]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
UBUNTU: SAUCE: media: uvcvideo: Support realtek's UVC 1.5 device
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_fack __read_mostly;
80 int sysctl_tcp_max_reordering __read_mostly = 300;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 1;
84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
85
86 /* rfc5961 challenge ack rate limiting */
87 int sysctl_tcp_challenge_ack_limit = 1000;
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_early_retrans __read_mostly = 3;
96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
97
98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
104 #define FLAG_ECE 0x40 /* ECE in this ACK */
105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
114
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
122
123 #define REXMIT_NONE 0 /* no loss recovery to do */
124 #define REXMIT_LOST 1 /* retransmit packets marked lost */
125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
126
127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
128 unsigned int len)
129 {
130 static bool __once __read_mostly;
131
132 if (!__once) {
133 struct net_device *dev;
134
135 __once = true;
136
137 rcu_read_lock();
138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
139 if (!dev || len >= dev->mtu)
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
142 rcu_read_unlock();
143 }
144 }
145
146 /* Adapt the MSS value used to make delayed ack decision to the
147 * real world.
148 */
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
150 {
151 struct inet_connection_sock *icsk = inet_csk(sk);
152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
153 unsigned int len;
154
155 icsk->icsk_ack.last_seg_size = 0;
156
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
159 */
160 len = skb_shinfo(skb)->gso_size ? : skb->len;
161 if (len >= icsk->icsk_ack.rcv_mss) {
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 tcp_sk(sk)->advmss);
164 /* Account for possibly-removed options */
165 if (unlikely(len > icsk->icsk_ack.rcv_mss +
166 MAX_TCP_OPTION_SPACE))
167 tcp_gro_dev_warn(sk, skb, len);
168 } else {
169 /* Otherwise, we make more careful check taking into account,
170 * that SACKs block is variable.
171 *
172 * "len" is invariant segment length, including TCP header.
173 */
174 len += skb->data - skb_transport_header(skb);
175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
176 /* If PSH is not set, packet should be
177 * full sized, provided peer TCP is not badly broken.
178 * This observation (if it is correct 8)) allows
179 * to handle super-low mtu links fairly.
180 */
181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
183 /* Subtract also invariant (if peer is RFC compliant),
184 * tcp header plus fixed timestamp option length.
185 * Resulting "len" is MSS free of SACK jitter.
186 */
187 len -= tcp_sk(sk)->tcp_header_len;
188 icsk->icsk_ack.last_seg_size = len;
189 if (len == lss) {
190 icsk->icsk_ack.rcv_mss = len;
191 return;
192 }
193 }
194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
197 }
198 }
199
200 static void tcp_incr_quickack(struct sock *sk)
201 {
202 struct inet_connection_sock *icsk = inet_csk(sk);
203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
204
205 if (quickacks == 0)
206 quickacks = 2;
207 if (quickacks > icsk->icsk_ack.quick)
208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
209 }
210
211 static void tcp_enter_quickack_mode(struct sock *sk)
212 {
213 struct inet_connection_sock *icsk = inet_csk(sk);
214 tcp_incr_quickack(sk);
215 icsk->icsk_ack.pingpong = 0;
216 icsk->icsk_ack.ato = TCP_ATO_MIN;
217 }
218
219 /* Send ACKs quickly, if "quick" count is not exhausted
220 * and the session is not interactive.
221 */
222
223 static bool tcp_in_quickack_mode(struct sock *sk)
224 {
225 const struct inet_connection_sock *icsk = inet_csk(sk);
226 const struct dst_entry *dst = __sk_dst_get(sk);
227
228 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
230 }
231
232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
233 {
234 if (tp->ecn_flags & TCP_ECN_OK)
235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
236 }
237
238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
239 {
240 if (tcp_hdr(skb)->cwr)
241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
242 }
243
244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
245 {
246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247 }
248
249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
250 {
251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
252 case INET_ECN_NOT_ECT:
253 /* Funny extension: if ECT is not set on a segment,
254 * and we already seen ECT on a previous segment,
255 * it is probably a retransmit.
256 */
257 if (tp->ecn_flags & TCP_ECN_SEEN)
258 tcp_enter_quickack_mode((struct sock *)tp);
259 break;
260 case INET_ECN_CE:
261 if (tcp_ca_needs_ecn((struct sock *)tp))
262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
263
264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
265 /* Better not delay acks, sender can have a very low cwnd */
266 tcp_enter_quickack_mode((struct sock *)tp);
267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
268 }
269 tp->ecn_flags |= TCP_ECN_SEEN;
270 break;
271 default:
272 if (tcp_ca_needs_ecn((struct sock *)tp))
273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
274 tp->ecn_flags |= TCP_ECN_SEEN;
275 break;
276 }
277 }
278
279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
280 {
281 if (tp->ecn_flags & TCP_ECN_OK)
282 __tcp_ecn_check_ce(tp, skb);
283 }
284
285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
286 {
287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
288 tp->ecn_flags &= ~TCP_ECN_OK;
289 }
290
291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
292 {
293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
294 tp->ecn_flags &= ~TCP_ECN_OK;
295 }
296
297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
298 {
299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
300 return true;
301 return false;
302 }
303
304 /* Buffer size and advertised window tuning.
305 *
306 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
307 */
308
309 static void tcp_sndbuf_expand(struct sock *sk)
310 {
311 const struct tcp_sock *tp = tcp_sk(sk);
312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
313 int sndmem, per_mss;
314 u32 nr_segs;
315
316 /* Worst case is non GSO/TSO : each frame consumes one skb
317 * and skb->head is kmalloced using power of two area of memory
318 */
319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
320 MAX_TCP_HEADER +
321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
322
323 per_mss = roundup_pow_of_two(per_mss) +
324 SKB_DATA_ALIGN(sizeof(struct sk_buff));
325
326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
328
329 /* Fast Recovery (RFC 5681 3.2) :
330 * Cubic needs 1.7 factor, rounded to 2 to include
331 * extra cushion (application might react slowly to POLLOUT)
332 */
333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
334 sndmem *= nr_segs * per_mss;
335
336 if (sk->sk_sndbuf < sndmem)
337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
338 }
339
340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
341 *
342 * All tcp_full_space() is split to two parts: "network" buffer, allocated
343 * forward and advertised in receiver window (tp->rcv_wnd) and
344 * "application buffer", required to isolate scheduling/application
345 * latencies from network.
346 * window_clamp is maximal advertised window. It can be less than
347 * tcp_full_space(), in this case tcp_full_space() - window_clamp
348 * is reserved for "application" buffer. The less window_clamp is
349 * the smoother our behaviour from viewpoint of network, but the lower
350 * throughput and the higher sensitivity of the connection to losses. 8)
351 *
352 * rcv_ssthresh is more strict window_clamp used at "slow start"
353 * phase to predict further behaviour of this connection.
354 * It is used for two goals:
355 * - to enforce header prediction at sender, even when application
356 * requires some significant "application buffer". It is check #1.
357 * - to prevent pruning of receive queue because of misprediction
358 * of receiver window. Check #2.
359 *
360 * The scheme does not work when sender sends good segments opening
361 * window and then starts to feed us spaghetti. But it should work
362 * in common situations. Otherwise, we have to rely on queue collapsing.
363 */
364
365 /* Slow part of check#2. */
366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369 /* Optimize this! */
370 int truesize = tcp_win_from_space(skb->truesize) >> 1;
371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
372
373 while (tp->rcv_ssthresh <= window) {
374 if (truesize <= skb->len)
375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
376
377 truesize >>= 1;
378 window >>= 1;
379 }
380 return 0;
381 }
382
383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
384 {
385 struct tcp_sock *tp = tcp_sk(sk);
386
387 /* Check #1 */
388 if (tp->rcv_ssthresh < tp->window_clamp &&
389 (int)tp->rcv_ssthresh < tcp_space(sk) &&
390 !tcp_under_memory_pressure(sk)) {
391 int incr;
392
393 /* Check #2. Increase window, if skb with such overhead
394 * will fit to rcvbuf in future.
395 */
396 if (tcp_win_from_space(skb->truesize) <= skb->len)
397 incr = 2 * tp->advmss;
398 else
399 incr = __tcp_grow_window(sk, skb);
400
401 if (incr) {
402 incr = max_t(int, incr, 2 * skb->len);
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
404 tp->window_clamp);
405 inet_csk(sk)->icsk_ack.quick |= 1;
406 }
407 }
408 }
409
410 /* 3. Tuning rcvbuf, when connection enters established state. */
411 static void tcp_fixup_rcvbuf(struct sock *sk)
412 {
413 u32 mss = tcp_sk(sk)->advmss;
414 int rcvmem;
415
416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
417 tcp_default_init_rwnd(mss);
418
419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
420 * Allow enough cushion so that sender is not limited by our window
421 */
422 if (sysctl_tcp_moderate_rcvbuf)
423 rcvmem <<= 2;
424
425 if (sk->sk_rcvbuf < rcvmem)
426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
427 }
428
429 /* 4. Try to fixup all. It is made immediately after connection enters
430 * established state.
431 */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 struct tcp_sock *tp = tcp_sk(sk);
435 int maxwin;
436
437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
438 tcp_fixup_rcvbuf(sk);
439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 tcp_sndbuf_expand(sk);
441
442 tp->rcvq_space.space = tp->rcv_wnd;
443 tcp_mstamp_refresh(tp);
444 tp->rcvq_space.time = tp->tcp_mstamp;
445 tp->rcvq_space.seq = tp->copied_seq;
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> sysctl_tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 tp->snd_cwnd_stamp = tcp_jiffies32;
466 }
467
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock *sk)
470 {
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct inet_connection_sock *icsk = inet_csk(sk);
473
474 icsk->icsk_ack.quick = 0;
475
476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 sysctl_tcp_rmem[2]);
482 }
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506
507 /* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
512 *
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 long m = sample;
522
523 if (m == 0)
524 m = 1;
525
526 if (new_sample != 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
531 *
532 * Also, since we are only going for a minimum in the
533 * non-timestamp case, we do not smooth things out
534 * else with timestamps disabled convergence takes too
535 * long.
536 */
537 if (!win_dep) {
538 m -= (new_sample >> 3);
539 new_sample += m;
540 } else {
541 m <<= 3;
542 if (m < new_sample)
543 new_sample = m;
544 }
545 } else {
546 /* No previous measure. */
547 new_sample = m << 3;
548 }
549
550 tp->rcv_rtt_est.rtt_us = new_sample;
551 }
552
553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
554 {
555 u32 delta_us;
556
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
562 tcp_rcv_rtt_update(tp, delta_us, 1);
563
564 new_measure:
565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
566 tp->rcv_rtt_est.time = tp->tcp_mstamp;
567 }
568
569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 const struct sk_buff *skb)
571 {
572 struct tcp_sock *tp = tcp_sk(sk);
573
574 if (tp->rx_opt.rcv_tsecr &&
575 (TCP_SKB_CB(skb)->end_seq -
576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
579
580 tcp_rcv_rtt_update(tp, delta_us, 0);
581 }
582 }
583
584 /*
585 * This function should be called every time data is copied to user space.
586 * It calculates the appropriate TCP receive buffer space.
587 */
588 void tcp_rcv_space_adjust(struct sock *sk)
589 {
590 struct tcp_sock *tp = tcp_sk(sk);
591 int time;
592 int copied;
593
594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
596 return;
597
598 /* Number of bytes copied to user in last RTT */
599 copied = tp->copied_seq - tp->rcvq_space.seq;
600 if (copied <= tp->rcvq_space.space)
601 goto new_measure;
602
603 /* A bit of theory :
604 * copied = bytes received in previous RTT, our base window
605 * To cope with packet losses, we need a 2x factor
606 * To cope with slow start, and sender growing its cwin by 100 %
607 * every RTT, we need a 4x factor, because the ACK we are sending
608 * now is for the next RTT, not the current one :
609 * <prev RTT . ><current RTT .. ><next RTT .... >
610 */
611
612 if (sysctl_tcp_moderate_rcvbuf &&
613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
614 int rcvwin, rcvmem, rcvbuf;
615
616 /* minimal window to cope with packet losses, assuming
617 * steady state. Add some cushion because of small variations.
618 */
619 rcvwin = (copied << 1) + 16 * tp->advmss;
620
621 /* If rate increased by 25%,
622 * assume slow start, rcvwin = 3 * copied
623 * If rate increased by 50%,
624 * assume sender can use 2x growth, rcvwin = 4 * copied
625 */
626 if (copied >=
627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
628 if (copied >=
629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
630 rcvwin <<= 1;
631 else
632 rcvwin += (rcvwin >> 1);
633 }
634
635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 while (tcp_win_from_space(rcvmem) < tp->advmss)
637 rcvmem += 128;
638
639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
640 if (rcvbuf > sk->sk_rcvbuf) {
641 sk->sk_rcvbuf = rcvbuf;
642
643 /* Make the window clamp follow along. */
644 tp->window_clamp = rcvwin;
645 }
646 }
647 tp->rcvq_space.space = copied;
648
649 new_measure:
650 tp->rcvq_space.seq = tp->copied_seq;
651 tp->rcvq_space.time = tp->tcp_mstamp;
652 }
653
654 /* There is something which you must keep in mind when you analyze the
655 * behavior of the tp->ato delayed ack timeout interval. When a
656 * connection starts up, we want to ack as quickly as possible. The
657 * problem is that "good" TCP's do slow start at the beginning of data
658 * transmission. The means that until we send the first few ACK's the
659 * sender will sit on his end and only queue most of his data, because
660 * he can only send snd_cwnd unacked packets at any given time. For
661 * each ACK we send, he increments snd_cwnd and transmits more of his
662 * queue. -DaveM
663 */
664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
665 {
666 struct tcp_sock *tp = tcp_sk(sk);
667 struct inet_connection_sock *icsk = inet_csk(sk);
668 u32 now;
669
670 inet_csk_schedule_ack(sk);
671
672 tcp_measure_rcv_mss(sk, skb);
673
674 tcp_rcv_rtt_measure(tp);
675
676 now = tcp_jiffies32;
677
678 if (!icsk->icsk_ack.ato) {
679 /* The _first_ data packet received, initialize
680 * delayed ACK engine.
681 */
682 tcp_incr_quickack(sk);
683 icsk->icsk_ack.ato = TCP_ATO_MIN;
684 } else {
685 int m = now - icsk->icsk_ack.lrcvtime;
686
687 if (m <= TCP_ATO_MIN / 2) {
688 /* The fastest case is the first. */
689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
690 } else if (m < icsk->icsk_ack.ato) {
691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
692 if (icsk->icsk_ack.ato > icsk->icsk_rto)
693 icsk->icsk_ack.ato = icsk->icsk_rto;
694 } else if (m > icsk->icsk_rto) {
695 /* Too long gap. Apparently sender failed to
696 * restart window, so that we send ACKs quickly.
697 */
698 tcp_incr_quickack(sk);
699 sk_mem_reclaim(sk);
700 }
701 }
702 icsk->icsk_ack.lrcvtime = now;
703
704 tcp_ecn_check_ce(tp, skb);
705
706 if (skb->len >= 128)
707 tcp_grow_window(sk, skb);
708 }
709
710 /* Called to compute a smoothed rtt estimate. The data fed to this
711 * routine either comes from timestamps, or from segments that were
712 * known _not_ to have been retransmitted [see Karn/Partridge
713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
714 * piece by Van Jacobson.
715 * NOTE: the next three routines used to be one big routine.
716 * To save cycles in the RFC 1323 implementation it was better to break
717 * it up into three procedures. -- erics
718 */
719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
720 {
721 struct tcp_sock *tp = tcp_sk(sk);
722 long m = mrtt_us; /* RTT */
723 u32 srtt = tp->srtt_us;
724
725 /* The following amusing code comes from Jacobson's
726 * article in SIGCOMM '88. Note that rtt and mdev
727 * are scaled versions of rtt and mean deviation.
728 * This is designed to be as fast as possible
729 * m stands for "measurement".
730 *
731 * On a 1990 paper the rto value is changed to:
732 * RTO = rtt + 4 * mdev
733 *
734 * Funny. This algorithm seems to be very broken.
735 * These formulae increase RTO, when it should be decreased, increase
736 * too slowly, when it should be increased quickly, decrease too quickly
737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
738 * does not matter how to _calculate_ it. Seems, it was trap
739 * that VJ failed to avoid. 8)
740 */
741 if (srtt != 0) {
742 m -= (srtt >> 3); /* m is now error in rtt est */
743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
744 if (m < 0) {
745 m = -m; /* m is now abs(error) */
746 m -= (tp->mdev_us >> 2); /* similar update on mdev */
747 /* This is similar to one of Eifel findings.
748 * Eifel blocks mdev updates when rtt decreases.
749 * This solution is a bit different: we use finer gain
750 * for mdev in this case (alpha*beta).
751 * Like Eifel it also prevents growth of rto,
752 * but also it limits too fast rto decreases,
753 * happening in pure Eifel.
754 */
755 if (m > 0)
756 m >>= 3;
757 } else {
758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 }
760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
761 if (tp->mdev_us > tp->mdev_max_us) {
762 tp->mdev_max_us = tp->mdev_us;
763 if (tp->mdev_max_us > tp->rttvar_us)
764 tp->rttvar_us = tp->mdev_max_us;
765 }
766 if (after(tp->snd_una, tp->rtt_seq)) {
767 if (tp->mdev_max_us < tp->rttvar_us)
768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
769 tp->rtt_seq = tp->snd_nxt;
770 tp->mdev_max_us = tcp_rto_min_us(sk);
771 }
772 } else {
773 /* no previous measure. */
774 srtt = m << 3; /* take the measured time to be rtt */
775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
777 tp->mdev_max_us = tp->rttvar_us;
778 tp->rtt_seq = tp->snd_nxt;
779 }
780 tp->srtt_us = max(1U, srtt);
781 }
782
783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
784 * Note: TCP stack does not yet implement pacing.
785 * FQ packet scheduler can be used to implement cheap but effective
786 * TCP pacing, to smooth the burst on large writes when packets
787 * in flight is significantly lower than cwnd (or rwin)
788 */
789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
791
792 static void tcp_update_pacing_rate(struct sock *sk)
793 {
794 const struct tcp_sock *tp = tcp_sk(sk);
795 u64 rate;
796
797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799
800 /* current rate is (cwnd * mss) / srtt
801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
802 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 *
804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
806 * end of slow start and should slow down.
807 */
808 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
809 rate *= sysctl_tcp_pacing_ss_ratio;
810 else
811 rate *= sysctl_tcp_pacing_ca_ratio;
812
813 rate *= max(tp->snd_cwnd, tp->packets_out);
814
815 if (likely(tp->srtt_us))
816 do_div(rate, tp->srtt_us);
817
818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
819 * without any lock. We want to make sure compiler wont store
820 * intermediate values in this location.
821 */
822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
823 sk->sk_max_pacing_rate);
824 }
825
826 /* Calculate rto without backoff. This is the second half of Van Jacobson's
827 * routine referred to above.
828 */
829 static void tcp_set_rto(struct sock *sk)
830 {
831 const struct tcp_sock *tp = tcp_sk(sk);
832 /* Old crap is replaced with new one. 8)
833 *
834 * More seriously:
835 * 1. If rtt variance happened to be less 50msec, it is hallucination.
836 * It cannot be less due to utterly erratic ACK generation made
837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
838 * to do with delayed acks, because at cwnd>2 true delack timeout
839 * is invisible. Actually, Linux-2.4 also generates erratic
840 * ACKs in some circumstances.
841 */
842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
843
844 /* 2. Fixups made earlier cannot be right.
845 * If we do not estimate RTO correctly without them,
846 * all the algo is pure shit and should be replaced
847 * with correct one. It is exactly, which we pretend to do.
848 */
849
850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
851 * guarantees that rto is higher.
852 */
853 tcp_bound_rto(sk);
854 }
855
856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
857 {
858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
859
860 if (!cwnd)
861 cwnd = TCP_INIT_CWND;
862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
863 }
864
865 /*
866 * Packet counting of FACK is based on in-order assumptions, therefore TCP
867 * disables it when reordering is detected
868 */
869 void tcp_disable_fack(struct tcp_sock *tp)
870 {
871 /* RFC3517 uses different metric in lost marker => reset on change */
872 if (tcp_is_fack(tp))
873 tp->lost_skb_hint = NULL;
874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882
883 static void tcp_update_reordering(struct sock *sk, const int metric,
884 const int ts)
885 {
886 struct tcp_sock *tp = tcp_sk(sk);
887 int mib_idx;
888
889 if (WARN_ON_ONCE(metric < 0))
890 return;
891
892 if (metric > tp->reordering) {
893 tp->reordering = min(sysctl_tcp_max_reordering, metric);
894
895 #if FASTRETRANS_DEBUG > 1
896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 tp->reordering,
899 tp->fackets_out,
900 tp->sacked_out,
901 tp->undo_marker ? tp->undo_retrans : 0);
902 #endif
903 tcp_disable_fack(tp);
904 }
905
906 tp->rack.reord = 1;
907
908 /* This exciting event is worth to be remembered. 8) */
909 if (ts)
910 mib_idx = LINUX_MIB_TCPTSREORDER;
911 else if (tcp_is_reno(tp))
912 mib_idx = LINUX_MIB_TCPRENOREORDER;
913 else if (tcp_is_fack(tp))
914 mib_idx = LINUX_MIB_TCPFACKREORDER;
915 else
916 mib_idx = LINUX_MIB_TCPSACKREORDER;
917
918 NET_INC_STATS(sock_net(sk), mib_idx);
919 }
920
921 /* This must be called before lost_out is incremented */
922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
923 {
924 if (!tp->retransmit_skb_hint ||
925 before(TCP_SKB_CB(skb)->seq,
926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
927 tp->retransmit_skb_hint = skb;
928 }
929
930 /* Sum the number of packets on the wire we have marked as lost.
931 * There are two cases we care about here:
932 * a) Packet hasn't been marked lost (nor retransmitted),
933 * and this is the first loss.
934 * b) Packet has been marked both lost and retransmitted,
935 * and this means we think it was lost again.
936 */
937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 __u8 sacked = TCP_SKB_CB(skb)->sacked;
940
941 if (!(sacked & TCPCB_LOST) ||
942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
943 tp->lost += tcp_skb_pcount(skb);
944 }
945
946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
947 {
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tcp_verify_retransmit_hint(tp, skb);
950
951 tp->lost_out += tcp_skb_pcount(skb);
952 tcp_sum_lost(tp, skb);
953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 }
955 }
956
957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
958 {
959 tcp_verify_retransmit_hint(tp, skb);
960
961 tcp_sum_lost(tp, skb);
962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
963 tp->lost_out += tcp_skb_pcount(skb);
964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
965 }
966 }
967
968 /* This procedure tags the retransmission queue when SACKs arrive.
969 *
970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
971 * Packets in queue with these bits set are counted in variables
972 * sacked_out, retrans_out and lost_out, correspondingly.
973 *
974 * Valid combinations are:
975 * Tag InFlight Description
976 * 0 1 - orig segment is in flight.
977 * S 0 - nothing flies, orig reached receiver.
978 * L 0 - nothing flies, orig lost by net.
979 * R 2 - both orig and retransmit are in flight.
980 * L|R 1 - orig is lost, retransmit is in flight.
981 * S|R 1 - orig reached receiver, retrans is still in flight.
982 * (L|S|R is logically valid, it could occur when L|R is sacked,
983 * but it is equivalent to plain S and code short-curcuits it to S.
984 * L|S is logically invalid, it would mean -1 packet in flight 8))
985 *
986 * These 6 states form finite state machine, controlled by the following events:
987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
989 * 3. Loss detection event of two flavors:
990 * A. Scoreboard estimator decided the packet is lost.
