]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
[TCP] FRTO: Plug potential LOST-bit leak
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for D-SACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int flag = 0;
1123 int cnt = 0;
1124 u32 new_low_seq = tp->snd_nxt;
1125
1126 tcp_for_write_queue(skb, sk) {
1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128
1129 if (skb == tcp_send_head(sk))
1130 break;
1131 if (cnt == tp->retrans_out)
1132 break;
1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 continue;
1135
1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 continue;
1138
1139 if (after(received_upto, ack_seq) &&
1140 (tcp_is_fack(tp) ||
1141 !before(received_upto,
1142 ack_seq + tp->reordering * tp->mss_cache))) {
1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 tp->retrans_out -= tcp_skb_pcount(skb);
1145
1146 /* clear lost hint */
1147 tp->retransmit_skb_hint = NULL;
1148
1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 }
1155 } else {
1156 if (before(ack_seq, new_low_seq))
1157 new_low_seq = ack_seq;
1158 cnt += tcp_skb_pcount(skb);
1159 }
1160 }
1161
1162 if (tp->retrans_out)
1163 tp->lost_retrans_low = new_low_seq;
1164
1165 return flag;
1166 }
1167
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 struct tcp_sack_block_wire *sp, int num_sacks,
1170 u32 prior_snd_una)
1171 {
1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 int dup_sack = 0;
1175
1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 dup_sack = 1;
1178 tcp_dsack_seen(tp);
1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 } else if (num_sacks > 1) {
1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183
1184 if (!after(end_seq_0, end_seq_1) &&
1185 !before(start_seq_0, start_seq_1)) {
1186 dup_sack = 1;
1187 tcp_dsack_seen(tp);
1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189 }
1190 }
1191
1192 /* D-SACK for already forgotten data... Do dumb counting. */
1193 if (dup_sack &&
1194 !after(end_seq_0, prior_snd_una) &&
1195 after(end_seq_0, tp->undo_marker))
1196 tp->undo_retrans--;
1197
1198 return dup_sack;
1199 }
1200
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1206 */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 u32 start_seq, u32 end_seq)
1209 {
1210 int in_sack, err;
1211 unsigned int pkt_len;
1212
1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221 if (!in_sack)
1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 else
1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 if (err < 0)
1227 return err;
1228 }
1229
1230 return in_sack;
1231 }
1232
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236 const struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 TCP_SKB_CB(ack_skb)->sacked);
1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 struct sk_buff *cached_skb;
1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 int reord = tp->packets_out;
1244 int prior_fackets;
1245 u32 highest_sack_end_seq = tp->lost_retrans_low;
1246 int flag = 0;
1247 int found_dup_sack = 0;
1248 int cached_fack_count;
1249 int i;
1250 int first_sack_index;
1251 int force_one_sack;
1252
1253 if (!tp->sacked_out) {
1254 if (WARN_ON(tp->fackets_out))
1255 tp->fackets_out = 0;
1256 tp->highest_sack = tp->snd_una;
1257 }
1258 prior_fackets = tp->fackets_out;
1259
1260 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261 num_sacks, prior_snd_una);
1262 if (found_dup_sack)
1263 flag |= FLAG_DSACKING_ACK;
1264
1265 /* Eliminate too old ACKs, but take into
1266 * account more or less fresh ones, they can
1267 * contain valid SACK info.
1268 */
1269 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270 return 0;
1271
1272 /* SACK fastpath:
1273 * if the only SACK change is the increase of the end_seq of
1274 * the first block then only apply that SACK block
1275 * and use retrans queue hinting otherwise slowpath */
1276 force_one_sack = 1;
1277 for (i = 0; i < num_sacks; i++) {
1278 __be32 start_seq = sp[i].start_seq;
1279 __be32 end_seq = sp[i].end_seq;
1280
1281 if (i == 0) {
1282 if (tp->recv_sack_cache[i].start_seq != start_seq)
1283 force_one_sack = 0;
1284 } else {
1285 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1286 (tp->recv_sack_cache[i].end_seq != end_seq))
1287 force_one_sack = 0;
1288 }
1289 tp->recv_sack_cache[i].start_seq = start_seq;
1290 tp->recv_sack_cache[i].end_seq = end_seq;
1291 }
1292 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1293 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1294 tp->recv_sack_cache[i].start_seq = 0;
1295 tp->recv_sack_cache[i].end_seq = 0;
1296 }
1297
1298 first_sack_index = 0;
1299 if (force_one_sack)
1300 num_sacks = 1;
1301 else {
1302 int j;
1303 tp->fastpath_skb_hint = NULL;
1304
1305 /* order SACK blocks to allow in order walk of the retrans queue */
1306 for (i = num_sacks-1; i > 0; i--) {
1307 for (j = 0; j < i; j++){
1308 if (after(ntohl(sp[j].start_seq),
1309 ntohl(sp[j+1].start_seq))){
1310 struct tcp_sack_block_wire tmp;
1311
1312 tmp = sp[j];
1313 sp[j] = sp[j+1];
1314 sp[j+1] = tmp;
1315
1316 /* Track where the first SACK block goes to */
1317 if (j == first_sack_index)
1318 first_sack_index = j+1;
1319 }
1320
1321 }
1322 }
1323 }
1324
1325 /* Use SACK fastpath hint if valid */
1326 cached_skb = tp->fastpath_skb_hint;
1327 cached_fack_count = tp->fastpath_cnt_hint;
1328 if (!cached_skb) {
1329 cached_skb = tcp_write_queue_head(sk);
1330 cached_fack_count = 0;
1331 }
1332
1333 for (i = 0; i < num_sacks; i++) {
1334 struct sk_buff *skb;
1335 __u32 start_seq = ntohl(sp->start_seq);
1336 __u32 end_seq = ntohl(sp->end_seq);
1337 int fack_count;
1338 int dup_sack = (found_dup_sack && (i == first_sack_index));
1339 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1340
1341 sp++;
1342
1343 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1344 if (dup_sack) {
1345 if (!tp->undo_marker)
1346 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1347 else
1348 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1349 } else {
1350 /* Don't count olds caused by ACK reordering */
1351 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1352 !after(end_seq, tp->snd_una))
1353 continue;
1354 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355 }
1356 continue;
1357 }
1358
1359 skb = cached_skb;
1360 fack_count = cached_fack_count;
1361
1362 /* Event "B" in the comment above. */
1363 if (after(end_seq, tp->high_seq))
1364 flag |= FLAG_DATA_LOST;
1365
1366 tcp_for_write_queue_from(skb, sk) {
1367 int in_sack = 0;
1368 u8 sacked;
1369
1370 if (skb == tcp_send_head(sk))
1371 break;
1372
1373 cached_skb = skb;
1374 cached_fack_count = fack_count;
1375 if (i == first_sack_index) {
1376 tp->fastpath_skb_hint = skb;
1377 tp->fastpath_cnt_hint = fack_count;
1378 }
1379
1380 /* The retransmission queue is always in order, so
1381 * we can short-circuit the walk early.
1382 */
1383 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1384 break;
1385
1386 dup_sack = (found_dup_sack && (i == first_sack_index));
1387
1388 /* Due to sorting DSACK may reside within this SACK block! */
1389 if (next_dup) {
1390 u32 dup_start = ntohl(sp->start_seq);
1391 u32 dup_end = ntohl(sp->end_seq);
1392
1393 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1394 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1395 if (in_sack > 0)
1396 dup_sack = 1;
1397 }
1398 }
1399
1400 /* DSACK info lost if out-of-mem, try SACK still */
1401 if (in_sack <= 0)
1402 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1403 if (unlikely(in_sack < 0))
1404 break;
1405
1406 sacked = TCP_SKB_CB(skb)->sacked;
1407
1408 /* Account D-SACK for retransmitted packet. */
1409 if ((dup_sack && in_sack) &&
1410 (sacked & TCPCB_RETRANS) &&
1411 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1412 tp->undo_retrans--;
1413
1414 /* The frame is ACKed. */
1415 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1416 if (sacked&TCPCB_RETRANS) {
1417 if ((dup_sack && in_sack) &&
1418 (sacked&TCPCB_SACKED_ACKED))
1419 reord = min(fack_count, reord);
1420 }
1421
1422 /* Nothing to do; acked frame is about to be dropped. */
1423 fack_count += tcp_skb_pcount(skb);
1424 continue;
1425 }
1426
1427 if (!in_sack) {
1428 fack_count += tcp_skb_pcount(skb);
1429 continue;
1430 }
1431
1432 if (!(sacked&TCPCB_SACKED_ACKED)) {
1433 if (sacked & TCPCB_SACKED_RETRANS) {
1434 /* If the segment is not tagged as lost,
1435 * we do not clear RETRANS, believing
1436 * that retransmission is still in flight.
1437 */
1438 if (sacked & TCPCB_LOST) {
1439 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1440 tp->lost_out -= tcp_skb_pcount(skb);
1441 tp->retrans_out -= tcp_skb_pcount(skb);
1442
1443 /* clear lost hint */
1444 tp->retransmit_skb_hint = NULL;
1445 }
1446 } else {
1447 if (!(sacked & TCPCB_RETRANS)) {
1448 /* New sack for not retransmitted frame,
1449 * which was in hole. It is reordering.
1450 */
1451 if (fack_count < prior_fackets)
1452 reord = min(fack_count, reord);
1453
1454 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1455 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1456 flag |= FLAG_ONLY_ORIG_SACKED;
1457 }
1458
1459 if (sacked & TCPCB_LOST) {
1460 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1461 tp->lost_out -= tcp_skb_pcount(skb);
1462
1463 /* clear lost hint */
1464 tp->retransmit_skb_hint = NULL;
1465 }
1466 }
1467
1468 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1469 flag |= FLAG_DATA_SACKED;
1470 tp->sacked_out += tcp_skb_pcount(skb);
1471
1472 fack_count += tcp_skb_pcount(skb);
1473 if (fack_count > tp->fackets_out)
1474 tp->fackets_out = fack_count;
1475
1476 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1477 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1478 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1479 }
1480 } else {
1481 if (dup_sack && (sacked&TCPCB_RETRANS))
1482 reord = min(fack_count, reord);
1483
1484 fack_count += tcp_skb_pcount(skb);
1485 }
1486
1487 /* D-SACK. We can detect redundant retransmission
1488 * in S|R and plain R frames and clear it.
