sock *icsk = inet_csk(sk);
2281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2282
2283 tcp_enter_loss(sk, 1);
2284 icsk->icsk_retransmits++;
2285 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2287 icsk->icsk_rto, TCP_RTO_MAX);
2288 return 1;
2289 }
2290 return 0;
2291 }
2292
2293 static inline int tcp_fackets_out(struct tcp_sock *tp)
2294 {
2295 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2296 }
2297
2298 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2299 * counter when SACK is enabled (without SACK, sacked_out is used for
2300 * that purpose).
2301 *
2302 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2303 * segments up to the highest received SACK block so far and holes in
2304 * between them.
2305 *
2306 * With reordering, holes may still be in flight, so RFC3517 recovery
2307 * uses pure sacked_out (total number of SACKed segments) even though
2308 * it violates the RFC that uses duplicate ACKs, often these are equal
2309 * but when e.g. out-of-window ACKs or packet duplication occurs,
2310 * they differ. Since neither occurs due to loss, TCP should really
2311 * ignore them.
2312 */
2313 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2314 {
2315 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2316 }
2317
2318 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2319 {
2320 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2321 }
2322
2323 static inline int tcp_head_timedout(struct sock *sk)
2324 {
2325 struct tcp_sock *tp = tcp_sk(sk);
2326
2327 return tp->packets_out &&
2328 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329 }
2330
2331 /* Linux NewReno/SACK/FACK/ECN state machine.
2332 * --------------------------------------
2333 *
2334 * "Open" Normal state, no dubious events, fast path.
2335 * "Disorder" In all the respects it is "Open",
2336 * but requires a bit more attention. It is entered when
2337 * we see some SACKs or dupacks. It is split of "Open"
2338 * mainly to move some processing from fast path to slow one.
2339 * "CWR" CWND was reduced due to some Congestion Notification event.
2340 * It can be ECN, ICMP source quench, local device congestion.
2341 * "Recovery" CWND was reduced, we are fast-retransmitting.
2342 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2343 *
2344 * tcp_fastretrans_alert() is entered:
2345 * - each incoming ACK, if state is not "Open"
2346 * - when arrived ACK is unusual, namely:
2347 * * SACK
2348 * * Duplicate ACK.
2349 * * ECN ECE.
2350 *
2351 * Counting packets in flight is pretty simple.
2352 *
2353 * in_flight = packets_out - left_out + retrans_out
2354 *
2355 * packets_out is SND.NXT-SND.UNA counted in packets.
2356 *
2357 * retrans_out is number of retransmitted segments.
2358 *
2359 * left_out is number of segments left network, but not ACKed yet.
2360 *
2361 * left_out = sacked_out + lost_out
2362 *
2363 * sacked_out: Packets, which arrived to receiver out of order
2364 * and hence not ACKed. With SACKs this number is simply
2365 * amount of SACKed data. Even without SACKs
2366 * it is easy to give pretty reliable estimate of this number,
2367 * counting duplicate ACKs.
2368 *
2369 * lost_out: Packets lost by network. TCP has no explicit
2370 * "loss notification" feedback from network (for now).
2371 * It means that this number can be only _guessed_.
2372 * Actually, it is the heuristics to predict lossage that
2373 * distinguishes different algorithms.
2374 *
2375 * F.e. after RTO, when all the queue is considered as lost,
2376 * lost_out = packets_out and in_flight = retrans_out.
2377 *
2378 * Essentially, we have now two algorithms counting
2379 * lost packets.
2380 *
2381 * FACK: It is the simplest heuristics. As soon as we decided
2382 * that something is lost, we decide that _all_ not SACKed
2383 * packets until the most forward SACK are lost. I.e.
2384 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2385 * It is absolutely correct estimate, if network does not reorder
2386 * packets. And it loses any connection to reality when reordering
2387 * takes place. We use FACK by default until reordering
2388 * is suspected on the path to this destination.
2389 *
2390 * NewReno: when Recovery is entered, we assume that one segment
2391 * is lost (classic Reno). While we are in Recovery and
2392 * a partial ACK arrives, we assume that one more packet
2393 * is lost (NewReno). This heuristics are the same in NewReno
2394 * and SACK.
2395 *
2396 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2397 * deflation etc. CWND is real congestion window, never inflated, changes
2398 * only according to classic VJ rules.
2399 *
2400 * Really tricky (and requiring careful tuning) part of algorithm
2401 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2402 * The first determines the moment _when_ we should reduce CWND and,
2403 * hence, slow down forward transmission. In fact, it determines the moment
2404 * when we decide that hole is caused by loss, rather than by a reorder.
2405 *
2406 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2407 * holes, caused by lost packets.
2408 *
2409 * And the most logically complicated part of algorithm is undo
2410 * heuristics. We detect false retransmits due to both too early
2411 * fast retransmit (reordering) and underestimated RTO, analyzing
2412 * timestamps and D-SACKs. When we detect that some segments were
2413 * retransmitted by mistake and CWND reduction was wrong, we undo
2414 * window reduction and abort recovery phase. This logic is hidden
2415 * inside several functions named tcp_try_undo_<something>.
2416 */
2417
2418 /* This function decides, when we should leave Disordered state
2419 * and enter Recovery phase, reducing congestion window.
2420 *
2421 * Main question: may we further continue forward transmission
2422 * with the same cwnd?
2423 */
2424 static int tcp_time_to_recover(struct sock *sk)
2425 {
2426 struct tcp_sock *tp = tcp_sk(sk);
2427 __u32 packets_out;
2428
2429 /* Do not perform any recovery during F-RTO algorithm */
2430 if (tp->frto_counter)
2431 return 0;
2432
2433 /* Trick#1: The loss is proven. */
2434 if (tp->lost_out)
2435 return 1;
2436
2437 /* Not-A-Trick#2 : Classic rule... */
2438 if (tcp_dupack_heurestics(tp) > tp->reordering)
2439 return 1;
2440
2441 /* Trick#3 : when we use RFC2988 timer restart, fast
2442 * retransmit can be triggered by timeout of queue head.
2443 */
2444 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445 return 1;
2446
2447 /* Trick#4: It is still not OK... But will it be useful to delay
2448 * recovery more?
2449 */
2450 packets_out = tp->packets_out;
2451 if (packets_out <= tp->reordering &&
2452 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2453 !tcp_may_send_now(sk)) {
2454 /* We have nothing to send. This connection is limited
2455 * either by receiver window or by application.
2456 */
2457 return 1;
2458 }
2459
2460 return 0;
2461 }
2462
2463 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2464 * is against sacked "cnt", otherwise it's against facked "cnt"
2465 */
2466 static void tcp_mark_head_lost(struct sock *sk, int packets)
2467 {
2468 struct tcp_sock *tp = tcp_sk(sk);
2469 struct sk_buff *skb;
2470 int cnt, oldcnt;
2471 int err;
2472 unsigned int mss;
2473
2474 WARN_ON(packets > tp->packets_out);
2475 if (tp->lost_skb_hint) {
2476 skb = tp->lost_skb_hint;
2477 cnt = tp->lost_cnt_hint;
2478 } else {
2479 skb = tcp_write_queue_head(sk);
2480 cnt = 0;
2481 }
2482
2483 tcp_for_write_queue_from(skb, sk) {
2484 if (skb == tcp_send_head(sk))
2485 break;
2486 /* TODO: do this better */
2487 /* this is not the most efficient way to do this... */
2488 tp->lost_skb_hint = skb;
2489 tp->lost_cnt_hint = cnt;
2490
2491 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2492 break;
2493
2494 oldcnt = cnt;
2495 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2496 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2497 cnt += tcp_skb_pcount(skb);
2498
2499 if (cnt > packets) {
2500 if (tcp_is_sack(tp) || (oldcnt >= packets))
2501 break;
2502
2503 mss = skb_shinfo(skb)->gso_size;
2504 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2505 if (err < 0)
2506 break;
2507 cnt = packets;
2508 }
2509
2510 tcp_skb_mark_lost(tp, skb);
2511 }
2512 tcp_verify_left_out(tp);
2513 }
2514
2515 /* Account newly detected lost packet(s) */
2516
2517 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2518 {
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 if (tcp_is_reno(tp)) {
2522 tcp_mark_head_lost(sk, 1);
2523 } else if (tcp_is_fack(tp)) {
2524 int lost = tp->fackets_out - tp->reordering;
2525 if (lost <= 0)
2526 lost = 1;
2527 tcp_mark_head_lost(sk, lost);
2528 } else {
2529 int sacked_upto = tp->sacked_out - tp->reordering;
2530 if (sacked_upto < fast_rexmit)
2531 sacked_upto = fast_rexmit;
2532 tcp_mark_head_lost(sk, sacked_upto);
2533 }
2534
2535 /* New heuristics: it is possible only after we switched
2536 * to restart timer each time when something is ACKed.
2537 * Hence, we can detect timed out packets during fast
2538 * retransmit without falling to slow start.
2539 */
2540 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2541 struct sk_buff *skb;
2542
2543 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2544 : tcp_write_queue_head(sk);
2545
2546 tcp_for_write_queue_from(skb, sk) {
2547 if (skb == tcp_send_head(sk))
2548 break;
2549 if (!tcp_skb_timedout(sk, skb))
2550 break;
2551
2552 tcp_skb_mark_lost(tp, skb);
2553 }
2554
2555 tp->scoreboard_skb_hint = skb;
2556
2557 tcp_verify_left_out(tp);
2558 }
2559 }
2560
2561 /* CWND moderation, preventing bursts due to too big ACKs
2562 * in dubious situations.
2563 */
2564 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2565 {
2566 tp->snd_cwnd = min(tp->snd_cwnd,
2567 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2568 tp->snd_cwnd_stamp = tcp_time_stamp;
2569 }
2570
2571 /* Lower bound on congestion window is slow start threshold
2572 * unless congestion avoidance choice decides to overide it.
2573 */
2574 static inline u32 tcp_cwnd_min(const struct sock *sk)
2575 {
2576 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2577
2578 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2579 }
2580
2581 /* Decrease cwnd each second ack. */
2582 static void tcp_cwnd_down(struct sock *sk, int flag)
2583 {
2584 struct tcp_sock *tp = tcp_sk(sk);
2585 int decr = tp->snd_cwnd_cnt + 1;
2586
2587 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2588 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2589 tp->snd_cwnd_cnt = decr & 1;
2590 decr >>= 1;
2591
2592 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2593 tp->snd_cwnd -= decr;
2594
2595 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2596 tp->snd_cwnd_stamp = tcp_time_stamp;
2597 }
2598 }
2599
2600 /* Nothing was retransmitted or returned timestamp is less
2601 * than timestamp of the first retransmission.
2602 */
2603 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2604 {
2605 return !tp->retrans_stamp ||
2606 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2607 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2608 }
2609
2610 /* Undo procedures. */
2611
2612 #if FASTRETRANS_DEBUG > 1
2613 static void DBGUNDO(struct sock *sk, const char *msg)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 struct inet_sock *inet = inet_sk(sk);
2617
2618 if (sk->sk_family == AF_INET) {
2619 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2620 msg,
2621 &inet->daddr, ntohs(inet->dport),
2622 tp->snd_cwnd, tcp_left_out(tp),
2623 tp->snd_ssthresh, tp->prior_ssthresh,
2624 tp->packets_out);
2625 }
2626 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2627 else if (sk->sk_family == AF_INET6) {
2628 struct ipv6_pinfo *np = inet6_sk(sk);
2629 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2630 msg,
2631 &np->daddr, ntohs(inet->dport),
2632 tp->snd_cwnd, tcp_left_out(tp),
2633 tp->snd_ssthresh, tp->prior_ssthresh,
2634 tp->packets_out);
2635 }
2636 #endif
2637 }
2638 #else
2639 #define DBGUNDO(x...) do { } while (0)
2640 #endif
2641
2642 static void tcp_undo_cwr(struct sock *sk, const int undo)
2643 {
2644 struct tcp_sock *tp = tcp_sk(sk);
2645
2646 if (tp->prior_ssthresh) {
2647 const struct inet_connection_sock *icsk = inet_csk(sk);
2648
2649 if (icsk->icsk_ca_ops->undo_cwnd)
2650 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2651 else
2652 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2653
2654 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2655 tp->snd_ssthresh = tp->prior_ssthresh;
2656 TCP_ECN_withdraw_cwr(tp);
2657 }
2658 } else {
2659 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2660 }
2661 tcp_moderate_cwnd(tp);
2662 tp->snd_cwnd_stamp = tcp_time_stamp;
2663 }
2664
2665 static inline int tcp_may_undo(struct tcp_sock *tp)
2666 {
2667 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2668 }
2669
2670 /* People celebrate: "We love our President!" */
2671 static int tcp_try_undo_recovery(struct sock *sk)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674
2675 if (tcp_may_undo(tp)) {
2676 int mib_idx;
2677
2678 /* Happy end! We did not retransmit anything
2679 * or our original transmission succeeded.
2680 */
2681 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2682 tcp_undo_cwr(sk, 1);
2683 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2684 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2685 else
2686 mib_idx = LINUX_MIB_TCPFULLUNDO;
2687
2688 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2689 tp->undo_marker = 0;
2690 }
2691 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2692 /* Hold old state until something *above* high_seq
2693 * is ACKed. For Reno it is MUST to prevent false
2694 * fast retransmits (RFC2582). SACK TCP is safe. */
2695 tcp_moderate_cwnd(tp);
2696 return 1;
2697 }
2698 tcp_set_ca_state(sk, TCP_CA_Open);
2699 return 0;
2700 }
2701
2702 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2703 static void tcp_try_undo_dsack(struct sock *sk)
2704 {
2705 struct tcp_sock *tp = tcp_sk(sk);
2706
2707 if (tp->undo_marker && !tp->undo_retrans) {
2708 DBGUNDO(sk, "D-SACK");
2709 tcp_undo_cwr(sk, 1);
2710 tp->undo_marker = 0;
2711 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2712 }
2713 }
2714
2715 /* Undo during fast recovery after partial ACK. */
2716
2717 static int tcp_try_undo_partial(struct sock *sk, int acked)
2718 {
2719 struct tcp_sock *tp = tcp_sk(sk);
2720 /* Partial ACK arrived. Force Hoe's retransmit. */
2721 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2722
2723 if (tcp_may_undo(tp)) {
2724 /* Plain luck! Hole if filled with delayed
2725 * packet, rather than with a retransmit.