991 * A'. Reno "three dupacks" marks head of queue lost.
992 * A''. Its FACK modification, head until snd.fack is lost.
993 * B. SACK arrives sacking SND.NXT at the moment, when the
994 * segment was retransmitted.
995 * 4. D-SACK added new rule: D-SACK changes any tag to S.
996 *
997 * It is pleasant to note, that state diagram turns out to be commutative,
998 * so that we are allowed not to be bothered by order of our actions,
999 * when multiple events arrive simultaneously. (see the function below).
1000 *
1001 * Reordering detection.
1002 * --------------------
1003 * Reordering metric is maximal distance, which a packet can be displaced
1004 * in packet stream. With SACKs we can estimate it:
1005 *
1006 * 1. SACK fills old hole and the corresponding segment was not
1007 * ever retransmitted -> reordering. Alas, we cannot use it
1008 * when segment was retransmitted.
1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010 * for retransmitted and already SACKed segment -> reordering..
1011 * Both of these heuristics are not used in Loss state, when we cannot
1012 * account for retransmits accurately.
1013 *
1014 * SACK block validation.
1015 * ----------------------
1016 *
1017 * SACK block range validation checks that the received SACK block fits to
1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019 * Note that SND.UNA is not included to the range though being valid because
1020 * it means that the receiver is rather inconsistent with itself reporting
1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022 * perfectly valid, however, in light of RFC2018 which explicitly states
1023 * that "SACK block MUST reflect the newest segment. Even if the newest
1024 * segment is going to be discarded ...", not that it looks very clever
1025 * in case of head skb. Due to potentional receiver driven attacks, we
1026 * choose to avoid immediate execution of a walk in write queue due to
1027 * reneging and defer head skb's loss recovery to standard loss recovery
1028 * procedure that will eventually trigger (nothing forbids us doing this).
1029 *
1030 * Implements also blockage to start_seq wrap-around. Problem lies in the
1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032 * there's no guarantee that it will be before snd_nxt (n). The problem
1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034 * wrap (s_w):
1035 *
1036 * <- outs wnd -> <- wrapzone ->
1037 * u e n u_w e_w s n_w
1038 * | | | | | | |
1039 * |<------------+------+----- TCP seqno space --------------+---------->|
1040 * ...-- <2^31 ->| |<--------...
1041 * ...---- >2^31 ------>| |<--------...
1042 *
1043 * Current code wouldn't be vulnerable but it's better still to discard such
1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047 * equal to the ideal case (infinite seqno space without wrap caused issues).
1048 *
1049 * With D-SACK the lower bound is extended to cover sequence space below
1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1051 * again, D-SACK block must not to go across snd_una (for the same reason as
1052 * for the normal SACK blocks, explained above). But there all simplicity
1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054 * fully below undo_marker they do not affect behavior in anyway and can
1055 * therefore be safely ignored. In rare cases (which are more or less
1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057 * fragmentation and packet reordering past skb's retransmission. To consider
1058 * them correctly, the acceptable range must be extended even more though
1059 * the exact amount is rather hard to quantify. However, tp->max_window can
1060 * be used as an exaggerated estimate.
1061 */
1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063 u32 start_seq, u32 end_seq)
1064 {
1065 /* Too far in future, or reversed (interpretation is ambiguous) */
1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1067 return false;
1068
1069 /* Nasty start_seq wrap-around check (see comments above) */
1070 if (!before(start_seq, tp->snd_nxt))
1071 return false;
1072
1073 /* In outstanding window? ...This is valid exit for D-SACKs too.
1074 * start_seq == snd_una is non-sensical (see comments above)
1075 */
1076 if (after(start_seq, tp->snd_una))
1077 return true;
1078
1079 if (!is_dsack || !tp->undo_marker)
1080 return false;
1081
1082 /* ...Then it's D-SACK, and must reside below snd_una completely */
1083 if (after(end_seq, tp->snd_una))
1084 return false;
1085
1086 if (!before(start_seq, tp->undo_marker))
1087 return true;
1088
1089 /* Too old */
1090 if (!after(end_seq, tp->undo_marker))
1091 return false;
1092
1093 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1094 * start_seq < undo_marker and end_seq >= undo_marker.
1095 */
1096 return !before(start_seq, end_seq - tp->max_window);
1097 }
1098
1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100 struct tcp_sack_block_wire *sp, int num_sacks,
1101 u32 prior_snd_una)
1102 {
1103 struct tcp_sock *tp = tcp_sk(sk);
1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1106 bool dup_sack = false;
1107
1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1109 dup_sack = true;
1110 tcp_dsack_seen(tp);
1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1112 } else if (num_sacks > 1) {
1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1115
1116 if (!after(end_seq_0, end_seq_1) &&
1117 !before(start_seq_0, start_seq_1)) {
1118 dup_sack = true;
1119 tcp_dsack_seen(tp);
1120 NET_INC_STATS(sock_net(sk),
1121 LINUX_MIB_TCPDSACKOFORECV);
1122 }
1123 }
1124
1125 /* D-SACK for already forgotten data... Do dumb counting. */
1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1127 !after(end_seq_0, prior_snd_una) &&
1128 after(end_seq_0, tp->undo_marker))
1129 tp->undo_retrans--;
1130
1131 return dup_sack;
1132 }
1133
1134 struct tcp_sacktag_state {
1135 int reord;
1136 int fack_count;
1137 /* Timestamps for earliest and latest never-retransmitted segment
1138 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1139 * but congestion control should still get an accurate delay signal.
1140 */
1141 u64 first_sackt;
1142 u64 last_sackt;
1143 struct rate_sample *rate;
1144 int flag;
1145 };
1146
1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148 * the incoming SACK may not exactly match but we can find smaller MSS
1149 * aligned portion of it that matches. Therefore we might need to fragment
1150 * which may fail and creates some hassle (caller must handle error case
1151 * returns).
1152 *
1153 * FIXME: this could be merged to shift decision code
1154 */
1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1156 u32 start_seq, u32 end_seq)
1157 {
1158 int err;
1159 bool in_sack;
1160 unsigned int pkt_len;
1161 unsigned int mss;
1162
1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165
1166 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1168 mss = tcp_skb_mss(skb);
1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170
1171 if (!in_sack) {
1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1173 if (pkt_len < mss)
1174 pkt_len = mss;
1175 } else {
1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177 if (pkt_len < mss)
1178 return -EINVAL;
1179 }
1180
1181 /* Round if necessary so that SACKs cover only full MSSes
1182 * and/or the remaining small portion (if present)
1183 */
1184 if (pkt_len > mss) {
1185 unsigned int new_len = (pkt_len / mss) * mss;
1186 if (!in_sack && new_len < pkt_len)
1187 new_len += mss;
1188 pkt_len = new_len;
1189 }
1190
1191 if (pkt_len >= skb->len && !in_sack)
1192 return 0;
1193
1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1195 if (err < 0)
1196 return err;
1197 }
1198
1199 return in_sack;
1200 }
1201
1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1203 static u8 tcp_sacktag_one(struct sock *sk,
1204 struct tcp_sacktag_state *state, u8 sacked,
1205 u32 start_seq, u32 end_seq,
1206 int dup_sack, int pcount,
1207 u64 xmit_time)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 int fack_count = state->fack_count;
1211
1212 /* Account D-SACK for retransmitted packet. */
1213 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1214 if (tp->undo_marker && tp->undo_retrans > 0 &&
1215 after(end_seq, tp->undo_marker))
1216 tp->undo_retrans--;
1217 if (sacked & TCPCB_SACKED_ACKED)
1218 state->reord = min(fack_count, state->reord);
1219 }
1220
1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1222 if (!after(end_seq, tp->snd_una))
1223 return sacked;
1224
1225 if (!(sacked & TCPCB_SACKED_ACKED)) {
1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1227
1228 if (sacked & TCPCB_SACKED_RETRANS) {
1229 /* If the segment is not tagged as lost,
1230 * we do not clear RETRANS, believing
1231 * that retransmission is still in flight.
1232 */
1233 if (sacked & TCPCB_LOST) {
1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1235 tp->lost_out -= pcount;
1236 tp->retrans_out -= pcount;
1237 }
1238 } else {
1239 if (!(sacked & TCPCB_RETRANS)) {
1240 /* New sack for not retransmitted frame,
1241 * which was in hole. It is reordering.
1242 */
1243 if (before(start_seq,
1244 tcp_highest_sack_seq(tp)))
1245 state->reord = min(fack_count,
1246 state->reord);
1247 if (!after(end_seq, tp->high_seq))
1248 state->flag |= FLAG_ORIG_SACK_ACKED;
1249 if (state->first_sackt == 0)
1250 state->first_sackt = xmit_time;
1251 state->last_sackt = xmit_time;
1252 }
1253
1254 if (sacked & TCPCB_LOST) {
1255 sacked &= ~TCPCB_LOST;
1256 tp->lost_out -= pcount;
1257 }
1258 }
1259
1260 sacked |= TCPCB_SACKED_ACKED;
1261 state->flag |= FLAG_DATA_SACKED;
1262 tp->sacked_out += pcount;
1263 tp->delivered += pcount; /* Out-of-order packets delivered */
1264
1265 fack_count += pcount;
1266
1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1270 tp->lost_cnt_hint += pcount;
1271
1272 if (fack_count > tp->fackets_out)
1273 tp->fackets_out = fack_count;
1274 }
1275
1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1277 * frames and clear it. undo_retrans is decreased above, L|R frames
1278 * are accounted above as well.
1279 */
1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1281 sacked &= ~TCPCB_SACKED_RETRANS;
1282 tp->retrans_out -= pcount;
1283 }
1284
1285 return sacked;
1286 }
1287
1288 /* Shift newly-SACKed bytes from this skb to the immediately previous
1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1290 */
1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1292 struct tcp_sacktag_state *state,
1293 unsigned int pcount, int shifted, int mss,
1294 bool dup_sack)
1295 {
1296 struct tcp_sock *tp = tcp_sk(sk);
1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1300
1301 BUG_ON(!pcount);
1302
1303 /* Adjust counters and hints for the newly sacked sequence
1304 * range but discard the return value since prev is already
1305 * marked. We must tag the range first because the seq
1306 * advancement below implicitly advances
1307 * tcp_highest_sack_seq() when skb is highest_sack.
1308 */
1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1310 start_seq, end_seq, dup_sack, pcount,
1311 skb->skb_mstamp);
1312 tcp_rate_skb_delivered(sk, skb, state->rate);
1313
1314 if (skb == tp->lost_skb_hint)
1315 tp->lost_cnt_hint += pcount;
1316
1317 TCP_SKB_CB(prev)->end_seq += shifted;
1318 TCP_SKB_CB(skb)->seq += shifted;
1319
1320 tcp_skb_pcount_add(prev, pcount);
1321 BUG_ON(tcp_skb_pcount(skb) < pcount);
1322 tcp_skb_pcount_add(skb, -pcount);
1323
1324 /* When we're adding to gso_segs == 1, gso_size will be zero,
1325 * in theory this shouldn't be necessary but as long as DSACK
1326 * code can come after this skb later on it's better to keep
1327 * setting gso_size to something.
1328 */
1329 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1330 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1331
1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1333 if (tcp_skb_pcount(skb) <= 1)
1334 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1335
1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1338
1339 if (skb->len > 0) {
1340 BUG_ON(!tcp_skb_pcount(skb));
1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1342 return false;
1343 }
1344
1345 /* Whole SKB was eaten :-) */
1346
1347 if (skb == tp->retransmit_skb_hint)
1348 tp->retransmit_skb_hint = prev;
1349 if (skb == tp->lost_skb_hint) {
1350 tp->lost_skb_hint = prev;
1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1352 }
1353
1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1357 TCP_SKB_CB(prev)->end_seq++;
1358
1359 if (skb == tcp_highest_sack(sk))
1360 tcp_advance_highest_sack(sk, skb);
1361
1362 tcp_skb_collapse_tstamp(prev, skb);
1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1365
1366 tcp_unlink_write_queue(skb, sk);
1367 sk_wmem_free_skb(sk, skb);
1368
1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1370
1371 return true;
1372 }
1373
1374 /* I wish gso_size would have a bit more sane initialization than
1375 * something-or-zero which complicates things
1376 */
1377 static int tcp_skb_seglen(const struct sk_buff *skb)
1378 {
1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1380 }
1381
1382 /* Shifting pages past head area doesn't work */
1383 static int skb_can_shift(const struct sk_buff *skb)
1384 {
1385 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1386 }
1387
1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1389 * skb.
1390 */
1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 u32 start_seq, u32 end_seq,
1394 bool dup_sack)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *prev;
1398 int mss;
1399 int pcount = 0;
1400 int len;
1401 int in_sack;
1402
1403 if (!sk_can_gso(sk))
1404 goto fallback;
1405
1406 /* Normally R but no L won't result in plain S */
1407 if (!dup_sack &&
1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1409 goto fallback;
1410 if (!skb_can_shift(skb))
1411 goto fallback;
1412 /* This frame is about to be dropped (was ACKed). */
1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1414 goto fallback;
1415
1416 /* Can only happen with delayed DSACK + discard craziness */
1417 if (unlikely(skb == tcp_write_queue_head(sk)))
1418 goto fallback;
1419 prev = tcp_write_queue_prev(sk, skb);
1420
1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1422 goto fallback;
1423
1424 if (!tcp_skb_can_collapse_to(prev))
1425 goto fallback;
1426
1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1429
1430 if (in_sack) {
1431 len = skb->len;
1432 pcount = tcp_skb_pcount(skb);
1433 mss = tcp_skb_seglen(skb);
1434
1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1436 * drop this restriction as unnecessary
1437 */
1438 if (mss != tcp_skb_seglen(prev))
1439 goto fallback;
1440 } else {
1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1442 goto noop;
1443 /* CHECKME: This is non-MSS split case only?, this will
1444 * cause skipped skbs due to advancing loop btw, original
1445 * has that feature too
1446 */
1447 if (tcp_skb_pcount(skb) <= 1)
1448 goto noop;
1449
1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1451 if (!in_sack) {
1452 /* TODO: head merge to next could be attempted here
1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1454 * though it might not be worth of the additional hassle
1455 *
1456 * ...we can probably just fallback to what was done
1457 * previously. We could try merging non-SACKed ones
1458 * as well but it probably isn't going to buy off
1459 * because later SACKs might again split them, and
1460 * it would make skb timestamp tracking considerably
1461 * harder problem.
1462 */
1463 goto fallback;
1464 }
1465
1466 len = end_seq - TCP_SKB_CB(skb)->seq;
1467 BUG_ON(len < 0);
1468 BUG_ON(len > skb->len);
1469
1470 /* MSS boundaries should be honoured or else pcount will
1471 * severely break even though it makes things bit trickier.
1472 * Optimize common case to avoid most of the divides
1473 */
1474 mss = tcp_skb_mss(skb);
1475
1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1477 * drop this restriction as unnecessary
1478 */
1479 if (mss != tcp_skb_seglen(prev))
1480 goto fallback;
1481
1482 if (len == mss) {
1483 pcount = 1;
1484 } else if (len < mss) {
1485 goto noop;
1486 } else {
1487 pcount = len / mss;
1488 len = pcount * mss;
1489 }
1490 }
1491
1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1494 goto fallback;
1495
1496 if (!skb_shift(prev, skb, len))
1497 goto fallback;
1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1499 goto out;
1500
1501 /* Hole filled allows collapsing with the next as well, this is very
1502 * useful when hole on every nth skb pattern happens
1503 */
1504 if (prev == tcp_write_queue_tail(sk))
1505 goto out;
1506 skb = tcp_write_queue_next(sk, prev);
1507
1508 if (!skb_can_shift(skb) ||
1509 (skb == tcp_send_head(sk)) ||
1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 (mss != tcp_skb_seglen(skb)))
1512 goto out;
1513
1514 len = skb->len;
1515 if (skb_shift(prev, skb, len)) {
1516 pcount += tcp_skb_pcount(skb);
1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1518 }
1519
1520 out:
1521 state->fack_count += pcount;
1522 return prev;
1523
1524 noop:
1525 return skb;
1526
1527 fallback:
1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 return NULL;
1530 }
1531
1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 struct tcp_sack_block *next_dup,
1534 struct tcp_sacktag_state *state,
1535 u32 start_seq, u32 end_seq,
1536 bool dup_sack_in)
1537 {
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct sk_buff *tmp;
1540
1541 tcp_for_write_queue_from(skb, sk) {
1542 int in_sack = 0;
1543 bool dup_sack = dup_sack_in;
1544
1545 if (skb == tcp_send_head(sk))
1546 break;
1547
1548 /* queue is in-order => we can short-circuit the walk early */
1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1550 break;
1551
1552 if (next_dup &&
1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1554 in_sack = tcp_match_skb_to_sack(sk, skb,
1555 next_dup->start_seq,
1556 next_dup->end_seq);
1557 if (in_sack > 0)
1558 dup_sack = true;
1559 }
1560
1561 /* skb reference here is a bit tricky to get right, since
1562 * shifting can eat and free both this skb and the next,
1563 * so not even _safe variant of the loop is enough.
1564 */
1565 if (in_sack <= 0) {
1566 tmp = tcp_shift_skb_data(sk, skb, state,
1567 start_seq, end_seq, dup_sack);
1568 if (tmp) {
1569 if (tmp != skb) {
1570 skb = tmp;
1571 continue;
1572 }
1573
1574 in_sack = 0;
1575 } else {
1576 in_sack = tcp_match_skb_to_sack(sk, skb,
1577 start_seq,
1578 end_seq);
1579 }
1580 }
1581
1582 if (unlikely(in_sack < 0))
1583 break;
1584
1585 if (in_sack) {
1586 TCP_SKB_CB(skb)->sacked =
1587 tcp_sacktag_one(sk,
1588 state,
1589 TCP_SKB_CB(skb)->sacked,
1590 TCP_SKB_CB(skb)->seq,
1591 TCP_SKB_CB(skb)->end_seq,
1592 dup_sack,
1593 tcp_skb_pcount(skb),
1594 skb->skb_mstamp);
1595 tcp_rate_skb_delivered(sk, skb, state->rate);
1596
1597 if (!before(TCP_SKB_CB(skb)->seq,
1598 tcp_highest_sack_seq(tp)))
1599 tcp_advance_highest_sack(sk, skb);
1600 }
1601
1602 state->fack_count += tcp_skb_pcount(skb);
1603 }
1604 return skb;
1605 }
1606
1607 /* Avoid all extra work that is being done by sacktag while walking in
1608 * a normal way
1609 */
1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
1613 {
1614 tcp_for_write_queue_from(skb, sk) {
1615 if (skb == tcp_send_head(sk))
1616 break;
1617
1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1619 break;
1620
1621 state->fack_count += tcp_skb_pcount(skb);
1622 }
1623 return skb;
1624 }
1625
1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 struct sock *sk,
1628 struct tcp_sack_block *next_dup,
1629 struct tcp_sacktag_state *state,
1630 u32 skip_to_seq)
1631 {
1632 if (!next_dup)
1633 return skb;
1634
1635 if (before(next_dup->start_seq, skip_to_seq)) {
1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 next_dup->start_seq, next_dup->end_seq,
1639 1);
1640 }
1641
1642 return skb;
1643 }
1644
1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1646 {
1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648 }
1649
1650 static int
1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1652 u32 prior_snd_una, struct tcp_sacktag_state *state)
1653 {
1654 struct tcp_sock *tp = tcp_sk(sk);
1655 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 TCP_SKB_CB(ack_skb)->sacked);
1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1658 struct tcp_sack_block sp[TCP_NUM_SACKS];
1659 struct tcp_sack_block *cache;
1660 struct sk_buff *skb;
1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1662 int used_sacks;
1663 bool found_dup_sack = false;
1664 int i, j;
1665 int first_sack_index;
1666
1667 state->flag = 0;
1668 state->reord = tp->packets_out;
1669
1670 if (!tp->sacked_out) {
1671 if (WARN_ON(tp->fackets_out))
1672 tp->fackets_out = 0;
1673 tcp_highest_sack_reset(sk);
1674 }
1675
1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677 num_sacks, prior_snd_una);
1678 if (found_dup_sack) {
1679 state->flag |= FLAG_DSACKING_ACK;
1680 tp->delivered++; /* A spurious retransmission is delivered */
1681 }
1682
1683 /* Eliminate too old ACKs, but take into
1684 * account more or less fresh ones, they can
1685 * contain valid SACK info.
1686 */
1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 return 0;
1689
1690 if (!tp->packets_out)
1691 goto out;
1692
1693 used_sacks = 0;
1694 first_sack_index = 0;
1695 for (i = 0; i < num_sacks; i++) {
1696 bool dup_sack = !i && found_dup_sack;
1697
1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1700
1701 if (!tcp_is_sackblock_valid(tp, dup_sack,
1702 sp[used_sacks].start_seq,
1703 sp[used_sacks].end_seq)) {
1704 int mib_idx;
1705
1706 if (dup_sack) {
1707 if (!tp->undo_marker)
1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1709 else
1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1711 } else {
1712 /* Don't count olds caused by ACK reordering */
1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1714 !after(sp[used_sacks].end_seq, tp->snd_una))
1715 continue;
1716 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 }
1718
1719 NET_INC_STATS(sock_net(sk), mib_idx);
1720 if (i == 0)
1721 first_sack_index = -1;
1722 continue;
1723 }
1724
1725 /* Ignore very old stuff early */
1726 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727 continue;
1728
1729 used_sacks++;
1730 }
1731
1732 /* order SACK blocks to allow in order walk of the retrans queue */
1733 for (i = used_sacks - 1; i > 0; i--) {
1734 for (j = 0; j < i; j++) {
1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1736 swap(sp[j], sp[j + 1]);
1737
1738 /* Track where the first SACK block goes to */
1739 if (j == first_sack_index)
1740 first_sack_index = j + 1;
1741 }
1742 }
1743 }
1744
1745 skb = tcp_write_queue_head(sk);
1746 state->fack_count = 0;
1747 i = 0;
1748
1749 if (!tp->sacked_out) {
1750 /* It's already past, so skip checking against it */
1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752 } else {
1753 cache = tp->recv_sack_cache;
1754 /* Skip empty blocks in at head of the cache */
1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1756 !cache->end_seq)
1757 cache++;
1758 }
1759
1760 while (i < used_sacks) {
1761 u32 start_seq = sp[i].start_seq;
1762 u32 end_seq = sp[i].end_seq;
1763 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1764 struct tcp_sack_block *next_dup = NULL;
1765
1766 if (found_dup_sack && ((i + 1) == first_sack_index))
1767 next_dup = &sp[i + 1];
1768
1769 /* Skip too early cached blocks */
1770 while (tcp_sack_cache_ok(tp, cache) &&
1771 !before(start_seq, cache->end_seq))
1772 cache++;
1773
1774 /* Can skip some work by looking recv_sack_cache? */
1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1776 after(end_seq, cache->start_seq)) {
1777
1778 /* Head todo? */
1779 if (before(start_seq, cache->start_seq)) {
1780 skb = tcp_sacktag_skip(skb, sk, state,
1781 start_seq);
1782 skb = tcp_sacktag_walk(skb, sk, next_dup,
1783 state,
1784 start_seq,
1785 cache->start_seq,
1786 dup_sack);
1787 }
1788
1789 /* Rest of the block already fully processed? */
1790 if (!after(end_seq, cache->end_seq))
1791 goto advance_sp;
1792
1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1794 state,
1795 cache->end_seq);
1796
1797 /* ...tail remains todo... */
1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1799 /* ...but better entrypoint exists! */
1800 skb = tcp_highest_sack(sk);
1801 if (!skb)
1802 break;
1803 state->fack_count = tp->fackets_out;
1804 cache++;
1805 goto walk;
1806 }
1807
1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1809 /* Check overlap against next cached too (past this one already) */
1810 cache++;
1811 continue;
1812 }
1813
1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815 skb = tcp_highest_sack(sk);
1816 if (!skb)
1817 break;
1818 state->fack_count = tp->fackets_out;
1819 }
1820 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1821
1822 walk:
1823 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1824 start_seq, end_seq, dup_sack);
1825
1826 advance_sp:
1827 i++;
1828 }
1829
1830 /* Clear the head of the cache sack blocks so we can skip it next time */
1831 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1832 tp->recv_sack_cache[i].start_seq = 0;
1833 tp->recv_sack_cache[i].end_seq = 0;
1834 }
1835 for (j = 0; j < used_sacks; j++)
1836 tp->recv_sack_cache[i++] = sp[j];
1837
1838 if ((state->reord < tp->fackets_out) &&
1839 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1840 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1841
1842 tcp_verify_left_out(tp);
1843 out:
1844
1845 #if FASTRETRANS_DEBUG > 0
1846 WARN_ON((int)tp->sacked_out < 0);
1847 WARN_ON((int)tp->lost_out < 0);
1848 WARN_ON((int)tp->retrans_out < 0);
1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850 #endif
1851 return state->flag;
1852 }
1853
1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856 */
1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858 {
1859 u32 holes;
1860
1861 holes = max(tp->lost_out, 1U);
1862 holes = min(holes, tp->packets_out);
1863
1864 if ((tp->sacked_out + holes) > tp->packets_out) {
1865 tp->sacked_out = tp->packets_out - holes;
1866 return true;
1867 }
1868 return false;
1869 }
1870
1871 /* If we receive more dupacks than we expected counting segments
1872 * in assumption of absent reordering, interpret this as reordering.
