]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/tcp_input.c
tcp: Fix data-races around sysctl_tcp_dsack.
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 } else {
247 /* Otherwise, we make more careful check taking into account,
248 * that SACKs block is variable.
249 *
250 * "len" is invariant segment length, including TCP header.
251 */
252 len += skb->data - skb_transport_header(skb);
253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 /* If PSH is not set, packet should be
255 * full sized, provided peer TCP is not badly broken.
256 * This observation (if it is correct 8)) allows
257 * to handle super-low mtu links fairly.
258 */
259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 /* Subtract also invariant (if peer is RFC compliant),
262 * tcp header plus fixed timestamp option length.
263 * Resulting "len" is MSS free of SACK jitter.
264 */
265 len -= tcp_sk(sk)->tcp_header_len;
266 icsk->icsk_ack.last_seg_size = len;
267 if (len == lss) {
268 icsk->icsk_ack.rcv_mss = len;
269 return;
270 }
271 }
272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 }
276 }
277
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 struct inet_connection_sock *icsk = inet_csk(sk);
281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282
283 if (quickacks == 0)
284 quickacks = 2;
285 quickacks = min(quickacks, max_quickacks);
286 if (quickacks > icsk->icsk_ack.quick)
287 icsk->icsk_ack.quick = quickacks;
288 }
289
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 struct inet_connection_sock *icsk = inet_csk(sk);
293
294 tcp_incr_quickack(sk, max_quickacks);
295 inet_csk_exit_pingpong_mode(sk);
296 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299
300 /* Send ACKs quickly, if "quick" count is not exhausted
301 * and the session is not interactive.
302 */
303
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 const struct inet_connection_sock *icsk = inet_csk(sk);
307 const struct dst_entry *dst = __sk_dst_get(sk);
308
309 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 if (tp->ecn_flags & TCP_ECN_OK)
316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 if (tcp_hdr(skb)->cwr) {
322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323
324 /* If the sender is telling us it has entered CWR, then its
325 * cwnd may be very low (even just 1 packet), so we should ACK
326 * immediately.
327 */
328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 }
331 }
332
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 case INET_ECN_NOT_ECT:
344 /* Funny extension: if ECT is not set on a segment,
345 * and we already seen ECT on a previous segment,
346 * it is probably a retransmit.
347 */
348 if (tp->ecn_flags & TCP_ECN_SEEN)
349 tcp_enter_quickack_mode(sk, 2);
350 break;
351 case INET_ECN_CE:
352 if (tcp_ca_needs_ecn(sk))
353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354
355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 /* Better not delay acks, sender can have a very low cwnd */
357 tcp_enter_quickack_mode(sk, 2);
358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 }
360 tp->ecn_flags |= TCP_ECN_SEEN;
361 break;
362 default:
363 if (tcp_ca_needs_ecn(sk))
364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 tp->ecn_flags |= TCP_ECN_SEEN;
366 break;
367 }
368 }
369
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 __tcp_ecn_check_ce(sk, skb);
374 }
375
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 return true;
392 return false;
393 }
394
395 /* Buffer size and advertised window tuning.
396 *
397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398 */
399
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 const struct tcp_sock *tp = tcp_sk(sk);
403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 int sndmem, per_mss;
405 u32 nr_segs;
406
407 /* Worst case is non GSO/TSO : each frame consumes one skb
408 * and skb->head is kmalloced using power of two area of memory
409 */
410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 MAX_TCP_HEADER +
412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413
414 per_mss = roundup_pow_of_two(per_mss) +
415 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416
417 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419
420 /* Fast Recovery (RFC 5681 3.2) :
421 * Cubic needs 1.7 factor, rounded to 2 to include
422 * extra cushion (application might react slowly to EPOLLOUT)
423 */
424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 sndmem *= nr_segs * per_mss;
426
427 if (sk->sk_sndbuf < sndmem)
428 WRITE_ONCE(sk->sk_sndbuf,
429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 *
434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
435 * forward and advertised in receiver window (tp->rcv_wnd) and
436 * "application buffer", required to isolate scheduling/application
437 * latencies from network.
438 * window_clamp is maximal advertised window. It can be less than
439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
440 * is reserved for "application" buffer. The less window_clamp is
441 * the smoother our behaviour from viewpoint of network, but the lower
442 * throughput and the higher sensitivity of the connection to losses. 8)
443 *
444 * rcv_ssthresh is more strict window_clamp used at "slow start"
445 * phase to predict further behaviour of this connection.
446 * It is used for two goals:
447 * - to enforce header prediction at sender, even when application
448 * requires some significant "application buffer". It is check #1.
449 * - to prevent pruning of receive queue because of misprediction
450 * of receiver window. Check #2.
451 *
452 * The scheme does not work when sender sends good segments opening
453 * window and then starts to feed us spaghetti. But it should work
454 * in common situations. Otherwise, we have to rely on queue collapsing.
455 */
456
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 unsigned int skbtruesize)
460 {
461 struct tcp_sock *tp = tcp_sk(sk);
462 /* Optimize this! */
463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465
466 while (tp->rcv_ssthresh <= window) {
467 if (truesize <= skb->len)
468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469
470 truesize >>= 1;
471 window >>= 1;
472 }
473 return 0;
474 }
475
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477 * can play nice with us, as sk_buff and skb->head might be either
478 * freed or shared with up to MAX_SKB_FRAGS segments.
479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
480 * and if no payload was pulled in skb->head before reaching us.
481 */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 u32 truesize = skb->truesize;
485
486 if (adjust && !skb_headlen(skb)) {
487 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 /* paranoid check, some drivers might be buggy */
489 if (unlikely((int)truesize < (int)skb->len))
490 truesize = skb->truesize;
491 }
492 return truesize;
493 }
494
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 bool adjust)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int room;
500
501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502
503 /* Check #1 */
504 if (room > 0 && !tcp_under_memory_pressure(sk)) {
505 unsigned int truesize = truesize_adjust(adjust, skb);
506 int incr;
507
508 /* Check #2. Increase window, if skb with such overhead
509 * will fit to rcvbuf in future.
510 */
511 if (tcp_win_from_space(sk, truesize) <= skb->len)
512 incr = 2 * tp->advmss;
513 else
514 incr = __tcp_grow_window(sk, skb, truesize);
515
516 if (incr) {
517 incr = max_t(int, incr, 2 * skb->len);
518 tp->rcv_ssthresh += min(room, incr);
519 inet_csk(sk)->icsk_ack.quick |= 1;
520 }
521 }
522 }
523
524 /* 3. Try to fixup all. It is made immediately after connection enters
525 * established state.
526 */
527 static void tcp_init_buffer_space(struct sock *sk)
528 {
529 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
530 struct tcp_sock *tp = tcp_sk(sk);
531 int maxwin;
532
533 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
534 tcp_sndbuf_expand(sk);
535
536 tcp_mstamp_refresh(tp);
537 tp->rcvq_space.time = tp->tcp_mstamp;
538 tp->rcvq_space.seq = tp->copied_seq;
539
540 maxwin = tcp_full_space(sk);
541
542 if (tp->window_clamp >= maxwin) {
543 tp->window_clamp = maxwin;
544
545 if (tcp_app_win && maxwin > 4 * tp->advmss)
546 tp->window_clamp = max(maxwin -
547 (maxwin >> tcp_app_win),
548 4 * tp->advmss);
549 }
550
551 /* Force reservation of one segment. */
552 if (tcp_app_win &&
553 tp->window_clamp > 2 * tp->advmss &&
554 tp->window_clamp + tp->advmss > maxwin)
555 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
556
557 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
558 tp->snd_cwnd_stamp = tcp_jiffies32;
559 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
560 (u32)TCP_INIT_CWND * tp->advmss);
561 }
562
563 /* 4. Recalculate window clamp after socket hit its memory bounds. */
564 static void tcp_clamp_window(struct sock *sk)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 struct net *net = sock_net(sk);
569
570 icsk->icsk_ack.quick = 0;
571
572 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
573 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
574 !tcp_under_memory_pressure(sk) &&
575 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
576 WRITE_ONCE(sk->sk_rcvbuf,
577 min(atomic_read(&sk->sk_rmem_alloc),
578 net->ipv4.sysctl_tcp_rmem[2]));
579 }
580 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
581 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
582 }
583
584 /* Initialize RCV_MSS value.
585 * RCV_MSS is an our guess about MSS used by the peer.
586 * We haven't any direct information about the MSS.
587 * It's better to underestimate the RCV_MSS rather than overestimate.
588 * Overestimations make us ACKing less frequently than needed.
589 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
590 */
591 void tcp_initialize_rcv_mss(struct sock *sk)
592 {
593 const struct tcp_sock *tp = tcp_sk(sk);
594 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
595
596 hint = min(hint, tp->rcv_wnd / 2);
597 hint = min(hint, TCP_MSS_DEFAULT);
598 hint = max(hint, TCP_MIN_MSS);
599
600 inet_csk(sk)->icsk_ack.rcv_mss = hint;
601 }
602 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
603
604 /* Receiver "autotuning" code.
605 *
606 * The algorithm for RTT estimation w/o timestamps is based on
607 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
608 * <https://public.lanl.gov/radiant/pubs.html#DRS>
609 *
610 * More detail on this code can be found at
611 * <http://staff.psc.edu/jheffner/>,
612 * though this reference is out of date. A new paper
613 * is pending.
614 */
615 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
616 {
617 u32 new_sample = tp->rcv_rtt_est.rtt_us;
618 long m = sample;
619
620 if (new_sample != 0) {
621 /* If we sample in larger samples in the non-timestamp
622 * case, we could grossly overestimate the RTT especially
623 * with chatty applications or bulk transfer apps which
624 * are stalled on filesystem I/O.
625 *
626 * Also, since we are only going for a minimum in the
627 * non-timestamp case, we do not smooth things out
628 * else with timestamps disabled convergence takes too
629 * long.
630 */
631 if (!win_dep) {
632 m -= (new_sample >> 3);
633 new_sample += m;
634 } else {
635 m <<= 3;
636 if (m < new_sample)
637 new_sample = m;
638 }
639 } else {
640 /* No previous measure. */
641 new_sample = m << 3;
642 }
643
644 tp->rcv_rtt_est.rtt_us = new_sample;
645 }
646
647 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
648 {
649 u32 delta_us;
650
651 if (tp->rcv_rtt_est.time == 0)
652 goto new_measure;
653 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
654 return;
655 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
656 if (!delta_us)
657 delta_us = 1;
658 tcp_rcv_rtt_update(tp, delta_us, 1);
659
660 new_measure:
661 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
662 tp->rcv_rtt_est.time = tp->tcp_mstamp;
663 }
664
665 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
666 const struct sk_buff *skb)
667 {
668 struct tcp_sock *tp = tcp_sk(sk);
669
670 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
671 return;
672 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
673
674 if (TCP_SKB_CB(skb)->end_seq -
675 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
676 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
677 u32 delta_us;
678
679 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
680 if (!delta)
681 delta = 1;
682 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
683 tcp_rcv_rtt_update(tp, delta_us, 0);
684 }
685 }
686 }
687
688 /*
689 * This function should be called every time data is copied to user space.
690 * It calculates the appropriate TCP receive buffer space.
691 */
692 void tcp_rcv_space_adjust(struct sock *sk)
693 {
694 struct tcp_sock *tp = tcp_sk(sk);
695 u32 copied;
696 int time;
697
698 trace_tcp_rcv_space_adjust(sk);
699
700 tcp_mstamp_refresh(tp);
701 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
702 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
703 return;
704
705 /* Number of bytes copied to user in last RTT */
706 copied = tp->copied_seq - tp->rcvq_space.seq;
707 if (copied <= tp->rcvq_space.space)
708 goto new_measure;
709
710 /* A bit of theory :
711 * copied = bytes received in previous RTT, our base window
712 * To cope with packet losses, we need a 2x factor
713 * To cope with slow start, and sender growing its cwin by 100 %
714 * every RTT, we need a 4x factor, because the ACK we are sending
715 * now is for the next RTT, not the current one :
716 * <prev RTT . ><current RTT .. ><next RTT .... >
717 */
718
719 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
720 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
721 int rcvmem, rcvbuf;
722 u64 rcvwin, grow;
723
724 /* minimal window to cope with packet losses, assuming
725 * steady state. Add some cushion because of small variations.
726 */
727 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
728
729 /* Accommodate for sender rate increase (eg. slow start) */
730 grow = rcvwin * (copied - tp->rcvq_space.space);
731 do_div(grow, tp->rcvq_space.space);
732 rcvwin += (grow << 1);
733
734 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
735 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
736 rcvmem += 128;
737
738 do_div(rcvwin, tp->advmss);
739 rcvbuf = min_t(u64, rcvwin * rcvmem,
740 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
741 if (rcvbuf > sk->sk_rcvbuf) {
742 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
743
744 /* Make the window clamp follow along. */
745 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
746 }
747 }
748 tp->rcvq_space.space = copied;
749
750 new_measure:
751 tp->rcvq_space.seq = tp->copied_seq;
752 tp->rcvq_space.time = tp->tcp_mstamp;
753 }
754
755 /* There is something which you must keep in mind when you analyze the
756 * behavior of the tp->ato delayed ack timeout interval. When a
757 * connection starts up, we want to ack as quickly as possible. The
758 * problem is that "good" TCP's do slow start at the beginning of data
759 * transmission. The means that until we send the first few ACK's the
760 * sender will sit on his end and only queue most of his data, because
761 * he can only send snd_cwnd unacked packets at any given time. For
762 * each ACK we send, he increments snd_cwnd and transmits more of his
763 * queue. -DaveM
764 */
765 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
766 {
767 struct tcp_sock *tp = tcp_sk(sk);
768 struct inet_connection_sock *icsk = inet_csk(sk);
769 u32 now;
770
771 inet_csk_schedule_ack(sk);
772
773 tcp_measure_rcv_mss(sk, skb);
774
775 tcp_rcv_rtt_measure(tp);
776
777 now = tcp_jiffies32;
778
779 if (!icsk->icsk_ack.ato) {
780 /* The _first_ data packet received, initialize
781 * delayed ACK engine.
782 */
783 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
784 icsk->icsk_ack.ato = TCP_ATO_MIN;
785 } else {
786 int m = now - icsk->icsk_ack.lrcvtime;
787
788 if (m <= TCP_ATO_MIN / 2) {
789 /* The fastest case is the first. */
790 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
791 } else if (m < icsk->icsk_ack.ato) {
792 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
793 if (icsk->icsk_ack.ato > icsk->icsk_rto)
794 icsk->icsk_ack.ato = icsk->icsk_rto;
795 } else if (m > icsk->icsk_rto) {
796 /* Too long gap. Apparently sender failed to
797 * restart window, so that we send ACKs quickly.
798 */
799 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
800 sk_mem_reclaim(sk);
801 }
802 }
803 icsk->icsk_ack.lrcvtime = now;
804
805 tcp_ecn_check_ce(sk, skb);
806
807 if (skb->len >= 128)
808 tcp_grow_window(sk, skb, true);
809 }
810
811 /* Called to compute a smoothed rtt estimate. The data fed to this
812 * routine either comes from timestamps, or from segments that were
813 * known _not_ to have been retransmitted [see Karn/Partridge
814 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
815 * piece by Van Jacobson.
816 * NOTE: the next three routines used to be one big routine.
817 * To save cycles in the RFC 1323 implementation it was better to break
818 * it up into three procedures. -- erics
819 */
820 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 long m = mrtt_us; /* RTT */
824 u32 srtt = tp->srtt_us;
825
826 /* The following amusing code comes from Jacobson's
827 * article in SIGCOMM '88. Note that rtt and mdev
828 * are scaled versions of rtt and mean deviation.
829 * This is designed to be as fast as possible
830 * m stands for "measurement".
831 *
832 * On a 1990 paper the rto value is changed to:
833 * RTO = rtt + 4 * mdev
834 *
835 * Funny. This algorithm seems to be very broken.
836 * These formulae increase RTO, when it should be decreased, increase
837 * too slowly, when it should be increased quickly, decrease too quickly
838 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
839 * does not matter how to _calculate_ it. Seems, it was trap
840 * that VJ failed to avoid. 8)
841 */
842 if (srtt != 0) {
843 m -= (srtt >> 3); /* m is now error in rtt est */
844 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
845 if (m < 0) {
846 m = -m; /* m is now abs(error) */
847 m -= (tp->mdev_us >> 2); /* similar update on mdev */
848 /* This is similar to one of Eifel findings.
849 * Eifel blocks mdev updates when rtt decreases.
850 * This solution is a bit different: we use finer gain
851 * for mdev in this case (alpha*beta).
852 * Like Eifel it also prevents growth of rto,
853 * but also it limits too fast rto decreases,
854 * happening in pure Eifel.
855 */
856 if (m > 0)
857 m >>= 3;
858 } else {
859 m -= (tp->mdev_us >> 2); /* similar update on mdev */
860 }
861 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
862 if (tp->mdev_us > tp->mdev_max_us) {
863 tp->mdev_max_us = tp->mdev_us;
864 if (tp->mdev_max_us > tp->rttvar_us)
865 tp->rttvar_us = tp->mdev_max_us;
866 }
867 if (after(tp->snd_una, tp->rtt_seq)) {
868 if (tp->mdev_max_us < tp->rttvar_us)
869 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
870 tp->rtt_seq = tp->snd_nxt;
871 tp->mdev_max_us = tcp_rto_min_us(sk);
872
873 tcp_bpf_rtt(sk);
874 }
875 } else {
876 /* no previous measure. */
877 srtt = m << 3; /* take the measured time to be rtt */
878 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
879 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
880 tp->mdev_max_us = tp->rttvar_us;
881 tp->rtt_seq = tp->snd_nxt;
882
883 tcp_bpf_rtt(sk);
884 }
885 tp->srtt_us = max(1U, srtt);
886 }
887
888 static void tcp_update_pacing_rate(struct sock *sk)
889 {
890 const struct tcp_sock *tp = tcp_sk(sk);
891 u64 rate;
892
893 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
894 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
895
896 /* current rate is (cwnd * mss) / srtt
897 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
898 * In Congestion Avoidance phase, set it to 120 % the current rate.
899 *
900 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
901 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
902 * end of slow start and should slow down.
903 */
904 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
905 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
906 else
907 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
908
909 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
910
911 if (likely(tp->srtt_us))
912 do_div(rate, tp->srtt_us);
913
914 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
915 * without any lock. We want to make sure compiler wont store
916 * intermediate values in this location.
917 */
918 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
919 sk->sk_max_pacing_rate));
920 }
921
922 /* Calculate rto without backoff. This is the second half of Van Jacobson's
923 * routine referred to above.
924 */
925 static void tcp_set_rto(struct sock *sk)
926 {
927 const struct tcp_sock *tp = tcp_sk(sk);
928 /* Old crap is replaced with new one. 8)
929 *
930 * More seriously:
931 * 1. If rtt variance happened to be less 50msec, it is hallucination.
932 * It cannot be less due to utterly erratic ACK generation made
933 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
934 * to do with delayed acks, because at cwnd>2 true delack timeout
935 * is invisible. Actually, Linux-2.4 also generates erratic
936 * ACKs in some circumstances.
937 */
938 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
939
940 /* 2. Fixups made earlier cannot be right.
941 * If we do not estimate RTO correctly without them,
942 * all the algo is pure shit and should be replaced
943 * with correct one. It is exactly, which we pretend to do.
944 */
945
946 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
947 * guarantees that rto is higher.
948 */
949 tcp_bound_rto(sk);
950 }
951
952 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
953 {
954 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
955
956 if (!cwnd)
957 cwnd = TCP_INIT_CWND;
958 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
959 }
960
961 struct tcp_sacktag_state {
962 /* Timestamps for earliest and latest never-retransmitted segment
963 * that was SACKed. RTO needs the earliest RTT to stay conservative,
964 * but congestion control should still get an accurate delay signal.
965 */
966 u64 first_sackt;
967 u64 last_sackt;
968 u32 reord;
969 u32 sack_delivered;
970 int flag;
971 unsigned int mss_now;
972 struct rate_sample *rate;
973 };
974
975 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
976 * and spurious retransmission information if this DSACK is unlikely caused by
977 * sender's action:
978 * - DSACKed sequence range is larger than maximum receiver's window.
979 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
980 */
981 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
982 u32 end_seq, struct tcp_sacktag_state *state)
983 {
984 u32 seq_len, dup_segs = 1;
985
986 if (!before(start_seq, end_seq))
987 return 0;
988
989 seq_len = end_seq - start_seq;
990 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
991 if (seq_len > tp->max_window)
992 return 0;
993 if (seq_len > tp->mss_cache)
994 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
995 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
996 state->flag |= FLAG_DSACK_TLP;
997
998 tp->dsack_dups += dup_segs;
999 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1000 if (tp->dsack_dups > tp->total_retrans)
1001 return 0;
1002
1003 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1004 /* We increase the RACK ordering window in rounds where we receive
1005 * DSACKs that may have been due to reordering causing RACK to trigger
1006 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1007 * without having seen reordering, or that match TLP probes (TLP
1008 * is timer-driven, not triggered by RACK).
1009 */
1010 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1011 tp->rack.dsack_seen = 1;
1012
1013 state->flag |= FLAG_DSACKING_ACK;
1014 /* A spurious retransmission is delivered */
1015 state->sack_delivered += dup_segs;
1016
1017 return dup_segs;
1018 }
1019
1020 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1021 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1022 * distance is approximated in full-mss packet distance ("reordering").
1023 */
1024 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1025 const int ts)
1026 {
1027 struct tcp_sock *tp = tcp_sk(sk);
1028 const u32 mss = tp->mss_cache;
1029 u32 fack, metric;
1030
1031 fack = tcp_highest_sack_seq(tp);
1032 if (!before(low_seq, fack))
1033 return;
1034
1035 metric = fack - low_seq;
1036 if ((metric > tp->reordering * mss) && mss) {
1037 #if FASTRETRANS_DEBUG > 1
1038 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1039 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1040 tp->reordering,
1041 0,
1042 tp->sacked_out,
1043 tp->undo_marker ? tp->undo_retrans : 0);
1044 #endif
1045 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1046 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1047 }
1048
1049 /* This exciting event is worth to be remembered. 8) */
1050 tp->reord_seen++;
1051 NET_INC_STATS(sock_net(sk),
1052 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1053 }
1054
1055 /* This must be called before lost_out or retrans_out are updated
1056 * on a new loss, because we want to know if all skbs previously
1057 * known to be lost have already been retransmitted, indicating
1058 * that this newly lost skb is our next skb to retransmit.
1059 */
1060 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1061 {
1062 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1063 (tp->retransmit_skb_hint &&
1064 before(TCP_SKB_CB(skb)->seq,
1065 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1066 tp->retransmit_skb_hint = skb;
1067 }
1068
1069 /* Sum the number of packets on the wire we have marked as lost, and
1070 * notify the congestion control module that the given skb was marked lost.
1071 */
1072 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1073 {
1074 tp->lost += tcp_skb_pcount(skb);
1075 }
1076
1077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1078 {
1079 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1080 struct tcp_sock *tp = tcp_sk(sk);
1081
1082 if (sacked & TCPCB_SACKED_ACKED)
1083 return;
1084
1085 tcp_verify_retransmit_hint(tp, skb);
1086 if (sacked & TCPCB_LOST) {
1087 if (sacked & TCPCB_SACKED_RETRANS) {
1088 /* Account for retransmits that are lost again */
1089 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1090 tp->retrans_out -= tcp_skb_pcount(skb);
1091 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1092 tcp_skb_pcount(skb));
1093 tcp_notify_skb_loss_event(tp, skb);
1094 }
1095 } else {
1096 tp->lost_out += tcp_skb_pcount(skb);
1097 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1098 tcp_notify_skb_loss_event(tp, skb);
1099 }
1100 }
1101
1102 /* Updates the delivered and delivered_ce counts */
1103 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1104 bool ece_ack)
1105 {
1106 tp->delivered += delivered;
1107 if (ece_ack)
1108 tp->delivered_ce += delivered;
1109 }
1110
1111 /* This procedure tags the retransmission queue when SACKs arrive.
1112 *
1113 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1114 * Packets in queue with these bits set are counted in variables
1115 * sacked_out, retrans_out and lost_out, correspondingly.
1116 *
1117 * Valid combinations are:
1118 * Tag InFlight Description
1119 * 0 1 - orig segment is in flight.
1120 * S 0 - nothing flies, orig reached receiver.
1121 * L 0 - nothing flies, orig lost by net.
1122 * R 2 - both orig and retransmit are in flight.
1123 * L|R 1 - orig is lost, retransmit is in flight.
1124 * S|R 1 - orig reached receiver, retrans is still in flight.
1125 * (L|S|R is logically valid, it could occur when L|R is sacked,
1126 * but it is equivalent to plain S and code short-curcuits it to S.
1127 * L|S is logically invalid, it would mean -1 packet in flight 8))
1128 *
1129 * These 6 states form finite state machine, controlled by the following events:
1130 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1131 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1132 * 3. Loss detection event of two flavors:
1133 * A. Scoreboard estimator decided the packet is lost.
1134 * A'. Reno "three dupacks" marks head of queue lost.