2726 */
2727 if (tp->retrans_out == 0)
2728 tp->retrans_stamp = 0;
2729
2730 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2731
2732 DBGUNDO(sk, "Hoe");
2733 tcp_undo_cwr(sk, 0);
2734 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2735
2736 /* So... Do not make Hoe's retransmit yet.
2737 * If the first packet was delayed, the rest
2738 * ones are most probably delayed as well.
2739 */
2740 failed = 0;
2741 }
2742 return failed;
2743 }
2744
2745 /* Undo during loss recovery after partial ACK. */
2746 static int tcp_try_undo_loss(struct sock *sk)
2747 {
2748 struct tcp_sock *tp = tcp_sk(sk);
2749
2750 if (tcp_may_undo(tp)) {
2751 struct sk_buff *skb;
2752 tcp_for_write_queue(skb, sk) {
2753 if (skb == tcp_send_head(sk))
2754 break;
2755 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2756 }
2757
2758 tcp_clear_all_retrans_hints(tp);
2759
2760 DBGUNDO(sk, "partial loss");
2761 tp->lost_out = 0;
2762 tcp_undo_cwr(sk, 1);
2763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2764 inet_csk(sk)->icsk_retransmits = 0;
2765 tp->undo_marker = 0;
2766 if (tcp_is_sack(tp))
2767 tcp_set_ca_state(sk, TCP_CA_Open);
2768 return 1;
2769 }
2770 return 0;
2771 }
2772
2773 static inline void tcp_complete_cwr(struct sock *sk)
2774 {
2775 struct tcp_sock *tp = tcp_sk(sk);
2776 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2777 tp->snd_cwnd_stamp = tcp_time_stamp;
2778 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2779 }
2780
2781 static void tcp_try_keep_open(struct sock *sk)
2782 {
2783 struct tcp_sock *tp = tcp_sk(sk);
2784 int state = TCP_CA_Open;
2785
2786 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2787 state = TCP_CA_Disorder;
2788
2789 if (inet_csk(sk)->icsk_ca_state != state) {
2790 tcp_set_ca_state(sk, state);
2791 tp->high_seq = tp->snd_nxt;
2792 }
2793 }
2794
2795 static void tcp_try_to_open(struct sock *sk, int flag)
2796 {
2797 struct tcp_sock *tp = tcp_sk(sk);
2798
2799 tcp_verify_left_out(tp);
2800
2801 if (!tp->frto_counter && tp->retrans_out == 0)
2802 tp->retrans_stamp = 0;
2803
2804 if (flag & FLAG_ECE)
2805 tcp_enter_cwr(sk, 1);
2806
2807 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2808 tcp_try_keep_open(sk);
2809 tcp_moderate_cwnd(tp);
2810 } else {
2811 tcp_cwnd_down(sk, flag);
2812 }
2813 }
2814
2815 static void tcp_mtup_probe_failed(struct sock *sk)
2816 {
2817 struct inet_connection_sock *icsk = inet_csk(sk);
2818
2819 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2820 icsk->icsk_mtup.probe_size = 0;
2821 }
2822
2823 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2824 {
2825 struct tcp_sock *tp = tcp_sk(sk);
2826 struct inet_connection_sock *icsk = inet_csk(sk);
2827
2828 /* FIXME: breaks with very large cwnd */
2829 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2830 tp->snd_cwnd = tp->snd_cwnd *
2831 tcp_mss_to_mtu(sk, tp->mss_cache) /
2832 icsk->icsk_mtup.probe_size;
2833 tp->snd_cwnd_cnt = 0;
2834 tp->snd_cwnd_stamp = tcp_time_stamp;
2835 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2836
2837 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2838 icsk->icsk_mtup.probe_size = 0;
2839 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2840 }
2841
2842 /* Do a simple retransmit without using the backoff mechanisms in
2843 * tcp_timer. This is used for path mtu discovery.
2844 * The socket is already locked here.
2845 */
2846 void tcp_simple_retransmit(struct sock *sk)
2847 {
2848 const struct inet_connection_sock *icsk = inet_csk(sk);
2849 struct tcp_sock *tp = tcp_sk(sk);
2850 struct sk_buff *skb;
2851 unsigned int mss = tcp_current_mss(sk, 0);
2852 u32 prior_lost = tp->lost_out;
2853
2854 tcp_for_write_queue(skb, sk) {
2855 if (skb == tcp_send_head(sk))
2856 break;
2857 if (skb->len > mss &&
2858 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2859 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2860 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2861 tp->retrans_out -= tcp_skb_pcount(skb);
2862 }
2863 tcp_skb_mark_lost_uncond_verify(tp, skb);
2864 }
2865 }
2866
2867 tcp_clear_retrans_hints_partial(tp);
2868
2869 if (prior_lost == tp->lost_out)
2870 return;
2871
2872 if (tcp_is_reno(tp))
2873 tcp_limit_reno_sacked(tp);
2874
2875 tcp_verify_left_out(tp);
2876
2877 /* Don't muck with the congestion window here.
2878 * Reason is that we do not increase amount of _data_
2879 * in network, but units changed and effective
2880 * cwnd/ssthresh really reduced now.
2881 */
2882 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2883 tp->high_seq = tp->snd_nxt;
2884 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2885 tp->prior_ssthresh = 0;
2886 tp->undo_marker = 0;
2887 tcp_set_ca_state(sk, TCP_CA_Loss);
2888 }
2889 tcp_xmit_retransmit_queue(sk);
2890 }
2891
2892 /* Process an event, which can update packets-in-flight not trivially.
2893 * Main goal of this function is to calculate new estimate for left_out,
2894 * taking into account both packets sitting in receiver's buffer and
2895 * packets lost by network.
2896 *
2897 * Besides that it does CWND reduction, when packet loss is detected
2898 * and changes state of machine.
2899 *
2900 * It does _not_ decide what to send, it is made in function
2901 * tcp_xmit_retransmit_queue().
2902 */
2903 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2904 {
2905 struct inet_connection_sock *icsk = inet_csk(sk);
2906 struct tcp_sock *tp = tcp_sk(sk);
2907 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2908 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2909 (tcp_fackets_out(tp) > tp->reordering));
2910 int fast_rexmit = 0, mib_idx;
2911
2912 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2913 tp->sacked_out = 0;
2914 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2915 tp->fackets_out = 0;
2916
2917 /* Now state machine starts.
2918 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2919 if (flag & FLAG_ECE)
2920 tp->prior_ssthresh = 0;
2921
2922 /* B. In all the states check for reneging SACKs. */
2923 if (tcp_check_sack_reneging(sk, flag))
2924 return;
2925
2926 /* C. Process data loss notification, provided it is valid. */
2927 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2928 before(tp->snd_una, tp->high_seq) &&
2929 icsk->icsk_ca_state != TCP_CA_Open &&
2930 tp->fackets_out > tp->reordering) {
2931 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2932 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2933 }
2934
2935 /* D. Check consistency of the current state. */
2936 tcp_verify_left_out(tp);
2937
2938 /* E. Check state exit conditions. State can be terminated
2939 * when high_seq is ACKed. */
2940 if (icsk->icsk_ca_state == TCP_CA_Open) {
2941 WARN_ON(tp->retrans_out != 0);
2942 tp->retrans_stamp = 0;
2943 } else if (!before(tp->snd_una, tp->high_seq)) {
2944 switch (icsk->icsk_ca_state) {
2945 case TCP_CA_Loss:
2946 icsk->icsk_retransmits = 0;
2947 if (tcp_try_undo_recovery(sk))
2948 return;
2949 break;
2950
2951 case TCP_CA_CWR:
2952 /* CWR is to be held something *above* high_seq
2953 * is ACKed for CWR bit to reach receiver. */
2954 if (tp->snd_una != tp->high_seq) {
2955 tcp_complete_cwr(sk);
2956 tcp_set_ca_state(sk, TCP_CA_Open);
2957 }
2958 break;
2959
2960 case TCP_CA_Disorder:
2961 tcp_try_undo_dsack(sk);
2962 if (!tp->undo_marker ||
2963 /* For SACK case do not Open to allow to undo
2964 * catching for all duplicate ACKs. */
2965 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2966 tp->undo_marker = 0;
2967 tcp_set_ca_state(sk, TCP_CA_Open);
2968 }
2969 break;
2970
2971 case TCP_CA_Recovery:
2972 if (tcp_is_reno(tp))
2973 tcp_reset_reno_sack(tp);
2974 if (tcp_try_undo_recovery(sk))
2975 return;
2976 tcp_complete_cwr(sk);
2977 break;
2978 }
2979 }
2980
2981 /* F. Process state. */
2982 switch (icsk->icsk_ca_state) {
2983 case TCP_CA_Recovery:
2984 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2985 if (tcp_is_reno(tp) && is_dupack)
2986 tcp_add_reno_sack(sk);
2987 } else
2988 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2989 break;
2990 case TCP_CA_Loss:
2991 if (flag & FLAG_DATA_ACKED)
2992 icsk->icsk_retransmits = 0;
2993 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2994 tcp_reset_reno_sack(tp);
2995 if (!tcp_try_undo_loss(sk)) {
2996 tcp_moderate_cwnd(tp);
2997 tcp_xmit_retransmit_queue(sk);
2998 return;
2999 }
3000 if (icsk->icsk_ca_state != TCP_CA_Open)
3001 return;
3002 /* Loss is undone; fall through to processing in Open state. */
3003 default:
3004 if (tcp_is_reno(tp)) {
3005 if (flag & FLAG_SND_UNA_ADVANCED)
3006 tcp_reset_reno_sack(tp);
3007 if (is_dupack)
3008 tcp_add_reno_sack(sk);
3009 }
3010
3011 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3012 tcp_try_undo_dsack(sk);
3013
3014 if (!tcp_time_to_recover(sk)) {
3015 tcp_try_to_open(sk, flag);
3016 return;
3017 }
3018
3019 /* MTU probe failure: don't reduce cwnd */
3020 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3021 icsk->icsk_mtup.probe_size &&
3022 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3023 tcp_mtup_probe_failed(sk);
3024 /* Restores the reduction we did in tcp_mtup_probe() */
3025 tp->snd_cwnd++;
3026 tcp_simple_retransmit(sk);
3027 return;
3028 }
3029
3030 /* Otherwise enter Recovery state */
3031
3032 if (tcp_is_reno(tp))
3033 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3034 else
3035 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3036
3037 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3038
3039 tp->high_seq = tp->snd_nxt;
3040 tp->prior_ssthresh = 0;
3041 tp->undo_marker = tp->snd_una;
3042 tp->undo_retrans = tp->retrans_out;
3043
3044 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3045 if (!(flag & FLAG_ECE))
3046 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3047 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3048 TCP_ECN_queue_cwr(tp);
3049 }
3050
3051 tp->bytes_acked = 0;
3052 tp->snd_cwnd_cnt = 0;
3053 tcp_set_ca_state(sk, TCP_CA_Recovery);
3054 fast_rexmit = 1;
3055 }
3056
3057 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3058 tcp_update_scoreboard(sk, fast_rexmit);
3059 tcp_cwnd_down(sk, flag);
3060 tcp_xmit_retransmit_queue(sk);
3061 }
3062
3063 /* Read draft-ietf-tcplw-high-performance before mucking
3064 * with this code. (Supersedes RFC1323)
3065 */
3066 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3067 {
3068 /* RTTM Rule: A TSecr value received in a segment is used to
3069 * update the averaged RTT measurement only if the segment
3070 * acknowledges some new data, i.e., only if it advances the
3071 * left edge of the send window.
3072 *
3073 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3074 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3075 *
3076 * Changed: reset backoff as soon as we see the first valid sample.
3077 * If we do not, we get strongly overestimated rto. With timestamps
3078 * samples are accepted even from very old segments: f.e., when rtt=1
3079 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3080 * answer arrives rto becomes 120 seconds! If at least one of segments
3081 * in window is lost... Voila. --ANK (010210)
3082 */
3083 struct tcp_sock *tp = tcp_sk(sk);
3084 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3085 tcp_rtt_estimator(sk, seq_rtt);
3086 tcp_set_rto(sk);
3087 inet_csk(sk)->icsk_backoff = 0;
3088 tcp_bound_rto(sk);
3089 }
3090
3091 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3092 {
3093 /* We don't have a timestamp. Can only use
3094 * packets that are not retransmitted to determine
3095 * rtt estimates. Also, we must not reset the
3096 * backoff for rto until we get a non-retransmitted
3097 * packet. This allows us to deal with a situation
3098 * where the network delay has increased suddenly.
3099 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3100 */
3101
3102 if (flag & FLAG_RETRANS_DATA_ACKED)
3103 return;
3104
3105 tcp_rtt_estimator(sk, seq_rtt);
3106 tcp_set_rto(sk);
3107 inet_csk(sk)->icsk_backoff = 0;
3108 tcp_bound_rto(sk);
3109 }
3110
3111 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3112 const s32 seq_rtt)
3113 {
3114 const struct tcp_sock *tp = tcp_sk(sk);
3115 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3116 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3117 tcp_ack_saw_tstamp(sk, flag);
3118 else if (seq_rtt >= 0)
3119 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3120 }
3121
3122 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3123 {
3124 const struct inet_connection_sock *icsk = inet_csk(sk);
3125 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3126 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3127 }
3128
3129 /* Restart timer after forward progress on connection.