1873 * The only another reason could be bug in receiver TCP.
1874 */
1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876 {
1877 struct tcp_sock *tp = tcp_sk(sk);
1878 if (tcp_limit_reno_sacked(tp))
1879 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1880 }
1881
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1883
1884 static void tcp_add_reno_sack(struct sock *sk)
1885 {
1886 struct tcp_sock *tp = tcp_sk(sk);
1887 u32 prior_sacked = tp->sacked_out;
1888
1889 tp->sacked_out++;
1890 tcp_check_reno_reordering(sk, 0);
1891 if (tp->sacked_out > prior_sacked)
1892 tp->delivered++; /* Some out-of-order packet is delivered */
1893 tcp_verify_left_out(tp);
1894 }
1895
1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1897
1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1899 {
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1902 if (acked > 0) {
1903 /* One ACK acked hole. The rest eat duplicate ACKs. */
1904 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1905 if (acked - 1 >= tp->sacked_out)
1906 tp->sacked_out = 0;
1907 else
1908 tp->sacked_out -= acked - 1;
1909 }
1910 tcp_check_reno_reordering(sk, acked);
1911 tcp_verify_left_out(tp);
1912 }
1913
1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1915 {
1916 tp->sacked_out = 0;
1917 }
1918
1919 void tcp_clear_retrans(struct tcp_sock *tp)
1920 {
1921 tp->retrans_out = 0;
1922 tp->lost_out = 0;
1923 tp->undo_marker = 0;
1924 tp->undo_retrans = -1;
1925 tp->fackets_out = 0;
1926 tp->sacked_out = 0;
1927 }
1928
1929 static inline void tcp_init_undo(struct tcp_sock *tp)
1930 {
1931 tp->undo_marker = tp->snd_una;
1932 /* Retransmission still in flight may cause DSACKs later. */
1933 tp->undo_retrans = tp->retrans_out ? : -1;
1934 }
1935
1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1937 * and reset tags completely, otherwise preserve SACKs. If receiver
1938 * dropped its ofo queue, we will know this due to reneging detection.
1939 */
1940 void tcp_enter_loss(struct sock *sk)
1941 {
1942 const struct inet_connection_sock *icsk = inet_csk(sk);
1943 struct tcp_sock *tp = tcp_sk(sk);
1944 struct net *net = sock_net(sk);
1945 struct sk_buff *skb;
1946 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1947 bool is_reneg; /* is receiver reneging on SACKs? */
1948 bool mark_lost;
1949
1950 /* Reduce ssthresh if it has not yet been made inside this window. */
1951 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1952 !after(tp->high_seq, tp->snd_una) ||
1953 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1954 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1955 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1956 tcp_ca_event(sk, CA_EVENT_LOSS);
1957 tcp_init_undo(tp);
1958 }
1959 tp->snd_cwnd = 1;
1960 tp->snd_cwnd_cnt = 0;
1961 tp->snd_cwnd_stamp = tcp_jiffies32;
1962
1963 tp->retrans_out = 0;
1964 tp->lost_out = 0;
1965
1966 if (tcp_is_reno(tp))
1967 tcp_reset_reno_sack(tp);
1968
1969 skb = tcp_write_queue_head(sk);
1970 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1971 if (is_reneg) {
1972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1973 tp->sacked_out = 0;
1974 tp->fackets_out = 0;
1975 }
1976 tcp_clear_all_retrans_hints(tp);
1977
1978 tcp_for_write_queue(skb, sk) {
1979 if (skb == tcp_send_head(sk))
1980 break;
1981
1982 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1983 is_reneg);
1984 if (mark_lost)
1985 tcp_sum_lost(tp, skb);
1986 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1987 if (mark_lost) {
1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1989 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1990 tp->lost_out += tcp_skb_pcount(skb);
1991 }
1992 }
1993 tcp_verify_left_out(tp);
1994
1995 /* Timeout in disordered state after receiving substantial DUPACKs
1996 * suggests that the degree of reordering is over-estimated.
1997 */
1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1999 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2000 tp->reordering = min_t(unsigned int, tp->reordering,
2001 net->ipv4.sysctl_tcp_reordering);
2002 tcp_set_ca_state(sk, TCP_CA_Loss);
2003 tp->high_seq = tp->snd_nxt;
2004 tcp_ecn_queue_cwr(tp);
2005
2006 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2007 * loss recovery is underway except recurring timeout(s) on
2008 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2009 *
2010 * In theory F-RTO can be used repeatedly during loss recovery.
2011 * In practice this interacts badly with broken middle-boxes that
2012 * falsely raise the receive window, which results in repeated
2013 * timeouts and stop-and-go behavior.
2014 */
2015 tp->frto = sysctl_tcp_frto &&
2016 (new_recovery || icsk->icsk_retransmits) &&
2017 !inet_csk(sk)->icsk_mtup.probe_size;
2018 }
2019
2020 /* If ACK arrived pointing to a remembered SACK, it means that our
2021 * remembered SACKs do not reflect real state of receiver i.e.
2022 * receiver _host_ is heavily congested (or buggy).
2023 *
2024 * To avoid big spurious retransmission bursts due to transient SACK
2025 * scoreboard oddities that look like reneging, we give the receiver a
2026 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2027 * restore sanity to the SACK scoreboard. If the apparent reneging
2028 * persists until this RTO then we'll clear the SACK scoreboard.
2029 */
2030 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2031 {
2032 if (flag & FLAG_SACK_RENEGING) {
2033 struct tcp_sock *tp = tcp_sk(sk);
2034 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2035 msecs_to_jiffies(10));
2036
2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2038 delay, TCP_RTO_MAX);
2039 return true;
2040 }
2041 return false;
2042 }
2043
2044 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2045 {
2046 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2047 }
2048
2049 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2050 * counter when SACK is enabled (without SACK, sacked_out is used for
2051 * that purpose).
2052 *
2053 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2054 * segments up to the highest received SACK block so far and holes in
2055 * between them.
2056 *
2057 * With reordering, holes may still be in flight, so RFC3517 recovery
2058 * uses pure sacked_out (total number of SACKed segments) even though
2059 * it violates the RFC that uses duplicate ACKs, often these are equal
2060 * but when e.g. out-of-window ACKs or packet duplication occurs,
2061 * they differ. Since neither occurs due to loss, TCP should really
2062 * ignore them.
2063 */
2064 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2065 {
2066 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2067 }
2068
2069 /* Linux NewReno/SACK/FACK/ECN state machine.
2070 * --------------------------------------
2071 *
2072 * "Open" Normal state, no dubious events, fast path.
2073 * "Disorder" In all the respects it is "Open",
2074 * but requires a bit more attention. It is entered when
2075 * we see some SACKs or dupacks. It is split of "Open"
2076 * mainly to move some processing from fast path to slow one.
2077 * "CWR" CWND was reduced due to some Congestion Notification event.
2078 * It can be ECN, ICMP source quench, local device congestion.
2079 * "Recovery" CWND was reduced, we are fast-retransmitting.
2080 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2081 *
2082 * tcp_fastretrans_alert() is entered:
2083 * - each incoming ACK, if state is not "Open"
2084 * - when arrived ACK is unusual, namely:
2085 * * SACK
2086 * * Duplicate ACK.
2087 * * ECN ECE.
2088 *
2089 * Counting packets in flight is pretty simple.
2090 *
2091 * in_flight = packets_out - left_out + retrans_out
2092 *
2093 * packets_out is SND.NXT-SND.UNA counted in packets.
2094 *
2095 * retrans_out is number of retransmitted segments.
2096 *
2097 * left_out is number of segments left network, but not ACKed yet.
2098 *
2099 * left_out = sacked_out + lost_out
2100 *
2101 * sacked_out: Packets, which arrived to receiver out of order
2102 * and hence not ACKed. With SACKs this number is simply
2103 * amount of SACKed data. Even without SACKs
2104 * it is easy to give pretty reliable estimate of this number,
2105 * counting duplicate ACKs.
2106 *
2107 * lost_out: Packets lost by network. TCP has no explicit
2108 * "loss notification" feedback from network (for now).
2109 * It means that this number can be only _guessed_.
2110 * Actually, it is the heuristics to predict lossage that
2111 * distinguishes different algorithms.
2112 *
2113 * F.e. after RTO, when all the queue is considered as lost,
2114 * lost_out = packets_out and in_flight = retrans_out.
2115 *
2116 * Essentially, we have now a few algorithms detecting
2117 * lost packets.
2118 *
2119 * If the receiver supports SACK:
2120 *
2121 * RFC6675/3517: It is the conventional algorithm. A packet is
2122 * considered lost if the number of higher sequence packets
2123 * SACKed is greater than or equal the DUPACK thoreshold
2124 * (reordering). This is implemented in tcp_mark_head_lost and
2125 * tcp_update_scoreboard.
2126 *
2127 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2128 * (2017-) that checks timing instead of counting DUPACKs.
2129 * Essentially a packet is considered lost if it's not S/ACKed
2130 * after RTT + reordering_window, where both metrics are
2131 * dynamically measured and adjusted. This is implemented in
2132 * tcp_rack_mark_lost.
2133 *
2134 * FACK (Disabled by default. Subsumbed by RACK):
2135 * It is the simplest heuristics. As soon as we decided
2136 * that something is lost, we decide that _all_ not SACKed
2137 * packets until the most forward SACK are lost. I.e.
2138 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2139 * It is absolutely correct estimate, if network does not reorder
2140 * packets. And it loses any connection to reality when reordering
2141 * takes place. We use FACK by default until reordering
2142 * is suspected on the path to this destination.
2143 *
2144 * If the receiver does not support SACK:
2145 *
2146 * NewReno (RFC6582): in Recovery we assume that one segment
2147 * is lost (classic Reno). While we are in Recovery and
2148 * a partial ACK arrives, we assume that one more packet
2149 * is lost (NewReno). This heuristics are the same in NewReno
2150 * and SACK.
2151 *
2152 * Really tricky (and requiring careful tuning) part of algorithm
2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2154 * The first determines the moment _when_ we should reduce CWND and,
2155 * hence, slow down forward transmission. In fact, it determines the moment
2156 * when we decide that hole is caused by loss, rather than by a reorder.
2157 *
2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2159 * holes, caused by lost packets.
2160 *
2161 * And the most logically complicated part of algorithm is undo
2162 * heuristics. We detect false retransmits due to both too early
2163 * fast retransmit (reordering) and underestimated RTO, analyzing
2164 * timestamps and D-SACKs. When we detect that some segments were
2165 * retransmitted by mistake and CWND reduction was wrong, we undo
2166 * window reduction and abort recovery phase. This logic is hidden
2167 * inside several functions named tcp_try_undo_<something>.
2168 */
2169
2170 /* This function decides, when we should leave Disordered state
2171 * and enter Recovery phase, reducing congestion window.
2172 *
2173 * Main question: may we further continue forward transmission
2174 * with the same cwnd?
2175 */
2176 static bool tcp_time_to_recover(struct sock *sk, int flag)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179
2180 /* Trick#1: The loss is proven. */
2181 if (tp->lost_out)
2182 return true;
2183
2184 /* Not-A-Trick#2 : Classic rule... */
2185 if (tcp_dupack_heuristics(tp) > tp->reordering)
2186 return true;
2187
2188 return false;
2189 }
2190
2191 /* Detect loss in event "A" above by marking head of queue up as lost.
2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2195 * the maximum SACKed segments to pass before reaching this limit.
2196 */
2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2198 {
2199 struct tcp_sock *tp = tcp_sk(sk);
2200 struct sk_buff *skb;
2201 int cnt, oldcnt, lost;
2202 unsigned int mss;
2203 /* Use SACK to deduce losses of new sequences sent during recovery */
2204 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2205
2206 WARN_ON(packets > tp->packets_out);
2207 if (tp->lost_skb_hint) {
2208 skb = tp->lost_skb_hint;
2209 cnt = tp->lost_cnt_hint;
2210 /* Head already handled? */
2211 if (mark_head && skb != tcp_write_queue_head(sk))
2212 return;
2213 } else {
2214 skb = tcp_write_queue_head(sk);
2215 cnt = 0;
2216 }
2217
2218 tcp_for_write_queue_from(skb, sk) {
2219 if (skb == tcp_send_head(sk))
2220 break;
2221 /* TODO: do this better */
2222 /* this is not the most efficient way to do this... */
2223 tp->lost_skb_hint = skb;
2224 tp->lost_cnt_hint = cnt;
2225
2226 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2227 break;
2228
2229 oldcnt = cnt;
2230 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2232 cnt += tcp_skb_pcount(skb);
2233
2234 if (cnt > packets) {
2235 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2237 (oldcnt >= packets))
2238 break;
2239
2240 mss = tcp_skb_mss(skb);
2241 /* If needed, chop off the prefix to mark as lost. */
2242 lost = (packets - oldcnt) * mss;
2243 if (lost < skb->len &&
2244 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2245 break;
2246 cnt = packets;
2247 }
2248
2249 tcp_skb_mark_lost(tp, skb);
2250
2251 if (mark_head)
2252 break;
2253 }
2254 tcp_verify_left_out(tp);
2255 }
2256
2257 /* Account newly detected lost packet(s) */
2258
2259 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2260 {
2261 struct tcp_sock *tp = tcp_sk(sk);
2262
2263 if (tcp_is_reno(tp)) {
2264 tcp_mark_head_lost(sk, 1, 1);
2265 } else if (tcp_is_fack(tp)) {
2266 int lost = tp->fackets_out - tp->reordering;
2267 if (lost <= 0)
2268 lost = 1;
2269 tcp_mark_head_lost(sk, lost, 0);
2270 } else {
2271 int sacked_upto = tp->sacked_out - tp->reordering;
2272 if (sacked_upto >= 0)
2273 tcp_mark_head_lost(sk, sacked_upto, 0);
2274 else if (fast_rexmit)
2275 tcp_mark_head_lost(sk, 1, 1);
2276 }
2277 }
2278
2279 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2280 {
2281 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2282 before(tp->rx_opt.rcv_tsecr, when);
2283 }
2284
2285 /* skb is spurious retransmitted if the returned timestamp echo
2286 * reply is prior to the skb transmission time
2287 */
2288 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2289 const struct sk_buff *skb)
2290 {
2291 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2292 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2293 }
2294
2295 /* Nothing was retransmitted or returned timestamp is less
2296 * than timestamp of the first retransmission.
2297 */
2298 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2299 {
2300 return !tp->retrans_stamp ||
2301 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2302 }
2303
2304 /* Undo procedures. */
2305
2306 /* We can clear retrans_stamp when there are no retransmissions in the
2307 * window. It would seem that it is trivially available for us in
2308 * tp->retrans_out, however, that kind of assumptions doesn't consider
2309 * what will happen if errors occur when sending retransmission for the
2310 * second time. ...It could the that such segment has only
2311 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2312 * the head skb is enough except for some reneging corner cases that
2313 * are not worth the effort.
2314 *
2315 * Main reason for all this complexity is the fact that connection dying
2316 * time now depends on the validity of the retrans_stamp, in particular,
2317 * that successive retransmissions of a segment must not advance
2318 * retrans_stamp under any conditions.
2319 */
2320 static bool tcp_any_retrans_done(const struct sock *sk)
2321 {
2322 const struct tcp_sock *tp = tcp_sk(sk);
2323 struct sk_buff *skb;
2324
2325 if (tp->retrans_out)
2326 return true;
2327
2328 skb = tcp_write_queue_head(sk);
2329 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2330 return true;
2331
2332 return false;
2333 }
2334
2335 #if FASTRETRANS_DEBUG > 1
2336 static void DBGUNDO(struct sock *sk, const char *msg)
2337 {
2338 struct tcp_sock *tp = tcp_sk(sk);
2339 struct inet_sock *inet = inet_sk(sk);
2340
2341 if (sk->sk_family == AF_INET) {
2342 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2343 msg,
2344 &inet->inet_daddr, ntohs(inet->inet_dport),
2345 tp->snd_cwnd, tcp_left_out(tp),
2346 tp->snd_ssthresh, tp->prior_ssthresh,
2347 tp->packets_out);
2348 }
2349 #if IS_ENABLED(CONFIG_IPV6)
2350 else if (sk->sk_family == AF_INET6) {
2351 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2352 msg,
2353 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2354 tp->snd_cwnd, tcp_left_out(tp),
2355 tp->snd_ssthresh, tp->prior_ssthresh,
2356 tp->packets_out);
2357 }
2358 #endif
2359 }
2360 #else
2361 #define DBGUNDO(x...) do { } while (0)
2362 #endif
2363
2364 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2365 {
2366 struct tcp_sock *tp = tcp_sk(sk);
2367
2368 if (unmark_loss) {
2369 struct sk_buff *skb;
2370
2371 tcp_for_write_queue(skb, sk) {
2372 if (skb == tcp_send_head(sk))
2373 break;
2374 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2375 }
2376 tp->lost_out = 0;
2377 tcp_clear_all_retrans_hints(tp);
2378 }
2379
2380 if (tp->prior_ssthresh) {
2381 const struct inet_connection_sock *icsk = inet_csk(sk);
2382
2383 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2384
2385 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2386 tp->snd_ssthresh = tp->prior_ssthresh;
2387 tcp_ecn_withdraw_cwr(tp);
2388 }
2389 }
2390 tp->snd_cwnd_stamp = tcp_jiffies32;
2391 tp->undo_marker = 0;
2392 }
2393
2394 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2395 {
2396 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2397 }
2398
2399 /* People celebrate: "We love our President!" */
2400 static bool tcp_try_undo_recovery(struct sock *sk)
2401 {
2402 struct tcp_sock *tp = tcp_sk(sk);
2403
2404 if (tcp_may_undo(tp)) {
2405 int mib_idx;
2406
2407 /* Happy end! We did not retransmit anything
2408 * or our original transmission succeeded.
2409 */
2410 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2411 tcp_undo_cwnd_reduction(sk, false);
2412 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2413 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2414 else
2415 mib_idx = LINUX_MIB_TCPFULLUNDO;
2416
2417 NET_INC_STATS(sock_net(sk), mib_idx);
2418 }
2419 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2420 /* Hold old state until something *above* high_seq
2421 * is ACKed. For Reno it is MUST to prevent false
2422 * fast retransmits (RFC2582). SACK TCP is safe. */
2423 if (!tcp_any_retrans_done(sk))
2424 tp->retrans_stamp = 0;
2425 return true;
2426 }
2427 tcp_set_ca_state(sk, TCP_CA_Open);
2428 return false;
2429 }
2430
2431 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2432 static bool tcp_try_undo_dsack(struct sock *sk)
2433 {
2434 struct tcp_sock *tp = tcp_sk(sk);
2435
2436 if (tp->undo_marker && !tp->undo_retrans) {
2437 DBGUNDO(sk, "D-SACK");
2438 tcp_undo_cwnd_reduction(sk, false);
2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2440 return true;
2441 }
2442 return false;
2443 }
2444
2445 /* Undo during loss recovery after partial ACK or using F-RTO. */
2446 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2447 {
2448 struct tcp_sock *tp = tcp_sk(sk);
2449
2450 if (frto_undo || tcp_may_undo(tp)) {
2451 tcp_undo_cwnd_reduction(sk, true);
2452
2453 DBGUNDO(sk, "partial loss");
2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2455 if (frto_undo)
2456 NET_INC_STATS(sock_net(sk),
2457 LINUX_MIB_TCPSPURIOUSRTOS);
2458 inet_csk(sk)->icsk_retransmits = 0;
2459 if (frto_undo || tcp_is_sack(tp))
2460 tcp_set_ca_state(sk, TCP_CA_Open);
2461 return true;
2462 }
2463 return false;
2464 }
2465
2466 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2467 * It computes the number of packets to send (sndcnt) based on packets newly
2468 * delivered:
2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2470 * cwnd reductions across a full RTT.
2471 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2472 * But when the retransmits are acked without further losses, PRR
2473 * slow starts cwnd up to ssthresh to speed up the recovery.