1489 * undo_retrans is decreased above, L|R frames
1490 * are accounted above as well.
1491 */
1492 if (dup_sack &&
1493 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1494 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1495 tp->retrans_out -= tcp_skb_pcount(skb);
1496 tp->retransmit_skb_hint = NULL;
1497 }
1498 }
1499
1500 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1501 * due to in-order walk
1502 */
1503 if (after(end_seq, tp->frto_highmark))
1504 flag &= ~FLAG_ONLY_ORIG_SACKED;
1505 }
1506
1507 if (tp->retrans_out &&
1508 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1509 icsk->icsk_ca_state == TCP_CA_Recovery)
1510 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1511
1512 tcp_verify_left_out(tp);
1513
1514 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1515 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1516 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1517
1518 #if FASTRETRANS_DEBUG > 0
1519 BUG_TRAP((int)tp->sacked_out >= 0);
1520 BUG_TRAP((int)tp->lost_out >= 0);
1521 BUG_TRAP((int)tp->retrans_out >= 0);
1522 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1523 #endif
1524 return flag;
1525 }
1526
1527 /* If we receive more dupacks than we expected counting segments
1528 * in assumption of absent reordering, interpret this as reordering.
1529 * The only another reason could be bug in receiver TCP.
1530 */
1531 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1532 {
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 u32 holes;
1535
1536 holes = max(tp->lost_out, 1U);
1537 holes = min(holes, tp->packets_out);
1538
1539 if ((tp->sacked_out + holes) > tp->packets_out) {
1540 tp->sacked_out = tp->packets_out - holes;
1541 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1542 }
1543 }
1544
1545 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1546
1547 static void tcp_add_reno_sack(struct sock *sk)
1548 {
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 tp->sacked_out++;
1551 tcp_check_reno_reordering(sk, 0);
1552 tcp_verify_left_out(tp);
1553 }
1554
1555 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1556
1557 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1558 {
1559 struct tcp_sock *tp = tcp_sk(sk);
1560
1561 if (acked > 0) {
1562 /* One ACK acked hole. The rest eat duplicate ACKs. */
1563 if (acked-1 >= tp->sacked_out)
1564 tp->sacked_out = 0;
1565 else
1566 tp->sacked_out -= acked-1;
1567 }
1568 tcp_check_reno_reordering(sk, acked);
1569 tcp_verify_left_out(tp);
1570 }
1571
1572 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1573 {
1574 tp->sacked_out = 0;
1575 }
1576
1577 /* F-RTO can only be used if TCP has never retransmitted anything other than
1578 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1579 */
1580 int tcp_use_frto(struct sock *sk)
1581 {
1582 const struct tcp_sock *tp = tcp_sk(sk);
1583 struct sk_buff *skb;
1584
1585 if (!sysctl_tcp_frto)
1586 return 0;
1587
1588 if (IsSackFrto())
1589 return 1;
1590
1591 /* Avoid expensive walking of rexmit queue if possible */
1592 if (tp->retrans_out > 1)
1593 return 0;
1594
1595 skb = tcp_write_queue_head(sk);
1596 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1597 tcp_for_write_queue_from(skb, sk) {
1598 if (skb == tcp_send_head(sk))
1599 break;
1600 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1601 return 0;
1602 /* Short-circuit when first non-SACKed skb has been checked */
1603 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1604 break;
1605 }
1606 return 1;
1607 }
1608
1609 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1610 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1611 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1612 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1613 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1614 * bits are handled if the Loss state is really to be entered (in
1615 * tcp_enter_frto_loss).
1616 *
1617 * Do like tcp_enter_loss() would; when RTO expires the second time it
1618 * does:
1619 * "Reduce ssthresh if it has not yet been made inside this window."
1620 */
1621 void tcp_enter_frto(struct sock *sk)
1622 {
1623 const struct inet_connection_sock *icsk = inet_csk(sk);
1624 struct tcp_sock *tp = tcp_sk(sk);
1625 struct sk_buff *skb;
1626
1627 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1628 tp->snd_una == tp->high_seq ||
1629 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1630 !icsk->icsk_retransmits)) {
1631 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1632 /* Our state is too optimistic in ssthresh() call because cwnd
1633 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1634 * recovery has not yet completed. Pattern would be this: RTO,
1635 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1636 * up here twice).
1637 * RFC4138 should be more specific on what to do, even though
1638 * RTO is quite unlikely to occur after the first Cumulative ACK
1639 * due to back-off and complexity of triggering events ...
1640 */
1641 if (tp->frto_counter) {
1642 u32 stored_cwnd;
1643 stored_cwnd = tp->snd_cwnd;
1644 tp->snd_cwnd = 2;
1645 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1646 tp->snd_cwnd = stored_cwnd;
1647 } else {
1648 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1649 }
1650 /* ... in theory, cong.control module could do "any tricks" in
1651 * ssthresh(), which means that ca_state, lost bits and lost_out
1652 * counter would have to be faked before the call occurs. We
1653 * consider that too expensive, unlikely and hacky, so modules
1654 * using these in ssthresh() must deal these incompatibility
1655 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1656 */
1657 tcp_ca_event(sk, CA_EVENT_FRTO);
1658 }
1659
1660 tp->undo_marker = tp->snd_una;
1661 tp->undo_retrans = 0;
1662
1663 skb = tcp_write_queue_head(sk);
1664 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1665 tp->undo_marker = 0;
1666 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1667 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1668 tp->retrans_out -= tcp_skb_pcount(skb);
1669 }
1670 tcp_verify_left_out(tp);
1671
1672 /* Too bad if TCP was application limited */
1673 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1674
1675 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1676 * The last condition is necessary at least in tp->frto_counter case.
1677 */
1678 if (IsSackFrto() && (tp->frto_counter ||
1679 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1680 after(tp->high_seq, tp->snd_una)) {
1681 tp->frto_highmark = tp->high_seq;
1682 } else {
1683 tp->frto_highmark = tp->snd_nxt;
1684 }
1685 tcp_set_ca_state(sk, TCP_CA_Disorder);
1686 tp->high_seq = tp->snd_nxt;
1687 tp->frto_counter = 1;
1688 }
1689
1690 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1691 * which indicates that we should follow the traditional RTO recovery,
1692 * i.e. mark everything lost and do go-back-N retransmission.
1693 */
1694 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1695 {
1696 struct tcp_sock *tp = tcp_sk(sk);
1697 struct sk_buff *skb;
1698
1699 tp->lost_out = 0;
1700 tp->retrans_out = 0;
1701 if (tcp_is_reno(tp))
1702 tcp_reset_reno_sack(tp);
1703
1704 tcp_for_write_queue(skb, sk) {
1705 if (skb == tcp_send_head(sk))
1706 break;
1707
1708 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1709 /*
1710 * Count the retransmission made on RTO correctly (only when
1711 * waiting for the first ACK and did not get it)...
1712 */
1713 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1714 /* For some reason this R-bit might get cleared? */
1715 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1716 tp->retrans_out += tcp_skb_pcount(skb);
1717 /* ...enter this if branch just for the first segment */
1718 flag |= FLAG_DATA_ACKED;
1719 } else {
1720 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721 tp->undo_marker = 0;
1722 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1723 }
1724
1725 /* Don't lost mark skbs that were fwd transmitted after RTO */
1726 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1727 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1728 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1729 tp->lost_out += tcp_skb_pcount(skb);
1730 }
1731 }
1732 tcp_verify_left_out(tp);
1733
1734 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1735 tp->snd_cwnd_cnt = 0;
1736 tp->snd_cwnd_stamp = tcp_time_stamp;
1737 tp->frto_counter = 0;
1738 tp->bytes_acked = 0;
1739
1740 tp->reordering = min_t(unsigned int, tp->reordering,
1741 sysctl_tcp_reordering);
1742 tcp_set_ca_state(sk, TCP_CA_Loss);
1743 tp->high_seq = tp->frto_highmark;
1744 TCP_ECN_queue_cwr(tp);
1745
1746 tcp_clear_retrans_hints_partial(tp);
1747 }
1748
1749 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1750 {
1751 tp->retrans_out = 0;
1752 tp->lost_out = 0;
1753
1754 tp->undo_marker = 0;
1755 tp->undo_retrans = 0;
1756 }
1757
1758 void tcp_clear_retrans(struct tcp_sock *tp)
1759 {
1760 tcp_clear_retrans_partial(tp);
1761
1762 tp->fackets_out = 0;
1763 tp->sacked_out = 0;
1764 }
1765
1766 /* Enter Loss state. If "how" is not zero, forget all SACK information
1767 * and reset tags completely, otherwise preserve SACKs. If receiver
1768 * dropped its ofo queue, we will know this due to reneging detection.