3130 * RFC2988 recommends to restart timer to now+rto.
3131 */
3132 static void tcp_rearm_rto(struct sock *sk)
3133 {
3134 struct tcp_sock *tp = tcp_sk(sk);
3135
3136 if (!tp->packets_out) {
3137 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3138 } else {
3139 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3140 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3141 }
3142 }
3143
3144 /* If we get here, the whole TSO packet has not been acked. */
3145 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3146 {
3147 struct tcp_sock *tp = tcp_sk(sk);
3148 u32 packets_acked;
3149
3150 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3151
3152 packets_acked = tcp_skb_pcount(skb);
3153 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3154 return 0;
3155 packets_acked -= tcp_skb_pcount(skb);
3156
3157 if (packets_acked) {
3158 BUG_ON(tcp_skb_pcount(skb) == 0);
3159 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3160 }
3161
3162 return packets_acked;
3163 }
3164
3165 /* Remove acknowledged frames from the retransmission queue. If our packet
3166 * is before the ack sequence we can discard it as it's confirmed to have
3167 * arrived at the other end.
3168 */
3169 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3170 u32 prior_snd_una)
3171 {
3172 struct tcp_sock *tp = tcp_sk(sk);
3173 const struct inet_connection_sock *icsk = inet_csk(sk);
3174 struct sk_buff *skb;
3175 u32 now = tcp_time_stamp;
3176 int fully_acked = 1;
3177 int flag = 0;
3178 u32 pkts_acked = 0;
3179 u32 reord = tp->packets_out;
3180 u32 prior_sacked = tp->sacked_out;
3181 s32 seq_rtt = -1;
3182 s32 ca_seq_rtt = -1;
3183 ktime_t last_ackt = net_invalid_timestamp();
3184
3185 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3186 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3187 u32 end_seq;
3188 u32 acked_pcount;
3189 u8 sacked = scb->sacked;
3190
3191 /* Determine how many packets and what bytes were acked, tso and else */
3192 if (after(scb->end_seq, tp->snd_una)) {
3193 if (tcp_skb_pcount(skb) == 1 ||
3194 !after(tp->snd_una, scb->seq))
3195 break;
3196
3197 acked_pcount = tcp_tso_acked(sk, skb);
3198 if (!acked_pcount)
3199 break;
3200
3201 fully_acked = 0;
3202 end_seq = tp->snd_una;
3203 } else {
3204 acked_pcount = tcp_skb_pcount(skb);
3205 end_seq = scb->end_seq;
3206 }
3207
3208 /* MTU probing checks */
3209 if (fully_acked && icsk->icsk_mtup.probe_size &&
3210 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3211 tcp_mtup_probe_success(sk, skb);
3212 }
3213
3214 if (sacked & TCPCB_RETRANS) {
3215 if (sacked & TCPCB_SACKED_RETRANS)
3216 tp->retrans_out -= acked_pcount;
3217 flag |= FLAG_RETRANS_DATA_ACKED;
3218 ca_seq_rtt = -1;
3219 seq_rtt = -1;
3220 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3221 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3222 } else {
3223 ca_seq_rtt = now - scb->when;
3224 last_ackt = skb->tstamp;
3225 if (seq_rtt < 0) {
3226 seq_rtt = ca_seq_rtt;
3227 }
3228 if (!(sacked & TCPCB_SACKED_ACKED))
3229 reord = min(pkts_acked, reord);
3230 }
3231
3232 if (sacked & TCPCB_SACKED_ACKED)
3233 tp->sacked_out -= acked_pcount;
3234 if (sacked & TCPCB_LOST)
3235 tp->lost_out -= acked_pcount;
3236
3237 tp->packets_out -= acked_pcount;
3238 pkts_acked += acked_pcount;
3239
3240 /* Initial outgoing SYN's get put onto the write_queue
3241 * just like anything else we transmit. It is not
3242 * true data, and if we misinform our callers that
3243 * this ACK acks real data, we will erroneously exit
3244 * connection startup slow start one packet too
3245 * quickly. This is severely frowned upon behavior.
3246 */
3247 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3248 flag |= FLAG_DATA_ACKED;
3249 } else {
3250 flag |= FLAG_SYN_ACKED;
3251 tp->retrans_stamp = 0;
3252 }
3253
3254 if (!fully_acked)
3255 break;
3256
3257 tcp_unlink_write_queue(skb, sk);
3258 sk_wmem_free_skb(sk, skb);
3259 tp->scoreboard_skb_hint = NULL;
3260 if (skb == tp->retransmit_skb_hint)
3261 tp->retransmit_skb_hint = NULL;
3262 if (skb == tp->lost_skb_hint)
3263 tp->lost_skb_hint = NULL;
3264 }
3265
3266 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3267 tp->snd_up = tp->snd_una;
3268
3269 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3270 flag |= FLAG_SACK_RENEGING;
3271
3272 if (flag & FLAG_ACKED) {
3273 const struct tcp_congestion_ops *ca_ops
3274 = inet_csk(sk)->icsk_ca_ops;
3275
3276 tcp_ack_update_rtt(sk, flag, seq_rtt);
3277 tcp_rearm_rto(sk);
3278
3279 if (tcp_is_reno(tp)) {
3280 tcp_remove_reno_sacks(sk, pkts_acked);
3281 } else {
3282 /* Non-retransmitted hole got filled? That's reordering */
3283 if (reord < prior_fackets)
3284 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3285
3286 /* No need to care for underflows here because
3287 * the lost_skb_hint gets NULLed if we're past it
3288 * (or something non-trivial happened)
3289 */
3290 if (tcp_is_fack(tp))
3291 tp->lost_cnt_hint -= pkts_acked;
3292 else
3293 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3294 }
3295
3296 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3297
3298 if (ca_ops->pkts_acked) {
3299 s32 rtt_us = -1;
3300
3301 /* Is the ACK triggering packet unambiguous? */
3302 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3303 /* High resolution needed and available? */
3304 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3305 !ktime_equal(last_ackt,
3306 net_invalid_timestamp()))
3307 rtt_us = ktime_us_delta(ktime_get_real(),
3308 last_ackt);
3309 else if (ca_seq_rtt > 0)
3310 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3311 }
3312
3313 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3314 }
3315 }
3316
3317 #if FASTRETRANS_DEBUG > 0
3318 WARN_ON((int)tp->sacked_out < 0);
3319 WARN_ON((int)tp->lost_out < 0);
3320 WARN_ON((int)tp->retrans_out < 0);
3321 if (!tp->packets_out && tcp_is_sack(tp)) {
3322 icsk = inet_csk(sk);
3323 if (tp->lost_out) {
3324 printk(KERN_DEBUG "Leak l=%u %d\n",
3325 tp->lost_out, icsk->icsk_ca_state);
3326 tp->lost_out = 0;
3327 }
3328 if (tp->sacked_out) {
3329 printk(KERN_DEBUG "Leak s=%u %d\n",
3330 tp->sacked_out, icsk->icsk_ca_state);
3331 tp->sacked_out = 0;
3332 }
3333 if (tp->retrans_out) {
3334 printk(KERN_DEBUG "Leak r=%u %d\n",
3335 tp->retrans_out, icsk->icsk_ca_state);
3336 tp->retrans_out = 0;
3337 }
3338 }
3339 #endif
3340 return flag;
3341 }
3342
3343 static void tcp_ack_probe(struct sock *sk)
3344 {
3345 const struct tcp_sock *tp = tcp_sk(sk);
3346 struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348 /* Was it a usable window open? */
3349
3350 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3351 icsk->icsk_backoff = 0;
3352 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3353 /* Socket must be waked up by subsequent tcp_data_snd_check().
3354 * This function is not for random using!
3355 */
3356 } else {
3357 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3358 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3359 TCP_RTO_MAX);
3360 }
3361 }
3362
3363 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3364 {
3365 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3366 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3367 }
3368
3369 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3370 {
3371 const struct tcp_sock *tp = tcp_sk(sk);
3372 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3373 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3374 }
3375
3376 /* Check that window update is acceptable.
3377 * The function assumes that snd_una<=ack<=snd_next.
3378 */
3379 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3380 const u32 ack, const u32 ack_seq,
3381 const u32 nwin)
3382 {
3383 return (after(ack, tp->snd_una) ||
3384 after(ack_seq, tp->snd_wl1) ||
3385 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3386 }
3387
3388 /* Update our send window.
3389 *
3390 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3391 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3392 */
3393 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3394 u32 ack_seq)
3395 {
3396 struct tcp_sock *tp = tcp_sk(sk);
3397 int flag = 0;
3398 u32 nwin = ntohs(tcp_hdr(skb)->window);
3399
3400 if (likely(!tcp_hdr(skb)->syn))
3401 nwin <<= tp->rx_opt.snd_wscale;
3402
3403 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3404 flag |= FLAG_WIN_UPDATE;
3405 tcp_update_wl(tp, ack, ack_seq);
3406
3407 if (tp->snd_wnd != nwin) {
3408 tp->snd_wnd = nwin;
3409
3410 /* Note, it is the only place, where
3411 * fast path is recovered for sending TCP.
3412 */
3413 tp->pred_flags = 0;
3414 tcp_fast_path_check(sk);
3415
3416 if (nwin > tp->max_window) {
3417 tp->max_window = nwin;
3418 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3419 }
3420 }
3421 }
3422
3423 tp->snd_una = ack;
3424
3425 return flag;
3426 }
3427
3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3429 * continue in congestion avoidance.
3430 */
3431 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3432 {
3433 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3434 tp->snd_cwnd_cnt = 0;
3435 tp->bytes_acked = 0;
3436 TCP_ECN_queue_cwr(tp);
3437 tcp_moderate_cwnd(tp);
3438 }
3439
3440 /* A conservative spurious RTO response algorithm: reduce cwnd using
3441 * rate halving and continue in congestion avoidance.
3442 */
3443 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3444 {
3445 tcp_enter_cwr(sk, 0);
3446 }
3447
3448 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3449 {
3450 if (flag & FLAG_ECE)
3451 tcp_ratehalving_spur_to_response(sk);
3452 else
3453 tcp_undo_cwr(sk, 1);
3454 }
3455
3456 /* F-RTO spurious RTO detection algorithm (RFC4138)
3457 *
3458 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3459 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3460 * window (but not to or beyond highest sequence sent before RTO):
3461 * On First ACK, send two new segments out.
3462 * On Second ACK, RTO was likely spurious. Do spurious response (response
3463 * algorithm is not part of the F-RTO detection algorithm
3464 * given in RFC4138 but can be selected separately).
3465 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3466 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3467 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3468 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3469 *
3470 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3471 * original window even after we transmit two new data segments.
3472 *
3473 * SACK version:
3474 * on first step, wait until first cumulative ACK arrives, then move to
3475 * the second step. In second step, the next ACK decides.
3476 *
3477 * F-RTO is implemented (mainly) in four functions:
3478 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3479 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3480 * called when tcp_use_frto() showed green light
3481 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3482 * - tcp_enter_frto_loss() is called if there is not enough evidence
3483 * to prove that the RTO is indeed spurious. It transfers the control
3484 * from F-RTO to the conventional RTO recovery
3485 */
3486 static int tcp_process_frto(struct sock *sk, int flag)
3487 {
3488 struct tcp_sock *tp = tcp_sk(sk);
3489
3490 tcp_verify_left_out(tp);
3491
3492 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3493 if (flag & FLAG_DATA_ACKED)
3494 inet_csk(sk)->icsk_retransmits = 0;
3495
3496 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3497 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3498 tp->undo_marker = 0;
3499
3500 if (!before(tp->snd_una, tp->frto_highmark)) {
3501 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3502 return 1;
3503 }
3504
3505 if (!tcp_is_sackfrto(tp)) {
3506 /* RFC4138 shortcoming in step 2; should also have case c):
3507 * ACK isn't duplicate nor advances window, e.g., opposite dir
3508 * data, winupdate
3509 */
3510 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3511 return 1;
3512
3513 if (!(flag & FLAG_DATA_ACKED)) {
3514 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3515 flag);
3516 return 1;
3517 }
3518 } else {
3519 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3520 /* Prevent sending of new data. */
3521 tp->snd_cwnd = min(tp->snd_cwnd,
3522 tcp_packets_in_flight(tp));
3523 return 1;
3524 }
3525
3526 if ((tp->frto_counter >= 2) &&
3527 (!(flag & FLAG_FORWARD_PROGRESS) ||
3528 ((flag & FLAG_DATA_SACKED) &&
3529 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3530 /* RFC4138 shortcoming (see comment above) */
3531 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3532 (flag & FLAG_NOT_DUP))
3533 return 1;
3534
3535 tcp_enter_frto_loss(sk, 3, flag);
3536 return 1;
3537 }
3538 }
3539
3540 if (tp->frto_counter == 1) {
3541 /* tcp_may_send_now needs to see updated state */
3542 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3543 tp->frto_counter = 2;
3544
3545 if (!tcp_may_send_now(sk))
3546 tcp_enter_frto_loss(sk, 2, flag);
3547
3548 return 1;
3549 } else {
3550 switch (sysctl_tcp_frto_response) {
3551 case 2:
3552 tcp_undo_spur_to_response(sk, flag);
3553 break;
3554 case 1:
3555 tcp_conservative_spur_to_response(tp);
3556 break;
3557 default:
3558 tcp_ratehalving_spur_to_response(sk);
3559 break;
3560 }
3561 tp->frto_counter = 0;
3562 tp->undo_marker = 0;
3563 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3564 }
3565 return 0;
3566 }
3567
3568 /* This routine deals with incoming acks, but not outgoing ones. */
3569 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3570 {
3571 struct inet_connection_sock *icsk = inet_csk(sk);
3572 struct tcp_sock *tp = tcp_sk(sk);
3573 u32 prior_snd_una = tp->snd_una;
3574 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3575 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3576 u32 prior_in_flight;
3577 u32 prior_fackets;
3578 int prior_packets;
3579 int frto_cwnd = 0;
3580
3581 /* If the ack is newer than sent or older than previous acks
3582 * then we can probably ignore it.
