]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
Merge tag 'char-misc-4.1-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207 {
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219 {
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (tcp_ca_needs_ecn((struct sock *)tp))
236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 break;
245 default:
246 if (tcp_ca_needs_ecn((struct sock *)tp))
247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 tp->ecn_flags |= TCP_ECN_SEEN;
249 break;
250 }
251 }
252
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254 {
255 if (tp->ecn_flags & TCP_ECN_OK)
256 __tcp_ecn_check_ce(tp, skb);
257 }
258
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 tp->ecn_flags &= ~TCP_ECN_OK;
263 }
264
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 return true;
275 return false;
276 }
277
278 /* Buffer size and advertised window tuning.
279 *
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 */
282
283 static void tcp_sndbuf_expand(struct sock *sk)
284 {
285 const struct tcp_sock *tp = tcp_sk(sk);
286 int sndmem, per_mss;
287 u32 nr_segs;
288
289 /* Worst case is non GSO/TSO : each frame consumes one skb
290 * and skb->head is kmalloced using power of two area of memory
291 */
292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 MAX_TCP_HEADER +
294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295
296 per_mss = roundup_pow_of_two(per_mss) +
297 SKB_DATA_ALIGN(sizeof(struct sk_buff));
298
299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301
302 /* Fast Recovery (RFC 5681 3.2) :
303 * Cubic needs 1.7 factor, rounded to 2 to include
304 * extra cushion (application might react slowly to POLLOUT)
305 */
306 sndmem = 2 * nr_segs * per_mss;
307
308 if (sk->sk_sndbuf < sndmem)
309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 }
311
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 *
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
323 *
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 * requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 * of receiver window. Check #2.
331 *
332 * The scheme does not work when sender sends good segments opening
333 * window and then starts to feed us spaghetti. But it should work
334 * in common situations. Otherwise, we have to rely on queue collapsing.
335 */
336
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341 /* Optimize this! */
342 int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344
345 while (tp->rcv_ssthresh <= window) {
346 if (truesize <= skb->len)
347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348
349 truesize >>= 1;
350 window >>= 1;
351 }
352 return 0;
353 }
354
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356 {
357 struct tcp_sock *tp = tcp_sk(sk);
358
359 /* Check #1 */
360 if (tp->rcv_ssthresh < tp->window_clamp &&
361 (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 !sk_under_memory_pressure(sk)) {
363 int incr;
364
365 /* Check #2. Increase window, if skb with such overhead
366 * will fit to rcvbuf in future.
367 */
368 if (tcp_win_from_space(skb->truesize) <= skb->len)
369 incr = 2 * tp->advmss;
370 else
371 incr = __tcp_grow_window(sk, skb);
372
373 if (incr) {
374 incr = max_t(int, incr, 2 * skb->len);
375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 tp->window_clamp);
377 inet_csk(sk)->icsk_ack.quick |= 1;
378 }
379 }
380 }
381
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
384 {
385 u32 mss = tcp_sk(sk)->advmss;
386 int rcvmem;
387
388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 tcp_default_init_rwnd(mss);
390
391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 * Allow enough cushion so that sender is not limited by our window
393 */
394 if (sysctl_tcp_moderate_rcvbuf)
395 rcvmem <<= 2;
396
397 if (sk->sk_rcvbuf < rcvmem)
398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 }
400
401 /* 4. Try to fixup all. It is made immediately after connection enters
402 * established state.
403 */
404 void tcp_init_buffer_space(struct sock *sk)
405 {
406 struct tcp_sock *tp = tcp_sk(sk);
407 int maxwin;
408
409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 tcp_fixup_rcvbuf(sk);
411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 tcp_sndbuf_expand(sk);
413
414 tp->rcvq_space.space = tp->rcv_wnd;
415 tp->rcvq_space.time = tcp_time_stamp;
416 tp->rcvq_space.seq = tp->copied_seq;
417
418 maxwin = tcp_full_space(sk);
419
420 if (tp->window_clamp >= maxwin) {
421 tp->window_clamp = maxwin;
422
423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 tp->window_clamp = max(maxwin -
425 (maxwin >> sysctl_tcp_app_win),
426 4 * tp->advmss);
427 }
428
429 /* Force reservation of one segment. */
430 if (sysctl_tcp_app_win &&
431 tp->window_clamp > 2 * tp->advmss &&
432 tp->window_clamp + tp->advmss > maxwin)
433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434
435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 tp->snd_cwnd_stamp = tcp_time_stamp;
437 }
438
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
441 {
442 struct tcp_sock *tp = tcp_sk(sk);
443 struct inet_connection_sock *icsk = inet_csk(sk);
444
445 icsk->icsk_ack.quick = 0;
446
447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 !sk_under_memory_pressure(sk) &&
450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 sysctl_tcp_rmem[2]);
453 }
454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 }
457
458 /* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 */
465 void tcp_initialize_rcv_mss(struct sock *sk)
466 {
467 const struct tcp_sock *tp = tcp_sk(sk);
468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469
470 hint = min(hint, tp->rcv_wnd / 2);
471 hint = min(hint, TCP_MSS_DEFAULT);
472 hint = max(hint, TCP_MIN_MSS);
473
474 inet_csk(sk)->icsk_ack.rcv_mss = hint;
475 }
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477
478 /* Receiver "autotuning" code.
479 *
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
483 *
484 * More detail on this code can be found at
485 * <http://staff.psc.edu/jheffner/>,
486 * though this reference is out of date. A new paper
487 * is pending.
488 */
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490 {
491 u32 new_sample = tp->rcv_rtt_est.rtt;
492 long m = sample;
493
494 if (m == 0)
495 m = 1;
496
497 if (new_sample != 0) {
498 /* If we sample in larger samples in the non-timestamp
499 * case, we could grossly overestimate the RTT especially
500 * with chatty applications or bulk transfer apps which
501 * are stalled on filesystem I/O.
502 *
503 * Also, since we are only going for a minimum in the
504 * non-timestamp case, we do not smooth things out
505 * else with timestamps disabled convergence takes too
506 * long.
507 */
508 if (!win_dep) {
509 m -= (new_sample >> 3);
510 new_sample += m;
511 } else {
512 m <<= 3;
513 if (m < new_sample)
514 new_sample = m;
515 }
516 } else {
517 /* No previous measure. */
518 new_sample = m << 3;
519 }
520
521 if (tp->rcv_rtt_est.rtt != new_sample)
522 tp->rcv_rtt_est.rtt = new_sample;
523 }
524
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526 {
527 if (tp->rcv_rtt_est.time == 0)
528 goto new_measure;
529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 return;
531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532
533 new_measure:
534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 tp->rcv_rtt_est.time = tcp_time_stamp;
536 }
537
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 const struct sk_buff *skb)
540 {
541 struct tcp_sock *tp = tcp_sk(sk);
542 if (tp->rx_opt.rcv_tsecr &&
543 (TCP_SKB_CB(skb)->end_seq -
544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546 }
547
548 /*
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
551 */
552 void tcp_rcv_space_adjust(struct sock *sk)
553 {
554 struct tcp_sock *tp = tcp_sk(sk);
555 int time;
556 int copied;
557
558 time = tcp_time_stamp - tp->rcvq_space.time;
559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 return;
561
562 /* Number of bytes copied to user in last RTT */
563 copied = tp->copied_seq - tp->rcvq_space.seq;
564 if (copied <= tp->rcvq_space.space)
565 goto new_measure;
566
567 /* A bit of theory :
568 * copied = bytes received in previous RTT, our base window
569 * To cope with packet losses, we need a 2x factor
570 * To cope with slow start, and sender growing its cwin by 100 %
571 * every RTT, we need a 4x factor, because the ACK we are sending
572 * now is for the next RTT, not the current one :
573 * <prev RTT . ><current RTT .. ><next RTT .... >
574 */
575
576 if (sysctl_tcp_moderate_rcvbuf &&
577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 int rcvwin, rcvmem, rcvbuf;
579
580 /* minimal window to cope with packet losses, assuming
581 * steady state. Add some cushion because of small variations.
582 */
583 rcvwin = (copied << 1) + 16 * tp->advmss;
584
585 /* If rate increased by 25%,
586 * assume slow start, rcvwin = 3 * copied
587 * If rate increased by 50%,
588 * assume sender can use 2x growth, rcvwin = 4 * copied
589 */
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 if (copied >=
593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin <<= 1;
595 else
596 rcvwin += (rcvwin >> 1);
597 }
598
599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvmem += 128;
602
603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 if (rcvbuf > sk->sk_rcvbuf) {
605 sk->sk_rcvbuf = rcvbuf;
606
607 /* Make the window clamp follow along. */
608 tp->window_clamp = rcvwin;
609 }
610 }
611 tp->rcvq_space.space = copied;
612
613 new_measure:
614 tp->rcvq_space.seq = tp->copied_seq;
615 tp->rcvq_space.time = tcp_time_stamp;
616 }
617
618 /* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval. When a
620 * connection starts up, we want to ack as quickly as possible. The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission. The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time. For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue. -DaveM
627 */
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629 {
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct inet_connection_sock *icsk = inet_csk(sk);
632 u32 now;
633
634 inet_csk_schedule_ack(sk);
635
636 tcp_measure_rcv_mss(sk, skb);
637
638 tcp_rcv_rtt_measure(tp);
639
640 now = tcp_time_stamp;
641
642 if (!icsk->icsk_ack.ato) {
643 /* The _first_ data packet received, initialize
644 * delayed ACK engine.
645 */
646 tcp_incr_quickack(sk);
647 icsk->icsk_ack.ato = TCP_ATO_MIN;
648 } else {
649 int m = now - icsk->icsk_ack.lrcvtime;
650
651 if (m <= TCP_ATO_MIN / 2) {
652 /* The fastest case is the first. */
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 } else if (m < icsk->icsk_ack.ato) {
655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 icsk->icsk_ack.ato = icsk->icsk_rto;
658 } else if (m > icsk->icsk_rto) {
659 /* Too long gap. Apparently sender failed to
660 * restart window, so that we send ACKs quickly.
661 */
662 tcp_incr_quickack(sk);
663 sk_mem_reclaim(sk);
664 }
665 }
666 icsk->icsk_ack.lrcvtime = now;
667
668 tcp_ecn_check_ce(tp, skb);
669
670 if (skb->len >= 128)
671 tcp_grow_window(sk, skb);
672 }
673
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
682 */
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684 {
685 struct tcp_sock *tp = tcp_sk(sk);
686 long m = mrtt_us; /* RTT */
687 u32 srtt = tp->srtt_us;
688
689 /* The following amusing code comes from Jacobson's
690 * article in SIGCOMM '88. Note that rtt and mdev
691 * are scaled versions of rtt and mean deviation.
692 * This is designed to be as fast as possible
693 * m stands for "measurement".
694 *
695 * On a 1990 paper the rto value is changed to:
696 * RTO = rtt + 4 * mdev
697 *
698 * Funny. This algorithm seems to be very broken.
699 * These formulae increase RTO, when it should be decreased, increase
700 * too slowly, when it should be increased quickly, decrease too quickly
701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 * does not matter how to _calculate_ it. Seems, it was trap
703 * that VJ failed to avoid. 8)
704 */
705 if (srtt != 0) {
706 m -= (srtt >> 3); /* m is now error in rtt est */
707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
708 if (m < 0) {
709 m = -m; /* m is now abs(error) */
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 /* This is similar to one of Eifel findings.
712 * Eifel blocks mdev updates when rtt decreases.
713 * This solution is a bit different: we use finer gain
714 * for mdev in this case (alpha*beta).
715 * Like Eifel it also prevents growth of rto,
716 * but also it limits too fast rto decreases,
717 * happening in pure Eifel.
718 */
719 if (m > 0)
720 m >>= 3;
721 } else {
722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
723 }
724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
725 if (tp->mdev_us > tp->mdev_max_us) {
726 tp->mdev_max_us = tp->mdev_us;
727 if (tp->mdev_max_us > tp->rttvar_us)
728 tp->rttvar_us = tp->mdev_max_us;
729 }
730 if (after(tp->snd_una, tp->rtt_seq)) {
731 if (tp->mdev_max_us < tp->rttvar_us)
732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 tp->rtt_seq = tp->snd_nxt;
734 tp->mdev_max_us = tcp_rto_min_us(sk);
735 }
736 } else {
737 /* no previous measure. */
738 srtt = m << 3; /* take the measured time to be rtt */
739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 tp->mdev_max_us = tp->rttvar_us;
742 tp->rtt_seq = tp->snd_nxt;
743 }
744 tp->srtt_us = max(1U, srtt);
745 }
746
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
752 */
753 static void tcp_update_pacing_rate(struct sock *sk)
754 {
755 const struct tcp_sock *tp = tcp_sk(sk);
756 u64 rate;
757
758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760
761 rate *= max(tp->snd_cwnd, tp->packets_out);
762
763 if (likely(tp->srtt_us))
764 do_div(rate, tp->srtt_us);
765
766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 * without any lock. We want to make sure compiler wont store
768 * intermediate values in this location.
769 */
770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 sk->sk_max_pacing_rate);
772 }
773
774 /* Calculate rto without backoff. This is the second half of Van Jacobson's
775 * routine referred to above.
776 */
777 static void tcp_set_rto(struct sock *sk)
778 {
779 const struct tcp_sock *tp = tcp_sk(sk);
780 /* Old crap is replaced with new one. 8)
781 *
782 * More seriously:
783 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 * It cannot be less due to utterly erratic ACK generation made
785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 * to do with delayed acks, because at cwnd>2 true delack timeout
787 * is invisible. Actually, Linux-2.4 also generates erratic
788 * ACKs in some circumstances.
789 */
790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791
792 /* 2. Fixups made earlier cannot be right.
793 * If we do not estimate RTO correctly without them,
794 * all the algo is pure shit and should be replaced
795 * with correct one. It is exactly, which we pretend to do.
796 */
797
798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 * guarantees that rto is higher.
800 */
801 tcp_bound_rto(sk);
802 }
803
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805 {
806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807
808 if (!cwnd)
809 cwnd = TCP_INIT_CWND;
810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811 }
812
813 /*
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
816 */
817 void tcp_disable_fack(struct tcp_sock *tp)
818 {
819 /* RFC3517 uses different metric in lost marker => reset on change */
820 if (tcp_is_fack(tp))
821 tp->lost_skb_hint = NULL;
822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 }
824
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
827 {
828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 }
830
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 const int ts)
833 {
834 struct tcp_sock *tp = tcp_sk(sk);
835 if (metric > tp->reordering) {
836 int mib_idx;
837
838 tp->reordering = min(sysctl_tcp_max_reordering, metric);
839
840 /* This exciting event is worth to be remembered. 8) */
841 if (ts)
842 mib_idx = LINUX_MIB_TCPTSREORDER;
843 else if (tcp_is_reno(tp))
844 mib_idx = LINUX_MIB_TCPRENOREORDER;
845 else if (tcp_is_fack(tp))
846 mib_idx = LINUX_MIB_TCPFACKREORDER;
847 else
848 mib_idx = LINUX_MIB_TCPSACKREORDER;
849
850 NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 tcp_disable_fack(tp);
860 }
861
862 if (metric > 0)
863 tcp_disable_early_retrans(tp);
864 }
865
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 if (!tp->retransmit_skb_hint ||
870 before(TCP_SKB_CB(skb)->seq,
871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 tp->retransmit_skb_hint = skb;
873
874 if (!tp->lost_out ||
875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 }
878
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880 {
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tcp_verify_retransmit_hint(tp, skb);
883
884 tp->lost_out += tcp_skb_pcount(skb);
885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 }
887 }
888
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 struct sk_buff *skb)
891 {
892 tcp_verify_retransmit_hint(tp, skb);
893
894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 tp->lost_out += tcp_skb_pcount(skb);
896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 }
898 }
899
900 /* This procedure tags the retransmission queue when SACKs arrive.
901 *
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
905 *
906 * Valid combinations are:
907 * Tag InFlight Description
908 * 0 1 - orig segment is in flight.
909 * S 0 - nothing flies, orig reached receiver.
910 * L 0 - nothing flies, orig lost by net.
911 * R 2 - both orig and retransmit are in flight.
912 * L|R 1 - orig is lost, retransmit is in flight.
913 * S|R 1 - orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 * but it is equivalent to plain S and code short-curcuits it to S.
916 * L|S is logically invalid, it would mean -1 packet in flight 8))
917 *
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921 * 3. Loss detection event of two flavors:
922 * A. Scoreboard estimator decided the packet is lost.
923 * A'. Reno "three dupacks" marks head of queue lost.
924 * A''. Its FACK modification, head until snd.fack is lost.
925 * B. SACK arrives sacking SND.NXT at the moment, when the
926 * segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 *
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
932 *
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
937 *
938 * 1. SACK fills old hole and the corresponding segment was not
939 * ever retransmitted -> reordering. Alas, we cannot use it
940 * when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 * for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
945 *
946 * SACK block validation.
947 * ----------------------
948 *
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment. Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
961 *
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
967 *
968 * <- outs wnd -> <- wrapzone ->
969 * u e n u_w e_w s n_w
970 * | | | | | | |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->| |<--------...
973 * ...---- >2^31 ------>| |<--------...
974 *
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 *
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
983 * again, D-SACK block must not to go across snd_una (for the same reason as
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
993 */
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 u32 start_seq, u32 end_seq)
996 {
997 /* Too far in future, or reversed (interpretation is ambiguous) */
998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 return false;
1000
1001 /* Nasty start_seq wrap-around check (see comments above) */
1002 if (!before(start_seq, tp->snd_nxt))
1003 return false;
1004
1005 /* In outstanding window? ...This is valid exit for D-SACKs too.
1006 * start_seq == snd_una is non-sensical (see comments above)
1007 */
1008 if (after(start_seq, tp->snd_una))
1009 return true;
1010
1011 if (!is_dsack || !tp->undo_marker)
1012 return false;
1013
1014 /* ...Then it's D-SACK, and must reside below snd_una completely */
1015 if (after(end_seq, tp->snd_una))
1016 return false;
1017
1018 if (!before(start_seq, tp->undo_marker))
1019 return true;
1020
1021 /* Too old */
1022 if (!after(end_seq, tp->undo_marker))
1023 return false;
1024
1025 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 * start_seq < undo_marker and end_seq >= undo_marker.
1027 */
1028 return !before(start_seq, end_seq - tp->max_window);
1029 }
1030
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1033 * for reordering! Ugly, but should help.
1034 *
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1039 */
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1041 {
1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct sk_buff *skb;
1045 int cnt = 0;
1046 u32 new_low_seq = tp->snd_nxt;
1047 u32 received_upto = tcp_highest_sack_seq(tp);
1048
1049 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 !after(received_upto, tp->lost_retrans_low) ||
1051 icsk->icsk_ca_state != TCP_CA_Recovery)
1052 return;
1053
1054 tcp_for_write_queue(skb, sk) {
1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056
1057 if (skb == tcp_send_head(sk))
1058 break;
1059 if (cnt == tp->retrans_out)
1060 break;
1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 continue;
1063
1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 continue;
1066
1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 * constraint here (see above) but figuring out that at
1069 * least tp->reordering SACK blocks reside between ack_seq
1070 * and received_upto is not easy task to do cheaply with
1071 * the available datastructures.
1072 *
1073 * Whether FACK should check here for tp->reordering segs
1074 * in-between one could argue for either way (it would be
1075 * rather simple to implement as we could count fack_count
1076 * during the walk and do tp->fackets_out - fack_count).
1077 */
1078 if (after(received_upto, ack_seq)) {
1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 tp->retrans_out -= tcp_skb_pcount(skb);
1081
1082 tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 } else {
1085 if (before(ack_seq, new_low_seq))
1086 new_low_seq = ack_seq;
1087 cnt += tcp_skb_pcount(skb);
1088 }
1089 }
1090
1091 if (tp->retrans_out)
1092 tp->lost_retrans_low = new_low_seq;
1093 }
1094
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1098 {
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS_BH(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128 }
1129
1130 struct tcp_sacktag_state {
1131 int reord;
1132 int fack_count;
1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134 int flag;
1135 };
1136
1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138 * the incoming SACK may not exactly match but we can find smaller MSS
1139 * aligned portion of it that matches. Therefore we might need to fragment
1140 * which may fail and creates some hassle (caller must handle error case
1141 * returns).