1135 * B. SACK arrives sacking SND.NXT at the moment, when the
1136 * segment was retransmitted.
1137 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1138 *
1139 * It is pleasant to note, that state diagram turns out to be commutative,
1140 * so that we are allowed not to be bothered by order of our actions,
1141 * when multiple events arrive simultaneously. (see the function below).
1142 *
1143 * Reordering detection.
1144 * --------------------
1145 * Reordering metric is maximal distance, which a packet can be displaced
1146 * in packet stream. With SACKs we can estimate it:
1147 *
1148 * 1. SACK fills old hole and the corresponding segment was not
1149 * ever retransmitted -> reordering. Alas, we cannot use it
1150 * when segment was retransmitted.
1151 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1152 * for retransmitted and already SACKed segment -> reordering..
1153 * Both of these heuristics are not used in Loss state, when we cannot
1154 * account for retransmits accurately.
1155 *
1156 * SACK block validation.
1157 * ----------------------
1158 *
1159 * SACK block range validation checks that the received SACK block fits to
1160 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1161 * Note that SND.UNA is not included to the range though being valid because
1162 * it means that the receiver is rather inconsistent with itself reporting
1163 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1164 * perfectly valid, however, in light of RFC2018 which explicitly states
1165 * that "SACK block MUST reflect the newest segment. Even if the newest
1166 * segment is going to be discarded ...", not that it looks very clever
1167 * in case of head skb. Due to potentional receiver driven attacks, we
1168 * choose to avoid immediate execution of a walk in write queue due to
1169 * reneging and defer head skb's loss recovery to standard loss recovery
1170 * procedure that will eventually trigger (nothing forbids us doing this).
1171 *
1172 * Implements also blockage to start_seq wrap-around. Problem lies in the
1173 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1174 * there's no guarantee that it will be before snd_nxt (n). The problem
1175 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1176 * wrap (s_w):
1177 *
1178 * <- outs wnd -> <- wrapzone ->
1179 * u e n u_w e_w s n_w
1180 * | | | | | | |
1181 * |<------------+------+----- TCP seqno space --------------+---------->|
1182 * ...-- <2^31 ->| |<--------...
1183 * ...---- >2^31 ------>| |<--------...
1184 *
1185 * Current code wouldn't be vulnerable but it's better still to discard such
1186 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1187 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1188 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1189 * equal to the ideal case (infinite seqno space without wrap caused issues).
1190 *
1191 * With D-SACK the lower bound is extended to cover sequence space below
1192 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1193 * again, D-SACK block must not to go across snd_una (for the same reason as
1194 * for the normal SACK blocks, explained above). But there all simplicity
1195 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1196 * fully below undo_marker they do not affect behavior in anyway and can
1197 * therefore be safely ignored. In rare cases (which are more or less
1198 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1199 * fragmentation and packet reordering past skb's retransmission. To consider
1200 * them correctly, the acceptable range must be extended even more though
1201 * the exact amount is rather hard to quantify. However, tp->max_window can
1202 * be used as an exaggerated estimate.
1203 */
1204 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1205 u32 start_seq, u32 end_seq)
1206 {
1207 /* Too far in future, or reversed (interpretation is ambiguous) */
1208 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1209 return false;
1210
1211 /* Nasty start_seq wrap-around check (see comments above) */
1212 if (!before(start_seq, tp->snd_nxt))
1213 return false;
1214
1215 /* In outstanding window? ...This is valid exit for D-SACKs too.
1216 * start_seq == snd_una is non-sensical (see comments above)
1217 */
1218 if (after(start_seq, tp->snd_una))
1219 return true;
1220
1221 if (!is_dsack || !tp->undo_marker)
1222 return false;
1223
1224 /* ...Then it's D-SACK, and must reside below snd_una completely */
1225 if (after(end_seq, tp->snd_una))
1226 return false;
1227
1228 if (!before(start_seq, tp->undo_marker))
1229 return true;
1230
1231 /* Too old */
1232 if (!after(end_seq, tp->undo_marker))
1233 return false;
1234
1235 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1236 * start_seq < undo_marker and end_seq >= undo_marker.
1237 */
1238 return !before(start_seq, end_seq - tp->max_window);
1239 }
1240
1241 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1242 struct tcp_sack_block_wire *sp, int num_sacks,
1243 u32 prior_snd_una, struct tcp_sacktag_state *state)
1244 {
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1247 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1248 u32 dup_segs;
1249
1250 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1252 } else if (num_sacks > 1) {
1253 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1254 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1255
1256 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1257 return false;
1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1259 } else {
1260 return false;
1261 }
1262
1263 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1264 if (!dup_segs) { /* Skip dubious DSACK */
1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1266 return false;
1267 }
1268
1269 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1270
1271 /* D-SACK for already forgotten data... Do dumb counting. */
1272 if (tp->undo_marker && tp->undo_retrans > 0 &&
1273 !after(end_seq_0, prior_snd_una) &&
1274 after(end_seq_0, tp->undo_marker))
1275 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1276
1277 return true;
1278 }
1279
1280 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1281 * the incoming SACK may not exactly match but we can find smaller MSS
1282 * aligned portion of it that matches. Therefore we might need to fragment
1283 * which may fail and creates some hassle (caller must handle error case
1284 * returns).
1285 *
1286 * FIXME: this could be merged to shift decision code
1287 */
1288 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1289 u32 start_seq, u32 end_seq)
1290 {
1291 int err;
1292 bool in_sack;
1293 unsigned int pkt_len;
1294 unsigned int mss;
1295
1296 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1297 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1298
1299 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1301 mss = tcp_skb_mss(skb);
1302 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1303
1304 if (!in_sack) {
1305 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1306 if (pkt_len < mss)
1307 pkt_len = mss;
1308 } else {
1309 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1310 if (pkt_len < mss)
1311 return -EINVAL;
1312 }
1313
1314 /* Round if necessary so that SACKs cover only full MSSes
1315 * and/or the remaining small portion (if present)
1316 */
1317 if (pkt_len > mss) {
1318 unsigned int new_len = (pkt_len / mss) * mss;
1319 if (!in_sack && new_len < pkt_len)
1320 new_len += mss;
1321 pkt_len = new_len;
1322 }
1323
1324 if (pkt_len >= skb->len && !in_sack)
1325 return 0;
1326
1327 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1328 pkt_len, mss, GFP_ATOMIC);
1329 if (err < 0)
1330 return err;
1331 }
1332
1333 return in_sack;
1334 }
1335
1336 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1337 static u8 tcp_sacktag_one(struct sock *sk,
1338 struct tcp_sacktag_state *state, u8 sacked,
1339 u32 start_seq, u32 end_seq,
1340 int dup_sack, int pcount,
1341 u64 xmit_time)
1342 {
1343 struct tcp_sock *tp = tcp_sk(sk);
1344
1345 /* Account D-SACK for retransmitted packet. */
1346 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1347 if (tp->undo_marker && tp->undo_retrans > 0 &&
1348 after(end_seq, tp->undo_marker))
1349 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1350 if ((sacked & TCPCB_SACKED_ACKED) &&
1351 before(start_seq, state->reord))
1352 state->reord = start_seq;
1353 }
1354
1355 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1356 if (!after(end_seq, tp->snd_una))
1357 return sacked;
1358
1359 if (!(sacked & TCPCB_SACKED_ACKED)) {
1360 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1361
1362 if (sacked & TCPCB_SACKED_RETRANS) {
1363 /* If the segment is not tagged as lost,
1364 * we do not clear RETRANS, believing
1365 * that retransmission is still in flight.
1366 */
1367 if (sacked & TCPCB_LOST) {
1368 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1369 tp->lost_out -= pcount;
1370 tp->retrans_out -= pcount;
1371 }
1372 } else {
1373 if (!(sacked & TCPCB_RETRANS)) {
1374 /* New sack for not retransmitted frame,
1375 * which was in hole. It is reordering.
1376 */
1377 if (before(start_seq,
1378 tcp_highest_sack_seq(tp)) &&
1379 before(start_seq, state->reord))
1380 state->reord = start_seq;
1381
1382 if (!after(end_seq, tp->high_seq))
1383 state->flag |= FLAG_ORIG_SACK_ACKED;
1384 if (state->first_sackt == 0)
1385 state->first_sackt = xmit_time;
1386 state->last_sackt = xmit_time;
1387 }
1388
1389 if (sacked & TCPCB_LOST) {
1390 sacked &= ~TCPCB_LOST;
1391 tp->lost_out -= pcount;
1392 }
1393 }
1394
1395 sacked |= TCPCB_SACKED_ACKED;
1396 state->flag |= FLAG_DATA_SACKED;
1397 tp->sacked_out += pcount;
1398 /* Out-of-order packets delivered */
1399 state->sack_delivered += pcount;
1400
1401 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1402 if (tp->lost_skb_hint &&
1403 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1404 tp->lost_cnt_hint += pcount;
1405 }
1406
1407 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1408 * frames and clear it. undo_retrans is decreased above, L|R frames
1409 * are accounted above as well.
1410 */
1411 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1412 sacked &= ~TCPCB_SACKED_RETRANS;
1413 tp->retrans_out -= pcount;
1414 }
1415
1416 return sacked;
1417 }
1418
1419 /* Shift newly-SACKed bytes from this skb to the immediately previous
1420 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1421 */
1422 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1423 struct sk_buff *skb,
1424 struct tcp_sacktag_state *state,
1425 unsigned int pcount, int shifted, int mss,
1426 bool dup_sack)
1427 {
1428 struct tcp_sock *tp = tcp_sk(sk);
1429 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1430 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1431
1432 BUG_ON(!pcount);
1433
1434 /* Adjust counters and hints for the newly sacked sequence
1435 * range but discard the return value since prev is already
1436 * marked. We must tag the range first because the seq
1437 * advancement below implicitly advances
1438 * tcp_highest_sack_seq() when skb is highest_sack.
1439 */
1440 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1441 start_seq, end_seq, dup_sack, pcount,
1442 tcp_skb_timestamp_us(skb));
1443 tcp_rate_skb_delivered(sk, skb, state->rate);
1444
1445 if (skb == tp->lost_skb_hint)
1446 tp->lost_cnt_hint += pcount;
1447
1448 TCP_SKB_CB(prev)->end_seq += shifted;
1449 TCP_SKB_CB(skb)->seq += shifted;
1450
1451 tcp_skb_pcount_add(prev, pcount);
1452 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1453 tcp_skb_pcount_add(skb, -pcount);
1454
1455 /* When we're adding to gso_segs == 1, gso_size will be zero,
1456 * in theory this shouldn't be necessary but as long as DSACK
1457 * code can come after this skb later on it's better to keep
1458 * setting gso_size to something.
1459 */
1460 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1461 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1462
1463 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1464 if (tcp_skb_pcount(skb) <= 1)
1465 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1466
1467 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1468 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1469
1470 if (skb->len > 0) {
1471 BUG_ON(!tcp_skb_pcount(skb));
1472 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1473 return false;
1474 }
1475
1476 /* Whole SKB was eaten :-) */
1477
1478 if (skb == tp->retransmit_skb_hint)
1479 tp->retransmit_skb_hint = prev;
1480 if (skb == tp->lost_skb_hint) {
1481 tp->lost_skb_hint = prev;
1482 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1483 }
1484
1485 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1486 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1487 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1488 TCP_SKB_CB(prev)->end_seq++;
1489
1490 if (skb == tcp_highest_sack(sk))
1491 tcp_advance_highest_sack(sk, skb);
1492
1493 tcp_skb_collapse_tstamp(prev, skb);
1494 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1495 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1496
1497 tcp_rtx_queue_unlink_and_free(skb, sk);
1498
1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1500
1501 return true;
1502 }
1503
1504 /* I wish gso_size would have a bit more sane initialization than
1505 * something-or-zero which complicates things
1506 */
1507 static int tcp_skb_seglen(const struct sk_buff *skb)
1508 {
1509 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1510 }
1511
1512 /* Shifting pages past head area doesn't work */
1513 static int skb_can_shift(const struct sk_buff *skb)
1514 {
1515 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1516 }
1517
1518 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1519 int pcount, int shiftlen)
1520 {
1521 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1522 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1523 * to make sure not storing more than 65535 * 8 bytes per skb,
1524 * even if current MSS is bigger.
1525 */
1526 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1527 return 0;
1528 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1529 return 0;
1530 return skb_shift(to, from, shiftlen);
1531 }
1532
1533 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1534 * skb.
1535 */
1536 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1537 struct tcp_sacktag_state *state,
1538 u32 start_seq, u32 end_seq,
1539 bool dup_sack)
1540 {
1541 struct tcp_sock *tp = tcp_sk(sk);
1542 struct sk_buff *prev;
1543 int mss;
1544 int pcount = 0;
1545 int len;
1546 int in_sack;
1547
1548 /* Normally R but no L won't result in plain S */
1549 if (!dup_sack &&
1550 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1551 goto fallback;
1552 if (!skb_can_shift(skb))
1553 goto fallback;
1554 /* This frame is about to be dropped (was ACKed). */
1555 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1556 goto fallback;
1557
1558 /* Can only happen with delayed DSACK + discard craziness */
1559 prev = skb_rb_prev(skb);
1560 if (!prev)
1561 goto fallback;
1562
1563 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1564 goto fallback;
1565
1566 if (!tcp_skb_can_collapse(prev, skb))
1567 goto fallback;
1568
1569 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1570 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1571
1572 if (in_sack) {
1573 len = skb->len;
1574 pcount = tcp_skb_pcount(skb);
1575 mss = tcp_skb_seglen(skb);
1576
1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1578 * drop this restriction as unnecessary
1579 */
1580 if (mss != tcp_skb_seglen(prev))
1581 goto fallback;
1582 } else {
1583 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1584 goto noop;
1585 /* CHECKME: This is non-MSS split case only?, this will
1586 * cause skipped skbs due to advancing loop btw, original
1587 * has that feature too
1588 */
1589 if (tcp_skb_pcount(skb) <= 1)
1590 goto noop;
1591
1592 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1593 if (!in_sack) {
1594 /* TODO: head merge to next could be attempted here
1595 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1596 * though it might not be worth of the additional hassle
1597 *
1598 * ...we can probably just fallback to what was done
1599 * previously. We could try merging non-SACKed ones
1600 * as well but it probably isn't going to buy off
1601 * because later SACKs might again split them, and
1602 * it would make skb timestamp tracking considerably
1603 * harder problem.
1604 */
1605 goto fallback;
1606 }
1607
1608 len = end_seq - TCP_SKB_CB(skb)->seq;
1609 BUG_ON(len < 0);
1610 BUG_ON(len > skb->len);
1611
1612 /* MSS boundaries should be honoured or else pcount will
1613 * severely break even though it makes things bit trickier.
1614 * Optimize common case to avoid most of the divides
1615 */
1616 mss = tcp_skb_mss(skb);
1617
1618 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1619 * drop this restriction as unnecessary
1620 */
1621 if (mss != tcp_skb_seglen(prev))
1622 goto fallback;
1623
1624 if (len == mss) {
1625 pcount = 1;
1626 } else if (len < mss) {
1627 goto noop;
1628 } else {
1629 pcount = len / mss;
1630 len = pcount * mss;
1631 }
1632 }
1633
1634 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1635 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1636 goto fallback;
1637
1638 if (!tcp_skb_shift(prev, skb, pcount, len))
1639 goto fallback;
1640 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1641 goto out;
1642
1643 /* Hole filled allows collapsing with the next as well, this is very
1644 * useful when hole on every nth skb pattern happens
1645 */
1646 skb = skb_rb_next(prev);
1647 if (!skb)
1648 goto out;
1649
1650 if (!skb_can_shift(skb) ||
1651 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1652 (mss != tcp_skb_seglen(skb)))
1653 goto out;
1654
1655 if (!tcp_skb_can_collapse(prev, skb))
1656 goto out;
1657 len = skb->len;
1658 pcount = tcp_skb_pcount(skb);
1659 if (tcp_skb_shift(prev, skb, pcount, len))
1660 tcp_shifted_skb(sk, prev, skb, state, pcount,
1661 len, mss, 0);
1662
1663 out:
1664 return prev;
1665
1666 noop:
1667 return skb;
1668
1669 fallback:
1670 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1671 return NULL;
1672 }
1673
1674 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1675 struct tcp_sack_block *next_dup,
1676 struct tcp_sacktag_state *state,
1677 u32 start_seq, u32 end_seq,
1678 bool dup_sack_in)
1679 {
1680 struct tcp_sock *tp = tcp_sk(sk);
1681 struct sk_buff *tmp;
1682
1683 skb_rbtree_walk_from(skb) {
1684 int in_sack = 0;
1685 bool dup_sack = dup_sack_in;
1686
1687 /* queue is in-order => we can short-circuit the walk early */
1688 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1689 break;
1690
1691 if (next_dup &&
1692 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1693 in_sack = tcp_match_skb_to_sack(sk, skb,
1694 next_dup->start_seq,
1695 next_dup->end_seq);
1696 if (in_sack > 0)
1697 dup_sack = true;
1698 }
1699
1700 /* skb reference here is a bit tricky to get right, since
1701 * shifting can eat and free both this skb and the next,
1702 * so not even _safe variant of the loop is enough.
1703 */
1704 if (in_sack <= 0) {
1705 tmp = tcp_shift_skb_data(sk, skb, state,
1706 start_seq, end_seq, dup_sack);
1707 if (tmp) {
1708 if (tmp != skb) {
1709 skb = tmp;
1710 continue;
1711 }
1712
1713 in_sack = 0;
1714 } else {
1715 in_sack = tcp_match_skb_to_sack(sk, skb,
1716 start_seq,
1717 end_seq);
1718 }
1719 }
1720
1721 if (unlikely(in_sack < 0))
1722 break;
1723
1724 if (in_sack) {
1725 TCP_SKB_CB(skb)->sacked =
1726 tcp_sacktag_one(sk,
1727 state,
1728 TCP_SKB_CB(skb)->sacked,
1729 TCP_SKB_CB(skb)->seq,
1730 TCP_SKB_CB(skb)->end_seq,
1731 dup_sack,
1732 tcp_skb_pcount(skb),
1733 tcp_skb_timestamp_us(skb));
1734 tcp_rate_skb_delivered(sk, skb, state->rate);
1735 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1736 list_del_init(&skb->tcp_tsorted_anchor);
1737
1738 if (!before(TCP_SKB_CB(skb)->seq,
1739 tcp_highest_sack_seq(tp)))
1740 tcp_advance_highest_sack(sk, skb);
1741 }
1742 }
1743 return skb;
1744 }
1745
1746 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1747 {
1748 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1749 struct sk_buff *skb;
1750
1751 while (*p) {
1752 parent = *p;
1753 skb = rb_to_skb(parent);
1754 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1755 p = &parent->rb_left;
1756 continue;
1757 }
1758 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1759 p = &parent->rb_right;
1760 continue;
1761 }
1762 return skb;
1763 }
1764 return NULL;
1765 }
1766
1767 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1768 u32 skip_to_seq)
1769 {
1770 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1771 return skb;
1772
1773 return tcp_sacktag_bsearch(sk, skip_to_seq);
1774 }
1775
1776 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1777 struct sock *sk,
1778 struct tcp_sack_block *next_dup,
1779 struct tcp_sacktag_state *state,
1780 u32 skip_to_seq)
1781 {
1782 if (!next_dup)
1783 return skb;
1784
1785 if (before(next_dup->start_seq, skip_to_seq)) {
1786 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1787 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1788 next_dup->start_seq, next_dup->end_seq,
1789 1);
1790 }
1791
1792 return skb;
1793 }
1794
1795 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1796 {
1797 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1798 }
1799
1800 static int
1801 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1802 u32 prior_snd_una, struct tcp_sacktag_state *state)
1803 {
1804 struct tcp_sock *tp = tcp_sk(sk);
1805 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1806 TCP_SKB_CB(ack_skb)->sacked);
1807 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1808 struct tcp_sack_block sp[TCP_NUM_SACKS];
1809 struct tcp_sack_block *cache;
1810 struct sk_buff *skb;
1811 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1812 int used_sacks;
1813 bool found_dup_sack = false;
1814 int i, j;
1815 int first_sack_index;
1816
1817 state->flag = 0;
1818 state->reord = tp->snd_nxt;
1819
1820 if (!tp->sacked_out)
1821 tcp_highest_sack_reset(sk);
1822
1823 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1824 num_sacks, prior_snd_una, state);
1825
1826 /* Eliminate too old ACKs, but take into
1827 * account more or less fresh ones, they can
1828 * contain valid SACK info.
1829 */
1830 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1831 return 0;
1832
1833 if (!tp->packets_out)
1834 goto out;
1835
1836 used_sacks = 0;
1837 first_sack_index = 0;
1838 for (i = 0; i < num_sacks; i++) {
1839 bool dup_sack = !i && found_dup_sack;
1840
1841 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1842 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1843
1844 if (!tcp_is_sackblock_valid(tp, dup_sack,
1845 sp[used_sacks].start_seq,
1846 sp[used_sacks].end_seq)) {
1847 int mib_idx;
1848
1849 if (dup_sack) {
1850 if (!tp->undo_marker)
1851 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1852 else
1853 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1854 } else {
1855 /* Don't count olds caused by ACK reordering */
1856 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1857 !after(sp[used_sacks].end_seq, tp->snd_una))
1858 continue;
1859 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1860 }
1861
1862 NET_INC_STATS(sock_net(sk), mib_idx);
1863 if (i == 0)
1864 first_sack_index = -1;
1865 continue;
1866 }
1867
1868 /* Ignore very old stuff early */
1869 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1870 if (i == 0)
1871 first_sack_index = -1;
1872 continue;
1873 }
1874
1875 used_sacks++;
1876 }
1877
1878 /* order SACK blocks to allow in order walk of the retrans queue */
1879 for (i = used_sacks - 1; i > 0; i--) {
1880 for (j = 0; j < i; j++) {
1881 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1882 swap(sp[j], sp[j + 1]);
1883
1884 /* Track where the first SACK block goes to */
1885 if (j == first_sack_index)
1886 first_sack_index = j + 1;
1887 }
1888 }
1889 }
1890
1891 state->mss_now = tcp_current_mss(sk);
1892 skb = NULL;
1893 i = 0;
1894
1895 if (!tp->sacked_out) {
1896 /* It's already past, so skip checking against it */
1897 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1898 } else {
1899 cache = tp->recv_sack_cache;
1900 /* Skip empty blocks in at head of the cache */
1901 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1902 !cache->end_seq)
1903 cache++;
1904 }
1905
1906 while (i < used_sacks) {
1907 u32 start_seq = sp[i].start_seq;
1908 u32 end_seq = sp[i].end_seq;
1909 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1910 struct tcp_sack_block *next_dup = NULL;
1911
1912 if (found_dup_sack && ((i + 1) == first_sack_index))
1913 next_dup = &sp[i + 1];
1914
1915 /* Skip too early cached blocks */
1916 while (tcp_sack_cache_ok(tp, cache) &&
1917 !before(start_seq, cache->end_seq))
1918 cache++;
1919
1920 /* Can skip some work by looking recv_sack_cache? */
1921 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1922 after(end_seq, cache->start_seq)) {
1923
1924 /* Head todo? */
1925 if (before(start_seq, cache->start_seq)) {
1926 skb = tcp_sacktag_skip(skb, sk, start_seq);
1927 skb = tcp_sacktag_walk(skb, sk, next_dup,
1928 state,
1929 start_seq,
1930 cache->start_seq,
1931 dup_sack);
1932 }
1933
1934 /* Rest of the block already fully processed? */
1935 if (!after(end_seq, cache->end_seq))
1936 goto advance_sp;
1937
1938 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1939 state,
1940 cache->end_seq);
1941
1942 /* ...tail remains todo... */
1943 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1944 /* ...but better entrypoint exists! */
1945 skb = tcp_highest_sack(sk);
1946 if (!skb)
1947 break;
1948 cache++;
1949 goto walk;
1950 }
1951
1952 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1953 /* Check overlap against next cached too (past this one already) */
1954 cache++;
1955 continue;
1956 }
1957
1958 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1959 skb = tcp_highest_sack(sk);
1960 if (!skb)
1961 break;
1962 }
1963 skb = tcp_sacktag_skip(skb, sk, start_seq);
1964
1965 walk:
1966 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1967 start_seq, end_seq, dup_sack);
1968
1969 advance_sp:
1970 i++;
1971 }
1972
1973 /* Clear the head of the cache sack blocks so we can skip it next time */
1974 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1975 tp->recv_sack_cache[i].start_seq = 0;
1976 tp->recv_sack_cache[i].end_seq = 0;
1977 }
1978 for (j = 0; j < used_sacks; j++)
1979 tp->recv_sack_cache[i++] = sp[j];
1980
1981 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1982 tcp_check_sack_reordering(sk, state->reord, 0);
1983
1984 tcp_verify_left_out(tp);
1985 out:
1986
1987 #if FASTRETRANS_DEBUG > 0
1988 WARN_ON((int)tp->sacked_out < 0);
1989 WARN_ON((int)tp->lost_out < 0);
1990 WARN_ON((int)tp->retrans_out < 0);
1991 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1992 #endif
1993 return state->flag;
1994 }
1995
1996 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1997 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1998 */
1999 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2000 {
2001 u32 holes;
2002
2003 holes = max(tp->lost_out, 1U);
2004 holes = min(holes, tp->packets_out);
2005
2006 if ((tp->sacked_out + holes) > tp->packets_out) {
2007 tp->sacked_out = tp->packets_out - holes;
2008 return true;
2009 }
2010 return false;
2011 }
2012
2013 /* If we receive more dupacks than we expected counting segments
2014 * in assumption of absent reordering, interpret this as reordering.