3583 */
3584 if (after(ack, tp->snd_nxt))
3585 goto uninteresting_ack;
3586
3587 if (before(ack, prior_snd_una))
3588 goto old_ack;
3589
3590 if (after(ack, prior_snd_una))
3591 flag |= FLAG_SND_UNA_ADVANCED;
3592
3593 if (sysctl_tcp_abc) {
3594 if (icsk->icsk_ca_state < TCP_CA_CWR)
3595 tp->bytes_acked += ack - prior_snd_una;
3596 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3597 /* we assume just one segment left network */
3598 tp->bytes_acked += min(ack - prior_snd_una,
3599 tp->mss_cache);
3600 }
3601
3602 prior_fackets = tp->fackets_out;
3603 prior_in_flight = tcp_packets_in_flight(tp);
3604
3605 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3606 /* Window is constant, pure forward advance.
3607 * No more checks are required.
3608 * Note, we use the fact that SND.UNA>=SND.WL2.
3609 */
3610 tcp_update_wl(tp, ack, ack_seq);
3611 tp->snd_una = ack;
3612 flag |= FLAG_WIN_UPDATE;
3613
3614 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3615
3616 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3617 } else {
3618 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3619 flag |= FLAG_DATA;
3620 else
3621 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3622
3623 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3624
3625 if (TCP_SKB_CB(skb)->sacked)
3626 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3627
3628 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3629 flag |= FLAG_ECE;
3630
3631 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3632 }
3633
3634 /* We passed data and got it acked, remove any soft error
3635 * log. Something worked...
3636 */
3637 sk->sk_err_soft = 0;
3638 icsk->icsk_probes_out = 0;
3639 tp->rcv_tstamp = tcp_time_stamp;
3640 prior_packets = tp->packets_out;
3641 if (!prior_packets)
3642 goto no_queue;
3643
3644 /* See if we can take anything off of the retransmit queue. */
3645 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3646
3647 if (tp->frto_counter)
3648 frto_cwnd = tcp_process_frto(sk, flag);
3649 /* Guarantee sacktag reordering detection against wrap-arounds */
3650 if (before(tp->frto_highmark, tp->snd_una))
3651 tp->frto_highmark = 0;
3652
3653 if (tcp_ack_is_dubious(sk, flag)) {
3654 /* Advance CWND, if state allows this. */
3655 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3656 tcp_may_raise_cwnd(sk, flag))
3657 tcp_cong_avoid(sk, ack, prior_in_flight);
3658 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3659 flag);
3660 } else {
3661 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3662 tcp_cong_avoid(sk, ack, prior_in_flight);
3663 }
3664
3665 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3666 dst_confirm(sk->sk_dst_cache);
3667
3668 return 1;
3669
3670 no_queue:
3671 /* If this ack opens up a zero window, clear backoff. It was
3672 * being used to time the probes, and is probably far higher than
3673 * it needs to be for normal retransmission.
3674 */
3675 if (tcp_send_head(sk))
3676 tcp_ack_probe(sk);
3677 return 1;
3678
3679 old_ack:
3680 if (TCP_SKB_CB(skb)->sacked) {
3681 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3682 if (icsk->icsk_ca_state == TCP_CA_Open)
3683 tcp_try_keep_open(sk);
3684 }
3685
3686 uninteresting_ack:
3687 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3688 return 0;
3689 }
3690
3691 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3692 * But, this can also be called on packets in the established flow when
3693 * the fast version below fails.
3694 */
3695 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3696 int estab)
3697 {
3698 unsigned char *ptr;
3699 struct tcphdr *th = tcp_hdr(skb);
3700 int length = (th->doff * 4) - sizeof(struct tcphdr);
3701
3702 ptr = (unsigned char *)(th + 1);
3703 opt_rx->saw_tstamp = 0;
3704
3705 while (length > 0) {
3706 int opcode = *ptr++;
3707 int opsize;
3708
3709 switch (opcode) {
3710 case TCPOPT_EOL:
3711 return;
3712 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3713 length--;
3714 continue;
3715 default:
3716 opsize = *ptr++;
3717 if (opsize < 2) /* "silly options" */
3718 return;
3719 if (opsize > length)
3720 return; /* don't parse partial options */
3721 switch (opcode) {
3722 case TCPOPT_MSS:
3723 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3724 u16 in_mss = get_unaligned_be16(ptr);
3725 if (in_mss) {
3726 if (opt_rx->user_mss &&
3727 opt_rx->user_mss < in_mss)
3728 in_mss = opt_rx->user_mss;
3729 opt_rx->mss_clamp = in_mss;
3730 }
3731 }
3732 break;
3733 case TCPOPT_WINDOW:
3734 if (opsize == TCPOLEN_WINDOW && th->syn &&
3735 !estab && sysctl_tcp_window_scaling) {
3736 __u8 snd_wscale = *(__u8 *)ptr;
3737 opt_rx->wscale_ok = 1;
3738 if (snd_wscale > 14) {
3739 if (net_ratelimit())
3740 printk(KERN_INFO "tcp_parse_options: Illegal window "
3741 "scaling value %d >14 received.\n",
3742 snd_wscale);
3743 snd_wscale = 14;
3744 }
3745 opt_rx->snd_wscale = snd_wscale;
3746 }
3747 break;
3748 case TCPOPT_TIMESTAMP:
3749 if ((opsize == TCPOLEN_TIMESTAMP) &&
3750 ((estab && opt_rx->tstamp_ok) ||
3751 (!estab && sysctl_tcp_timestamps))) {
3752 opt_rx->saw_tstamp = 1;
3753 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3754 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3755 }
3756 break;
3757 case TCPOPT_SACK_PERM:
3758 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3759 !estab && sysctl_tcp_sack) {
3760 opt_rx->sack_ok = 1;
3761 tcp_sack_reset(opt_rx);
3762 }
3763 break;
3764
3765 case TCPOPT_SACK:
3766 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3767 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3768 opt_rx->sack_ok) {
3769 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3770 }
3771 break;
3772 #ifdef CONFIG_TCP_MD5SIG
3773 case TCPOPT_MD5SIG:
3774 /*
3775 * The MD5 Hash has already been
3776 * checked (see tcp_v{4,6}_do_rcv()).
3777 */
3778 break;
3779 #endif
3780 }
3781
3782 ptr += opsize-2;
3783 length -= opsize;
3784 }
3785 }
3786 }
3787
3788 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3789 {
3790 __be32 *ptr = (__be32 *)(th + 1);
3791
3792 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3793 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3794 tp->rx_opt.saw_tstamp = 1;
3795 ++ptr;
3796 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3797 ++ptr;
3798 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3799 return 1;
3800 }
3801 return 0;
3802 }
3803
3804 /* Fast parse options. This hopes to only see timestamps.
3805 * If it is wrong it falls back on tcp_parse_options().
3806 */
3807 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3808 struct tcp_sock *tp)
3809 {
3810 if (th->doff == sizeof(struct tcphdr) >> 2) {
3811 tp->rx_opt.saw_tstamp = 0;
3812 return 0;
3813 } else if (tp->rx_opt.tstamp_ok &&
3814 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3815 if (tcp_parse_aligned_timestamp(tp, th))
3816 return 1;
3817 }
3818 tcp_parse_options(skb, &tp->rx_opt, 1);
3819 return 1;
3820 }
3821
3822 #ifdef CONFIG_TCP_MD5SIG
3823 /*
3824 * Parse MD5 Signature option
3825 */
3826 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3827 {
3828 int length = (th->doff << 2) - sizeof (*th);
3829 u8 *ptr = (u8*)(th + 1);
3830
3831 /* If the TCP option is too short, we can short cut */
3832 if (length < TCPOLEN_MD5SIG)
3833 return NULL;
3834
3835 while (length > 0) {
3836 int opcode = *ptr++;
3837 int opsize;
3838
3839 switch(opcode) {
3840 case TCPOPT_EOL:
3841 return NULL;
3842 case TCPOPT_NOP:
3843 length--;
3844 continue;
3845 default:
3846 opsize = *ptr++;
3847 if (opsize < 2 || opsize > length)
3848 return NULL;
3849 if (opcode == TCPOPT_MD5SIG)
3850 return ptr;
3851 }
3852 ptr += opsize - 2;
3853 length -= opsize;
3854 }
3855 return NULL;
3856 }
3857 #endif
3858
3859 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3860 {
3861 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3862 tp->rx_opt.ts_recent_stamp = get_seconds();
3863 }
3864
3865 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3866 {
3867 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3868 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3869 * extra check below makes sure this can only happen
3870 * for pure ACK frames. -DaveM
3871 *
3872 * Not only, also it occurs for expired timestamps.
3873 */
3874
3875 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3876 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3877 tcp_store_ts_recent(tp);
3878 }
3879 }
3880
3881 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3882 *
3883 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3884 * it can pass through stack. So, the following predicate verifies that
3885 * this segment is not used for anything but congestion avoidance or
3886 * fast retransmit. Moreover, we even are able to eliminate most of such
3887 * second order effects, if we apply some small "replay" window (~RTO)
3888 * to timestamp space.
3889 *
3890 * All these measures still do not guarantee that we reject wrapped ACKs
3891 * on networks with high bandwidth, when sequence space is recycled fastly,
3892 * but it guarantees that such events will be very rare and do not affect
3893 * connection seriously. This doesn't look nice, but alas, PAWS is really
3894 * buggy extension.
3895 *
3896 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3897 * states that events when retransmit arrives after original data are rare.
3898 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3899 * the biggest problem on large power networks even with minor reordering.
3900 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3901 * up to bandwidth of 18Gigabit/sec. 8) ]
3902 */
3903
3904 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3905 {
3906 struct tcp_sock *tp = tcp_sk(sk);
3907 struct tcphdr *th = tcp_hdr(skb);
3908 u32 seq = TCP_SKB_CB(skb)->seq;
3909 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3910
3911 return (/* 1. Pure ACK with correct sequence number. */
3912 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3913
3914 /* 2. ... and duplicate ACK. */
3915 ack == tp->snd_una &&
3916
3917 /* 3. ... and does not update window. */
3918 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3919
3920 /* 4. ... and sits in replay window. */
3921 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3922 }
3923
3924 static inline int tcp_paws_discard(const struct sock *sk,
3925 const struct sk_buff *skb)
3926 {
3927 const struct tcp_sock *tp = tcp_sk(sk);
3928 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3929 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3930 !tcp_disordered_ack(sk, skb));
3931 }
3932
3933 /* Check segment sequence number for validity.
3934 *
3935 * Segment controls are considered valid, if the segment
3936 * fits to the window after truncation to the window. Acceptability
3937 * of data (and SYN, FIN, of course) is checked separately.
3938 * See tcp_data_queue(), for example.
3939 *
3940 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3941 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3942 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3943 * (borrowed from freebsd)
3944 */
3945
3946 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3947 {
3948 return !before(end_seq, tp->rcv_wup) &&
3949 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3950 }
3951
3952 /* When we get a reset we do this. */
3953 static void tcp_reset(struct sock *sk)
3954 {
3955 /* We want the right error as BSD sees it (and indeed as we do). */
3956 switch (sk->sk_state) {
3957 case TCP_SYN_SENT:
3958 sk->sk_err = ECONNREFUSED;
3959 break;
3960 case TCP_CLOSE_WAIT:
3961 sk->sk_err = EPIPE;
3962 break;
3963 case TCP_CLOSE:
3964 return;
3965 default:
3966 sk->sk_err = ECONNRESET;
3967 }
3968
3969 if (!sock_flag(sk, SOCK_DEAD))
3970 sk->sk_error_report(sk);
3971
3972 tcp_done(sk);
3973 }
3974
3975 /*
3976 * Process the FIN bit. This now behaves as it is supposed to work
3977 * and the FIN takes effect when it is validly part of sequence
3978 * space. Not before when we get holes.
3979 *
3980 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3981 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3982 * TIME-WAIT)
3983 *
3984 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3985 * close and we go into CLOSING (and later onto TIME-WAIT)
3986 *
3987 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3988 */
3989 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3990 {
3991 struct tcp_sock *tp = tcp_sk(sk);
3992
3993 inet_csk_schedule_ack(sk);
3994
3995 sk->sk_shutdown |= RCV_SHUTDOWN;
3996 sock_set_flag(sk, SOCK_DONE);
3997
3998 switch (sk->sk_state) {
3999 case TCP_SYN_RECV:
4000 case TCP_ESTABLISHED:
4001 /* Move to CLOSE_WAIT */
4002 tcp_set_state(sk, TCP_CLOSE_WAIT);
4003 inet_csk(sk)->icsk_ack.pingpong = 1;
4004 break;
4005
4006 case TCP_CLOSE_WAIT:
4007 case TCP_CLOSING:
4008 /* Received a retransmission of the FIN, do
4009 * nothing.
4010 */
4011 break;
4012 case TCP_LAST_ACK:
4013 /* RFC793: Remain in the LAST-ACK state. */
4014 break;
4015
4016 case TCP_FIN_WAIT1:
4017 /* This case occurs when a simultaneous close
4018 * happens, we must ack the received FIN and
4019 * enter the CLOSING state.