1142 *
1143 * FIXME: this could be merged to shift decision code
1144 */
1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146 u32 start_seq, u32 end_seq)
1147 {
1148 int err;
1149 bool in_sack;
1150 unsigned int pkt_len;
1151 unsigned int mss;
1152
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155
1156 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158 mss = tcp_skb_mss(skb);
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160
1161 if (!in_sack) {
1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 if (pkt_len < mss)
1164 pkt_len = mss;
1165 } else {
1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167 if (pkt_len < mss)
1168 return -EINVAL;
1169 }
1170
1171 /* Round if necessary so that SACKs cover only full MSSes
1172 * and/or the remaining small portion (if present)
1173 */
1174 if (pkt_len > mss) {
1175 unsigned int new_len = (pkt_len / mss) * mss;
1176 if (!in_sack && new_len < pkt_len) {
1177 new_len += mss;
1178 if (new_len >= skb->len)
1179 return 0;
1180 }
1181 pkt_len = new_len;
1182 }
1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 if (err < 0)
1185 return err;
1186 }
1187
1188 return in_sack;
1189 }
1190
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
1195 int dup_sack, int pcount,
1196 const struct skb_mstamp *xmit_time)
1197 {
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 int fack_count = state->fack_count;
1200
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 after(end_seq, tp->undo_marker))
1205 tp->undo_retrans--;
1206 if (sacked & TCPCB_SACKED_ACKED)
1207 state->reord = min(fack_count, state->reord);
1208 }
1209
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 if (!after(end_seq, tp->snd_una))
1212 return sacked;
1213
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1233 state->reord);
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 /* Pick the earliest sequence sacked for RTT */
1237 if (state->rtt_us < 0) {
1238 struct skb_mstamp now;
1239
1240 skb_mstamp_get(&now);
1241 state->rtt_us = skb_mstamp_us_delta(&now,
1242 xmit_time);
1243 }
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1249 }
1250 }
1251
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255
1256 fack_count += pcount;
1257
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 tp->lost_cnt_hint += pcount;
1262
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1274 }
1275
1276 return sacked;
1277 }
1278
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1286 {
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1291
1292 BUG_ON(!pcount);
1293
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 &skb->skb_mstamp);
1303
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1306
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!skb_shinfo(prev)->gso_size) {
1320 skb_shinfo(prev)->gso_size = mss;
1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 }
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1) {
1326 skb_shinfo(skb)->gso_size = 0;
1327 skb_shinfo(skb)->gso_type = 0;
1328 }
1329
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 return false;
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1351
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1354
1355 tcp_unlink_write_queue(skb, sk);
1356 sk_wmem_free_skb(sk, skb);
1357
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360 return true;
1361 }
1362
1363 /* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1379 */
1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 struct tcp_sacktag_state *state,
1382 u32 start_seq, u32 end_seq,
1383 bool dup_sack)
1384 {
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev;
1387 int mss;
1388 int pcount = 0;
1389 int len;
1390 int in_sack;
1391
1392 if (!sk_can_gso(sk))
1393 goto fallback;
1394
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1404
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 if (unlikely(skb == tcp_write_queue_head(sk)))
1407 goto fallback;
1408 prev = tcp_write_queue_prev(sk, skb);
1409
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1412
1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415
1416 if (in_sack) {
1417 len = skb->len;
1418 pcount = tcp_skb_pcount(skb);
1419 mss = tcp_skb_seglen(skb);
1420
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1423 */
1424 if (mss != tcp_skb_seglen(prev))
1425 goto fallback;
1426 } else {
1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 goto noop;
1429 /* CHECKME: This is non-MSS split case only?, this will
1430 * cause skipped skbs due to advancing loop btw, original
1431 * has that feature too
1432 */
1433 if (tcp_skb_pcount(skb) <= 1)
1434 goto noop;
1435
1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 if (!in_sack) {
1438 /* TODO: head merge to next could be attempted here
1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 * though it might not be worth of the additional hassle
1441 *
1442 * ...we can probably just fallback to what was done
1443 * previously. We could try merging non-SACKed ones
1444 * as well but it probably isn't going to buy off
1445 * because later SACKs might again split them, and
1446 * it would make skb timestamp tracking considerably
1447 * harder problem.
1448 */
1449 goto fallback;
1450 }
1451
1452 len = end_seq - TCP_SKB_CB(skb)->seq;
1453 BUG_ON(len < 0);
1454 BUG_ON(len > skb->len);
1455
1456 /* MSS boundaries should be honoured or else pcount will
1457 * severely break even though it makes things bit trickier.
1458 * Optimize common case to avoid most of the divides
1459 */
1460 mss = tcp_skb_mss(skb);
1461
1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 * drop this restriction as unnecessary
1464 */
1465 if (mss != tcp_skb_seglen(prev))
1466 goto fallback;
1467
1468 if (len == mss) {
1469 pcount = 1;
1470 } else if (len < mss) {
1471 goto noop;
1472 } else {
1473 pcount = len / mss;
1474 len = pcount * mss;
1475 }
1476 }
1477
1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 goto fallback;
1481
1482 if (!skb_shift(prev, skb, len))
1483 goto fallback;
1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 goto out;
1486
1487 /* Hole filled allows collapsing with the next as well, this is very
1488 * useful when hole on every nth skb pattern happens
1489 */
1490 if (prev == tcp_write_queue_tail(sk))
1491 goto out;
1492 skb = tcp_write_queue_next(sk, prev);
1493
1494 if (!skb_can_shift(skb) ||
1495 (skb == tcp_send_head(sk)) ||
1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 (mss != tcp_skb_seglen(skb)))
1498 goto out;
1499
1500 len = skb->len;
1501 if (skb_shift(prev, skb, len)) {
1502 pcount += tcp_skb_pcount(skb);
1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504 }
1505
1506 out:
1507 state->fack_count += pcount;
1508 return prev;
1509
1510 noop:
1511 return skb;
1512
1513 fallback:
1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 return NULL;
1516 }
1517
1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 struct tcp_sack_block *next_dup,
1520 struct tcp_sacktag_state *state,
1521 u32 start_seq, u32 end_seq,
1522 bool dup_sack_in)
1523 {
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *tmp;
1526
1527 tcp_for_write_queue_from(skb, sk) {
1528 int in_sack = 0;
1529 bool dup_sack = dup_sack_in;
1530
1531 if (skb == tcp_send_head(sk))
1532 break;
1533
1534 /* queue is in-order => we can short-circuit the walk early */
1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 break;
1537
1538 if (next_dup &&
1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 in_sack = tcp_match_skb_to_sack(sk, skb,
1541 next_dup->start_seq,
1542 next_dup->end_seq);
1543 if (in_sack > 0)
1544 dup_sack = true;
1545 }
1546
1547 /* skb reference here is a bit tricky to get right, since
1548 * shifting can eat and free both this skb and the next,
1549 * so not even _safe variant of the loop is enough.
1550 */
1551 if (in_sack <= 0) {
1552 tmp = tcp_shift_skb_data(sk, skb, state,
1553 start_seq, end_seq, dup_sack);
1554 if (tmp) {
1555 if (tmp != skb) {
1556 skb = tmp;
1557 continue;
1558 }
1559
1560 in_sack = 0;
1561 } else {
1562 in_sack = tcp_match_skb_to_sack(sk, skb,
1563 start_seq,
1564 end_seq);
1565 }
1566 }
1567
1568 if (unlikely(in_sack < 0))
1569 break;
1570
1571 if (in_sack) {
1572 TCP_SKB_CB(skb)->sacked =
1573 tcp_sacktag_one(sk,
1574 state,
1575 TCP_SKB_CB(skb)->sacked,
1576 TCP_SKB_CB(skb)->seq,
1577 TCP_SKB_CB(skb)->end_seq,
1578 dup_sack,
1579 tcp_skb_pcount(skb),
1580 &skb->skb_mstamp);
1581
1582 if (!before(TCP_SKB_CB(skb)->seq,
1583 tcp_highest_sack_seq(tp)))
1584 tcp_advance_highest_sack(sk, skb);
1585 }
1586
1587 state->fack_count += tcp_skb_pcount(skb);
1588 }
1589 return skb;
1590 }
1591
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1594 */
1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 struct tcp_sacktag_state *state,
1597 u32 skip_to_seq)
1598 {
1599 tcp_for_write_queue_from(skb, sk) {
1600 if (skb == tcp_send_head(sk))
1601 break;
1602
1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 break;
1605
1606 state->fack_count += tcp_skb_pcount(skb);
1607 }
1608 return skb;
1609 }
1610
1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 struct sock *sk,
1613 struct tcp_sack_block *next_dup,
1614 struct tcp_sacktag_state *state,
1615 u32 skip_to_seq)
1616 {
1617 if (!next_dup)
1618 return skb;
1619
1620 if (before(next_dup->start_seq, skip_to_seq)) {
1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 next_dup->start_seq, next_dup->end_seq,
1624 1);
1625 }
1626
1627 return skb;
1628 }
1629
1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 {
1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633 }
1634
1635 static int
1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 u32 prior_snd_una, long *sack_rtt_us)
1638 {
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 TCP_SKB_CB(ack_skb)->sacked);
1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 struct tcp_sack_block *cache;
1645 struct tcp_sacktag_state state;
1646 struct sk_buff *skb;
1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 int used_sacks;
1649 bool found_dup_sack = false;
1650 int i, j;
1651 int first_sack_index;
1652
1653 state.flag = 0;
1654 state.reord = tp->packets_out;
1655 state.rtt_us = -1L;
1656
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1661 }
1662
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack)
1666 state.flag |= FLAG_DSACKING_ACK;
1667
1668 /* Eliminate too old ACKs, but take into
1669 * account more or less fresh ones, they can
1670 * contain valid SACK info.
1671 */
1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 return 0;
1674
1675 if (!tp->packets_out)
1676 goto out;
1677
1678 used_sacks = 0;
1679 first_sack_index = 0;
1680 for (i = 0; i < num_sacks; i++) {
1681 bool dup_sack = !i && found_dup_sack;
1682
1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685
1686 if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 sp[used_sacks].start_seq,
1688 sp[used_sacks].end_seq)) {
1689 int mib_idx;
1690
1691 if (dup_sack) {
1692 if (!tp->undo_marker)
1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 else
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 } else {
1697 /* Don't count olds caused by ACK reordering */
1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 !after(sp[used_sacks].end_seq, tp->snd_una))
1700 continue;
1701 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 }
1703
1704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 if (i == 0)
1706 first_sack_index = -1;
1707 continue;
1708 }
1709
1710 /* Ignore very old stuff early */
1711 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 continue;
1713
1714 used_sacks++;
1715 }
1716
1717 /* order SACK blocks to allow in order walk of the retrans queue */
1718 for (i = used_sacks - 1; i > 0; i--) {
1719 for (j = 0; j < i; j++) {
1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 swap(sp[j], sp[j + 1]);
1722
1723 /* Track where the first SACK block goes to */
1724 if (j == first_sack_index)
1725 first_sack_index = j + 1;
1726 }
1727 }
1728 }
1729
1730 skb = tcp_write_queue_head(sk);
1731 state.fack_count = 0;
1732 i = 0;
1733
1734 if (!tp->sacked_out) {
1735 /* It's already past, so skip checking against it */
1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 } else {
1738 cache = tp->recv_sack_cache;
1739 /* Skip empty blocks in at head of the cache */
1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 !cache->end_seq)
1742 cache++;
1743 }
1744
1745 while (i < used_sacks) {
1746 u32 start_seq = sp[i].start_seq;
1747 u32 end_seq = sp[i].end_seq;
1748 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 struct tcp_sack_block *next_dup = NULL;
1750
1751 if (found_dup_sack && ((i + 1) == first_sack_index))
1752 next_dup = &sp[i + 1];
1753
1754 /* Skip too early cached blocks */
1755 while (tcp_sack_cache_ok(tp, cache) &&
1756 !before(start_seq, cache->end_seq))
1757 cache++;
1758
1759 /* Can skip some work by looking recv_sack_cache? */
1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 after(end_seq, cache->start_seq)) {
1762
1763 /* Head todo? */
1764 if (before(start_seq, cache->start_seq)) {
1765 skb = tcp_sacktag_skip(skb, sk, &state,
1766 start_seq);
1767 skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 &state,
1769 start_seq,
1770 cache->start_seq,
1771 dup_sack);
1772 }
1773
1774 /* Rest of the block already fully processed? */
1775 if (!after(end_seq, cache->end_seq))
1776 goto advance_sp;
1777
1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 &state,
1780 cache->end_seq);
1781
1782 /* ...tail remains todo... */
1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 /* ...but better entrypoint exists! */
1785 skb = tcp_highest_sack(sk);
1786 if (!skb)
1787 break;
1788 state.fack_count = tp->fackets_out;
1789 cache++;
1790 goto walk;
1791 }
1792
1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 /* Check overlap against next cached too (past this one already) */
1795 cache++;
1796 continue;
1797 }
1798
1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 skb = tcp_highest_sack(sk);
1801 if (!skb)
1802 break;
1803 state.fack_count = tp->fackets_out;
1804 }
1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806
1807 walk:
1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 start_seq, end_seq, dup_sack);
1810
1811 advance_sp:
1812 i++;
1813 }
1814
1815 /* Clear the head of the cache sack blocks so we can skip it next time */
1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 tp->recv_sack_cache[i].start_seq = 0;
1818 tp->recv_sack_cache[i].end_seq = 0;
1819 }
1820 for (j = 0; j < used_sacks; j++)
1821 tp->recv_sack_cache[i++] = sp[j];
1822
1823 if ((state.reord < tp->fackets_out) &&
1824 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1825 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1826
1827 tcp_mark_lost_retrans(sk);
1828 tcp_verify_left_out(tp);
1829 out:
1830
1831 #if FASTRETRANS_DEBUG > 0
1832 WARN_ON((int)tp->sacked_out < 0);
1833 WARN_ON((int)tp->lost_out < 0);
1834 WARN_ON((int)tp->retrans_out < 0);
1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836 #endif
1837 *sack_rtt_us = state.rtt_us;
1838 return state.flag;
1839 }
1840
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843 */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 u32 holes;
1847
1848 holes = max(tp->lost_out, 1U);
1849 holes = min(holes, tp->packets_out);
1850
1851 if ((tp->sacked_out + holes) > tp->packets_out) {
1852 tp->sacked_out = tp->packets_out - holes;
1853 return true;
1854 }
1855 return false;
1856 }
1857
1858 /* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1861 */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 if (tcp_limit_reno_sacked(tp))
1866 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867 }
1868
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874 tp->sacked_out++;
1875 tcp_check_reno_reordering(sk, 0);
1876 tcp_verify_left_out(tp);
1877 }
1878
1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1880
1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1882 {
1883 struct tcp_sock *tp = tcp_sk(sk);
1884
1885 if (acked > 0) {
1886 /* One ACK acked hole. The rest eat duplicate ACKs. */
1887 if (acked - 1 >= tp->sacked_out)
1888 tp->sacked_out = 0;
1889 else
1890 tp->sacked_out -= acked - 1;
1891 }
1892 tcp_check_reno_reordering(sk, acked);
1893 tcp_verify_left_out(tp);
1894 }
1895
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897 {
1898 tp->sacked_out = 0;
1899 }
1900
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1902 {
1903 tp->retrans_out = 0;
1904 tp->lost_out = 0;
1905 tp->undo_marker = 0;
1906 tp->undo_retrans = -1;
1907 tp->fackets_out = 0;
1908 tp->sacked_out = 0;
1909 }
1910
1911 static inline void tcp_init_undo(struct tcp_sock *tp)
1912 {
1913 tp->undo_marker = tp->snd_una;
1914 /* Retransmission still in flight may cause DSACKs later. */
1915 tp->undo_retrans = tp->retrans_out ? : -1;
1916 }
1917
1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919 * and reset tags completely, otherwise preserve SACKs. If receiver
1920 * dropped its ofo queue, we will know this due to reneging detection.
1921 */
1922 void tcp_enter_loss(struct sock *sk)
1923 {
1924 const struct inet_connection_sock *icsk = inet_csk(sk);
1925 struct tcp_sock *tp = tcp_sk(sk);
1926 struct sk_buff *skb;
1927 bool new_recovery = false;
1928 bool is_reneg; /* is receiver reneging on SACKs? */
1929
1930 /* Reduce ssthresh if it has not yet been made inside this window. */
1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932 !after(tp->high_seq, tp->snd_una) ||
1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934 new_recovery = true;
1935 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937 tcp_ca_event(sk, CA_EVENT_LOSS);
1938 tcp_init_undo(tp);
1939 }
1940 tp->snd_cwnd = 1;
1941 tp->snd_cwnd_cnt = 0;
1942 tp->snd_cwnd_stamp = tcp_time_stamp;
1943
1944 tp->retrans_out = 0;
1945 tp->lost_out = 0;
1946
1947 if (tcp_is_reno(tp))
1948 tcp_reset_reno_sack(tp);
1949
1950 skb = tcp_write_queue_head(sk);
1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952 if (is_reneg) {
1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954 tp->sacked_out = 0;
1955 tp->fackets_out = 0;
1956 }
1957 tcp_clear_all_retrans_hints(tp);
1958
1959 tcp_for_write_queue(skb, sk) {
1960 if (skb == tcp_send_head(sk))
1961 break;
1962
1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967 tp->lost_out += tcp_skb_pcount(skb);
1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1969 }
1970 }
1971 tcp_verify_left_out(tp);
1972
1973 /* Timeout in disordered state after receiving substantial DUPACKs
1974 * suggests that the degree of reordering is over-estimated.
1975 */
1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977 tp->sacked_out >= sysctl_tcp_reordering)
1978 tp->reordering = min_t(unsigned int, tp->reordering,
1979 sysctl_tcp_reordering);
1980 tcp_set_ca_state(sk, TCP_CA_Loss);
1981 tp->high_seq = tp->snd_nxt;
1982 tcp_ecn_queue_cwr(tp);
1983
1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985 * loss recovery is underway except recurring timeout(s) on
1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1987 */
1988 tp->frto = sysctl_tcp_frto &&
1989 (new_recovery || icsk->icsk_retransmits) &&
1990 !inet_csk(sk)->icsk_mtup.probe_size;
1991 }
1992
1993 /* If ACK arrived pointing to a remembered SACK, it means that our
1994 * remembered SACKs do not reflect real state of receiver i.e.
1995 * receiver _host_ is heavily congested (or buggy).
1996 *
1997 * To avoid big spurious retransmission bursts due to transient SACK
1998 * scoreboard oddities that look like reneging, we give the receiver a
1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000 * restore sanity to the SACK scoreboard. If the apparent reneging
2001 * persists until this RTO then we'll clear the SACK scoreboard.
2002 */
2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2004 {
2005 if (flag & FLAG_SACK_RENEGING) {
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008 msecs_to_jiffies(10));
2009
2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011 delay, TCP_RTO_MAX);
2012 return true;
2013 }
2014 return false;
2015 }
2016
2017 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2018 {
2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2020 }
2021
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023 * counter when SACK is enabled (without SACK, sacked_out is used for
2024 * that purpose).
2025 *
2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027 * segments up to the highest received SACK block so far and holes in
2028 * between them.
2029 *
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2036 */
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038 {
2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2040 }
2041
2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2043 {
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 unsigned long delay;
2046
2047 /* Delay early retransmit and entering fast recovery for
2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049 * available, or RTO is scheduled to fire first.
2050 */
2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052 (flag & FLAG_ECE) || !tp->srtt_us)
2053 return false;
2054
2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056 msecs_to_jiffies(2));
2057
2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059 return false;
2060
2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062 TCP_RTO_MAX);
2063 return true;
2064 }
2065
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067 * --------------------------------------
2068 *
2069 * "Open" Normal state, no dubious events, fast path.
2070 * "Disorder" In all the respects it is "Open",
2071 * but requires a bit more attention. It is entered when
2072 * we see some SACKs or dupacks. It is split of "Open"
2073 * mainly to move some processing from fast path to slow one.
2074 * "CWR" CWND was reduced due to some Congestion Notification event.
2075 * It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery" CWND was reduced, we are fast-retransmitting.
2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2078 *
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2082 * * SACK
2083 * * Duplicate ACK.
2084 * * ECN ECE.
2085 *
2086 * Counting packets in flight is pretty simple.
2087 *
2088 * in_flight = packets_out - left_out + retrans_out
2089 *
2090 * packets_out is SND.NXT-SND.UNA counted in packets.
2091 *
2092 * retrans_out is number of retransmitted segments.