2015 * The only another reason could be bug in receiver TCP.
2016 */
2017 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2018 {
2019 struct tcp_sock *tp = tcp_sk(sk);
2020
2021 if (!tcp_limit_reno_sacked(tp))
2022 return;
2023
2024 tp->reordering = min_t(u32, tp->packets_out + addend,
2025 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2026 tp->reord_seen++;
2027 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2028 }
2029
2030 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2031
2032 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2033 {
2034 if (num_dupack) {
2035 struct tcp_sock *tp = tcp_sk(sk);
2036 u32 prior_sacked = tp->sacked_out;
2037 s32 delivered;
2038
2039 tp->sacked_out += num_dupack;
2040 tcp_check_reno_reordering(sk, 0);
2041 delivered = tp->sacked_out - prior_sacked;
2042 if (delivered > 0)
2043 tcp_count_delivered(tp, delivered, ece_ack);
2044 tcp_verify_left_out(tp);
2045 }
2046 }
2047
2048 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2049
2050 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2051 {
2052 struct tcp_sock *tp = tcp_sk(sk);
2053
2054 if (acked > 0) {
2055 /* One ACK acked hole. The rest eat duplicate ACKs. */
2056 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2057 ece_ack);
2058 if (acked - 1 >= tp->sacked_out)
2059 tp->sacked_out = 0;
2060 else
2061 tp->sacked_out -= acked - 1;
2062 }
2063 tcp_check_reno_reordering(sk, acked);
2064 tcp_verify_left_out(tp);
2065 }
2066
2067 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2068 {
2069 tp->sacked_out = 0;
2070 }
2071
2072 void tcp_clear_retrans(struct tcp_sock *tp)
2073 {
2074 tp->retrans_out = 0;
2075 tp->lost_out = 0;
2076 tp->undo_marker = 0;
2077 tp->undo_retrans = -1;
2078 tp->sacked_out = 0;
2079 }
2080
2081 static inline void tcp_init_undo(struct tcp_sock *tp)
2082 {
2083 tp->undo_marker = tp->snd_una;
2084 /* Retransmission still in flight may cause DSACKs later. */
2085 tp->undo_retrans = tp->retrans_out ? : -1;
2086 }
2087
2088 static bool tcp_is_rack(const struct sock *sk)
2089 {
2090 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2091 TCP_RACK_LOSS_DETECTION;
2092 }
2093
2094 /* If we detect SACK reneging, forget all SACK information
2095 * and reset tags completely, otherwise preserve SACKs. If receiver
2096 * dropped its ofo queue, we will know this due to reneging detection.
2097 */
2098 static void tcp_timeout_mark_lost(struct sock *sk)
2099 {
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 struct sk_buff *skb, *head;
2102 bool is_reneg; /* is receiver reneging on SACKs? */
2103
2104 head = tcp_rtx_queue_head(sk);
2105 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2106 if (is_reneg) {
2107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2108 tp->sacked_out = 0;
2109 /* Mark SACK reneging until we recover from this loss event. */
2110 tp->is_sack_reneg = 1;
2111 } else if (tcp_is_reno(tp)) {
2112 tcp_reset_reno_sack(tp);
2113 }
2114
2115 skb = head;
2116 skb_rbtree_walk_from(skb) {
2117 if (is_reneg)
2118 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2119 else if (tcp_is_rack(sk) && skb != head &&
2120 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2121 continue; /* Don't mark recently sent ones lost yet */
2122 tcp_mark_skb_lost(sk, skb);
2123 }
2124 tcp_verify_left_out(tp);
2125 tcp_clear_all_retrans_hints(tp);
2126 }
2127
2128 /* Enter Loss state. */
2129 void tcp_enter_loss(struct sock *sk)
2130 {
2131 const struct inet_connection_sock *icsk = inet_csk(sk);
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct net *net = sock_net(sk);
2134 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2135 u8 reordering;
2136
2137 tcp_timeout_mark_lost(sk);
2138
2139 /* Reduce ssthresh if it has not yet been made inside this window. */
2140 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2141 !after(tp->high_seq, tp->snd_una) ||
2142 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2143 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2144 tp->prior_cwnd = tcp_snd_cwnd(tp);
2145 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2146 tcp_ca_event(sk, CA_EVENT_LOSS);
2147 tcp_init_undo(tp);
2148 }
2149 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2150 tp->snd_cwnd_cnt = 0;
2151 tp->snd_cwnd_stamp = tcp_jiffies32;
2152
2153 /* Timeout in disordered state after receiving substantial DUPACKs
2154 * suggests that the degree of reordering is over-estimated.
2155 */
2156 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2157 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2158 tp->sacked_out >= reordering)
2159 tp->reordering = min_t(unsigned int, tp->reordering,
2160 reordering);
2161
2162 tcp_set_ca_state(sk, TCP_CA_Loss);
2163 tp->high_seq = tp->snd_nxt;
2164 tcp_ecn_queue_cwr(tp);
2165
2166 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2167 * loss recovery is underway except recurring timeout(s) on
2168 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2169 */
2170 tp->frto = net->ipv4.sysctl_tcp_frto &&
2171 (new_recovery || icsk->icsk_retransmits) &&
2172 !inet_csk(sk)->icsk_mtup.probe_size;
2173 }
2174
2175 /* If ACK arrived pointing to a remembered SACK, it means that our
2176 * remembered SACKs do not reflect real state of receiver i.e.
2177 * receiver _host_ is heavily congested (or buggy).
2178 *
2179 * To avoid big spurious retransmission bursts due to transient SACK
2180 * scoreboard oddities that look like reneging, we give the receiver a
2181 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2182 * restore sanity to the SACK scoreboard. If the apparent reneging
2183 * persists until this RTO then we'll clear the SACK scoreboard.
2184 */
2185 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2186 {
2187 if (flag & FLAG_SACK_RENEGING) {
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2190 msecs_to_jiffies(10));
2191
2192 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2193 delay, TCP_RTO_MAX);
2194 return true;
2195 }
2196 return false;
2197 }
2198
2199 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2200 * counter when SACK is enabled (without SACK, sacked_out is used for
2201 * that purpose).
2202 *
2203 * With reordering, holes may still be in flight, so RFC3517 recovery
2204 * uses pure sacked_out (total number of SACKed segments) even though
2205 * it violates the RFC that uses duplicate ACKs, often these are equal
2206 * but when e.g. out-of-window ACKs or packet duplication occurs,
2207 * they differ. Since neither occurs due to loss, TCP should really
2208 * ignore them.
2209 */
2210 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2211 {
2212 return tp->sacked_out + 1;
2213 }
2214
2215 /* Linux NewReno/SACK/ECN state machine.
2216 * --------------------------------------
2217 *
2218 * "Open" Normal state, no dubious events, fast path.
2219 * "Disorder" In all the respects it is "Open",
2220 * but requires a bit more attention. It is entered when
2221 * we see some SACKs or dupacks. It is split of "Open"
2222 * mainly to move some processing from fast path to slow one.
2223 * "CWR" CWND was reduced due to some Congestion Notification event.
2224 * It can be ECN, ICMP source quench, local device congestion.
2225 * "Recovery" CWND was reduced, we are fast-retransmitting.
2226 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2227 *
2228 * tcp_fastretrans_alert() is entered:
2229 * - each incoming ACK, if state is not "Open"
2230 * - when arrived ACK is unusual, namely:
2231 * * SACK
2232 * * Duplicate ACK.
2233 * * ECN ECE.
2234 *
2235 * Counting packets in flight is pretty simple.
2236 *
2237 * in_flight = packets_out - left_out + retrans_out
2238 *
2239 * packets_out is SND.NXT-SND.UNA counted in packets.
2240 *
2241 * retrans_out is number of retransmitted segments.
2242 *
2243 * left_out is number of segments left network, but not ACKed yet.
2244 *
2245 * left_out = sacked_out + lost_out
2246 *
2247 * sacked_out: Packets, which arrived to receiver out of order
2248 * and hence not ACKed. With SACKs this number is simply
2249 * amount of SACKed data. Even without SACKs
2250 * it is easy to give pretty reliable estimate of this number,
2251 * counting duplicate ACKs.
2252 *
2253 * lost_out: Packets lost by network. TCP has no explicit
2254 * "loss notification" feedback from network (for now).
2255 * It means that this number can be only _guessed_.
2256 * Actually, it is the heuristics to predict lossage that
2257 * distinguishes different algorithms.
2258 *
2259 * F.e. after RTO, when all the queue is considered as lost,
2260 * lost_out = packets_out and in_flight = retrans_out.
2261 *
2262 * Essentially, we have now a few algorithms detecting
2263 * lost packets.
2264 *
2265 * If the receiver supports SACK:
2266 *
2267 * RFC6675/3517: It is the conventional algorithm. A packet is
2268 * considered lost if the number of higher sequence packets
2269 * SACKed is greater than or equal the DUPACK thoreshold
2270 * (reordering). This is implemented in tcp_mark_head_lost and
2271 * tcp_update_scoreboard.
2272 *
2273 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2274 * (2017-) that checks timing instead of counting DUPACKs.
2275 * Essentially a packet is considered lost if it's not S/ACKed
2276 * after RTT + reordering_window, where both metrics are
2277 * dynamically measured and adjusted. This is implemented in
2278 * tcp_rack_mark_lost.
2279 *
2280 * If the receiver does not support SACK:
2281 *
2282 * NewReno (RFC6582): in Recovery we assume that one segment
2283 * is lost (classic Reno). While we are in Recovery and
2284 * a partial ACK arrives, we assume that one more packet
2285 * is lost (NewReno). This heuristics are the same in NewReno
2286 * and SACK.
2287 *
2288 * Really tricky (and requiring careful tuning) part of algorithm
2289 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2290 * The first determines the moment _when_ we should reduce CWND and,
2291 * hence, slow down forward transmission. In fact, it determines the moment
2292 * when we decide that hole is caused by loss, rather than by a reorder.
2293 *
2294 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2295 * holes, caused by lost packets.
2296 *
2297 * And the most logically complicated part of algorithm is undo
2298 * heuristics. We detect false retransmits due to both too early
2299 * fast retransmit (reordering) and underestimated RTO, analyzing
2300 * timestamps and D-SACKs. When we detect that some segments were
2301 * retransmitted by mistake and CWND reduction was wrong, we undo
2302 * window reduction and abort recovery phase. This logic is hidden
2303 * inside several functions named tcp_try_undo_<something>.
2304 */
2305
2306 /* This function decides, when we should leave Disordered state
2307 * and enter Recovery phase, reducing congestion window.
2308 *
2309 * Main question: may we further continue forward transmission
2310 * with the same cwnd?
2311 */
2312 static bool tcp_time_to_recover(struct sock *sk, int flag)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315
2316 /* Trick#1: The loss is proven. */
2317 if (tp->lost_out)
2318 return true;
2319
2320 /* Not-A-Trick#2 : Classic rule... */
2321 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2322 return true;
2323
2324 return false;
2325 }
2326
2327 /* Detect loss in event "A" above by marking head of queue up as lost.
2328 * For RFC3517 SACK, a segment is considered lost if it
2329 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2330 * the maximum SACKed segments to pass before reaching this limit.
2331 */
2332 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2333 {
2334 struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2336 int cnt;
2337 /* Use SACK to deduce losses of new sequences sent during recovery */
2338 const u32 loss_high = tp->snd_nxt;
2339
2340 WARN_ON(packets > tp->packets_out);
2341 skb = tp->lost_skb_hint;
2342 if (skb) {
2343 /* Head already handled? */
2344 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2345 return;
2346 cnt = tp->lost_cnt_hint;
2347 } else {
2348 skb = tcp_rtx_queue_head(sk);
2349 cnt = 0;
2350 }
2351
2352 skb_rbtree_walk_from(skb) {
2353 /* TODO: do this better */
2354 /* this is not the most efficient way to do this... */
2355 tp->lost_skb_hint = skb;
2356 tp->lost_cnt_hint = cnt;
2357
2358 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2359 break;
2360
2361 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2362 cnt += tcp_skb_pcount(skb);
2363
2364 if (cnt > packets)
2365 break;
2366
2367 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2368 tcp_mark_skb_lost(sk, skb);
2369
2370 if (mark_head)
2371 break;
2372 }
2373 tcp_verify_left_out(tp);
2374 }
2375
2376 /* Account newly detected lost packet(s) */
2377
2378 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (tcp_is_sack(tp)) {
2383 int sacked_upto = tp->sacked_out - tp->reordering;
2384 if (sacked_upto >= 0)
2385 tcp_mark_head_lost(sk, sacked_upto, 0);
2386 else if (fast_rexmit)
2387 tcp_mark_head_lost(sk, 1, 1);
2388 }
2389 }
2390
2391 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2392 {
2393 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2394 before(tp->rx_opt.rcv_tsecr, when);
2395 }
2396
2397 /* skb is spurious retransmitted if the returned timestamp echo
2398 * reply is prior to the skb transmission time
2399 */
2400 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2401 const struct sk_buff *skb)
2402 {
2403 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2404 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2405 }
2406
2407 /* Nothing was retransmitted or returned timestamp is less
2408 * than timestamp of the first retransmission.
2409 */
2410 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2411 {
2412 return tp->retrans_stamp &&
2413 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2414 }
2415
2416 /* Undo procedures. */
2417
2418 /* We can clear retrans_stamp when there are no retransmissions in the
2419 * window. It would seem that it is trivially available for us in
2420 * tp->retrans_out, however, that kind of assumptions doesn't consider
2421 * what will happen if errors occur when sending retransmission for the
2422 * second time. ...It could the that such segment has only
2423 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2424 * the head skb is enough except for some reneging corner cases that
2425 * are not worth the effort.
2426 *
2427 * Main reason for all this complexity is the fact that connection dying
2428 * time now depends on the validity of the retrans_stamp, in particular,
2429 * that successive retransmissions of a segment must not advance
2430 * retrans_stamp under any conditions.
2431 */
2432 static bool tcp_any_retrans_done(const struct sock *sk)
2433 {
2434 const struct tcp_sock *tp = tcp_sk(sk);
2435 struct sk_buff *skb;
2436
2437 if (tp->retrans_out)
2438 return true;
2439
2440 skb = tcp_rtx_queue_head(sk);
2441 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2442 return true;
2443
2444 return false;
2445 }
2446
2447 static void DBGUNDO(struct sock *sk, const char *msg)
2448 {
2449 #if FASTRETRANS_DEBUG > 1
2450 struct tcp_sock *tp = tcp_sk(sk);
2451 struct inet_sock *inet = inet_sk(sk);
2452
2453 if (sk->sk_family == AF_INET) {
2454 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2455 msg,
2456 &inet->inet_daddr, ntohs(inet->inet_dport),
2457 tcp_snd_cwnd(tp), tcp_left_out(tp),
2458 tp->snd_ssthresh, tp->prior_ssthresh,
2459 tp->packets_out);
2460 }
2461 #if IS_ENABLED(CONFIG_IPV6)
2462 else if (sk->sk_family == AF_INET6) {
2463 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2464 msg,
2465 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2466 tcp_snd_cwnd(tp), tcp_left_out(tp),
2467 tp->snd_ssthresh, tp->prior_ssthresh,
2468 tp->packets_out);
2469 }
2470 #endif
2471 #endif
2472 }
2473
2474 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2475 {
2476 struct tcp_sock *tp = tcp_sk(sk);
2477
2478 if (unmark_loss) {
2479 struct sk_buff *skb;
2480
2481 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2482 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2483 }
2484 tp->lost_out = 0;
2485 tcp_clear_all_retrans_hints(tp);
2486 }
2487
2488 if (tp->prior_ssthresh) {
2489 const struct inet_connection_sock *icsk = inet_csk(sk);
2490
2491 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2492
2493 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2494 tp->snd_ssthresh = tp->prior_ssthresh;
2495 tcp_ecn_withdraw_cwr(tp);
2496 }
2497 }
2498 tp->snd_cwnd_stamp = tcp_jiffies32;
2499 tp->undo_marker = 0;
2500 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2501 }
2502
2503 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2504 {
2505 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2506 }
2507
2508 /* People celebrate: "We love our President!" */
2509 static bool tcp_try_undo_recovery(struct sock *sk)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512
2513 if (tcp_may_undo(tp)) {
2514 int mib_idx;
2515
2516 /* Happy end! We did not retransmit anything
2517 * or our original transmission succeeded.
2518 */
2519 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2520 tcp_undo_cwnd_reduction(sk, false);
2521 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2522 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2523 else
2524 mib_idx = LINUX_MIB_TCPFULLUNDO;
2525
2526 NET_INC_STATS(sock_net(sk), mib_idx);
2527 } else if (tp->rack.reo_wnd_persist) {
2528 tp->rack.reo_wnd_persist--;
2529 }
2530 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2531 /* Hold old state until something *above* high_seq
2532 * is ACKed. For Reno it is MUST to prevent false
2533 * fast retransmits (RFC2582). SACK TCP is safe. */
2534 if (!tcp_any_retrans_done(sk))
2535 tp->retrans_stamp = 0;
2536 return true;
2537 }
2538 tcp_set_ca_state(sk, TCP_CA_Open);
2539 tp->is_sack_reneg = 0;
2540 return false;
2541 }
2542
2543 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2544 static bool tcp_try_undo_dsack(struct sock *sk)
2545 {
2546 struct tcp_sock *tp = tcp_sk(sk);
2547
2548 if (tp->undo_marker && !tp->undo_retrans) {
2549 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2550 tp->rack.reo_wnd_persist + 1);
2551 DBGUNDO(sk, "D-SACK");
2552 tcp_undo_cwnd_reduction(sk, false);
2553 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2554 return true;
2555 }
2556 return false;
2557 }
2558
2559 /* Undo during loss recovery after partial ACK or using F-RTO. */
2560 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2561 {
2562 struct tcp_sock *tp = tcp_sk(sk);
2563
2564 if (frto_undo || tcp_may_undo(tp)) {
2565 tcp_undo_cwnd_reduction(sk, true);
2566
2567 DBGUNDO(sk, "partial loss");
2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2569 if (frto_undo)
2570 NET_INC_STATS(sock_net(sk),
2571 LINUX_MIB_TCPSPURIOUSRTOS);
2572 inet_csk(sk)->icsk_retransmits = 0;
2573 if (frto_undo || tcp_is_sack(tp)) {
2574 tcp_set_ca_state(sk, TCP_CA_Open);
2575 tp->is_sack_reneg = 0;
2576 }
2577 return true;
2578 }
2579 return false;
2580 }
2581
2582 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2583 * It computes the number of packets to send (sndcnt) based on packets newly
2584 * delivered:
2585 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2586 * cwnd reductions across a full RTT.
2587 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2588 * But when SND_UNA is acked without further losses,
2589 * slow starts cwnd up to ssthresh to speed up the recovery.
2590 */
2591 static void tcp_init_cwnd_reduction(struct sock *sk)
2592 {
2593 struct tcp_sock *tp = tcp_sk(sk);
2594
2595 tp->high_seq = tp->snd_nxt;
2596 tp->tlp_high_seq = 0;
2597 tp->snd_cwnd_cnt = 0;
2598 tp->prior_cwnd = tcp_snd_cwnd(tp);
2599 tp->prr_delivered = 0;
2600 tp->prr_out = 0;
2601 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2602 tcp_ecn_queue_cwr(tp);
2603 }
2604
2605 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2606 {
2607 struct tcp_sock *tp = tcp_sk(sk);
2608 int sndcnt = 0;
2609 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2610
2611 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2612 return;
2613
2614 tp->prr_delivered += newly_acked_sacked;
2615 if (delta < 0) {
2616 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2617 tp->prior_cwnd - 1;
2618 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2619 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2620 sndcnt = min_t(int, delta,
2621 max_t(int, tp->prr_delivered - tp->prr_out,
2622 newly_acked_sacked) + 1);
2623 } else {
2624 sndcnt = min(delta, newly_acked_sacked);
2625 }
2626 /* Force a fast retransmit upon entering fast recovery */
2627 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2628 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2629 }
2630
2631 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2632 {
2633 struct tcp_sock *tp = tcp_sk(sk);
2634
2635 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2636 return;
2637
2638 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2639 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2640 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2641 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2642 tp->snd_cwnd_stamp = tcp_jiffies32;
2643 }
2644 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2645 }
2646
2647 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2648 void tcp_enter_cwr(struct sock *sk)
2649 {
2650 struct tcp_sock *tp = tcp_sk(sk);
2651
2652 tp->prior_ssthresh = 0;
2653 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2654 tp->undo_marker = 0;
2655 tcp_init_cwnd_reduction(sk);
2656 tcp_set_ca_state(sk, TCP_CA_CWR);
2657 }
2658 }
2659 EXPORT_SYMBOL(tcp_enter_cwr);
2660
2661 static void tcp_try_keep_open(struct sock *sk)
2662 {
2663 struct tcp_sock *tp = tcp_sk(sk);
2664 int state = TCP_CA_Open;
2665
2666 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2667 state = TCP_CA_Disorder;
2668
2669 if (inet_csk(sk)->icsk_ca_state != state) {
2670 tcp_set_ca_state(sk, state);
2671 tp->high_seq = tp->snd_nxt;
2672 }
2673 }
2674
2675 static void tcp_try_to_open(struct sock *sk, int flag)
2676 {
2677 struct tcp_sock *tp = tcp_sk(sk);
2678
2679 tcp_verify_left_out(tp);
2680
2681 if (!tcp_any_retrans_done(sk))
2682 tp->retrans_stamp = 0;
2683
2684 if (flag & FLAG_ECE)
2685 tcp_enter_cwr(sk);
2686
2687 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2688 tcp_try_keep_open(sk);
2689 }
2690 }
2691
2692 static void tcp_mtup_probe_failed(struct sock *sk)
2693 {
2694 struct inet_connection_sock *icsk = inet_csk(sk);
2695
2696 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2697 icsk->icsk_mtup.probe_size = 0;
2698 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2699 }
2700
2701 static void tcp_mtup_probe_success(struct sock *sk)
2702 {
2703 struct tcp_sock *tp = tcp_sk(sk);
2704 struct inet_connection_sock *icsk = inet_csk(sk);
2705 u64 val;
2706
2707 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2708
2709 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2710 do_div(val, icsk->icsk_mtup.probe_size);
2711 WARN_ON_ONCE((u32)val != val);
2712 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2713
2714 tp->snd_cwnd_cnt = 0;
2715 tp->snd_cwnd_stamp = tcp_jiffies32;
2716 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2717
2718 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2719 icsk->icsk_mtup.probe_size = 0;
2720 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2722 }
2723
2724 /* Do a simple retransmit without using the backoff mechanisms in
2725 * tcp_timer. This is used for path mtu discovery.
2726 * The socket is already locked here.
2727 */
2728 void tcp_simple_retransmit(struct sock *sk)
2729 {
2730 const struct inet_connection_sock *icsk = inet_csk(sk);
2731 struct tcp_sock *tp = tcp_sk(sk);
2732 struct sk_buff *skb;
2733 int mss;
2734
2735 /* A fastopen SYN request is stored as two separate packets within
2736 * the retransmit queue, this is done by tcp_send_syn_data().
2737 * As a result simply checking the MSS of the frames in the queue
2738 * will not work for the SYN packet.
2739 *
2740 * Us being here is an indication of a path MTU issue so we can
2741 * assume that the fastopen SYN was lost and just mark all the
2742 * frames in the retransmit queue as lost. We will use an MSS of
2743 * -1 to mark all frames as lost, otherwise compute the current MSS.
2744 */
2745 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2746 mss = -1;
2747 else
2748 mss = tcp_current_mss(sk);
2749
2750 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2751 if (tcp_skb_seglen(skb) > mss)
2752 tcp_mark_skb_lost(sk, skb);
2753 }
2754
2755 tcp_clear_retrans_hints_partial(tp);
2756
2757 if (!tp->lost_out)
2758 return;
2759
2760 if (tcp_is_reno(tp))
2761 tcp_limit_reno_sacked(tp);
2762
2763 tcp_verify_left_out(tp);
2764
2765 /* Don't muck with the congestion window here.
2766 * Reason is that we do not increase amount of _data_
2767 * in network, but units changed and effective
2768 * cwnd/ssthresh really reduced now.