1769 */
1770 void tcp_enter_loss(struct sock *sk, int how)
1771 {
1772 const struct inet_connection_sock *icsk = inet_csk(sk);
1773 struct tcp_sock *tp = tcp_sk(sk);
1774 struct sk_buff *skb;
1775
1776 /* Reduce ssthresh if it has not yet been made inside this window. */
1777 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1778 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1779 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1781 tcp_ca_event(sk, CA_EVENT_LOSS);
1782 }
1783 tp->snd_cwnd = 1;
1784 tp->snd_cwnd_cnt = 0;
1785 tp->snd_cwnd_stamp = tcp_time_stamp;
1786
1787 tp->bytes_acked = 0;
1788 tcp_clear_retrans_partial(tp);
1789
1790 if (tcp_is_reno(tp))
1791 tcp_reset_reno_sack(tp);
1792
1793 if (!how) {
1794 /* Push undo marker, if it was plain RTO and nothing
1795 * was retransmitted. */
1796 tp->undo_marker = tp->snd_una;
1797 tcp_clear_retrans_hints_partial(tp);
1798 } else {
1799 tp->sacked_out = 0;
1800 tp->fackets_out = 0;
1801 tcp_clear_all_retrans_hints(tp);
1802 }
1803
1804 tcp_for_write_queue(skb, sk) {
1805 if (skb == tcp_send_head(sk))
1806 break;
1807
1808 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1809 tp->undo_marker = 0;
1810 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1811 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1812 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1814 tp->lost_out += tcp_skb_pcount(skb);
1815 }
1816 }
1817 tcp_verify_left_out(tp);
1818
1819 tp->reordering = min_t(unsigned int, tp->reordering,
1820 sysctl_tcp_reordering);
1821 tcp_set_ca_state(sk, TCP_CA_Loss);
1822 tp->high_seq = tp->snd_nxt;
1823 TCP_ECN_queue_cwr(tp);
1824 /* Abort F-RTO algorithm if one is in progress */
1825 tp->frto_counter = 0;
1826 }
1827
1828 static int tcp_check_sack_reneging(struct sock *sk)
1829 {
1830 struct sk_buff *skb;
1831
1832 /* If ACK arrived pointing to a remembered SACK,
1833 * it means that our remembered SACKs do not reflect
1834 * real state of receiver i.e.
1835 * receiver _host_ is heavily congested (or buggy).
1836 * Do processing similar to RTO timeout.
1837 */
1838 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1839 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1840 struct inet_connection_sock *icsk = inet_csk(sk);
1841 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1842
1843 tcp_enter_loss(sk, 1);
1844 icsk->icsk_retransmits++;
1845 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1846 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1847 icsk->icsk_rto, TCP_RTO_MAX);
1848 return 1;
1849 }
1850 return 0;
1851 }
1852
1853 static inline int tcp_fackets_out(struct tcp_sock *tp)
1854 {
1855 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1856 }
1857
1858 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1859 {
1860 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1861 }
1862
1863 static inline int tcp_head_timedout(struct sock *sk)
1864 {
1865 struct tcp_sock *tp = tcp_sk(sk);
1866
1867 return tp->packets_out &&
1868 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1869 }
1870
1871 /* Linux NewReno/SACK/FACK/ECN state machine.
1872 * --------------------------------------
1873 *
1874 * "Open" Normal state, no dubious events, fast path.
1875 * "Disorder" In all the respects it is "Open",
1876 * but requires a bit more attention. It is entered when
1877 * we see some SACKs or dupacks. It is split of "Open"
1878 * mainly to move some processing from fast path to slow one.
1879 * "CWR" CWND was reduced due to some Congestion Notification event.
1880 * It can be ECN, ICMP source quench, local device congestion.
1881 * "Recovery" CWND was reduced, we are fast-retransmitting.
1882 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1883 *
1884 * tcp_fastretrans_alert() is entered:
1885 * - each incoming ACK, if state is not "Open"
1886 * - when arrived ACK is unusual, namely:
1887 * * SACK
1888 * * Duplicate ACK.
1889 * * ECN ECE.
1890 *
1891 * Counting packets in flight is pretty simple.
1892 *
1893 * in_flight = packets_out - left_out + retrans_out
1894 *
1895 * packets_out is SND.NXT-SND.UNA counted in packets.
1896 *
1897 * retrans_out is number of retransmitted segments.
1898 *
1899 * left_out is number of segments left network, but not ACKed yet.
1900 *
1901 * left_out = sacked_out + lost_out
1902 *
1903 * sacked_out: Packets, which arrived to receiver out of order
1904 * and hence not ACKed. With SACKs this number is simply
1905 * amount of SACKed data. Even without SACKs
1906 * it is easy to give pretty reliable estimate of this number,
1907 * counting duplicate ACKs.
1908 *
1909 * lost_out: Packets lost by network. TCP has no explicit
1910 * "loss notification" feedback from network (for now).
1911 * It means that this number can be only _guessed_.
1912 * Actually, it is the heuristics to predict lossage that
1913 * distinguishes different algorithms.
1914 *
1915 * F.e. after RTO, when all the queue is considered as lost,
1916 * lost_out = packets_out and in_flight = retrans_out.
1917 *
1918 * Essentially, we have now two algorithms counting
1919 * lost packets.
1920 *
1921 * FACK: It is the simplest heuristics. As soon as we decided
1922 * that something is lost, we decide that _all_ not SACKed
1923 * packets until the most forward SACK are lost. I.e.
1924 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1925 * It is absolutely correct estimate, if network does not reorder
1926 * packets. And it loses any connection to reality when reordering
1927 * takes place. We use FACK by default until reordering
1928 * is suspected on the path to this destination.
1929 *
1930 * NewReno: when Recovery is entered, we assume that one segment
1931 * is lost (classic Reno). While we are in Recovery and
1932 * a partial ACK arrives, we assume that one more packet
1933 * is lost (NewReno). This heuristics are the same in NewReno
1934 * and SACK.
1935 *
1936 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1937 * deflation etc. CWND is real congestion window, never inflated, changes
1938 * only according to classic VJ rules.
1939 *
1940 * Really tricky (and requiring careful tuning) part of algorithm
1941 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1942 * The first determines the moment _when_ we should reduce CWND and,
1943 * hence, slow down forward transmission. In fact, it determines the moment
1944 * when we decide that hole is caused by loss, rather than by a reorder.
1945 *
1946 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1947 * holes, caused by lost packets.
1948 *
1949 * And the most logically complicated part of algorithm is undo
1950 * heuristics. We detect false retransmits due to both too early
1951 * fast retransmit (reordering) and underestimated RTO, analyzing
1952 * timestamps and D-SACKs. When we detect that some segments were
1953 * retransmitted by mistake and CWND reduction was wrong, we undo
1954 * window reduction and abort recovery phase. This logic is hidden
1955 * inside several functions named tcp_try_undo_<something>.
1956 */
1957
1958 /* This function decides, when we should leave Disordered state
1959 * and enter Recovery phase, reducing congestion window.
1960 *
1961 * Main question: may we further continue forward transmission
1962 * with the same cwnd?
1963 */
1964 static int tcp_time_to_recover(struct sock *sk)
1965 {
1966 struct tcp_sock *tp = tcp_sk(sk);
1967 __u32 packets_out;
1968
1969 /* Do not perform any recovery during F-RTO algorithm */
1970 if (tp->frto_counter)
1971 return 0;
1972
1973 /* Trick#1: The loss is proven. */
1974 if (tp->lost_out)
1975 return 1;
1976
1977 /* Not-A-Trick#2 : Classic rule... */
1978 if (tcp_fackets_out(tp) > tp->reordering)
1979 return 1;
1980
1981 /* Trick#3 : when we use RFC2988 timer restart, fast
1982 * retransmit can be triggered by timeout of queue head.
1983 */
1984 if (tcp_head_timedout(sk))
1985 return 1;
1986
1987 /* Trick#4: It is still not OK... But will it be useful to delay
1988 * recovery more?
1989 */
1990 packets_out = tp->packets_out;
1991 if (packets_out <= tp->reordering &&
1992 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1993 !tcp_may_send_now(sk)) {
1994 /* We have nothing to send. This connection is limited
1995 * either by receiver window or by application.
1996 */
1997 return 1;
1998 }
1999
2000 return 0;
2001 }
2002
2003 /* RFC: This is from the original, I doubt that this is necessary at all:
2004 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2005 * retransmitted past LOST markings in the first place? I'm not fully sure
2006 * about undo and end of connection cases, which can cause R without L?
2007 */
2008 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2009 struct sk_buff *skb)
2010 {
2011 if ((tp->retransmit_skb_hint != NULL) &&
2012 before(TCP_SKB_CB(skb)->seq,
2013 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2014 tp->retransmit_skb_hint = NULL;
2015 }
2016
2017 /* Mark head of queue up as lost. */
2018 static void tcp_mark_head_lost(struct sock *sk, int packets)
2019 {
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 struct sk_buff *skb;
2022 int cnt;
2023
2024 BUG_TRAP(packets <= tp->packets_out);
2025 if (tp->lost_skb_hint) {
2026 skb = tp->lost_skb_hint;
2027 cnt = tp->lost_cnt_hint;
2028 } else {
2029 skb = tcp_write_queue_head(sk);
2030 cnt = 0;
2031 }
2032
2033 tcp_for_write_queue_from(skb, sk) {
2034 if (skb == tcp_send_head(sk))
2035 break;
2036 /* TODO: do this better */
2037 /* this is not the most efficient way to do this... */
2038 tp->lost_skb_hint = skb;
2039 tp->lost_cnt_hint = cnt;
2040 cnt += tcp_skb_pcount(skb);
2041 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2042 break;
2043 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2044 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2045 tp->lost_out += tcp_skb_pcount(skb);
2046 tcp_verify_retransmit_hint(tp, skb);
2047 }
2048 }
2049 tcp_verify_left_out(tp);
2050 }
2051
2052 /* Account newly detected lost packet(s) */
2053
2054 static void tcp_update_scoreboard(struct sock *sk)
2055 {
2056 struct tcp_sock *tp = tcp_sk(sk);
2057
2058 if (tcp_is_fack(tp)) {
2059 int lost = tp->fackets_out - tp->reordering;
2060 if (lost <= 0)
2061 lost = 1;
2062 tcp_mark_head_lost(sk, lost);
2063 } else {
2064 tcp_mark_head_lost(sk, 1);
2065 }
2066
2067 /* New heuristics: it is possible only after we switched
2068 * to restart timer each time when something is ACKed.
2069 * Hence, we can detect timed out packets during fast
2070 * retransmit without falling to slow start.
2071 */
2072 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2073 struct sk_buff *skb;
2074
2075 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2076 : tcp_write_queue_head(sk);
2077
2078 tcp_for_write_queue_from(skb, sk) {
2079 if (skb == tcp_send_head(sk))
2080 break;
2081 if (!tcp_skb_timedout(sk, skb))
2082 break;
2083
2084 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2085 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2086 tp->lost_out += tcp_skb_pcount(skb);
2087 tcp_verify_retransmit_hint(tp, skb);
2088 }
2089 }
2090
2091 tp->scoreboard_skb_hint = skb;
2092
2093 tcp_verify_left_out(tp);
2094 }
2095 }
2096
2097 /* CWND moderation, preventing bursts due to too big ACKs
2098 * in dubious situations.