2093 *
2094 * left_out is number of segments left network, but not ACKed yet.
2095 *
2096 * left_out = sacked_out + lost_out
2097 *
2098 * sacked_out: Packets, which arrived to receiver out of order
2099 * and hence not ACKed. With SACKs this number is simply
2100 * amount of SACKed data. Even without SACKs
2101 * it is easy to give pretty reliable estimate of this number,
2102 * counting duplicate ACKs.
2103 *
2104 * lost_out: Packets lost by network. TCP has no explicit
2105 * "loss notification" feedback from network (for now).
2106 * It means that this number can be only _guessed_.
2107 * Actually, it is the heuristics to predict lossage that
2108 * distinguishes different algorithms.
2109 *
2110 * F.e. after RTO, when all the queue is considered as lost,
2111 * lost_out = packets_out and in_flight = retrans_out.
2112 *
2113 * Essentially, we have now two algorithms counting
2114 * lost packets.
2115 *
2116 * FACK: It is the simplest heuristics. As soon as we decided
2117 * that something is lost, we decide that _all_ not SACKed
2118 * packets until the most forward SACK are lost. I.e.
2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120 * It is absolutely correct estimate, if network does not reorder
2121 * packets. And it loses any connection to reality when reordering
2122 * takes place. We use FACK by default until reordering
2123 * is suspected on the path to this destination.
2124 *
2125 * NewReno: when Recovery is entered, we assume that one segment
2126 * is lost (classic Reno). While we are in Recovery and
2127 * a partial ACK arrives, we assume that one more packet
2128 * is lost (NewReno). This heuristics are the same in NewReno
2129 * and SACK.
2130 *
2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2132 * deflation etc. CWND is real congestion window, never inflated, changes
2133 * only according to classic VJ rules.
2134 *
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2140 *
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2143 *
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2151 */
2152
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2155 *
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2158 */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 struct tcp_sock *tp = tcp_sk(sk);
2162 __u32 packets_out;
2163
2164 /* Trick#1: The loss is proven. */
2165 if (tp->lost_out)
2166 return true;
2167
2168 /* Not-A-Trick#2 : Classic rule... */
2169 if (tcp_dupack_heuristics(tp) > tp->reordering)
2170 return true;
2171
2172 /* Trick#4: It is still not OK... But will it be useful to delay
2173 * recovery more?
2174 */
2175 packets_out = tp->packets_out;
2176 if (packets_out <= tp->reordering &&
2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178 !tcp_may_send_now(sk)) {
2179 /* We have nothing to send. This connection is limited
2180 * either by receiver window or by application.
2181 */
2182 return true;
2183 }
2184
2185 /* If a thin stream is detected, retransmit after first
2186 * received dupack. Employ only if SACK is supported in order
2187 * to avoid possible corner-case series of spurious retransmissions
2188 * Use only if there are no unsent data.
2189 */
2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192 tcp_is_sack(tp) && !tcp_send_head(sk))
2193 return true;
2194
2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2196 * retransmissions due to small network reorderings, we implement
2197 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198 * interval if appropriate.
2199 */
2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202 !tcp_may_send_now(sk))
2203 return !tcp_pause_early_retransmit(sk, flag);
2204
2205 return false;
2206 }
2207
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212 * the maximum SACKed segments to pass before reaching this limit.
2213 */
2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2215 {
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 struct sk_buff *skb;
2218 int cnt, oldcnt;
2219 int err;
2220 unsigned int mss;
2221 /* Use SACK to deduce losses of new sequences sent during recovery */
2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2223
2224 WARN_ON(packets > tp->packets_out);
2225 if (tp->lost_skb_hint) {
2226 skb = tp->lost_skb_hint;
2227 cnt = tp->lost_cnt_hint;
2228 /* Head already handled? */
2229 if (mark_head && skb != tcp_write_queue_head(sk))
2230 return;
2231 } else {
2232 skb = tcp_write_queue_head(sk);
2233 cnt = 0;
2234 }
2235
2236 tcp_for_write_queue_from(skb, sk) {
2237 if (skb == tcp_send_head(sk))
2238 break;
2239 /* TODO: do this better */
2240 /* this is not the most efficient way to do this... */
2241 tp->lost_skb_hint = skb;
2242 tp->lost_cnt_hint = cnt;
2243
2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245 break;
2246
2247 oldcnt = cnt;
2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250 cnt += tcp_skb_pcount(skb);
2251
2252 if (cnt > packets) {
2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255 (oldcnt >= packets))
2256 break;
2257
2258 mss = skb_shinfo(skb)->gso_size;
2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260 mss, GFP_ATOMIC);
2261 if (err < 0)
2262 break;
2263 cnt = packets;
2264 }
2265
2266 tcp_skb_mark_lost(tp, skb);
2267
2268 if (mark_head)
2269 break;
2270 }
2271 tcp_verify_left_out(tp);
2272 }
2273
2274 /* Account newly detected lost packet(s) */
2275
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277 {
2278 struct tcp_sock *tp = tcp_sk(sk);
2279
2280 if (tcp_is_reno(tp)) {
2281 tcp_mark_head_lost(sk, 1, 1);
2282 } else if (tcp_is_fack(tp)) {
2283 int lost = tp->fackets_out - tp->reordering;
2284 if (lost <= 0)
2285 lost = 1;
2286 tcp_mark_head_lost(sk, lost, 0);
2287 } else {
2288 int sacked_upto = tp->sacked_out - tp->reordering;
2289 if (sacked_upto >= 0)
2290 tcp_mark_head_lost(sk, sacked_upto, 0);
2291 else if (fast_rexmit)
2292 tcp_mark_head_lost(sk, 1, 1);
2293 }
2294 }
2295
2296 /* CWND moderation, preventing bursts due to too big ACKs
2297 * in dubious situations.
2298 */
2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2300 {
2301 tp->snd_cwnd = min(tp->snd_cwnd,
2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303 tp->snd_cwnd_stamp = tcp_time_stamp;
2304 }
2305
2306 /* Nothing was retransmitted or returned timestamp is less
2307 * than timestamp of the first retransmission.
2308 */
2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2310 {
2311 return !tp->retrans_stamp ||
2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2314 }
2315
2316 /* Undo procedures. */
2317
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2333 {
2334 const struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2336
2337 if (tp->retrans_out)
2338 return true;
2339
2340 skb = tcp_write_queue_head(sk);
2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 return true;
2343
2344 return false;
2345 }
2346
2347 #if FASTRETRANS_DEBUG > 1
2348 static void DBGUNDO(struct sock *sk, const char *msg)
2349 {
2350 struct tcp_sock *tp = tcp_sk(sk);
2351 struct inet_sock *inet = inet_sk(sk);
2352
2353 if (sk->sk_family == AF_INET) {
2354 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355 msg,
2356 &inet->inet_daddr, ntohs(inet->inet_dport),
2357 tp->snd_cwnd, tcp_left_out(tp),
2358 tp->snd_ssthresh, tp->prior_ssthresh,
2359 tp->packets_out);
2360 }
2361 #if IS_ENABLED(CONFIG_IPV6)
2362 else if (sk->sk_family == AF_INET6) {
2363 struct ipv6_pinfo *np = inet6_sk(sk);
2364 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365 msg,
2366 &np->daddr, ntohs(inet->inet_dport),
2367 tp->snd_cwnd, tcp_left_out(tp),
2368 tp->snd_ssthresh, tp->prior_ssthresh,
2369 tp->packets_out);
2370 }
2371 #endif
2372 }
2373 #else
2374 #define DBGUNDO(x...) do { } while (0)
2375 #endif
2376
2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2378 {
2379 struct tcp_sock *tp = tcp_sk(sk);
2380
2381 if (unmark_loss) {
2382 struct sk_buff *skb;
2383
2384 tcp_for_write_queue(skb, sk) {
2385 if (skb == tcp_send_head(sk))
2386 break;
2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388 }
2389 tp->lost_out = 0;
2390 tcp_clear_all_retrans_hints(tp);
2391 }
2392
2393 if (tp->prior_ssthresh) {
2394 const struct inet_connection_sock *icsk = inet_csk(sk);
2395
2396 if (icsk->icsk_ca_ops->undo_cwnd)
2397 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398 else
2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2400
2401 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402 tp->snd_ssthresh = tp->prior_ssthresh;
2403 tcp_ecn_withdraw_cwr(tp);
2404 }
2405 } else {
2406 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2407 }
2408 tp->snd_cwnd_stamp = tcp_time_stamp;
2409 tp->undo_marker = 0;
2410 }
2411
2412 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2413 {
2414 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2415 }
2416
2417 /* People celebrate: "We love our President!" */
2418 static bool tcp_try_undo_recovery(struct sock *sk)
2419 {
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 if (tcp_may_undo(tp)) {
2423 int mib_idx;
2424
2425 /* Happy end! We did not retransmit anything
2426 * or our original transmission succeeded.
2427 */
2428 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 tcp_undo_cwnd_reduction(sk, false);
2430 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 else
2433 mib_idx = LINUX_MIB_TCPFULLUNDO;
2434
2435 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2436 }
2437 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438 /* Hold old state until something *above* high_seq
2439 * is ACKed. For Reno it is MUST to prevent false
2440 * fast retransmits (RFC2582). SACK TCP is safe. */
2441 tcp_moderate_cwnd(tp);
2442 if (!tcp_any_retrans_done(sk))
2443 tp->retrans_stamp = 0;
2444 return true;
2445 }
2446 tcp_set_ca_state(sk, TCP_CA_Open);
2447 return false;
2448 }
2449
2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451 static bool tcp_try_undo_dsack(struct sock *sk)
2452 {
2453 struct tcp_sock *tp = tcp_sk(sk);
2454
2455 if (tp->undo_marker && !tp->undo_retrans) {
2456 DBGUNDO(sk, "D-SACK");
2457 tcp_undo_cwnd_reduction(sk, false);
2458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459 return true;
2460 }
2461 return false;
2462 }
2463
2464 /* Undo during loss recovery after partial ACK or using F-RTO. */
2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2466 {
2467 struct tcp_sock *tp = tcp_sk(sk);
2468
2469 if (frto_undo || tcp_may_undo(tp)) {
2470 tcp_undo_cwnd_reduction(sk, true);
2471
2472 DBGUNDO(sk, "partial loss");
2473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474 if (frto_undo)
2475 NET_INC_STATS_BH(sock_net(sk),
2476 LINUX_MIB_TCPSPURIOUSRTOS);
2477 inet_csk(sk)->icsk_retransmits = 0;
2478 if (frto_undo || tcp_is_sack(tp))
2479 tcp_set_ca_state(sk, TCP_CA_Open);
2480 return true;
2481 }
2482 return false;
2483 }
2484
2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487 * It computes the number of packets to send (sndcnt) based on packets newly
2488 * delivered:
2489 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2490 * cwnd reductions across a full RTT.
2491 * 2) If packets in flight is lower than ssthresh (such as due to excess
2492 * losses and/or application stalls), do not perform any further cwnd
2493 * reductions, but instead slow start up to ssthresh.
2494 */
2495 static void tcp_init_cwnd_reduction(struct sock *sk)
2496 {
2497 struct tcp_sock *tp = tcp_sk(sk);
2498
2499 tp->high_seq = tp->snd_nxt;
2500 tp->tlp_high_seq = 0;
2501 tp->snd_cwnd_cnt = 0;
2502 tp->prior_cwnd = tp->snd_cwnd;
2503 tp->prr_delivered = 0;
2504 tp->prr_out = 0;
2505 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506 tcp_ecn_queue_cwr(tp);
2507 }
2508
2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510 int fast_rexmit)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 int sndcnt = 0;
2514 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515 int newly_acked_sacked = prior_unsacked -
2516 (tp->packets_out - tp->sacked_out);
2517
2518 tp->prr_delivered += newly_acked_sacked;
2519 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521 tp->prior_cwnd - 1;
2522 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523 } else {
2524 sndcnt = min_t(int, delta,
2525 max_t(int, tp->prr_delivered - tp->prr_out,
2526 newly_acked_sacked) + 1);
2527 }
2528
2529 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531 }
2532
2533 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536
2537 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540 tp->snd_cwnd = tp->snd_ssthresh;
2541 tp->snd_cwnd_stamp = tcp_time_stamp;
2542 }
2543 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544 }
2545
2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547 void tcp_enter_cwr(struct sock *sk)
2548 {
2549 struct tcp_sock *tp = tcp_sk(sk);
2550
2551 tp->prior_ssthresh = 0;
2552 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553 tp->undo_marker = 0;
2554 tcp_init_cwnd_reduction(sk);
2555 tcp_set_ca_state(sk, TCP_CA_CWR);
2556 }
2557 }
2558
2559 static void tcp_try_keep_open(struct sock *sk)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 int state = TCP_CA_Open;
2563
2564 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565 state = TCP_CA_Disorder;
2566
2567 if (inet_csk(sk)->icsk_ca_state != state) {
2568 tcp_set_ca_state(sk, state);
2569 tp->high_seq = tp->snd_nxt;
2570 }
2571 }
2572
2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2574 {
2575 struct tcp_sock *tp = tcp_sk(sk);
2576
2577 tcp_verify_left_out(tp);
2578
2579 if (!tcp_any_retrans_done(sk))
2580 tp->retrans_stamp = 0;
2581
2582 if (flag & FLAG_ECE)
2583 tcp_enter_cwr(sk);
2584
2585 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586 tcp_try_keep_open(sk);
2587 } else {
2588 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2589 }
2590 }
2591
2592 static void tcp_mtup_probe_failed(struct sock *sk)
2593 {
2594 struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597 icsk->icsk_mtup.probe_size = 0;
2598 }
2599
2600 static void tcp_mtup_probe_success(struct sock *sk)
2601 {
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct inet_connection_sock *icsk = inet_csk(sk);
2604
2605 /* FIXME: breaks with very large cwnd */
2606 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607 tp->snd_cwnd = tp->snd_cwnd *
2608 tcp_mss_to_mtu(sk, tp->mss_cache) /
2609 icsk->icsk_mtup.probe_size;
2610 tp->snd_cwnd_cnt = 0;
2611 tp->snd_cwnd_stamp = tcp_time_stamp;
2612 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613
2614 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615 icsk->icsk_mtup.probe_size = 0;
2616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617 }
2618
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2622 */
2623 void tcp_simple_retransmit(struct sock *sk)
2624 {
2625 const struct inet_connection_sock *icsk = inet_csk(sk);
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 struct sk_buff *skb;
2628 unsigned int mss = tcp_current_mss(sk);
2629 u32 prior_lost = tp->lost_out;
2630
2631 tcp_for_write_queue(skb, sk) {
2632 if (skb == tcp_send_head(sk))
2633 break;
2634 if (tcp_skb_seglen(skb) > mss &&
2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638 tp->retrans_out -= tcp_skb_pcount(skb);
2639 }
2640 tcp_skb_mark_lost_uncond_verify(tp, skb);
2641 }
2642 }
2643
2644 tcp_clear_retrans_hints_partial(tp);
2645
2646 if (prior_lost == tp->lost_out)
2647 return;
2648
2649 if (tcp_is_reno(tp))
2650 tcp_limit_reno_sacked(tp);
2651
2652 tcp_verify_left_out(tp);
2653
2654 /* Don't muck with the congestion window here.
2655 * Reason is that we do not increase amount of _data_
2656 * in network, but units changed and effective
2657 * cwnd/ssthresh really reduced now.
2658 */
2659 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660 tp->high_seq = tp->snd_nxt;
2661 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662 tp->prior_ssthresh = 0;
2663 tp->undo_marker = 0;
2664 tcp_set_ca_state(sk, TCP_CA_Loss);
2665 }
2666 tcp_xmit_retransmit_queue(sk);
2667 }
2668 EXPORT_SYMBOL(tcp_simple_retransmit);
2669
2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671 {
2672 struct tcp_sock *tp = tcp_sk(sk);
2673 int mib_idx;
2674
2675 if (tcp_is_reno(tp))
2676 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677 else
2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679
2680 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681
2682 tp->prior_ssthresh = 0;
2683 tcp_init_undo(tp);
2684
2685 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686 if (!ece_ack)
2687 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688 tcp_init_cwnd_reduction(sk);
2689 }
2690 tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 }
2692
2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695 */
2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697 {
2698 struct tcp_sock *tp = tcp_sk(sk);
2699 bool recovered = !before(tp->snd_una, tp->high_seq);
2700
2701 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2702 /* Step 3.b. A timeout is spurious if not all data are
2703 * lost, i.e., never-retransmitted data are (s)acked.
2704 */
2705 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2706 return;
2707
2708 if (after(tp->snd_nxt, tp->high_seq) &&
2709 (flag & FLAG_DATA_SACKED || is_dupack)) {
2710 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2711 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2712 tp->high_seq = tp->snd_nxt;
2713 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2714 TCP_NAGLE_OFF);
2715 if (after(tp->snd_nxt, tp->high_seq))
2716 return; /* Step 2.b */
2717 tp->frto = 0;
2718 }
2719 }
2720
2721 if (recovered) {
2722 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2723 tcp_try_undo_recovery(sk);
2724 return;
2725 }
2726 if (tcp_is_reno(tp)) {
2727 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2728 * delivered. Lower inflight to clock out (re)tranmissions.
2729 */
2730 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2731 tcp_add_reno_sack(sk);
2732 else if (flag & FLAG_SND_UNA_ADVANCED)
2733 tcp_reset_reno_sack(tp);
2734 }
2735 if (tcp_try_undo_loss(sk, false))
2736 return;
2737 tcp_xmit_retransmit_queue(sk);
2738 }
2739
2740 /* Undo during fast recovery after partial ACK. */
2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2742 const int prior_unsacked)
2743 {
2744 struct tcp_sock *tp = tcp_sk(sk);
2745
2746 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747 /* Plain luck! Hole if filled with delayed
2748 * packet, rather than with a retransmit.
2749 */
2750 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751
2752 /* We are getting evidence that the reordering degree is higher
2753 * than we realized. If there are no retransmits out then we
2754 * can undo. Otherwise we clock out new packets but do not
2755 * mark more packets lost or retransmit more.
2756 */
2757 if (tp->retrans_out) {
2758 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2759 return true;
2760 }
2761
2762 if (!tcp_any_retrans_done(sk))
2763 tp->retrans_stamp = 0;
2764
2765 DBGUNDO(sk, "partial recovery");
2766 tcp_undo_cwnd_reduction(sk, true);
2767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2768 tcp_try_keep_open(sk);
2769 return true;
2770 }
2771 return false;
2772 }
2773
2774 /* Process an event, which can update packets-in-flight not trivially.
2775 * Main goal of this function is to calculate new estimate for left_out,
2776 * taking into account both packets sitting in receiver's buffer and
2777 * packets lost by network.
2778 *
2779 * Besides that it does CWND reduction, when packet loss is detected
2780 * and changes state of machine.
2781 *
2782 * It does _not_ decide what to send, it is made in function
2783 * tcp_xmit_retransmit_queue().
2784 */
2785 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2786 const int prior_unsacked,
2787 bool is_dupack, int flag)
2788 {
2789 struct inet_connection_sock *icsk = inet_csk(sk);
2790 struct tcp_sock *tp = tcp_sk(sk);
2791 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2792 (tcp_fackets_out(tp) > tp->reordering));
2793 int fast_rexmit = 0;
2794
2795 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2796 tp->sacked_out = 0;
2797 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2798 tp->fackets_out = 0;
2799
2800 /* Now state machine starts.