2769 */
2770 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2771 tp->high_seq = tp->snd_nxt;
2772 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2773 tp->prior_ssthresh = 0;
2774 tp->undo_marker = 0;
2775 tcp_set_ca_state(sk, TCP_CA_Loss);
2776 }
2777 tcp_xmit_retransmit_queue(sk);
2778 }
2779 EXPORT_SYMBOL(tcp_simple_retransmit);
2780
2781 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2782 {
2783 struct tcp_sock *tp = tcp_sk(sk);
2784 int mib_idx;
2785
2786 if (tcp_is_reno(tp))
2787 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2788 else
2789 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2790
2791 NET_INC_STATS(sock_net(sk), mib_idx);
2792
2793 tp->prior_ssthresh = 0;
2794 tcp_init_undo(tp);
2795
2796 if (!tcp_in_cwnd_reduction(sk)) {
2797 if (!ece_ack)
2798 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2799 tcp_init_cwnd_reduction(sk);
2800 }
2801 tcp_set_ca_state(sk, TCP_CA_Recovery);
2802 }
2803
2804 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2805 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2806 */
2807 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2808 int *rexmit)
2809 {
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 bool recovered = !before(tp->snd_una, tp->high_seq);
2812
2813 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2814 tcp_try_undo_loss(sk, false))
2815 return;
2816
2817 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2818 /* Step 3.b. A timeout is spurious if not all data are
2819 * lost, i.e., never-retransmitted data are (s)acked.
2820 */
2821 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2822 tcp_try_undo_loss(sk, true))
2823 return;
2824
2825 if (after(tp->snd_nxt, tp->high_seq)) {
2826 if (flag & FLAG_DATA_SACKED || num_dupack)
2827 tp->frto = 0; /* Step 3.a. loss was real */
2828 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2829 tp->high_seq = tp->snd_nxt;
2830 /* Step 2.b. Try send new data (but deferred until cwnd
2831 * is updated in tcp_ack()). Otherwise fall back to
2832 * the conventional recovery.
2833 */
2834 if (!tcp_write_queue_empty(sk) &&
2835 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2836 *rexmit = REXMIT_NEW;
2837 return;
2838 }
2839 tp->frto = 0;
2840 }
2841 }
2842
2843 if (recovered) {
2844 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2845 tcp_try_undo_recovery(sk);
2846 return;
2847 }
2848 if (tcp_is_reno(tp)) {
2849 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2850 * delivered. Lower inflight to clock out (re)tranmissions.
2851 */
2852 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2853 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2854 else if (flag & FLAG_SND_UNA_ADVANCED)
2855 tcp_reset_reno_sack(tp);
2856 }
2857 *rexmit = REXMIT_LOST;
2858 }
2859
2860 static bool tcp_force_fast_retransmit(struct sock *sk)
2861 {
2862 struct tcp_sock *tp = tcp_sk(sk);
2863
2864 return after(tcp_highest_sack_seq(tp),
2865 tp->snd_una + tp->reordering * tp->mss_cache);
2866 }
2867
2868 /* Undo during fast recovery after partial ACK. */
2869 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2870 bool *do_lost)
2871 {
2872 struct tcp_sock *tp = tcp_sk(sk);
2873
2874 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2875 /* Plain luck! Hole if filled with delayed
2876 * packet, rather than with a retransmit. Check reordering.
2877 */
2878 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2879
2880 /* We are getting evidence that the reordering degree is higher
2881 * than we realized. If there are no retransmits out then we
2882 * can undo. Otherwise we clock out new packets but do not
2883 * mark more packets lost or retransmit more.
2884 */
2885 if (tp->retrans_out)
2886 return true;
2887
2888 if (!tcp_any_retrans_done(sk))
2889 tp->retrans_stamp = 0;
2890
2891 DBGUNDO(sk, "partial recovery");
2892 tcp_undo_cwnd_reduction(sk, true);
2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2894 tcp_try_keep_open(sk);
2895 } else {
2896 /* Partial ACK arrived. Force fast retransmit. */
2897 *do_lost = tcp_force_fast_retransmit(sk);
2898 }
2899 return false;
2900 }
2901
2902 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2903 {
2904 struct tcp_sock *tp = tcp_sk(sk);
2905
2906 if (tcp_rtx_queue_empty(sk))
2907 return;
2908
2909 if (unlikely(tcp_is_reno(tp))) {
2910 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2911 } else if (tcp_is_rack(sk)) {
2912 u32 prior_retrans = tp->retrans_out;
2913
2914 if (tcp_rack_mark_lost(sk))
2915 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2916 if (prior_retrans > tp->retrans_out)
2917 *ack_flag |= FLAG_LOST_RETRANS;
2918 }
2919 }
2920
2921 /* Process an event, which can update packets-in-flight not trivially.
2922 * Main goal of this function is to calculate new estimate for left_out,
2923 * taking into account both packets sitting in receiver's buffer and
2924 * packets lost by network.
2925 *
2926 * Besides that it updates the congestion state when packet loss or ECN
2927 * is detected. But it does not reduce the cwnd, it is done by the
2928 * congestion control later.
2929 *
2930 * It does _not_ decide what to send, it is made in function
2931 * tcp_xmit_retransmit_queue().
2932 */
2933 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2934 int num_dupack, int *ack_flag, int *rexmit)
2935 {
2936 struct inet_connection_sock *icsk = inet_csk(sk);
2937 struct tcp_sock *tp = tcp_sk(sk);
2938 int fast_rexmit = 0, flag = *ack_flag;
2939 bool ece_ack = flag & FLAG_ECE;
2940 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2941 tcp_force_fast_retransmit(sk));
2942
2943 if (!tp->packets_out && tp->sacked_out)
2944 tp->sacked_out = 0;
2945
2946 /* Now state machine starts.
2947 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2948 if (ece_ack)
2949 tp->prior_ssthresh = 0;
2950
2951 /* B. In all the states check for reneging SACKs. */
2952 if (tcp_check_sack_reneging(sk, flag))
2953 return;
2954
2955 /* C. Check consistency of the current state. */
2956 tcp_verify_left_out(tp);
2957
2958 /* D. Check state exit conditions. State can be terminated
2959 * when high_seq is ACKed. */
2960 if (icsk->icsk_ca_state == TCP_CA_Open) {
2961 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2962 tp->retrans_stamp = 0;
2963 } else if (!before(tp->snd_una, tp->high_seq)) {
2964 switch (icsk->icsk_ca_state) {
2965 case TCP_CA_CWR:
2966 /* CWR is to be held something *above* high_seq
2967 * is ACKed for CWR bit to reach receiver. */
2968 if (tp->snd_una != tp->high_seq) {
2969 tcp_end_cwnd_reduction(sk);
2970 tcp_set_ca_state(sk, TCP_CA_Open);
2971 }
2972 break;
2973
2974 case TCP_CA_Recovery:
2975 if (tcp_is_reno(tp))
2976 tcp_reset_reno_sack(tp);
2977 if (tcp_try_undo_recovery(sk))
2978 return;
2979 tcp_end_cwnd_reduction(sk);
2980 break;
2981 }
2982 }
2983
2984 /* E. Process state. */
2985 switch (icsk->icsk_ca_state) {
2986 case TCP_CA_Recovery:
2987 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2988 if (tcp_is_reno(tp))
2989 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2990 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2991 return;
2992
2993 if (tcp_try_undo_dsack(sk))
2994 tcp_try_keep_open(sk);
2995
2996 tcp_identify_packet_loss(sk, ack_flag);
2997 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2998 if (!tcp_time_to_recover(sk, flag))
2999 return;
3000 /* Undo reverts the recovery state. If loss is evident,
3001 * starts a new recovery (e.g. reordering then loss);
3002 */
3003 tcp_enter_recovery(sk, ece_ack);
3004 }
3005 break;
3006 case TCP_CA_Loss:
3007 tcp_process_loss(sk, flag, num_dupack, rexmit);
3008 tcp_identify_packet_loss(sk, ack_flag);
3009 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3010 (*ack_flag & FLAG_LOST_RETRANS)))
3011 return;
3012 /* Change state if cwnd is undone or retransmits are lost */
3013 fallthrough;
3014 default:
3015 if (tcp_is_reno(tp)) {
3016 if (flag & FLAG_SND_UNA_ADVANCED)
3017 tcp_reset_reno_sack(tp);
3018 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3019 }
3020
3021 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3022 tcp_try_undo_dsack(sk);
3023
3024 tcp_identify_packet_loss(sk, ack_flag);
3025 if (!tcp_time_to_recover(sk, flag)) {
3026 tcp_try_to_open(sk, flag);
3027 return;
3028 }
3029
3030 /* MTU probe failure: don't reduce cwnd */
3031 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3032 icsk->icsk_mtup.probe_size &&
3033 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3034 tcp_mtup_probe_failed(sk);
3035 /* Restores the reduction we did in tcp_mtup_probe() */
3036 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3037 tcp_simple_retransmit(sk);
3038 return;
3039 }
3040
3041 /* Otherwise enter Recovery state */
3042 tcp_enter_recovery(sk, ece_ack);
3043 fast_rexmit = 1;
3044 }
3045
3046 if (!tcp_is_rack(sk) && do_lost)
3047 tcp_update_scoreboard(sk, fast_rexmit);
3048 *rexmit = REXMIT_LOST;
3049 }
3050
3051 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3052 {
3053 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3054 struct tcp_sock *tp = tcp_sk(sk);
3055
3056 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3057 /* If the remote keeps returning delayed ACKs, eventually
3058 * the min filter would pick it up and overestimate the
3059 * prop. delay when it expires. Skip suspected delayed ACKs.
3060 */
3061 return;
3062 }
3063 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3064 rtt_us ? : jiffies_to_usecs(1));
3065 }
3066
3067 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3068 long seq_rtt_us, long sack_rtt_us,
3069 long ca_rtt_us, struct rate_sample *rs)
3070 {
3071 const struct tcp_sock *tp = tcp_sk(sk);
3072
3073 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3074 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3075 * Karn's algorithm forbids taking RTT if some retransmitted data
3076 * is acked (RFC6298).
3077 */
3078 if (seq_rtt_us < 0)
3079 seq_rtt_us = sack_rtt_us;
3080
3081 /* RTTM Rule: A TSecr value received in a segment is used to
3082 * update the averaged RTT measurement only if the segment
3083 * acknowledges some new data, i.e., only if it advances the
3084 * left edge of the send window.
3085 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3086 */
3087 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3088 flag & FLAG_ACKED) {
3089 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3090
3091 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3092 if (!delta)
3093 delta = 1;
3094 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3095 ca_rtt_us = seq_rtt_us;
3096 }
3097 }
3098 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3099 if (seq_rtt_us < 0)
3100 return false;
3101
3102 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3103 * always taken together with ACK, SACK, or TS-opts. Any negative
3104 * values will be skipped with the seq_rtt_us < 0 check above.
3105 */
3106 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3107 tcp_rtt_estimator(sk, seq_rtt_us);
3108 tcp_set_rto(sk);
3109
3110 /* RFC6298: only reset backoff on valid RTT measurement. */
3111 inet_csk(sk)->icsk_backoff = 0;
3112 return true;
3113 }
3114
3115 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3116 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3117 {
3118 struct rate_sample rs;
3119 long rtt_us = -1L;
3120
3121 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3122 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3123
3124 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3125 }
3126
3127
3128 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3129 {
3130 const struct inet_connection_sock *icsk = inet_csk(sk);
3131
3132 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3133 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3134 }
3135
3136 /* Restart timer after forward progress on connection.
3137 * RFC2988 recommends to restart timer to now+rto.
3138 */
3139 void tcp_rearm_rto(struct sock *sk)
3140 {
3141 const struct inet_connection_sock *icsk = inet_csk(sk);
3142 struct tcp_sock *tp = tcp_sk(sk);
3143
3144 /* If the retrans timer is currently being used by Fast Open
3145 * for SYN-ACK retrans purpose, stay put.
3146 */
3147 if (rcu_access_pointer(tp->fastopen_rsk))
3148 return;
3149
3150 if (!tp->packets_out) {
3151 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3152 } else {
3153 u32 rto = inet_csk(sk)->icsk_rto;
3154 /* Offset the time elapsed after installing regular RTO */
3155 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3156 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3157 s64 delta_us = tcp_rto_delta_us(sk);
3158 /* delta_us may not be positive if the socket is locked
3159 * when the retrans timer fires and is rescheduled.
3160 */
3161 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3162 }
3163 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3164 TCP_RTO_MAX);
3165 }
3166 }
3167
3168 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3169 static void tcp_set_xmit_timer(struct sock *sk)
3170 {
3171 if (!tcp_schedule_loss_probe(sk, true))
3172 tcp_rearm_rto(sk);
3173 }
3174
3175 /* If we get here, the whole TSO packet has not been acked. */
3176 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3177 {
3178 struct tcp_sock *tp = tcp_sk(sk);
3179 u32 packets_acked;
3180
3181 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3182
3183 packets_acked = tcp_skb_pcount(skb);
3184 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3185 return 0;
3186 packets_acked -= tcp_skb_pcount(skb);
3187
3188 if (packets_acked) {
3189 BUG_ON(tcp_skb_pcount(skb) == 0);
3190 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3191 }
3192
3193 return packets_acked;
3194 }
3195
3196 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3197 const struct sk_buff *ack_skb, u32 prior_snd_una)
3198 {
3199 const struct skb_shared_info *shinfo;
3200
3201 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3202 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3203 return;
3204
3205 shinfo = skb_shinfo(skb);
3206 if (!before(shinfo->tskey, prior_snd_una) &&
3207 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3208 tcp_skb_tsorted_save(skb) {
3209 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3210 } tcp_skb_tsorted_restore(skb);
3211 }
3212 }
3213
3214 /* Remove acknowledged frames from the retransmission queue. If our packet
3215 * is before the ack sequence we can discard it as it's confirmed to have
3216 * arrived at the other end.
3217 */
3218 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3219 u32 prior_fack, u32 prior_snd_una,
3220 struct tcp_sacktag_state *sack, bool ece_ack)
3221 {
3222 const struct inet_connection_sock *icsk = inet_csk(sk);
3223 u64 first_ackt, last_ackt;
3224 struct tcp_sock *tp = tcp_sk(sk);
3225 u32 prior_sacked = tp->sacked_out;
3226 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3227 struct sk_buff *skb, *next;
3228 bool fully_acked = true;
3229 long sack_rtt_us = -1L;
3230 long seq_rtt_us = -1L;
3231 long ca_rtt_us = -1L;
3232 u32 pkts_acked = 0;
3233 u32 last_in_flight = 0;
3234 bool rtt_update;
3235 int flag = 0;
3236
3237 first_ackt = 0;
3238
3239 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3240 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3241 const u32 start_seq = scb->seq;
3242 u8 sacked = scb->sacked;
3243 u32 acked_pcount;
3244
3245 /* Determine how many packets and what bytes were acked, tso and else */
3246 if (after(scb->end_seq, tp->snd_una)) {
3247 if (tcp_skb_pcount(skb) == 1 ||
3248 !after(tp->snd_una, scb->seq))
3249 break;
3250
3251 acked_pcount = tcp_tso_acked(sk, skb);
3252 if (!acked_pcount)
3253 break;
3254 fully_acked = false;
3255 } else {
3256 acked_pcount = tcp_skb_pcount(skb);
3257 }
3258
3259 if (unlikely(sacked & TCPCB_RETRANS)) {
3260 if (sacked & TCPCB_SACKED_RETRANS)
3261 tp->retrans_out -= acked_pcount;
3262 flag |= FLAG_RETRANS_DATA_ACKED;
3263 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3264 last_ackt = tcp_skb_timestamp_us(skb);
3265 WARN_ON_ONCE(last_ackt == 0);
3266 if (!first_ackt)
3267 first_ackt = last_ackt;
3268
3269 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3270 if (before(start_seq, reord))
3271 reord = start_seq;
3272 if (!after(scb->end_seq, tp->high_seq))
3273 flag |= FLAG_ORIG_SACK_ACKED;
3274 }
3275
3276 if (sacked & TCPCB_SACKED_ACKED) {
3277 tp->sacked_out -= acked_pcount;
3278 } else if (tcp_is_sack(tp)) {
3279 tcp_count_delivered(tp, acked_pcount, ece_ack);
3280 if (!tcp_skb_spurious_retrans(tp, skb))
3281 tcp_rack_advance(tp, sacked, scb->end_seq,
3282 tcp_skb_timestamp_us(skb));
3283 }
3284 if (sacked & TCPCB_LOST)
3285 tp->lost_out -= acked_pcount;
3286
3287 tp->packets_out -= acked_pcount;
3288 pkts_acked += acked_pcount;
3289 tcp_rate_skb_delivered(sk, skb, sack->rate);
3290
3291 /* Initial outgoing SYN's get put onto the write_queue
3292 * just like anything else we transmit. It is not
3293 * true data, and if we misinform our callers that
3294 * this ACK acks real data, we will erroneously exit
3295 * connection startup slow start one packet too
3296 * quickly. This is severely frowned upon behavior.
3297 */
3298 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3299 flag |= FLAG_DATA_ACKED;
3300 } else {
3301 flag |= FLAG_SYN_ACKED;
3302 tp->retrans_stamp = 0;
3303 }
3304
3305 if (!fully_acked)
3306 break;
3307
3308 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3309
3310 next = skb_rb_next(skb);
3311 if (unlikely(skb == tp->retransmit_skb_hint))
3312 tp->retransmit_skb_hint = NULL;
3313 if (unlikely(skb == tp->lost_skb_hint))
3314 tp->lost_skb_hint = NULL;
3315 tcp_highest_sack_replace(sk, skb, next);
3316 tcp_rtx_queue_unlink_and_free(skb, sk);
3317 }
3318
3319 if (!skb)
3320 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3321
3322 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3323 tp->snd_up = tp->snd_una;
3324
3325 if (skb) {
3326 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3327 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3328 flag |= FLAG_SACK_RENEGING;
3329 }
3330
3331 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3332 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3333 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3334
3335 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3336 last_in_flight && !prior_sacked && fully_acked &&
3337 sack->rate->prior_delivered + 1 == tp->delivered &&
3338 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3339 /* Conservatively mark a delayed ACK. It's typically
3340 * from a lone runt packet over the round trip to
3341 * a receiver w/o out-of-order or CE events.
3342 */
3343 flag |= FLAG_ACK_MAYBE_DELAYED;
3344 }
3345 }
3346 if (sack->first_sackt) {
3347 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3348 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3349 }
3350 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3351 ca_rtt_us, sack->rate);
3352
3353 if (flag & FLAG_ACKED) {
3354 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3355 if (unlikely(icsk->icsk_mtup.probe_size &&
3356 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3357 tcp_mtup_probe_success(sk);
3358 }
3359
3360 if (tcp_is_reno(tp)) {
3361 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3362
3363 /* If any of the cumulatively ACKed segments was
3364 * retransmitted, non-SACK case cannot confirm that
3365 * progress was due to original transmission due to
3366 * lack of TCPCB_SACKED_ACKED bits even if some of
3367 * the packets may have been never retransmitted.
3368 */
3369 if (flag & FLAG_RETRANS_DATA_ACKED)
3370 flag &= ~FLAG_ORIG_SACK_ACKED;
3371 } else {
3372 int delta;
3373
3374 /* Non-retransmitted hole got filled? That's reordering */
3375 if (before(reord, prior_fack))
3376 tcp_check_sack_reordering(sk, reord, 0);
3377
3378 delta = prior_sacked - tp->sacked_out;
3379 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3380 }
3381 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3382 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3383 tcp_skb_timestamp_us(skb))) {
3384 /* Do not re-arm RTO if the sack RTT is measured from data sent
3385 * after when the head was last (re)transmitted. Otherwise the
3386 * timeout may continue to extend in loss recovery.
3387 */
3388 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3389 }
3390
3391 if (icsk->icsk_ca_ops->pkts_acked) {
3392 struct ack_sample sample = { .pkts_acked = pkts_acked,
3393 .rtt_us = sack->rate->rtt_us,
3394 .in_flight = last_in_flight };
3395
3396 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3397 }
3398
3399 #if FASTRETRANS_DEBUG > 0
3400 WARN_ON((int)tp->sacked_out < 0);
3401 WARN_ON((int)tp->lost_out < 0);
3402 WARN_ON((int)tp->retrans_out < 0);
3403 if (!tp->packets_out && tcp_is_sack(tp)) {
3404 icsk = inet_csk(sk);
3405 if (tp->lost_out) {
3406 pr_debug("Leak l=%u %d\n",
3407 tp->lost_out, icsk->icsk_ca_state);
3408 tp->lost_out = 0;
3409 }
3410 if (tp->sacked_out) {
3411 pr_debug("Leak s=%u %d\n",
3412 tp->sacked_out, icsk->icsk_ca_state);
3413 tp->sacked_out = 0;
3414 }
3415 if (tp->retrans_out) {
3416 pr_debug("Leak r=%u %d\n",
3417 tp->retrans_out, icsk->icsk_ca_state);
3418 tp->retrans_out = 0;
3419 }
3420 }
3421 #endif
3422 return flag;
3423 }
3424
3425 static void tcp_ack_probe(struct sock *sk)
3426 {
3427 struct inet_connection_sock *icsk = inet_csk(sk);
3428 struct sk_buff *head = tcp_send_head(sk);
3429 const struct tcp_sock *tp = tcp_sk(sk);
3430
3431 /* Was it a usable window open? */
3432 if (!head)
3433 return;
3434 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3435 icsk->icsk_backoff = 0;
3436 icsk->icsk_probes_tstamp = 0;
3437 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3438 /* Socket must be waked up by subsequent tcp_data_snd_check().
3439 * This function is not for random using!
3440 */
3441 } else {
3442 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3443
3444 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3445 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3446 }
3447 }
3448
3449 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3450 {
3451 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3452 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3453 }
3454
3455 /* Decide wheather to run the increase function of congestion control. */
3456 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457 {
3458 /* If reordering is high then always grow cwnd whenever data is
3459 * delivered regardless of its ordering. Otherwise stay conservative
3460 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3461 * new SACK or ECE mark may first advance cwnd here and later reduce
3462 * cwnd in tcp_fastretrans_alert() based on more states.
3463 */
3464 if (tcp_sk(sk)->reordering >
3465 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3466 return flag & FLAG_FORWARD_PROGRESS;
3467
3468 return flag & FLAG_DATA_ACKED;
3469 }
3470
3471 /* The "ultimate" congestion control function that aims to replace the rigid
3472 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3473 * It's called toward the end of processing an ACK with precise rate
3474 * information. All transmission or retransmission are delayed afterwards.
3475 */
3476 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3477 int flag, const struct rate_sample *rs)
3478 {
3479 const struct inet_connection_sock *icsk = inet_csk(sk);
3480
3481 if (icsk->icsk_ca_ops->cong_control) {
3482 icsk->icsk_ca_ops->cong_control(sk, rs);
3483 return;
3484 }
3485
3486 if (tcp_in_cwnd_reduction(sk)) {
3487 /* Reduce cwnd if state mandates */
3488 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3489 } else if (tcp_may_raise_cwnd(sk, flag)) {
3490 /* Advance cwnd if state allows */
3491 tcp_cong_avoid(sk, ack, acked_sacked);
3492 }
3493 tcp_update_pacing_rate(sk);
3494 }
3495
3496 /* Check that window update is acceptable.
3497 * The function assumes that snd_una<=ack<=snd_next.
3498 */
3499 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3500 const u32 ack, const u32 ack_seq,
3501 const u32 nwin)
3502 {
3503 return after(ack, tp->snd_una) ||
3504 after(ack_seq, tp->snd_wl1) ||
3505 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3506 }
3507
3508 /* If we update tp->snd_una, also update tp->bytes_acked */
3509 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3510 {
3511 u32 delta = ack - tp->snd_una;
3512
3513 sock_owned_by_me((struct sock *)tp);
3514 tp->bytes_acked += delta;
3515 tp->snd_una = ack;
3516 }
3517
3518 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3519 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3520 {
3521 u32 delta = seq - tp->rcv_nxt;
3522
3523 sock_owned_by_me((struct sock *)tp);
3524 tp->bytes_received += delta;
3525 WRITE_ONCE(tp->rcv_nxt, seq);
3526 }
3527
3528 /* Update our send window.
3529 *
3530 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3531 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3532 */
3533 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3534 u32 ack_seq)
3535 {
3536 struct tcp_sock *tp = tcp_sk(sk);
3537 int flag = 0;
3538 u32 nwin = ntohs(tcp_hdr(skb)->window);
3539
3540 if (likely(!tcp_hdr(skb)->syn))
3541 nwin <<= tp->rx_opt.snd_wscale;
3542
3543 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3544 flag |= FLAG_WIN_UPDATE;
3545 tcp_update_wl(tp, ack_seq);
3546
3547 if (tp->snd_wnd != nwin) {
3548 tp->snd_wnd = nwin;
3549
3550 /* Note, it is the only place, where
3551 * fast path is recovered for sending TCP.