2099 */
2100 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2101 {
2102 tp->snd_cwnd = min(tp->snd_cwnd,
2103 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2104 tp->snd_cwnd_stamp = tcp_time_stamp;
2105 }
2106
2107 /* Lower bound on congestion window is slow start threshold
2108 * unless congestion avoidance choice decides to overide it.
2109 */
2110 static inline u32 tcp_cwnd_min(const struct sock *sk)
2111 {
2112 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2113
2114 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2115 }
2116
2117 /* Decrease cwnd each second ack. */
2118 static void tcp_cwnd_down(struct sock *sk, int flag)
2119 {
2120 struct tcp_sock *tp = tcp_sk(sk);
2121 int decr = tp->snd_cwnd_cnt + 1;
2122
2123 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2124 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2125 tp->snd_cwnd_cnt = decr&1;
2126 decr >>= 1;
2127
2128 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2129 tp->snd_cwnd -= decr;
2130
2131 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2132 tp->snd_cwnd_stamp = tcp_time_stamp;
2133 }
2134 }
2135
2136 /* Nothing was retransmitted or returned timestamp is less
2137 * than timestamp of the first retransmission.
2138 */
2139 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2140 {
2141 return !tp->retrans_stamp ||
2142 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2143 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2144 }
2145
2146 /* Undo procedures. */
2147
2148 #if FASTRETRANS_DEBUG > 1
2149 static void DBGUNDO(struct sock *sk, const char *msg)
2150 {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152 struct inet_sock *inet = inet_sk(sk);
2153
2154 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2155 msg,
2156 NIPQUAD(inet->daddr), ntohs(inet->dport),
2157 tp->snd_cwnd, tcp_left_out(tp),
2158 tp->snd_ssthresh, tp->prior_ssthresh,
2159 tp->packets_out);
2160 }
2161 #else
2162 #define DBGUNDO(x...) do { } while (0)
2163 #endif
2164
2165 static void tcp_undo_cwr(struct sock *sk, const int undo)
2166 {
2167 struct tcp_sock *tp = tcp_sk(sk);
2168
2169 if (tp->prior_ssthresh) {
2170 const struct inet_connection_sock *icsk = inet_csk(sk);
2171
2172 if (icsk->icsk_ca_ops->undo_cwnd)
2173 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2174 else
2175 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2176
2177 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2178 tp->snd_ssthresh = tp->prior_ssthresh;
2179 TCP_ECN_withdraw_cwr(tp);
2180 }
2181 } else {
2182 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2183 }
2184 tcp_moderate_cwnd(tp);
2185 tp->snd_cwnd_stamp = tcp_time_stamp;
2186
2187 /* There is something screwy going on with the retrans hints after
2188 an undo */
2189 tcp_clear_all_retrans_hints(tp);
2190 }
2191
2192 static inline int tcp_may_undo(struct tcp_sock *tp)
2193 {
2194 return tp->undo_marker &&
2195 (!tp->undo_retrans || tcp_packet_delayed(tp));
2196 }
2197
2198 /* People celebrate: "We love our President!" */
2199 static int tcp_try_undo_recovery(struct sock *sk)
2200 {
2201 struct tcp_sock *tp = tcp_sk(sk);
2202
2203 if (tcp_may_undo(tp)) {
2204 /* Happy end! We did not retransmit anything
2205 * or our original transmission succeeded.
2206 */
2207 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2208 tcp_undo_cwr(sk, 1);
2209 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2210 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2211 else
2212 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2213 tp->undo_marker = 0;
2214 }
2215 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2216 /* Hold old state until something *above* high_seq
2217 * is ACKed. For Reno it is MUST to prevent false
2218 * fast retransmits (RFC2582). SACK TCP is safe. */
2219 tcp_moderate_cwnd(tp);
2220 return 1;
2221 }
2222 tcp_set_ca_state(sk, TCP_CA_Open);
2223 return 0;
2224 }
2225
2226 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2227 static void tcp_try_undo_dsack(struct sock *sk)
2228 {
2229 struct tcp_sock *tp = tcp_sk(sk);
2230
2231 if (tp->undo_marker && !tp->undo_retrans) {
2232 DBGUNDO(sk, "D-SACK");
2233 tcp_undo_cwr(sk, 1);
2234 tp->undo_marker = 0;
2235 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2236 }
2237 }
2238
2239 /* Undo during fast recovery after partial ACK. */
2240
2241 static int tcp_try_undo_partial(struct sock *sk, int acked)
2242 {
2243 struct tcp_sock *tp = tcp_sk(sk);
2244 /* Partial ACK arrived. Force Hoe's retransmit. */
2245 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2246
2247 if (tcp_may_undo(tp)) {
2248 /* Plain luck! Hole if filled with delayed
2249 * packet, rather than with a retransmit.
2250 */
2251 if (tp->retrans_out == 0)
2252 tp->retrans_stamp = 0;
2253
2254 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2255
2256 DBGUNDO(sk, "Hoe");
2257 tcp_undo_cwr(sk, 0);
2258 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2259
2260 /* So... Do not make Hoe's retransmit yet.
2261 * If the first packet was delayed, the rest
2262 * ones are most probably delayed as well.
2263 */
2264 failed = 0;
2265 }
2266 return failed;
2267 }
2268
2269 /* Undo during loss recovery after partial ACK. */
2270 static int tcp_try_undo_loss(struct sock *sk)
2271 {
2272 struct tcp_sock *tp = tcp_sk(sk);
2273
2274 if (tcp_may_undo(tp)) {
2275 struct sk_buff *skb;
2276 tcp_for_write_queue(skb, sk) {
2277 if (skb == tcp_send_head(sk))
2278 break;
2279 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2280 }
2281
2282 tcp_clear_all_retrans_hints(tp);
2283
2284 DBGUNDO(sk, "partial loss");
2285 tp->lost_out = 0;
2286 tcp_undo_cwr(sk, 1);
2287 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2288 inet_csk(sk)->icsk_retransmits = 0;
2289 tp->undo_marker = 0;
2290 if (tcp_is_sack(tp))
2291 tcp_set_ca_state(sk, TCP_CA_Open);
2292 return 1;
2293 }
2294 return 0;
2295 }
2296
2297 static inline void tcp_complete_cwr(struct sock *sk)
2298 {
2299 struct tcp_sock *tp = tcp_sk(sk);
2300 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2301 tp->snd_cwnd_stamp = tcp_time_stamp;
2302 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2303 }
2304
2305 static void tcp_try_to_open(struct sock *sk, int flag)
2306 {
2307 struct tcp_sock *tp = tcp_sk(sk);
2308
2309 tcp_verify_left_out(tp);
2310
2311 if (tp->retrans_out == 0)
2312 tp->retrans_stamp = 0;
2313
2314 if (flag&FLAG_ECE)
2315 tcp_enter_cwr(sk, 1);
2316
2317 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2318 int state = TCP_CA_Open;
2319
2320 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2321 state = TCP_CA_Disorder;
2322
2323 if (inet_csk(sk)->icsk_ca_state != state) {
2324 tcp_set_ca_state(sk, state);
2325 tp->high_seq = tp->snd_nxt;
2326 }
2327 tcp_moderate_cwnd(tp);
2328 } else {
2329 tcp_cwnd_down(sk, flag);
2330 }
2331 }
2332
2333 static void tcp_mtup_probe_failed(struct sock *sk)
2334 {
2335 struct inet_connection_sock *icsk = inet_csk(sk);
2336
2337 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2338 icsk->icsk_mtup.probe_size = 0;
2339 }
2340
2341 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344 struct inet_connection_sock *icsk = inet_csk(sk);
2345
2346 /* FIXME: breaks with very large cwnd */
2347 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2348 tp->snd_cwnd = tp->snd_cwnd *
2349 tcp_mss_to_mtu(sk, tp->mss_cache) /
2350 icsk->icsk_mtup.probe_size;
2351 tp->snd_cwnd_cnt = 0;
2352 tp->snd_cwnd_stamp = tcp_time_stamp;
2353 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2354
2355 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2356 icsk->icsk_mtup.probe_size = 0;
2357 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2358 }
2359
2360
2361 /* Process an event, which can update packets-in-flight not trivially.
2362 * Main goal of this function is to calculate new estimate for left_out,
2363 * taking into account both packets sitting in receiver's buffer and
2364 * packets lost by network.
2365 *
2366 * Besides that it does CWND reduction, when packet loss is detected
2367 * and changes state of machine.
2368 *
2369 * It does _not_ decide what to send, it is made in function
2370 * tcp_xmit_retransmit_queue().
2371 */
2372 static void
2373 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2374 {
2375 struct inet_connection_sock *icsk = inet_csk(sk);
2376 struct tcp_sock *tp = tcp_sk(sk);
2377 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2378 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2379 (tp->fackets_out > tp->reordering));
2380
2381 /* Some technical things:
2382 * 1. Reno does not count dupacks (sacked_out) automatically. */
2383 if (!tp->packets_out)
2384 tp->sacked_out = 0;
2385
2386 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2387 tp->fackets_out = 0;
2388
2389 /* Now state machine starts.