2474 */
2475 static void tcp_init_cwnd_reduction(struct sock *sk)
2476 {
2477 struct tcp_sock *tp = tcp_sk(sk);
2478
2479 tp->high_seq = tp->snd_nxt;
2480 tp->tlp_high_seq = 0;
2481 tp->snd_cwnd_cnt = 0;
2482 tp->prior_cwnd = tp->snd_cwnd;
2483 tp->prr_delivered = 0;
2484 tp->prr_out = 0;
2485 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2486 tcp_ecn_queue_cwr(tp);
2487 }
2488
2489 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2490 {
2491 struct tcp_sock *tp = tcp_sk(sk);
2492 int sndcnt = 0;
2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2494
2495 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2496 return;
2497
2498 tp->prr_delivered += newly_acked_sacked;
2499 if (delta < 0) {
2500 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2501 tp->prior_cwnd - 1;
2502 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2503 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2504 !(flag & FLAG_LOST_RETRANS)) {
2505 sndcnt = min_t(int, delta,
2506 max_t(int, tp->prr_delivered - tp->prr_out,
2507 newly_acked_sacked) + 1);
2508 } else {
2509 sndcnt = min(delta, newly_acked_sacked);
2510 }
2511 /* Force a fast retransmit upon entering fast recovery */
2512 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514 }
2515
2516 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2521 return;
2522
2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2524 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2525 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2526 tp->snd_cwnd = tp->snd_ssthresh;
2527 tp->snd_cwnd_stamp = tcp_jiffies32;
2528 }
2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2530 }
2531
2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2533 void tcp_enter_cwr(struct sock *sk)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536
2537 tp->prior_ssthresh = 0;
2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2539 tp->undo_marker = 0;
2540 tcp_init_cwnd_reduction(sk);
2541 tcp_set_ca_state(sk, TCP_CA_CWR);
2542 }
2543 }
2544 EXPORT_SYMBOL(tcp_enter_cwr);
2545
2546 static void tcp_try_keep_open(struct sock *sk)
2547 {
2548 struct tcp_sock *tp = tcp_sk(sk);
2549 int state = TCP_CA_Open;
2550
2551 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2552 state = TCP_CA_Disorder;
2553
2554 if (inet_csk(sk)->icsk_ca_state != state) {
2555 tcp_set_ca_state(sk, state);
2556 tp->high_seq = tp->snd_nxt;
2557 }
2558 }
2559
2560 static void tcp_try_to_open(struct sock *sk, int flag)
2561 {
2562 struct tcp_sock *tp = tcp_sk(sk);
2563
2564 tcp_verify_left_out(tp);
2565
2566 if (!tcp_any_retrans_done(sk))
2567 tp->retrans_stamp = 0;
2568
2569 if (flag & FLAG_ECE)
2570 tcp_enter_cwr(sk);
2571
2572 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2573 tcp_try_keep_open(sk);
2574 }
2575 }
2576
2577 static void tcp_mtup_probe_failed(struct sock *sk)
2578 {
2579 struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2582 icsk->icsk_mtup.probe_size = 0;
2583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2584 }
2585
2586 static void tcp_mtup_probe_success(struct sock *sk)
2587 {
2588 struct tcp_sock *tp = tcp_sk(sk);
2589 struct inet_connection_sock *icsk = inet_csk(sk);
2590
2591 /* FIXME: breaks with very large cwnd */
2592 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2593 tp->snd_cwnd = tp->snd_cwnd *
2594 tcp_mss_to_mtu(sk, tp->mss_cache) /
2595 icsk->icsk_mtup.probe_size;
2596 tp->snd_cwnd_cnt = 0;
2597 tp->snd_cwnd_stamp = tcp_jiffies32;
2598 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2599
2600 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2601 icsk->icsk_mtup.probe_size = 0;
2602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2604 }
2605
2606 /* Do a simple retransmit without using the backoff mechanisms in
2607 * tcp_timer. This is used for path mtu discovery.
2608 * The socket is already locked here.
2609 */
2610 void tcp_simple_retransmit(struct sock *sk)
2611 {
2612 const struct inet_connection_sock *icsk = inet_csk(sk);
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 struct sk_buff *skb;
2615 unsigned int mss = tcp_current_mss(sk);
2616
2617 tcp_for_write_queue(skb, sk) {
2618 if (skb == tcp_send_head(sk))
2619 break;
2620 if (tcp_skb_seglen(skb) > mss &&
2621 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2622 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2624 tp->retrans_out -= tcp_skb_pcount(skb);
2625 }
2626 tcp_skb_mark_lost_uncond_verify(tp, skb);
2627 }
2628 }
2629
2630 tcp_clear_retrans_hints_partial(tp);
2631
2632 if (!tp->lost_out)
2633 return;
2634
2635 if (tcp_is_reno(tp))
2636 tcp_limit_reno_sacked(tp);
2637
2638 tcp_verify_left_out(tp);
2639
2640 /* Don't muck with the congestion window here.
2641 * Reason is that we do not increase amount of _data_
2642 * in network, but units changed and effective
2643 * cwnd/ssthresh really reduced now.
2644 */
2645 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2646 tp->high_seq = tp->snd_nxt;
2647 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2648 tp->prior_ssthresh = 0;
2649 tp->undo_marker = 0;
2650 tcp_set_ca_state(sk, TCP_CA_Loss);
2651 }
2652 tcp_xmit_retransmit_queue(sk);
2653 }
2654 EXPORT_SYMBOL(tcp_simple_retransmit);
2655
2656 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2657 {
2658 struct tcp_sock *tp = tcp_sk(sk);
2659 int mib_idx;
2660
2661 if (tcp_is_reno(tp))
2662 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2663 else
2664 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2665
2666 NET_INC_STATS(sock_net(sk), mib_idx);
2667
2668 tp->prior_ssthresh = 0;
2669 tcp_init_undo(tp);
2670
2671 if (!tcp_in_cwnd_reduction(sk)) {
2672 if (!ece_ack)
2673 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2674 tcp_init_cwnd_reduction(sk);
2675 }
2676 tcp_set_ca_state(sk, TCP_CA_Recovery);
2677 }
2678
2679 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2680 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2681 */
2682 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2683 int *rexmit)
2684 {
2685 struct tcp_sock *tp = tcp_sk(sk);
2686 bool recovered = !before(tp->snd_una, tp->high_seq);
2687
2688 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2689 tcp_try_undo_loss(sk, false))
2690 return;
2691
2692 /* The ACK (s)acks some never-retransmitted data meaning not all
2693 * the data packets before the timeout were lost. Therefore we
2694 * undo the congestion window and state. This is essentially
2695 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2696 * a retransmitted skb is permantly marked, we can apply such an
2697 * operation even if F-RTO was not used.
2698 */
2699 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2700 tcp_try_undo_loss(sk, tp->undo_marker))
2701 return;
2702
2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2704 if (after(tp->snd_nxt, tp->high_seq)) {
2705 if (flag & FLAG_DATA_SACKED || is_dupack)
2706 tp->frto = 0; /* Step 3.a. loss was real */
2707 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2708 tp->high_seq = tp->snd_nxt;
2709 /* Step 2.b. Try send new data (but deferred until cwnd
2710 * is updated in tcp_ack()). Otherwise fall back to
2711 * the conventional recovery.
2712 */
2713 if (tcp_send_head(sk) &&
2714 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2715 *rexmit = REXMIT_NEW;
2716 return;
2717 }
2718 tp->frto = 0;
2719 }
2720 }
2721
2722 if (recovered) {
2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 tcp_try_undo_recovery(sk);
2725 return;
2726 }
2727 if (tcp_is_reno(tp)) {
2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 * delivered. Lower inflight to clock out (re)tranmissions.
2730 */
2731 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2732 tcp_add_reno_sack(sk);
2733 else if (flag & FLAG_SND_UNA_ADVANCED)
2734 tcp_reset_reno_sack(tp);
2735 }
2736 *rexmit = REXMIT_LOST;
2737 }
2738
2739 /* Undo during fast recovery after partial ACK. */
2740 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2741 {
2742 struct tcp_sock *tp = tcp_sk(sk);
2743
2744 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2745 /* Plain luck! Hole if filled with delayed
2746 * packet, rather than with a retransmit.
2747 */
2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2749
2750 /* We are getting evidence that the reordering degree is higher
2751 * than we realized. If there are no retransmits out then we
2752 * can undo. Otherwise we clock out new packets but do not
2753 * mark more packets lost or retransmit more.
2754 */
2755 if (tp->retrans_out)
2756 return true;
2757
2758 if (!tcp_any_retrans_done(sk))
2759 tp->retrans_stamp = 0;
2760
2761 DBGUNDO(sk, "partial recovery");
2762 tcp_undo_cwnd_reduction(sk, true);
2763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2764 tcp_try_keep_open(sk);
2765 return true;
2766 }
2767 return false;
2768 }
2769
2770 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773
2774 /* Use RACK to detect loss */
2775 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2776 u32 prior_retrans = tp->retrans_out;
2777
2778 tcp_rack_mark_lost(sk);
2779 if (prior_retrans > tp->retrans_out)
2780 *ack_flag |= FLAG_LOST_RETRANS;
2781 }
2782 }
2783
2784 /* Process an event, which can update packets-in-flight not trivially.
2785 * Main goal of this function is to calculate new estimate for left_out,
2786 * taking into account both packets sitting in receiver's buffer and
2787 * packets lost by network.
2788 *
2789 * Besides that it updates the congestion state when packet loss or ECN
2790 * is detected. But it does not reduce the cwnd, it is done by the
2791 * congestion control later.
2792 *
2793 * It does _not_ decide what to send, it is made in function
2794 * tcp_xmit_retransmit_queue().
2795 */
2796 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2797 bool is_dupack, int *ack_flag, int *rexmit)
2798 {
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 int fast_rexmit = 0, flag = *ack_flag;
2802 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2803 (tcp_fackets_out(tp) > tp->reordering));
2804
2805 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2806 tp->sacked_out = 0;
2807 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2808 tp->fackets_out = 0;
2809
2810 /* Now state machine starts.
2811 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2812 if (flag & FLAG_ECE)
2813 tp->prior_ssthresh = 0;
2814
2815 /* B. In all the states check for reneging SACKs. */
2816 if (tcp_check_sack_reneging(sk, flag))
2817 return;
2818
2819 /* C. Check consistency of the current state. */
2820 tcp_verify_left_out(tp);
2821
2822 /* D. Check state exit conditions. State can be terminated
2823 * when high_seq is ACKed. */
2824 if (icsk->icsk_ca_state == TCP_CA_Open) {
2825 WARN_ON(tp->retrans_out != 0);
2826 tp->retrans_stamp = 0;
2827 } else if (!before(tp->snd_una, tp->high_seq)) {
2828 switch (icsk->icsk_ca_state) {
2829 case TCP_CA_CWR:
2830 /* CWR is to be held something *above* high_seq
2831 * is ACKed for CWR bit to reach receiver. */
2832 if (tp->snd_una != tp->high_seq) {
2833 tcp_end_cwnd_reduction(sk);
2834 tcp_set_ca_state(sk, TCP_CA_Open);
2835 }
2836 break;
2837
2838 case TCP_CA_Recovery:
2839 if (tcp_is_reno(tp))
2840 tcp_reset_reno_sack(tp);
2841 if (tcp_try_undo_recovery(sk))
2842 return;
2843 tcp_end_cwnd_reduction(sk);
2844 break;
2845 }
2846 }
2847
2848 /* E. Process state. */
2849 switch (icsk->icsk_ca_state) {
2850 case TCP_CA_Recovery:
2851 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2852 if (tcp_is_reno(tp) && is_dupack)
2853 tcp_add_reno_sack(sk);
2854 } else {
2855 if (tcp_try_undo_partial(sk, acked))
2856 return;
2857 /* Partial ACK arrived. Force fast retransmit. */
2858 do_lost = tcp_is_reno(tp) ||
2859 tcp_fackets_out(tp) > tp->reordering;
2860 }
2861 if (tcp_try_undo_dsack(sk)) {
2862 tcp_try_keep_open(sk);
2863 return;
2864 }
2865 tcp_rack_identify_loss(sk, ack_flag);
2866 break;
2867 case TCP_CA_Loss:
2868 tcp_process_loss(sk, flag, is_dupack, rexmit);
2869 tcp_rack_identify_loss(sk, ack_flag);
2870 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2871 (*ack_flag & FLAG_LOST_RETRANS)))
2872 return;
2873 /* Change state if cwnd is undone or retransmits are lost */
2874 default:
2875 if (tcp_is_reno(tp)) {
2876 if (flag & FLAG_SND_UNA_ADVANCED)
2877 tcp_reset_reno_sack(tp);
2878 if (is_dupack)
2879 tcp_add_reno_sack(sk);
2880 }
2881
2882 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2883 tcp_try_undo_dsack(sk);
2884
2885 tcp_rack_identify_loss(sk, ack_flag);
2886 if (!tcp_time_to_recover(sk, flag)) {
2887 tcp_try_to_open(sk, flag);
2888 return;
2889 }
2890
2891 /* MTU probe failure: don't reduce cwnd */
2892 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2893 icsk->icsk_mtup.probe_size &&
2894 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2895 tcp_mtup_probe_failed(sk);
2896 /* Restores the reduction we did in tcp_mtup_probe() */
2897 tp->snd_cwnd++;
2898 tcp_simple_retransmit(sk);
2899 return;
2900 }
2901
2902 /* Otherwise enter Recovery state */
2903 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2904 fast_rexmit = 1;
2905 }
2906
2907 if (do_lost)
2908 tcp_update_scoreboard(sk, fast_rexmit);
2909 *rexmit = REXMIT_LOST;
2910 }
2911
2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2913 {
2914 struct tcp_sock *tp = tcp_sk(sk);
2915 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2916
2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2918 rtt_us ? : jiffies_to_usecs(1));
2919 }
2920
2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2922 long seq_rtt_us, long sack_rtt_us,
2923 long ca_rtt_us, struct rate_sample *rs)
2924 {
2925 const struct tcp_sock *tp = tcp_sk(sk);
2926
2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2929 * Karn's algorithm forbids taking RTT if some retransmitted data
2930 * is acked (RFC6298).
2931 */
2932 if (seq_rtt_us < 0)
2933 seq_rtt_us = sack_rtt_us;
2934
2935 /* RTTM Rule: A TSecr value received in a segment is used to
2936 * update the averaged RTT measurement only if the segment
2937 * acknowledges some new data, i.e., only if it advances the
2938 * left edge of the send window.
2939 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 */
2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2942 flag & FLAG_ACKED) {
2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2944 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2945
2946 seq_rtt_us = ca_rtt_us = delta_us;
2947 }
2948 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2949 if (seq_rtt_us < 0)
2950 return false;
2951
2952 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2953 * always taken together with ACK, SACK, or TS-opts. Any negative
2954 * values will be skipped with the seq_rtt_us < 0 check above.
2955 */
2956 tcp_update_rtt_min(sk, ca_rtt_us);
2957 tcp_rtt_estimator(sk, seq_rtt_us);
2958 tcp_set_rto(sk);
2959
2960 /* RFC6298: only reset backoff on valid RTT measurement. */
2961 inet_csk(sk)->icsk_backoff = 0;
2962 return true;
2963 }
2964
2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2967 {
2968 struct rate_sample rs;
2969 long rtt_us = -1L;
2970
2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2972 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2973
2974 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2975 }
2976
2977
2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2979 {
2980 const struct inet_connection_sock *icsk = inet_csk(sk);
2981
2982 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2983 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2984 }
2985
2986 /* Restart timer after forward progress on connection.
2987 * RFC2988 recommends to restart timer to now+rto.
2988 */
2989 void tcp_rearm_rto(struct sock *sk)
2990 {
2991 const struct inet_connection_sock *icsk = inet_csk(sk);
2992 struct tcp_sock *tp = tcp_sk(sk);
2993
2994 /* If the retrans timer is currently being used by Fast Open
2995 * for SYN-ACK retrans purpose, stay put.
2996 */
2997 if (tp->fastopen_rsk)
2998 return;
2999
3000 if (!tp->packets_out) {
3001 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3002 } else {
3003 u32 rto = inet_csk(sk)->icsk_rto;
3004 /* Offset the time elapsed after installing regular RTO */
3005 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3006 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3007 s64 delta_us = tcp_rto_delta_us(sk);
3008 /* delta_us may not be positive if the socket is locked
3009 * when the retrans timer fires and is rescheduled.
3010 */
3011 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3012 }
3013 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3014 TCP_RTO_MAX);
3015 }
3016 }
3017
3018 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3019 static void tcp_set_xmit_timer(struct sock *sk)
3020 {
3021 if (!tcp_schedule_loss_probe(sk))
3022 tcp_rearm_rto(sk);
3023 }
3024
3025 /* If we get here, the whole TSO packet has not been acked. */
3026 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3027 {
3028 struct tcp_sock *tp = tcp_sk(sk);
3029 u32 packets_acked;
3030
3031 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3032
3033 packets_acked = tcp_skb_pcount(skb);
3034 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3035 return 0;
3036 packets_acked -= tcp_skb_pcount(skb);
3037
3038 if (packets_acked) {
3039 BUG_ON(tcp_skb_pcount(skb) == 0);
3040 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3041 }
3042
3043 return packets_acked;
3044 }
3045
3046 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3047 u32 prior_snd_una)
3048 {
3049 const struct skb_shared_info *shinfo;
3050
3051 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3052 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3053 return;
3054
3055 shinfo = skb_shinfo(skb);
3056 if (!before(shinfo->tskey, prior_snd_una) &&
3057 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3058 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3059 }
3060
3061 /* Remove acknowledged frames from the retransmission queue. If our packet
3062 * is before the ack sequence we can discard it as it's confirmed to have
3063 * arrived at the other end.
3064 */
3065 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3066 u32 prior_snd_una, int *acked,
3067 struct tcp_sacktag_state *sack)
3068 {
3069 const struct inet_connection_sock *icsk = inet_csk(sk);
3070 u64 first_ackt, last_ackt;
3071 struct tcp_sock *tp = tcp_sk(sk);
3072 u32 prior_sacked = tp->sacked_out;
3073 u32 reord = tp->packets_out;
3074 bool fully_acked = true;
3075 long sack_rtt_us = -1L;
3076 long seq_rtt_us = -1L;
3077 long ca_rtt_us = -1L;
3078 struct sk_buff *skb;
3079 u32 pkts_acked = 0;
3080 u32 last_in_flight = 0;
3081 bool rtt_update;
3082 int flag = 0;
3083
3084 first_ackt = 0;
3085
3086 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3087 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3088 u8 sacked = scb->sacked;
3089 u32 acked_pcount;
3090
3091 tcp_ack_tstamp(sk, skb, prior_snd_una);
3092
3093 /* Determine how many packets and what bytes were acked, tso and else */
3094 if (after(scb->end_seq, tp->snd_una)) {
3095 if (tcp_skb_pcount(skb) == 1 ||
3096 !after(tp->snd_una, scb->seq))
3097 break;
3098
3099 acked_pcount = tcp_tso_acked(sk, skb);
3100 if (!acked_pcount)
3101 break;
3102 fully_acked = false;
3103 } else {
3104 /* Speedup tcp_unlink_write_queue() and next loop */
3105 prefetchw(skb->next);
3106 acked_pcount = tcp_skb_pcount(skb);
3107 }
3108
3109 if (unlikely(sacked & TCPCB_RETRANS)) {
3110 if (sacked & TCPCB_SACKED_RETRANS)
3111 tp->retrans_out -= acked_pcount;
3112 flag |= FLAG_RETRANS_DATA_ACKED;
3113 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114 last_ackt = skb->skb_mstamp;
3115 WARN_ON_ONCE(last_ackt == 0);
3116 if (!first_ackt)
3117 first_ackt = last_ackt;
3118
3119 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120 reord = min(pkts_acked, reord);
3121 if (!after(scb->end_seq, tp->high_seq))
3122 flag |= FLAG_ORIG_SACK_ACKED;
3123 }
3124
3125 if (sacked & TCPCB_SACKED_ACKED) {
3126 tp->sacked_out -= acked_pcount;
3127 } else if (tcp_is_sack(tp)) {
3128 tp->delivered += acked_pcount;
3129 if (!tcp_skb_spurious_retrans(tp, skb))
3130 tcp_rack_advance(tp, sacked, scb->end_seq,
3131 skb->skb_mstamp);
3132 }
3133 if (sacked & TCPCB_LOST)
3134 tp->lost_out -= acked_pcount;
3135
3136 tp->packets_out -= acked_pcount;
3137 pkts_acked += acked_pcount;
3138 tcp_rate_skb_delivered(sk, skb, sack->rate);
3139
3140 /* Initial outgoing SYN's get put onto the write_queue
3141 * just like anything else we transmit. It is not
3142 * true data, and if we misinform our callers that
3143 * this ACK acks real data, we will erroneously exit
3144 * connection startup slow start one packet too
3145 * quickly. This is severely frowned upon behavior.
3146 */
3147 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3148 flag |= FLAG_DATA_ACKED;
3149 } else {
3150 flag |= FLAG_SYN_ACKED;
3151 tp->retrans_stamp = 0;
3152 }
3153
3154 if (!fully_acked)
3155 break;
3156
3157 tcp_unlink_write_queue(skb, sk);
3158 sk_wmem_free_skb(sk, skb);
3159 if (unlikely(skb == tp->retransmit_skb_hint))
3160 tp->retransmit_skb_hint = NULL;
3161 if (unlikely(skb == tp->lost_skb_hint))
3162 tp->lost_skb_hint = NULL;
3163 }
3164
3165 if (!skb)
3166 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3167
3168 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3169 tp->snd_up = tp->snd_una;
3170
3171 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3172 flag |= FLAG_SACK_RENEGING;
3173
3174 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3175 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3176 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3177 }
3178 if (sack->first_sackt) {
3179 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3180 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3181 }
3182 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3183 ca_rtt_us, sack->rate);
3184
3185 if (flag & FLAG_ACKED) {
3186 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3187 if (unlikely(icsk->icsk_mtup.probe_size &&
3188 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3189 tcp_mtup_probe_success(sk);
3190 }
3191
3192 if (tcp_is_reno(tp)) {
3193 tcp_remove_reno_sacks(sk, pkts_acked);
3194 } else {
3195 int delta;
3196
3197 /* Non-retransmitted hole got filled? That's reordering */
3198 if (reord < prior_fackets && reord <= tp->fackets_out)
3199 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3200
3201 delta = tcp_is_fack(tp) ? pkts_acked :
3202 prior_sacked - tp->sacked_out;
3203 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3204 }
3205
3206 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3207
3208 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3209 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3210 /* Do not re-arm RTO if the sack RTT is measured from data sent
3211 * after when the head was last (re)transmitted. Otherwise the
3212 * timeout may continue to extend in loss recovery.
3213 */
3214 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3215 }
3216
3217 if (icsk->icsk_ca_ops->pkts_acked) {
3218 struct ack_sample sample = { .pkts_acked = pkts_acked,
3219 .rtt_us = sack->rate->rtt_us,
3220 .in_flight = last_in_flight };
3221
3222 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3223 }
3224
3225 #if FASTRETRANS_DEBUG > 0
3226 WARN_ON((int)tp->sacked_out < 0);
3227 WARN_ON((int)tp->lost_out < 0);
3228 WARN_ON((int)tp->retrans_out < 0);
3229 if (!tp->packets_out && tcp_is_sack(tp)) {
3230 icsk = inet_csk(sk);
3231 if (tp->lost_out) {
3232 pr_debug("Leak l=%u %d\n",
3233 tp->lost_out, icsk->icsk_ca_state);
3234 tp->lost_out = 0;
3235 }
3236 if (tp->sacked_out) {
3237 pr_debug("Leak s=%u %d\n",
3238 tp->sacked_out, icsk->icsk_ca_state);
3239 tp->sacked_out = 0;
3240 }
3241 if (tp->retrans_out) {
3242 pr_debug("Leak r=%u %d\n",
3243 tp->retrans_out, icsk->icsk_ca_state);
3244 tp->retrans_out = 0;
3245 }
3246 }
3247 #endif
3248 *acked = pkts_acked;
3249 return flag;
3250 }
3251
3252 static void tcp_ack_probe(struct sock *sk)
3253 {
3254 const struct tcp_sock *tp = tcp_sk(sk);
3255 struct inet_connection_sock *icsk = inet_csk(sk);
3256
3257 /* Was it a usable window open? */
3258
3259 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3260 icsk->icsk_backoff = 0;
3261 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3262 /* Socket must be waked up by subsequent tcp_data_snd_check().
3263 * This function is not for random using!
3264 */
3265 } else {
3266 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3267
3268 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3269 when, TCP_RTO_MAX);
3270 }
3271 }
3272
3273 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3274 {
3275 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3276 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3277 }
3278
3279 /* Decide wheather to run the increase function of congestion control. */
3280 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3281 {
3282 /* If reordering is high then always grow cwnd whenever data is
3283 * delivered regardless of its ordering. Otherwise stay conservative
3284 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3285 * new SACK or ECE mark may first advance cwnd here and later reduce
3286 * cwnd in tcp_fastretrans_alert() based on more states.