4020 */
4021 tcp_send_ack(sk);
4022 tcp_set_state(sk, TCP_CLOSING);
4023 break;
4024 case TCP_FIN_WAIT2:
4025 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4026 tcp_send_ack(sk);
4027 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4028 break;
4029 default:
4030 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4031 * cases we should never reach this piece of code.
4032 */
4033 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4034 __func__, sk->sk_state);
4035 break;
4036 }
4037
4038 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4039 * Probably, we should reset in this case. For now drop them.
4040 */
4041 __skb_queue_purge(&tp->out_of_order_queue);
4042 if (tcp_is_sack(tp))
4043 tcp_sack_reset(&tp->rx_opt);
4044 sk_mem_reclaim(sk);
4045
4046 if (!sock_flag(sk, SOCK_DEAD)) {
4047 sk->sk_state_change(sk);
4048
4049 /* Do not send POLL_HUP for half duplex close. */
4050 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4051 sk->sk_state == TCP_CLOSE)
4052 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4053 else
4054 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4055 }
4056 }
4057
4058 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4059 u32 end_seq)
4060 {
4061 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4062 if (before(seq, sp->start_seq))
4063 sp->start_seq = seq;
4064 if (after(end_seq, sp->end_seq))
4065 sp->end_seq = end_seq;
4066 return 1;
4067 }
4068 return 0;
4069 }
4070
4071 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4072 {
4073 struct tcp_sock *tp = tcp_sk(sk);
4074
4075 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4076 int mib_idx;
4077
4078 if (before(seq, tp->rcv_nxt))
4079 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4080 else
4081 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4082
4083 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4084
4085 tp->rx_opt.dsack = 1;
4086 tp->duplicate_sack[0].start_seq = seq;
4087 tp->duplicate_sack[0].end_seq = end_seq;
4088 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4089 }
4090 }
4091
4092 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4093 {
4094 struct tcp_sock *tp = tcp_sk(sk);
4095
4096 if (!tp->rx_opt.dsack)
4097 tcp_dsack_set(sk, seq, end_seq);
4098 else
4099 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4100 }
4101
4102 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4103 {
4104 struct tcp_sock *tp = tcp_sk(sk);
4105
4106 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4107 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4108 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4109 tcp_enter_quickack_mode(sk);
4110
4111 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4112 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4113
4114 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4115 end_seq = tp->rcv_nxt;
4116 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4117 }
4118 }
4119
4120 tcp_send_ack(sk);
4121 }
4122
4123 /* These routines update the SACK block as out-of-order packets arrive or
4124 * in-order packets close up the sequence space.
4125 */
4126 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4127 {
4128 int this_sack;
4129 struct tcp_sack_block *sp = &tp->selective_acks[0];
4130 struct tcp_sack_block *swalk = sp + 1;
4131
4132 /* See if the recent change to the first SACK eats into
4133 * or hits the sequence space of other SACK blocks, if so coalesce.
4134 */
4135 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4136 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4137 int i;
4138
4139 /* Zap SWALK, by moving every further SACK up by one slot.
4140 * Decrease num_sacks.
4141 */
4142 tp->rx_opt.num_sacks--;
4143 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4144 tp->rx_opt.dsack;
4145 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4146 sp[i] = sp[i + 1];
4147 continue;
4148 }
4149 this_sack++, swalk++;
4150 }
4151 }
4152
4153 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4154 struct tcp_sack_block *sack2)
4155 {
4156 __u32 tmp;
4157
4158 tmp = sack1->start_seq;
4159 sack1->start_seq = sack2->start_seq;
4160 sack2->start_seq = tmp;
4161
4162 tmp = sack1->end_seq;
4163 sack1->end_seq = sack2->end_seq;
4164 sack2->end_seq = tmp;
4165 }
4166
4167 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4168 {
4169 struct tcp_sock *tp = tcp_sk(sk);
4170 struct tcp_sack_block *sp = &tp->selective_acks[0];
4171 int cur_sacks = tp->rx_opt.num_sacks;
4172 int this_sack;
4173
4174 if (!cur_sacks)
4175 goto new_sack;
4176
4177 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4178 if (tcp_sack_extend(sp, seq, end_seq)) {
4179 /* Rotate this_sack to the first one. */
4180 for (; this_sack > 0; this_sack--, sp--)
4181 tcp_sack_swap(sp, sp - 1);
4182 if (cur_sacks > 1)
4183 tcp_sack_maybe_coalesce(tp);
4184 return;
4185 }
4186 }
4187
4188 /* Could not find an adjacent existing SACK, build a new one,
4189 * put it at the front, and shift everyone else down. We
4190 * always know there is at least one SACK present already here.
4191 *
4192 * If the sack array is full, forget about the last one.
4193 */
4194 if (this_sack >= TCP_NUM_SACKS) {
4195 this_sack--;
4196 tp->rx_opt.num_sacks--;
4197 sp--;
4198 }
4199 for (; this_sack > 0; this_sack--, sp--)
4200 *sp = *(sp - 1);
4201
4202 new_sack:
4203 /* Build the new head SACK, and we're done. */
4204 sp->start_seq = seq;
4205 sp->end_seq = end_seq;
4206 tp->rx_opt.num_sacks++;
4207 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4208 }
4209
4210 /* RCV.NXT advances, some SACKs should be eaten. */
4211
4212 static void tcp_sack_remove(struct tcp_sock *tp)
4213 {
4214 struct tcp_sack_block *sp = &tp->selective_acks[0];
4215 int num_sacks = tp->rx_opt.num_sacks;
4216 int this_sack;
4217
4218 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4219 if (skb_queue_empty(&tp->out_of_order_queue)) {
4220 tp->rx_opt.num_sacks = 0;
4221 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4222 return;
4223 }
4224
4225 for (this_sack = 0; this_sack < num_sacks;) {
4226 /* Check if the start of the sack is covered by RCV.NXT. */
4227 if (!before(tp->rcv_nxt, sp->start_seq)) {
4228 int i;
4229
4230 /* RCV.NXT must cover all the block! */
4231 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4232
4233 /* Zap this SACK, by moving forward any other SACKS. */
4234 for (i=this_sack+1; i < num_sacks; i++)
4235 tp->selective_acks[i-1] = tp->selective_acks[i];
4236 num_sacks--;
4237 continue;
4238 }
4239 this_sack++;
4240 sp++;
4241 }
4242 if (num_sacks != tp->rx_opt.num_sacks) {
4243 tp->rx_opt.num_sacks = num_sacks;
4244 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4245 tp->rx_opt.dsack;
4246 }
4247 }
4248
4249 /* This one checks to see if we can put data from the
4250 * out_of_order queue into the receive_queue.
4251 */
4252 static void tcp_ofo_queue(struct sock *sk)
4253 {
4254 struct tcp_sock *tp = tcp_sk(sk);
4255 __u32 dsack_high = tp->rcv_nxt;
4256 struct sk_buff *skb;
4257
4258 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4259 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4260 break;
4261
4262 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4263 __u32 dsack = dsack_high;
4264 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4265 dsack_high = TCP_SKB_CB(skb)->end_seq;
4266 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4267 }
4268
4269 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4270 SOCK_DEBUG(sk, "ofo packet was already received \n");
4271 __skb_unlink(skb, &tp->out_of_order_queue);
4272 __kfree_skb(skb);
4273 continue;
4274 }
4275 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4276 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4277 TCP_SKB_CB(skb)->end_seq);
4278
4279 __skb_unlink(skb, &tp->out_of_order_queue);
4280 __skb_queue_tail(&sk->sk_receive_queue, skb);
4281 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4282 if (tcp_hdr(skb)->fin)
4283 tcp_fin(skb, sk, tcp_hdr(skb));
4284 }
4285 }
4286
4287 static int tcp_prune_ofo_queue(struct sock *sk);
4288 static int tcp_prune_queue(struct sock *sk);
4289
4290 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4291 {
4292 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4293 !sk_rmem_schedule(sk, size)) {
4294
4295 if (tcp_prune_queue(sk) < 0)
4296 return -1;
4297
4298 if (!sk_rmem_schedule(sk, size)) {
4299 if (!tcp_prune_ofo_queue(sk))
4300 return -1;
4301
4302 if (!sk_rmem_schedule(sk, size))
4303 return -1;
4304 }
4305 }
4306 return 0;
4307 }
4308
4309 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4310 {
4311 struct tcphdr *th = tcp_hdr(skb);
4312 struct tcp_sock *tp = tcp_sk(sk);
4313 int eaten = -1;
4314
4315 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4316 goto drop;
4317
4318 __skb_pull(skb, th->doff * 4);
4319
4320 TCP_ECN_accept_cwr(tp, skb);
4321
4322 if (tp->rx_opt.dsack) {
4323 tp->rx_opt.dsack = 0;
4324 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4325 }
4326
4327 /* Queue data for delivery to the user.
4328 * Packets in sequence go to the receive queue.
4329 * Out of sequence packets to the out_of_order_queue.
4330 */
4331 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4332 if (tcp_receive_window(tp) == 0)
4333 goto out_of_window;
4334
4335 /* Ok. In sequence. In window. */
4336 if (tp->ucopy.task == current &&
4337 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4338 sock_owned_by_user(sk) && !tp->urg_data) {
4339 int chunk = min_t(unsigned int, skb->len,
4340 tp->ucopy.len);
4341
4342 __set_current_state(TASK_RUNNING);
4343
4344 local_bh_enable();
4345 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4346 tp->ucopy.len -= chunk;
4347 tp->copied_seq += chunk;
4348 eaten = (chunk == skb->len && !th->fin);
4349 tcp_rcv_space_adjust(sk);
4350 }
4351 local_bh_disable();
4352 }
4353
4354 if (eaten <= 0) {
4355 queue_and_out:
4356 if (eaten < 0 &&
4357 tcp_try_rmem_schedule(sk, skb->truesize))
4358 goto drop;
4359
4360 skb_set_owner_r(skb, sk);
4361 __skb_queue_tail(&sk->sk_receive_queue, skb);
4362 }
4363 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4364 if (skb->len)
4365 tcp_event_data_recv(sk, skb);
4366 if (th->fin)
4367 tcp_fin(skb, sk, th);
4368
4369 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4370 tcp_ofo_queue(sk);
4371
4372 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4373 * gap in queue is filled.
4374 */
4375 if (skb_queue_empty(&tp->out_of_order_queue))
4376 inet_csk(sk)->icsk_ack.pingpong = 0;
4377 }
4378
4379 if (tp->rx_opt.num_sacks)
4380 tcp_sack_remove(tp);
4381
4382 tcp_fast_path_check(sk);
4383
4384 if (eaten > 0)
4385 __kfree_skb(skb);
4386 else if (!sock_flag(sk, SOCK_DEAD))
4387 sk->sk_data_ready(sk, 0);
4388 return;
4389 }
4390
4391 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4392 /* A retransmit, 2nd most common case. Force an immediate ack. */
4393 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4394 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4395
4396 out_of_window:
4397 tcp_enter_quickack_mode(sk);
4398 inet_csk_schedule_ack(sk);
4399 drop:
4400 __kfree_skb(skb);
4401 return;
4402 }
4403
4404 /* Out of window. F.e. zero window probe. */
4405 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4406 goto out_of_window;
4407
4408 tcp_enter_quickack_mode(sk);
4409
4410 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4411 /* Partial packet, seq < rcv_next < end_seq */
4412 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4413 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4414 TCP_SKB_CB(skb)->end_seq);
4415
4416 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4417
4418 /* If window is closed, drop tail of packet. But after
4419 * remembering D-SACK for its head made in previous line.
4420 */
4421 if (!tcp_receive_window(tp))
4422 goto out_of_window;
4423 goto queue_and_out;
4424 }
4425
4426 TCP_ECN_check_ce(tp, skb);
4427
4428 if (tcp_try_rmem_schedule(sk, skb->truesize))
4429 goto drop;
4430
4431 /* Disable header prediction. */
4432 tp->pred_flags = 0;
4433 inet_csk_schedule_ack(sk);
4434
4435 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4436 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4437
4438 skb_set_owner_r(skb, sk);
4439
4440 if (!skb_peek(&tp->out_of_order_queue)) {
4441 /* Initial out of order segment, build 1 SACK. */
4442 if (tcp_is_sack(tp)) {
4443 tp->rx_opt.num_sacks = 1;
4444 tp->rx_opt.dsack = 0;
4445 tp->rx_opt.eff_sacks = 1;
4446 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4447 tp->selective_acks[0].end_seq =
4448 TCP_SKB_CB(skb)->end_seq;
4449 }
4450 __skb_queue_head(&tp->out_of_order_queue, skb);
4451 } else {
4452 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4453 u32 seq = TCP_SKB_CB(skb)->seq;
4454 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4455
4456 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4457 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4458
4459 if (!tp->rx_opt.num_sacks ||
4460 tp->selective_acks[0].end_seq != seq)
4461 goto add_sack;
4462
4463 /* Common case: data arrive in order after hole. */
4464 tp->selective_acks[0].end_seq = end_seq;
4465 return;
4466 }
4467
4468 /* Find place to insert this segment. */
4469 do {
4470 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4471 break;
4472 } while ((skb1 = skb1->prev) !=
4473 (struct sk_buff *)&tp->out_of_order_queue);
4474
4475 /* Do skb overlap to previous one? */
4476 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4477 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4478 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4479 /* All the bits are present. Drop. */
4480 __kfree_skb(skb);
4481 tcp_dsack_set(sk, seq, end_seq);
4482 goto add_sack;
4483 }
4484 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485 /* Partial overlap. */
4486 tcp_dsack_set(sk, seq,
4487 TCP_SKB_CB(skb1)->end_seq);
4488 } else {
4489 skb1 = skb1->prev;
4490 }
4491 }
4492 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4493
4494 /* And clean segments covered by new one as whole. */
4495 while ((skb1 = skb->next) !=
4496 (struct sk_buff *)&tp->out_of_order_queue &&
4497 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4498 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500 end_seq);
4501 break;
4502 }
4503 __skb_unlink(skb1, &tp->out_of_order_queue);
4504 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4505 TCP_SKB_CB(skb1)->end_seq);
4506 __kfree_skb(skb1);
4507 }
4508
4509 add_sack:
4510 if (tcp_is_sack(tp))
4511 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4512 }
4513 }
4514
4515 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4516 struct sk_buff_head *list)
4517 {
4518 struct sk_buff *next = skb->next;
4519
4520 __skb_unlink(skb, list);
4521 __kfree_skb(skb);
4522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4523
4524 return next;
4525 }
4526
4527 /* Collapse contiguous sequence of skbs head..tail with
4528 * sequence numbers start..end.