2390 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2391 if (flag&FLAG_ECE)
2392 tp->prior_ssthresh = 0;
2393
2394 /* B. In all the states check for reneging SACKs. */
2395 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2396 return;
2397
2398 /* C. Process data loss notification, provided it is valid. */
2399 if ((flag&FLAG_DATA_LOST) &&
2400 before(tp->snd_una, tp->high_seq) &&
2401 icsk->icsk_ca_state != TCP_CA_Open &&
2402 tp->fackets_out > tp->reordering) {
2403 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2404 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2405 }
2406
2407 /* D. Check consistency of the current state. */
2408 tcp_verify_left_out(tp);
2409
2410 /* E. Check state exit conditions. State can be terminated
2411 * when high_seq is ACKed. */
2412 if (icsk->icsk_ca_state == TCP_CA_Open) {
2413 BUG_TRAP(tp->retrans_out == 0);
2414 tp->retrans_stamp = 0;
2415 } else if (!before(tp->snd_una, tp->high_seq)) {
2416 switch (icsk->icsk_ca_state) {
2417 case TCP_CA_Loss:
2418 icsk->icsk_retransmits = 0;
2419 if (tcp_try_undo_recovery(sk))
2420 return;
2421 break;
2422
2423 case TCP_CA_CWR:
2424 /* CWR is to be held something *above* high_seq
2425 * is ACKed for CWR bit to reach receiver. */
2426 if (tp->snd_una != tp->high_seq) {
2427 tcp_complete_cwr(sk);
2428 tcp_set_ca_state(sk, TCP_CA_Open);
2429 }
2430 break;
2431
2432 case TCP_CA_Disorder:
2433 tcp_try_undo_dsack(sk);
2434 if (!tp->undo_marker ||
2435 /* For SACK case do not Open to allow to undo
2436 * catching for all duplicate ACKs. */
2437 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2438 tp->undo_marker = 0;
2439 tcp_set_ca_state(sk, TCP_CA_Open);
2440 }
2441 break;
2442
2443 case TCP_CA_Recovery:
2444 if (tcp_is_reno(tp))
2445 tcp_reset_reno_sack(tp);
2446 if (tcp_try_undo_recovery(sk))
2447 return;
2448 tcp_complete_cwr(sk);
2449 break;
2450 }
2451 }
2452
2453 /* F. Process state. */
2454 switch (icsk->icsk_ca_state) {
2455 case TCP_CA_Recovery:
2456 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2457 if (tcp_is_reno(tp) && is_dupack)
2458 tcp_add_reno_sack(sk);
2459 } else
2460 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2461 break;
2462 case TCP_CA_Loss:
2463 if (flag&FLAG_DATA_ACKED)
2464 icsk->icsk_retransmits = 0;
2465 if (!tcp_try_undo_loss(sk)) {
2466 tcp_moderate_cwnd(tp);
2467 tcp_xmit_retransmit_queue(sk);
2468 return;
2469 }
2470 if (icsk->icsk_ca_state != TCP_CA_Open)
2471 return;
2472 /* Loss is undone; fall through to processing in Open state. */
2473 default:
2474 if (tcp_is_reno(tp)) {
2475 if (flag & FLAG_SND_UNA_ADVANCED)
2476 tcp_reset_reno_sack(tp);
2477 if (is_dupack)
2478 tcp_add_reno_sack(sk);
2479 }
2480
2481 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2482 tcp_try_undo_dsack(sk);
2483
2484 if (!tcp_time_to_recover(sk)) {
2485 tcp_try_to_open(sk, flag);
2486 return;
2487 }
2488
2489 /* MTU probe failure: don't reduce cwnd */
2490 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2491 icsk->icsk_mtup.probe_size &&
2492 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2493 tcp_mtup_probe_failed(sk);
2494 /* Restores the reduction we did in tcp_mtup_probe() */
2495 tp->snd_cwnd++;
2496 tcp_simple_retransmit(sk);
2497 return;
2498 }
2499
2500 /* Otherwise enter Recovery state */
2501
2502 if (tcp_is_reno(tp))
2503 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2504 else
2505 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2506
2507 tp->high_seq = tp->snd_nxt;
2508 tp->prior_ssthresh = 0;
2509 tp->undo_marker = tp->snd_una;
2510 tp->undo_retrans = tp->retrans_out;
2511
2512 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2513 if (!(flag&FLAG_ECE))
2514 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2515 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2516 TCP_ECN_queue_cwr(tp);
2517 }
2518
2519 tp->bytes_acked = 0;
2520 tp->snd_cwnd_cnt = 0;
2521 tcp_set_ca_state(sk, TCP_CA_Recovery);
2522 }
2523
2524 if (do_lost || tcp_head_timedout(sk))
2525 tcp_update_scoreboard(sk);
2526 tcp_cwnd_down(sk, flag);
2527 tcp_xmit_retransmit_queue(sk);
2528 }
2529
2530 /* Read draft-ietf-tcplw-high-performance before mucking
2531 * with this code. (Supersedes RFC1323)
2532 */
2533 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2534 {
2535 /* RTTM Rule: A TSecr value received in a segment is used to
2536 * update the averaged RTT measurement only if the segment
2537 * acknowledges some new data, i.e., only if it advances the
2538 * left edge of the send window.
2539 *
2540 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2541 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2542 *
2543 * Changed: reset backoff as soon as we see the first valid sample.
2544 * If we do not, we get strongly overestimated rto. With timestamps
2545 * samples are accepted even from very old segments: f.e., when rtt=1
2546 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2547 * answer arrives rto becomes 120 seconds! If at least one of segments
2548 * in window is lost... Voila. --ANK (010210)
2549 */
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2552 tcp_rtt_estimator(sk, seq_rtt);
2553 tcp_set_rto(sk);
2554 inet_csk(sk)->icsk_backoff = 0;
2555 tcp_bound_rto(sk);
2556 }
2557
2558 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2559 {
2560 /* We don't have a timestamp. Can only use
2561 * packets that are not retransmitted to determine
2562 * rtt estimates. Also, we must not reset the
2563 * backoff for rto until we get a non-retransmitted
2564 * packet. This allows us to deal with a situation
2565 * where the network delay has increased suddenly.
2566 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2567 */
2568
2569 if (flag & FLAG_RETRANS_DATA_ACKED)
2570 return;
2571
2572 tcp_rtt_estimator(sk, seq_rtt);
2573 tcp_set_rto(sk);
2574 inet_csk(sk)->icsk_backoff = 0;
2575 tcp_bound_rto(sk);
2576 }
2577
2578 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2579 const s32 seq_rtt)
2580 {
2581 const struct tcp_sock *tp = tcp_sk(sk);
2582 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2583 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2584 tcp_ack_saw_tstamp(sk, flag);
2585 else if (seq_rtt >= 0)
2586 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2587 }
2588
2589 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2590 u32 in_flight, int good)
2591 {
2592 const struct inet_connection_sock *icsk = inet_csk(sk);
2593 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2594 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2595 }
2596
2597 /* Restart timer after forward progress on connection.
2598 * RFC2988 recommends to restart timer to now+rto.
2599 */
2600 static void tcp_rearm_rto(struct sock *sk)
2601 {
2602 struct tcp_sock *tp = tcp_sk(sk);
2603
2604 if (!tp->packets_out) {
2605 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2606 } else {
2607 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2608 }
2609 }
2610
2611 /* If we get here, the whole TSO packet has not been acked. */
2612 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2613 {
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 u32 packets_acked;
2616
2617 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2618
2619 packets_acked = tcp_skb_pcount(skb);
2620 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2621 return 0;
2622 packets_acked -= tcp_skb_pcount(skb);
2623
2624 if (packets_acked) {
2625 BUG_ON(tcp_skb_pcount(skb) == 0);
2626 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2627 }
2628
2629 return packets_acked;
2630 }
2631
2632 /* Remove acknowledged frames from the retransmission queue. If our packet
2633 * is before the ack sequence we can discard it as it's confirmed to have
2634 * arrived at the other end.
2635 */
2636 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2637 int prior_fackets)
2638 {
2639 struct tcp_sock *tp = tcp_sk(sk);
2640 const struct inet_connection_sock *icsk = inet_csk(sk);
2641 struct sk_buff *skb;
2642 u32 now = tcp_time_stamp;
2643 int fully_acked = 1;
2644 int flag = 0;
2645 int prior_packets = tp->packets_out;
2646 u32 cnt = 0;
2647 u32 reord = tp->packets_out;
2648 s32 seq_rtt = -1;
2649 ktime_t last_ackt = net_invalid_timestamp();
2650
2651 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2652 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2653 u32 end_seq;
2654 u32 packets_acked;
2655 u8 sacked = scb->sacked;
2656
2657 if (after(scb->end_seq, tp->snd_una)) {
2658 if (tcp_skb_pcount(skb) == 1 ||
2659 !after(tp->snd_una, scb->seq))
2660 break;
2661
2662 packets_acked = tcp_tso_acked(sk, skb);
2663 if (!packets_acked)
2664 break;
2665
2666 fully_acked = 0;
2667 end_seq = tp->snd_una;
2668 } else {
2669 packets_acked = tcp_skb_pcount(skb);
2670 end_seq = scb->end_seq;
2671 }
2672
2673 /* MTU probing checks */
2674 if (fully_acked && icsk->icsk_mtup.probe_size &&
2675 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2676 tcp_mtup_probe_success(sk, skb);
2677 }
2678
2679 if (sacked) {
2680 if (sacked & TCPCB_RETRANS) {
2681 if (sacked & TCPCB_SACKED_RETRANS)
2682 tp->retrans_out -= packets_acked;
2683 flag |= FLAG_RETRANS_DATA_ACKED;
2684 seq_rtt = -1;
2685 if ((flag & FLAG_DATA_ACKED) ||
2686 (packets_acked > 1))
2687 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2688 } else {
2689 if (seq_rtt < 0) {
2690 seq_rtt = now - scb->when;
2691 if (fully_acked)
2692 last_ackt = skb->tstamp;
2693 }
2694 if (!(sacked & TCPCB_SACKED_ACKED))
2695 reord = min(cnt, reord);
2696 }
2697
2698 if (sacked & TCPCB_SACKED_ACKED)
2699 tp->sacked_out -= packets_acked;
2700 if (sacked & TCPCB_LOST)
2701 tp->lost_out -= packets_acked;
2702
2703 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2704 !before(end_seq, tp->snd_up))
2705 tp->urg_mode = 0;
2706 } else {
2707 if (seq_rtt < 0) {
2708 seq_rtt = now - scb->when;
2709 if (fully_acked)
2710 last_ackt = skb->tstamp;
2711 }
2712 reord = min(cnt, reord);
2713 }
2714 tp->packets_out -= packets_acked;
2715 cnt += packets_acked;
2716
2717 /* Initial outgoing SYN's get put onto the write_queue
2718 * just like anything else we transmit. It is not
2719 * true data, and if we misinform our callers that
2720 * this ACK acks real data, we will erroneously exit
2721 * connection startup slow start one packet too
2722 * quickly. This is severely frowned upon behavior.