3552 */
3553 tp->pred_flags = 0;
3554 tcp_fast_path_check(sk);
3555
3556 if (!tcp_write_queue_empty(sk))
3557 tcp_slow_start_after_idle_check(sk);
3558
3559 if (nwin > tp->max_window) {
3560 tp->max_window = nwin;
3561 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3562 }
3563 }
3564 }
3565
3566 tcp_snd_una_update(tp, ack);
3567
3568 return flag;
3569 }
3570
3571 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3572 u32 *last_oow_ack_time)
3573 {
3574 if (*last_oow_ack_time) {
3575 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3576
3577 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3578 NET_INC_STATS(net, mib_idx);
3579 return true; /* rate-limited: don't send yet! */
3580 }
3581 }
3582
3583 *last_oow_ack_time = tcp_jiffies32;
3584
3585 return false; /* not rate-limited: go ahead, send dupack now! */
3586 }
3587
3588 /* Return true if we're currently rate-limiting out-of-window ACKs and
3589 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3590 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3591 * attacks that send repeated SYNs or ACKs for the same connection. To
3592 * do this, we do not send a duplicate SYNACK or ACK if the remote
3593 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3594 */
3595 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3596 int mib_idx, u32 *last_oow_ack_time)
3597 {
3598 /* Data packets without SYNs are not likely part of an ACK loop. */
3599 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3600 !tcp_hdr(skb)->syn)
3601 return false;
3602
3603 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3604 }
3605
3606 /* RFC 5961 7 [ACK Throttling] */
3607 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3608 {
3609 /* unprotected vars, we dont care of overwrites */
3610 static u32 challenge_timestamp;
3611 static unsigned int challenge_count;
3612 struct tcp_sock *tp = tcp_sk(sk);
3613 struct net *net = sock_net(sk);
3614 u32 count, now;
3615
3616 /* First check our per-socket dupack rate limit. */
3617 if (__tcp_oow_rate_limited(net,
3618 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3619 &tp->last_oow_ack_time))
3620 return;
3621
3622 /* Then check host-wide RFC 5961 rate limit. */
3623 now = jiffies / HZ;
3624 if (now != challenge_timestamp) {
3625 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3626 u32 half = (ack_limit + 1) >> 1;
3627
3628 challenge_timestamp = now;
3629 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3630 }
3631 count = READ_ONCE(challenge_count);
3632 if (count > 0) {
3633 WRITE_ONCE(challenge_count, count - 1);
3634 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3635 tcp_send_ack(sk);
3636 }
3637 }
3638
3639 static void tcp_store_ts_recent(struct tcp_sock *tp)
3640 {
3641 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3642 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3643 }
3644
3645 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3646 {
3647 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3648 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3649 * extra check below makes sure this can only happen
3650 * for pure ACK frames. -DaveM
3651 *
3652 * Not only, also it occurs for expired timestamps.
3653 */
3654
3655 if (tcp_paws_check(&tp->rx_opt, 0))
3656 tcp_store_ts_recent(tp);
3657 }
3658 }
3659
3660 /* This routine deals with acks during a TLP episode and ends an episode by
3661 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3662 */
3663 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3664 {
3665 struct tcp_sock *tp = tcp_sk(sk);
3666
3667 if (before(ack, tp->tlp_high_seq))
3668 return;
3669
3670 if (!tp->tlp_retrans) {
3671 /* TLP of new data has been acknowledged */
3672 tp->tlp_high_seq = 0;
3673 } else if (flag & FLAG_DSACK_TLP) {
3674 /* This DSACK means original and TLP probe arrived; no loss */
3675 tp->tlp_high_seq = 0;
3676 } else if (after(ack, tp->tlp_high_seq)) {
3677 /* ACK advances: there was a loss, so reduce cwnd. Reset
3678 * tlp_high_seq in tcp_init_cwnd_reduction()
3679 */
3680 tcp_init_cwnd_reduction(sk);
3681 tcp_set_ca_state(sk, TCP_CA_CWR);
3682 tcp_end_cwnd_reduction(sk);
3683 tcp_try_keep_open(sk);
3684 NET_INC_STATS(sock_net(sk),
3685 LINUX_MIB_TCPLOSSPROBERECOVERY);
3686 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3687 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3688 /* Pure dupack: original and TLP probe arrived; no loss */
3689 tp->tlp_high_seq = 0;
3690 }
3691 }
3692
3693 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3694 {
3695 const struct inet_connection_sock *icsk = inet_csk(sk);
3696
3697 if (icsk->icsk_ca_ops->in_ack_event)
3698 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3699 }
3700
3701 /* Congestion control has updated the cwnd already. So if we're in
3702 * loss recovery then now we do any new sends (for FRTO) or
3703 * retransmits (for CA_Loss or CA_recovery) that make sense.
3704 */
3705 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3706 {
3707 struct tcp_sock *tp = tcp_sk(sk);
3708
3709 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3710 return;
3711
3712 if (unlikely(rexmit == REXMIT_NEW)) {
3713 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3714 TCP_NAGLE_OFF);
3715 if (after(tp->snd_nxt, tp->high_seq))
3716 return;
3717 tp->frto = 0;
3718 }
3719 tcp_xmit_retransmit_queue(sk);
3720 }
3721
3722 /* Returns the number of packets newly acked or sacked by the current ACK */
3723 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3724 {
3725 const struct net *net = sock_net(sk);
3726 struct tcp_sock *tp = tcp_sk(sk);
3727 u32 delivered;
3728
3729 delivered = tp->delivered - prior_delivered;
3730 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3731 if (flag & FLAG_ECE)
3732 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3733
3734 return delivered;
3735 }
3736
3737 /* This routine deals with incoming acks, but not outgoing ones. */
3738 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3739 {
3740 struct inet_connection_sock *icsk = inet_csk(sk);
3741 struct tcp_sock *tp = tcp_sk(sk);
3742 struct tcp_sacktag_state sack_state;
3743 struct rate_sample rs = { .prior_delivered = 0 };
3744 u32 prior_snd_una = tp->snd_una;
3745 bool is_sack_reneg = tp->is_sack_reneg;
3746 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3747 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3748 int num_dupack = 0;
3749 int prior_packets = tp->packets_out;
3750 u32 delivered = tp->delivered;
3751 u32 lost = tp->lost;
3752 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3753 u32 prior_fack;
3754
3755 sack_state.first_sackt = 0;
3756 sack_state.rate = &rs;
3757 sack_state.sack_delivered = 0;
3758
3759 /* We very likely will need to access rtx queue. */
3760 prefetch(sk->tcp_rtx_queue.rb_node);
3761
3762 /* If the ack is older than previous acks
3763 * then we can probably ignore it.
3764 */
3765 if (before(ack, prior_snd_una)) {
3766 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3767 if (before(ack, prior_snd_una - tp->max_window)) {
3768 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3769 tcp_send_challenge_ack(sk, skb);
3770 return -1;
3771 }
3772 goto old_ack;
3773 }
3774
3775 /* If the ack includes data we haven't sent yet, discard
3776 * this segment (RFC793 Section 3.9).
3777 */
3778 if (after(ack, tp->snd_nxt))
3779 return -1;
3780
3781 if (after(ack, prior_snd_una)) {
3782 flag |= FLAG_SND_UNA_ADVANCED;
3783 icsk->icsk_retransmits = 0;
3784
3785 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3786 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3787 if (icsk->icsk_clean_acked)
3788 icsk->icsk_clean_acked(sk, ack);
3789 #endif
3790 }
3791
3792 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3793 rs.prior_in_flight = tcp_packets_in_flight(tp);
3794
3795 /* ts_recent update must be made after we are sure that the packet
3796 * is in window.
3797 */
3798 if (flag & FLAG_UPDATE_TS_RECENT)
3799 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3800
3801 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3802 FLAG_SND_UNA_ADVANCED) {
3803 /* Window is constant, pure forward advance.
3804 * No more checks are required.
3805 * Note, we use the fact that SND.UNA>=SND.WL2.
3806 */
3807 tcp_update_wl(tp, ack_seq);
3808 tcp_snd_una_update(tp, ack);
3809 flag |= FLAG_WIN_UPDATE;
3810
3811 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3812
3813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3814 } else {
3815 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3816
3817 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3818 flag |= FLAG_DATA;
3819 else
3820 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3821
3822 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3823
3824 if (TCP_SKB_CB(skb)->sacked)
3825 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3826 &sack_state);
3827
3828 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3829 flag |= FLAG_ECE;
3830 ack_ev_flags |= CA_ACK_ECE;
3831 }
3832
3833 if (sack_state.sack_delivered)
3834 tcp_count_delivered(tp, sack_state.sack_delivered,
3835 flag & FLAG_ECE);
3836
3837 if (flag & FLAG_WIN_UPDATE)
3838 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3839
3840 tcp_in_ack_event(sk, ack_ev_flags);
3841 }
3842
3843 /* This is a deviation from RFC3168 since it states that:
3844 * "When the TCP data sender is ready to set the CWR bit after reducing
3845 * the congestion window, it SHOULD set the CWR bit only on the first
3846 * new data packet that it transmits."
3847 * We accept CWR on pure ACKs to be more robust
3848 * with widely-deployed TCP implementations that do this.
3849 */
3850 tcp_ecn_accept_cwr(sk, skb);
3851
3852 /* We passed data and got it acked, remove any soft error
3853 * log. Something worked...
3854 */
3855 sk->sk_err_soft = 0;
3856 icsk->icsk_probes_out = 0;
3857 tp->rcv_tstamp = tcp_jiffies32;
3858 if (!prior_packets)
3859 goto no_queue;
3860
3861 /* See if we can take anything off of the retransmit queue. */
3862 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3863 &sack_state, flag & FLAG_ECE);
3864
3865 tcp_rack_update_reo_wnd(sk, &rs);
3866
3867 if (tp->tlp_high_seq)
3868 tcp_process_tlp_ack(sk, ack, flag);
3869
3870 if (tcp_ack_is_dubious(sk, flag)) {
3871 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3872 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3873 num_dupack = 1;
3874 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3875 if (!(flag & FLAG_DATA))
3876 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3877 }
3878 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3879 &rexmit);
3880 }
3881
3882 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3883 if (flag & FLAG_SET_XMIT_TIMER)
3884 tcp_set_xmit_timer(sk);
3885
3886 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3887 sk_dst_confirm(sk);
3888
3889 delivered = tcp_newly_delivered(sk, delivered, flag);
3890 lost = tp->lost - lost; /* freshly marked lost */
3891 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3892 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3893 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3894 tcp_xmit_recovery(sk, rexmit);
3895 return 1;
3896
3897 no_queue:
3898 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3899 if (flag & FLAG_DSACKING_ACK) {
3900 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3901 &rexmit);
3902 tcp_newly_delivered(sk, delivered, flag);
3903 }
3904 /* If this ack opens up a zero window, clear backoff. It was
3905 * being used to time the probes, and is probably far higher than
3906 * it needs to be for normal retransmission.
3907 */
3908 tcp_ack_probe(sk);
3909
3910 if (tp->tlp_high_seq)
3911 tcp_process_tlp_ack(sk, ack, flag);
3912 return 1;
3913
3914 old_ack:
3915 /* If data was SACKed, tag it and see if we should send more data.
3916 * If data was DSACKed, see if we can undo a cwnd reduction.
3917 */
3918 if (TCP_SKB_CB(skb)->sacked) {
3919 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3920 &sack_state);
3921 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3922 &rexmit);
3923 tcp_newly_delivered(sk, delivered, flag);
3924 tcp_xmit_recovery(sk, rexmit);
3925 }
3926
3927 return 0;
3928 }
3929
3930 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3931 bool syn, struct tcp_fastopen_cookie *foc,
3932 bool exp_opt)
3933 {
3934 /* Valid only in SYN or SYN-ACK with an even length. */
3935 if (!foc || !syn || len < 0 || (len & 1))
3936 return;
3937
3938 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3939 len <= TCP_FASTOPEN_COOKIE_MAX)
3940 memcpy(foc->val, cookie, len);
3941 else if (len != 0)
3942 len = -1;
3943 foc->len = len;
3944 foc->exp = exp_opt;
3945 }
3946
3947 static bool smc_parse_options(const struct tcphdr *th,
3948 struct tcp_options_received *opt_rx,
3949 const unsigned char *ptr,
3950 int opsize)
3951 {
3952 #if IS_ENABLED(CONFIG_SMC)
3953 if (static_branch_unlikely(&tcp_have_smc)) {
3954 if (th->syn && !(opsize & 1) &&
3955 opsize >= TCPOLEN_EXP_SMC_BASE &&
3956 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3957 opt_rx->smc_ok = 1;
3958 return true;
3959 }
3960 }
3961 #endif
3962 return false;
3963 }
3964
3965 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3966 * value on success.
3967 */
3968 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3969 {
3970 const unsigned char *ptr = (const unsigned char *)(th + 1);
3971 int length = (th->doff * 4) - sizeof(struct tcphdr);
3972 u16 mss = 0;
3973
3974 while (length > 0) {
3975 int opcode = *ptr++;
3976 int opsize;
3977
3978 switch (opcode) {
3979 case TCPOPT_EOL:
3980 return mss;
3981 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3982 length--;
3983 continue;
3984 default:
3985 if (length < 2)
3986 return mss;
3987 opsize = *ptr++;
3988 if (opsize < 2) /* "silly options" */
3989 return mss;
3990 if (opsize > length)
3991 return mss; /* fail on partial options */
3992 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3993 u16 in_mss = get_unaligned_be16(ptr);
3994
3995 if (in_mss) {
3996 if (user_mss && user_mss < in_mss)
3997 in_mss = user_mss;
3998 mss = in_mss;
3999 }
4000 }
4001 ptr += opsize - 2;
4002 length -= opsize;
4003 }
4004 }
4005 return mss;
4006 }
4007
4008 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4009 * But, this can also be called on packets in the established flow when
4010 * the fast version below fails.
4011 */
4012 void tcp_parse_options(const struct net *net,
4013 const struct sk_buff *skb,
4014 struct tcp_options_received *opt_rx, int estab,
4015 struct tcp_fastopen_cookie *foc)
4016 {
4017 const unsigned char *ptr;
4018 const struct tcphdr *th = tcp_hdr(skb);
4019 int length = (th->doff * 4) - sizeof(struct tcphdr);
4020
4021 ptr = (const unsigned char *)(th + 1);
4022 opt_rx->saw_tstamp = 0;
4023 opt_rx->saw_unknown = 0;
4024
4025 while (length > 0) {
4026 int opcode = *ptr++;
4027 int opsize;
4028
4029 switch (opcode) {
4030 case TCPOPT_EOL:
4031 return;
4032 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4033 length--;
4034 continue;
4035 default:
4036 if (length < 2)
4037 return;
4038 opsize = *ptr++;
4039 if (opsize < 2) /* "silly options" */
4040 return;
4041 if (opsize > length)
4042 return; /* don't parse partial options */
4043 switch (opcode) {
4044 case TCPOPT_MSS:
4045 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4046 u16 in_mss = get_unaligned_be16(ptr);
4047 if (in_mss) {
4048 if (opt_rx->user_mss &&
4049 opt_rx->user_mss < in_mss)
4050 in_mss = opt_rx->user_mss;
4051 opt_rx->mss_clamp = in_mss;
4052 }
4053 }
4054 break;
4055 case TCPOPT_WINDOW:
4056 if (opsize == TCPOLEN_WINDOW && th->syn &&
4057 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4058 __u8 snd_wscale = *(__u8 *)ptr;
4059 opt_rx->wscale_ok = 1;
4060 if (snd_wscale > TCP_MAX_WSCALE) {
4061 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4062 __func__,
4063 snd_wscale,
4064 TCP_MAX_WSCALE);
4065 snd_wscale = TCP_MAX_WSCALE;
4066 }
4067 opt_rx->snd_wscale = snd_wscale;
4068 }
4069 break;
4070 case TCPOPT_TIMESTAMP:
4071 if ((opsize == TCPOLEN_TIMESTAMP) &&
4072 ((estab && opt_rx->tstamp_ok) ||
4073 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4074 opt_rx->saw_tstamp = 1;
4075 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4076 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4077 }
4078 break;
4079 case TCPOPT_SACK_PERM:
4080 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4081 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4082 opt_rx->sack_ok = TCP_SACK_SEEN;
4083 tcp_sack_reset(opt_rx);
4084 }
4085 break;
4086
4087 case TCPOPT_SACK:
4088 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4089 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4090 opt_rx->sack_ok) {
4091 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4092 }
4093 break;
4094 #ifdef CONFIG_TCP_MD5SIG
4095 case TCPOPT_MD5SIG:
4096 /*
4097 * The MD5 Hash has already been
4098 * checked (see tcp_v{4,6}_do_rcv()).
4099 */
4100 break;
4101 #endif
4102 case TCPOPT_FASTOPEN:
4103 tcp_parse_fastopen_option(
4104 opsize - TCPOLEN_FASTOPEN_BASE,
4105 ptr, th->syn, foc, false);
4106 break;
4107
4108 case TCPOPT_EXP:
4109 /* Fast Open option shares code 254 using a
4110 * 16 bits magic number.
4111 */
4112 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4113 get_unaligned_be16(ptr) ==
4114 TCPOPT_FASTOPEN_MAGIC) {
4115 tcp_parse_fastopen_option(opsize -
4116 TCPOLEN_EXP_FASTOPEN_BASE,
4117 ptr + 2, th->syn, foc, true);
4118 break;
4119 }
4120
4121 if (smc_parse_options(th, opt_rx, ptr, opsize))
4122 break;
4123
4124 opt_rx->saw_unknown = 1;
4125 break;
4126
4127 default:
4128 opt_rx->saw_unknown = 1;
4129 }
4130 ptr += opsize-2;
4131 length -= opsize;
4132 }
4133 }
4134 }
4135 EXPORT_SYMBOL(tcp_parse_options);
4136
4137 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4138 {
4139 const __be32 *ptr = (const __be32 *)(th + 1);
4140
4141 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4142 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4143 tp->rx_opt.saw_tstamp = 1;
4144 ++ptr;
4145 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4146 ++ptr;
4147 if (*ptr)
4148 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4149 else
4150 tp->rx_opt.rcv_tsecr = 0;
4151 return true;
4152 }
4153 return false;
4154 }
4155
4156 /* Fast parse options. This hopes to only see timestamps.
4157 * If it is wrong it falls back on tcp_parse_options().
4158 */
4159 static bool tcp_fast_parse_options(const struct net *net,
4160 const struct sk_buff *skb,
4161 const struct tcphdr *th, struct tcp_sock *tp)
4162 {
4163 /* In the spirit of fast parsing, compare doff directly to constant
4164 * values. Because equality is used, short doff can be ignored here.
4165 */
4166 if (th->doff == (sizeof(*th) / 4)) {
4167 tp->rx_opt.saw_tstamp = 0;
4168 return false;
4169 } else if (tp->rx_opt.tstamp_ok &&
4170 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4171 if (tcp_parse_aligned_timestamp(tp, th))
4172 return true;
4173 }
4174
4175 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4176 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4177 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4178
4179 return true;
4180 }
4181
4182 #ifdef CONFIG_TCP_MD5SIG
4183 /*
4184 * Parse MD5 Signature option
4185 */
4186 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4187 {
4188 int length = (th->doff << 2) - sizeof(*th);
4189 const u8 *ptr = (const u8 *)(th + 1);
4190
4191 /* If not enough data remaining, we can short cut */
4192 while (length >= TCPOLEN_MD5SIG) {
4193 int opcode = *ptr++;
4194 int opsize;
4195
4196 switch (opcode) {
4197 case TCPOPT_EOL:
4198 return NULL;
4199 case TCPOPT_NOP:
4200 length--;
4201 continue;
4202 default:
4203 opsize = *ptr++;
4204 if (opsize < 2 || opsize > length)
4205 return NULL;
4206 if (opcode == TCPOPT_MD5SIG)
4207 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4208 }
4209 ptr += opsize - 2;
4210 length -= opsize;
4211 }
4212 return NULL;
4213 }
4214 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4215 #endif
4216
4217 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4218 *
4219 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4220 * it can pass through stack. So, the following predicate verifies that
4221 * this segment is not used for anything but congestion avoidance or
4222 * fast retransmit. Moreover, we even are able to eliminate most of such
4223 * second order effects, if we apply some small "replay" window (~RTO)
4224 * to timestamp space.
4225 *
4226 * All these measures still do not guarantee that we reject wrapped ACKs
4227 * on networks with high bandwidth, when sequence space is recycled fastly,
4228 * but it guarantees that such events will be very rare and do not affect
4229 * connection seriously. This doesn't look nice, but alas, PAWS is really
4230 * buggy extension.
4231 *
4232 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4233 * states that events when retransmit arrives after original data are rare.
4234 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4235 * the biggest problem on large power networks even with minor reordering.
4236 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4237 * up to bandwidth of 18Gigabit/sec. 8) ]
4238 */
4239
4240 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4241 {
4242 const struct tcp_sock *tp = tcp_sk(sk);
4243 const struct tcphdr *th = tcp_hdr(skb);
4244 u32 seq = TCP_SKB_CB(skb)->seq;
4245 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4246
4247 return (/* 1. Pure ACK with correct sequence number. */
4248 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4249
4250 /* 2. ... and duplicate ACK. */
4251 ack == tp->snd_una &&
4252
4253 /* 3. ... and does not update window. */
4254 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4255
4256 /* 4. ... and sits in replay window. */
4257 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4258 }
4259
4260 static inline bool tcp_paws_discard(const struct sock *sk,
4261 const struct sk_buff *skb)
4262 {
4263 const struct tcp_sock *tp = tcp_sk(sk);
4264
4265 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4266 !tcp_disordered_ack(sk, skb);
4267 }
4268
4269 /* Check segment sequence number for validity.
4270 *
4271 * Segment controls are considered valid, if the segment
4272 * fits to the window after truncation to the window. Acceptability
4273 * of data (and SYN, FIN, of course) is checked separately.
4274 * See tcp_data_queue(), for example.
4275 *
4276 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4277 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4278 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4279 * (borrowed from freebsd)
4280 */
4281
4282 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4283 {
4284 return !before(end_seq, tp->rcv_wup) &&
4285 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4286 }
4287
4288 /* When we get a reset we do this. */
4289 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4290 {
4291 trace_tcp_receive_reset(sk);
4292
4293 /* mptcp can't tell us to ignore reset pkts,
4294 * so just ignore the return value of mptcp_incoming_options().
4295 */
4296 if (sk_is_mptcp(sk))
4297 mptcp_incoming_options(sk, skb);
4298
4299 /* We want the right error as BSD sees it (and indeed as we do). */
4300 switch (sk->sk_state) {
4301 case TCP_SYN_SENT:
4302 sk->sk_err = ECONNREFUSED;
4303 break;
4304 case TCP_CLOSE_WAIT:
4305 sk->sk_err = EPIPE;
4306 break;
4307 case TCP_CLOSE:
4308 return;
4309 default:
4310 sk->sk_err = ECONNRESET;
4311 }
4312 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4313 smp_wmb();
4314
4315 tcp_write_queue_purge(sk);
4316 tcp_done(sk);
4317
4318 if (!sock_flag(sk, SOCK_DEAD))
4319 sk_error_report(sk);
4320 }
4321
4322 /*
4323 * Process the FIN bit. This now behaves as it is supposed to work
4324 * and the FIN takes effect when it is validly part of sequence
4325 * space. Not before when we get holes.
4326 *
4327 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4328 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4329 * TIME-WAIT)
4330 *
4331 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4332 * close and we go into CLOSING (and later onto TIME-WAIT)
4333 *
4334 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4335 */
4336 void tcp_fin(struct sock *sk)
4337 {
4338 struct tcp_sock *tp = tcp_sk(sk);
4339
4340 inet_csk_schedule_ack(sk);
4341
4342 sk->sk_shutdown |= RCV_SHUTDOWN;
4343 sock_set_flag(sk, SOCK_DONE);
4344
4345 switch (sk->sk_state) {
4346 case TCP_SYN_RECV:
4347 case TCP_ESTABLISHED:
4348 /* Move to CLOSE_WAIT */
4349 tcp_set_state(sk, TCP_CLOSE_WAIT);
4350 inet_csk_enter_pingpong_mode(sk);
4351 break;
4352
4353 case TCP_CLOSE_WAIT:
4354 case TCP_CLOSING:
4355 /* Received a retransmission of the FIN, do
4356 * nothing.
4357 */
4358 break;
4359 case TCP_LAST_ACK:
4360 /* RFC793: Remain in the LAST-ACK state. */
4361 break;
4362
4363 case TCP_FIN_WAIT1:
4364 /* This case occurs when a simultaneous close
4365 * happens, we must ack the received FIN and
4366 * enter the CLOSING state.
4367 */
4368 tcp_send_ack(sk);
4369 tcp_set_state(sk, TCP_CLOSING);
4370 break;
4371 case TCP_FIN_WAIT2:
4372 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4373 tcp_send_ack(sk);
4374 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4375 break;
4376 default:
4377 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4378 * cases we should never reach this piece of code.
4379 */
4380 pr_err("%s: Impossible, sk->sk_state=%d\n",
4381 __func__, sk->sk_state);
4382 break;
4383 }
4384
4385 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4386 * Probably, we should reset in this case. For now drop them.