2801 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2802 if (flag & FLAG_ECE)
2803 tp->prior_ssthresh = 0;
2804
2805 /* B. In all the states check for reneging SACKs. */
2806 if (tcp_check_sack_reneging(sk, flag))
2807 return;
2808
2809 /* C. Check consistency of the current state. */
2810 tcp_verify_left_out(tp);
2811
2812 /* D. Check state exit conditions. State can be terminated
2813 * when high_seq is ACKed. */
2814 if (icsk->icsk_ca_state == TCP_CA_Open) {
2815 WARN_ON(tp->retrans_out != 0);
2816 tp->retrans_stamp = 0;
2817 } else if (!before(tp->snd_una, tp->high_seq)) {
2818 switch (icsk->icsk_ca_state) {
2819 case TCP_CA_CWR:
2820 /* CWR is to be held something *above* high_seq
2821 * is ACKed for CWR bit to reach receiver. */
2822 if (tp->snd_una != tp->high_seq) {
2823 tcp_end_cwnd_reduction(sk);
2824 tcp_set_ca_state(sk, TCP_CA_Open);
2825 }
2826 break;
2827
2828 case TCP_CA_Recovery:
2829 if (tcp_is_reno(tp))
2830 tcp_reset_reno_sack(tp);
2831 if (tcp_try_undo_recovery(sk))
2832 return;
2833 tcp_end_cwnd_reduction(sk);
2834 break;
2835 }
2836 }
2837
2838 /* E. Process state. */
2839 switch (icsk->icsk_ca_state) {
2840 case TCP_CA_Recovery:
2841 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2842 if (tcp_is_reno(tp) && is_dupack)
2843 tcp_add_reno_sack(sk);
2844 } else {
2845 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2846 return;
2847 /* Partial ACK arrived. Force fast retransmit. */
2848 do_lost = tcp_is_reno(tp) ||
2849 tcp_fackets_out(tp) > tp->reordering;
2850 }
2851 if (tcp_try_undo_dsack(sk)) {
2852 tcp_try_keep_open(sk);
2853 return;
2854 }
2855 break;
2856 case TCP_CA_Loss:
2857 tcp_process_loss(sk, flag, is_dupack);
2858 if (icsk->icsk_ca_state != TCP_CA_Open)
2859 return;
2860 /* Fall through to processing in Open state. */
2861 default:
2862 if (tcp_is_reno(tp)) {
2863 if (flag & FLAG_SND_UNA_ADVANCED)
2864 tcp_reset_reno_sack(tp);
2865 if (is_dupack)
2866 tcp_add_reno_sack(sk);
2867 }
2868
2869 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2870 tcp_try_undo_dsack(sk);
2871
2872 if (!tcp_time_to_recover(sk, flag)) {
2873 tcp_try_to_open(sk, flag, prior_unsacked);
2874 return;
2875 }
2876
2877 /* MTU probe failure: don't reduce cwnd */
2878 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879 icsk->icsk_mtup.probe_size &&
2880 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881 tcp_mtup_probe_failed(sk);
2882 /* Restores the reduction we did in tcp_mtup_probe() */
2883 tp->snd_cwnd++;
2884 tcp_simple_retransmit(sk);
2885 return;
2886 }
2887
2888 /* Otherwise enter Recovery state */
2889 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2890 fast_rexmit = 1;
2891 }
2892
2893 if (do_lost)
2894 tcp_update_scoreboard(sk, fast_rexmit);
2895 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2896 tcp_xmit_retransmit_queue(sk);
2897 }
2898
2899 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2900 long seq_rtt_us, long sack_rtt_us)
2901 {
2902 const struct tcp_sock *tp = tcp_sk(sk);
2903
2904 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2905 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2906 * Karn's algorithm forbids taking RTT if some retransmitted data
2907 * is acked (RFC6298).
2908 */
2909 if (flag & FLAG_RETRANS_DATA_ACKED)
2910 seq_rtt_us = -1L;
2911
2912 if (seq_rtt_us < 0)
2913 seq_rtt_us = sack_rtt_us;
2914
2915 /* RTTM Rule: A TSecr value received in a segment is used to
2916 * update the averaged RTT measurement only if the segment
2917 * acknowledges some new data, i.e., only if it advances the
2918 * left edge of the send window.
2919 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2920 */
2921 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2922 flag & FLAG_ACKED)
2923 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2924
2925 if (seq_rtt_us < 0)
2926 return false;
2927
2928 tcp_rtt_estimator(sk, seq_rtt_us);
2929 tcp_set_rto(sk);
2930
2931 /* RFC6298: only reset backoff on valid RTT measurement. */
2932 inet_csk(sk)->icsk_backoff = 0;
2933 return true;
2934 }
2935
2936 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2937 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2938 {
2939 struct tcp_sock *tp = tcp_sk(sk);
2940 long seq_rtt_us = -1L;
2941
2942 if (synack_stamp && !tp->total_retrans)
2943 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2944
2945 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2946 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2947 */
2948 if (!tp->srtt_us)
2949 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2950 }
2951
2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2953 {
2954 const struct inet_connection_sock *icsk = inet_csk(sk);
2955
2956 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2957 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2958 }
2959
2960 /* Restart timer after forward progress on connection.
2961 * RFC2988 recommends to restart timer to now+rto.
2962 */
2963 void tcp_rearm_rto(struct sock *sk)
2964 {
2965 const struct inet_connection_sock *icsk = inet_csk(sk);
2966 struct tcp_sock *tp = tcp_sk(sk);
2967
2968 /* If the retrans timer is currently being used by Fast Open
2969 * for SYN-ACK retrans purpose, stay put.
2970 */
2971 if (tp->fastopen_rsk)
2972 return;
2973
2974 if (!tp->packets_out) {
2975 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2976 } else {
2977 u32 rto = inet_csk(sk)->icsk_rto;
2978 /* Offset the time elapsed after installing regular RTO */
2979 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2980 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2981 struct sk_buff *skb = tcp_write_queue_head(sk);
2982 const u32 rto_time_stamp =
2983 tcp_skb_timestamp(skb) + rto;
2984 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2985 /* delta may not be positive if the socket is locked
2986 * when the retrans timer fires and is rescheduled.
2987 */
2988 if (delta > 0)
2989 rto = delta;
2990 }
2991 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992 TCP_RTO_MAX);
2993 }
2994 }
2995
2996 /* This function is called when the delayed ER timer fires. TCP enters
2997 * fast recovery and performs fast-retransmit.
2998 */
2999 void tcp_resume_early_retransmit(struct sock *sk)
3000 {
3001 struct tcp_sock *tp = tcp_sk(sk);
3002
3003 tcp_rearm_rto(sk);
3004
3005 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3006 if (!tp->do_early_retrans)
3007 return;
3008
3009 tcp_enter_recovery(sk, false);
3010 tcp_update_scoreboard(sk, 1);
3011 tcp_xmit_retransmit_queue(sk);
3012 }
3013
3014 /* If we get here, the whole TSO packet has not been acked. */
3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3016 {
3017 struct tcp_sock *tp = tcp_sk(sk);
3018 u32 packets_acked;
3019
3020 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3021
3022 packets_acked = tcp_skb_pcount(skb);
3023 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3024 return 0;
3025 packets_acked -= tcp_skb_pcount(skb);
3026
3027 if (packets_acked) {
3028 BUG_ON(tcp_skb_pcount(skb) == 0);
3029 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 }
3031
3032 return packets_acked;
3033 }
3034
3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036 u32 prior_snd_una)
3037 {
3038 const struct skb_shared_info *shinfo;
3039
3040 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3041 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042 return;
3043
3044 shinfo = skb_shinfo(skb);
3045 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3046 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3047 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 }
3049
3050 /* Remove acknowledged frames from the retransmission queue. If our packet
3051 * is before the ack sequence we can discard it as it's confirmed to have
3052 * arrived at the other end.
3053 */
3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3055 u32 prior_snd_una, long sack_rtt_us)
3056 {
3057 const struct inet_connection_sock *icsk = inet_csk(sk);
3058 struct skb_mstamp first_ackt, last_ackt, now;
3059 struct tcp_sock *tp = tcp_sk(sk);
3060 u32 prior_sacked = tp->sacked_out;
3061 u32 reord = tp->packets_out;
3062 bool fully_acked = true;
3063 long ca_seq_rtt_us = -1L;
3064 long seq_rtt_us = -1L;
3065 struct sk_buff *skb;
3066 u32 pkts_acked = 0;
3067 bool rtt_update;
3068 int flag = 0;
3069
3070 first_ackt.v64 = 0;
3071
3072 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3073 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3074 u8 sacked = scb->sacked;
3075 u32 acked_pcount;
3076
3077 tcp_ack_tstamp(sk, skb, prior_snd_una);
3078
3079 /* Determine how many packets and what bytes were acked, tso and else */
3080 if (after(scb->end_seq, tp->snd_una)) {
3081 if (tcp_skb_pcount(skb) == 1 ||
3082 !after(tp->snd_una, scb->seq))
3083 break;
3084
3085 acked_pcount = tcp_tso_acked(sk, skb);
3086 if (!acked_pcount)
3087 break;
3088
3089 fully_acked = false;
3090 } else {
3091 /* Speedup tcp_unlink_write_queue() and next loop */
3092 prefetchw(skb->next);
3093 acked_pcount = tcp_skb_pcount(skb);
3094 }
3095
3096 if (unlikely(sacked & TCPCB_RETRANS)) {
3097 if (sacked & TCPCB_SACKED_RETRANS)
3098 tp->retrans_out -= acked_pcount;
3099 flag |= FLAG_RETRANS_DATA_ACKED;
3100 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3101 last_ackt = skb->skb_mstamp;
3102 WARN_ON_ONCE(last_ackt.v64 == 0);
3103 if (!first_ackt.v64)
3104 first_ackt = last_ackt;
3105
3106 reord = min(pkts_acked, reord);
3107 if (!after(scb->end_seq, tp->high_seq))
3108 flag |= FLAG_ORIG_SACK_ACKED;
3109 }
3110
3111 if (sacked & TCPCB_SACKED_ACKED)
3112 tp->sacked_out -= acked_pcount;
3113 if (sacked & TCPCB_LOST)
3114 tp->lost_out -= acked_pcount;
3115
3116 tp->packets_out -= acked_pcount;
3117 pkts_acked += acked_pcount;
3118
3119 /* Initial outgoing SYN's get put onto the write_queue
3120 * just like anything else we transmit. It is not
3121 * true data, and if we misinform our callers that
3122 * this ACK acks real data, we will erroneously exit
3123 * connection startup slow start one packet too
3124 * quickly. This is severely frowned upon behavior.
3125 */
3126 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3127 flag |= FLAG_DATA_ACKED;
3128 } else {
3129 flag |= FLAG_SYN_ACKED;
3130 tp->retrans_stamp = 0;
3131 }
3132
3133 if (!fully_acked)
3134 break;
3135
3136 tcp_unlink_write_queue(skb, sk);
3137 sk_wmem_free_skb(sk, skb);
3138 if (unlikely(skb == tp->retransmit_skb_hint))
3139 tp->retransmit_skb_hint = NULL;
3140 if (unlikely(skb == tp->lost_skb_hint))
3141 tp->lost_skb_hint = NULL;
3142 }
3143
3144 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3145 tp->snd_up = tp->snd_una;
3146
3147 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3148 flag |= FLAG_SACK_RENEGING;
3149
3150 skb_mstamp_get(&now);
3151 if (likely(first_ackt.v64)) {
3152 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3153 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3154 }
3155
3156 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3157
3158 if (flag & FLAG_ACKED) {
3159 const struct tcp_congestion_ops *ca_ops
3160 = inet_csk(sk)->icsk_ca_ops;
3161
3162 tcp_rearm_rto(sk);
3163 if (unlikely(icsk->icsk_mtup.probe_size &&
3164 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3165 tcp_mtup_probe_success(sk);
3166 }
3167
3168 if (tcp_is_reno(tp)) {
3169 tcp_remove_reno_sacks(sk, pkts_acked);
3170 } else {
3171 int delta;
3172
3173 /* Non-retransmitted hole got filled? That's reordering */
3174 if (reord < prior_fackets)
3175 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3176
3177 delta = tcp_is_fack(tp) ? pkts_acked :
3178 prior_sacked - tp->sacked_out;
3179 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3180 }
3181
3182 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3183
3184 if (ca_ops->pkts_acked) {
3185 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us);
3186 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3187 }
3188
3189 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3190 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3191 /* Do not re-arm RTO if the sack RTT is measured from data sent
3192 * after when the head was last (re)transmitted. Otherwise the
3193 * timeout may continue to extend in loss recovery.
3194 */
3195 tcp_rearm_rto(sk);
3196 }
3197
3198 #if FASTRETRANS_DEBUG > 0
3199 WARN_ON((int)tp->sacked_out < 0);
3200 WARN_ON((int)tp->lost_out < 0);
3201 WARN_ON((int)tp->retrans_out < 0);
3202 if (!tp->packets_out && tcp_is_sack(tp)) {
3203 icsk = inet_csk(sk);
3204 if (tp->lost_out) {
3205 pr_debug("Leak l=%u %d\n",
3206 tp->lost_out, icsk->icsk_ca_state);
3207 tp->lost_out = 0;
3208 }
3209 if (tp->sacked_out) {
3210 pr_debug("Leak s=%u %d\n",
3211 tp->sacked_out, icsk->icsk_ca_state);
3212 tp->sacked_out = 0;
3213 }
3214 if (tp->retrans_out) {
3215 pr_debug("Leak r=%u %d\n",
3216 tp->retrans_out, icsk->icsk_ca_state);
3217 tp->retrans_out = 0;
3218 }
3219 }
3220 #endif
3221 return flag;
3222 }
3223
3224 static void tcp_ack_probe(struct sock *sk)
3225 {
3226 const struct tcp_sock *tp = tcp_sk(sk);
3227 struct inet_connection_sock *icsk = inet_csk(sk);
3228
3229 /* Was it a usable window open? */
3230
3231 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3232 icsk->icsk_backoff = 0;
3233 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3234 /* Socket must be waked up by subsequent tcp_data_snd_check().
3235 * This function is not for random using!
3236 */
3237 } else {
3238 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3239
3240 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3241 when, TCP_RTO_MAX);
3242 }
3243 }
3244
3245 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3246 {
3247 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3248 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3249 }
3250
3251 /* Decide wheather to run the increase function of congestion control. */
3252 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3253 {
3254 if (tcp_in_cwnd_reduction(sk))
3255 return false;
3256
3257 /* If reordering is high then always grow cwnd whenever data is
3258 * delivered regardless of its ordering. Otherwise stay conservative
3259 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3260 * new SACK or ECE mark may first advance cwnd here and later reduce
3261 * cwnd in tcp_fastretrans_alert() based on more states.
3262 */
3263 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3264 return flag & FLAG_FORWARD_PROGRESS;
3265
3266 return flag & FLAG_DATA_ACKED;
3267 }
3268
3269 /* Check that window update is acceptable.
3270 * The function assumes that snd_una<=ack<=snd_next.
3271 */
3272 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3273 const u32 ack, const u32 ack_seq,
3274 const u32 nwin)
3275 {
3276 return after(ack, tp->snd_una) ||
3277 after(ack_seq, tp->snd_wl1) ||
3278 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3279 }
3280
3281 /* If we update tp->snd_una, also update tp->bytes_acked */
3282 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3283 {
3284 u32 delta = ack - tp->snd_una;
3285
3286 tp->bytes_acked += delta;
3287 tp->snd_una = ack;
3288 }
3289
3290 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3291 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3292 {
3293 u32 delta = seq - tp->rcv_nxt;
3294
3295 tp->bytes_received += delta;
3296 tp->rcv_nxt = seq;
3297 }
3298
3299 /* Update our send window.
3300 *
3301 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3302 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3303 */
3304 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3305 u32 ack_seq)
3306 {
3307 struct tcp_sock *tp = tcp_sk(sk);
3308 int flag = 0;
3309 u32 nwin = ntohs(tcp_hdr(skb)->window);
3310
3311 if (likely(!tcp_hdr(skb)->syn))
3312 nwin <<= tp->rx_opt.snd_wscale;
3313
3314 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3315 flag |= FLAG_WIN_UPDATE;
3316 tcp_update_wl(tp, ack_seq);
3317
3318 if (tp->snd_wnd != nwin) {
3319 tp->snd_wnd = nwin;
3320
3321 /* Note, it is the only place, where
3322 * fast path is recovered for sending TCP.
3323 */
3324 tp->pred_flags = 0;
3325 tcp_fast_path_check(sk);
3326
3327 if (nwin > tp->max_window) {
3328 tp->max_window = nwin;
3329 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3330 }
3331 }
3332 }
3333
3334 tcp_snd_una_update(tp, ack);
3335
3336 return flag;
3337 }
3338
3339 /* Return true if we're currently rate-limiting out-of-window ACKs and
3340 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3341 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3342 * attacks that send repeated SYNs or ACKs for the same connection. To
3343 * do this, we do not send a duplicate SYNACK or ACK if the remote
3344 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3345 */
3346 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3347 int mib_idx, u32 *last_oow_ack_time)
3348 {
3349 /* Data packets without SYNs are not likely part of an ACK loop. */
3350 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3351 !tcp_hdr(skb)->syn)
3352 goto not_rate_limited;
3353
3354 if (*last_oow_ack_time) {
3355 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3356
3357 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3358 NET_INC_STATS_BH(net, mib_idx);
3359 return true; /* rate-limited: don't send yet! */
3360 }
3361 }
3362
3363 *last_oow_ack_time = tcp_time_stamp;
3364
3365 not_rate_limited:
3366 return false; /* not rate-limited: go ahead, send dupack now! */
3367 }
3368
3369 /* RFC 5961 7 [ACK Throttling] */
3370 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3371 {
3372 /* unprotected vars, we dont care of overwrites */
3373 static u32 challenge_timestamp;
3374 static unsigned int challenge_count;
3375 struct tcp_sock *tp = tcp_sk(sk);
3376 u32 now;
3377
3378 /* First check our per-socket dupack rate limit. */
3379 if (tcp_oow_rate_limited(sock_net(sk), skb,
3380 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3381 &tp->last_oow_ack_time))
3382 return;
3383
3384 /* Then check the check host-wide RFC 5961 rate limit. */
3385 now = jiffies / HZ;
3386 if (now != challenge_timestamp) {
3387 challenge_timestamp = now;
3388 challenge_count = 0;
3389 }
3390 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3391 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3392 tcp_send_ack(sk);
3393 }
3394 }
3395
3396 static void tcp_store_ts_recent(struct tcp_sock *tp)
3397 {
3398 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3399 tp->rx_opt.ts_recent_stamp = get_seconds();
3400 }
3401
3402 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3403 {
3404 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3405 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3406 * extra check below makes sure this can only happen
3407 * for pure ACK frames. -DaveM
3408 *
3409 * Not only, also it occurs for expired timestamps.
3410 */
3411
3412 if (tcp_paws_check(&tp->rx_opt, 0))
3413 tcp_store_ts_recent(tp);
3414 }
3415 }
3416
3417 /* This routine deals with acks during a TLP episode.
3418 * We mark the end of a TLP episode on receiving TLP dupack or when
3419 * ack is after tlp_high_seq.
3420 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3421 */
3422 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3423 {
3424 struct tcp_sock *tp = tcp_sk(sk);
3425
3426 if (before(ack, tp->tlp_high_seq))
3427 return;
3428
3429 if (flag & FLAG_DSACKING_ACK) {
3430 /* This DSACK means original and TLP probe arrived; no loss */
3431 tp->tlp_high_seq = 0;
3432 } else if (after(ack, tp->tlp_high_seq)) {
3433 /* ACK advances: there was a loss, so reduce cwnd. Reset
3434 * tlp_high_seq in tcp_init_cwnd_reduction()
3435 */
3436 tcp_init_cwnd_reduction(sk);
3437 tcp_set_ca_state(sk, TCP_CA_CWR);
3438 tcp_end_cwnd_reduction(sk);
3439 tcp_try_keep_open(sk);
3440 NET_INC_STATS_BH(sock_net(sk),
3441 LINUX_MIB_TCPLOSSPROBERECOVERY);
3442 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3443 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3444 /* Pure dupack: original and TLP probe arrived; no loss */
3445 tp->tlp_high_seq = 0;
3446 }
3447 }
3448
3449 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3450 {
3451 const struct inet_connection_sock *icsk = inet_csk(sk);
3452
3453 if (icsk->icsk_ca_ops->in_ack_event)
3454 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3455 }
3456
3457 /* This routine deals with incoming acks, but not outgoing ones. */
3458 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3459 {
3460 struct inet_connection_sock *icsk = inet_csk(sk);
3461 struct tcp_sock *tp = tcp_sk(sk);
3462 u32 prior_snd_una = tp->snd_una;
3463 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3464 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3465 bool is_dupack = false;
3466 u32 prior_fackets;
3467 int prior_packets = tp->packets_out;
3468 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3469 int acked = 0; /* Number of packets newly acked */
3470 long sack_rtt_us = -1L;
3471
3472 /* We very likely will need to access write queue head. */
3473 prefetchw(sk->sk_write_queue.next);
3474
3475 /* If the ack is older than previous acks
3476 * then we can probably ignore it.