4529 * Segments with FIN/SYN are not collapsed (only because this
4530 * simplifies code)
4531 */
4532 static void
4533 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4534 struct sk_buff *head, struct sk_buff *tail,
4535 u32 start, u32 end)
4536 {
4537 struct sk_buff *skb;
4538
4539 /* First, check that queue is collapsible and find
4540 * the point where collapsing can be useful. */
4541 for (skb = head; skb != tail;) {
4542 /* No new bits? It is possible on ofo queue. */
4543 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4544 skb = tcp_collapse_one(sk, skb, list);
4545 continue;
4546 }
4547
4548 /* The first skb to collapse is:
4549 * - not SYN/FIN and
4550 * - bloated or contains data before "start" or
4551 * overlaps to the next one.
4552 */
4553 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4554 (tcp_win_from_space(skb->truesize) > skb->len ||
4555 before(TCP_SKB_CB(skb)->seq, start) ||
4556 (skb->next != tail &&
4557 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4558 break;
4559
4560 /* Decided to skip this, advance start seq. */
4561 start = TCP_SKB_CB(skb)->end_seq;
4562 skb = skb->next;
4563 }
4564 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4565 return;
4566
4567 while (before(start, end)) {
4568 struct sk_buff *nskb;
4569 unsigned int header = skb_headroom(skb);
4570 int copy = SKB_MAX_ORDER(header, 0);
4571
4572 /* Too big header? This can happen with IPv6. */
4573 if (copy < 0)
4574 return;
4575 if (end - start < copy)
4576 copy = end - start;
4577 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4578 if (!nskb)
4579 return;
4580
4581 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4582 skb_set_network_header(nskb, (skb_network_header(skb) -
4583 skb->head));
4584 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4585 skb->head));
4586 skb_reserve(nskb, header);
4587 memcpy(nskb->head, skb->head, header);
4588 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4589 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4590 __skb_queue_before(list, skb, nskb);
4591 skb_set_owner_r(nskb, sk);
4592
4593 /* Copy data, releasing collapsed skbs. */
4594 while (copy > 0) {
4595 int offset = start - TCP_SKB_CB(skb)->seq;
4596 int size = TCP_SKB_CB(skb)->end_seq - start;
4597
4598 BUG_ON(offset < 0);
4599 if (size > 0) {
4600 size = min(copy, size);
4601 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4602 BUG();
4603 TCP_SKB_CB(nskb)->end_seq += size;
4604 copy -= size;
4605 start += size;
4606 }
4607 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4608 skb = tcp_collapse_one(sk, skb, list);
4609 if (skb == tail ||
4610 tcp_hdr(skb)->syn ||
4611 tcp_hdr(skb)->fin)
4612 return;
4613 }
4614 }
4615 }
4616 }
4617
4618 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4619 * and tcp_collapse() them until all the queue is collapsed.
4620 */
4621 static void tcp_collapse_ofo_queue(struct sock *sk)
4622 {
4623 struct tcp_sock *tp = tcp_sk(sk);
4624 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4625 struct sk_buff *head;
4626 u32 start, end;
4627
4628 if (skb == NULL)
4629 return;
4630
4631 start = TCP_SKB_CB(skb)->seq;
4632 end = TCP_SKB_CB(skb)->end_seq;
4633 head = skb;
4634
4635 for (;;) {
4636 skb = skb->next;
4637
4638 /* Segment is terminated when we see gap or when
4639 * we are at the end of all the queue. */
4640 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4641 after(TCP_SKB_CB(skb)->seq, end) ||
4642 before(TCP_SKB_CB(skb)->end_seq, start)) {
4643 tcp_collapse(sk, &tp->out_of_order_queue,
4644 head, skb, start, end);
4645 head = skb;
4646 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4647 break;
4648 /* Start new segment */
4649 start = TCP_SKB_CB(skb)->seq;
4650 end = TCP_SKB_CB(skb)->end_seq;
4651 } else {
4652 if (before(TCP_SKB_CB(skb)->seq, start))
4653 start = TCP_SKB_CB(skb)->seq;
4654 if (after(TCP_SKB_CB(skb)->end_seq, end))
4655 end = TCP_SKB_CB(skb)->end_seq;
4656 }
4657 }
4658 }
4659
4660 /*
4661 * Purge the out-of-order queue.
4662 * Return true if queue was pruned.
4663 */
4664 static int tcp_prune_ofo_queue(struct sock *sk)
4665 {
4666 struct tcp_sock *tp = tcp_sk(sk);
4667 int res = 0;
4668
4669 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4670 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4671 __skb_queue_purge(&tp->out_of_order_queue);
4672
4673 /* Reset SACK state. A conforming SACK implementation will
4674 * do the same at a timeout based retransmit. When a connection
4675 * is in a sad state like this, we care only about integrity
4676 * of the connection not performance.
4677 */
4678 if (tp->rx_opt.sack_ok)
4679 tcp_sack_reset(&tp->rx_opt);
4680 sk_mem_reclaim(sk);
4681 res = 1;
4682 }
4683 return res;
4684 }
4685
4686 /* Reduce allocated memory if we can, trying to get
4687 * the socket within its memory limits again.
4688 *
4689 * Return less than zero if we should start dropping frames
4690 * until the socket owning process reads some of the data
4691 * to stabilize the situation.
4692 */
4693 static int tcp_prune_queue(struct sock *sk)
4694 {
4695 struct tcp_sock *tp = tcp_sk(sk);
4696
4697 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4698
4699 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4700
4701 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4702 tcp_clamp_window(sk);
4703 else if (tcp_memory_pressure)
4704 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4705
4706 tcp_collapse_ofo_queue(sk);
4707 tcp_collapse(sk, &sk->sk_receive_queue,
4708 sk->sk_receive_queue.next,
4709 (struct sk_buff *)&sk->sk_receive_queue,
4710 tp->copied_seq, tp->rcv_nxt);
4711 sk_mem_reclaim(sk);
4712
4713 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4714 return 0;
4715
4716 /* Collapsing did not help, destructive actions follow.
4717 * This must not ever occur. */
4718
4719 tcp_prune_ofo_queue(sk);
4720
4721 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4722 return 0;
4723
4724 /* If we are really being abused, tell the caller to silently
4725 * drop receive data on the floor. It will get retransmitted
4726 * and hopefully then we'll have sufficient space.
4727 */
4728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4729
4730 /* Massive buffer overcommit. */
4731 tp->pred_flags = 0;
4732 return -1;
4733 }
4734
4735 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4736 * As additional protections, we do not touch cwnd in retransmission phases,
4737 * and if application hit its sndbuf limit recently.
4738 */
4739 void tcp_cwnd_application_limited(struct sock *sk)
4740 {
4741 struct tcp_sock *tp = tcp_sk(sk);
4742
4743 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4744 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4745 /* Limited by application or receiver window. */
4746 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4747 u32 win_used = max(tp->snd_cwnd_used, init_win);
4748 if (win_used < tp->snd_cwnd) {
4749 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4750 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4751 }
4752 tp->snd_cwnd_used = 0;
4753 }
4754 tp->snd_cwnd_stamp = tcp_time_stamp;
4755 }
4756
4757 static int tcp_should_expand_sndbuf(struct sock *sk)
4758 {
4759 struct tcp_sock *tp = tcp_sk(sk);
4760
4761 /* If the user specified a specific send buffer setting, do
4762 * not modify it.
4763 */
4764 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4765 return 0;
4766
4767 /* If we are under global TCP memory pressure, do not expand. */
4768 if (tcp_memory_pressure)
4769 return 0;
4770
4771 /* If we are under soft global TCP memory pressure, do not expand. */
4772 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4773 return 0;
4774
4775 /* If we filled the congestion window, do not expand. */
4776 if (tp->packets_out >= tp->snd_cwnd)
4777 return 0;
4778
4779 return 1;
4780 }
4781
4782 /* When incoming ACK allowed to free some skb from write_queue,
4783 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4784 * on the exit from tcp input handler.
4785 *
4786 * PROBLEM: sndbuf expansion does not work well with largesend.
4787 */
4788 static void tcp_new_space(struct sock *sk)
4789 {
4790 struct tcp_sock *tp = tcp_sk(sk);
4791
4792 if (tcp_should_expand_sndbuf(sk)) {
4793 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4794 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4795 int demanded = max_t(unsigned int, tp->snd_cwnd,
4796 tp->reordering + 1);
4797 sndmem *= 2 * demanded;
4798 if (sndmem > sk->sk_sndbuf)
4799 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4800 tp->snd_cwnd_stamp = tcp_time_stamp;
4801 }
4802
4803 sk->sk_write_space(sk);
4804 }
4805
4806 static void tcp_check_space(struct sock *sk)
4807 {
4808 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4809 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4810 if (sk->sk_socket &&
4811 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4812 tcp_new_space(sk);
4813 }
4814 }
4815
4816 static inline void tcp_data_snd_check(struct sock *sk)
4817 {
4818 tcp_push_pending_frames(sk);
4819 tcp_check_space(sk);
4820 }
4821
4822 /*
4823 * Check if sending an ack is needed.
4824 */
4825 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4826 {
4827 struct tcp_sock *tp = tcp_sk(sk);
4828
4829 /* More than one full frame received... */
4830 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4831 /* ... and right edge of window advances far enough.
4832 * (tcp_recvmsg() will send ACK otherwise). Or...
4833 */
4834 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4835 /* We ACK each frame or... */
4836 tcp_in_quickack_mode(sk) ||
4837 /* We have out of order data. */
4838 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4839 /* Then ack it now */
4840 tcp_send_ack(sk);
4841 } else {
4842 /* Else, send delayed ack. */
4843 tcp_send_delayed_ack(sk);
4844 }
4845 }
4846
4847 static inline void tcp_ack_snd_check(struct sock *sk)
4848 {
4849 if (!inet_csk_ack_scheduled(sk)) {
4850 /* We sent a data segment already. */
4851 return;
4852 }
4853 __tcp_ack_snd_check(sk, 1);
4854 }
4855
4856 /*
4857 * This routine is only called when we have urgent data
4858 * signaled. Its the 'slow' part of tcp_urg. It could be
4859 * moved inline now as tcp_urg is only called from one
4860 * place. We handle URGent data wrong. We have to - as
4861 * BSD still doesn't use the correction from RFC961.
4862 * For 1003.1g we should support a new option TCP_STDURG to permit
4863 * either form (or just set the sysctl tcp_stdurg).
4864 */
4865
4866 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4867 {
4868 struct tcp_sock *tp = tcp_sk(sk);
4869 u32 ptr = ntohs(th->urg_ptr);
4870
4871 if (ptr && !sysctl_tcp_stdurg)
4872 ptr--;
4873 ptr += ntohl(th->seq);
4874
4875 /* Ignore urgent data that we've already seen and read. */
4876 if (after(tp->copied_seq, ptr))
4877 return;
4878
4879 /* Do not replay urg ptr.
4880 *
4881 * NOTE: interesting situation not covered by specs.
4882 * Misbehaving sender may send urg ptr, pointing to segment,
4883 * which we already have in ofo queue. We are not able to fetch
4884 * such data and will stay in TCP_URG_NOTYET until will be eaten
4885 * by recvmsg(). Seems, we are not obliged to handle such wicked
4886 * situations. But it is worth to think about possibility of some
4887 * DoSes using some hypothetical application level deadlock.
4888 */
4889 if (before(ptr, tp->rcv_nxt))
4890 return;
4891
4892 /* Do we already have a newer (or duplicate) urgent pointer? */
4893 if (tp->urg_data && !after(ptr, tp->urg_seq))
4894 return;
4895
4896 /* Tell the world about our new urgent pointer. */
4897 sk_send_sigurg(sk);
4898
4899 /* We may be adding urgent data when the last byte read was
4900 * urgent. To do this requires some care. We cannot just ignore
4901 * tp->copied_seq since we would read the last urgent byte again
4902 * as data, nor can we alter copied_seq until this data arrives
4903 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4904 *
4905 * NOTE. Double Dutch. Rendering to plain English: author of comment
4906 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4907 * and expect that both A and B disappear from stream. This is _wrong_.
4908 * Though this happens in BSD with high probability, this is occasional.
4909 * Any application relying on this is buggy. Note also, that fix "works"
4910 * only in this artificial test. Insert some normal data between A and B and we will
4911 * decline of BSD again. Verdict: it is better to remove to trap
4912 * buggy users.