2723 */
2724 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2725 flag |= FLAG_DATA_ACKED;
2726 } else {
2727 flag |= FLAG_SYN_ACKED;
2728 tp->retrans_stamp = 0;
2729 }
2730
2731 if (!fully_acked)
2732 break;
2733
2734 tcp_unlink_write_queue(skb, sk);
2735 sk_stream_free_skb(sk, skb);
2736 tcp_clear_all_retrans_hints(tp);
2737 }
2738
2739 if (flag & FLAG_ACKED) {
2740 u32 pkts_acked = prior_packets - tp->packets_out;
2741 const struct tcp_congestion_ops *ca_ops
2742 = inet_csk(sk)->icsk_ca_ops;
2743
2744 tcp_ack_update_rtt(sk, flag, seq_rtt);
2745 tcp_rearm_rto(sk);
2746
2747 if (tcp_is_reno(tp)) {
2748 tcp_remove_reno_sacks(sk, pkts_acked);
2749 } else {
2750 /* Non-retransmitted hole got filled? That's reordering */
2751 if (reord < prior_fackets)
2752 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2753 }
2754
2755 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2756 /* hint's skb might be NULL but we don't need to care */
2757 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2758 tp->fastpath_cnt_hint);
2759 if (ca_ops->pkts_acked) {
2760 s32 rtt_us = -1;
2761
2762 /* Is the ACK triggering packet unambiguous? */
2763 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2764 /* High resolution needed and available? */
2765 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2766 !ktime_equal(last_ackt,
2767 net_invalid_timestamp()))
2768 rtt_us = ktime_us_delta(ktime_get_real(),
2769 last_ackt);
2770 else if (seq_rtt > 0)
2771 rtt_us = jiffies_to_usecs(seq_rtt);
2772 }
2773
2774 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2775 }
2776 }
2777
2778 #if FASTRETRANS_DEBUG > 0
2779 BUG_TRAP((int)tp->sacked_out >= 0);
2780 BUG_TRAP((int)tp->lost_out >= 0);
2781 BUG_TRAP((int)tp->retrans_out >= 0);
2782 if (!tp->packets_out && tcp_is_sack(tp)) {
2783 icsk = inet_csk(sk);
2784 if (tp->lost_out) {
2785 printk(KERN_DEBUG "Leak l=%u %d\n",
2786 tp->lost_out, icsk->icsk_ca_state);
2787 tp->lost_out = 0;
2788 }
2789 if (tp->sacked_out) {
2790 printk(KERN_DEBUG "Leak s=%u %d\n",
2791 tp->sacked_out, icsk->icsk_ca_state);
2792 tp->sacked_out = 0;
2793 }
2794 if (tp->retrans_out) {
2795 printk(KERN_DEBUG "Leak r=%u %d\n",
2796 tp->retrans_out, icsk->icsk_ca_state);
2797 tp->retrans_out = 0;
2798 }
2799 }
2800 #endif
2801 *seq_rtt_p = seq_rtt;
2802 return flag;
2803 }
2804
2805 static void tcp_ack_probe(struct sock *sk)
2806 {
2807 const struct tcp_sock *tp = tcp_sk(sk);
2808 struct inet_connection_sock *icsk = inet_csk(sk);
2809
2810 /* Was it a usable window open? */
2811
2812 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2813 tp->snd_una + tp->snd_wnd)) {
2814 icsk->icsk_backoff = 0;
2815 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2816 /* Socket must be waked up by subsequent tcp_data_snd_check().
2817 * This function is not for random using!
2818 */
2819 } else {
2820 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2821 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2822 TCP_RTO_MAX);
2823 }
2824 }
2825
2826 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2827 {
2828 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2829 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2830 }
2831
2832 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2833 {
2834 const struct tcp_sock *tp = tcp_sk(sk);
2835 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2836 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2837 }
2838
2839 /* Check that window update is acceptable.
2840 * The function assumes that snd_una<=ack<=snd_next.
2841 */
2842 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2843 const u32 ack_seq, const u32 nwin)
2844 {
2845 return (after(ack, tp->snd_una) ||
2846 after(ack_seq, tp->snd_wl1) ||
2847 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2848 }
2849
2850 /* Update our send window.
2851 *
2852 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2853 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2854 */
2855 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2856 u32 ack_seq)
2857 {
2858 struct tcp_sock *tp = tcp_sk(sk);
2859 int flag = 0;
2860 u32 nwin = ntohs(tcp_hdr(skb)->window);
2861
2862 if (likely(!tcp_hdr(skb)->syn))
2863 nwin <<= tp->rx_opt.snd_wscale;
2864
2865 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2866 flag |= FLAG_WIN_UPDATE;
2867 tcp_update_wl(tp, ack, ack_seq);
2868
2869 if (tp->snd_wnd != nwin) {
2870 tp->snd_wnd = nwin;
2871
2872 /* Note, it is the only place, where
2873 * fast path is recovered for sending TCP.
2874 */
2875 tp->pred_flags = 0;
2876 tcp_fast_path_check(sk);
2877
2878 if (nwin > tp->max_window) {
2879 tp->max_window = nwin;
2880 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2881 }
2882 }
2883 }
2884
2885 tp->snd_una = ack;
2886
2887 return flag;
2888 }
2889
2890 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2891 * continue in congestion avoidance.
2892 */
2893 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2894 {
2895 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2896 tp->snd_cwnd_cnt = 0;
2897 tp->bytes_acked = 0;
2898 TCP_ECN_queue_cwr(tp);
2899 tcp_moderate_cwnd(tp);
2900 }
2901
2902 /* A conservative spurious RTO response algorithm: reduce cwnd using
2903 * rate halving and continue in congestion avoidance.
2904 */
2905 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2906 {
2907 tcp_enter_cwr(sk, 0);
2908 }
2909
2910 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2911 {
2912 if (flag&FLAG_ECE)
2913 tcp_ratehalving_spur_to_response(sk);
2914 else
2915 tcp_undo_cwr(sk, 1);
2916 }
2917
2918 /* F-RTO spurious RTO detection algorithm (RFC4138)
2919 *
2920 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2921 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2922 * window (but not to or beyond highest sequence sent before RTO):
2923 * On First ACK, send two new segments out.
2924 * On Second ACK, RTO was likely spurious. Do spurious response (response
2925 * algorithm is not part of the F-RTO detection algorithm
2926 * given in RFC4138 but can be selected separately).
2927 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2928 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2929 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2930 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2931 *
2932 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2933 * original window even after we transmit two new data segments.
2934 *
2935 * SACK version:
2936 * on first step, wait until first cumulative ACK arrives, then move to
2937 * the second step. In second step, the next ACK decides.
2938 *
2939 * F-RTO is implemented (mainly) in four functions:
2940 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2941 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2942 * called when tcp_use_frto() showed green light
2943 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2944 * - tcp_enter_frto_loss() is called if there is not enough evidence
2945 * to prove that the RTO is indeed spurious. It transfers the control
2946 * from F-RTO to the conventional RTO recovery
2947 */
2948 static int tcp_process_frto(struct sock *sk, int flag)
2949 {
2950 struct tcp_sock *tp = tcp_sk(sk);
2951
2952 tcp_verify_left_out(tp);
2953
2954 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2955 if (flag&FLAG_DATA_ACKED)
2956 inet_csk(sk)->icsk_retransmits = 0;
2957
2958 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2959 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2960 tp->undo_marker = 0;
2961
2962 if (!before(tp->snd_una, tp->frto_highmark)) {
2963 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2964 return 1;
2965 }
2966
2967 if (!IsSackFrto() || tcp_is_reno(tp)) {
2968 /* RFC4138 shortcoming in step 2; should also have case c):
2969 * ACK isn't duplicate nor advances window, e.g., opposite dir
2970 * data, winupdate
2971 */
2972 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2973 return 1;
2974
2975 if (!(flag&FLAG_DATA_ACKED)) {
2976 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2977 flag);
2978 return 1;
2979 }
2980 } else {
2981 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2982 /* Prevent sending of new data. */
2983 tp->snd_cwnd = min(tp->snd_cwnd,
2984 tcp_packets_in_flight(tp));
2985 return 1;
2986 }
2987
2988 if ((tp->frto_counter >= 2) &&
2989 (!(flag&FLAG_FORWARD_PROGRESS) ||
2990 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2991 /* RFC4138 shortcoming (see comment above) */
2992 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2993 return 1;
2994
2995 tcp_enter_frto_loss(sk, 3, flag);
2996 return 1;
2997 }
2998 }
2999
3000 if (tp->frto_counter == 1) {
3001 /* Sending of the next skb must be allowed or no F-RTO */
3002 if (!tcp_send_head(sk) ||
3003 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
3004 tp->snd_una + tp->snd_wnd)) {
3005 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
3006 flag);
3007 return 1;
3008 }
3009
3010 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3011 tp->frto_counter = 2;
3012 return 1;
3013 } else {
3014 switch (sysctl_tcp_frto_response) {
3015 case 2:
3016 tcp_undo_spur_to_response(sk, flag);
3017 break;
3018 case 1:
3019 tcp_conservative_spur_to_response(tp);
3020 break;
3021 default:
3022 tcp_ratehalving_spur_to_response(sk);
3023 break;
3024 }
3025 tp->frto_counter = 0;
3026 tp->undo_marker = 0;
3027 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3028 }
3029 return 0;
3030 }
3031
3032 /* This routine deals with incoming acks, but not outgoing ones. */
3033 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3034 {
3035 struct inet_connection_sock *icsk = inet_csk(sk);
3036 struct tcp_sock *tp = tcp_sk(sk);
3037 u32 prior_snd_una = tp->snd_una;
3038 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3039 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3040 u32 prior_in_flight;
3041 u32 prior_fackets;
3042 s32 seq_rtt;
3043 int prior_packets;
3044 int frto_cwnd = 0;
3045
3046 /* If the ack is newer than sent or older than previous acks
3047 * then we can probably ignore it.