3287 */
3288 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3289 return flag & FLAG_FORWARD_PROGRESS;
3290
3291 return flag & FLAG_DATA_ACKED;
3292 }
3293
3294 /* The "ultimate" congestion control function that aims to replace the rigid
3295 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3296 * It's called toward the end of processing an ACK with precise rate
3297 * information. All transmission or retransmission are delayed afterwards.
3298 */
3299 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3300 int flag, const struct rate_sample *rs)
3301 {
3302 const struct inet_connection_sock *icsk = inet_csk(sk);
3303
3304 if (icsk->icsk_ca_ops->cong_control) {
3305 icsk->icsk_ca_ops->cong_control(sk, rs);
3306 return;
3307 }
3308
3309 if (tcp_in_cwnd_reduction(sk)) {
3310 /* Reduce cwnd if state mandates */
3311 tcp_cwnd_reduction(sk, acked_sacked, flag);
3312 } else if (tcp_may_raise_cwnd(sk, flag)) {
3313 /* Advance cwnd if state allows */
3314 tcp_cong_avoid(sk, ack, acked_sacked);
3315 }
3316 tcp_update_pacing_rate(sk);
3317 }
3318
3319 /* Check that window update is acceptable.
3320 * The function assumes that snd_una<=ack<=snd_next.
3321 */
3322 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3323 const u32 ack, const u32 ack_seq,
3324 const u32 nwin)
3325 {
3326 return after(ack, tp->snd_una) ||
3327 after(ack_seq, tp->snd_wl1) ||
3328 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3329 }
3330
3331 /* If we update tp->snd_una, also update tp->bytes_acked */
3332 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3333 {
3334 u32 delta = ack - tp->snd_una;
3335
3336 sock_owned_by_me((struct sock *)tp);
3337 tp->bytes_acked += delta;
3338 tp->snd_una = ack;
3339 }
3340
3341 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3342 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3343 {
3344 u32 delta = seq - tp->rcv_nxt;
3345
3346 sock_owned_by_me((struct sock *)tp);
3347 tp->bytes_received += delta;
3348 tp->rcv_nxt = seq;
3349 }
3350
3351 /* Update our send window.
3352 *
3353 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3354 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3355 */
3356 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3357 u32 ack_seq)
3358 {
3359 struct tcp_sock *tp = tcp_sk(sk);
3360 int flag = 0;
3361 u32 nwin = ntohs(tcp_hdr(skb)->window);
3362
3363 if (likely(!tcp_hdr(skb)->syn))
3364 nwin <<= tp->rx_opt.snd_wscale;
3365
3366 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3367 flag |= FLAG_WIN_UPDATE;
3368 tcp_update_wl(tp, ack_seq);
3369
3370 if (tp->snd_wnd != nwin) {
3371 tp->snd_wnd = nwin;
3372
3373 /* Note, it is the only place, where
3374 * fast path is recovered for sending TCP.
3375 */
3376 tp->pred_flags = 0;
3377 tcp_fast_path_check(sk);
3378
3379 if (tcp_send_head(sk))
3380 tcp_slow_start_after_idle_check(sk);
3381
3382 if (nwin > tp->max_window) {
3383 tp->max_window = nwin;
3384 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3385 }
3386 }
3387 }
3388
3389 tcp_snd_una_update(tp, ack);
3390
3391 return flag;
3392 }
3393
3394 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3395 u32 *last_oow_ack_time)
3396 {
3397 if (*last_oow_ack_time) {
3398 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3399
3400 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3401 NET_INC_STATS(net, mib_idx);
3402 return true; /* rate-limited: don't send yet! */
3403 }
3404 }
3405
3406 *last_oow_ack_time = tcp_jiffies32;
3407
3408 return false; /* not rate-limited: go ahead, send dupack now! */
3409 }
3410
3411 /* Return true if we're currently rate-limiting out-of-window ACKs and
3412 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3413 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3414 * attacks that send repeated SYNs or ACKs for the same connection. To
3415 * do this, we do not send a duplicate SYNACK or ACK if the remote
3416 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3417 */
3418 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3419 int mib_idx, u32 *last_oow_ack_time)
3420 {
3421 /* Data packets without SYNs are not likely part of an ACK loop. */
3422 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3423 !tcp_hdr(skb)->syn)
3424 return false;
3425
3426 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3427 }
3428
3429 /* RFC 5961 7 [ACK Throttling] */
3430 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3431 {
3432 /* unprotected vars, we dont care of overwrites */
3433 static u32 challenge_timestamp;
3434 static unsigned int challenge_count;
3435 struct tcp_sock *tp = tcp_sk(sk);
3436 u32 count, now;
3437
3438 /* First check our per-socket dupack rate limit. */
3439 if (__tcp_oow_rate_limited(sock_net(sk),
3440 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3441 &tp->last_oow_ack_time))
3442 return;
3443
3444 /* Then check host-wide RFC 5961 rate limit. */
3445 now = jiffies / HZ;
3446 if (now != challenge_timestamp) {
3447 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3448
3449 challenge_timestamp = now;
3450 WRITE_ONCE(challenge_count, half +
3451 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3452 }
3453 count = READ_ONCE(challenge_count);
3454 if (count > 0) {
3455 WRITE_ONCE(challenge_count, count - 1);
3456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3457 tcp_send_ack(sk);
3458 }
3459 }
3460
3461 static void tcp_store_ts_recent(struct tcp_sock *tp)
3462 {
3463 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3464 tp->rx_opt.ts_recent_stamp = get_seconds();
3465 }
3466
3467 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3468 {
3469 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3470 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3471 * extra check below makes sure this can only happen
3472 * for pure ACK frames. -DaveM
3473 *
3474 * Not only, also it occurs for expired timestamps.
3475 */
3476
3477 if (tcp_paws_check(&tp->rx_opt, 0))
3478 tcp_store_ts_recent(tp);
3479 }
3480 }
3481
3482 /* This routine deals with acks during a TLP episode.
3483 * We mark the end of a TLP episode on receiving TLP dupack or when
3484 * ack is after tlp_high_seq.
3485 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3486 */
3487 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3488 {
3489 struct tcp_sock *tp = tcp_sk(sk);
3490
3491 if (before(ack, tp->tlp_high_seq))
3492 return;
3493
3494 if (flag & FLAG_DSACKING_ACK) {
3495 /* This DSACK means original and TLP probe arrived; no loss */
3496 tp->tlp_high_seq = 0;
3497 } else if (after(ack, tp->tlp_high_seq)) {
3498 /* ACK advances: there was a loss, so reduce cwnd. Reset
3499 * tlp_high_seq in tcp_init_cwnd_reduction()
3500 */
3501 tcp_init_cwnd_reduction(sk);
3502 tcp_set_ca_state(sk, TCP_CA_CWR);
3503 tcp_end_cwnd_reduction(sk);
3504 tcp_try_keep_open(sk);
3505 NET_INC_STATS(sock_net(sk),
3506 LINUX_MIB_TCPLOSSPROBERECOVERY);
3507 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3508 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3509 /* Pure dupack: original and TLP probe arrived; no loss */
3510 tp->tlp_high_seq = 0;
3511 }
3512 }
3513
3514 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3515 {
3516 const struct inet_connection_sock *icsk = inet_csk(sk);
3517
3518 if (icsk->icsk_ca_ops->in_ack_event)
3519 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3520 }
3521
3522 /* Congestion control has updated the cwnd already. So if we're in
3523 * loss recovery then now we do any new sends (for FRTO) or
3524 * retransmits (for CA_Loss or CA_recovery) that make sense.
3525 */
3526 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3527 {
3528 struct tcp_sock *tp = tcp_sk(sk);
3529
3530 if (rexmit == REXMIT_NONE)
3531 return;
3532
3533 if (unlikely(rexmit == 2)) {
3534 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3535 TCP_NAGLE_OFF);
3536 if (after(tp->snd_nxt, tp->high_seq))
3537 return;
3538 tp->frto = 0;
3539 }
3540 tcp_xmit_retransmit_queue(sk);
3541 }
3542
3543 /* This routine deals with incoming acks, but not outgoing ones. */
3544 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3545 {
3546 struct inet_connection_sock *icsk = inet_csk(sk);
3547 struct tcp_sock *tp = tcp_sk(sk);
3548 struct tcp_sacktag_state sack_state;
3549 struct rate_sample rs = { .prior_delivered = 0 };
3550 u32 prior_snd_una = tp->snd_una;
3551 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3552 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3553 bool is_dupack = false;
3554 u32 prior_fackets;
3555 int prior_packets = tp->packets_out;
3556 u32 delivered = tp->delivered;
3557 u32 lost = tp->lost;
3558 int acked = 0; /* Number of packets newly acked */
3559 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3560
3561 sack_state.first_sackt = 0;
3562 sack_state.rate = &rs;
3563
3564 /* We very likely will need to access write queue head. */
3565 prefetchw(sk->sk_write_queue.next);
3566
3567 /* If the ack is older than previous acks
3568 * then we can probably ignore it.
3569 */
3570 if (before(ack, prior_snd_una)) {
3571 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3572 if (before(ack, prior_snd_una - tp->max_window)) {
3573 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3574 tcp_send_challenge_ack(sk, skb);
3575 return -1;
3576 }
3577 goto old_ack;
3578 }
3579
3580 /* If the ack includes data we haven't sent yet, discard
3581 * this segment (RFC793 Section 3.9).
3582 */
3583 if (after(ack, tp->snd_nxt))
3584 goto invalid_ack;
3585
3586 if (after(ack, prior_snd_una)) {
3587 flag |= FLAG_SND_UNA_ADVANCED;
3588 icsk->icsk_retransmits = 0;
3589 }
3590
3591 prior_fackets = tp->fackets_out;
3592 rs.prior_in_flight = tcp_packets_in_flight(tp);
3593
3594 /* ts_recent update must be made after we are sure that the packet
3595 * is in window.
3596 */
3597 if (flag & FLAG_UPDATE_TS_RECENT)
3598 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3599
3600 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3601 /* Window is constant, pure forward advance.
3602 * No more checks are required.
3603 * Note, we use the fact that SND.UNA>=SND.WL2.
3604 */
3605 tcp_update_wl(tp, ack_seq);
3606 tcp_snd_una_update(tp, ack);
3607 flag |= FLAG_WIN_UPDATE;
3608
3609 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3610
3611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3612 } else {
3613 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3614
3615 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3616 flag |= FLAG_DATA;
3617 else
3618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3619
3620 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3621
3622 if (TCP_SKB_CB(skb)->sacked)
3623 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3624 &sack_state);
3625
3626 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3627 flag |= FLAG_ECE;
3628 ack_ev_flags |= CA_ACK_ECE;
3629 }
3630
3631 if (flag & FLAG_WIN_UPDATE)
3632 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3633
3634 tcp_in_ack_event(sk, ack_ev_flags);
3635 }
3636
3637 /* We passed data and got it acked, remove any soft error
3638 * log. Something worked...
3639 */
3640 sk->sk_err_soft = 0;
3641 icsk->icsk_probes_out = 0;
3642 tp->rcv_tstamp = tcp_jiffies32;
3643 if (!prior_packets)
3644 goto no_queue;
3645
3646 /* See if we can take anything off of the retransmit queue. */
3647 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3648 &sack_state);
3649
3650 if (tp->tlp_high_seq)
3651 tcp_process_tlp_ack(sk, ack, flag);
3652 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3653 if (flag & FLAG_SET_XMIT_TIMER)
3654 tcp_set_xmit_timer(sk);
3655
3656 if (tcp_ack_is_dubious(sk, flag)) {
3657 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3658 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3659 }
3660
3661 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3662 sk_dst_confirm(sk);
3663
3664 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3665 lost = tp->lost - lost; /* freshly marked lost */
3666 tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3667 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3668 tcp_xmit_recovery(sk, rexmit);
3669 return 1;
3670
3671 no_queue:
3672 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3673 if (flag & FLAG_DSACKING_ACK)
3674 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3675 /* If this ack opens up a zero window, clear backoff. It was
3676 * being used to time the probes, and is probably far higher than
3677 * it needs to be for normal retransmission.
3678 */
3679 if (tcp_send_head(sk))
3680 tcp_ack_probe(sk);
3681
3682 if (tp->tlp_high_seq)
3683 tcp_process_tlp_ack(sk, ack, flag);
3684 return 1;
3685
3686 invalid_ack:
3687 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3688 return -1;
3689
3690 old_ack:
3691 /* If data was SACKed, tag it and see if we should send more data.
3692 * If data was DSACKed, see if we can undo a cwnd reduction.
3693 */
3694 if (TCP_SKB_CB(skb)->sacked) {
3695 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3696 &sack_state);
3697 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3698 tcp_xmit_recovery(sk, rexmit);
3699 }
3700
3701 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3702 return 0;
3703 }
3704
3705 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3706 bool syn, struct tcp_fastopen_cookie *foc,
3707 bool exp_opt)
3708 {
3709 /* Valid only in SYN or SYN-ACK with an even length. */
3710 if (!foc || !syn || len < 0 || (len & 1))
3711 return;
3712
3713 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3714 len <= TCP_FASTOPEN_COOKIE_MAX)
3715 memcpy(foc->val, cookie, len);
3716 else if (len != 0)
3717 len = -1;
3718 foc->len = len;
3719 foc->exp = exp_opt;
3720 }
3721
3722 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3723 * But, this can also be called on packets in the established flow when
3724 * the fast version below fails.
3725 */
3726 void tcp_parse_options(const struct net *net,
3727 const struct sk_buff *skb,
3728 struct tcp_options_received *opt_rx, int estab,
3729 struct tcp_fastopen_cookie *foc)
3730 {
3731 const unsigned char *ptr;
3732 const struct tcphdr *th = tcp_hdr(skb);
3733 int length = (th->doff * 4) - sizeof(struct tcphdr);
3734
3735 ptr = (const unsigned char *)(th + 1);
3736 opt_rx->saw_tstamp = 0;
3737
3738 while (length > 0) {
3739 int opcode = *ptr++;
3740 int opsize;
3741
3742 switch (opcode) {
3743 case TCPOPT_EOL:
3744 return;
3745 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3746 length--;
3747 continue;
3748 default:
3749 opsize = *ptr++;
3750 if (opsize < 2) /* "silly options" */
3751 return;
3752 if (opsize > length)
3753 return; /* don't parse partial options */
3754 switch (opcode) {
3755 case TCPOPT_MSS:
3756 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3757 u16 in_mss = get_unaligned_be16(ptr);
3758 if (in_mss) {
3759 if (opt_rx->user_mss &&
3760 opt_rx->user_mss < in_mss)
3761 in_mss = opt_rx->user_mss;
3762 opt_rx->mss_clamp = in_mss;
3763 }
3764 }
3765 break;
3766 case TCPOPT_WINDOW:
3767 if (opsize == TCPOLEN_WINDOW && th->syn &&
3768 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3769 __u8 snd_wscale = *(__u8 *)ptr;
3770 opt_rx->wscale_ok = 1;
3771 if (snd_wscale > TCP_MAX_WSCALE) {
3772 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3773 __func__,
3774 snd_wscale,
3775 TCP_MAX_WSCALE);
3776 snd_wscale = TCP_MAX_WSCALE;
3777 }
3778 opt_rx->snd_wscale = snd_wscale;
3779 }
3780 break;
3781 case TCPOPT_TIMESTAMP:
3782 if ((opsize == TCPOLEN_TIMESTAMP) &&
3783 ((estab && opt_rx->tstamp_ok) ||
3784 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3785 opt_rx->saw_tstamp = 1;
3786 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3787 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3788 }
3789 break;
3790 case TCPOPT_SACK_PERM:
3791 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3792 !estab && net->ipv4.sysctl_tcp_sack) {
3793 opt_rx->sack_ok = TCP_SACK_SEEN;
3794 tcp_sack_reset(opt_rx);
3795 }
3796 break;
3797
3798 case TCPOPT_SACK:
3799 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3800 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3801 opt_rx->sack_ok) {
3802 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3803 }
3804 break;
3805 #ifdef CONFIG_TCP_MD5SIG
3806 case TCPOPT_MD5SIG:
3807 /*
3808 * The MD5 Hash has already been
3809 * checked (see tcp_v{4,6}_do_rcv()).
3810 */
3811 break;
3812 #endif
3813 case TCPOPT_FASTOPEN:
3814 tcp_parse_fastopen_option(
3815 opsize - TCPOLEN_FASTOPEN_BASE,
3816 ptr, th->syn, foc, false);
3817 break;
3818
3819 case TCPOPT_EXP:
3820 /* Fast Open option shares code 254 using a
3821 * 16 bits magic number.
3822 */
3823 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3824 get_unaligned_be16(ptr) ==
3825 TCPOPT_FASTOPEN_MAGIC)
3826 tcp_parse_fastopen_option(opsize -
3827 TCPOLEN_EXP_FASTOPEN_BASE,
3828 ptr + 2, th->syn, foc, true);
3829 break;
3830
3831 }
3832 ptr += opsize-2;
3833 length -= opsize;
3834 }
3835 }
3836 }
3837 EXPORT_SYMBOL(tcp_parse_options);
3838
3839 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3840 {
3841 const __be32 *ptr = (const __be32 *)(th + 1);
3842
3843 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3844 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3845 tp->rx_opt.saw_tstamp = 1;
3846 ++ptr;
3847 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3848 ++ptr;
3849 if (*ptr)
3850 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3851 else
3852 tp->rx_opt.rcv_tsecr = 0;
3853 return true;
3854 }
3855 return false;
3856 }
3857
3858 /* Fast parse options. This hopes to only see timestamps.
3859 * If it is wrong it falls back on tcp_parse_options().
3860 */
3861 static bool tcp_fast_parse_options(const struct net *net,
3862 const struct sk_buff *skb,
3863 const struct tcphdr *th, struct tcp_sock *tp)
3864 {
3865 /* In the spirit of fast parsing, compare doff directly to constant
3866 * values. Because equality is used, short doff can be ignored here.
3867 */
3868 if (th->doff == (sizeof(*th) / 4)) {
3869 tp->rx_opt.saw_tstamp = 0;
3870 return false;
3871 } else if (tp->rx_opt.tstamp_ok &&
3872 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3873 if (tcp_parse_aligned_timestamp(tp, th))
3874 return true;
3875 }
3876
3877 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3878 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3879 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3880
3881 return true;
3882 }
3883
3884 #ifdef CONFIG_TCP_MD5SIG
3885 /*
3886 * Parse MD5 Signature option
3887 */
3888 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3889 {
3890 int length = (th->doff << 2) - sizeof(*th);
3891 const u8 *ptr = (const u8 *)(th + 1);
3892
3893 /* If the TCP option is too short, we can short cut */
3894 if (length < TCPOLEN_MD5SIG)
3895 return NULL;
3896
3897 while (length > 0) {
3898 int opcode = *ptr++;
3899 int opsize;
3900
3901 switch (opcode) {
3902 case TCPOPT_EOL:
3903 return NULL;
3904 case TCPOPT_NOP:
3905 length--;
3906 continue;
3907 default:
3908 opsize = *ptr++;
3909 if (opsize < 2 || opsize > length)
3910 return NULL;
3911 if (opcode == TCPOPT_MD5SIG)
3912 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3913 }
3914 ptr += opsize - 2;
3915 length -= opsize;
3916 }
3917 return NULL;
3918 }
3919 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3920 #endif
3921
3922 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3923 *
3924 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3925 * it can pass through stack. So, the following predicate verifies that
3926 * this segment is not used for anything but congestion avoidance or
3927 * fast retransmit. Moreover, we even are able to eliminate most of such
3928 * second order effects, if we apply some small "replay" window (~RTO)
3929 * to timestamp space.
3930 *
3931 * All these measures still do not guarantee that we reject wrapped ACKs
3932 * on networks with high bandwidth, when sequence space is recycled fastly,
3933 * but it guarantees that such events will be very rare and do not affect
3934 * connection seriously. This doesn't look nice, but alas, PAWS is really
3935 * buggy extension.
3936 *
3937 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3938 * states that events when retransmit arrives after original data are rare.
3939 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3940 * the biggest problem on large power networks even with minor reordering.
3941 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3942 * up to bandwidth of 18Gigabit/sec. 8) ]
3943 */
3944
3945 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3946 {
3947 const struct tcp_sock *tp = tcp_sk(sk);
3948 const struct tcphdr *th = tcp_hdr(skb);
3949 u32 seq = TCP_SKB_CB(skb)->seq;
3950 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3951
3952 return (/* 1. Pure ACK with correct sequence number. */
3953 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3954
3955 /* 2. ... and duplicate ACK. */
3956 ack == tp->snd_una &&
3957
3958 /* 3. ... and does not update window. */
3959 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3960
3961 /* 4. ... and sits in replay window. */
3962 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3963 }
3964
3965 static inline bool tcp_paws_discard(const struct sock *sk,
3966 const struct sk_buff *skb)
3967 {
3968 const struct tcp_sock *tp = tcp_sk(sk);
3969
3970 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3971 !tcp_disordered_ack(sk, skb);
3972 }
3973
3974 /* Check segment sequence number for validity.
3975 *
3976 * Segment controls are considered valid, if the segment
3977 * fits to the window after truncation to the window. Acceptability
3978 * of data (and SYN, FIN, of course) is checked separately.
3979 * See tcp_data_queue(), for example.
3980 *
3981 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3982 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3983 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3984 * (borrowed from freebsd)
3985 */
3986
3987 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3988 {
3989 return !before(end_seq, tp->rcv_wup) &&
3990 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3991 }
3992
3993 /* When we get a reset we do this. */
3994 void tcp_reset(struct sock *sk)
3995 {
3996 /* We want the right error as BSD sees it (and indeed as we do). */
3997 switch (sk->sk_state) {
3998 case TCP_SYN_SENT:
3999 sk->sk_err = ECONNREFUSED;
4000 break;
4001 case TCP_CLOSE_WAIT:
4002 sk->sk_err = EPIPE;
4003 break;
4004 case TCP_CLOSE:
4005 return;
4006 default:
4007 sk->sk_err = ECONNRESET;
4008 }
4009 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4010 smp_wmb();
4011
4012 tcp_done(sk);
4013
4014 if (!sock_flag(sk, SOCK_DEAD))
4015 sk->sk_error_report(sk);
4016 }
4017
4018 /*
4019 * Process the FIN bit. This now behaves as it is supposed to work
4020 * and the FIN takes effect when it is validly part of sequence
4021 * space. Not before when we get holes.
4022 *
4023 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4024 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4025 * TIME-WAIT)
4026 *
4027 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4028 * close and we go into CLOSING (and later onto TIME-WAIT)
4029 *
4030 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4031 */
4032 void tcp_fin(struct sock *sk)
4033 {
4034 struct tcp_sock *tp = tcp_sk(sk);
4035
4036 inet_csk_schedule_ack(sk);
4037
4038 sk->sk_shutdown |= RCV_SHUTDOWN;
4039 sock_set_flag(sk, SOCK_DONE);
4040
4041 switch (sk->sk_state) {
4042 case TCP_SYN_RECV:
4043 case TCP_ESTABLISHED:
4044 /* Move to CLOSE_WAIT */
4045 tcp_set_state(sk, TCP_CLOSE_WAIT);
4046 inet_csk(sk)->icsk_ack.pingpong = 1;
4047 break;
4048
4049 case TCP_CLOSE_WAIT:
4050 case TCP_CLOSING:
4051 /* Received a retransmission of the FIN, do
4052 * nothing.
4053 */
4054 break;
4055 case TCP_LAST_ACK:
4056 /* RFC793: Remain in the LAST-ACK state. */
4057 break;
4058
4059 case TCP_FIN_WAIT1:
4060 /* This case occurs when a simultaneous close
4061 * happens, we must ack the received FIN and
4062 * enter the CLOSING state.