3477 */
3478 if (before(ack, prior_snd_una)) {
3479 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3480 if (before(ack, prior_snd_una - tp->max_window)) {
3481 tcp_send_challenge_ack(sk, skb);
3482 return -1;
3483 }
3484 goto old_ack;
3485 }
3486
3487 /* If the ack includes data we haven't sent yet, discard
3488 * this segment (RFC793 Section 3.9).
3489 */
3490 if (after(ack, tp->snd_nxt))
3491 goto invalid_ack;
3492
3493 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3494 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3495 tcp_rearm_rto(sk);
3496
3497 if (after(ack, prior_snd_una)) {
3498 flag |= FLAG_SND_UNA_ADVANCED;
3499 icsk->icsk_retransmits = 0;
3500 }
3501
3502 prior_fackets = tp->fackets_out;
3503
3504 /* ts_recent update must be made after we are sure that the packet
3505 * is in window.
3506 */
3507 if (flag & FLAG_UPDATE_TS_RECENT)
3508 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3509
3510 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3511 /* Window is constant, pure forward advance.
3512 * No more checks are required.
3513 * Note, we use the fact that SND.UNA>=SND.WL2.
3514 */
3515 tcp_update_wl(tp, ack_seq);
3516 tcp_snd_una_update(tp, ack);
3517 flag |= FLAG_WIN_UPDATE;
3518
3519 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3520
3521 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3522 } else {
3523 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3524
3525 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3526 flag |= FLAG_DATA;
3527 else
3528 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3529
3530 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3531
3532 if (TCP_SKB_CB(skb)->sacked)
3533 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3534 &sack_rtt_us);
3535
3536 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3537 flag |= FLAG_ECE;
3538 ack_ev_flags |= CA_ACK_ECE;
3539 }
3540
3541 if (flag & FLAG_WIN_UPDATE)
3542 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3543
3544 tcp_in_ack_event(sk, ack_ev_flags);
3545 }
3546
3547 /* We passed data and got it acked, remove any soft error
3548 * log. Something worked...
3549 */
3550 sk->sk_err_soft = 0;
3551 icsk->icsk_probes_out = 0;
3552 tp->rcv_tstamp = tcp_time_stamp;
3553 if (!prior_packets)
3554 goto no_queue;
3555
3556 /* See if we can take anything off of the retransmit queue. */
3557 acked = tp->packets_out;
3558 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3559 sack_rtt_us);
3560 acked -= tp->packets_out;
3561
3562 /* Advance cwnd if state allows */
3563 if (tcp_may_raise_cwnd(sk, flag))
3564 tcp_cong_avoid(sk, ack, acked);
3565
3566 if (tcp_ack_is_dubious(sk, flag)) {
3567 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3568 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3569 is_dupack, flag);
3570 }
3571 if (tp->tlp_high_seq)
3572 tcp_process_tlp_ack(sk, ack, flag);
3573
3574 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3575 struct dst_entry *dst = __sk_dst_get(sk);
3576 if (dst)
3577 dst_confirm(dst);
3578 }
3579
3580 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3581 tcp_schedule_loss_probe(sk);
3582 tcp_update_pacing_rate(sk);
3583 return 1;
3584
3585 no_queue:
3586 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3587 if (flag & FLAG_DSACKING_ACK)
3588 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3589 is_dupack, flag);
3590 /* If this ack opens up a zero window, clear backoff. It was
3591 * being used to time the probes, and is probably far higher than
3592 * it needs to be for normal retransmission.
3593 */
3594 if (tcp_send_head(sk))
3595 tcp_ack_probe(sk);
3596
3597 if (tp->tlp_high_seq)
3598 tcp_process_tlp_ack(sk, ack, flag);
3599 return 1;
3600
3601 invalid_ack:
3602 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3603 return -1;
3604
3605 old_ack:
3606 /* If data was SACKed, tag it and see if we should send more data.
3607 * If data was DSACKed, see if we can undo a cwnd reduction.
3608 */
3609 if (TCP_SKB_CB(skb)->sacked) {
3610 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3611 &sack_rtt_us);
3612 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3613 is_dupack, flag);
3614 }
3615
3616 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3617 return 0;
3618 }
3619
3620 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3621 bool syn, struct tcp_fastopen_cookie *foc,
3622 bool exp_opt)
3623 {
3624 /* Valid only in SYN or SYN-ACK with an even length. */
3625 if (!foc || !syn || len < 0 || (len & 1))
3626 return;
3627
3628 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3629 len <= TCP_FASTOPEN_COOKIE_MAX)
3630 memcpy(foc->val, cookie, len);
3631 else if (len != 0)
3632 len = -1;
3633 foc->len = len;
3634 foc->exp = exp_opt;
3635 }
3636
3637 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3638 * But, this can also be called on packets in the established flow when
3639 * the fast version below fails.
3640 */
3641 void tcp_parse_options(const struct sk_buff *skb,
3642 struct tcp_options_received *opt_rx, int estab,
3643 struct tcp_fastopen_cookie *foc)
3644 {
3645 const unsigned char *ptr;
3646 const struct tcphdr *th = tcp_hdr(skb);
3647 int length = (th->doff * 4) - sizeof(struct tcphdr);
3648
3649 ptr = (const unsigned char *)(th + 1);
3650 opt_rx->saw_tstamp = 0;
3651
3652 while (length > 0) {
3653 int opcode = *ptr++;
3654 int opsize;
3655
3656 switch (opcode) {
3657 case TCPOPT_EOL:
3658 return;
3659 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3660 length--;
3661 continue;
3662 default:
3663 opsize = *ptr++;
3664 if (opsize < 2) /* "silly options" */
3665 return;
3666 if (opsize > length)
3667 return; /* don't parse partial options */
3668 switch (opcode) {
3669 case TCPOPT_MSS:
3670 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3671 u16 in_mss = get_unaligned_be16(ptr);
3672 if (in_mss) {
3673 if (opt_rx->user_mss &&
3674 opt_rx->user_mss < in_mss)
3675 in_mss = opt_rx->user_mss;
3676 opt_rx->mss_clamp = in_mss;
3677 }
3678 }
3679 break;
3680 case TCPOPT_WINDOW:
3681 if (opsize == TCPOLEN_WINDOW && th->syn &&
3682 !estab && sysctl_tcp_window_scaling) {
3683 __u8 snd_wscale = *(__u8 *)ptr;
3684 opt_rx->wscale_ok = 1;
3685 if (snd_wscale > 14) {
3686 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3687 __func__,
3688 snd_wscale);
3689 snd_wscale = 14;
3690 }
3691 opt_rx->snd_wscale = snd_wscale;
3692 }
3693 break;
3694 case TCPOPT_TIMESTAMP:
3695 if ((opsize == TCPOLEN_TIMESTAMP) &&
3696 ((estab && opt_rx->tstamp_ok) ||
3697 (!estab && sysctl_tcp_timestamps))) {
3698 opt_rx->saw_tstamp = 1;
3699 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3700 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3701 }
3702 break;
3703 case TCPOPT_SACK_PERM:
3704 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3705 !estab && sysctl_tcp_sack) {
3706 opt_rx->sack_ok = TCP_SACK_SEEN;
3707 tcp_sack_reset(opt_rx);
3708 }
3709 break;
3710
3711 case TCPOPT_SACK:
3712 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3713 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3714 opt_rx->sack_ok) {
3715 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3716 }
3717 break;
3718 #ifdef CONFIG_TCP_MD5SIG
3719 case TCPOPT_MD5SIG:
3720 /*
3721 * The MD5 Hash has already been
3722 * checked (see tcp_v{4,6}_do_rcv()).
3723 */
3724 break;
3725 #endif
3726 case TCPOPT_FASTOPEN:
3727 tcp_parse_fastopen_option(
3728 opsize - TCPOLEN_FASTOPEN_BASE,
3729 ptr, th->syn, foc, false);
3730 break;
3731
3732 case TCPOPT_EXP:
3733 /* Fast Open option shares code 254 using a
3734 * 16 bits magic number.
3735 */
3736 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3737 get_unaligned_be16(ptr) ==
3738 TCPOPT_FASTOPEN_MAGIC)
3739 tcp_parse_fastopen_option(opsize -
3740 TCPOLEN_EXP_FASTOPEN_BASE,
3741 ptr + 2, th->syn, foc, true);
3742 break;
3743
3744 }
3745 ptr += opsize-2;
3746 length -= opsize;
3747 }
3748 }
3749 }
3750 EXPORT_SYMBOL(tcp_parse_options);
3751
3752 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3753 {
3754 const __be32 *ptr = (const __be32 *)(th + 1);
3755
3756 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3757 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3758 tp->rx_opt.saw_tstamp = 1;
3759 ++ptr;
3760 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3761 ++ptr;
3762 if (*ptr)
3763 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3764 else
3765 tp->rx_opt.rcv_tsecr = 0;
3766 return true;
3767 }
3768 return false;
3769 }
3770
3771 /* Fast parse options. This hopes to only see timestamps.
3772 * If it is wrong it falls back on tcp_parse_options().
3773 */
3774 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3775 const struct tcphdr *th, struct tcp_sock *tp)
3776 {
3777 /* In the spirit of fast parsing, compare doff directly to constant
3778 * values. Because equality is used, short doff can be ignored here.
3779 */
3780 if (th->doff == (sizeof(*th) / 4)) {
3781 tp->rx_opt.saw_tstamp = 0;
3782 return false;
3783 } else if (tp->rx_opt.tstamp_ok &&
3784 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3785 if (tcp_parse_aligned_timestamp(tp, th))
3786 return true;
3787 }
3788
3789 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3790 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3791 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3792
3793 return true;
3794 }
3795
3796 #ifdef CONFIG_TCP_MD5SIG
3797 /*
3798 * Parse MD5 Signature option
3799 */
3800 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3801 {
3802 int length = (th->doff << 2) - sizeof(*th);
3803 const u8 *ptr = (const u8 *)(th + 1);
3804
3805 /* If the TCP option is too short, we can short cut */
3806 if (length < TCPOLEN_MD5SIG)
3807 return NULL;
3808
3809 while (length > 0) {
3810 int opcode = *ptr++;
3811 int opsize;
3812
3813 switch (opcode) {
3814 case TCPOPT_EOL:
3815 return NULL;
3816 case TCPOPT_NOP:
3817 length--;
3818 continue;
3819 default:
3820 opsize = *ptr++;
3821 if (opsize < 2 || opsize > length)
3822 return NULL;
3823 if (opcode == TCPOPT_MD5SIG)
3824 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3825 }
3826 ptr += opsize - 2;
3827 length -= opsize;
3828 }
3829 return NULL;
3830 }
3831 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3832 #endif
3833
3834 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3835 *
3836 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3837 * it can pass through stack. So, the following predicate verifies that
3838 * this segment is not used for anything but congestion avoidance or
3839 * fast retransmit. Moreover, we even are able to eliminate most of such
3840 * second order effects, if we apply some small "replay" window (~RTO)
3841 * to timestamp space.
3842 *
3843 * All these measures still do not guarantee that we reject wrapped ACKs
3844 * on networks with high bandwidth, when sequence space is recycled fastly,
3845 * but it guarantees that such events will be very rare and do not affect
3846 * connection seriously. This doesn't look nice, but alas, PAWS is really
3847 * buggy extension.
3848 *
3849 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3850 * states that events when retransmit arrives after original data are rare.
3851 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3852 * the biggest problem on large power networks even with minor reordering.
3853 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3854 * up to bandwidth of 18Gigabit/sec. 8) ]
3855 */
3856
3857 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3858 {
3859 const struct tcp_sock *tp = tcp_sk(sk);
3860 const struct tcphdr *th = tcp_hdr(skb);
3861 u32 seq = TCP_SKB_CB(skb)->seq;
3862 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3863
3864 return (/* 1. Pure ACK with correct sequence number. */
3865 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3866
3867 /* 2. ... and duplicate ACK. */
3868 ack == tp->snd_una &&
3869
3870 /* 3. ... and does not update window. */
3871 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3872
3873 /* 4. ... and sits in replay window. */
3874 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3875 }
3876
3877 static inline bool tcp_paws_discard(const struct sock *sk,
3878 const struct sk_buff *skb)
3879 {
3880 const struct tcp_sock *tp = tcp_sk(sk);
3881
3882 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3883 !tcp_disordered_ack(sk, skb);
3884 }
3885
3886 /* Check segment sequence number for validity.
3887 *
3888 * Segment controls are considered valid, if the segment
3889 * fits to the window after truncation to the window. Acceptability
3890 * of data (and SYN, FIN, of course) is checked separately.
3891 * See tcp_data_queue(), for example.
3892 *
3893 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3894 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3895 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3896 * (borrowed from freebsd)
3897 */
3898
3899 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3900 {
3901 return !before(end_seq, tp->rcv_wup) &&
3902 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3903 }
3904
3905 /* When we get a reset we do this. */
3906 void tcp_reset(struct sock *sk)
3907 {
3908 /* We want the right error as BSD sees it (and indeed as we do). */
3909 switch (sk->sk_state) {
3910 case TCP_SYN_SENT:
3911 sk->sk_err = ECONNREFUSED;
3912 break;
3913 case TCP_CLOSE_WAIT:
3914 sk->sk_err = EPIPE;
3915 break;
3916 case TCP_CLOSE:
3917 return;
3918 default:
3919 sk->sk_err = ECONNRESET;
3920 }
3921 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3922 smp_wmb();
3923
3924 if (!sock_flag(sk, SOCK_DEAD))
3925 sk->sk_error_report(sk);
3926
3927 tcp_done(sk);
3928 }
3929
3930 /*
3931 * Process the FIN bit. This now behaves as it is supposed to work
3932 * and the FIN takes effect when it is validly part of sequence
3933 * space. Not before when we get holes.
3934 *
3935 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3936 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3937 * TIME-WAIT)
3938 *
3939 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3940 * close and we go into CLOSING (and later onto TIME-WAIT)
3941 *
3942 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3943 */
3944 static void tcp_fin(struct sock *sk)
3945 {
3946 struct tcp_sock *tp = tcp_sk(sk);
3947 const struct dst_entry *dst;
3948
3949 inet_csk_schedule_ack(sk);
3950
3951 sk->sk_shutdown |= RCV_SHUTDOWN;
3952 sock_set_flag(sk, SOCK_DONE);
3953
3954 switch (sk->sk_state) {
3955 case TCP_SYN_RECV:
3956 case TCP_ESTABLISHED:
3957 /* Move to CLOSE_WAIT */
3958 tcp_set_state(sk, TCP_CLOSE_WAIT);
3959 dst = __sk_dst_get(sk);
3960 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3961 inet_csk(sk)->icsk_ack.pingpong = 1;
3962 break;
3963
3964 case TCP_CLOSE_WAIT:
3965 case TCP_CLOSING:
3966 /* Received a retransmission of the FIN, do
3967 * nothing.
3968 */
3969 break;
3970 case TCP_LAST_ACK:
3971 /* RFC793: Remain in the LAST-ACK state. */
3972 break;
3973
3974 case TCP_FIN_WAIT1:
3975 /* This case occurs when a simultaneous close
3976 * happens, we must ack the received FIN and
3977 * enter the CLOSING state.
3978 */
3979 tcp_send_ack(sk);
3980 tcp_set_state(sk, TCP_CLOSING);
3981 break;
3982 case TCP_FIN_WAIT2:
3983 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3984 tcp_send_ack(sk);
3985 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3986 break;
3987 default:
3988 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3989 * cases we should never reach this piece of code.
3990 */
3991 pr_err("%s: Impossible, sk->sk_state=%d\n",
3992 __func__, sk->sk_state);
3993 break;
3994 }
3995
3996 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3997 * Probably, we should reset in this case. For now drop them.
3998 */
3999 __skb_queue_purge(&tp->out_of_order_queue);
4000 if (tcp_is_sack(tp))
4001 tcp_sack_reset(&tp->rx_opt);
4002 sk_mem_reclaim(sk);
4003
4004 if (!sock_flag(sk, SOCK_DEAD)) {
4005 sk->sk_state_change(sk);
4006
4007 /* Do not send POLL_HUP for half duplex close. */
4008 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4009 sk->sk_state == TCP_CLOSE)
4010 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4011 else
4012 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4013 }
4014 }
4015
4016 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4017 u32 end_seq)
4018 {
4019 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4020 if (before(seq, sp->start_seq))
4021 sp->start_seq = seq;
4022 if (after(end_seq, sp->end_seq))
4023 sp->end_seq = end_seq;
4024 return true;
4025 }
4026 return false;
4027 }
4028
4029 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4030 {
4031 struct tcp_sock *tp = tcp_sk(sk);
4032
4033 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4034 int mib_idx;
4035
4036 if (before(seq, tp->rcv_nxt))
4037 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4038 else
4039 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4040
4041 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4042
4043 tp->rx_opt.dsack = 1;
4044 tp->duplicate_sack[0].start_seq = seq;
4045 tp->duplicate_sack[0].end_seq = end_seq;
4046 }
4047 }
4048
4049 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4050 {
4051 struct tcp_sock *tp = tcp_sk(sk);
4052
4053 if (!tp->rx_opt.dsack)
4054 tcp_dsack_set(sk, seq, end_seq);
4055 else
4056 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4057 }
4058
4059 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4060 {
4061 struct tcp_sock *tp = tcp_sk(sk);
4062
4063 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4064 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4066 tcp_enter_quickack_mode(sk);
4067
4068 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4069 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4070
4071 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4072 end_seq = tp->rcv_nxt;
4073 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4074 }
4075 }
4076
4077 tcp_send_ack(sk);
4078 }
4079
4080 /* These routines update the SACK block as out-of-order packets arrive or
4081 * in-order packets close up the sequence space.
4082 */
4083 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4084 {
4085 int this_sack;
4086 struct tcp_sack_block *sp = &tp->selective_acks[0];
4087 struct tcp_sack_block *swalk = sp + 1;
4088
4089 /* See if the recent change to the first SACK eats into
4090 * or hits the sequence space of other SACK blocks, if so coalesce.
4091 */
4092 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4093 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4094 int i;
4095
4096 /* Zap SWALK, by moving every further SACK up by one slot.
4097 * Decrease num_sacks.
4098 */
4099 tp->rx_opt.num_sacks--;
4100 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4101 sp[i] = sp[i + 1];
4102 continue;
4103 }
4104 this_sack++, swalk++;
4105 }
4106 }
4107
4108 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4109 {
4110 struct tcp_sock *tp = tcp_sk(sk);
4111 struct tcp_sack_block *sp = &tp->selective_acks[0];
4112 int cur_sacks = tp->rx_opt.num_sacks;
4113 int this_sack;
4114
4115 if (!cur_sacks)
4116 goto new_sack;
4117
4118 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4119 if (tcp_sack_extend(sp, seq, end_seq)) {
4120 /* Rotate this_sack to the first one. */
4121 for (; this_sack > 0; this_sack--, sp--)
4122 swap(*sp, *(sp - 1));
4123 if (cur_sacks > 1)
4124 tcp_sack_maybe_coalesce(tp);
4125 return;
4126 }
4127 }
4128
4129 /* Could not find an adjacent existing SACK, build a new one,
4130 * put it at the front, and shift everyone else down. We
4131 * always know there is at least one SACK present already here.
4132 *
4133 * If the sack array is full, forget about the last one.
4134 */
4135 if (this_sack >= TCP_NUM_SACKS) {
4136 this_sack--;
4137 tp->rx_opt.num_sacks--;
4138 sp--;
4139 }
4140 for (; this_sack > 0; this_sack--, sp--)
4141 *sp = *(sp - 1);
4142
4143 new_sack:
4144 /* Build the new head SACK, and we're done. */
4145 sp->start_seq = seq;
4146 sp->end_seq = end_seq;
4147 tp->rx_opt.num_sacks++;
4148 }
4149
4150 /* RCV.NXT advances, some SACKs should be eaten. */
4151
4152 static void tcp_sack_remove(struct tcp_sock *tp)
4153 {
4154 struct tcp_sack_block *sp = &tp->selective_acks[0];
4155 int num_sacks = tp->rx_opt.num_sacks;
4156 int this_sack;
4157
4158 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4159 if (skb_queue_empty(&tp->out_of_order_queue)) {
4160 tp->rx_opt.num_sacks = 0;
4161 return;
4162 }
4163
4164 for (this_sack = 0; this_sack < num_sacks;) {
4165 /* Check if the start of the sack is covered by RCV.NXT. */
4166 if (!before(tp->rcv_nxt, sp->start_seq)) {
4167 int i;
4168
4169 /* RCV.NXT must cover all the block! */
4170 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4171
4172 /* Zap this SACK, by moving forward any other SACKS. */
4173 for (i = this_sack+1; i < num_sacks; i++)
4174 tp->selective_acks[i-1] = tp->selective_acks[i];
4175 num_sacks--;
4176 continue;
4177 }
4178 this_sack++;
4179 sp++;
4180 }
4181 tp->rx_opt.num_sacks = num_sacks;
4182 }
4183
4184 /**
4185 * tcp_try_coalesce - try to merge skb to prior one
4186 * @sk: socket
4187 * @to: prior buffer
4188 * @from: buffer to add in queue
4189 * @fragstolen: pointer to boolean
4190 *
4191 * Before queueing skb @from after @to, try to merge them
4192 * to reduce overall memory use and queue lengths, if cost is small.