3048 */
3049 if (after(ack, tp->snd_nxt))
3050 goto uninteresting_ack;
3051
3052 if (before(ack, prior_snd_una))
3053 goto old_ack;
3054
3055 if (after(ack, prior_snd_una))
3056 flag |= FLAG_SND_UNA_ADVANCED;
3057
3058 if (sysctl_tcp_abc) {
3059 if (icsk->icsk_ca_state < TCP_CA_CWR)
3060 tp->bytes_acked += ack - prior_snd_una;
3061 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3062 /* we assume just one segment left network */
3063 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3064 }
3065
3066 prior_fackets = tp->fackets_out;
3067
3068 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3069 /* Window is constant, pure forward advance.
3070 * No more checks are required.
3071 * Note, we use the fact that SND.UNA>=SND.WL2.
3072 */
3073 tcp_update_wl(tp, ack, ack_seq);
3074 tp->snd_una = ack;
3075 flag |= FLAG_WIN_UPDATE;
3076
3077 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3078
3079 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3080 } else {
3081 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3082 flag |= FLAG_DATA;
3083 else
3084 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3085
3086 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3087
3088 if (TCP_SKB_CB(skb)->sacked)
3089 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3090
3091 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3092 flag |= FLAG_ECE;
3093
3094 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3095 }
3096
3097 /* We passed data and got it acked, remove any soft error
3098 * log. Something worked...
3099 */
3100 sk->sk_err_soft = 0;
3101 tp->rcv_tstamp = tcp_time_stamp;
3102 prior_packets = tp->packets_out;
3103 if (!prior_packets)
3104 goto no_queue;
3105
3106 prior_in_flight = tcp_packets_in_flight(tp);
3107
3108 /* See if we can take anything off of the retransmit queue. */
3109 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3110
3111 /* Guarantee sacktag reordering detection against wrap-arounds */
3112 if (before(tp->frto_highmark, tp->snd_una))
3113 tp->frto_highmark = 0;
3114 if (tp->frto_counter)
3115 frto_cwnd = tcp_process_frto(sk, flag);
3116
3117 if (tcp_ack_is_dubious(sk, flag)) {
3118 /* Advance CWND, if state allows this. */
3119 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3120 tcp_may_raise_cwnd(sk, flag))
3121 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3122 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3123 } else {
3124 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3125 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3126 }
3127
3128 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3129 dst_confirm(sk->sk_dst_cache);
3130
3131 return 1;
3132
3133 no_queue:
3134 icsk->icsk_probes_out = 0;
3135
3136 /* If this ack opens up a zero window, clear backoff. It was
3137 * being used to time the probes, and is probably far higher than
3138 * it needs to be for normal retransmission.
3139 */
3140 if (tcp_send_head(sk))
3141 tcp_ack_probe(sk);
3142 return 1;
3143
3144 old_ack:
3145 if (TCP_SKB_CB(skb)->sacked)
3146 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3147
3148 uninteresting_ack:
3149 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3150 return 0;
3151 }
3152
3153
3154 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3155 * But, this can also be called on packets in the established flow when
3156 * the fast version below fails.
3157 */
3158 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3159 {
3160 unsigned char *ptr;
3161 struct tcphdr *th = tcp_hdr(skb);
3162 int length=(th->doff*4)-sizeof(struct tcphdr);
3163
3164 ptr = (unsigned char *)(th + 1);
3165 opt_rx->saw_tstamp = 0;
3166
3167 while (length > 0) {
3168 int opcode=*ptr++;
3169 int opsize;
3170
3171 switch (opcode) {
3172 case TCPOPT_EOL:
3173 return;
3174 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3175 length--;
3176 continue;
3177 default:
3178 opsize=*ptr++;
3179 if (opsize < 2) /* "silly options" */
3180 return;
3181 if (opsize > length)
3182 return; /* don't parse partial options */
3183 switch (opcode) {
3184 case TCPOPT_MSS:
3185 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3186 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3187 if (in_mss) {
3188 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3189 in_mss = opt_rx->user_mss;
3190 opt_rx->mss_clamp = in_mss;
3191 }
3192 }
3193 break;
3194 case TCPOPT_WINDOW:
3195 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3196 if (sysctl_tcp_window_scaling) {
3197 __u8 snd_wscale = *(__u8 *) ptr;
3198 opt_rx->wscale_ok = 1;
3199 if (snd_wscale > 14) {
3200 if (net_ratelimit())
3201 printk(KERN_INFO "tcp_parse_options: Illegal window "
3202 "scaling value %d >14 received.\n",
3203 snd_wscale);
3204 snd_wscale = 14;
3205 }
3206 opt_rx->snd_wscale = snd_wscale;
3207 }
3208 break;
3209 case TCPOPT_TIMESTAMP:
3210 if (opsize==TCPOLEN_TIMESTAMP) {
3211 if ((estab && opt_rx->tstamp_ok) ||
3212 (!estab && sysctl_tcp_timestamps)) {
3213 opt_rx->saw_tstamp = 1;
3214 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3215 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3216 }
3217 }
3218 break;
3219 case TCPOPT_SACK_PERM:
3220 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3221 if (sysctl_tcp_sack) {
3222 opt_rx->sack_ok = 1;
3223 tcp_sack_reset(opt_rx);
3224 }
3225 }
3226 break;
3227
3228 case TCPOPT_SACK:
3229 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3230 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3231 opt_rx->sack_ok) {
3232 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3233 }
3234 break;
3235 #ifdef CONFIG_TCP_MD5SIG
3236 case TCPOPT_MD5SIG:
3237 /*
3238 * The MD5 Hash has already been
3239 * checked (see tcp_v{4,6}_do_rcv()).
3240 */
3241 break;
3242 #endif
3243 }
3244
3245 ptr+=opsize-2;
3246 length-=opsize;
3247 }
3248 }
3249 }
3250
3251 /* Fast parse options. This hopes to only see timestamps.
3252 * If it is wrong it falls back on tcp_parse_options().
3253 */
3254 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3255 struct tcp_sock *tp)
3256 {
3257 if (th->doff == sizeof(struct tcphdr)>>2) {
3258 tp->rx_opt.saw_tstamp = 0;
3259 return 0;
3260 } else if (tp->rx_opt.tstamp_ok &&
3261 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3262 __be32 *ptr = (__be32 *)(th + 1);
3263 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3264 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3265 tp->rx_opt.saw_tstamp = 1;
3266 ++ptr;
3267 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3268 ++ptr;
3269 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3270 return 1;
3271 }
3272 }
3273 tcp_parse_options(skb, &tp->rx_opt, 1);
3274 return 1;
3275 }
3276
3277 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3278 {
3279 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3280 tp->rx_opt.ts_recent_stamp = get_seconds();
3281 }
3282
3283 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3284 {
3285 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3286 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3287 * extra check below makes sure this can only happen
3288 * for pure ACK frames. -DaveM
3289 *
3290 * Not only, also it occurs for expired timestamps.
3291 */
3292
3293 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3294 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3295 tcp_store_ts_recent(tp);
3296 }
3297 }
3298
3299 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3300 *
3301 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3302 * it can pass through stack. So, the following predicate verifies that
3303 * this segment is not used for anything but congestion avoidance or
3304 * fast retransmit. Moreover, we even are able to eliminate most of such
3305 * second order effects, if we apply some small "replay" window (~RTO)
3306 * to timestamp space.
3307 *
3308 * All these measures still do not guarantee that we reject wrapped ACKs
3309 * on networks with high bandwidth, when sequence space is recycled fastly,
3310 * but it guarantees that such events will be very rare and do not affect
3311 * connection seriously. This doesn't look nice, but alas, PAWS is really
3312 * buggy extension.
3313 *
3314 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3315 * states that events when retransmit arrives after original data are rare.
3316 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3317 * the biggest problem on large power networks even with minor reordering.
3318 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3319 * up to bandwidth of 18Gigabit/sec. 8) ]
3320 */
3321
3322 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 struct tcphdr *th = tcp_hdr(skb);
3326 u32 seq = TCP_SKB_CB(skb)->seq;
3327 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3328
3329 return (/* 1. Pure ACK with correct sequence number. */
3330 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3331
3332 /* 2. ... and duplicate ACK. */
3333 ack == tp->snd_una &&
3334
3335 /* 3. ... and does not update window. */
3336 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3337
3338 /* 4. ... and sits in replay window. */
3339 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3340 }
3341
3342 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3343 {
3344 const struct tcp_sock *tp = tcp_sk(sk);
3345 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3346 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3347 !tcp_disordered_ack(sk, skb));
3348 }
3349
3350 /* Check segment sequence number for validity.
3351 *
3352 * Segment controls are considered valid, if the segment
3353 * fits to the window after truncation to the window. Acceptability
3354 * of data (and SYN, FIN, of course) is checked separately.
3355 * See tcp_data_queue(), for example.
3356 *
3357 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3358 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3359 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3360 * (borrowed from freebsd)
3361 */
3362
3363 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3364 {
3365 return !before(end_seq, tp->rcv_wup) &&
3366 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3367 }
3368
3369 /* When we get a reset we do this. */
3370 static void tcp_reset(struct sock *sk)
3371 {
3372 /* We want the right error as BSD sees it (and indeed as we do). */
3373 switch (sk->sk_state) {
3374 case TCP_SYN_SENT:
3375 sk->sk_err = ECONNREFUSED;
3376 break;
3377 case TCP_CLOSE_WAIT:
3378 sk->sk_err = EPIPE;
3379 break;
3380 case TCP_CLOSE:
3381 return;
3382 default:
3383 sk->sk_err = ECONNRESET;
3384 }
3385
3386 if (!sock_flag(sk, SOCK_DEAD))
3387 sk->sk_error_report(sk);
3388
3389 tcp_done(sk);
3390 }
3391
3392 /*
3393 * Process the FIN bit. This now behaves as it is supposed to work
3394 * and the FIN takes effect when it is validly part of sequence
3395 * space. Not before when we get holes.