4063 */
4064 tcp_send_ack(sk);
4065 tcp_set_state(sk, TCP_CLOSING);
4066 break;
4067 case TCP_FIN_WAIT2:
4068 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4069 tcp_send_ack(sk);
4070 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4071 break;
4072 default:
4073 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4074 * cases we should never reach this piece of code.
4075 */
4076 pr_err("%s: Impossible, sk->sk_state=%d\n",
4077 __func__, sk->sk_state);
4078 break;
4079 }
4080
4081 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4082 * Probably, we should reset in this case. For now drop them.
4083 */
4084 skb_rbtree_purge(&tp->out_of_order_queue);
4085 if (tcp_is_sack(tp))
4086 tcp_sack_reset(&tp->rx_opt);
4087 sk_mem_reclaim(sk);
4088
4089 if (!sock_flag(sk, SOCK_DEAD)) {
4090 sk->sk_state_change(sk);
4091
4092 /* Do not send POLL_HUP for half duplex close. */
4093 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4094 sk->sk_state == TCP_CLOSE)
4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4096 else
4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4098 }
4099 }
4100
4101 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4102 u32 end_seq)
4103 {
4104 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4105 if (before(seq, sp->start_seq))
4106 sp->start_seq = seq;
4107 if (after(end_seq, sp->end_seq))
4108 sp->end_seq = end_seq;
4109 return true;
4110 }
4111 return false;
4112 }
4113
4114 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4115 {
4116 struct tcp_sock *tp = tcp_sk(sk);
4117
4118 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4119 int mib_idx;
4120
4121 if (before(seq, tp->rcv_nxt))
4122 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4123 else
4124 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4125
4126 NET_INC_STATS(sock_net(sk), mib_idx);
4127
4128 tp->rx_opt.dsack = 1;
4129 tp->duplicate_sack[0].start_seq = seq;
4130 tp->duplicate_sack[0].end_seq = end_seq;
4131 }
4132 }
4133
4134 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4135 {
4136 struct tcp_sock *tp = tcp_sk(sk);
4137
4138 if (!tp->rx_opt.dsack)
4139 tcp_dsack_set(sk, seq, end_seq);
4140 else
4141 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4142 }
4143
4144 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4145 {
4146 struct tcp_sock *tp = tcp_sk(sk);
4147
4148 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4149 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4150 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4151 tcp_enter_quickack_mode(sk);
4152
4153 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4154 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4155
4156 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4157 end_seq = tp->rcv_nxt;
4158 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4159 }
4160 }
4161
4162 tcp_send_ack(sk);
4163 }
4164
4165 /* These routines update the SACK block as out-of-order packets arrive or
4166 * in-order packets close up the sequence space.
4167 */
4168 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4169 {
4170 int this_sack;
4171 struct tcp_sack_block *sp = &tp->selective_acks[0];
4172 struct tcp_sack_block *swalk = sp + 1;
4173
4174 /* See if the recent change to the first SACK eats into
4175 * or hits the sequence space of other SACK blocks, if so coalesce.
4176 */
4177 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4178 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4179 int i;
4180
4181 /* Zap SWALK, by moving every further SACK up by one slot.
4182 * Decrease num_sacks.
4183 */
4184 tp->rx_opt.num_sacks--;
4185 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4186 sp[i] = sp[i + 1];
4187 continue;
4188 }
4189 this_sack++, swalk++;
4190 }
4191 }
4192
4193 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4194 {
4195 struct tcp_sock *tp = tcp_sk(sk);
4196 struct tcp_sack_block *sp = &tp->selective_acks[0];
4197 int cur_sacks = tp->rx_opt.num_sacks;
4198 int this_sack;
4199
4200 if (!cur_sacks)
4201 goto new_sack;
4202
4203 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4204 if (tcp_sack_extend(sp, seq, end_seq)) {
4205 /* Rotate this_sack to the first one. */
4206 for (; this_sack > 0; this_sack--, sp--)
4207 swap(*sp, *(sp - 1));
4208 if (cur_sacks > 1)
4209 tcp_sack_maybe_coalesce(tp);
4210 return;
4211 }
4212 }
4213
4214 /* Could not find an adjacent existing SACK, build a new one,
4215 * put it at the front, and shift everyone else down. We
4216 * always know there is at least one SACK present already here.
4217 *
4218 * If the sack array is full, forget about the last one.
4219 */
4220 if (this_sack >= TCP_NUM_SACKS) {
4221 this_sack--;
4222 tp->rx_opt.num_sacks--;
4223 sp--;
4224 }
4225 for (; this_sack > 0; this_sack--, sp--)
4226 *sp = *(sp - 1);
4227
4228 new_sack:
4229 /* Build the new head SACK, and we're done. */
4230 sp->start_seq = seq;
4231 sp->end_seq = end_seq;
4232 tp->rx_opt.num_sacks++;
4233 }
4234
4235 /* RCV.NXT advances, some SACKs should be eaten. */
4236
4237 static void tcp_sack_remove(struct tcp_sock *tp)
4238 {
4239 struct tcp_sack_block *sp = &tp->selective_acks[0];
4240 int num_sacks = tp->rx_opt.num_sacks;
4241 int this_sack;
4242
4243 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4244 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4245 tp->rx_opt.num_sacks = 0;
4246 return;
4247 }
4248
4249 for (this_sack = 0; this_sack < num_sacks;) {
4250 /* Check if the start of the sack is covered by RCV.NXT. */
4251 if (!before(tp->rcv_nxt, sp->start_seq)) {
4252 int i;
4253
4254 /* RCV.NXT must cover all the block! */
4255 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4256
4257 /* Zap this SACK, by moving forward any other SACKS. */
4258 for (i = this_sack+1; i < num_sacks; i++)
4259 tp->selective_acks[i-1] = tp->selective_acks[i];
4260 num_sacks--;
4261 continue;
4262 }
4263 this_sack++;
4264 sp++;
4265 }
4266 tp->rx_opt.num_sacks = num_sacks;
4267 }
4268
4269 /**
4270 * tcp_try_coalesce - try to merge skb to prior one
4271 * @sk: socket
4272 * @to: prior buffer
4273 * @from: buffer to add in queue
4274 * @fragstolen: pointer to boolean
4275 *
4276 * Before queueing skb @from after @to, try to merge them
4277 * to reduce overall memory use and queue lengths, if cost is small.
4278 * Packets in ofo or receive queues can stay a long time.
4279 * Better try to coalesce them right now to avoid future collapses.
4280 * Returns true if caller should free @from instead of queueing it
4281 */
4282 static bool tcp_try_coalesce(struct sock *sk,
4283 struct sk_buff *to,
4284 struct sk_buff *from,
4285 bool *fragstolen)
4286 {
4287 int delta;
4288
4289 *fragstolen = false;
4290
4291 /* Its possible this segment overlaps with prior segment in queue */
4292 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4293 return false;
4294
4295 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4296 return false;
4297
4298 atomic_add(delta, &sk->sk_rmem_alloc);
4299 sk_mem_charge(sk, delta);
4300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4301 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4302 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4303 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4304 return true;
4305 }
4306
4307 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4308 {
4309 sk_drops_add(sk, skb);
4310 __kfree_skb(skb);
4311 }
4312
4313 /* This one checks to see if we can put data from the
4314 * out_of_order queue into the receive_queue.
4315 */
4316 static void tcp_ofo_queue(struct sock *sk)
4317 {
4318 struct tcp_sock *tp = tcp_sk(sk);
4319 __u32 dsack_high = tp->rcv_nxt;
4320 bool fin, fragstolen, eaten;
4321 struct sk_buff *skb, *tail;
4322 struct rb_node *p;
4323
4324 p = rb_first(&tp->out_of_order_queue);
4325 while (p) {
4326 skb = rb_entry(p, struct sk_buff, rbnode);
4327 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4328 break;
4329
4330 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4331 __u32 dsack = dsack_high;
4332 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4333 dsack_high = TCP_SKB_CB(skb)->end_seq;
4334 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4335 }
4336 p = rb_next(p);
4337 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4338
4339 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4340 SOCK_DEBUG(sk, "ofo packet was already received\n");
4341 tcp_drop(sk, skb);
4342 continue;
4343 }
4344 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4345 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4346 TCP_SKB_CB(skb)->end_seq);
4347
4348 tail = skb_peek_tail(&sk->sk_receive_queue);
4349 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4350 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4351 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4352 if (!eaten)
4353 __skb_queue_tail(&sk->sk_receive_queue, skb);
4354 else
4355 kfree_skb_partial(skb, fragstolen);
4356
4357 if (unlikely(fin)) {
4358 tcp_fin(sk);
4359 /* tcp_fin() purges tp->out_of_order_queue,
4360 * so we must end this loop right now.
4361 */
4362 break;
4363 }
4364 }
4365 }
4366
4367 static bool tcp_prune_ofo_queue(struct sock *sk);
4368 static int tcp_prune_queue(struct sock *sk);
4369
4370 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4371 unsigned int size)
4372 {
4373 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4374 !sk_rmem_schedule(sk, skb, size)) {
4375
4376 if (tcp_prune_queue(sk) < 0)
4377 return -1;
4378
4379 while (!sk_rmem_schedule(sk, skb, size)) {
4380 if (!tcp_prune_ofo_queue(sk))
4381 return -1;
4382 }
4383 }
4384 return 0;
4385 }
4386
4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4388 {
4389 struct tcp_sock *tp = tcp_sk(sk);
4390 struct rb_node **p, *q, *parent;
4391 struct sk_buff *skb1;
4392 u32 seq, end_seq;
4393 bool fragstolen;
4394
4395 tcp_ecn_check_ce(tp, skb);
4396
4397 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399 tcp_drop(sk, skb);
4400 return;
4401 }
4402
4403 /* Disable header prediction. */
4404 tp->pred_flags = 0;
4405 inet_csk_schedule_ack(sk);
4406
4407 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408 seq = TCP_SKB_CB(skb)->seq;
4409 end_seq = TCP_SKB_CB(skb)->end_seq;
4410 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4411 tp->rcv_nxt, seq, end_seq);
4412
4413 p = &tp->out_of_order_queue.rb_node;
4414 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4415 /* Initial out of order segment, build 1 SACK. */
4416 if (tcp_is_sack(tp)) {
4417 tp->rx_opt.num_sacks = 1;
4418 tp->selective_acks[0].start_seq = seq;
4419 tp->selective_acks[0].end_seq = end_seq;
4420 }
4421 rb_link_node(&skb->rbnode, NULL, p);
4422 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4423 tp->ooo_last_skb = skb;
4424 goto end;
4425 }
4426
4427 /* In the typical case, we are adding an skb to the end of the list.
4428 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4429 */
4430 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4431 coalesce_done:
4432 tcp_grow_window(sk, skb);
4433 kfree_skb_partial(skb, fragstolen);
4434 skb = NULL;
4435 goto add_sack;
4436 }
4437 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4438 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4439 parent = &tp->ooo_last_skb->rbnode;
4440 p = &parent->rb_right;
4441 goto insert;
4442 }
4443
4444 /* Find place to insert this segment. Handle overlaps on the way. */
4445 parent = NULL;
4446 while (*p) {
4447 parent = *p;
4448 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4449 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4450 p = &parent->rb_left;
4451 continue;
4452 }
4453 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4454 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4455 /* All the bits are present. Drop. */
4456 NET_INC_STATS(sock_net(sk),
4457 LINUX_MIB_TCPOFOMERGE);
4458 __kfree_skb(skb);
4459 skb = NULL;
4460 tcp_dsack_set(sk, seq, end_seq);
4461 goto add_sack;
4462 }
4463 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4464 /* Partial overlap. */
4465 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4466 } else {
4467 /* skb's seq == skb1's seq and skb covers skb1.
4468 * Replace skb1 with skb.
4469 */
4470 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4471 &tp->out_of_order_queue);
4472 tcp_dsack_extend(sk,
4473 TCP_SKB_CB(skb1)->seq,
4474 TCP_SKB_CB(skb1)->end_seq);
4475 NET_INC_STATS(sock_net(sk),
4476 LINUX_MIB_TCPOFOMERGE);
4477 __kfree_skb(skb1);
4478 goto merge_right;
4479 }
4480 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4481 goto coalesce_done;
4482 }
4483 p = &parent->rb_right;
4484 }
4485 insert:
4486 /* Insert segment into RB tree. */
4487 rb_link_node(&skb->rbnode, parent, p);
4488 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4489
4490 merge_right:
4491 /* Remove other segments covered by skb. */
4492 while ((q = rb_next(&skb->rbnode)) != NULL) {
4493 skb1 = rb_entry(q, struct sk_buff, rbnode);
4494
4495 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4496 break;
4497 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 end_seq);
4500 break;
4501 }
4502 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504 TCP_SKB_CB(skb1)->end_seq);
4505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4506 tcp_drop(sk, skb1);
4507 }
4508 /* If there is no skb after us, we are the last_skb ! */
4509 if (!q)
4510 tp->ooo_last_skb = skb;
4511
4512 add_sack:
4513 if (tcp_is_sack(tp))
4514 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4515 end:
4516 if (skb) {
4517 tcp_grow_window(sk, skb);
4518 skb_condense(skb);
4519 skb_set_owner_r(skb, sk);
4520 }
4521 }
4522
4523 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4524 bool *fragstolen)
4525 {
4526 int eaten;
4527 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4528
4529 __skb_pull(skb, hdrlen);
4530 eaten = (tail &&
4531 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4532 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4533 if (!eaten) {
4534 __skb_queue_tail(&sk->sk_receive_queue, skb);
4535 skb_set_owner_r(skb, sk);
4536 }
4537 return eaten;
4538 }
4539
4540 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4541 {
4542 struct sk_buff *skb;
4543 int err = -ENOMEM;
4544 int data_len = 0;
4545 bool fragstolen;
4546
4547 if (size == 0)
4548 return 0;
4549
4550 if (size > PAGE_SIZE) {
4551 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4552
4553 data_len = npages << PAGE_SHIFT;
4554 size = data_len + (size & ~PAGE_MASK);
4555 }
4556 skb = alloc_skb_with_frags(size - data_len, data_len,
4557 PAGE_ALLOC_COSTLY_ORDER,
4558 &err, sk->sk_allocation);
4559 if (!skb)
4560 goto err;
4561
4562 skb_put(skb, size - data_len);
4563 skb->data_len = data_len;
4564 skb->len = size;
4565
4566 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4567 goto err_free;
4568
4569 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4570 if (err)
4571 goto err_free;
4572
4573 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4574 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4575 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4576
4577 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4578 WARN_ON_ONCE(fragstolen); /* should not happen */
4579 __kfree_skb(skb);
4580 }
4581 return size;
4582
4583 err_free:
4584 kfree_skb(skb);
4585 err:
4586 return err;
4587
4588 }
4589
4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4591 {
4592 struct tcp_sock *tp = tcp_sk(sk);
4593 bool fragstolen = false;
4594 int eaten = -1;
4595
4596 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4597 __kfree_skb(skb);
4598 return;
4599 }
4600 skb_dst_drop(skb);
4601 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4602
4603 tcp_ecn_accept_cwr(tp, skb);
4604
4605 tp->rx_opt.dsack = 0;
4606
4607 /* Queue data for delivery to the user.
4608 * Packets in sequence go to the receive queue.
4609 * Out of sequence packets to the out_of_order_queue.
4610 */
4611 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4612 if (tcp_receive_window(tp) == 0)
4613 goto out_of_window;
4614
4615 /* Ok. In sequence. In window. */
4616 if (tp->ucopy.task == current &&
4617 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4618 sock_owned_by_user(sk) && !tp->urg_data) {
4619 int chunk = min_t(unsigned int, skb->len,
4620 tp->ucopy.len);
4621
4622 __set_current_state(TASK_RUNNING);
4623
4624 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4625 tp->ucopy.len -= chunk;
4626 tp->copied_seq += chunk;
4627 eaten = (chunk == skb->len);
4628 tcp_rcv_space_adjust(sk);
4629 }
4630 }
4631
4632 if (eaten <= 0) {
4633 queue_and_out:
4634 if (eaten < 0) {
4635 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4636 sk_forced_mem_schedule(sk, skb->truesize);
4637 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4638 goto drop;
4639 }
4640 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4641 }
4642 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4643 if (skb->len)
4644 tcp_event_data_recv(sk, skb);
4645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4646 tcp_fin(sk);
4647
4648 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4649 tcp_ofo_queue(sk);
4650
4651 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4652 * gap in queue is filled.
4653 */
4654 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4655 inet_csk(sk)->icsk_ack.pingpong = 0;
4656 }
4657
4658 if (tp->rx_opt.num_sacks)
4659 tcp_sack_remove(tp);
4660
4661 tcp_fast_path_check(sk);
4662
4663 if (eaten > 0)
4664 kfree_skb_partial(skb, fragstolen);
4665 if (!sock_flag(sk, SOCK_DEAD))
4666 sk->sk_data_ready(sk);
4667 return;
4668 }
4669
4670 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4671 /* A retransmit, 2nd most common case. Force an immediate ack. */
4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4673 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4674
4675 out_of_window:
4676 tcp_enter_quickack_mode(sk);
4677 inet_csk_schedule_ack(sk);
4678 drop:
4679 tcp_drop(sk, skb);
4680 return;
4681 }
4682
4683 /* Out of window. F.e. zero window probe. */
4684 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4685 goto out_of_window;
4686
4687 tcp_enter_quickack_mode(sk);
4688
4689 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4690 /* Partial packet, seq < rcv_next < end_seq */
4691 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4692 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4693 TCP_SKB_CB(skb)->end_seq);
4694
4695 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4696
4697 /* If window is closed, drop tail of packet. But after
4698 * remembering D-SACK for its head made in previous line.
4699 */
4700 if (!tcp_receive_window(tp))
4701 goto out_of_window;
4702 goto queue_and_out;
4703 }
4704
4705 tcp_data_queue_ofo(sk, skb);
4706 }
4707
4708 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4709 {
4710 if (list)
4711 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4712
4713 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4714 }
4715
4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4717 struct sk_buff_head *list,
4718 struct rb_root *root)
4719 {
4720 struct sk_buff *next = tcp_skb_next(skb, list);
4721
4722 if (list)
4723 __skb_unlink(skb, list);
4724 else
4725 rb_erase(&skb->rbnode, root);
4726
4727 __kfree_skb(skb);
4728 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4729
4730 return next;
4731 }
4732
4733 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4734 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4735 {
4736 struct rb_node **p = &root->rb_node;
4737 struct rb_node *parent = NULL;
4738 struct sk_buff *skb1;
4739
4740 while (*p) {
4741 parent = *p;
4742 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4743 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4744 p = &parent->rb_left;
4745 else
4746 p = &parent->rb_right;
4747 }
4748 rb_link_node(&skb->rbnode, parent, p);
4749 rb_insert_color(&skb->rbnode, root);
4750 }
4751
4752 /* Collapse contiguous sequence of skbs head..tail with
4753 * sequence numbers start..end.
4754 *
4755 * If tail is NULL, this means until the end of the queue.
4756 *
4757 * Segments with FIN/SYN are not collapsed (only because this
4758 * simplifies code)
4759 */
4760 static void
4761 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4762 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4763 {
4764 struct sk_buff *skb = head, *n;
4765 struct sk_buff_head tmp;
4766 bool end_of_skbs;
4767
4768 /* First, check that queue is collapsible and find
4769 * the point where collapsing can be useful.
4770 */
4771 restart:
4772 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4773 n = tcp_skb_next(skb, list);
4774
4775 /* No new bits? It is possible on ofo queue. */
4776 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4777 skb = tcp_collapse_one(sk, skb, list, root);
4778 if (!skb)
4779 break;
4780 goto restart;
4781 }
4782
4783 /* The first skb to collapse is:
4784 * - not SYN/FIN and
4785 * - bloated or contains data before "start" or
4786 * overlaps to the next one.
4787 */
4788 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4789 (tcp_win_from_space(skb->truesize) > skb->len ||
4790 before(TCP_SKB_CB(skb)->seq, start))) {
4791 end_of_skbs = false;
4792 break;
4793 }
4794
4795 if (n && n != tail &&
4796 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4797 end_of_skbs = false;
4798 break;
4799 }
4800
4801 /* Decided to skip this, advance start seq. */
4802 start = TCP_SKB_CB(skb)->end_seq;
4803 }
4804 if (end_of_skbs ||
4805 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4806 return;
4807
4808 __skb_queue_head_init(&tmp);
4809
4810 while (before(start, end)) {
4811 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4812 struct sk_buff *nskb;
4813
4814 nskb = alloc_skb(copy, GFP_ATOMIC);
4815 if (!nskb)
4816 break;
4817
4818 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4819 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4820 if (list)
4821 __skb_queue_before(list, skb, nskb);
4822 else
4823 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4824 skb_set_owner_r(nskb, sk);
4825
4826 /* Copy data, releasing collapsed skbs. */
4827 while (copy > 0) {
4828 int offset = start - TCP_SKB_CB(skb)->seq;
4829 int size = TCP_SKB_CB(skb)->end_seq - start;
4830
4831 BUG_ON(offset < 0);
4832 if (size > 0) {
4833 size = min(copy, size);
4834 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4835 BUG();
4836 TCP_SKB_CB(nskb)->end_seq += size;
4837 copy -= size;
4838 start += size;
4839 }
4840 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4841 skb = tcp_collapse_one(sk, skb, list, root);
4842 if (!skb ||
4843 skb == tail ||
4844 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4845 goto end;
4846 }
4847 }
4848 }
4849 end:
4850 skb_queue_walk_safe(&tmp, skb, n)
4851 tcp_rbtree_insert(root, skb);
4852 }
4853
4854 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4855 * and tcp_collapse() them until all the queue is collapsed.
4856 */
4857 static void tcp_collapse_ofo_queue(struct sock *sk)
4858 {
4859 struct tcp_sock *tp = tcp_sk(sk);
4860 struct sk_buff *skb, *head;
4861 struct rb_node *p;
4862 u32 start, end;
4863
4864 p = rb_first(&tp->out_of_order_queue);
4865 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4866 new_range:
4867 if (!skb) {
4868 p = rb_last(&tp->out_of_order_queue);
4869 /* Note: This is possible p is NULL here. We do not
4870 * use rb_entry_safe(), as ooo_last_skb is valid only
4871 * if rbtree is not empty.
4872 */
4873 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4874 return;
4875 }
4876 start = TCP_SKB_CB(skb)->seq;
4877 end = TCP_SKB_CB(skb)->end_seq;
4878
4879 for (head = skb;;) {
4880 skb = tcp_skb_next(skb, NULL);
4881
4882 /* Range is terminated when we see a gap or when
4883 * we are at the queue end.
4884 */
4885 if (!skb ||
4886 after(TCP_SKB_CB(skb)->seq, end) ||
4887 before(TCP_SKB_CB(skb)->end_seq, start)) {
4888 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4889 head, skb, start, end);
4890 goto new_range;
4891 }
4892
4893 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4894 start = TCP_SKB_CB(skb)->seq;
4895 if (after(TCP_SKB_CB(skb)->end_seq, end))
4896 end = TCP_SKB_CB(skb)->end_seq;
4897 }
4898 }
4899
4900 /*
4901 * Clean the out-of-order queue to make room.
4902 * We drop high sequences packets to :
4903 * 1) Let a chance for holes to be filled.
4904 * 2) not add too big latencies if thousands of packets sit there.
4905 * (But if application shrinks SO_RCVBUF, we could still end up
4906 * freeing whole queue here)
4907 *
4908 * Return true if queue has shrunk.