4913 */
4914 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4915 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4916 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4917 tp->copied_seq++;
4918 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4919 __skb_unlink(skb, &sk->sk_receive_queue);
4920 __kfree_skb(skb);
4921 }
4922 }
4923
4924 tp->urg_data = TCP_URG_NOTYET;
4925 tp->urg_seq = ptr;
4926
4927 /* Disable header prediction. */
4928 tp->pred_flags = 0;
4929 }
4930
4931 /* This is the 'fast' part of urgent handling. */
4932 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4933 {
4934 struct tcp_sock *tp = tcp_sk(sk);
4935
4936 /* Check if we get a new urgent pointer - normally not. */
4937 if (th->urg)
4938 tcp_check_urg(sk, th);
4939
4940 /* Do we wait for any urgent data? - normally not... */
4941 if (tp->urg_data == TCP_URG_NOTYET) {
4942 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4943 th->syn;
4944
4945 /* Is the urgent pointer pointing into this packet? */
4946 if (ptr < skb->len) {
4947 u8 tmp;
4948 if (skb_copy_bits(skb, ptr, &tmp, 1))
4949 BUG();
4950 tp->urg_data = TCP_URG_VALID | tmp;
4951 if (!sock_flag(sk, SOCK_DEAD))
4952 sk->sk_data_ready(sk, 0);
4953 }
4954 }
4955 }
4956
4957 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4958 {
4959 struct tcp_sock *tp = tcp_sk(sk);
4960 int chunk = skb->len - hlen;
4961 int err;
4962
4963 local_bh_enable();
4964 if (skb_csum_unnecessary(skb))
4965 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4966 else
4967 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4968 tp->ucopy.iov);
4969
4970 if (!err) {
4971 tp->ucopy.len -= chunk;
4972 tp->copied_seq += chunk;
4973 tcp_rcv_space_adjust(sk);
4974 }
4975
4976 local_bh_disable();
4977 return err;
4978 }
4979
4980 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4981 struct sk_buff *skb)
4982 {
4983 __sum16 result;
4984
4985 if (sock_owned_by_user(sk)) {
4986 local_bh_enable();
4987 result = __tcp_checksum_complete(skb);
4988 local_bh_disable();
4989 } else {
4990 result = __tcp_checksum_complete(skb);
4991 }
4992 return result;
4993 }
4994
4995 static inline int tcp_checksum_complete_user(struct sock *sk,
4996 struct sk_buff *skb)
4997 {
4998 return !skb_csum_unnecessary(skb) &&
4999 __tcp_checksum_complete_user(sk, skb);
5000 }
5001
5002 #ifdef CONFIG_NET_DMA
5003 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5004 int hlen)
5005 {
5006 struct tcp_sock *tp = tcp_sk(sk);
5007 int chunk = skb->len - hlen;
5008 int dma_cookie;
5009 int copied_early = 0;
5010
5011 if (tp->ucopy.wakeup)
5012 return 0;
5013
5014 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5015 tp->ucopy.dma_chan = get_softnet_dma();
5016
5017 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5018
5019 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5020 skb, hlen,
5021 tp->ucopy.iov, chunk,
5022 tp->ucopy.pinned_list);
5023
5024 if (dma_cookie < 0)
5025 goto out;
5026
5027 tp->ucopy.dma_cookie = dma_cookie;
5028 copied_early = 1;
5029
5030 tp->ucopy.len -= chunk;
5031 tp->copied_seq += chunk;
5032 tcp_rcv_space_adjust(sk);
5033
5034 if ((tp->ucopy.len == 0) ||
5035 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5036 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5037 tp->ucopy.wakeup = 1;
5038 sk->sk_data_ready(sk, 0);
5039 }
5040 } else if (chunk > 0) {
5041 tp->ucopy.wakeup = 1;
5042 sk->sk_data_ready(sk, 0);
5043 }
5044 out:
5045 return copied_early;
5046 }
5047 #endif /* CONFIG_NET_DMA */
5048
5049 /* Does PAWS and seqno based validation of an incoming segment, flags will
5050 * play significant role here.
5051 */
5052 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5053 struct tcphdr *th, int syn_inerr)
5054 {
5055 struct tcp_sock *tp = tcp_sk(sk);
5056
5057 /* RFC1323: H1. Apply PAWS check first. */
5058 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5059 tcp_paws_discard(sk, skb)) {
5060 if (!th->rst) {
5061 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5062 tcp_send_dupack(sk, skb);
5063 goto discard;
5064 }
5065 /* Reset is accepted even if it did not pass PAWS. */
5066 }
5067
5068 /* Step 1: check sequence number */
5069 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5070 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5071 * (RST) segments are validated by checking their SEQ-fields."
5072 * And page 69: "If an incoming segment is not acceptable,
5073 * an acknowledgment should be sent in reply (unless the RST
5074 * bit is set, if so drop the segment and return)".
5075 */
5076 if (!th->rst)
5077 tcp_send_dupack(sk, skb);
5078 goto discard;
5079 }
5080
5081 /* Step 2: check RST bit */
5082 if (th->rst) {
5083 tcp_reset(sk);
5084 goto discard;
5085 }
5086
5087 /* ts_recent update must be made after we are sure that the packet
5088 * is in window.
5089 */
5090 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5091
5092 /* step 3: check security and precedence [ignored] */
5093
5094 /* step 4: Check for a SYN in window. */
5095 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5096 if (syn_inerr)
5097 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5098 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5099 tcp_reset(sk);
5100 return -1;
5101 }
5102
5103 return 1;
5104
5105 discard:
5106 __kfree_skb(skb);
5107 return 0;
5108 }
5109
5110 /*
5111 * TCP receive function for the ESTABLISHED state.
5112 *
5113 * It is split into a fast path and a slow path. The fast path is
5114 * disabled when:
5115 * - A zero window was announced from us - zero window probing
5116 * is only handled properly in the slow path.
5117 * - Out of order segments arrived.
5118 * - Urgent data is expected.
5119 * - There is no buffer space left
5120 * - Unexpected TCP flags/window values/header lengths are received
5121 * (detected by checking the TCP header against pred_flags)
5122 * - Data is sent in both directions. Fast path only supports pure senders
5123 * or pure receivers (this means either the sequence number or the ack
5124 * value must stay constant)
5125 * - Unexpected TCP option.
5126 *
5127 * When these conditions are not satisfied it drops into a standard
5128 * receive procedure patterned after RFC793 to handle all cases.
5129 * The first three cases are guaranteed by proper pred_flags setting,
5130 * the rest is checked inline. Fast processing is turned on in
5131 * tcp_data_queue when everything is OK.
5132 */
5133 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5134 struct tcphdr *th, unsigned len)
5135 {
5136 struct tcp_sock *tp = tcp_sk(sk);
5137 int res;
5138
5139 /*
5140 * Header prediction.
5141 * The code loosely follows the one in the famous
5142 * "30 instruction TCP receive" Van Jacobson mail.
5143 *
5144 * Van's trick is to deposit buffers into socket queue
5145 * on a device interrupt, to call tcp_recv function
5146 * on the receive process context and checksum and copy
5147 * the buffer to user space. smart...
5148 *
5149 * Our current scheme is not silly either but we take the
5150 * extra cost of the net_bh soft interrupt processing...
5151 * We do checksum and copy also but from device to kernel.
5152 */
5153
5154 tp->rx_opt.saw_tstamp = 0;
5155
5156 /* pred_flags is 0xS?10 << 16 + snd_wnd
5157 * if header_prediction is to be made
5158 * 'S' will always be tp->tcp_header_len >> 2
5159 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5160 * turn it off (when there are holes in the receive
5161 * space for instance)
5162 * PSH flag is ignored.
5163 */
5164
5165 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5166 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5167 int tcp_header_len = tp->tcp_header_len;
5168
5169 /* Timestamp header prediction: tcp_header_len
5170 * is automatically equal to th->doff*4 due to pred_flags
5171 * match.
5172 */
5173
5174 /* Check timestamp */
5175 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5176 /* No? Slow path! */
5177 if (!tcp_parse_aligned_timestamp(tp, th))
5178 goto slow_path;
5179
5180 /* If PAWS failed, check it more carefully in slow path */
5181 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5182 goto slow_path;
5183
5184 /* DO NOT update ts_recent here, if checksum fails
5185 * and timestamp was corrupted part, it will result
5186 * in a hung connection since we will drop all
5187 * future packets due to the PAWS test.
5188 */
5189 }
5190
5191 if (len <= tcp_header_len) {
5192 /* Bulk data transfer: sender */
5193 if (len == tcp_header_len) {
5194 /* Predicted packet is in window by definition.
5195 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5196 * Hence, check seq<=rcv_wup reduces to:
5197 */
5198 if (tcp_header_len ==
5199 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5200 tp->rcv_nxt == tp->rcv_wup)
5201 tcp_store_ts_recent(tp);
5202
5203 /* We know that such packets are checksummed
5204 * on entry.
5205 */
5206 tcp_ack(sk, skb, 0);
5207 __kfree_skb(skb);
5208 tcp_data_snd_check(sk);
5209 return 0;
5210 } else { /* Header too small */
5211 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5212 goto discard;
5213 }
5214 } else {
5215 int eaten = 0;
5216 int copied_early = 0;
5217
5218 if (tp->copied_seq == tp->rcv_nxt &&
5219 len - tcp_header_len <= tp->ucopy.len) {
5220 #ifdef CONFIG_NET_DMA
5221 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5222 copied_early = 1;
5223 eaten = 1;
5224 }
5225 #endif
5226 if (tp->ucopy.task == current &&
5227 sock_owned_by_user(sk) && !copied_early) {
5228 __set_current_state(TASK_RUNNING);
5229
5230 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5231 eaten = 1;
5232 }
5233 if (eaten) {
5234 /* Predicted packet is in window by definition.
5235 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5236 * Hence, check seq<=rcv_wup reduces to:
5237 */
5238 if (tcp_header_len ==
5239 (sizeof(struct tcphdr) +
5240 TCPOLEN_TSTAMP_ALIGNED) &&
5241 tp->rcv_nxt == tp->rcv_wup)
5242 tcp_store_ts_recent(tp);
5243
5244 tcp_rcv_rtt_measure_ts(sk, skb);
5245
5246 __skb_pull(skb, tcp_header_len);
5247 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5249 }
5250 if (copied_early)
5251 tcp_cleanup_rbuf(sk, skb->len);
5252 }
5253 if (!eaten) {
5254 if (tcp_checksum_complete_user(sk, skb))
5255 goto csum_error;
5256
5257 /* Predicted packet is in window by definition.
5258 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5259 * Hence, check seq<=rcv_wup reduces to:
5260 */
5261 if (tcp_header_len ==
5262 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5263 tp->rcv_nxt == tp->rcv_wup)
5264 tcp_store_ts_recent(tp);
5265
5266 tcp_rcv_rtt_measure_ts(sk, skb);
5267
5268 if ((int)skb->truesize > sk->sk_forward_alloc)
5269 goto step5;
5270
5271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5272
5273 /* Bulk data transfer: receiver */
5274 __skb_pull(skb, tcp_header_len);
5275 __skb_queue_tail(&sk->sk_receive_queue, skb);
5276 skb_set_owner_r(skb, sk);
5277 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5278 }
5279
5280 tcp_event_data_recv(sk, skb);
5281
5282 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5283 /* Well, only one small jumplet in fast path... */
5284 tcp_ack(sk, skb, FLAG_DATA);
5285 tcp_data_snd_check(sk);
5286 if (!inet_csk_ack_scheduled(sk))
5287 goto no_ack;
5288 }
5289
5290 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5291 __tcp_ack_snd_check(sk, 0);
5292 no_ack:
5293 #ifdef CONFIG_NET_DMA
5294 if (copied_early)
5295 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5296 else
5297 #endif
5298 if (eaten)
5299 __kfree_skb(skb);
5300 else
5301 sk->sk_data_ready(sk, 0);
5302 return 0;
5303 }
5304 }
5305
5306 slow_path:
5307 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5308 goto csum_error;
5309
5310 /*
5311 * Standard slow path.
5312 */
5313
5314 res = tcp_validate_incoming(sk, skb, th, 1);
5315 if (res <= 0)
5316 return -res;
5317
5318 step5:
5319 if (th->ack)
5320 tcp_ack(sk, skb, FLAG_SLOWPATH);
5321
5322 tcp_rcv_rtt_measure_ts(sk, skb);
5323
5324 /* Process urgent data. */
5325 tcp_urg(sk, skb, th);
5326
5327 /* step 7: process the segment text */
5328 tcp_data_queue(sk, skb);
5329
5330 tcp_data_snd_check(sk);
5331 tcp_ack_snd_check(sk);
5332 return 0;
5333
5334 csum_error:
5335 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5336
5337 discard:
5338 __kfree_skb(skb);
5339 return 0;
5340 }
5341
5342 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5343 struct tcphdr *th, unsigned len)
5344 {
5345 struct tcp_sock *tp = tcp_sk(sk);
5346 struct inet_connection_sock *icsk = inet_csk(sk);
5347 int saved_clamp = tp->rx_opt.mss_clamp;
5348
5349 tcp_parse_options(skb, &tp->rx_opt, 0);
5350
5351 if (th->ack) {
5352 /* rfc793:
5353 * "If the state is SYN-SENT then
5354 * first check the ACK bit
5355 * If the ACK bit is set
5356 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5357 * a reset (unless the RST bit is set, if so drop
5358 * the segment and return)"
5359 *
5360 * We do not send data with SYN, so that RFC-correct
5361 * test reduces to:
5362 */
5363 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5364 goto reset_and_undo;
5365
5366 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5367 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5368 tcp_time_stamp)) {
5369 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5370 goto reset_and_undo;
5371 }
5372
5373 /* Now ACK is acceptable.
5374 *
5375 * "If the RST bit is set
5376 * If the ACK was acceptable then signal the user "error:
5377 * connection reset", drop the segment, enter CLOSED state,
5378 * delete TCB, and return."
5379 */
5380
5381 if (th->rst) {
5382 tcp_reset(sk);
5383 goto discard;
5384 }
5385
5386 /* rfc793:
5387 * "fifth, if neither of the SYN or RST bits is set then
5388 * drop the segment and return."