4387 */
4388 skb_rbtree_purge(&tp->out_of_order_queue);
4389 if (tcp_is_sack(tp))
4390 tcp_sack_reset(&tp->rx_opt);
4391 sk_mem_reclaim(sk);
4392
4393 if (!sock_flag(sk, SOCK_DEAD)) {
4394 sk->sk_state_change(sk);
4395
4396 /* Do not send POLL_HUP for half duplex close. */
4397 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4398 sk->sk_state == TCP_CLOSE)
4399 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4400 else
4401 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4402 }
4403 }
4404
4405 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4406 u32 end_seq)
4407 {
4408 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4409 if (before(seq, sp->start_seq))
4410 sp->start_seq = seq;
4411 if (after(end_seq, sp->end_seq))
4412 sp->end_seq = end_seq;
4413 return true;
4414 }
4415 return false;
4416 }
4417
4418 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4419 {
4420 struct tcp_sock *tp = tcp_sk(sk);
4421
4422 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4423 int mib_idx;
4424
4425 if (before(seq, tp->rcv_nxt))
4426 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4427 else
4428 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4429
4430 NET_INC_STATS(sock_net(sk), mib_idx);
4431
4432 tp->rx_opt.dsack = 1;
4433 tp->duplicate_sack[0].start_seq = seq;
4434 tp->duplicate_sack[0].end_seq = end_seq;
4435 }
4436 }
4437
4438 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4439 {
4440 struct tcp_sock *tp = tcp_sk(sk);
4441
4442 if (!tp->rx_opt.dsack)
4443 tcp_dsack_set(sk, seq, end_seq);
4444 else
4445 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4446 }
4447
4448 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4449 {
4450 /* When the ACK path fails or drops most ACKs, the sender would
4451 * timeout and spuriously retransmit the same segment repeatedly.
4452 * The receiver remembers and reflects via DSACKs. Leverage the
4453 * DSACK state and change the txhash to re-route speculatively.
4454 */
4455 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4456 sk_rethink_txhash(sk))
4457 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4458 }
4459
4460 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4461 {
4462 struct tcp_sock *tp = tcp_sk(sk);
4463
4464 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4465 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4466 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4467 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4468
4469 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4470 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4471
4472 tcp_rcv_spurious_retrans(sk, skb);
4473 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4474 end_seq = tp->rcv_nxt;
4475 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4476 }
4477 }
4478
4479 tcp_send_ack(sk);
4480 }
4481
4482 /* These routines update the SACK block as out-of-order packets arrive or
4483 * in-order packets close up the sequence space.
4484 */
4485 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4486 {
4487 int this_sack;
4488 struct tcp_sack_block *sp = &tp->selective_acks[0];
4489 struct tcp_sack_block *swalk = sp + 1;
4490
4491 /* See if the recent change to the first SACK eats into
4492 * or hits the sequence space of other SACK blocks, if so coalesce.
4493 */
4494 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4495 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4496 int i;
4497
4498 /* Zap SWALK, by moving every further SACK up by one slot.
4499 * Decrease num_sacks.
4500 */
4501 tp->rx_opt.num_sacks--;
4502 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4503 sp[i] = sp[i + 1];
4504 continue;
4505 }
4506 this_sack++;
4507 swalk++;
4508 }
4509 }
4510
4511 static void tcp_sack_compress_send_ack(struct sock *sk)
4512 {
4513 struct tcp_sock *tp = tcp_sk(sk);
4514
4515 if (!tp->compressed_ack)
4516 return;
4517
4518 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4519 __sock_put(sk);
4520
4521 /* Since we have to send one ack finally,
4522 * substract one from tp->compressed_ack to keep
4523 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4524 */
4525 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4526 tp->compressed_ack - 1);
4527
4528 tp->compressed_ack = 0;
4529 tcp_send_ack(sk);
4530 }
4531
4532 /* Reasonable amount of sack blocks included in TCP SACK option
4533 * The max is 4, but this becomes 3 if TCP timestamps are there.
4534 * Given that SACK packets might be lost, be conservative and use 2.
4535 */
4536 #define TCP_SACK_BLOCKS_EXPECTED 2
4537
4538 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4539 {
4540 struct tcp_sock *tp = tcp_sk(sk);
4541 struct tcp_sack_block *sp = &tp->selective_acks[0];
4542 int cur_sacks = tp->rx_opt.num_sacks;
4543 int this_sack;
4544
4545 if (!cur_sacks)
4546 goto new_sack;
4547
4548 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4549 if (tcp_sack_extend(sp, seq, end_seq)) {
4550 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4551 tcp_sack_compress_send_ack(sk);
4552 /* Rotate this_sack to the first one. */
4553 for (; this_sack > 0; this_sack--, sp--)
4554 swap(*sp, *(sp - 1));
4555 if (cur_sacks > 1)
4556 tcp_sack_maybe_coalesce(tp);
4557 return;
4558 }
4559 }
4560
4561 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4562 tcp_sack_compress_send_ack(sk);
4563
4564 /* Could not find an adjacent existing SACK, build a new one,
4565 * put it at the front, and shift everyone else down. We
4566 * always know there is at least one SACK present already here.
4567 *
4568 * If the sack array is full, forget about the last one.
4569 */
4570 if (this_sack >= TCP_NUM_SACKS) {
4571 this_sack--;
4572 tp->rx_opt.num_sacks--;
4573 sp--;
4574 }
4575 for (; this_sack > 0; this_sack--, sp--)
4576 *sp = *(sp - 1);
4577
4578 new_sack:
4579 /* Build the new head SACK, and we're done. */
4580 sp->start_seq = seq;
4581 sp->end_seq = end_seq;
4582 tp->rx_opt.num_sacks++;
4583 }
4584
4585 /* RCV.NXT advances, some SACKs should be eaten. */
4586
4587 static void tcp_sack_remove(struct tcp_sock *tp)
4588 {
4589 struct tcp_sack_block *sp = &tp->selective_acks[0];
4590 int num_sacks = tp->rx_opt.num_sacks;
4591 int this_sack;
4592
4593 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4594 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4595 tp->rx_opt.num_sacks = 0;
4596 return;
4597 }
4598
4599 for (this_sack = 0; this_sack < num_sacks;) {
4600 /* Check if the start of the sack is covered by RCV.NXT. */
4601 if (!before(tp->rcv_nxt, sp->start_seq)) {
4602 int i;
4603
4604 /* RCV.NXT must cover all the block! */
4605 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4606
4607 /* Zap this SACK, by moving forward any other SACKS. */
4608 for (i = this_sack+1; i < num_sacks; i++)
4609 tp->selective_acks[i-1] = tp->selective_acks[i];
4610 num_sacks--;
4611 continue;
4612 }
4613 this_sack++;
4614 sp++;
4615 }
4616 tp->rx_opt.num_sacks = num_sacks;
4617 }
4618
4619 /**
4620 * tcp_try_coalesce - try to merge skb to prior one
4621 * @sk: socket
4622 * @to: prior buffer
4623 * @from: buffer to add in queue
4624 * @fragstolen: pointer to boolean
4625 *
4626 * Before queueing skb @from after @to, try to merge them
4627 * to reduce overall memory use and queue lengths, if cost is small.
4628 * Packets in ofo or receive queues can stay a long time.
4629 * Better try to coalesce them right now to avoid future collapses.
4630 * Returns true if caller should free @from instead of queueing it
4631 */
4632 static bool tcp_try_coalesce(struct sock *sk,
4633 struct sk_buff *to,
4634 struct sk_buff *from,
4635 bool *fragstolen)
4636 {
4637 int delta;
4638
4639 *fragstolen = false;
4640
4641 /* Its possible this segment overlaps with prior segment in queue */
4642 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4643 return false;
4644
4645 if (!mptcp_skb_can_collapse(to, from))
4646 return false;
4647
4648 #ifdef CONFIG_TLS_DEVICE
4649 if (from->decrypted != to->decrypted)
4650 return false;
4651 #endif
4652
4653 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4654 return false;
4655
4656 atomic_add(delta, &sk->sk_rmem_alloc);
4657 sk_mem_charge(sk, delta);
4658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4659 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4660 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4661 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4662
4663 if (TCP_SKB_CB(from)->has_rxtstamp) {
4664 TCP_SKB_CB(to)->has_rxtstamp = true;
4665 to->tstamp = from->tstamp;
4666 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4667 }
4668
4669 return true;
4670 }
4671
4672 static bool tcp_ooo_try_coalesce(struct sock *sk,
4673 struct sk_buff *to,
4674 struct sk_buff *from,
4675 bool *fragstolen)
4676 {
4677 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4678
4679 /* In case tcp_drop() is called later, update to->gso_segs */
4680 if (res) {
4681 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4682 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4683
4684 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4685 }
4686 return res;
4687 }
4688
4689 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4690 {
4691 sk_drops_add(sk, skb);
4692 __kfree_skb(skb);
4693 }
4694
4695 /* This one checks to see if we can put data from the
4696 * out_of_order queue into the receive_queue.
4697 */
4698 static void tcp_ofo_queue(struct sock *sk)
4699 {
4700 struct tcp_sock *tp = tcp_sk(sk);
4701 __u32 dsack_high = tp->rcv_nxt;
4702 bool fin, fragstolen, eaten;
4703 struct sk_buff *skb, *tail;
4704 struct rb_node *p;
4705
4706 p = rb_first(&tp->out_of_order_queue);
4707 while (p) {
4708 skb = rb_to_skb(p);
4709 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4710 break;
4711
4712 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4713 __u32 dsack = dsack_high;
4714 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4715 dsack_high = TCP_SKB_CB(skb)->end_seq;
4716 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4717 }
4718 p = rb_next(p);
4719 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4720
4721 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4722 tcp_drop(sk, skb);
4723 continue;
4724 }
4725
4726 tail = skb_peek_tail(&sk->sk_receive_queue);
4727 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4728 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4729 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4730 if (!eaten)
4731 __skb_queue_tail(&sk->sk_receive_queue, skb);
4732 else
4733 kfree_skb_partial(skb, fragstolen);
4734
4735 if (unlikely(fin)) {
4736 tcp_fin(sk);
4737 /* tcp_fin() purges tp->out_of_order_queue,
4738 * so we must end this loop right now.
4739 */
4740 break;
4741 }
4742 }
4743 }
4744
4745 static bool tcp_prune_ofo_queue(struct sock *sk);
4746 static int tcp_prune_queue(struct sock *sk);
4747
4748 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4749 unsigned int size)
4750 {
4751 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4752 !sk_rmem_schedule(sk, skb, size)) {
4753
4754 if (tcp_prune_queue(sk) < 0)
4755 return -1;
4756
4757 while (!sk_rmem_schedule(sk, skb, size)) {
4758 if (!tcp_prune_ofo_queue(sk))
4759 return -1;
4760 }
4761 }
4762 return 0;
4763 }
4764
4765 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4766 {
4767 struct tcp_sock *tp = tcp_sk(sk);
4768 struct rb_node **p, *parent;
4769 struct sk_buff *skb1;
4770 u32 seq, end_seq;
4771 bool fragstolen;
4772
4773 tcp_ecn_check_ce(sk, skb);
4774
4775 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4777 sk->sk_data_ready(sk);
4778 tcp_drop(sk, skb);
4779 return;
4780 }
4781
4782 /* Disable header prediction. */
4783 tp->pred_flags = 0;
4784 inet_csk_schedule_ack(sk);
4785
4786 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4788 seq = TCP_SKB_CB(skb)->seq;
4789 end_seq = TCP_SKB_CB(skb)->end_seq;
4790
4791 p = &tp->out_of_order_queue.rb_node;
4792 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4793 /* Initial out of order segment, build 1 SACK. */
4794 if (tcp_is_sack(tp)) {
4795 tp->rx_opt.num_sacks = 1;
4796 tp->selective_acks[0].start_seq = seq;
4797 tp->selective_acks[0].end_seq = end_seq;
4798 }
4799 rb_link_node(&skb->rbnode, NULL, p);
4800 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4801 tp->ooo_last_skb = skb;
4802 goto end;
4803 }
4804
4805 /* In the typical case, we are adding an skb to the end of the list.
4806 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4807 */
4808 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4809 skb, &fragstolen)) {
4810 coalesce_done:
4811 /* For non sack flows, do not grow window to force DUPACK
4812 * and trigger fast retransmit.
4813 */
4814 if (tcp_is_sack(tp))
4815 tcp_grow_window(sk, skb, true);
4816 kfree_skb_partial(skb, fragstolen);
4817 skb = NULL;
4818 goto add_sack;
4819 }
4820 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4821 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4822 parent = &tp->ooo_last_skb->rbnode;
4823 p = &parent->rb_right;
4824 goto insert;
4825 }
4826
4827 /* Find place to insert this segment. Handle overlaps on the way. */
4828 parent = NULL;
4829 while (*p) {
4830 parent = *p;
4831 skb1 = rb_to_skb(parent);
4832 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4833 p = &parent->rb_left;
4834 continue;
4835 }
4836 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4837 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4838 /* All the bits are present. Drop. */
4839 NET_INC_STATS(sock_net(sk),
4840 LINUX_MIB_TCPOFOMERGE);
4841 tcp_drop(sk, skb);
4842 skb = NULL;
4843 tcp_dsack_set(sk, seq, end_seq);
4844 goto add_sack;
4845 }
4846 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4847 /* Partial overlap. */
4848 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4849 } else {
4850 /* skb's seq == skb1's seq and skb covers skb1.
4851 * Replace skb1 with skb.
4852 */
4853 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4854 &tp->out_of_order_queue);
4855 tcp_dsack_extend(sk,
4856 TCP_SKB_CB(skb1)->seq,
4857 TCP_SKB_CB(skb1)->end_seq);
4858 NET_INC_STATS(sock_net(sk),
4859 LINUX_MIB_TCPOFOMERGE);
4860 tcp_drop(sk, skb1);
4861 goto merge_right;
4862 }
4863 } else if (tcp_ooo_try_coalesce(sk, skb1,
4864 skb, &fragstolen)) {
4865 goto coalesce_done;
4866 }
4867 p = &parent->rb_right;
4868 }
4869 insert:
4870 /* Insert segment into RB tree. */
4871 rb_link_node(&skb->rbnode, parent, p);
4872 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4873
4874 merge_right:
4875 /* Remove other segments covered by skb. */
4876 while ((skb1 = skb_rb_next(skb)) != NULL) {
4877 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4878 break;
4879 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4880 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4881 end_seq);
4882 break;
4883 }
4884 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4885 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4886 TCP_SKB_CB(skb1)->end_seq);
4887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4888 tcp_drop(sk, skb1);
4889 }
4890 /* If there is no skb after us, we are the last_skb ! */
4891 if (!skb1)
4892 tp->ooo_last_skb = skb;
4893
4894 add_sack:
4895 if (tcp_is_sack(tp))
4896 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4897 end:
4898 if (skb) {
4899 /* For non sack flows, do not grow window to force DUPACK
4900 * and trigger fast retransmit.
4901 */
4902 if (tcp_is_sack(tp))
4903 tcp_grow_window(sk, skb, false);
4904 skb_condense(skb);
4905 skb_set_owner_r(skb, sk);
4906 }
4907 }
4908
4909 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4910 bool *fragstolen)
4911 {
4912 int eaten;
4913 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4914
4915 eaten = (tail &&
4916 tcp_try_coalesce(sk, tail,
4917 skb, fragstolen)) ? 1 : 0;
4918 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4919 if (!eaten) {
4920 __skb_queue_tail(&sk->sk_receive_queue, skb);
4921 skb_set_owner_r(skb, sk);
4922 }
4923 return eaten;
4924 }
4925
4926 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4927 {
4928 struct sk_buff *skb;
4929 int err = -ENOMEM;
4930 int data_len = 0;
4931 bool fragstolen;
4932
4933 if (size == 0)
4934 return 0;
4935
4936 if (size > PAGE_SIZE) {
4937 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4938
4939 data_len = npages << PAGE_SHIFT;
4940 size = data_len + (size & ~PAGE_MASK);
4941 }
4942 skb = alloc_skb_with_frags(size - data_len, data_len,
4943 PAGE_ALLOC_COSTLY_ORDER,
4944 &err, sk->sk_allocation);
4945 if (!skb)
4946 goto err;
4947
4948 skb_put(skb, size - data_len);
4949 skb->data_len = data_len;
4950 skb->len = size;
4951
4952 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4954 goto err_free;
4955 }
4956
4957 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4958 if (err)
4959 goto err_free;
4960
4961 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4962 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4963 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4964
4965 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4966 WARN_ON_ONCE(fragstolen); /* should not happen */
4967 __kfree_skb(skb);
4968 }
4969 return size;
4970
4971 err_free:
4972 kfree_skb(skb);
4973 err:
4974 return err;
4975
4976 }
4977
4978 void tcp_data_ready(struct sock *sk)
4979 {
4980 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4981 sk->sk_data_ready(sk);
4982 }
4983
4984 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4985 {
4986 struct tcp_sock *tp = tcp_sk(sk);
4987 bool fragstolen;
4988 int eaten;
4989
4990 /* If a subflow has been reset, the packet should not continue
4991 * to be processed, drop the packet.
4992 */
4993 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4994 __kfree_skb(skb);
4995 return;
4996 }
4997
4998 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4999 __kfree_skb(skb);
5000 return;
5001 }
5002 skb_dst_drop(skb);
5003 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5004
5005 tp->rx_opt.dsack = 0;
5006
5007 /* Queue data for delivery to the user.
5008 * Packets in sequence go to the receive queue.
5009 * Out of sequence packets to the out_of_order_queue.
5010 */
5011 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5012 if (tcp_receive_window(tp) == 0) {
5013 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5014 goto out_of_window;
5015 }
5016
5017 /* Ok. In sequence. In window. */
5018 queue_and_out:
5019 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5020 sk_forced_mem_schedule(sk, skb->truesize);
5021 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5023 sk->sk_data_ready(sk);
5024 goto drop;
5025 }
5026
5027 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5028 if (skb->len)
5029 tcp_event_data_recv(sk, skb);
5030 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5031 tcp_fin(sk);
5032
5033 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5034 tcp_ofo_queue(sk);
5035
5036 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5037 * gap in queue is filled.
5038 */
5039 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5040 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5041 }
5042
5043 if (tp->rx_opt.num_sacks)
5044 tcp_sack_remove(tp);
5045
5046 tcp_fast_path_check(sk);
5047
5048 if (eaten > 0)
5049 kfree_skb_partial(skb, fragstolen);
5050 if (!sock_flag(sk, SOCK_DEAD))
5051 tcp_data_ready(sk);
5052 return;
5053 }
5054
5055 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5056 tcp_rcv_spurious_retrans(sk, skb);
5057 /* A retransmit, 2nd most common case. Force an immediate ack. */
5058 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5059 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5060
5061 out_of_window:
5062 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5063 inet_csk_schedule_ack(sk);
5064 drop:
5065 tcp_drop(sk, skb);
5066 return;
5067 }
5068
5069 /* Out of window. F.e. zero window probe. */
5070 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5071 goto out_of_window;
5072
5073 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5074 /* Partial packet, seq < rcv_next < end_seq */
5075 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5076
5077 /* If window is closed, drop tail of packet. But after
5078 * remembering D-SACK for its head made in previous line.
5079 */
5080 if (!tcp_receive_window(tp)) {
5081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5082 goto out_of_window;
5083 }
5084 goto queue_and_out;
5085 }
5086
5087 tcp_data_queue_ofo(sk, skb);
5088 }
5089
5090 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5091 {
5092 if (list)
5093 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5094
5095 return skb_rb_next(skb);
5096 }
5097
5098 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5099 struct sk_buff_head *list,
5100 struct rb_root *root)
5101 {
5102 struct sk_buff *next = tcp_skb_next(skb, list);
5103
5104 if (list)
5105 __skb_unlink(skb, list);
5106 else
5107 rb_erase(&skb->rbnode, root);
5108
5109 __kfree_skb(skb);
5110 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5111
5112 return next;
5113 }
5114
5115 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5116 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5117 {
5118 struct rb_node **p = &root->rb_node;
5119 struct rb_node *parent = NULL;
5120 struct sk_buff *skb1;
5121
5122 while (*p) {
5123 parent = *p;
5124 skb1 = rb_to_skb(parent);
5125 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5126 p = &parent->rb_left;
5127 else
5128 p = &parent->rb_right;
5129 }
5130 rb_link_node(&skb->rbnode, parent, p);
5131 rb_insert_color(&skb->rbnode, root);
5132 }
5133
5134 /* Collapse contiguous sequence of skbs head..tail with
5135 * sequence numbers start..end.
5136 *
5137 * If tail is NULL, this means until the end of the queue.
5138 *
5139 * Segments with FIN/SYN are not collapsed (only because this
5140 * simplifies code)
5141 */
5142 static void
5143 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5144 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5145 {
5146 struct sk_buff *skb = head, *n;
5147 struct sk_buff_head tmp;
5148 bool end_of_skbs;
5149
5150 /* First, check that queue is collapsible and find
5151 * the point where collapsing can be useful.
5152 */
5153 restart:
5154 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5155 n = tcp_skb_next(skb, list);
5156
5157 /* No new bits? It is possible on ofo queue. */
5158 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5159 skb = tcp_collapse_one(sk, skb, list, root);
5160 if (!skb)
5161 break;
5162 goto restart;
5163 }
5164
5165 /* The first skb to collapse is:
5166 * - not SYN/FIN and
5167 * - bloated or contains data before "start" or
5168 * overlaps to the next one and mptcp allow collapsing.
5169 */
5170 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5171 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5172 before(TCP_SKB_CB(skb)->seq, start))) {
5173 end_of_skbs = false;
5174 break;
5175 }
5176
5177 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5178 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5179 end_of_skbs = false;
5180 break;
5181 }
5182
5183 /* Decided to skip this, advance start seq. */
5184 start = TCP_SKB_CB(skb)->end_seq;
5185 }
5186 if (end_of_skbs ||
5187 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5188 return;
5189
5190 __skb_queue_head_init(&tmp);
5191
5192 while (before(start, end)) {
5193 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5194 struct sk_buff *nskb;
5195
5196 nskb = alloc_skb(copy, GFP_ATOMIC);
5197 if (!nskb)
5198 break;
5199
5200 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5201 #ifdef CONFIG_TLS_DEVICE
5202 nskb->decrypted = skb->decrypted;
5203 #endif
5204 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5205 if (list)
5206 __skb_queue_before(list, skb, nskb);
5207 else
5208 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5209 skb_set_owner_r(nskb, sk);
5210 mptcp_skb_ext_move(nskb, skb);
5211
5212 /* Copy data, releasing collapsed skbs. */
5213 while (copy > 0) {
5214 int offset = start - TCP_SKB_CB(skb)->seq;
5215 int size = TCP_SKB_CB(skb)->end_seq - start;
5216
5217 BUG_ON(offset < 0);
5218 if (size > 0) {
5219 size = min(copy, size);
5220 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5221 BUG();
5222 TCP_SKB_CB(nskb)->end_seq += size;
5223 copy -= size;
5224 start += size;
5225 }
5226 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5227 skb = tcp_collapse_one(sk, skb, list, root);
5228 if (!skb ||
5229 skb == tail ||
5230 !mptcp_skb_can_collapse(nskb, skb) ||
5231 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5232 goto end;
5233 #ifdef CONFIG_TLS_DEVICE
5234 if (skb->decrypted != nskb->decrypted)
5235 goto end;
5236 #endif
5237 }
5238 }
5239 }
5240 end:
5241 skb_queue_walk_safe(&tmp, skb, n)
5242 tcp_rbtree_insert(root, skb);
5243 }
5244
5245 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5246 * and tcp_collapse() them until all the queue is collapsed.
5247 */
5248 static void tcp_collapse_ofo_queue(struct sock *sk)
5249 {
5250 struct tcp_sock *tp = tcp_sk(sk);
5251 u32 range_truesize, sum_tiny = 0;
5252 struct sk_buff *skb, *head;
5253 u32 start, end;
5254
5255 skb = skb_rb_first(&tp->out_of_order_queue);
5256 new_range:
5257 if (!skb) {
5258 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5259 return;
5260 }
5261 start = TCP_SKB_CB(skb)->seq;
5262 end = TCP_SKB_CB(skb)->end_seq;
5263 range_truesize = skb->truesize;
5264
5265 for (head = skb;;) {
5266 skb = skb_rb_next(skb);
5267
5268 /* Range is terminated when we see a gap or when
5269 * we are at the queue end.
5270 */
5271 if (!skb ||
5272 after(TCP_SKB_CB(skb)->seq, end) ||
5273 before(TCP_SKB_CB(skb)->end_seq, start)) {
5274 /* Do not attempt collapsing tiny skbs */
5275 if (range_truesize != head->truesize ||
5276 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5277 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5278 head, skb, start, end);
5279 } else {
5280 sum_tiny += range_truesize;
5281 if (sum_tiny > sk->sk_rcvbuf >> 3)
5282 return;
5283 }
5284 goto new_range;
5285 }
5286
5287 range_truesize += skb->truesize;
5288 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5289 start = TCP_SKB_CB(skb)->seq;
5290 if (after(TCP_SKB_CB(skb)->end_seq, end))
5291 end = TCP_SKB_CB(skb)->end_seq;
5292 }
5293 }
5294
5295 /*
5296 * Clean the out-of-order queue to make room.
5297 * We drop high sequences packets to :
5298 * 1) Let a chance for holes to be filled.
5299 * 2) not add too big latencies if thousands of packets sit there.
5300 * (But if application shrinks SO_RCVBUF, we could still end up
5301 * freeing whole queue here)
5302 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5303 *
5304 * Return true if queue has shrunk.