4193 * Packets in ofo or receive queues can stay a long time.
4194 * Better try to coalesce them right now to avoid future collapses.
4195 * Returns true if caller should free @from instead of queueing it
4196 */
4197 static bool tcp_try_coalesce(struct sock *sk,
4198 struct sk_buff *to,
4199 struct sk_buff *from,
4200 bool *fragstolen)
4201 {
4202 int delta;
4203
4204 *fragstolen = false;
4205
4206 /* Its possible this segment overlaps with prior segment in queue */
4207 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4208 return false;
4209
4210 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4211 return false;
4212
4213 atomic_add(delta, &sk->sk_rmem_alloc);
4214 sk_mem_charge(sk, delta);
4215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4216 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4217 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4218 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4219 return true;
4220 }
4221
4222 /* This one checks to see if we can put data from the
4223 * out_of_order queue into the receive_queue.
4224 */
4225 static void tcp_ofo_queue(struct sock *sk)
4226 {
4227 struct tcp_sock *tp = tcp_sk(sk);
4228 __u32 dsack_high = tp->rcv_nxt;
4229 struct sk_buff *skb, *tail;
4230 bool fragstolen, eaten;
4231
4232 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4233 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4234 break;
4235
4236 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4237 __u32 dsack = dsack_high;
4238 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4239 dsack_high = TCP_SKB_CB(skb)->end_seq;
4240 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4241 }
4242
4243 __skb_unlink(skb, &tp->out_of_order_queue);
4244 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4245 SOCK_DEBUG(sk, "ofo packet was already received\n");
4246 __kfree_skb(skb);
4247 continue;
4248 }
4249 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4250 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4251 TCP_SKB_CB(skb)->end_seq);
4252
4253 tail = skb_peek_tail(&sk->sk_receive_queue);
4254 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4255 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4256 if (!eaten)
4257 __skb_queue_tail(&sk->sk_receive_queue, skb);
4258 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4259 tcp_fin(sk);
4260 if (eaten)
4261 kfree_skb_partial(skb, fragstolen);
4262 }
4263 }
4264
4265 static bool tcp_prune_ofo_queue(struct sock *sk);
4266 static int tcp_prune_queue(struct sock *sk);
4267
4268 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4269 unsigned int size)
4270 {
4271 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4272 !sk_rmem_schedule(sk, skb, size)) {
4273
4274 if (tcp_prune_queue(sk) < 0)
4275 return -1;
4276
4277 if (!sk_rmem_schedule(sk, skb, size)) {
4278 if (!tcp_prune_ofo_queue(sk))
4279 return -1;
4280
4281 if (!sk_rmem_schedule(sk, skb, size))
4282 return -1;
4283 }
4284 }
4285 return 0;
4286 }
4287
4288 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4289 {
4290 struct tcp_sock *tp = tcp_sk(sk);
4291 struct sk_buff *skb1;
4292 u32 seq, end_seq;
4293
4294 tcp_ecn_check_ce(tp, skb);
4295
4296 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4298 __kfree_skb(skb);
4299 return;
4300 }
4301
4302 /* Disable header prediction. */
4303 tp->pred_flags = 0;
4304 inet_csk_schedule_ack(sk);
4305
4306 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4307 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4308 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4309
4310 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4311 if (!skb1) {
4312 /* Initial out of order segment, build 1 SACK. */
4313 if (tcp_is_sack(tp)) {
4314 tp->rx_opt.num_sacks = 1;
4315 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4316 tp->selective_acks[0].end_seq =
4317 TCP_SKB_CB(skb)->end_seq;
4318 }
4319 __skb_queue_head(&tp->out_of_order_queue, skb);
4320 goto end;
4321 }
4322
4323 seq = TCP_SKB_CB(skb)->seq;
4324 end_seq = TCP_SKB_CB(skb)->end_seq;
4325
4326 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4327 bool fragstolen;
4328
4329 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4330 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4331 } else {
4332 tcp_grow_window(sk, skb);
4333 kfree_skb_partial(skb, fragstolen);
4334 skb = NULL;
4335 }
4336
4337 if (!tp->rx_opt.num_sacks ||
4338 tp->selective_acks[0].end_seq != seq)
4339 goto add_sack;
4340
4341 /* Common case: data arrive in order after hole. */
4342 tp->selective_acks[0].end_seq = end_seq;
4343 goto end;
4344 }
4345
4346 /* Find place to insert this segment. */
4347 while (1) {
4348 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4349 break;
4350 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4351 skb1 = NULL;
4352 break;
4353 }
4354 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4355 }
4356
4357 /* Do skb overlap to previous one? */
4358 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4359 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4360 /* All the bits are present. Drop. */
4361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4362 __kfree_skb(skb);
4363 skb = NULL;
4364 tcp_dsack_set(sk, seq, end_seq);
4365 goto add_sack;
4366 }
4367 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4368 /* Partial overlap. */
4369 tcp_dsack_set(sk, seq,
4370 TCP_SKB_CB(skb1)->end_seq);
4371 } else {
4372 if (skb_queue_is_first(&tp->out_of_order_queue,
4373 skb1))
4374 skb1 = NULL;
4375 else
4376 skb1 = skb_queue_prev(
4377 &tp->out_of_order_queue,
4378 skb1);
4379 }
4380 }
4381 if (!skb1)
4382 __skb_queue_head(&tp->out_of_order_queue, skb);
4383 else
4384 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4385
4386 /* And clean segments covered by new one as whole. */
4387 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4388 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4389
4390 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4391 break;
4392 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4393 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4394 end_seq);
4395 break;
4396 }
4397 __skb_unlink(skb1, &tp->out_of_order_queue);
4398 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4399 TCP_SKB_CB(skb1)->end_seq);
4400 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4401 __kfree_skb(skb1);
4402 }
4403
4404 add_sack:
4405 if (tcp_is_sack(tp))
4406 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4407 end:
4408 if (skb) {
4409 tcp_grow_window(sk, skb);
4410 skb_set_owner_r(skb, sk);
4411 }
4412 }
4413
4414 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4415 bool *fragstolen)
4416 {
4417 int eaten;
4418 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4419
4420 __skb_pull(skb, hdrlen);
4421 eaten = (tail &&
4422 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4423 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4424 if (!eaten) {
4425 __skb_queue_tail(&sk->sk_receive_queue, skb);
4426 skb_set_owner_r(skb, sk);
4427 }
4428 return eaten;
4429 }
4430
4431 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4432 {
4433 struct sk_buff *skb;
4434 bool fragstolen;
4435
4436 if (size == 0)
4437 return 0;
4438
4439 skb = alloc_skb(size, sk->sk_allocation);
4440 if (!skb)
4441 goto err;
4442
4443 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4444 goto err_free;
4445
4446 if (memcpy_from_msg(skb_put(skb, size), msg, size))
4447 goto err_free;
4448
4449 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4450 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4451 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4452
4453 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4454 WARN_ON_ONCE(fragstolen); /* should not happen */
4455 __kfree_skb(skb);
4456 }
4457 return size;
4458
4459 err_free:
4460 kfree_skb(skb);
4461 err:
4462 return -ENOMEM;
4463 }
4464
4465 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4466 {
4467 struct tcp_sock *tp = tcp_sk(sk);
4468 int eaten = -1;
4469 bool fragstolen = false;
4470
4471 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4472 goto drop;
4473
4474 skb_dst_drop(skb);
4475 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4476
4477 tcp_ecn_accept_cwr(tp, skb);
4478
4479 tp->rx_opt.dsack = 0;
4480
4481 /* Queue data for delivery to the user.
4482 * Packets in sequence go to the receive queue.
4483 * Out of sequence packets to the out_of_order_queue.
4484 */
4485 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4486 if (tcp_receive_window(tp) == 0)
4487 goto out_of_window;
4488
4489 /* Ok. In sequence. In window. */
4490 if (tp->ucopy.task == current &&
4491 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4492 sock_owned_by_user(sk) && !tp->urg_data) {
4493 int chunk = min_t(unsigned int, skb->len,
4494 tp->ucopy.len);
4495
4496 __set_current_state(TASK_RUNNING);
4497
4498 local_bh_enable();
4499 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4500 tp->ucopy.len -= chunk;
4501 tp->copied_seq += chunk;
4502 eaten = (chunk == skb->len);
4503 tcp_rcv_space_adjust(sk);
4504 }
4505 local_bh_disable();
4506 }
4507
4508 if (eaten <= 0) {
4509 queue_and_out:
4510 if (eaten < 0 &&
4511 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4512 goto drop;
4513
4514 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4515 }
4516 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4517 if (skb->len)
4518 tcp_event_data_recv(sk, skb);
4519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4520 tcp_fin(sk);
4521
4522 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4523 tcp_ofo_queue(sk);
4524
4525 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4526 * gap in queue is filled.
4527 */
4528 if (skb_queue_empty(&tp->out_of_order_queue))
4529 inet_csk(sk)->icsk_ack.pingpong = 0;
4530 }
4531
4532 if (tp->rx_opt.num_sacks)
4533 tcp_sack_remove(tp);
4534
4535 tcp_fast_path_check(sk);
4536
4537 if (eaten > 0)
4538 kfree_skb_partial(skb, fragstolen);
4539 if (!sock_flag(sk, SOCK_DEAD))
4540 sk->sk_data_ready(sk);
4541 return;
4542 }
4543
4544 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4545 /* A retransmit, 2nd most common case. Force an immediate ack. */
4546 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4547 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4548
4549 out_of_window:
4550 tcp_enter_quickack_mode(sk);
4551 inet_csk_schedule_ack(sk);
4552 drop:
4553 __kfree_skb(skb);
4554 return;
4555 }
4556
4557 /* Out of window. F.e. zero window probe. */
4558 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4559 goto out_of_window;
4560
4561 tcp_enter_quickack_mode(sk);
4562
4563 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4564 /* Partial packet, seq < rcv_next < end_seq */
4565 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4566 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4567 TCP_SKB_CB(skb)->end_seq);
4568
4569 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4570
4571 /* If window is closed, drop tail of packet. But after
4572 * remembering D-SACK for its head made in previous line.
4573 */
4574 if (!tcp_receive_window(tp))
4575 goto out_of_window;
4576 goto queue_and_out;
4577 }
4578
4579 tcp_data_queue_ofo(sk, skb);
4580 }
4581
4582 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4583 struct sk_buff_head *list)
4584 {
4585 struct sk_buff *next = NULL;
4586
4587 if (!skb_queue_is_last(list, skb))
4588 next = skb_queue_next(list, skb);
4589
4590 __skb_unlink(skb, list);
4591 __kfree_skb(skb);
4592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4593
4594 return next;
4595 }
4596
4597 /* Collapse contiguous sequence of skbs head..tail with
4598 * sequence numbers start..end.
4599 *
4600 * If tail is NULL, this means until the end of the list.
4601 *
4602 * Segments with FIN/SYN are not collapsed (only because this
4603 * simplifies code)
4604 */
4605 static void
4606 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4607 struct sk_buff *head, struct sk_buff *tail,
4608 u32 start, u32 end)
4609 {
4610 struct sk_buff *skb, *n;
4611 bool end_of_skbs;
4612
4613 /* First, check that queue is collapsible and find
4614 * the point where collapsing can be useful. */
4615 skb = head;
4616 restart:
4617 end_of_skbs = true;
4618 skb_queue_walk_from_safe(list, skb, n) {
4619 if (skb == tail)
4620 break;
4621 /* No new bits? It is possible on ofo queue. */
4622 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4623 skb = tcp_collapse_one(sk, skb, list);
4624 if (!skb)
4625 break;
4626 goto restart;
4627 }
4628
4629 /* The first skb to collapse is:
4630 * - not SYN/FIN and
4631 * - bloated or contains data before "start" or
4632 * overlaps to the next one.
4633 */
4634 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4635 (tcp_win_from_space(skb->truesize) > skb->len ||
4636 before(TCP_SKB_CB(skb)->seq, start))) {
4637 end_of_skbs = false;
4638 break;
4639 }
4640
4641 if (!skb_queue_is_last(list, skb)) {
4642 struct sk_buff *next = skb_queue_next(list, skb);
4643 if (next != tail &&
4644 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4645 end_of_skbs = false;
4646 break;
4647 }
4648 }
4649
4650 /* Decided to skip this, advance start seq. */
4651 start = TCP_SKB_CB(skb)->end_seq;
4652 }
4653 if (end_of_skbs ||
4654 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4655 return;
4656
4657 while (before(start, end)) {
4658 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4659 struct sk_buff *nskb;
4660
4661 nskb = alloc_skb(copy, GFP_ATOMIC);
4662 if (!nskb)
4663 return;
4664
4665 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4666 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4667 __skb_queue_before(list, skb, nskb);
4668 skb_set_owner_r(nskb, sk);
4669
4670 /* Copy data, releasing collapsed skbs. */
4671 while (copy > 0) {
4672 int offset = start - TCP_SKB_CB(skb)->seq;
4673 int size = TCP_SKB_CB(skb)->end_seq - start;
4674
4675 BUG_ON(offset < 0);
4676 if (size > 0) {
4677 size = min(copy, size);
4678 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4679 BUG();
4680 TCP_SKB_CB(nskb)->end_seq += size;
4681 copy -= size;
4682 start += size;
4683 }
4684 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4685 skb = tcp_collapse_one(sk, skb, list);
4686 if (!skb ||
4687 skb == tail ||
4688 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4689 return;
4690 }
4691 }
4692 }
4693 }
4694
4695 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4696 * and tcp_collapse() them until all the queue is collapsed.
4697 */
4698 static void tcp_collapse_ofo_queue(struct sock *sk)
4699 {
4700 struct tcp_sock *tp = tcp_sk(sk);
4701 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4702 struct sk_buff *head;
4703 u32 start, end;
4704
4705 if (!skb)
4706 return;
4707
4708 start = TCP_SKB_CB(skb)->seq;
4709 end = TCP_SKB_CB(skb)->end_seq;
4710 head = skb;
4711
4712 for (;;) {
4713 struct sk_buff *next = NULL;
4714
4715 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4716 next = skb_queue_next(&tp->out_of_order_queue, skb);
4717 skb = next;
4718
4719 /* Segment is terminated when we see gap or when
4720 * we are at the end of all the queue. */
4721 if (!skb ||
4722 after(TCP_SKB_CB(skb)->seq, end) ||
4723 before(TCP_SKB_CB(skb)->end_seq, start)) {
4724 tcp_collapse(sk, &tp->out_of_order_queue,
4725 head, skb, start, end);
4726 head = skb;
4727 if (!skb)
4728 break;
4729 /* Start new segment */
4730 start = TCP_SKB_CB(skb)->seq;
4731 end = TCP_SKB_CB(skb)->end_seq;
4732 } else {
4733 if (before(TCP_SKB_CB(skb)->seq, start))
4734 start = TCP_SKB_CB(skb)->seq;
4735 if (after(TCP_SKB_CB(skb)->end_seq, end))
4736 end = TCP_SKB_CB(skb)->end_seq;
4737 }
4738 }
4739 }
4740
4741 /*
4742 * Purge the out-of-order queue.
4743 * Return true if queue was pruned.
4744 */
4745 static bool tcp_prune_ofo_queue(struct sock *sk)
4746 {
4747 struct tcp_sock *tp = tcp_sk(sk);
4748 bool res = false;
4749
4750 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4751 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4752 __skb_queue_purge(&tp->out_of_order_queue);
4753
4754 /* Reset SACK state. A conforming SACK implementation will
4755 * do the same at a timeout based retransmit. When a connection
4756 * is in a sad state like this, we care only about integrity
4757 * of the connection not performance.
4758 */
4759 if (tp->rx_opt.sack_ok)
4760 tcp_sack_reset(&tp->rx_opt);
4761 sk_mem_reclaim(sk);
4762 res = true;
4763 }
4764 return res;
4765 }
4766
4767 /* Reduce allocated memory if we can, trying to get
4768 * the socket within its memory limits again.
4769 *
4770 * Return less than zero if we should start dropping frames
4771 * until the socket owning process reads some of the data
4772 * to stabilize the situation.
4773 */
4774 static int tcp_prune_queue(struct sock *sk)
4775 {
4776 struct tcp_sock *tp = tcp_sk(sk);
4777
4778 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4779
4780 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4781
4782 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4783 tcp_clamp_window(sk);
4784 else if (sk_under_memory_pressure(sk))
4785 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4786
4787 tcp_collapse_ofo_queue(sk);
4788 if (!skb_queue_empty(&sk->sk_receive_queue))
4789 tcp_collapse(sk, &sk->sk_receive_queue,
4790 skb_peek(&sk->sk_receive_queue),
4791 NULL,
4792 tp->copied_seq, tp->rcv_nxt);
4793 sk_mem_reclaim(sk);
4794
4795 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4796 return 0;
4797
4798 /* Collapsing did not help, destructive actions follow.
4799 * This must not ever occur. */
4800
4801 tcp_prune_ofo_queue(sk);
4802
4803 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4804 return 0;
4805
4806 /* If we are really being abused, tell the caller to silently
4807 * drop receive data on the floor. It will get retransmitted
4808 * and hopefully then we'll have sufficient space.
4809 */
4810 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4811
4812 /* Massive buffer overcommit. */
4813 tp->pred_flags = 0;
4814 return -1;
4815 }
4816
4817 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4818 {
4819 const struct tcp_sock *tp = tcp_sk(sk);
4820
4821 /* If the user specified a specific send buffer setting, do
4822 * not modify it.
4823 */
4824 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4825 return false;
4826
4827 /* If we are under global TCP memory pressure, do not expand. */
4828 if (sk_under_memory_pressure(sk))
4829 return false;
4830
4831 /* If we are under soft global TCP memory pressure, do not expand. */
4832 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4833 return false;
4834
4835 /* If we filled the congestion window, do not expand. */
4836 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4837 return false;
4838
4839 return true;
4840 }
4841
4842 /* When incoming ACK allowed to free some skb from write_queue,
4843 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4844 * on the exit from tcp input handler.
4845 *
4846 * PROBLEM: sndbuf expansion does not work well with largesend.
4847 */
4848 static void tcp_new_space(struct sock *sk)
4849 {
4850 struct tcp_sock *tp = tcp_sk(sk);
4851
4852 if (tcp_should_expand_sndbuf(sk)) {
4853 tcp_sndbuf_expand(sk);
4854 tp->snd_cwnd_stamp = tcp_time_stamp;
4855 }
4856
4857 sk->sk_write_space(sk);
4858 }
4859
4860 static void tcp_check_space(struct sock *sk)
4861 {
4862 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4863 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4864 /* pairs with tcp_poll() */
4865 smp_mb__after_atomic();
4866 if (sk->sk_socket &&
4867 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4868 tcp_new_space(sk);
4869 }
4870 }
4871
4872 static inline void tcp_data_snd_check(struct sock *sk)
4873 {
4874 tcp_push_pending_frames(sk);
4875 tcp_check_space(sk);
4876 }
4877
4878 /*
4879 * Check if sending an ack is needed.
4880 */
4881 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4882 {
4883 struct tcp_sock *tp = tcp_sk(sk);
4884
4885 /* More than one full frame received... */
4886 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4887 /* ... and right edge of window advances far enough.
4888 * (tcp_recvmsg() will send ACK otherwise). Or...