5389 *
5390 * See note below!
5391 * --ANK(990513)
5392 */
5393 if (!th->syn)
5394 goto discard_and_undo;
5395
5396 /* rfc793:
5397 * "If the SYN bit is on ...
5398 * are acceptable then ...
5399 * (our SYN has been ACKed), change the connection
5400 * state to ESTABLISHED..."
5401 */
5402
5403 TCP_ECN_rcv_synack(tp, th);
5404
5405 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5406 tcp_ack(sk, skb, FLAG_SLOWPATH);
5407
5408 /* Ok.. it's good. Set up sequence numbers and
5409 * move to established.
5410 */
5411 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5412 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5413
5414 /* RFC1323: The window in SYN & SYN/ACK segments is
5415 * never scaled.
5416 */
5417 tp->snd_wnd = ntohs(th->window);
5418 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5419
5420 if (!tp->rx_opt.wscale_ok) {
5421 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5422 tp->window_clamp = min(tp->window_clamp, 65535U);
5423 }
5424
5425 if (tp->rx_opt.saw_tstamp) {
5426 tp->rx_opt.tstamp_ok = 1;
5427 tp->tcp_header_len =
5428 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5429 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5430 tcp_store_ts_recent(tp);
5431 } else {
5432 tp->tcp_header_len = sizeof(struct tcphdr);
5433 }
5434
5435 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5436 tcp_enable_fack(tp);
5437
5438 tcp_mtup_init(sk);
5439 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5440 tcp_initialize_rcv_mss(sk);
5441
5442 /* Remember, tcp_poll() does not lock socket!
5443 * Change state from SYN-SENT only after copied_seq
5444 * is initialized. */
5445 tp->copied_seq = tp->rcv_nxt;
5446 smp_mb();
5447 tcp_set_state(sk, TCP_ESTABLISHED);
5448
5449 security_inet_conn_established(sk, skb);
5450
5451 /* Make sure socket is routed, for correct metrics. */
5452 icsk->icsk_af_ops->rebuild_header(sk);
5453
5454 tcp_init_metrics(sk);
5455
5456 tcp_init_congestion_control(sk);
5457
5458 /* Prevent spurious tcp_cwnd_restart() on first data
5459 * packet.
5460 */
5461 tp->lsndtime = tcp_time_stamp;
5462
5463 tcp_init_buffer_space(sk);
5464
5465 if (sock_flag(sk, SOCK_KEEPOPEN))
5466 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5467
5468 if (!tp->rx_opt.snd_wscale)
5469 __tcp_fast_path_on(tp, tp->snd_wnd);
5470 else
5471 tp->pred_flags = 0;
5472
5473 if (!sock_flag(sk, SOCK_DEAD)) {
5474 sk->sk_state_change(sk);
5475 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5476 }
5477
5478 if (sk->sk_write_pending ||
5479 icsk->icsk_accept_queue.rskq_defer_accept ||
5480 icsk->icsk_ack.pingpong) {
5481 /* Save one ACK. Data will be ready after
5482 * several ticks, if write_pending is set.
5483 *
5484 * It may be deleted, but with this feature tcpdumps
5485 * look so _wonderfully_ clever, that I was not able
5486 * to stand against the temptation 8) --ANK
5487 */
5488 inet_csk_schedule_ack(sk);
5489 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5490 icsk->icsk_ack.ato = TCP_ATO_MIN;
5491 tcp_incr_quickack(sk);
5492 tcp_enter_quickack_mode(sk);
5493 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5494 TCP_DELACK_MAX, TCP_RTO_MAX);
5495
5496 discard:
5497 __kfree_skb(skb);
5498 return 0;
5499 } else {
5500 tcp_send_ack(sk);
5501 }
5502 return -1;
5503 }
5504
5505 /* No ACK in the segment */
5506
5507 if (th->rst) {
5508 /* rfc793:
5509 * "If the RST bit is set
5510 *
5511 * Otherwise (no ACK) drop the segment and return."
5512 */
5513
5514 goto discard_and_undo;
5515 }
5516
5517 /* PAWS check. */
5518 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5519 tcp_paws_check(&tp->rx_opt, 0))
5520 goto discard_and_undo;
5521
5522 if (th->syn) {
5523 /* We see SYN without ACK. It is attempt of
5524 * simultaneous connect with crossed SYNs.
5525 * Particularly, it can be connect to self.
5526 */
5527 tcp_set_state(sk, TCP_SYN_RECV);
5528
5529 if (tp->rx_opt.saw_tstamp) {
5530 tp->rx_opt.tstamp_ok = 1;
5531 tcp_store_ts_recent(tp);
5532 tp->tcp_header_len =
5533 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5534 } else {
5535 tp->tcp_header_len = sizeof(struct tcphdr);
5536 }
5537
5538 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5539 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5540
5541 /* RFC1323: The window in SYN & SYN/ACK segments is
5542 * never scaled.
5543 */
5544 tp->snd_wnd = ntohs(th->window);
5545 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5546 tp->max_window = tp->snd_wnd;
5547
5548 TCP_ECN_rcv_syn(tp, th);
5549
5550 tcp_mtup_init(sk);
5551 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5552 tcp_initialize_rcv_mss(sk);
5553
5554 tcp_send_synack(sk);
5555 #if 0
5556 /* Note, we could accept data and URG from this segment.
5557 * There are no obstacles to make this.
5558 *
5559 * However, if we ignore data in ACKless segments sometimes,
5560 * we have no reasons to accept it sometimes.
5561 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5562 * is not flawless. So, discard packet for sanity.
5563 * Uncomment this return to process the data.
5564 */
5565 return -1;
5566 #else
5567 goto discard;
5568 #endif
5569 }
5570 /* "fifth, if neither of the SYN or RST bits is set then
5571 * drop the segment and return."
5572 */
5573
5574 discard_and_undo:
5575 tcp_clear_options(&tp->rx_opt);
5576 tp->rx_opt.mss_clamp = saved_clamp;
5577 goto discard;
5578
5579 reset_and_undo:
5580 tcp_clear_options(&tp->rx_opt);
5581 tp->rx_opt.mss_clamp = saved_clamp;
5582 return 1;
5583 }
5584
5585 /*
5586 * This function implements the receiving procedure of RFC 793 for
5587 * all states except ESTABLISHED and TIME_WAIT.
5588 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5589 * address independent.
5590 */
5591
5592 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5593 struct tcphdr *th, unsigned len)
5594 {
5595 struct tcp_sock *tp = tcp_sk(sk);
5596 struct inet_connection_sock *icsk = inet_csk(sk);
5597 int queued = 0;
5598 int res;
5599
5600 tp->rx_opt.saw_tstamp = 0;
5601
5602 switch (sk->sk_state) {
5603 case TCP_CLOSE:
5604 goto discard;
5605
5606 case TCP_LISTEN:
5607 if (th->ack)
5608 return 1;
5609
5610 if (th->rst)
5611 goto discard;
5612
5613 if (th->syn) {
5614 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5615 return 1;
5616
5617 /* Now we have several options: In theory there is
5618 * nothing else in the frame. KA9Q has an option to
5619 * send data with the syn, BSD accepts data with the
5620 * syn up to the [to be] advertised window and
5621 * Solaris 2.1 gives you a protocol error. For now
5622 * we just ignore it, that fits the spec precisely
5623 * and avoids incompatibilities. It would be nice in
5624 * future to drop through and process the data.
5625 *
5626 * Now that TTCP is starting to be used we ought to
5627 * queue this data.
5628 * But, this leaves one open to an easy denial of
5629 * service attack, and SYN cookies can't defend
5630 * against this problem. So, we drop the data
5631 * in the interest of security over speed unless
5632 * it's still in use.
5633 */
5634 kfree_skb(skb);
5635 return 0;
5636 }
5637 goto discard;
5638
5639 case TCP_SYN_SENT:
5640 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5641 if (queued >= 0)
5642 return queued;
5643
5644 /* Do step6 onward by hand. */
5645 tcp_urg(sk, skb, th);
5646 __kfree_skb(skb);
5647 tcp_data_snd_check(sk);
5648 return 0;
5649 }
5650
5651 res = tcp_validate_incoming(sk, skb, th, 0);
5652 if (res <= 0)
5653 return -res;
5654
5655 /* step 5: check the ACK field */
5656 if (th->ack) {
5657 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5658
5659 switch (sk->sk_state) {
5660 case TCP_SYN_RECV:
5661 if (acceptable) {
5662 tp->copied_seq = tp->rcv_nxt;
5663 smp_mb();
5664 tcp_set_state(sk, TCP_ESTABLISHED);
5665 sk->sk_state_change(sk);
5666
5667 /* Note, that this wakeup is only for marginal
5668 * crossed SYN case. Passively open sockets
5669 * are not waked up, because sk->sk_sleep ==
5670 * NULL and sk->sk_socket == NULL.
5671 */
5672 if (sk->sk_socket)
5673 sk_wake_async(sk,
5674 SOCK_WAKE_IO, POLL_OUT);
5675
5676 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5677 tp->snd_wnd = ntohs(th->window) <<
5678 tp->rx_opt.snd_wscale;
5679 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5680 TCP_SKB_CB(skb)->seq);
5681
5682 /* tcp_ack considers this ACK as duplicate
5683 * and does not calculate rtt.
5684 * Fix it at least with timestamps.
5685 */
5686 if (tp->rx_opt.saw_tstamp &&
5687 tp->rx_opt.rcv_tsecr && !tp->srtt)
5688 tcp_ack_saw_tstamp(sk, 0);
5689
5690 if (tp->rx_opt.tstamp_ok)
5691 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5692
5693 /* Make sure socket is routed, for
5694 * correct metrics.
5695 */
5696 icsk->icsk_af_ops->rebuild_header(sk);
5697
5698 tcp_init_metrics(sk);
5699
5700 tcp_init_congestion_control(sk);
5701
5702 /* Prevent spurious tcp_cwnd_restart() on
5703 * first data packet.
5704 */
5705 tp->lsndtime = tcp_time_stamp;
5706
5707 tcp_mtup_init(sk);
5708 tcp_initialize_rcv_mss(sk);
5709 tcp_init_buffer_space(sk);
5710 tcp_fast_path_on(tp);
5711 } else {
5712 return 1;
5713 }
5714 break;
5715
5716 case TCP_FIN_WAIT1:
5717 if (tp->snd_una == tp->write_seq) {
5718 tcp_set_state(sk, TCP_FIN_WAIT2);
5719 sk->sk_shutdown |= SEND_SHUTDOWN;
5720 dst_confirm(sk->sk_dst_cache);
5721
5722 if (!sock_flag(sk, SOCK_DEAD))
5723 /* Wake up lingering close() */
5724 sk->sk_state_change(sk);
5725 else {
5726 int tmo;
5727
5728 if (tp->linger2 < 0 ||
5729 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5730 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5731 tcp_done(sk);
5732 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5733 return 1;
5734 }
5735
5736 tmo = tcp_fin_time(sk);
5737 if (tmo > TCP_TIMEWAIT_LEN) {
5738 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5739 } else if (th->fin || sock_owned_by_user(sk)) {
5740 /* Bad case. We could lose such FIN otherwise.
5741 * It is not a big problem, but it looks confusing
5742 * and not so rare event. We still can lose it now,
5743 * if it spins in bh_lock_sock(), but it is really
5744 * marginal case.
5745 */
5746 inet_csk_reset_keepalive_timer(sk, tmo);
5747 } else {
5748 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5749 goto discard;
5750 }
5751 }
5752 }
5753 break;
5754
5755 case TCP_CLOSING:
5756 if (tp->snd_una == tp->write_seq) {
5757 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5758 goto discard;
5759 }
5760 break;
5761
5762 case TCP_LAST_ACK:
5763 if (tp->snd_una == tp->write_seq) {
5764 tcp_update_metrics(sk);
5765 tcp_done(sk);
5766 goto discard;
5767 }
5768 break;
5769 }
5770 } else
5771 goto discard;
5772
5773 /* step 6: check the URG bit */
5774 tcp_urg(sk, skb, th);
5775
5776 /* step 7: process the segment text */
5777 switch (sk->sk_state) {
5778 case TCP_CLOSE_WAIT:
5779 case TCP_CLOSING:
5780 case TCP_LAST_ACK:
5781 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5782 break;
5783 case TCP_FIN_WAIT1:
5784 case TCP_FIN_WAIT2:
5785 /* RFC 793 says to queue data in these states,
5786 * RFC 1122 says we MUST send a reset.
5787 * BSD 4.4 also does reset.
5788 */
5789 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5790 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5791 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5792 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5793 tcp_reset(sk);
5794 return 1;
5795 }
5796 }
5797 /* Fall through */
5798 case TCP_ESTABLISHED:
5799 tcp_data_queue(sk, skb);
5800 queued = 1;
5801 break;
5802 }
5803
5804 /* tcp_data could move socket to TIME-WAIT */
5805 if (sk->sk_state != TCP_CLOSE) {
5806 tcp_data_snd_check(sk);
5807 tcp_ack_snd_check(sk);
5808 }
5809
5810 if (!queued) {
5811 discard:
5812 __kfree_skb(skb);
5813 }
5814 return 0;
5815 }
5816
5817 EXPORT_SYMBOL(sysctl_tcp_ecn);
5818 EXPORT_SYMBOL(sysctl_tcp_reordering);
5819 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5820 EXPORT_SYMBOL(tcp_parse_options);
5821 #ifdef CONFIG_TCP_MD5SIG
5822 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5823 #endif
5824 EXPORT_SYMBOL(tcp_rcv_established);
5825 EXPORT_SYMBOL(tcp_rcv_state_process);
5826 EXPORT_SYMBOL(tcp_initialize_rcv_mss);