5305 */
5306 static bool tcp_prune_ofo_queue(struct sock *sk)
5307 {
5308 struct tcp_sock *tp = tcp_sk(sk);
5309 struct rb_node *node, *prev;
5310 int goal;
5311
5312 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5313 return false;
5314
5315 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5316 goal = sk->sk_rcvbuf >> 3;
5317 node = &tp->ooo_last_skb->rbnode;
5318 do {
5319 prev = rb_prev(node);
5320 rb_erase(node, &tp->out_of_order_queue);
5321 goal -= rb_to_skb(node)->truesize;
5322 tcp_drop(sk, rb_to_skb(node));
5323 if (!prev || goal <= 0) {
5324 sk_mem_reclaim(sk);
5325 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5326 !tcp_under_memory_pressure(sk))
5327 break;
5328 goal = sk->sk_rcvbuf >> 3;
5329 }
5330 node = prev;
5331 } while (node);
5332 tp->ooo_last_skb = rb_to_skb(prev);
5333
5334 /* Reset SACK state. A conforming SACK implementation will
5335 * do the same at a timeout based retransmit. When a connection
5336 * is in a sad state like this, we care only about integrity
5337 * of the connection not performance.
5338 */
5339 if (tp->rx_opt.sack_ok)
5340 tcp_sack_reset(&tp->rx_opt);
5341 return true;
5342 }
5343
5344 /* Reduce allocated memory if we can, trying to get
5345 * the socket within its memory limits again.
5346 *
5347 * Return less than zero if we should start dropping frames
5348 * until the socket owning process reads some of the data
5349 * to stabilize the situation.
5350 */
5351 static int tcp_prune_queue(struct sock *sk)
5352 {
5353 struct tcp_sock *tp = tcp_sk(sk);
5354
5355 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5356
5357 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5358 tcp_clamp_window(sk);
5359 else if (tcp_under_memory_pressure(sk))
5360 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5361
5362 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5363 return 0;
5364
5365 tcp_collapse_ofo_queue(sk);
5366 if (!skb_queue_empty(&sk->sk_receive_queue))
5367 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5368 skb_peek(&sk->sk_receive_queue),
5369 NULL,
5370 tp->copied_seq, tp->rcv_nxt);
5371 sk_mem_reclaim(sk);
5372
5373 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5374 return 0;
5375
5376 /* Collapsing did not help, destructive actions follow.
5377 * This must not ever occur. */
5378
5379 tcp_prune_ofo_queue(sk);
5380
5381 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5382 return 0;
5383
5384 /* If we are really being abused, tell the caller to silently
5385 * drop receive data on the floor. It will get retransmitted
5386 * and hopefully then we'll have sufficient space.
5387 */
5388 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5389
5390 /* Massive buffer overcommit. */
5391 tp->pred_flags = 0;
5392 return -1;
5393 }
5394
5395 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5396 {
5397 const struct tcp_sock *tp = tcp_sk(sk);
5398
5399 /* If the user specified a specific send buffer setting, do
5400 * not modify it.
5401 */
5402 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5403 return false;
5404
5405 /* If we are under global TCP memory pressure, do not expand. */
5406 if (tcp_under_memory_pressure(sk))
5407 return false;
5408
5409 /* If we are under soft global TCP memory pressure, do not expand. */
5410 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5411 return false;
5412
5413 /* If we filled the congestion window, do not expand. */
5414 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5415 return false;
5416
5417 return true;
5418 }
5419
5420 static void tcp_new_space(struct sock *sk)
5421 {
5422 struct tcp_sock *tp = tcp_sk(sk);
5423
5424 if (tcp_should_expand_sndbuf(sk)) {
5425 tcp_sndbuf_expand(sk);
5426 tp->snd_cwnd_stamp = tcp_jiffies32;
5427 }
5428
5429 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5430 }
5431
5432 /* Caller made space either from:
5433 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5434 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5435 *
5436 * We might be able to generate EPOLLOUT to the application if:
5437 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5438 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5439 * small enough that tcp_stream_memory_free() decides it
5440 * is time to generate EPOLLOUT.
5441 */
5442 void tcp_check_space(struct sock *sk)
5443 {
5444 /* pairs with tcp_poll() */
5445 smp_mb();
5446 if (sk->sk_socket &&
5447 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5448 tcp_new_space(sk);
5449 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5450 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5451 }
5452 }
5453
5454 static inline void tcp_data_snd_check(struct sock *sk)
5455 {
5456 tcp_push_pending_frames(sk);
5457 tcp_check_space(sk);
5458 }
5459
5460 /*
5461 * Check if sending an ack is needed.
5462 */
5463 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5464 {
5465 struct tcp_sock *tp = tcp_sk(sk);
5466 unsigned long rtt, delay;
5467
5468 /* More than one full frame received... */
5469 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5470 /* ... and right edge of window advances far enough.
5471 * (tcp_recvmsg() will send ACK otherwise).
5472 * If application uses SO_RCVLOWAT, we want send ack now if
5473 * we have not received enough bytes to satisfy the condition.
5474 */
5475 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5476 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5477 /* We ACK each frame or... */
5478 tcp_in_quickack_mode(sk) ||
5479 /* Protocol state mandates a one-time immediate ACK */
5480 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5481 send_now:
5482 tcp_send_ack(sk);
5483 return;
5484 }
5485
5486 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5487 tcp_send_delayed_ack(sk);
5488 return;
5489 }
5490
5491 if (!tcp_is_sack(tp) ||
5492 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5493 goto send_now;
5494
5495 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5496 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5497 tp->dup_ack_counter = 0;
5498 }
5499 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5500 tp->dup_ack_counter++;
5501 goto send_now;
5502 }
5503 tp->compressed_ack++;
5504 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5505 return;
5506
5507 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5508
5509 rtt = tp->rcv_rtt_est.rtt_us;
5510 if (tp->srtt_us && tp->srtt_us < rtt)
5511 rtt = tp->srtt_us;
5512
5513 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5514 rtt * (NSEC_PER_USEC >> 3)/20);
5515 sock_hold(sk);
5516 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5517 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5518 HRTIMER_MODE_REL_PINNED_SOFT);
5519 }
5520
5521 static inline void tcp_ack_snd_check(struct sock *sk)
5522 {
5523 if (!inet_csk_ack_scheduled(sk)) {
5524 /* We sent a data segment already. */
5525 return;
5526 }
5527 __tcp_ack_snd_check(sk, 1);
5528 }
5529
5530 /*
5531 * This routine is only called when we have urgent data
5532 * signaled. Its the 'slow' part of tcp_urg. It could be
5533 * moved inline now as tcp_urg is only called from one
5534 * place. We handle URGent data wrong. We have to - as
5535 * BSD still doesn't use the correction from RFC961.
5536 * For 1003.1g we should support a new option TCP_STDURG to permit
5537 * either form (or just set the sysctl tcp_stdurg).
5538 */
5539
5540 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5541 {
5542 struct tcp_sock *tp = tcp_sk(sk);
5543 u32 ptr = ntohs(th->urg_ptr);
5544
5545 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5546 ptr--;
5547 ptr += ntohl(th->seq);
5548
5549 /* Ignore urgent data that we've already seen and read. */
5550 if (after(tp->copied_seq, ptr))
5551 return;
5552
5553 /* Do not replay urg ptr.
5554 *
5555 * NOTE: interesting situation not covered by specs.
5556 * Misbehaving sender may send urg ptr, pointing to segment,
5557 * which we already have in ofo queue. We are not able to fetch
5558 * such data and will stay in TCP_URG_NOTYET until will be eaten
5559 * by recvmsg(). Seems, we are not obliged to handle such wicked
5560 * situations. But it is worth to think about possibility of some
5561 * DoSes using some hypothetical application level deadlock.
5562 */
5563 if (before(ptr, tp->rcv_nxt))
5564 return;
5565
5566 /* Do we already have a newer (or duplicate) urgent pointer? */
5567 if (tp->urg_data && !after(ptr, tp->urg_seq))
5568 return;
5569
5570 /* Tell the world about our new urgent pointer. */
5571 sk_send_sigurg(sk);
5572
5573 /* We may be adding urgent data when the last byte read was
5574 * urgent. To do this requires some care. We cannot just ignore
5575 * tp->copied_seq since we would read the last urgent byte again
5576 * as data, nor can we alter copied_seq until this data arrives
5577 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5578 *
5579 * NOTE. Double Dutch. Rendering to plain English: author of comment
5580 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5581 * and expect that both A and B disappear from stream. This is _wrong_.
5582 * Though this happens in BSD with high probability, this is occasional.
5583 * Any application relying on this is buggy. Note also, that fix "works"
5584 * only in this artificial test. Insert some normal data between A and B and we will
5585 * decline of BSD again. Verdict: it is better to remove to trap
5586 * buggy users.
5587 */
5588 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5589 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5590 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5591 tp->copied_seq++;
5592 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5593 __skb_unlink(skb, &sk->sk_receive_queue);
5594 __kfree_skb(skb);
5595 }
5596 }
5597
5598 tp->urg_data = TCP_URG_NOTYET;
5599 WRITE_ONCE(tp->urg_seq, ptr);
5600
5601 /* Disable header prediction. */
5602 tp->pred_flags = 0;
5603 }
5604
5605 /* This is the 'fast' part of urgent handling. */
5606 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5607 {
5608 struct tcp_sock *tp = tcp_sk(sk);
5609
5610 /* Check if we get a new urgent pointer - normally not. */
5611 if (th->urg)
5612 tcp_check_urg(sk, th);
5613
5614 /* Do we wait for any urgent data? - normally not... */
5615 if (tp->urg_data == TCP_URG_NOTYET) {
5616 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5617 th->syn;
5618
5619 /* Is the urgent pointer pointing into this packet? */
5620 if (ptr < skb->len) {
5621 u8 tmp;
5622 if (skb_copy_bits(skb, ptr, &tmp, 1))
5623 BUG();
5624 tp->urg_data = TCP_URG_VALID | tmp;
5625 if (!sock_flag(sk, SOCK_DEAD))
5626 sk->sk_data_ready(sk);
5627 }
5628 }
5629 }
5630
5631 /* Accept RST for rcv_nxt - 1 after a FIN.
5632 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5633 * FIN is sent followed by a RST packet. The RST is sent with the same
5634 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5635 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5636 * ACKs on the closed socket. In addition middleboxes can drop either the
5637 * challenge ACK or a subsequent RST.
5638 */
5639 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5640 {
5641 struct tcp_sock *tp = tcp_sk(sk);
5642
5643 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5644 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5645 TCPF_CLOSING));
5646 }
5647
5648 /* Does PAWS and seqno based validation of an incoming segment, flags will
5649 * play significant role here.
5650 */
5651 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5652 const struct tcphdr *th, int syn_inerr)
5653 {
5654 struct tcp_sock *tp = tcp_sk(sk);
5655 bool rst_seq_match = false;
5656
5657 /* RFC1323: H1. Apply PAWS check first. */
5658 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5659 tp->rx_opt.saw_tstamp &&
5660 tcp_paws_discard(sk, skb)) {
5661 if (!th->rst) {
5662 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5663 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5664 LINUX_MIB_TCPACKSKIPPEDPAWS,
5665 &tp->last_oow_ack_time))
5666 tcp_send_dupack(sk, skb);
5667 goto discard;
5668 }
5669 /* Reset is accepted even if it did not pass PAWS. */
5670 }
5671
5672 /* Step 1: check sequence number */
5673 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5674 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5675 * (RST) segments are validated by checking their SEQ-fields."
5676 * And page 69: "If an incoming segment is not acceptable,
5677 * an acknowledgment should be sent in reply (unless the RST
5678 * bit is set, if so drop the segment and return)".
5679 */
5680 if (!th->rst) {
5681 if (th->syn)
5682 goto syn_challenge;
5683 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5684 LINUX_MIB_TCPACKSKIPPEDSEQ,
5685 &tp->last_oow_ack_time))
5686 tcp_send_dupack(sk, skb);
5687 } else if (tcp_reset_check(sk, skb)) {
5688 tcp_reset(sk, skb);
5689 }
5690 goto discard;
5691 }
5692
5693 /* Step 2: check RST bit */
5694 if (th->rst) {
5695 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5696 * FIN and SACK too if available):
5697 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5698 * the right-most SACK block,
5699 * then
5700 * RESET the connection
5701 * else
5702 * Send a challenge ACK
5703 */
5704 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5705 tcp_reset_check(sk, skb)) {
5706 rst_seq_match = true;
5707 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5708 struct tcp_sack_block *sp = &tp->selective_acks[0];
5709 int max_sack = sp[0].end_seq;
5710 int this_sack;
5711
5712 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5713 ++this_sack) {
5714 max_sack = after(sp[this_sack].end_seq,
5715 max_sack) ?
5716 sp[this_sack].end_seq : max_sack;
5717 }
5718
5719 if (TCP_SKB_CB(skb)->seq == max_sack)
5720 rst_seq_match = true;
5721 }
5722
5723 if (rst_seq_match)
5724 tcp_reset(sk, skb);
5725 else {
5726 /* Disable TFO if RST is out-of-order
5727 * and no data has been received
5728 * for current active TFO socket
5729 */
5730 if (tp->syn_fastopen && !tp->data_segs_in &&
5731 sk->sk_state == TCP_ESTABLISHED)
5732 tcp_fastopen_active_disable(sk);
5733 tcp_send_challenge_ack(sk, skb);
5734 }
5735 goto discard;
5736 }
5737
5738 /* step 3: check security and precedence [ignored] */
5739
5740 /* step 4: Check for a SYN
5741 * RFC 5961 4.2 : Send a challenge ack
5742 */
5743 if (th->syn) {
5744 syn_challenge:
5745 if (syn_inerr)
5746 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5748 tcp_send_challenge_ack(sk, skb);
5749 goto discard;
5750 }
5751
5752 bpf_skops_parse_hdr(sk, skb);
5753
5754 return true;
5755
5756 discard:
5757 tcp_drop(sk, skb);
5758 return false;
5759 }
5760
5761 /*
5762 * TCP receive function for the ESTABLISHED state.
5763 *
5764 * It is split into a fast path and a slow path. The fast path is
5765 * disabled when:
5766 * - A zero window was announced from us - zero window probing
5767 * is only handled properly in the slow path.
5768 * - Out of order segments arrived.
5769 * - Urgent data is expected.
5770 * - There is no buffer space left
5771 * - Unexpected TCP flags/window values/header lengths are received
5772 * (detected by checking the TCP header against pred_flags)
5773 * - Data is sent in both directions. Fast path only supports pure senders
5774 * or pure receivers (this means either the sequence number or the ack
5775 * value must stay constant)
5776 * - Unexpected TCP option.
5777 *
5778 * When these conditions are not satisfied it drops into a standard
5779 * receive procedure patterned after RFC793 to handle all cases.
5780 * The first three cases are guaranteed by proper pred_flags setting,
5781 * the rest is checked inline. Fast processing is turned on in
5782 * tcp_data_queue when everything is OK.
5783 */
5784 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5785 {
5786 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5787 struct tcp_sock *tp = tcp_sk(sk);
5788 unsigned int len = skb->len;
5789
5790 /* TCP congestion window tracking */
5791 trace_tcp_probe(sk, skb);
5792
5793 tcp_mstamp_refresh(tp);
5794 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5795 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5796 /*
5797 * Header prediction.
5798 * The code loosely follows the one in the famous
5799 * "30 instruction TCP receive" Van Jacobson mail.
5800 *
5801 * Van's trick is to deposit buffers into socket queue
5802 * on a device interrupt, to call tcp_recv function
5803 * on the receive process context and checksum and copy
5804 * the buffer to user space. smart...
5805 *
5806 * Our current scheme is not silly either but we take the
5807 * extra cost of the net_bh soft interrupt processing...
5808 * We do checksum and copy also but from device to kernel.
5809 */
5810
5811 tp->rx_opt.saw_tstamp = 0;
5812
5813 /* pred_flags is 0xS?10 << 16 + snd_wnd
5814 * if header_prediction is to be made
5815 * 'S' will always be tp->tcp_header_len >> 2
5816 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5817 * turn it off (when there are holes in the receive
5818 * space for instance)
5819 * PSH flag is ignored.
5820 */
5821
5822 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5823 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5824 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5825 int tcp_header_len = tp->tcp_header_len;
5826
5827 /* Timestamp header prediction: tcp_header_len
5828 * is automatically equal to th->doff*4 due to pred_flags
5829 * match.
5830 */
5831
5832 /* Check timestamp */
5833 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5834 /* No? Slow path! */
5835 if (!tcp_parse_aligned_timestamp(tp, th))
5836 goto slow_path;
5837
5838 /* If PAWS failed, check it more carefully in slow path */
5839 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5840 goto slow_path;
5841
5842 /* DO NOT update ts_recent here, if checksum fails
5843 * and timestamp was corrupted part, it will result
5844 * in a hung connection since we will drop all
5845 * future packets due to the PAWS test.
5846 */
5847 }
5848
5849 if (len <= tcp_header_len) {
5850 /* Bulk data transfer: sender */
5851 if (len == tcp_header_len) {
5852 /* Predicted packet is in window by definition.
5853 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5854 * Hence, check seq<=rcv_wup reduces to:
5855 */
5856 if (tcp_header_len ==
5857 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5858 tp->rcv_nxt == tp->rcv_wup)
5859 tcp_store_ts_recent(tp);
5860
5861 /* We know that such packets are checksummed
5862 * on entry.
5863 */
5864 tcp_ack(sk, skb, 0);
5865 __kfree_skb(skb);
5866 tcp_data_snd_check(sk);
5867 /* When receiving pure ack in fast path, update
5868 * last ts ecr directly instead of calling
5869 * tcp_rcv_rtt_measure_ts()
5870 */
5871 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5872 return;
5873 } else { /* Header too small */
5874 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5875 goto discard;
5876 }
5877 } else {
5878 int eaten = 0;
5879 bool fragstolen = false;
5880
5881 if (tcp_checksum_complete(skb))
5882 goto csum_error;
5883
5884 if ((int)skb->truesize > sk->sk_forward_alloc)
5885 goto step5;
5886
5887 /* Predicted packet is in window by definition.
5888 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5889 * Hence, check seq<=rcv_wup reduces to:
5890 */
5891 if (tcp_header_len ==
5892 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5893 tp->rcv_nxt == tp->rcv_wup)
5894 tcp_store_ts_recent(tp);
5895
5896 tcp_rcv_rtt_measure_ts(sk, skb);
5897
5898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5899
5900 /* Bulk data transfer: receiver */
5901 __skb_pull(skb, tcp_header_len);
5902 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5903
5904 tcp_event_data_recv(sk, skb);
5905
5906 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5907 /* Well, only one small jumplet in fast path... */
5908 tcp_ack(sk, skb, FLAG_DATA);
5909 tcp_data_snd_check(sk);
5910 if (!inet_csk_ack_scheduled(sk))
5911 goto no_ack;
5912 } else {
5913 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5914 }
5915
5916 __tcp_ack_snd_check(sk, 0);
5917 no_ack:
5918 if (eaten)
5919 kfree_skb_partial(skb, fragstolen);
5920 tcp_data_ready(sk);
5921 return;
5922 }
5923 }
5924
5925 slow_path:
5926 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5927 goto csum_error;
5928
5929 if (!th->ack && !th->rst && !th->syn)
5930 goto discard;
5931
5932 /*
5933 * Standard slow path.
5934 */
5935
5936 if (!tcp_validate_incoming(sk, skb, th, 1))
5937 return;
5938
5939 step5:
5940 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5941 goto discard;
5942
5943 tcp_rcv_rtt_measure_ts(sk, skb);
5944
5945 /* Process urgent data. */
5946 tcp_urg(sk, skb, th);
5947
5948 /* step 7: process the segment text */
5949 tcp_data_queue(sk, skb);
5950
5951 tcp_data_snd_check(sk);
5952 tcp_ack_snd_check(sk);
5953 return;
5954
5955 csum_error:
5956 trace_tcp_bad_csum(skb);
5957 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5958 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5959
5960 discard:
5961 tcp_drop(sk, skb);
5962 }
5963 EXPORT_SYMBOL(tcp_rcv_established);
5964
5965 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5966 {
5967 struct inet_connection_sock *icsk = inet_csk(sk);
5968 struct tcp_sock *tp = tcp_sk(sk);
5969
5970 tcp_mtup_init(sk);
5971 icsk->icsk_af_ops->rebuild_header(sk);
5972 tcp_init_metrics(sk);
5973
5974 /* Initialize the congestion window to start the transfer.
5975 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5976 * retransmitted. In light of RFC6298 more aggressive 1sec
5977 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5978 * retransmission has occurred.
5979 */
5980 if (tp->total_retrans > 1 && tp->undo_marker)
5981 tcp_snd_cwnd_set(tp, 1);
5982 else
5983 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
5984 tp->snd_cwnd_stamp = tcp_jiffies32;
5985
5986 bpf_skops_established(sk, bpf_op, skb);
5987 /* Initialize congestion control unless BPF initialized it already: */
5988 if (!icsk->icsk_ca_initialized)
5989 tcp_init_congestion_control(sk);
5990 tcp_init_buffer_space(sk);
5991 }
5992
5993 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5994 {
5995 struct tcp_sock *tp = tcp_sk(sk);
5996 struct inet_connection_sock *icsk = inet_csk(sk);
5997
5998 tcp_set_state(sk, TCP_ESTABLISHED);
5999 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6000
6001 if (skb) {
6002 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6003 security_inet_conn_established(sk, skb);
6004 sk_mark_napi_id(sk, skb);
6005 }
6006
6007 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6008
6009 /* Prevent spurious tcp_cwnd_restart() on first data
6010 * packet.
6011 */
6012 tp->lsndtime = tcp_jiffies32;
6013
6014 if (sock_flag(sk, SOCK_KEEPOPEN))
6015 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6016
6017 if (!tp->rx_opt.snd_wscale)
6018 __tcp_fast_path_on(tp, tp->snd_wnd);
6019 else
6020 tp->pred_flags = 0;
6021 }
6022
6023 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6024 struct tcp_fastopen_cookie *cookie)
6025 {
6026 struct tcp_sock *tp = tcp_sk(sk);
6027 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6028 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6029 bool syn_drop = false;
6030
6031 if (mss == tp->rx_opt.user_mss) {
6032 struct tcp_options_received opt;
6033
6034 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6035 tcp_clear_options(&opt);
6036 opt.user_mss = opt.mss_clamp = 0;
6037 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6038 mss = opt.mss_clamp;
6039 }
6040
6041 if (!tp->syn_fastopen) {
6042 /* Ignore an unsolicited cookie */
6043 cookie->len = -1;
6044 } else if (tp->total_retrans) {
6045 /* SYN timed out and the SYN-ACK neither has a cookie nor
6046 * acknowledges data. Presumably the remote received only
6047 * the retransmitted (regular) SYNs: either the original
6048 * SYN-data or the corresponding SYN-ACK was dropped.
6049 */
6050 syn_drop = (cookie->len < 0 && data);
6051 } else if (cookie->len < 0 && !tp->syn_data) {
6052 /* We requested a cookie but didn't get it. If we did not use
6053 * the (old) exp opt format then try so next time (try_exp=1).
6054 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6055 */
6056 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6057 }
6058
6059 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6060
6061 if (data) { /* Retransmit unacked data in SYN */
6062 if (tp->total_retrans)
6063 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6064 else
6065 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6066 skb_rbtree_walk_from(data)
6067 tcp_mark_skb_lost(sk, data);
6068 tcp_xmit_retransmit_queue(sk);
6069 NET_INC_STATS(sock_net(sk),
6070 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6071 return true;
6072 }
6073 tp->syn_data_acked = tp->syn_data;
6074 if (tp->syn_data_acked) {
6075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6076 /* SYN-data is counted as two separate packets in tcp_ack() */
6077 if (tp->delivered > 1)
6078 --tp->delivered;
6079 }
6080
6081 tcp_fastopen_add_skb(sk, synack);
6082
6083 return false;
6084 }
6085
6086 static void smc_check_reset_syn(struct tcp_sock *tp)
6087 {
6088 #if IS_ENABLED(CONFIG_SMC)
6089 if (static_branch_unlikely(&tcp_have_smc)) {
6090 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6091 tp->syn_smc = 0;
6092 }
6093 #endif
6094 }
6095
6096 static void tcp_try_undo_spurious_syn(struct sock *sk)
6097 {
6098 struct tcp_sock *tp = tcp_sk(sk);
6099 u32 syn_stamp;
6100
6101 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6102 * spurious if the ACK's timestamp option echo value matches the
6103 * original SYN timestamp.
6104 */
6105 syn_stamp = tp->retrans_stamp;
6106 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6107 syn_stamp == tp->rx_opt.rcv_tsecr)
6108 tp->undo_marker = 0;
6109 }
6110
6111 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6112 const struct tcphdr *th)
6113 {
6114 struct inet_connection_sock *icsk = inet_csk(sk);
6115 struct tcp_sock *tp = tcp_sk(sk);
6116 struct tcp_fastopen_cookie foc = { .len = -1 };
6117 int saved_clamp = tp->rx_opt.mss_clamp;
6118 bool fastopen_fail;
6119
6120 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6121 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6122 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6123
6124 if (th->ack) {
6125 /* rfc793:
6126 * "If the state is SYN-SENT then
6127 * first check the ACK bit
6128 * If the ACK bit is set
6129 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6130 * a reset (unless the RST bit is set, if so drop
6131 * the segment and return)"
6132 */
6133 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6134 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6135 /* Previous FIN/ACK or RST/ACK might be ignored. */
6136 if (icsk->icsk_retransmits == 0)
6137 inet_csk_reset_xmit_timer(sk,
6138 ICSK_TIME_RETRANS,
6139 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6140 goto reset_and_undo;
6141 }
6142
6143 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6144 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6145 tcp_time_stamp(tp))) {
6146 NET_INC_STATS(sock_net(sk),
6147 LINUX_MIB_PAWSACTIVEREJECTED);
6148 goto reset_and_undo;
6149 }
6150
6151 /* Now ACK is acceptable.