4889 */
4890 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4891 /* We ACK each frame or... */
4892 tcp_in_quickack_mode(sk) ||
4893 /* We have out of order data. */
4894 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4895 /* Then ack it now */
4896 tcp_send_ack(sk);
4897 } else {
4898 /* Else, send delayed ack. */
4899 tcp_send_delayed_ack(sk);
4900 }
4901 }
4902
4903 static inline void tcp_ack_snd_check(struct sock *sk)
4904 {
4905 if (!inet_csk_ack_scheduled(sk)) {
4906 /* We sent a data segment already. */
4907 return;
4908 }
4909 __tcp_ack_snd_check(sk, 1);
4910 }
4911
4912 /*
4913 * This routine is only called when we have urgent data
4914 * signaled. Its the 'slow' part of tcp_urg. It could be
4915 * moved inline now as tcp_urg is only called from one
4916 * place. We handle URGent data wrong. We have to - as
4917 * BSD still doesn't use the correction from RFC961.
4918 * For 1003.1g we should support a new option TCP_STDURG to permit
4919 * either form (or just set the sysctl tcp_stdurg).
4920 */
4921
4922 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4923 {
4924 struct tcp_sock *tp = tcp_sk(sk);
4925 u32 ptr = ntohs(th->urg_ptr);
4926
4927 if (ptr && !sysctl_tcp_stdurg)
4928 ptr--;
4929 ptr += ntohl(th->seq);
4930
4931 /* Ignore urgent data that we've already seen and read. */
4932 if (after(tp->copied_seq, ptr))
4933 return;
4934
4935 /* Do not replay urg ptr.
4936 *
4937 * NOTE: interesting situation not covered by specs.
4938 * Misbehaving sender may send urg ptr, pointing to segment,
4939 * which we already have in ofo queue. We are not able to fetch
4940 * such data and will stay in TCP_URG_NOTYET until will be eaten
4941 * by recvmsg(). Seems, we are not obliged to handle such wicked
4942 * situations. But it is worth to think about possibility of some
4943 * DoSes using some hypothetical application level deadlock.
4944 */
4945 if (before(ptr, tp->rcv_nxt))
4946 return;
4947
4948 /* Do we already have a newer (or duplicate) urgent pointer? */
4949 if (tp->urg_data && !after(ptr, tp->urg_seq))
4950 return;
4951
4952 /* Tell the world about our new urgent pointer. */
4953 sk_send_sigurg(sk);
4954
4955 /* We may be adding urgent data when the last byte read was
4956 * urgent. To do this requires some care. We cannot just ignore
4957 * tp->copied_seq since we would read the last urgent byte again
4958 * as data, nor can we alter copied_seq until this data arrives
4959 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4960 *
4961 * NOTE. Double Dutch. Rendering to plain English: author of comment
4962 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4963 * and expect that both A and B disappear from stream. This is _wrong_.
4964 * Though this happens in BSD with high probability, this is occasional.
4965 * Any application relying on this is buggy. Note also, that fix "works"
4966 * only in this artificial test. Insert some normal data between A and B and we will
4967 * decline of BSD again. Verdict: it is better to remove to trap
4968 * buggy users.
4969 */
4970 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4971 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4972 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4973 tp->copied_seq++;
4974 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4975 __skb_unlink(skb, &sk->sk_receive_queue);
4976 __kfree_skb(skb);
4977 }
4978 }
4979
4980 tp->urg_data = TCP_URG_NOTYET;
4981 tp->urg_seq = ptr;
4982
4983 /* Disable header prediction. */
4984 tp->pred_flags = 0;
4985 }
4986
4987 /* This is the 'fast' part of urgent handling. */
4988 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4989 {
4990 struct tcp_sock *tp = tcp_sk(sk);
4991
4992 /* Check if we get a new urgent pointer - normally not. */
4993 if (th->urg)
4994 tcp_check_urg(sk, th);
4995
4996 /* Do we wait for any urgent data? - normally not... */
4997 if (tp->urg_data == TCP_URG_NOTYET) {
4998 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4999 th->syn;
5000
5001 /* Is the urgent pointer pointing into this packet? */
5002 if (ptr < skb->len) {
5003 u8 tmp;
5004 if (skb_copy_bits(skb, ptr, &tmp, 1))
5005 BUG();
5006 tp->urg_data = TCP_URG_VALID | tmp;
5007 if (!sock_flag(sk, SOCK_DEAD))
5008 sk->sk_data_ready(sk);
5009 }
5010 }
5011 }
5012
5013 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5014 {
5015 struct tcp_sock *tp = tcp_sk(sk);
5016 int chunk = skb->len - hlen;
5017 int err;
5018
5019 local_bh_enable();
5020 if (skb_csum_unnecessary(skb))
5021 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5022 else
5023 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5024
5025 if (!err) {
5026 tp->ucopy.len -= chunk;
5027 tp->copied_seq += chunk;
5028 tcp_rcv_space_adjust(sk);
5029 }
5030
5031 local_bh_disable();
5032 return err;
5033 }
5034
5035 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5036 struct sk_buff *skb)
5037 {
5038 __sum16 result;
5039
5040 if (sock_owned_by_user(sk)) {
5041 local_bh_enable();
5042 result = __tcp_checksum_complete(skb);
5043 local_bh_disable();
5044 } else {
5045 result = __tcp_checksum_complete(skb);
5046 }
5047 return result;
5048 }
5049
5050 static inline bool tcp_checksum_complete_user(struct sock *sk,
5051 struct sk_buff *skb)
5052 {
5053 return !skb_csum_unnecessary(skb) &&
5054 __tcp_checksum_complete_user(sk, skb);
5055 }
5056
5057 /* Does PAWS and seqno based validation of an incoming segment, flags will
5058 * play significant role here.
5059 */
5060 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5061 const struct tcphdr *th, int syn_inerr)
5062 {
5063 struct tcp_sock *tp = tcp_sk(sk);
5064
5065 /* RFC1323: H1. Apply PAWS check first. */
5066 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5067 tcp_paws_discard(sk, skb)) {
5068 if (!th->rst) {
5069 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5070 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5071 LINUX_MIB_TCPACKSKIPPEDPAWS,
5072 &tp->last_oow_ack_time))
5073 tcp_send_dupack(sk, skb);
5074 goto discard;
5075 }
5076 /* Reset is accepted even if it did not pass PAWS. */
5077 }
5078
5079 /* Step 1: check sequence number */
5080 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5081 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5082 * (RST) segments are validated by checking their SEQ-fields."
5083 * And page 69: "If an incoming segment is not acceptable,
5084 * an acknowledgment should be sent in reply (unless the RST
5085 * bit is set, if so drop the segment and return)".
5086 */
5087 if (!th->rst) {
5088 if (th->syn)
5089 goto syn_challenge;
5090 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5091 LINUX_MIB_TCPACKSKIPPEDSEQ,
5092 &tp->last_oow_ack_time))
5093 tcp_send_dupack(sk, skb);
5094 }
5095 goto discard;
5096 }
5097
5098 /* Step 2: check RST bit */
5099 if (th->rst) {
5100 /* RFC 5961 3.2 :
5101 * If sequence number exactly matches RCV.NXT, then
5102 * RESET the connection
5103 * else
5104 * Send a challenge ACK
5105 */
5106 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5107 tcp_reset(sk);
5108 else
5109 tcp_send_challenge_ack(sk, skb);
5110 goto discard;
5111 }
5112
5113 /* step 3: check security and precedence [ignored] */
5114
5115 /* step 4: Check for a SYN
5116 * RFC 5961 4.2 : Send a challenge ack
5117 */
5118 if (th->syn) {
5119 syn_challenge:
5120 if (syn_inerr)
5121 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5123 tcp_send_challenge_ack(sk, skb);
5124 goto discard;
5125 }
5126
5127 return true;
5128
5129 discard:
5130 __kfree_skb(skb);
5131 return false;
5132 }
5133
5134 /*
5135 * TCP receive function for the ESTABLISHED state.
5136 *
5137 * It is split into a fast path and a slow path. The fast path is
5138 * disabled when:
5139 * - A zero window was announced from us - zero window probing
5140 * is only handled properly in the slow path.
5141 * - Out of order segments arrived.
5142 * - Urgent data is expected.
5143 * - There is no buffer space left
5144 * - Unexpected TCP flags/window values/header lengths are received
5145 * (detected by checking the TCP header against pred_flags)
5146 * - Data is sent in both directions. Fast path only supports pure senders
5147 * or pure receivers (this means either the sequence number or the ack
5148 * value must stay constant)
5149 * - Unexpected TCP option.
5150 *
5151 * When these conditions are not satisfied it drops into a standard
5152 * receive procedure patterned after RFC793 to handle all cases.
5153 * The first three cases are guaranteed by proper pred_flags setting,
5154 * the rest is checked inline. Fast processing is turned on in
5155 * tcp_data_queue when everything is OK.
5156 */
5157 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5158 const struct tcphdr *th, unsigned int len)
5159 {
5160 struct tcp_sock *tp = tcp_sk(sk);
5161
5162 if (unlikely(!sk->sk_rx_dst))
5163 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5164 /*
5165 * Header prediction.
5166 * The code loosely follows the one in the famous
5167 * "30 instruction TCP receive" Van Jacobson mail.
5168 *
5169 * Van's trick is to deposit buffers into socket queue
5170 * on a device interrupt, to call tcp_recv function
5171 * on the receive process context and checksum and copy
5172 * the buffer to user space. smart...
5173 *
5174 * Our current scheme is not silly either but we take the
5175 * extra cost of the net_bh soft interrupt processing...
5176 * We do checksum and copy also but from device to kernel.
5177 */
5178
5179 tp->rx_opt.saw_tstamp = 0;
5180
5181 /* pred_flags is 0xS?10 << 16 + snd_wnd
5182 * if header_prediction is to be made
5183 * 'S' will always be tp->tcp_header_len >> 2
5184 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5185 * turn it off (when there are holes in the receive
5186 * space for instance)
5187 * PSH flag is ignored.
5188 */
5189
5190 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5191 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5192 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5193 int tcp_header_len = tp->tcp_header_len;
5194
5195 /* Timestamp header prediction: tcp_header_len
5196 * is automatically equal to th->doff*4 due to pred_flags
5197 * match.
5198 */
5199
5200 /* Check timestamp */
5201 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5202 /* No? Slow path! */
5203 if (!tcp_parse_aligned_timestamp(tp, th))
5204 goto slow_path;
5205
5206 /* If PAWS failed, check it more carefully in slow path */
5207 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5208 goto slow_path;
5209
5210 /* DO NOT update ts_recent here, if checksum fails
5211 * and timestamp was corrupted part, it will result
5212 * in a hung connection since we will drop all
5213 * future packets due to the PAWS test.
5214 */
5215 }
5216
5217 if (len <= tcp_header_len) {
5218 /* Bulk data transfer: sender */
5219 if (len == tcp_header_len) {
5220 /* Predicted packet is in window by definition.
5221 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5222 * Hence, check seq<=rcv_wup reduces to:
5223 */
5224 if (tcp_header_len ==
5225 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5226 tp->rcv_nxt == tp->rcv_wup)
5227 tcp_store_ts_recent(tp);
5228
5229 /* We know that such packets are checksummed
5230 * on entry.
5231 */
5232 tcp_ack(sk, skb, 0);
5233 __kfree_skb(skb);
5234 tcp_data_snd_check(sk);
5235 return;
5236 } else { /* Header too small */
5237 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5238 goto discard;
5239 }
5240 } else {
5241 int eaten = 0;
5242 bool fragstolen = false;
5243
5244 if (tp->ucopy.task == current &&
5245 tp->copied_seq == tp->rcv_nxt &&
5246 len - tcp_header_len <= tp->ucopy.len &&
5247 sock_owned_by_user(sk)) {
5248 __set_current_state(TASK_RUNNING);
5249
5250 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5251 /* Predicted packet is in window by definition.
5252 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5253 * Hence, check seq<=rcv_wup reduces to:
5254 */
5255 if (tcp_header_len ==
5256 (sizeof(struct tcphdr) +
5257 TCPOLEN_TSTAMP_ALIGNED) &&
5258 tp->rcv_nxt == tp->rcv_wup)
5259 tcp_store_ts_recent(tp);
5260
5261 tcp_rcv_rtt_measure_ts(sk, skb);
5262
5263 __skb_pull(skb, tcp_header_len);
5264 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5265 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5266 eaten = 1;
5267 }
5268 }
5269 if (!eaten) {
5270 if (tcp_checksum_complete_user(sk, skb))
5271 goto csum_error;
5272
5273 if ((int)skb->truesize > sk->sk_forward_alloc)
5274 goto step5;
5275
5276 /* Predicted packet is in window by definition.
5277 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5278 * Hence, check seq<=rcv_wup reduces to:
5279 */
5280 if (tcp_header_len ==
5281 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5282 tp->rcv_nxt == tp->rcv_wup)
5283 tcp_store_ts_recent(tp);
5284
5285 tcp_rcv_rtt_measure_ts(sk, skb);
5286
5287 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5288
5289 /* Bulk data transfer: receiver */
5290 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5291 &fragstolen);
5292 }
5293
5294 tcp_event_data_recv(sk, skb);
5295
5296 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5297 /* Well, only one small jumplet in fast path... */
5298 tcp_ack(sk, skb, FLAG_DATA);
5299 tcp_data_snd_check(sk);
5300 if (!inet_csk_ack_scheduled(sk))
5301 goto no_ack;
5302 }
5303
5304 __tcp_ack_snd_check(sk, 0);
5305 no_ack:
5306 if (eaten)
5307 kfree_skb_partial(skb, fragstolen);
5308 sk->sk_data_ready(sk);
5309 return;
5310 }
5311 }
5312
5313 slow_path:
5314 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5315 goto csum_error;
5316
5317 if (!th->ack && !th->rst && !th->syn)
5318 goto discard;
5319
5320 /*
5321 * Standard slow path.
5322 */
5323
5324 if (!tcp_validate_incoming(sk, skb, th, 1))
5325 return;
5326
5327 step5:
5328 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5329 goto discard;
5330
5331 tcp_rcv_rtt_measure_ts(sk, skb);
5332
5333 /* Process urgent data. */
5334 tcp_urg(sk, skb, th);
5335
5336 /* step 7: process the segment text */
5337 tcp_data_queue(sk, skb);
5338
5339 tcp_data_snd_check(sk);
5340 tcp_ack_snd_check(sk);
5341 return;
5342
5343 csum_error:
5344 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5345 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5346
5347 discard:
5348 __kfree_skb(skb);
5349 }
5350 EXPORT_SYMBOL(tcp_rcv_established);
5351
5352 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5353 {
5354 struct tcp_sock *tp = tcp_sk(sk);
5355 struct inet_connection_sock *icsk = inet_csk(sk);
5356
5357 tcp_set_state(sk, TCP_ESTABLISHED);
5358
5359 if (skb) {
5360 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5361 security_inet_conn_established(sk, skb);
5362 }
5363
5364 /* Make sure socket is routed, for correct metrics. */
5365 icsk->icsk_af_ops->rebuild_header(sk);
5366
5367 tcp_init_metrics(sk);
5368
5369 tcp_init_congestion_control(sk);
5370
5371 /* Prevent spurious tcp_cwnd_restart() on first data
5372 * packet.
5373 */
5374 tp->lsndtime = tcp_time_stamp;
5375
5376 tcp_init_buffer_space(sk);
5377
5378 if (sock_flag(sk, SOCK_KEEPOPEN))
5379 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5380
5381 if (!tp->rx_opt.snd_wscale)
5382 __tcp_fast_path_on(tp, tp->snd_wnd);
5383 else
5384 tp->pred_flags = 0;
5385
5386 if (!sock_flag(sk, SOCK_DEAD)) {
5387 sk->sk_state_change(sk);
5388 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5389 }
5390 }
5391
5392 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5393 struct tcp_fastopen_cookie *cookie)
5394 {
5395 struct tcp_sock *tp = tcp_sk(sk);
5396 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5397 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5398 bool syn_drop = false;
5399
5400 if (mss == tp->rx_opt.user_mss) {
5401 struct tcp_options_received opt;
5402
5403 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5404 tcp_clear_options(&opt);
5405 opt.user_mss = opt.mss_clamp = 0;
5406 tcp_parse_options(synack, &opt, 0, NULL);
5407 mss = opt.mss_clamp;
5408 }
5409
5410 if (!tp->syn_fastopen) {
5411 /* Ignore an unsolicited cookie */
5412 cookie->len = -1;
5413 } else if (tp->total_retrans) {
5414 /* SYN timed out and the SYN-ACK neither has a cookie nor
5415 * acknowledges data. Presumably the remote received only
5416 * the retransmitted (regular) SYNs: either the original
5417 * SYN-data or the corresponding SYN-ACK was dropped.
5418 */
5419 syn_drop = (cookie->len < 0 && data);
5420 } else if (cookie->len < 0 && !tp->syn_data) {
5421 /* We requested a cookie but didn't get it. If we did not use
5422 * the (old) exp opt format then try so next time (try_exp=1).
5423 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5424 */
5425 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5426 }
5427
5428 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5429
5430 if (data) { /* Retransmit unacked data in SYN */
5431 tcp_for_write_queue_from(data, sk) {
5432 if (data == tcp_send_head(sk) ||
5433 __tcp_retransmit_skb(sk, data))
5434 break;
5435 }
5436 tcp_rearm_rto(sk);
5437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5438 return true;
5439 }
5440 tp->syn_data_acked = tp->syn_data;
5441 if (tp->syn_data_acked)
5442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5443 return false;
5444 }
5445
5446 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5447 const struct tcphdr *th, unsigned int len)
5448 {
5449 struct inet_connection_sock *icsk = inet_csk(sk);
5450 struct tcp_sock *tp = tcp_sk(sk);
5451 struct tcp_fastopen_cookie foc = { .len = -1 };
5452 int saved_clamp = tp->rx_opt.mss_clamp;
5453
5454 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5455 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5456 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5457
5458 if (th->ack) {
5459 /* rfc793:
5460 * "If the state is SYN-SENT then
5461 * first check the ACK bit
5462 * If the ACK bit is set
5463 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5464 * a reset (unless the RST bit is set, if so drop
5465 * the segment and return)"
5466 */
5467 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5468 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5469 goto reset_and_undo;
5470
5471 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5472 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5473 tcp_time_stamp)) {
5474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5475 goto reset_and_undo;
5476 }
5477
5478 /* Now ACK is acceptable.
5479 *
5480 * "If the RST bit is set
5481 * If the ACK was acceptable then signal the user "error:
5482 * connection reset", drop the segment, enter CLOSED state,
5483 * delete TCB, and return."
5484 */
5485
5486 if (th->rst) {
5487 tcp_reset(sk);
5488 goto discard;
5489 }
5490
5491 /* rfc793:
5492 * "fifth, if neither of the SYN or RST bits is set then
5493 * drop the segment and return."
5494 *
5495 * See note below!
5496 * --ANK(990513)
5497 */
5498 if (!th->syn)
5499 goto discard_and_undo;
5500
5501 /* rfc793:
5502 * "If the SYN bit is on ...
5503 * are acceptable then ...
5504 * (our SYN has been ACKed), change the connection
5505 * state to ESTABLISHED..."
5506 */
5507
5508 tcp_ecn_rcv_synack(tp, th);
5509
5510 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5511 tcp_ack(sk, skb, FLAG_SLOWPATH);
5512
5513 /* Ok.. it's good. Set up sequence numbers and
5514 * move to established.
5515 */
5516 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5517 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5518
5519 /* RFC1323: The window in SYN & SYN/ACK segments is
5520 * never scaled.
5521 */
5522 tp->snd_wnd = ntohs(th->window);
5523
5524 if (!tp->rx_opt.wscale_ok) {
5525 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5526 tp->window_clamp = min(tp->window_clamp, 65535U);
5527 }
5528
5529 if (tp->rx_opt.saw_tstamp) {
5530 tp->rx_opt.tstamp_ok = 1;
5531 tp->tcp_header_len =
5532 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5533 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5534 tcp_store_ts_recent(tp);
5535 } else {
5536 tp->tcp_header_len = sizeof(struct tcphdr);
5537 }
5538
5539 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5540 tcp_enable_fack(tp);
5541
5542 tcp_mtup_init(sk);
5543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5544 tcp_initialize_rcv_mss(sk);
5545
5546 /* Remember, tcp_poll() does not lock socket!