4909 */
4910 static bool tcp_prune_ofo_queue(struct sock *sk)
4911 {
4912 struct tcp_sock *tp = tcp_sk(sk);
4913 struct rb_node *node, *prev;
4914
4915 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4916 return false;
4917
4918 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4919 node = &tp->ooo_last_skb->rbnode;
4920 do {
4921 prev = rb_prev(node);
4922 rb_erase(node, &tp->out_of_order_queue);
4923 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4924 sk_mem_reclaim(sk);
4925 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4926 !tcp_under_memory_pressure(sk))
4927 break;
4928 node = prev;
4929 } while (node);
4930 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4931
4932 /* Reset SACK state. A conforming SACK implementation will
4933 * do the same at a timeout based retransmit. When a connection
4934 * is in a sad state like this, we care only about integrity
4935 * of the connection not performance.
4936 */
4937 if (tp->rx_opt.sack_ok)
4938 tcp_sack_reset(&tp->rx_opt);
4939 return true;
4940 }
4941
4942 /* Reduce allocated memory if we can, trying to get
4943 * the socket within its memory limits again.
4944 *
4945 * Return less than zero if we should start dropping frames
4946 * until the socket owning process reads some of the data
4947 * to stabilize the situation.
4948 */
4949 static int tcp_prune_queue(struct sock *sk)
4950 {
4951 struct tcp_sock *tp = tcp_sk(sk);
4952
4953 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4954
4955 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4956
4957 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4958 tcp_clamp_window(sk);
4959 else if (tcp_under_memory_pressure(sk))
4960 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4961
4962 tcp_collapse_ofo_queue(sk);
4963 if (!skb_queue_empty(&sk->sk_receive_queue))
4964 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4965 skb_peek(&sk->sk_receive_queue),
4966 NULL,
4967 tp->copied_seq, tp->rcv_nxt);
4968 sk_mem_reclaim(sk);
4969
4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4971 return 0;
4972
4973 /* Collapsing did not help, destructive actions follow.
4974 * This must not ever occur. */
4975
4976 tcp_prune_ofo_queue(sk);
4977
4978 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4979 return 0;
4980
4981 /* If we are really being abused, tell the caller to silently
4982 * drop receive data on the floor. It will get retransmitted
4983 * and hopefully then we'll have sufficient space.
4984 */
4985 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4986
4987 /* Massive buffer overcommit. */
4988 tp->pred_flags = 0;
4989 return -1;
4990 }
4991
4992 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4993 {
4994 const struct tcp_sock *tp = tcp_sk(sk);
4995
4996 /* If the user specified a specific send buffer setting, do
4997 * not modify it.
4998 */
4999 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5000 return false;
5001
5002 /* If we are under global TCP memory pressure, do not expand. */
5003 if (tcp_under_memory_pressure(sk))
5004 return false;
5005
5006 /* If we are under soft global TCP memory pressure, do not expand. */
5007 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5008 return false;
5009
5010 /* If we filled the congestion window, do not expand. */
5011 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5012 return false;
5013
5014 return true;
5015 }
5016
5017 /* When incoming ACK allowed to free some skb from write_queue,
5018 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5019 * on the exit from tcp input handler.
5020 *
5021 * PROBLEM: sndbuf expansion does not work well with largesend.
5022 */
5023 static void tcp_new_space(struct sock *sk)
5024 {
5025 struct tcp_sock *tp = tcp_sk(sk);
5026
5027 if (tcp_should_expand_sndbuf(sk)) {
5028 tcp_sndbuf_expand(sk);
5029 tp->snd_cwnd_stamp = tcp_jiffies32;
5030 }
5031
5032 sk->sk_write_space(sk);
5033 }
5034
5035 static void tcp_check_space(struct sock *sk)
5036 {
5037 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5038 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5039 /* pairs with tcp_poll() */
5040 smp_mb();
5041 if (sk->sk_socket &&
5042 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5043 tcp_new_space(sk);
5044 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5045 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5046 }
5047 }
5048 }
5049
5050 static inline void tcp_data_snd_check(struct sock *sk)
5051 {
5052 tcp_push_pending_frames(sk);
5053 tcp_check_space(sk);
5054 }
5055
5056 /*
5057 * Check if sending an ack is needed.
5058 */
5059 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5060 {
5061 struct tcp_sock *tp = tcp_sk(sk);
5062
5063 /* More than one full frame received... */
5064 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5065 /* ... and right edge of window advances far enough.
5066 * (tcp_recvmsg() will send ACK otherwise). Or...
5067 */
5068 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5069 /* We ACK each frame or... */
5070 tcp_in_quickack_mode(sk) ||
5071 /* We have out of order data. */
5072 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5073 /* Then ack it now */
5074 tcp_send_ack(sk);
5075 } else {
5076 /* Else, send delayed ack. */
5077 tcp_send_delayed_ack(sk);
5078 }
5079 }
5080
5081 static inline void tcp_ack_snd_check(struct sock *sk)
5082 {
5083 if (!inet_csk_ack_scheduled(sk)) {
5084 /* We sent a data segment already. */
5085 return;
5086 }
5087 __tcp_ack_snd_check(sk, 1);
5088 }
5089
5090 /*
5091 * This routine is only called when we have urgent data
5092 * signaled. Its the 'slow' part of tcp_urg. It could be
5093 * moved inline now as tcp_urg is only called from one
5094 * place. We handle URGent data wrong. We have to - as
5095 * BSD still doesn't use the correction from RFC961.
5096 * For 1003.1g we should support a new option TCP_STDURG to permit
5097 * either form (or just set the sysctl tcp_stdurg).
5098 */
5099
5100 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5101 {
5102 struct tcp_sock *tp = tcp_sk(sk);
5103 u32 ptr = ntohs(th->urg_ptr);
5104
5105 if (ptr && !sysctl_tcp_stdurg)
5106 ptr--;
5107 ptr += ntohl(th->seq);
5108
5109 /* Ignore urgent data that we've already seen and read. */
5110 if (after(tp->copied_seq, ptr))
5111 return;
5112
5113 /* Do not replay urg ptr.
5114 *
5115 * NOTE: interesting situation not covered by specs.
5116 * Misbehaving sender may send urg ptr, pointing to segment,
5117 * which we already have in ofo queue. We are not able to fetch
5118 * such data and will stay in TCP_URG_NOTYET until will be eaten
5119 * by recvmsg(). Seems, we are not obliged to handle such wicked
5120 * situations. But it is worth to think about possibility of some
5121 * DoSes using some hypothetical application level deadlock.
5122 */
5123 if (before(ptr, tp->rcv_nxt))
5124 return;
5125
5126 /* Do we already have a newer (or duplicate) urgent pointer? */
5127 if (tp->urg_data && !after(ptr, tp->urg_seq))
5128 return;
5129
5130 /* Tell the world about our new urgent pointer. */
5131 sk_send_sigurg(sk);
5132
5133 /* We may be adding urgent data when the last byte read was
5134 * urgent. To do this requires some care. We cannot just ignore
5135 * tp->copied_seq since we would read the last urgent byte again
5136 * as data, nor can we alter copied_seq until this data arrives
5137 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5138 *
5139 * NOTE. Double Dutch. Rendering to plain English: author of comment
5140 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5141 * and expect that both A and B disappear from stream. This is _wrong_.
5142 * Though this happens in BSD with high probability, this is occasional.
5143 * Any application relying on this is buggy. Note also, that fix "works"
5144 * only in this artificial test. Insert some normal data between A and B and we will
5145 * decline of BSD again. Verdict: it is better to remove to trap
5146 * buggy users.
5147 */
5148 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5149 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5150 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5151 tp->copied_seq++;
5152 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5153 __skb_unlink(skb, &sk->sk_receive_queue);
5154 __kfree_skb(skb);
5155 }
5156 }
5157
5158 tp->urg_data = TCP_URG_NOTYET;
5159 tp->urg_seq = ptr;
5160
5161 /* Disable header prediction. */
5162 tp->pred_flags = 0;
5163 }
5164
5165 /* This is the 'fast' part of urgent handling. */
5166 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5167 {
5168 struct tcp_sock *tp = tcp_sk(sk);
5169
5170 /* Check if we get a new urgent pointer - normally not. */
5171 if (th->urg)
5172 tcp_check_urg(sk, th);
5173
5174 /* Do we wait for any urgent data? - normally not... */
5175 if (tp->urg_data == TCP_URG_NOTYET) {
5176 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5177 th->syn;
5178
5179 /* Is the urgent pointer pointing into this packet? */
5180 if (ptr < skb->len) {
5181 u8 tmp;
5182 if (skb_copy_bits(skb, ptr, &tmp, 1))
5183 BUG();
5184 tp->urg_data = TCP_URG_VALID | tmp;
5185 if (!sock_flag(sk, SOCK_DEAD))
5186 sk->sk_data_ready(sk);
5187 }
5188 }
5189 }
5190
5191 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5192 {
5193 struct tcp_sock *tp = tcp_sk(sk);
5194 int chunk = skb->len - hlen;
5195 int err;
5196
5197 if (skb_csum_unnecessary(skb))
5198 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5199 else
5200 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5201
5202 if (!err) {
5203 tp->ucopy.len -= chunk;
5204 tp->copied_seq += chunk;
5205 tcp_rcv_space_adjust(sk);
5206 }
5207
5208 return err;
5209 }
5210
5211 /* Accept RST for rcv_nxt - 1 after a FIN.
5212 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5213 * FIN is sent followed by a RST packet. The RST is sent with the same
5214 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5215 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5216 * ACKs on the closed socket. In addition middleboxes can drop either the
5217 * challenge ACK or a subsequent RST.
5218 */
5219 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5220 {
5221 struct tcp_sock *tp = tcp_sk(sk);
5222
5223 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5224 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5225 TCPF_CLOSING));
5226 }
5227
5228 /* Does PAWS and seqno based validation of an incoming segment, flags will
5229 * play significant role here.
5230 */
5231 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5232 const struct tcphdr *th, int syn_inerr)
5233 {
5234 struct tcp_sock *tp = tcp_sk(sk);
5235 bool rst_seq_match = false;
5236
5237 /* RFC1323: H1. Apply PAWS check first. */
5238 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5239 tp->rx_opt.saw_tstamp &&
5240 tcp_paws_discard(sk, skb)) {
5241 if (!th->rst) {
5242 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5243 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5244 LINUX_MIB_TCPACKSKIPPEDPAWS,
5245 &tp->last_oow_ack_time))
5246 tcp_send_dupack(sk, skb);
5247 goto discard;
5248 }
5249 /* Reset is accepted even if it did not pass PAWS. */
5250 }
5251
5252 /* Step 1: check sequence number */
5253 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5254 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5255 * (RST) segments are validated by checking their SEQ-fields."
5256 * And page 69: "If an incoming segment is not acceptable,
5257 * an acknowledgment should be sent in reply (unless the RST
5258 * bit is set, if so drop the segment and return)".
5259 */
5260 if (!th->rst) {
5261 if (th->syn)
5262 goto syn_challenge;
5263 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5264 LINUX_MIB_TCPACKSKIPPEDSEQ,
5265 &tp->last_oow_ack_time))
5266 tcp_send_dupack(sk, skb);
5267 } else if (tcp_reset_check(sk, skb)) {
5268 tcp_reset(sk);
5269 }
5270 goto discard;
5271 }
5272
5273 /* Step 2: check RST bit */
5274 if (th->rst) {
5275 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5276 * FIN and SACK too if available):
5277 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5278 * the right-most SACK block,
5279 * then
5280 * RESET the connection
5281 * else
5282 * Send a challenge ACK
5283 */
5284 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5285 tcp_reset_check(sk, skb)) {
5286 rst_seq_match = true;
5287 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5288 struct tcp_sack_block *sp = &tp->selective_acks[0];
5289 int max_sack = sp[0].end_seq;
5290 int this_sack;
5291
5292 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5293 ++this_sack) {
5294 max_sack = after(sp[this_sack].end_seq,
5295 max_sack) ?
5296 sp[this_sack].end_seq : max_sack;
5297 }
5298
5299 if (TCP_SKB_CB(skb)->seq == max_sack)
5300 rst_seq_match = true;
5301 }
5302
5303 if (rst_seq_match)
5304 tcp_reset(sk);
5305 else {
5306 /* Disable TFO if RST is out-of-order
5307 * and no data has been received
5308 * for current active TFO socket
5309 */
5310 if (tp->syn_fastopen && !tp->data_segs_in &&
5311 sk->sk_state == TCP_ESTABLISHED)
5312 tcp_fastopen_active_disable(sk);
5313 tcp_send_challenge_ack(sk, skb);
5314 }
5315 goto discard;
5316 }
5317
5318 /* step 3: check security and precedence [ignored] */
5319
5320 /* step 4: Check for a SYN
5321 * RFC 5961 4.2 : Send a challenge ack
5322 */
5323 if (th->syn) {
5324 syn_challenge:
5325 if (syn_inerr)
5326 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5328 tcp_send_challenge_ack(sk, skb);
5329 goto discard;
5330 }
5331
5332 return true;
5333
5334 discard:
5335 tcp_drop(sk, skb);
5336 return false;
5337 }
5338
5339 /*
5340 * TCP receive function for the ESTABLISHED state.
5341 *
5342 * It is split into a fast path and a slow path. The fast path is
5343 * disabled when:
5344 * - A zero window was announced from us - zero window probing
5345 * is only handled properly in the slow path.
5346 * - Out of order segments arrived.
5347 * - Urgent data is expected.
5348 * - There is no buffer space left
5349 * - Unexpected TCP flags/window values/header lengths are received
5350 * (detected by checking the TCP header against pred_flags)
5351 * - Data is sent in both directions. Fast path only supports pure senders
5352 * or pure receivers (this means either the sequence number or the ack
5353 * value must stay constant)
5354 * - Unexpected TCP option.
5355 *
5356 * When these conditions are not satisfied it drops into a standard
5357 * receive procedure patterned after RFC793 to handle all cases.
5358 * The first three cases are guaranteed by proper pred_flags setting,
5359 * the rest is checked inline. Fast processing is turned on in
5360 * tcp_data_queue when everything is OK.
5361 */
5362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5363 const struct tcphdr *th, unsigned int len)
5364 {
5365 struct tcp_sock *tp = tcp_sk(sk);
5366
5367 tcp_mstamp_refresh(tp);
5368 if (unlikely(!sk->sk_rx_dst))
5369 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5370 /*
5371 * Header prediction.
5372 * The code loosely follows the one in the famous
5373 * "30 instruction TCP receive" Van Jacobson mail.
5374 *
5375 * Van's trick is to deposit buffers into socket queue
5376 * on a device interrupt, to call tcp_recv function
5377 * on the receive process context and checksum and copy
5378 * the buffer to user space. smart...
5379 *
5380 * Our current scheme is not silly either but we take the
5381 * extra cost of the net_bh soft interrupt processing...
5382 * We do checksum and copy also but from device to kernel.
5383 */
5384
5385 tp->rx_opt.saw_tstamp = 0;
5386
5387 /* pred_flags is 0xS?10 << 16 + snd_wnd
5388 * if header_prediction is to be made
5389 * 'S' will always be tp->tcp_header_len >> 2
5390 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5391 * turn it off (when there are holes in the receive
5392 * space for instance)
5393 * PSH flag is ignored.
5394 */
5395
5396 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5397 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5398 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5399 int tcp_header_len = tp->tcp_header_len;
5400
5401 /* Timestamp header prediction: tcp_header_len
5402 * is automatically equal to th->doff*4 due to pred_flags
5403 * match.
5404 */
5405
5406 /* Check timestamp */
5407 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5408 /* No? Slow path! */
5409 if (!tcp_parse_aligned_timestamp(tp, th))
5410 goto slow_path;
5411
5412 /* If PAWS failed, check it more carefully in slow path */
5413 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5414 goto slow_path;
5415
5416 /* DO NOT update ts_recent here, if checksum fails
5417 * and timestamp was corrupted part, it will result
5418 * in a hung connection since we will drop all
5419 * future packets due to the PAWS test.
5420 */
5421 }
5422
5423 if (len <= tcp_header_len) {
5424 /* Bulk data transfer: sender */
5425 if (len == tcp_header_len) {
5426 /* Predicted packet is in window by definition.
5427 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5428 * Hence, check seq<=rcv_wup reduces to:
5429 */
5430 if (tcp_header_len ==
5431 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5432 tp->rcv_nxt == tp->rcv_wup)
5433 tcp_store_ts_recent(tp);
5434
5435 /* We know that such packets are checksummed
5436 * on entry.
5437 */
5438 tcp_ack(sk, skb, 0);
5439 __kfree_skb(skb);
5440 tcp_data_snd_check(sk);
5441 return;
5442 } else { /* Header too small */
5443 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5444 goto discard;
5445 }
5446 } else {
5447 int eaten = 0;
5448 bool fragstolen = false;
5449
5450 if (tp->ucopy.task == current &&
5451 tp->copied_seq == tp->rcv_nxt &&
5452 len - tcp_header_len <= tp->ucopy.len &&
5453 sock_owned_by_user(sk)) {
5454 __set_current_state(TASK_RUNNING);
5455
5456 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5457 /* Predicted packet is in window by definition.
5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459 * Hence, check seq<=rcv_wup reduces to:
5460 */
5461 if (tcp_header_len ==
5462 (sizeof(struct tcphdr) +
5463 TCPOLEN_TSTAMP_ALIGNED) &&
5464 tp->rcv_nxt == tp->rcv_wup)
5465 tcp_store_ts_recent(tp);
5466
5467 tcp_rcv_rtt_measure_ts(sk, skb);
5468
5469 __skb_pull(skb, tcp_header_len);
5470 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5471 NET_INC_STATS(sock_net(sk),
5472 LINUX_MIB_TCPHPHITSTOUSER);
5473 eaten = 1;
5474 }
5475 }
5476 if (!eaten) {
5477 if (tcp_checksum_complete(skb))
5478 goto csum_error;
5479
5480 if ((int)skb->truesize > sk->sk_forward_alloc)
5481 goto step5;
5482
5483 /* Predicted packet is in window by definition.
5484 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5485 * Hence, check seq<=rcv_wup reduces to:
5486 */
5487 if (tcp_header_len ==
5488 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5489 tp->rcv_nxt == tp->rcv_wup)
5490 tcp_store_ts_recent(tp);
5491
5492 tcp_rcv_rtt_measure_ts(sk, skb);
5493
5494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5495
5496 /* Bulk data transfer: receiver */
5497 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5498 &fragstolen);
5499 }
5500
5501 tcp_event_data_recv(sk, skb);
5502
5503 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5504 /* Well, only one small jumplet in fast path... */
5505 tcp_ack(sk, skb, FLAG_DATA);
5506 tcp_data_snd_check(sk);
5507 if (!inet_csk_ack_scheduled(sk))
5508 goto no_ack;
5509 }
5510
5511 __tcp_ack_snd_check(sk, 0);
5512 no_ack:
5513 if (eaten)
5514 kfree_skb_partial(skb, fragstolen);
5515 sk->sk_data_ready(sk);
5516 return;
5517 }
5518 }
5519
5520 slow_path:
5521 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5522 goto csum_error;
5523
5524 if (!th->ack && !th->rst && !th->syn)
5525 goto discard;
5526
5527 /*
5528 * Standard slow path.
5529 */
5530
5531 if (!tcp_validate_incoming(sk, skb, th, 1))
5532 return;
5533
5534 step5:
5535 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5536 goto discard;
5537
5538 tcp_rcv_rtt_measure_ts(sk, skb);
5539
5540 /* Process urgent data. */
5541 tcp_urg(sk, skb, th);
5542
5543 /* step 7: process the segment text */
5544 tcp_data_queue(sk, skb);
5545
5546 tcp_data_snd_check(sk);
5547 tcp_ack_snd_check(sk);
5548 return;
5549
5550 csum_error:
5551 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5552 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5553
5554 discard:
5555 tcp_drop(sk, skb);
5556 }
5557 EXPORT_SYMBOL(tcp_rcv_established);
5558
5559 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5560 {
5561 struct tcp_sock *tp = tcp_sk(sk);
5562 struct inet_connection_sock *icsk = inet_csk(sk);
5563
5564 tcp_set_state(sk, TCP_ESTABLISHED);
5565 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5566
5567 if (skb) {
5568 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5569 security_inet_conn_established(sk, skb);
5570 }
5571
5572 /* Make sure socket is routed, for correct metrics. */
5573 icsk->icsk_af_ops->rebuild_header(sk);
5574
5575 tcp_init_metrics(sk);
5576 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5577 tcp_init_congestion_control(sk);
5578
5579 /* Prevent spurious tcp_cwnd_restart() on first data
5580 * packet.
5581 */
5582 tp->lsndtime = tcp_jiffies32;
5583
5584 tcp_init_buffer_space(sk);
5585
5586 if (sock_flag(sk, SOCK_KEEPOPEN))
5587 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5588
5589 if (!tp->rx_opt.snd_wscale)
5590 __tcp_fast_path_on(tp, tp->snd_wnd);
5591 else
5592 tp->pred_flags = 0;
5593
5594 }
5595
5596 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5597 struct tcp_fastopen_cookie *cookie)
5598 {
5599 struct tcp_sock *tp = tcp_sk(sk);
5600 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5601 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5602 bool syn_drop = false;
5603
5604 if (mss == tp->rx_opt.user_mss) {
5605 struct tcp_options_received opt;
5606
5607 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5608 tcp_clear_options(&opt);
5609 opt.user_mss = opt.mss_clamp = 0;
5610 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5611 mss = opt.mss_clamp;
5612 }
5613
5614 if (!tp->syn_fastopen) {
5615 /* Ignore an unsolicited cookie */
5616 cookie->len = -1;
5617 } else if (tp->total_retrans) {
5618 /* SYN timed out and the SYN-ACK neither has a cookie nor
5619 * acknowledges data. Presumably the remote received only
5620 * the retransmitted (regular) SYNs: either the original
5621 * SYN-data or the corresponding SYN-ACK was dropped.
5622 */
5623 syn_drop = (cookie->len < 0 && data);
5624 } else if (cookie->len < 0 && !tp->syn_data) {
5625 /* We requested a cookie but didn't get it. If we did not use
5626 * the (old) exp opt format then try so next time (try_exp=1).
5627 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5628 */
5629 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5630 }
5631
5632 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5633
5634 if (data) { /* Retransmit unacked data in SYN */
5635 tcp_for_write_queue_from(data, sk) {
5636 if (data == tcp_send_head(sk) ||
5637 __tcp_retransmit_skb(sk, data, 1))
5638 break;
5639 }
5640 tcp_rearm_rto(sk);
5641 NET_INC_STATS(sock_net(sk),
5642 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5643 return true;
5644 }
5645 tp->syn_data_acked = tp->syn_data;
5646 if (tp->syn_data_acked)
5647 NET_INC_STATS(sock_net(sk),
5648 LINUX_MIB_TCPFASTOPENACTIVE);
5649
5650 tcp_fastopen_add_skb(sk, synack);
5651
5652 return false;
5653 }
5654
5655 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5656 const struct tcphdr *th)
5657 {
5658 struct inet_connection_sock *icsk = inet_csk(sk);
5659 struct tcp_sock *tp = tcp_sk(sk);
5660 struct tcp_fastopen_cookie foc = { .len = -1 };
5661 int saved_clamp = tp->rx_opt.mss_clamp;
5662 bool fastopen_fail;
5663
5664 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5665 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5666 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5667
5668 if (th->ack) {
5669 /* rfc793:
5670 * "If the state is SYN-SENT then
5671 * first check the ACK bit
5672 * If the ACK bit is set
5673 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5674 * a reset (unless the RST bit is set, if so drop
5675 * the segment and return)"
5676 */
5677 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5678 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5679 goto reset_and_undo;
5680
5681 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5682 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5683 tcp_time_stamp(tp))) {
5684 NET_INC_STATS(sock_net(sk),
5685 LINUX_MIB_PAWSACTIVEREJECTED);
5686 goto reset_and_undo;
5687 }
5688
5689 /* Now ACK is acceptable.