6152 *
6153 * "If the RST bit is set
6154 * If the ACK was acceptable then signal the user "error:
6155 * connection reset", drop the segment, enter CLOSED state,
6156 * delete TCB, and return."
6157 */
6158
6159 if (th->rst) {
6160 tcp_reset(sk, skb);
6161 goto discard;
6162 }
6163
6164 /* rfc793:
6165 * "fifth, if neither of the SYN or RST bits is set then
6166 * drop the segment and return."
6167 *
6168 * See note below!
6169 * --ANK(990513)
6170 */
6171 if (!th->syn)
6172 goto discard_and_undo;
6173
6174 /* rfc793:
6175 * "If the SYN bit is on ...
6176 * are acceptable then ...
6177 * (our SYN has been ACKed), change the connection
6178 * state to ESTABLISHED..."
6179 */
6180
6181 tcp_ecn_rcv_synack(tp, th);
6182
6183 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6184 tcp_try_undo_spurious_syn(sk);
6185 tcp_ack(sk, skb, FLAG_SLOWPATH);
6186
6187 /* Ok.. it's good. Set up sequence numbers and
6188 * move to established.
6189 */
6190 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6191 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6192
6193 /* RFC1323: The window in SYN & SYN/ACK segments is
6194 * never scaled.
6195 */
6196 tp->snd_wnd = ntohs(th->window);
6197
6198 if (!tp->rx_opt.wscale_ok) {
6199 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6200 tp->window_clamp = min(tp->window_clamp, 65535U);
6201 }
6202
6203 if (tp->rx_opt.saw_tstamp) {
6204 tp->rx_opt.tstamp_ok = 1;
6205 tp->tcp_header_len =
6206 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6207 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6208 tcp_store_ts_recent(tp);
6209 } else {
6210 tp->tcp_header_len = sizeof(struct tcphdr);
6211 }
6212
6213 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6214 tcp_initialize_rcv_mss(sk);
6215
6216 /* Remember, tcp_poll() does not lock socket!
6217 * Change state from SYN-SENT only after copied_seq
6218 * is initialized. */
6219 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6220
6221 smc_check_reset_syn(tp);
6222
6223 smp_mb();
6224
6225 tcp_finish_connect(sk, skb);
6226
6227 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6228 tcp_rcv_fastopen_synack(sk, skb, &foc);
6229
6230 if (!sock_flag(sk, SOCK_DEAD)) {
6231 sk->sk_state_change(sk);
6232 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6233 }
6234 if (fastopen_fail)
6235 return -1;
6236 if (sk->sk_write_pending ||
6237 icsk->icsk_accept_queue.rskq_defer_accept ||
6238 inet_csk_in_pingpong_mode(sk)) {
6239 /* Save one ACK. Data will be ready after
6240 * several ticks, if write_pending is set.
6241 *
6242 * It may be deleted, but with this feature tcpdumps
6243 * look so _wonderfully_ clever, that I was not able
6244 * to stand against the temptation 8) --ANK
6245 */
6246 inet_csk_schedule_ack(sk);
6247 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6248 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6249 TCP_DELACK_MAX, TCP_RTO_MAX);
6250
6251 discard:
6252 tcp_drop(sk, skb);
6253 return 0;
6254 } else {
6255 tcp_send_ack(sk);
6256 }
6257 return -1;
6258 }
6259
6260 /* No ACK in the segment */
6261
6262 if (th->rst) {
6263 /* rfc793:
6264 * "If the RST bit is set
6265 *
6266 * Otherwise (no ACK) drop the segment and return."
6267 */
6268
6269 goto discard_and_undo;
6270 }
6271
6272 /* PAWS check. */
6273 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6274 tcp_paws_reject(&tp->rx_opt, 0))
6275 goto discard_and_undo;
6276
6277 if (th->syn) {
6278 /* We see SYN without ACK. It is attempt of
6279 * simultaneous connect with crossed SYNs.
6280 * Particularly, it can be connect to self.
6281 */
6282 tcp_set_state(sk, TCP_SYN_RECV);
6283
6284 if (tp->rx_opt.saw_tstamp) {
6285 tp->rx_opt.tstamp_ok = 1;
6286 tcp_store_ts_recent(tp);
6287 tp->tcp_header_len =
6288 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6289 } else {
6290 tp->tcp_header_len = sizeof(struct tcphdr);
6291 }
6292
6293 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6294 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6295 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6296
6297 /* RFC1323: The window in SYN & SYN/ACK segments is
6298 * never scaled.
6299 */
6300 tp->snd_wnd = ntohs(th->window);
6301 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6302 tp->max_window = tp->snd_wnd;
6303
6304 tcp_ecn_rcv_syn(tp, th);
6305
6306 tcp_mtup_init(sk);
6307 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6308 tcp_initialize_rcv_mss(sk);
6309
6310 tcp_send_synack(sk);
6311 #if 0
6312 /* Note, we could accept data and URG from this segment.
6313 * There are no obstacles to make this (except that we must
6314 * either change tcp_recvmsg() to prevent it from returning data
6315 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6316 *
6317 * However, if we ignore data in ACKless segments sometimes,
6318 * we have no reasons to accept it sometimes.
6319 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6320 * is not flawless. So, discard packet for sanity.
6321 * Uncomment this return to process the data.
6322 */
6323 return -1;
6324 #else
6325 goto discard;
6326 #endif
6327 }
6328 /* "fifth, if neither of the SYN or RST bits is set then
6329 * drop the segment and return."
6330 */
6331
6332 discard_and_undo:
6333 tcp_clear_options(&tp->rx_opt);
6334 tp->rx_opt.mss_clamp = saved_clamp;
6335 goto discard;
6336
6337 reset_and_undo:
6338 tcp_clear_options(&tp->rx_opt);
6339 tp->rx_opt.mss_clamp = saved_clamp;
6340 return 1;
6341 }
6342
6343 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6344 {
6345 struct request_sock *req;
6346
6347 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6348 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6349 */
6350 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6351 tcp_try_undo_loss(sk, false);
6352
6353 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6354 tcp_sk(sk)->retrans_stamp = 0;
6355 inet_csk(sk)->icsk_retransmits = 0;
6356
6357 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6358 * we no longer need req so release it.
6359 */
6360 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6361 lockdep_sock_is_held(sk));
6362 reqsk_fastopen_remove(sk, req, false);
6363
6364 /* Re-arm the timer because data may have been sent out.
6365 * This is similar to the regular data transmission case
6366 * when new data has just been ack'ed.
6367 *
6368 * (TFO) - we could try to be more aggressive and
6369 * retransmitting any data sooner based on when they
6370 * are sent out.
6371 */
6372 tcp_rearm_rto(sk);
6373 }
6374
6375 /*
6376 * This function implements the receiving procedure of RFC 793 for
6377 * all states except ESTABLISHED and TIME_WAIT.
6378 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6379 * address independent.
6380 */
6381
6382 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6383 {
6384 struct tcp_sock *tp = tcp_sk(sk);
6385 struct inet_connection_sock *icsk = inet_csk(sk);
6386 const struct tcphdr *th = tcp_hdr(skb);
6387 struct request_sock *req;
6388 int queued = 0;
6389 bool acceptable;
6390
6391 switch (sk->sk_state) {
6392 case TCP_CLOSE:
6393 goto discard;
6394
6395 case TCP_LISTEN:
6396 if (th->ack)
6397 return 1;
6398
6399 if (th->rst)
6400 goto discard;
6401
6402 if (th->syn) {
6403 if (th->fin)
6404 goto discard;
6405 /* It is possible that we process SYN packets from backlog,
6406 * so we need to make sure to disable BH and RCU right there.
6407 */
6408 rcu_read_lock();
6409 local_bh_disable();
6410 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6411 local_bh_enable();
6412 rcu_read_unlock();
6413
6414 if (!acceptable)
6415 return 1;
6416 consume_skb(skb);
6417 return 0;
6418 }
6419 goto discard;
6420
6421 case TCP_SYN_SENT:
6422 tp->rx_opt.saw_tstamp = 0;
6423 tcp_mstamp_refresh(tp);
6424 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6425 if (queued >= 0)
6426 return queued;
6427
6428 /* Do step6 onward by hand. */
6429 tcp_urg(sk, skb, th);
6430 __kfree_skb(skb);
6431 tcp_data_snd_check(sk);
6432 return 0;
6433 }
6434
6435 tcp_mstamp_refresh(tp);
6436 tp->rx_opt.saw_tstamp = 0;
6437 req = rcu_dereference_protected(tp->fastopen_rsk,
6438 lockdep_sock_is_held(sk));
6439 if (req) {
6440 bool req_stolen;
6441
6442 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6443 sk->sk_state != TCP_FIN_WAIT1);
6444
6445 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6446 goto discard;
6447 }
6448
6449 if (!th->ack && !th->rst && !th->syn)
6450 goto discard;
6451
6452 if (!tcp_validate_incoming(sk, skb, th, 0))
6453 return 0;
6454
6455 /* step 5: check the ACK field */
6456 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6457 FLAG_UPDATE_TS_RECENT |
6458 FLAG_NO_CHALLENGE_ACK) > 0;
6459
6460 if (!acceptable) {
6461 if (sk->sk_state == TCP_SYN_RECV)
6462 return 1; /* send one RST */
6463 tcp_send_challenge_ack(sk, skb);
6464 goto discard;
6465 }
6466 switch (sk->sk_state) {
6467 case TCP_SYN_RECV:
6468 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6469 if (!tp->srtt_us)
6470 tcp_synack_rtt_meas(sk, req);
6471
6472 if (req) {
6473 tcp_rcv_synrecv_state_fastopen(sk);
6474 } else {
6475 tcp_try_undo_spurious_syn(sk);
6476 tp->retrans_stamp = 0;
6477 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6478 skb);
6479 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6480 }
6481 smp_mb();
6482 tcp_set_state(sk, TCP_ESTABLISHED);
6483 sk->sk_state_change(sk);
6484
6485 /* Note, that this wakeup is only for marginal crossed SYN case.
6486 * Passively open sockets are not waked up, because
6487 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6488 */
6489 if (sk->sk_socket)
6490 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6491
6492 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6493 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6494 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6495
6496 if (tp->rx_opt.tstamp_ok)
6497 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6498
6499 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6500 tcp_update_pacing_rate(sk);
6501
6502 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6503 tp->lsndtime = tcp_jiffies32;
6504
6505 tcp_initialize_rcv_mss(sk);
6506 tcp_fast_path_on(tp);
6507 break;
6508
6509 case TCP_FIN_WAIT1: {
6510 int tmo;
6511
6512 if (req)
6513 tcp_rcv_synrecv_state_fastopen(sk);
6514
6515 if (tp->snd_una != tp->write_seq)
6516 break;
6517
6518 tcp_set_state(sk, TCP_FIN_WAIT2);
6519 sk->sk_shutdown |= SEND_SHUTDOWN;
6520
6521 sk_dst_confirm(sk);
6522
6523 if (!sock_flag(sk, SOCK_DEAD)) {
6524 /* Wake up lingering close() */
6525 sk->sk_state_change(sk);
6526 break;
6527 }
6528
6529 if (tp->linger2 < 0) {
6530 tcp_done(sk);
6531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6532 return 1;
6533 }
6534 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6535 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6536 /* Receive out of order FIN after close() */
6537 if (tp->syn_fastopen && th->fin)
6538 tcp_fastopen_active_disable(sk);
6539 tcp_done(sk);
6540 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6541 return 1;
6542 }
6543
6544 tmo = tcp_fin_time(sk);
6545 if (tmo > TCP_TIMEWAIT_LEN) {
6546 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6547 } else if (th->fin || sock_owned_by_user(sk)) {
6548 /* Bad case. We could lose such FIN otherwise.
6549 * It is not a big problem, but it looks confusing
6550 * and not so rare event. We still can lose it now,
6551 * if it spins in bh_lock_sock(), but it is really
6552 * marginal case.
6553 */
6554 inet_csk_reset_keepalive_timer(sk, tmo);
6555 } else {
6556 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6557 goto discard;
6558 }
6559 break;
6560 }
6561
6562 case TCP_CLOSING:
6563 if (tp->snd_una == tp->write_seq) {
6564 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6565 goto discard;
6566 }
6567 break;
6568
6569 case TCP_LAST_ACK:
6570 if (tp->snd_una == tp->write_seq) {
6571 tcp_update_metrics(sk);
6572 tcp_done(sk);
6573 goto discard;
6574 }
6575 break;
6576 }
6577
6578 /* step 6: check the URG bit */
6579 tcp_urg(sk, skb, th);
6580
6581 /* step 7: process the segment text */
6582 switch (sk->sk_state) {
6583 case TCP_CLOSE_WAIT:
6584 case TCP_CLOSING:
6585 case TCP_LAST_ACK:
6586 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6587 /* If a subflow has been reset, the packet should not
6588 * continue to be processed, drop the packet.
6589 */
6590 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6591 goto discard;
6592 break;
6593 }
6594 fallthrough;
6595 case TCP_FIN_WAIT1:
6596 case TCP_FIN_WAIT2:
6597 /* RFC 793 says to queue data in these states,
6598 * RFC 1122 says we MUST send a reset.
6599 * BSD 4.4 also does reset.
6600 */
6601 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6602 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6603 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6605 tcp_reset(sk, skb);
6606 return 1;
6607 }
6608 }
6609 fallthrough;
6610 case TCP_ESTABLISHED:
6611 tcp_data_queue(sk, skb);
6612 queued = 1;
6613 break;
6614 }
6615
6616 /* tcp_data could move socket to TIME-WAIT */
6617 if (sk->sk_state != TCP_CLOSE) {
6618 tcp_data_snd_check(sk);
6619 tcp_ack_snd_check(sk);
6620 }
6621
6622 if (!queued) {
6623 discard:
6624 tcp_drop(sk, skb);
6625 }
6626 return 0;
6627 }
6628 EXPORT_SYMBOL(tcp_rcv_state_process);
6629
6630 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6631 {
6632 struct inet_request_sock *ireq = inet_rsk(req);
6633
6634 if (family == AF_INET)
6635 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6636 &ireq->ir_rmt_addr, port);
6637 #if IS_ENABLED(CONFIG_IPV6)
6638 else if (family == AF_INET6)
6639 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6640 &ireq->ir_v6_rmt_addr, port);
6641 #endif
6642 }
6643
6644 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6645 *
6646 * If we receive a SYN packet with these bits set, it means a
6647 * network is playing bad games with TOS bits. In order to
6648 * avoid possible false congestion notifications, we disable
6649 * TCP ECN negotiation.
6650 *
6651 * Exception: tcp_ca wants ECN. This is required for DCTCP
6652 * congestion control: Linux DCTCP asserts ECT on all packets,
6653 * including SYN, which is most optimal solution; however,
6654 * others, such as FreeBSD do not.
6655 *
6656 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6657 * set, indicating the use of a future TCP extension (such as AccECN). See
6658 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6659 * extensions.
6660 */
6661 static void tcp_ecn_create_request(struct request_sock *req,
6662 const struct sk_buff *skb,
6663 const struct sock *listen_sk,
6664 const struct dst_entry *dst)
6665 {
6666 const struct tcphdr *th = tcp_hdr(skb);
6667 const struct net *net = sock_net(listen_sk);
6668 bool th_ecn = th->ece && th->cwr;
6669 bool ect, ecn_ok;
6670 u32 ecn_ok_dst;
6671
6672 if (!th_ecn)
6673 return;
6674
6675 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6676 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6677 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6678
6679 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6680 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6681 tcp_bpf_ca_needs_ecn((struct sock *)req))
6682 inet_rsk(req)->ecn_ok = 1;
6683 }
6684
6685 static void tcp_openreq_init(struct request_sock *req,
6686 const struct tcp_options_received *rx_opt,
6687 struct sk_buff *skb, const struct sock *sk)
6688 {
6689 struct inet_request_sock *ireq = inet_rsk(req);
6690
6691 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6692 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6693 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6694 tcp_rsk(req)->snt_synack = 0;
6695 tcp_rsk(req)->last_oow_ack_time = 0;
6696 req->mss = rx_opt->mss_clamp;
6697 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6698 ireq->tstamp_ok = rx_opt->tstamp_ok;
6699 ireq->sack_ok = rx_opt->sack_ok;
6700 ireq->snd_wscale = rx_opt->snd_wscale;
6701 ireq->wscale_ok = rx_opt->wscale_ok;
6702 ireq->acked = 0;
6703 ireq->ecn_ok = 0;
6704 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6705 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6706 ireq->ir_mark = inet_request_mark(sk, skb);
6707 #if IS_ENABLED(CONFIG_SMC)
6708 ireq->smc_ok = rx_opt->smc_ok;
6709 #endif
6710 }
6711
6712 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6713 struct sock *sk_listener,
6714 bool attach_listener)
6715 {
6716 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6717 attach_listener);
6718
6719 if (req) {
6720 struct inet_request_sock *ireq = inet_rsk(req);
6721
6722 ireq->ireq_opt = NULL;
6723 #if IS_ENABLED(CONFIG_IPV6)
6724 ireq->pktopts = NULL;
6725 #endif
6726 atomic64_set(&ireq->ir_cookie, 0);
6727 ireq->ireq_state = TCP_NEW_SYN_RECV;
6728 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6729 ireq->ireq_family = sk_listener->sk_family;
6730 }
6731
6732 return req;
6733 }
6734 EXPORT_SYMBOL(inet_reqsk_alloc);
6735
6736 /*
6737 * Return true if a syncookie should be sent
6738 */
6739 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6740 {
6741 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6742 const char *msg = "Dropping request";
6743 struct net *net = sock_net(sk);
6744 bool want_cookie = false;
6745 u8 syncookies;
6746
6747 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6748
6749 #ifdef CONFIG_SYN_COOKIES
6750 if (syncookies) {
6751 msg = "Sending cookies";
6752 want_cookie = true;
6753 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6754 } else
6755 #endif
6756 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6757
6758 if (!queue->synflood_warned && syncookies != 2 &&
6759 xchg(&queue->synflood_warned, 1) == 0)
6760 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6761 proto, sk->sk_num, msg);
6762
6763 return want_cookie;
6764 }
6765
6766 static void tcp_reqsk_record_syn(const struct sock *sk,
6767 struct request_sock *req,
6768 const struct sk_buff *skb)
6769 {
6770 if (tcp_sk(sk)->save_syn) {
6771 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6772 struct saved_syn *saved_syn;
6773 u32 mac_hdrlen;
6774 void *base;
6775
6776 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6777 base = skb_mac_header(skb);
6778 mac_hdrlen = skb_mac_header_len(skb);
6779 len += mac_hdrlen;
6780 } else {
6781 base = skb_network_header(skb);
6782 mac_hdrlen = 0;
6783 }
6784
6785 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6786 GFP_ATOMIC);
6787 if (saved_syn) {
6788 saved_syn->mac_hdrlen = mac_hdrlen;
6789 saved_syn->network_hdrlen = skb_network_header_len(skb);
6790 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6791 memcpy(saved_syn->data, base, len);
6792 req->saved_syn = saved_syn;
6793 }
6794 }
6795 }
6796
6797 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6798 * used for SYN cookie generation.
6799 */
6800 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6801 const struct tcp_request_sock_ops *af_ops,
6802 struct sock *sk, struct tcphdr *th)
6803 {
6804 struct tcp_sock *tp = tcp_sk(sk);
6805 u16 mss;
6806
6807 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6808 !inet_csk_reqsk_queue_is_full(sk))
6809 return 0;
6810
6811 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6812 return 0;
6813
6814 if (sk_acceptq_is_full(sk)) {
6815 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6816 return 0;
6817 }
6818
6819 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6820 if (!mss)
6821 mss = af_ops->mss_clamp;
6822
6823 return mss;
6824 }
6825 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6826
6827 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6828 const struct tcp_request_sock_ops *af_ops,
6829 struct sock *sk, struct sk_buff *skb)
6830 {
6831 struct tcp_fastopen_cookie foc = { .len = -1 };
6832 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6833 struct tcp_options_received tmp_opt;
6834 struct tcp_sock *tp = tcp_sk(sk);
6835 struct net *net = sock_net(sk);
6836 struct sock *fastopen_sk = NULL;
6837 struct request_sock *req;
6838 bool want_cookie = false;
6839 struct dst_entry *dst;
6840 struct flowi fl;
6841 u8 syncookies;
6842
6843 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6844
6845 /* TW buckets are converted to open requests without
6846 * limitations, they conserve resources and peer is
6847 * evidently real one.
6848 */
6849 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6850 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6851 if (!want_cookie)
6852 goto drop;
6853 }
6854
6855 if (sk_acceptq_is_full(sk)) {
6856 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6857 goto drop;
6858 }
6859
6860 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6861 if (!req)
6862 goto drop;
6863
6864 req->syncookie = want_cookie;
6865 tcp_rsk(req)->af_specific = af_ops;
6866 tcp_rsk(req)->ts_off = 0;
6867 #if IS_ENABLED(CONFIG_MPTCP)
6868 tcp_rsk(req)->is_mptcp = 0;
6869 #endif
6870
6871 tcp_clear_options(&tmp_opt);
6872 tmp_opt.mss_clamp = af_ops->mss_clamp;
6873 tmp_opt.user_mss = tp->rx_opt.user_mss;
6874 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6875 want_cookie ? NULL : &foc);
6876
6877 if (want_cookie && !tmp_opt.saw_tstamp)
6878 tcp_clear_options(&tmp_opt);
6879
6880 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6881 tmp_opt.smc_ok = 0;
6882
6883 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6884 tcp_openreq_init(req, &tmp_opt, skb, sk);
6885 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6886
6887 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6888 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6889
6890 dst = af_ops->route_req(sk, skb, &fl, req);
6891 if (!dst)
6892 goto drop_and_free;
6893
6894 if (tmp_opt.tstamp_ok)
6895 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6896
6897 if (!want_cookie && !isn) {
6898 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6899
6900 /* Kill the following clause, if you dislike this way. */
6901 if (!syncookies &&
6902 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6903 (max_syn_backlog >> 2)) &&
6904 !tcp_peer_is_proven(req, dst)) {
6905 /* Without syncookies last quarter of
6906 * backlog is filled with destinations,
6907 * proven to be alive.
6908 * It means that we continue to communicate
6909 * to destinations, already remembered
6910 * to the moment of synflood.
6911 */
6912 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6913 rsk_ops->family);
6914 goto drop_and_release;
6915 }
6916
6917 isn = af_ops->init_seq(skb);
6918 }
6919
6920 tcp_ecn_create_request(req, skb, sk, dst);
6921
6922 if (want_cookie) {
6923 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6924 if (!tmp_opt.tstamp_ok)
6925 inet_rsk(req)->ecn_ok = 0;
6926 }
6927
6928 tcp_rsk(req)->snt_isn = isn;
6929 tcp_rsk(req)->txhash = net_tx_rndhash();
6930 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6931 tcp_openreq_init_rwin(req, sk, dst);
6932 sk_rx_queue_set(req_to_sk(req), skb);
6933 if (!want_cookie) {
6934 tcp_reqsk_record_syn(sk, req, skb);
6935 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6936 }
6937 if (fastopen_sk) {
6938 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6939 &foc, TCP_SYNACK_FASTOPEN, skb);
6940 /* Add the child socket directly into the accept queue */
6941 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6942 reqsk_fastopen_remove(fastopen_sk, req, false);
6943 bh_unlock_sock(fastopen_sk);
6944 sock_put(fastopen_sk);
6945 goto drop_and_free;
6946 }
6947 sk->sk_data_ready(sk);
6948 bh_unlock_sock(fastopen_sk);
6949 sock_put(fastopen_sk);
6950 } else {
6951 tcp_rsk(req)->tfo_listener = false;
6952 if (!want_cookie)
6953 inet_csk_reqsk_queue_hash_add(sk, req,
6954 tcp_timeout_init((struct sock *)req));
6955 af_ops->send_synack(sk, dst, &fl, req, &foc,
6956 !want_cookie ? TCP_SYNACK_NORMAL :
6957 TCP_SYNACK_COOKIE,
6958 skb);
6959 if (want_cookie) {
6960 reqsk_free(req);
6961 return 0;
6962 }
6963 }
6964 reqsk_put(req);
6965 return 0;
6966
6967 drop_and_release:
6968 dst_release(dst);
6969 drop_and_free:
6970 __reqsk_free(req);
6971 drop:
6972 tcp_listendrop(sk);
6973 return 0;
6974 }
6975 EXPORT_SYMBOL(tcp_conn_request);