5547 * Change state from SYN-SENT only after copied_seq
5548 * is initialized. */
5549 tp->copied_seq = tp->rcv_nxt;
5550
5551 smp_mb();
5552
5553 tcp_finish_connect(sk, skb);
5554
5555 if ((tp->syn_fastopen || tp->syn_data) &&
5556 tcp_rcv_fastopen_synack(sk, skb, &foc))
5557 return -1;
5558
5559 if (sk->sk_write_pending ||
5560 icsk->icsk_accept_queue.rskq_defer_accept ||
5561 icsk->icsk_ack.pingpong) {
5562 /* Save one ACK. Data will be ready after
5563 * several ticks, if write_pending is set.
5564 *
5565 * It may be deleted, but with this feature tcpdumps
5566 * look so _wonderfully_ clever, that I was not able
5567 * to stand against the temptation 8) --ANK
5568 */
5569 inet_csk_schedule_ack(sk);
5570 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5571 tcp_enter_quickack_mode(sk);
5572 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5573 TCP_DELACK_MAX, TCP_RTO_MAX);
5574
5575 discard:
5576 __kfree_skb(skb);
5577 return 0;
5578 } else {
5579 tcp_send_ack(sk);
5580 }
5581 return -1;
5582 }
5583
5584 /* No ACK in the segment */
5585
5586 if (th->rst) {
5587 /* rfc793:
5588 * "If the RST bit is set
5589 *
5590 * Otherwise (no ACK) drop the segment and return."
5591 */
5592
5593 goto discard_and_undo;
5594 }
5595
5596 /* PAWS check. */
5597 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5598 tcp_paws_reject(&tp->rx_opt, 0))
5599 goto discard_and_undo;
5600
5601 if (th->syn) {
5602 /* We see SYN without ACK. It is attempt of
5603 * simultaneous connect with crossed SYNs.
5604 * Particularly, it can be connect to self.
5605 */
5606 tcp_set_state(sk, TCP_SYN_RECV);
5607
5608 if (tp->rx_opt.saw_tstamp) {
5609 tp->rx_opt.tstamp_ok = 1;
5610 tcp_store_ts_recent(tp);
5611 tp->tcp_header_len =
5612 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5613 } else {
5614 tp->tcp_header_len = sizeof(struct tcphdr);
5615 }
5616
5617 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5618 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5619
5620 /* RFC1323: The window in SYN & SYN/ACK segments is
5621 * never scaled.
5622 */
5623 tp->snd_wnd = ntohs(th->window);
5624 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5625 tp->max_window = tp->snd_wnd;
5626
5627 tcp_ecn_rcv_syn(tp, th);
5628
5629 tcp_mtup_init(sk);
5630 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5631 tcp_initialize_rcv_mss(sk);
5632
5633 tcp_send_synack(sk);
5634 #if 0
5635 /* Note, we could accept data and URG from this segment.
5636 * There are no obstacles to make this (except that we must
5637 * either change tcp_recvmsg() to prevent it from returning data
5638 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5639 *
5640 * However, if we ignore data in ACKless segments sometimes,
5641 * we have no reasons to accept it sometimes.
5642 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5643 * is not flawless. So, discard packet for sanity.
5644 * Uncomment this return to process the data.
5645 */
5646 return -1;
5647 #else
5648 goto discard;
5649 #endif
5650 }
5651 /* "fifth, if neither of the SYN or RST bits is set then
5652 * drop the segment and return."
5653 */
5654
5655 discard_and_undo:
5656 tcp_clear_options(&tp->rx_opt);
5657 tp->rx_opt.mss_clamp = saved_clamp;
5658 goto discard;
5659
5660 reset_and_undo:
5661 tcp_clear_options(&tp->rx_opt);
5662 tp->rx_opt.mss_clamp = saved_clamp;
5663 return 1;
5664 }
5665
5666 /*
5667 * This function implements the receiving procedure of RFC 793 for
5668 * all states except ESTABLISHED and TIME_WAIT.
5669 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5670 * address independent.
5671 */
5672
5673 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5674 const struct tcphdr *th, unsigned int len)
5675 {
5676 struct tcp_sock *tp = tcp_sk(sk);
5677 struct inet_connection_sock *icsk = inet_csk(sk);
5678 struct request_sock *req;
5679 int queued = 0;
5680 bool acceptable;
5681 u32 synack_stamp;
5682
5683 tp->rx_opt.saw_tstamp = 0;
5684
5685 switch (sk->sk_state) {
5686 case TCP_CLOSE:
5687 goto discard;
5688
5689 case TCP_LISTEN:
5690 if (th->ack)
5691 return 1;
5692
5693 if (th->rst)
5694 goto discard;
5695
5696 if (th->syn) {
5697 if (th->fin)
5698 goto discard;
5699 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5700 return 1;
5701
5702 /* Now we have several options: In theory there is
5703 * nothing else in the frame. KA9Q has an option to
5704 * send data with the syn, BSD accepts data with the
5705 * syn up to the [to be] advertised window and
5706 * Solaris 2.1 gives you a protocol error. For now
5707 * we just ignore it, that fits the spec precisely
5708 * and avoids incompatibilities. It would be nice in
5709 * future to drop through and process the data.
5710 *
5711 * Now that TTCP is starting to be used we ought to
5712 * queue this data.
5713 * But, this leaves one open to an easy denial of
5714 * service attack, and SYN cookies can't defend
5715 * against this problem. So, we drop the data
5716 * in the interest of security over speed unless
5717 * it's still in use.
5718 */
5719 kfree_skb(skb);
5720 return 0;
5721 }
5722 goto discard;
5723
5724 case TCP_SYN_SENT:
5725 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5726 if (queued >= 0)
5727 return queued;
5728
5729 /* Do step6 onward by hand. */
5730 tcp_urg(sk, skb, th);
5731 __kfree_skb(skb);
5732 tcp_data_snd_check(sk);
5733 return 0;
5734 }
5735
5736 req = tp->fastopen_rsk;
5737 if (req) {
5738 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5739 sk->sk_state != TCP_FIN_WAIT1);
5740
5741 if (!tcp_check_req(sk, skb, req, true))
5742 goto discard;
5743 }
5744
5745 if (!th->ack && !th->rst && !th->syn)
5746 goto discard;
5747
5748 if (!tcp_validate_incoming(sk, skb, th, 0))
5749 return 0;
5750
5751 /* step 5: check the ACK field */
5752 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5753 FLAG_UPDATE_TS_RECENT) > 0;
5754
5755 switch (sk->sk_state) {
5756 case TCP_SYN_RECV:
5757 if (!acceptable)
5758 return 1;
5759
5760 /* Once we leave TCP_SYN_RECV, we no longer need req
5761 * so release it.
5762 */
5763 if (req) {
5764 synack_stamp = tcp_rsk(req)->snt_synack;
5765 tp->total_retrans = req->num_retrans;
5766 reqsk_fastopen_remove(sk, req, false);
5767 } else {
5768 synack_stamp = tp->lsndtime;
5769 /* Make sure socket is routed, for correct metrics. */
5770 icsk->icsk_af_ops->rebuild_header(sk);
5771 tcp_init_congestion_control(sk);
5772
5773 tcp_mtup_init(sk);
5774 tp->copied_seq = tp->rcv_nxt;
5775 tcp_init_buffer_space(sk);
5776 }
5777 smp_mb();
5778 tcp_set_state(sk, TCP_ESTABLISHED);
5779 sk->sk_state_change(sk);
5780
5781 /* Note, that this wakeup is only for marginal crossed SYN case.
5782 * Passively open sockets are not waked up, because
5783 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5784 */
5785 if (sk->sk_socket)
5786 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5787
5788 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5789 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5790 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5791 tcp_synack_rtt_meas(sk, synack_stamp);
5792
5793 if (tp->rx_opt.tstamp_ok)
5794 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5795
5796 if (req) {
5797 /* Re-arm the timer because data may have been sent out.
5798 * This is similar to the regular data transmission case
5799 * when new data has just been ack'ed.
5800 *
5801 * (TFO) - we could try to be more aggressive and
5802 * retransmitting any data sooner based on when they
5803 * are sent out.
5804 */
5805 tcp_rearm_rto(sk);
5806 } else
5807 tcp_init_metrics(sk);
5808
5809 tcp_update_pacing_rate(sk);
5810
5811 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5812 tp->lsndtime = tcp_time_stamp;
5813
5814 tcp_initialize_rcv_mss(sk);
5815 tcp_fast_path_on(tp);
5816 break;
5817
5818 case TCP_FIN_WAIT1: {
5819 struct dst_entry *dst;
5820 int tmo;
5821
5822 /* If we enter the TCP_FIN_WAIT1 state and we are a
5823 * Fast Open socket and this is the first acceptable
5824 * ACK we have received, this would have acknowledged
5825 * our SYNACK so stop the SYNACK timer.
5826 */
5827 if (req) {
5828 /* Return RST if ack_seq is invalid.
5829 * Note that RFC793 only says to generate a
5830 * DUPACK for it but for TCP Fast Open it seems
5831 * better to treat this case like TCP_SYN_RECV
5832 * above.
5833 */
5834 if (!acceptable)
5835 return 1;
5836 /* We no longer need the request sock. */
5837 reqsk_fastopen_remove(sk, req, false);
5838 tcp_rearm_rto(sk);
5839 }
5840 if (tp->snd_una != tp->write_seq)
5841 break;
5842
5843 tcp_set_state(sk, TCP_FIN_WAIT2);
5844 sk->sk_shutdown |= SEND_SHUTDOWN;
5845
5846 dst = __sk_dst_get(sk);
5847 if (dst)
5848 dst_confirm(dst);
5849
5850 if (!sock_flag(sk, SOCK_DEAD)) {
5851 /* Wake up lingering close() */
5852 sk->sk_state_change(sk);
5853 break;
5854 }
5855
5856 if (tp->linger2 < 0 ||
5857 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5858 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5859 tcp_done(sk);
5860 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5861 return 1;
5862 }
5863
5864 tmo = tcp_fin_time(sk);
5865 if (tmo > TCP_TIMEWAIT_LEN) {
5866 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5867 } else if (th->fin || sock_owned_by_user(sk)) {
5868 /* Bad case. We could lose such FIN otherwise.
5869 * It is not a big problem, but it looks confusing
5870 * and not so rare event. We still can lose it now,
5871 * if it spins in bh_lock_sock(), but it is really
5872 * marginal case.
5873 */
5874 inet_csk_reset_keepalive_timer(sk, tmo);
5875 } else {
5876 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5877 goto discard;
5878 }
5879 break;
5880 }
5881
5882 case TCP_CLOSING:
5883 if (tp->snd_una == tp->write_seq) {
5884 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5885 goto discard;
5886 }
5887 break;
5888
5889 case TCP_LAST_ACK:
5890 if (tp->snd_una == tp->write_seq) {
5891 tcp_update_metrics(sk);
5892 tcp_done(sk);
5893 goto discard;
5894 }
5895 break;
5896 }
5897
5898 /* step 6: check the URG bit */
5899 tcp_urg(sk, skb, th);
5900
5901 /* step 7: process the segment text */
5902 switch (sk->sk_state) {
5903 case TCP_CLOSE_WAIT:
5904 case TCP_CLOSING:
5905 case TCP_LAST_ACK:
5906 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5907 break;
5908 case TCP_FIN_WAIT1:
5909 case TCP_FIN_WAIT2:
5910 /* RFC 793 says to queue data in these states,
5911 * RFC 1122 says we MUST send a reset.
5912 * BSD 4.4 also does reset.
5913 */
5914 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5915 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5916 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5917 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5918 tcp_reset(sk);
5919 return 1;
5920 }
5921 }
5922 /* Fall through */
5923 case TCP_ESTABLISHED:
5924 tcp_data_queue(sk, skb);
5925 queued = 1;
5926 break;
5927 }
5928
5929 /* tcp_data could move socket to TIME-WAIT */
5930 if (sk->sk_state != TCP_CLOSE) {
5931 tcp_data_snd_check(sk);
5932 tcp_ack_snd_check(sk);
5933 }
5934
5935 if (!queued) {
5936 discard:
5937 __kfree_skb(skb);
5938 }
5939 return 0;
5940 }
5941 EXPORT_SYMBOL(tcp_rcv_state_process);
5942
5943 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5944 {
5945 struct inet_request_sock *ireq = inet_rsk(req);
5946
5947 if (family == AF_INET)
5948 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5949 &ireq->ir_rmt_addr, port);
5950 #if IS_ENABLED(CONFIG_IPV6)
5951 else if (family == AF_INET6)
5952 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5953 &ireq->ir_v6_rmt_addr, port);
5954 #endif
5955 }
5956
5957 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5958 *
5959 * If we receive a SYN packet with these bits set, it means a
5960 * network is playing bad games with TOS bits. In order to
5961 * avoid possible false congestion notifications, we disable
5962 * TCP ECN negotiation.
5963 *
5964 * Exception: tcp_ca wants ECN. This is required for DCTCP
5965 * congestion control: Linux DCTCP asserts ECT on all packets,
5966 * including SYN, which is most optimal solution; however,
5967 * others, such as FreeBSD do not.
5968 */
5969 static void tcp_ecn_create_request(struct request_sock *req,
5970 const struct sk_buff *skb,
5971 const struct sock *listen_sk,
5972 const struct dst_entry *dst)
5973 {
5974 const struct tcphdr *th = tcp_hdr(skb);
5975 const struct net *net = sock_net(listen_sk);
5976 bool th_ecn = th->ece && th->cwr;
5977 bool ect, ecn_ok;
5978
5979 if (!th_ecn)
5980 return;
5981
5982 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5983 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5984
5985 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5986 inet_rsk(req)->ecn_ok = 1;
5987 }
5988
5989 static void tcp_openreq_init(struct request_sock *req,
5990 const struct tcp_options_received *rx_opt,
5991 struct sk_buff *skb, const struct sock *sk)
5992 {
5993 struct inet_request_sock *ireq = inet_rsk(req);
5994
5995 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
5996 req->cookie_ts = 0;
5997 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
5998 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5999 tcp_rsk(req)->snt_synack = tcp_time_stamp;
6000 tcp_rsk(req)->last_oow_ack_time = 0;
6001 req->mss = rx_opt->mss_clamp;
6002 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6003 ireq->tstamp_ok = rx_opt->tstamp_ok;
6004 ireq->sack_ok = rx_opt->sack_ok;
6005 ireq->snd_wscale = rx_opt->snd_wscale;
6006 ireq->wscale_ok = rx_opt->wscale_ok;
6007 ireq->acked = 0;
6008 ireq->ecn_ok = 0;
6009 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6010 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6011 ireq->ir_mark = inet_request_mark(sk, skb);
6012 }
6013
6014 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6015 struct sock *sk_listener)
6016 {
6017 struct request_sock *req = reqsk_alloc(ops, sk_listener);
6018
6019 if (req) {
6020 struct inet_request_sock *ireq = inet_rsk(req);
6021
6022 kmemcheck_annotate_bitfield(ireq, flags);
6023 ireq->opt = NULL;
6024 atomic64_set(&ireq->ir_cookie, 0);
6025 ireq->ireq_state = TCP_NEW_SYN_RECV;
6026 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6027 ireq->ireq_family = sk_listener->sk_family;
6028 }
6029
6030 return req;
6031 }
6032 EXPORT_SYMBOL(inet_reqsk_alloc);
6033
6034 /*
6035 * Return true if a syncookie should be sent
6036 */
6037 static bool tcp_syn_flood_action(struct sock *sk,
6038 const struct sk_buff *skb,
6039 const char *proto)
6040 {
6041 const char *msg = "Dropping request";
6042 bool want_cookie = false;
6043 struct listen_sock *lopt;
6044
6045 #ifdef CONFIG_SYN_COOKIES
6046 if (sysctl_tcp_syncookies) {
6047 msg = "Sending cookies";
6048 want_cookie = true;
6049 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6050 } else
6051 #endif
6052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6053
6054 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6055 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6056 lopt->synflood_warned = 1;
6057 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6058 proto, ntohs(tcp_hdr(skb)->dest), msg);
6059 }
6060 return want_cookie;
6061 }
6062
6063 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6064 const struct tcp_request_sock_ops *af_ops,
6065 struct sock *sk, struct sk_buff *skb)
6066 {
6067 struct tcp_options_received tmp_opt;
6068 struct request_sock *req;
6069 struct tcp_sock *tp = tcp_sk(sk);
6070 struct dst_entry *dst = NULL;
6071 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6072 bool want_cookie = false, fastopen;
6073 struct flowi fl;
6074 struct tcp_fastopen_cookie foc = { .len = -1 };
6075 int err;
6076
6077
6078 /* TW buckets are converted to open requests without
6079 * limitations, they conserve resources and peer is
6080 * evidently real one.
6081 */
6082 if ((sysctl_tcp_syncookies == 2 ||
6083 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6084 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6085 if (!want_cookie)
6086 goto drop;
6087 }
6088
6089
6090 /* Accept backlog is full. If we have already queued enough
6091 * of warm entries in syn queue, drop request. It is better than
6092 * clogging syn queue with openreqs with exponentially increasing
6093 * timeout.
6094 */
6095 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6096 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6097 goto drop;
6098 }
6099
6100 req = inet_reqsk_alloc(rsk_ops, sk);
6101 if (!req)
6102 goto drop;
6103
6104 tcp_rsk(req)->af_specific = af_ops;
6105
6106 tcp_clear_options(&tmp_opt);
6107 tmp_opt.mss_clamp = af_ops->mss_clamp;
6108 tmp_opt.user_mss = tp->rx_opt.user_mss;
6109 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6110
6111 if (want_cookie && !tmp_opt.saw_tstamp)
6112 tcp_clear_options(&tmp_opt);
6113
6114 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6115 tcp_openreq_init(req, &tmp_opt, skb, sk);
6116
6117 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6118 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6119
6120 af_ops->init_req(req, sk, skb);
6121
6122 if (security_inet_conn_request(sk, skb, req))
6123 goto drop_and_free;
6124
6125 if (!want_cookie && !isn) {
6126 /* VJ's idea. We save last timestamp seen
6127 * from the destination in peer table, when entering
6128 * state TIME-WAIT, and check against it before
6129 * accepting new connection request.
6130 *
6131 * If "isn" is not zero, this request hit alive
6132 * timewait bucket, so that all the necessary checks
6133 * are made in the function processing timewait state.
6134 */
6135 if (tcp_death_row.sysctl_tw_recycle) {
6136 bool strict;
6137
6138 dst = af_ops->route_req(sk, &fl, req, &strict);
6139
6140 if (dst && strict &&
6141 !tcp_peer_is_proven(req, dst, true,
6142 tmp_opt.saw_tstamp)) {
6143 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6144 goto drop_and_release;
6145 }
6146 }
6147 /* Kill the following clause, if you dislike this way. */
6148 else if (!sysctl_tcp_syncookies &&
6149 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6150 (sysctl_max_syn_backlog >> 2)) &&
6151 !tcp_peer_is_proven(req, dst, false,
6152 tmp_opt.saw_tstamp)) {
6153 /* Without syncookies last quarter of
6154 * backlog is filled with destinations,
6155 * proven to be alive.
6156 * It means that we continue to communicate
6157 * to destinations, already remembered
6158 * to the moment of synflood.
6159 */
6160 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6161 rsk_ops->family);
6162 goto drop_and_release;
6163 }
6164
6165 isn = af_ops->init_seq(skb);
6166 }
6167 if (!dst) {
6168 dst = af_ops->route_req(sk, &fl, req, NULL);
6169 if (!dst)
6170 goto drop_and_free;
6171 }
6172
6173 tcp_ecn_create_request(req, skb, sk, dst);
6174
6175 if (want_cookie) {
6176 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6177 req->cookie_ts = tmp_opt.tstamp_ok;
6178 if (!tmp_opt.tstamp_ok)
6179 inet_rsk(req)->ecn_ok = 0;
6180 }
6181
6182 tcp_rsk(req)->snt_isn = isn;
6183 tcp_openreq_init_rwin(req, sk, dst);
6184 fastopen = !want_cookie &&
6185 tcp_try_fastopen(sk, skb, req, &foc, dst);
6186 err = af_ops->send_synack(sk, dst, &fl, req,
6187 skb_get_queue_mapping(skb), &foc);
6188 if (!fastopen) {
6189 if (err || want_cookie)
6190 goto drop_and_free;
6191
6192 tcp_rsk(req)->tfo_listener = false;
6193 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6194 }
6195
6196 return 0;
6197
6198 drop_and_release:
6199 dst_release(dst);
6200 drop_and_free:
6201 reqsk_free(req);
6202 drop:
6203 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6204 return 0;
6205 }
6206 EXPORT_SYMBOL(tcp_conn_request);