5690 *
5691 * "If the RST bit is set
5692 * If the ACK was acceptable then signal the user "error:
5693 * connection reset", drop the segment, enter CLOSED state,
5694 * delete TCB, and return."
5695 */
5696
5697 if (th->rst) {
5698 tcp_reset(sk);
5699 goto discard;
5700 }
5701
5702 /* rfc793:
5703 * "fifth, if neither of the SYN or RST bits is set then
5704 * drop the segment and return."
5705 *
5706 * See note below!
5707 * --ANK(990513)
5708 */
5709 if (!th->syn)
5710 goto discard_and_undo;
5711
5712 /* rfc793:
5713 * "If the SYN bit is on ...
5714 * are acceptable then ...
5715 * (our SYN has been ACKed), change the connection
5716 * state to ESTABLISHED..."
5717 */
5718
5719 tcp_ecn_rcv_synack(tp, th);
5720
5721 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5722 tcp_ack(sk, skb, FLAG_SLOWPATH);
5723
5724 /* Ok.. it's good. Set up sequence numbers and
5725 * move to established.
5726 */
5727 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5728 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5729
5730 /* RFC1323: The window in SYN & SYN/ACK segments is
5731 * never scaled.
5732 */
5733 tp->snd_wnd = ntohs(th->window);
5734
5735 if (!tp->rx_opt.wscale_ok) {
5736 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5737 tp->window_clamp = min(tp->window_clamp, 65535U);
5738 }
5739
5740 if (tp->rx_opt.saw_tstamp) {
5741 tp->rx_opt.tstamp_ok = 1;
5742 tp->tcp_header_len =
5743 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5744 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5745 tcp_store_ts_recent(tp);
5746 } else {
5747 tp->tcp_header_len = sizeof(struct tcphdr);
5748 }
5749
5750 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5751 tcp_enable_fack(tp);
5752
5753 tcp_mtup_init(sk);
5754 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5755 tcp_initialize_rcv_mss(sk);
5756
5757 /* Remember, tcp_poll() does not lock socket!
5758 * Change state from SYN-SENT only after copied_seq
5759 * is initialized. */
5760 tp->copied_seq = tp->rcv_nxt;
5761
5762 smp_mb();
5763
5764 tcp_finish_connect(sk, skb);
5765
5766 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5767 tcp_rcv_fastopen_synack(sk, skb, &foc);
5768
5769 if (!sock_flag(sk, SOCK_DEAD)) {
5770 sk->sk_state_change(sk);
5771 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5772 }
5773 if (fastopen_fail)
5774 return -1;
5775 if (sk->sk_write_pending ||
5776 icsk->icsk_accept_queue.rskq_defer_accept ||
5777 icsk->icsk_ack.pingpong) {
5778 /* Save one ACK. Data will be ready after
5779 * several ticks, if write_pending is set.
5780 *
5781 * It may be deleted, but with this feature tcpdumps
5782 * look so _wonderfully_ clever, that I was not able
5783 * to stand against the temptation 8) --ANK
5784 */
5785 inet_csk_schedule_ack(sk);
5786 tcp_enter_quickack_mode(sk);
5787 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5788 TCP_DELACK_MAX, TCP_RTO_MAX);
5789
5790 discard:
5791 tcp_drop(sk, skb);
5792 return 0;
5793 } else {
5794 tcp_send_ack(sk);
5795 }
5796 return -1;
5797 }
5798
5799 /* No ACK in the segment */
5800
5801 if (th->rst) {
5802 /* rfc793:
5803 * "If the RST bit is set
5804 *
5805 * Otherwise (no ACK) drop the segment and return."
5806 */
5807
5808 goto discard_and_undo;
5809 }
5810
5811 /* PAWS check. */
5812 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5813 tcp_paws_reject(&tp->rx_opt, 0))
5814 goto discard_and_undo;
5815
5816 if (th->syn) {
5817 /* We see SYN without ACK. It is attempt of
5818 * simultaneous connect with crossed SYNs.
5819 * Particularly, it can be connect to self.
5820 */
5821 tcp_set_state(sk, TCP_SYN_RECV);
5822
5823 if (tp->rx_opt.saw_tstamp) {
5824 tp->rx_opt.tstamp_ok = 1;
5825 tcp_store_ts_recent(tp);
5826 tp->tcp_header_len =
5827 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5828 } else {
5829 tp->tcp_header_len = sizeof(struct tcphdr);
5830 }
5831
5832 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5833 tp->copied_seq = tp->rcv_nxt;
5834 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5835
5836 /* RFC1323: The window in SYN & SYN/ACK segments is
5837 * never scaled.
5838 */
5839 tp->snd_wnd = ntohs(th->window);
5840 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5841 tp->max_window = tp->snd_wnd;
5842
5843 tcp_ecn_rcv_syn(tp, th);
5844
5845 tcp_mtup_init(sk);
5846 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5847 tcp_initialize_rcv_mss(sk);
5848
5849 tcp_send_synack(sk);
5850 #if 0
5851 /* Note, we could accept data and URG from this segment.
5852 * There are no obstacles to make this (except that we must
5853 * either change tcp_recvmsg() to prevent it from returning data
5854 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5855 *
5856 * However, if we ignore data in ACKless segments sometimes,
5857 * we have no reasons to accept it sometimes.
5858 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5859 * is not flawless. So, discard packet for sanity.
5860 * Uncomment this return to process the data.
5861 */
5862 return -1;
5863 #else
5864 goto discard;
5865 #endif
5866 }
5867 /* "fifth, if neither of the SYN or RST bits is set then
5868 * drop the segment and return."
5869 */
5870
5871 discard_and_undo:
5872 tcp_clear_options(&tp->rx_opt);
5873 tp->rx_opt.mss_clamp = saved_clamp;
5874 goto discard;
5875
5876 reset_and_undo:
5877 tcp_clear_options(&tp->rx_opt);
5878 tp->rx_opt.mss_clamp = saved_clamp;
5879 return 1;
5880 }
5881
5882 /*
5883 * This function implements the receiving procedure of RFC 793 for
5884 * all states except ESTABLISHED and TIME_WAIT.
5885 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5886 * address independent.
5887 */
5888
5889 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5890 {
5891 struct tcp_sock *tp = tcp_sk(sk);
5892 struct inet_connection_sock *icsk = inet_csk(sk);
5893 const struct tcphdr *th = tcp_hdr(skb);
5894 struct request_sock *req;
5895 int queued = 0;
5896 bool acceptable;
5897
5898 switch (sk->sk_state) {
5899 case TCP_CLOSE:
5900 goto discard;
5901
5902 case TCP_LISTEN:
5903 if (th->ack)
5904 return 1;
5905
5906 if (th->rst)
5907 goto discard;
5908
5909 if (th->syn) {
5910 if (th->fin)
5911 goto discard;
5912 /* It is possible that we process SYN packets from backlog,
5913 * so we need to make sure to disable BH right there.
5914 */
5915 local_bh_disable();
5916 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5917 local_bh_enable();
5918
5919 if (!acceptable)
5920 return 1;
5921 consume_skb(skb);
5922 return 0;
5923 }
5924 goto discard;
5925
5926 case TCP_SYN_SENT:
5927 tp->rx_opt.saw_tstamp = 0;
5928 tcp_mstamp_refresh(tp);
5929 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5930 if (queued >= 0)
5931 return queued;
5932
5933 /* Do step6 onward by hand. */
5934 tcp_urg(sk, skb, th);
5935 __kfree_skb(skb);
5936 tcp_data_snd_check(sk);
5937 return 0;
5938 }
5939
5940 tcp_mstamp_refresh(tp);
5941 tp->rx_opt.saw_tstamp = 0;
5942 req = tp->fastopen_rsk;
5943 if (req) {
5944 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5945 sk->sk_state != TCP_FIN_WAIT1);
5946
5947 if (!tcp_check_req(sk, skb, req, true))
5948 goto discard;
5949 }
5950
5951 if (!th->ack && !th->rst && !th->syn)
5952 goto discard;
5953
5954 if (!tcp_validate_incoming(sk, skb, th, 0))
5955 return 0;
5956
5957 /* step 5: check the ACK field */
5958 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5959 FLAG_UPDATE_TS_RECENT |
5960 FLAG_NO_CHALLENGE_ACK) > 0;
5961
5962 if (!acceptable) {
5963 if (sk->sk_state == TCP_SYN_RECV)
5964 return 1; /* send one RST */
5965 tcp_send_challenge_ack(sk, skb);
5966 goto discard;
5967 }
5968 switch (sk->sk_state) {
5969 case TCP_SYN_RECV:
5970 if (!tp->srtt_us)
5971 tcp_synack_rtt_meas(sk, req);
5972
5973 /* Once we leave TCP_SYN_RECV, we no longer need req
5974 * so release it.
5975 */
5976 if (req) {
5977 inet_csk(sk)->icsk_retransmits = 0;
5978 reqsk_fastopen_remove(sk, req, false);
5979 } else {
5980 /* Make sure socket is routed, for correct metrics. */
5981 icsk->icsk_af_ops->rebuild_header(sk);
5982 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5983 tcp_init_congestion_control(sk);
5984
5985 tcp_mtup_init(sk);
5986 tp->copied_seq = tp->rcv_nxt;
5987 tcp_init_buffer_space(sk);
5988 }
5989 smp_mb();
5990 tcp_set_state(sk, TCP_ESTABLISHED);
5991 sk->sk_state_change(sk);
5992
5993 /* Note, that this wakeup is only for marginal crossed SYN case.
5994 * Passively open sockets are not waked up, because
5995 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5996 */
5997 if (sk->sk_socket)
5998 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5999
6000 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6001 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6002 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6003
6004 if (tp->rx_opt.tstamp_ok)
6005 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6006
6007 if (req) {
6008 /* Re-arm the timer because data may have been sent out.
6009 * This is similar to the regular data transmission case
6010 * when new data has just been ack'ed.
6011 *
6012 * (TFO) - we could try to be more aggressive and
6013 * retransmitting any data sooner based on when they
6014 * are sent out.
6015 */
6016 tcp_rearm_rto(sk);
6017 } else
6018 tcp_init_metrics(sk);
6019
6020 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6021 tcp_update_pacing_rate(sk);
6022
6023 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6024 tp->lsndtime = tcp_jiffies32;
6025
6026 tcp_initialize_rcv_mss(sk);
6027 tcp_fast_path_on(tp);
6028 break;
6029
6030 case TCP_FIN_WAIT1: {
6031 int tmo;
6032
6033 /* If we enter the TCP_FIN_WAIT1 state and we are a
6034 * Fast Open socket and this is the first acceptable
6035 * ACK we have received, this would have acknowledged
6036 * our SYNACK so stop the SYNACK timer.
6037 */
6038 if (req) {
6039 /* We no longer need the request sock. */
6040 reqsk_fastopen_remove(sk, req, false);
6041 tcp_rearm_rto(sk);
6042 }
6043 if (tp->snd_una != tp->write_seq)
6044 break;
6045
6046 tcp_set_state(sk, TCP_FIN_WAIT2);
6047 sk->sk_shutdown |= SEND_SHUTDOWN;
6048
6049 sk_dst_confirm(sk);
6050
6051 if (!sock_flag(sk, SOCK_DEAD)) {
6052 /* Wake up lingering close() */
6053 sk->sk_state_change(sk);
6054 break;
6055 }
6056
6057 if (tp->linger2 < 0) {
6058 tcp_done(sk);
6059 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6060 return 1;
6061 }
6062 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6063 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6064 /* Receive out of order FIN after close() */
6065 if (tp->syn_fastopen && th->fin)
6066 tcp_fastopen_active_disable(sk);
6067 tcp_done(sk);
6068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6069 return 1;
6070 }
6071
6072 tmo = tcp_fin_time(sk);
6073 if (tmo > TCP_TIMEWAIT_LEN) {
6074 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6075 } else if (th->fin || sock_owned_by_user(sk)) {
6076 /* Bad case. We could lose such FIN otherwise.
6077 * It is not a big problem, but it looks confusing
6078 * and not so rare event. We still can lose it now,
6079 * if it spins in bh_lock_sock(), but it is really
6080 * marginal case.
6081 */
6082 inet_csk_reset_keepalive_timer(sk, tmo);
6083 } else {
6084 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6085 goto discard;
6086 }
6087 break;
6088 }
6089
6090 case TCP_CLOSING:
6091 if (tp->snd_una == tp->write_seq) {
6092 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6093 goto discard;
6094 }
6095 break;
6096
6097 case TCP_LAST_ACK:
6098 if (tp->snd_una == tp->write_seq) {
6099 tcp_update_metrics(sk);
6100 tcp_done(sk);
6101 goto discard;
6102 }
6103 break;
6104 }
6105
6106 /* step 6: check the URG bit */
6107 tcp_urg(sk, skb, th);
6108
6109 /* step 7: process the segment text */
6110 switch (sk->sk_state) {
6111 case TCP_CLOSE_WAIT:
6112 case TCP_CLOSING:
6113 case TCP_LAST_ACK:
6114 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6115 break;
6116 case TCP_FIN_WAIT1:
6117 case TCP_FIN_WAIT2:
6118 /* RFC 793 says to queue data in these states,
6119 * RFC 1122 says we MUST send a reset.
6120 * BSD 4.4 also does reset.
6121 */
6122 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6123 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6124 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6125 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6126 tcp_reset(sk);
6127 return 1;
6128 }
6129 }
6130 /* Fall through */
6131 case TCP_ESTABLISHED:
6132 tcp_data_queue(sk, skb);
6133 queued = 1;
6134 break;
6135 }
6136
6137 /* tcp_data could move socket to TIME-WAIT */
6138 if (sk->sk_state != TCP_CLOSE) {
6139 tcp_data_snd_check(sk);
6140 tcp_ack_snd_check(sk);
6141 }
6142
6143 if (!queued) {
6144 discard:
6145 tcp_drop(sk, skb);
6146 }
6147 return 0;
6148 }
6149 EXPORT_SYMBOL(tcp_rcv_state_process);
6150
6151 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6152 {
6153 struct inet_request_sock *ireq = inet_rsk(req);
6154
6155 if (family == AF_INET)
6156 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6157 &ireq->ir_rmt_addr, port);
6158 #if IS_ENABLED(CONFIG_IPV6)
6159 else if (family == AF_INET6)
6160 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6161 &ireq->ir_v6_rmt_addr, port);
6162 #endif
6163 }
6164
6165 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6166 *
6167 * If we receive a SYN packet with these bits set, it means a
6168 * network is playing bad games with TOS bits. In order to
6169 * avoid possible false congestion notifications, we disable
6170 * TCP ECN negotiation.
6171 *
6172 * Exception: tcp_ca wants ECN. This is required for DCTCP
6173 * congestion control: Linux DCTCP asserts ECT on all packets,
6174 * including SYN, which is most optimal solution; however,
6175 * others, such as FreeBSD do not.
6176 */
6177 static void tcp_ecn_create_request(struct request_sock *req,
6178 const struct sk_buff *skb,
6179 const struct sock *listen_sk,
6180 const struct dst_entry *dst)
6181 {
6182 const struct tcphdr *th = tcp_hdr(skb);
6183 const struct net *net = sock_net(listen_sk);
6184 bool th_ecn = th->ece && th->cwr;
6185 bool ect, ecn_ok;
6186 u32 ecn_ok_dst;
6187
6188 if (!th_ecn)
6189 return;
6190
6191 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6192 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6193 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6194
6195 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6196 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6197 tcp_bpf_ca_needs_ecn((struct sock *)req))
6198 inet_rsk(req)->ecn_ok = 1;
6199 }
6200
6201 static void tcp_openreq_init(struct request_sock *req,
6202 const struct tcp_options_received *rx_opt,
6203 struct sk_buff *skb, const struct sock *sk)
6204 {
6205 struct inet_request_sock *ireq = inet_rsk(req);
6206
6207 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6208 req->cookie_ts = 0;
6209 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6210 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6211 tcp_rsk(req)->snt_synack = tcp_clock_us();
6212 tcp_rsk(req)->last_oow_ack_time = 0;
6213 req->mss = rx_opt->mss_clamp;
6214 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6215 ireq->tstamp_ok = rx_opt->tstamp_ok;
6216 ireq->sack_ok = rx_opt->sack_ok;
6217 ireq->snd_wscale = rx_opt->snd_wscale;
6218 ireq->wscale_ok = rx_opt->wscale_ok;
6219 ireq->acked = 0;
6220 ireq->ecn_ok = 0;
6221 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6222 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6223 ireq->ir_mark = inet_request_mark(sk, skb);
6224 }
6225
6226 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6227 struct sock *sk_listener,
6228 bool attach_listener)
6229 {
6230 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6231 attach_listener);
6232
6233 if (req) {
6234 struct inet_request_sock *ireq = inet_rsk(req);
6235
6236 kmemcheck_annotate_bitfield(ireq, flags);
6237 ireq->ireq_opt = NULL;
6238 #if IS_ENABLED(CONFIG_IPV6)
6239 ireq->pktopts = NULL;
6240 #endif
6241 atomic64_set(&ireq->ir_cookie, 0);
6242 ireq->ireq_state = TCP_NEW_SYN_RECV;
6243 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6244 ireq->ireq_family = sk_listener->sk_family;
6245 }
6246
6247 return req;
6248 }
6249 EXPORT_SYMBOL(inet_reqsk_alloc);
6250
6251 /*
6252 * Return true if a syncookie should be sent
6253 */
6254 static bool tcp_syn_flood_action(const struct sock *sk,
6255 const struct sk_buff *skb,
6256 const char *proto)
6257 {
6258 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6259 const char *msg = "Dropping request";
6260 bool want_cookie = false;
6261 struct net *net = sock_net(sk);
6262
6263 #ifdef CONFIG_SYN_COOKIES
6264 if (net->ipv4.sysctl_tcp_syncookies) {
6265 msg = "Sending cookies";
6266 want_cookie = true;
6267 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6268 } else
6269 #endif
6270 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6271
6272 if (!queue->synflood_warned &&
6273 net->ipv4.sysctl_tcp_syncookies != 2 &&
6274 xchg(&queue->synflood_warned, 1) == 0)
6275 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6276 proto, ntohs(tcp_hdr(skb)->dest), msg);
6277
6278 return want_cookie;
6279 }
6280
6281 static void tcp_reqsk_record_syn(const struct sock *sk,
6282 struct request_sock *req,
6283 const struct sk_buff *skb)
6284 {
6285 if (tcp_sk(sk)->save_syn) {
6286 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6287 u32 *copy;
6288
6289 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6290 if (copy) {
6291 copy[0] = len;
6292 memcpy(&copy[1], skb_network_header(skb), len);
6293 req->saved_syn = copy;
6294 }
6295 }
6296 }
6297
6298 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6299 const struct tcp_request_sock_ops *af_ops,
6300 struct sock *sk, struct sk_buff *skb)
6301 {
6302 struct tcp_fastopen_cookie foc = { .len = -1 };
6303 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6304 struct tcp_options_received tmp_opt;
6305 struct tcp_sock *tp = tcp_sk(sk);
6306 struct net *net = sock_net(sk);
6307 struct sock *fastopen_sk = NULL;
6308 struct dst_entry *dst = NULL;
6309 struct request_sock *req;
6310 bool want_cookie = false;
6311 struct flowi fl;
6312
6313 /* TW buckets are converted to open requests without
6314 * limitations, they conserve resources and peer is
6315 * evidently real one.
6316 */
6317 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6318 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6319 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6320 if (!want_cookie)
6321 goto drop;
6322 }
6323
6324 if (sk_acceptq_is_full(sk)) {
6325 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6326 goto drop;
6327 }
6328
6329 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6330 if (!req)
6331 goto drop;
6332
6333 tcp_rsk(req)->af_specific = af_ops;
6334 tcp_rsk(req)->ts_off = 0;
6335
6336 tcp_clear_options(&tmp_opt);
6337 tmp_opt.mss_clamp = af_ops->mss_clamp;
6338 tmp_opt.user_mss = tp->rx_opt.user_mss;
6339 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6340 want_cookie ? NULL : &foc);
6341
6342 if (want_cookie && !tmp_opt.saw_tstamp)
6343 tcp_clear_options(&tmp_opt);
6344
6345 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6346 tcp_openreq_init(req, &tmp_opt, skb, sk);
6347 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6348
6349 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6350 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6351
6352 af_ops->init_req(req, sk, skb);
6353
6354 if (security_inet_conn_request(sk, skb, req))
6355 goto drop_and_free;
6356
6357 if (tmp_opt.tstamp_ok)
6358 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6359
6360 if (!want_cookie && !isn) {
6361 /* Kill the following clause, if you dislike this way. */
6362 if (!net->ipv4.sysctl_tcp_syncookies &&
6363 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6364 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6365 !tcp_peer_is_proven(req, dst)) {
6366 /* Without syncookies last quarter of
6367 * backlog is filled with destinations,
6368 * proven to be alive.
6369 * It means that we continue to communicate
6370 * to destinations, already remembered
6371 * to the moment of synflood.
6372 */
6373 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6374 rsk_ops->family);
6375 goto drop_and_release;
6376 }
6377
6378 isn = af_ops->init_seq(skb);
6379 }
6380 if (!dst) {
6381 dst = af_ops->route_req(sk, &fl, req);
6382 if (!dst)
6383 goto drop_and_free;
6384 }
6385
6386 tcp_ecn_create_request(req, skb, sk, dst);
6387
6388 if (want_cookie) {
6389 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6390 req->cookie_ts = tmp_opt.tstamp_ok;
6391 if (!tmp_opt.tstamp_ok)
6392 inet_rsk(req)->ecn_ok = 0;
6393 }
6394
6395 tcp_rsk(req)->snt_isn = isn;
6396 tcp_rsk(req)->txhash = net_tx_rndhash();
6397 tcp_openreq_init_rwin(req, sk, dst);
6398 if (!want_cookie) {
6399 tcp_reqsk_record_syn(sk, req, skb);
6400 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6401 }
6402 if (fastopen_sk) {
6403 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6404 &foc, TCP_SYNACK_FASTOPEN);
6405 /* Add the child socket directly into the accept queue */
6406 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6407 sk->sk_data_ready(sk);
6408 bh_unlock_sock(fastopen_sk);
6409 sock_put(fastopen_sk);
6410 } else {
6411 tcp_rsk(req)->tfo_listener = false;
6412 if (!want_cookie)
6413 inet_csk_reqsk_queue_hash_add(sk, req,
6414 tcp_timeout_init((struct sock *)req));
6415 af_ops->send_synack(sk, dst, &fl, req, &foc,
6416 !want_cookie ? TCP_SYNACK_NORMAL :
6417 TCP_SYNACK_COOKIE);
6418 if (want_cookie) {
6419 reqsk_free(req);
6420 return 0;
6421 }
6422 }
6423 reqsk_put(req);
6424 return 0;
6425
6426 drop_and_release:
6427 dst_release(dst);
6428 drop_and_free:
6429 reqsk_free(req);
6430 drop:
6431 tcp_listendrop(sk);
6432 return 0;
6433 }
6434 EXPORT_SYMBOL(tcp_conn_request);