3396 *
3397 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3398 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3399 * TIME-WAIT)
3400 *
3401 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3402 * close and we go into CLOSING (and later onto TIME-WAIT)
3403 *
3404 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3405 */
3406 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3407 {
3408 struct tcp_sock *tp = tcp_sk(sk);
3409
3410 inet_csk_schedule_ack(sk);
3411
3412 sk->sk_shutdown |= RCV_SHUTDOWN;
3413 sock_set_flag(sk, SOCK_DONE);
3414
3415 switch (sk->sk_state) {
3416 case TCP_SYN_RECV:
3417 case TCP_ESTABLISHED:
3418 /* Move to CLOSE_WAIT */
3419 tcp_set_state(sk, TCP_CLOSE_WAIT);
3420 inet_csk(sk)->icsk_ack.pingpong = 1;
3421 break;
3422
3423 case TCP_CLOSE_WAIT:
3424 case TCP_CLOSING:
3425 /* Received a retransmission of the FIN, do
3426 * nothing.
3427 */
3428 break;
3429 case TCP_LAST_ACK:
3430 /* RFC793: Remain in the LAST-ACK state. */
3431 break;
3432
3433 case TCP_FIN_WAIT1:
3434 /* This case occurs when a simultaneous close
3435 * happens, we must ack the received FIN and
3436 * enter the CLOSING state.
3437 */
3438 tcp_send_ack(sk);
3439 tcp_set_state(sk, TCP_CLOSING);
3440 break;
3441 case TCP_FIN_WAIT2:
3442 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3443 tcp_send_ack(sk);
3444 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3445 break;
3446 default:
3447 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3448 * cases we should never reach this piece of code.
3449 */
3450 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3451 __FUNCTION__, sk->sk_state);
3452 break;
3453 }
3454
3455 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3456 * Probably, we should reset in this case. For now drop them.
3457 */
3458 __skb_queue_purge(&tp->out_of_order_queue);
3459 if (tcp_is_sack(tp))
3460 tcp_sack_reset(&tp->rx_opt);
3461 sk_stream_mem_reclaim(sk);
3462
3463 if (!sock_flag(sk, SOCK_DEAD)) {
3464 sk->sk_state_change(sk);
3465
3466 /* Do not send POLL_HUP for half duplex close. */
3467 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3468 sk->sk_state == TCP_CLOSE)
3469 sk_wake_async(sk, 1, POLL_HUP);
3470 else
3471 sk_wake_async(sk, 1, POLL_IN);
3472 }
3473 }
3474
3475 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3476 {
3477 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3478 if (before(seq, sp->start_seq))
3479 sp->start_seq = seq;
3480 if (after(end_seq, sp->end_seq))
3481 sp->end_seq = end_seq;
3482 return 1;
3483 }
3484 return 0;
3485 }
3486
3487 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3488 {
3489 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3490 if (before(seq, tp->rcv_nxt))
3491 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3492 else
3493 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3494
3495 tp->rx_opt.dsack = 1;
3496 tp->duplicate_sack[0].start_seq = seq;
3497 tp->duplicate_sack[0].end_seq = end_seq;
3498 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3499 }
3500 }
3501
3502 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3503 {
3504 if (!tp->rx_opt.dsack)
3505 tcp_dsack_set(tp, seq, end_seq);
3506 else
3507 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3508 }
3509
3510 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3511 {
3512 struct tcp_sock *tp = tcp_sk(sk);
3513
3514 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3515 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3516 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3517 tcp_enter_quickack_mode(sk);
3518
3519 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3520 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3521
3522 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3523 end_seq = tp->rcv_nxt;
3524 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3525 }
3526 }
3527
3528 tcp_send_ack(sk);
3529 }
3530
3531 /* These routines update the SACK block as out-of-order packets arrive or
3532 * in-order packets close up the sequence space.
3533 */
3534 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3535 {
3536 int this_sack;
3537 struct tcp_sack_block *sp = &tp->selective_acks[0];
3538 struct tcp_sack_block *swalk = sp+1;
3539
3540 /* See if the recent change to the first SACK eats into
3541 * or hits the sequence space of other SACK blocks, if so coalesce.
3542 */
3543 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3544 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3545 int i;
3546
3547 /* Zap SWALK, by moving every further SACK up by one slot.
3548 * Decrease num_sacks.
3549 */
3550 tp->rx_opt.num_sacks--;
3551 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3552 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3553 sp[i] = sp[i+1];
3554 continue;
3555 }
3556 this_sack++, swalk++;
3557 }
3558 }
3559
3560 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3561 {
3562 __u32 tmp;
3563
3564 tmp = sack1->start_seq;
3565 sack1->start_seq = sack2->start_seq;
3566 sack2->start_seq = tmp;
3567
3568 tmp = sack1->end_seq;
3569 sack1->end_seq = sack2->end_seq;
3570 sack2->end_seq = tmp;
3571 }
3572
3573 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3574 {
3575 struct tcp_sock *tp = tcp_sk(sk);
3576 struct tcp_sack_block *sp = &tp->selective_acks[0];
3577 int cur_sacks = tp->rx_opt.num_sacks;
3578 int this_sack;
3579
3580 if (!cur_sacks)
3581 goto new_sack;
3582
3583 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3584 if (tcp_sack_extend(sp, seq, end_seq)) {
3585 /* Rotate this_sack to the first one. */
3586 for (; this_sack>0; this_sack--, sp--)
3587 tcp_sack_swap(sp, sp-1);
3588 if (cur_sacks > 1)
3589 tcp_sack_maybe_coalesce(tp);
3590 return;
3591 }
3592 }
3593
3594 /* Could not find an adjacent existing SACK, build a new one,
3595 * put it at the front, and shift everyone else down. We
3596 * always know there is at least one SACK present already here.
3597 *
3598 * If the sack array is full, forget about the last one.
3599 */
3600 if (this_sack >= 4) {
3601 this_sack--;
3602 tp->rx_opt.num_sacks--;
3603 sp--;
3604 }
3605 for (; this_sack > 0; this_sack--, sp--)
3606 *sp = *(sp-1);
3607
3608 new_sack:
3609 /* Build the new head SACK, and we're done. */
3610 sp->start_seq = seq;
3611 sp->end_seq = end_seq;
3612 tp->rx_opt.num_sacks++;
3613 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3614 }
3615
3616 /* RCV.NXT advances, some SACKs should be eaten. */
3617
3618 static void tcp_sack_remove(struct tcp_sock *tp)
3619 {
3620 struct tcp_sack_block *sp = &tp->selective_acks[0];
3621 int num_sacks = tp->rx_opt.num_sacks;
3622 int this_sack;
3623
3624 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3625 if (skb_queue_empty(&tp->out_of_order_queue)) {
3626 tp->rx_opt.num_sacks = 0;
3627 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3628 return;
3629 }
3630
3631 for (this_sack = 0; this_sack < num_sacks; ) {
3632 /* Check if the start of the sack is covered by RCV.NXT. */
3633 if (!before(tp->rcv_nxt, sp->start_seq)) {
3634 int i;
3635
3636 /* RCV.NXT must cover all the block! */
3637 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3638
3639 /* Zap this SACK, by moving forward any other SACKS. */
3640 for (i=this_sack+1; i < num_sacks; i++)
3641 tp->selective_acks[i-1] = tp->selective_acks[i];
3642 num_sacks--;
3643 continue;
3644 }
3645 this_sack++;
3646 sp++;
3647 }
3648 if (num_sacks != tp->rx_opt.num_sacks) {
3649 tp->rx_opt.num_sacks = num_sacks;
3650 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3651 }
3652 }
3653
3654 /* This one checks to see if we can put data from the
3655 * out_of_order queue into the receive_queue.
3656 */
3657 static void tcp_ofo_queue(struct sock *sk)
3658 {
3659 struct tcp_sock *tp = tcp_sk(sk);
3660 __u32 dsack_high = tp->rcv_nxt;
3661 struct sk_buff *skb;
3662
3663 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3664 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3665 break;
3666
3667 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3668 __u32 dsack = dsack_high;
3669 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3670 dsack_high = TCP_SKB_CB(skb)->end_seq;
3671 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3672 }
3673
3674 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3675 SOCK_DEBUG(sk, "ofo packet was already received \n");
3676 __skb_unlink(skb, &tp->out_of_order_queue);
3677 __kfree_skb(skb);
3678 continue;
3679 }
3680 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3681 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3682 TCP_SKB_CB(skb)->end_seq);
3683
3684 __skb_unlink(skb, &tp->out_of_order_queue);
3685 __skb_queue_tail(&sk->sk_receive_queue, skb);
3686 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3687 if (tcp_hdr(skb)->fin)
3688 tcp_fin(skb, sk, tcp_hdr(skb));
3689 }
3690 }
3691
3692 static int tcp_prune_queue(struct sock *sk);
3693
3694 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3695 {
3696 struct tcphdr *th = tcp_hdr(skb);
3697 struct tcp_sock *tp = tcp_sk(sk);
3698 int eaten = -1;
3699
3700 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3701 goto drop;
3702
3703 __skb_pull(skb, th->doff*4);
3704
3705 TCP_ECN_accept_cwr(tp, skb);
3706
3707 if (tp->rx_opt.dsack) {
3708 tp->rx_opt.dsack = 0;
3709 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3710 4 - tp->rx_opt.tstamp_ok);
3711 }
3712
3713 /* Queue data for delivery to the user.
3714 * Packets in sequence go to the receive queue.
3715 * Out of sequence packets to the out_of_order_queue.
3716 */
3717 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3718 if (tcp_receive_window(tp) == 0)
3719 goto out_of_window;
3720
3721 /* Ok. In sequence. In window. */
3722 if (tp->ucopy.task == current &&
3723 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3724 sock_owned_by_user(sk) && !tp->urg_data) {
3725 int chunk = min_t(unsigned int, skb->len,
3726 tp->ucopy.len);
3727
3728 __set_current_state(TASK_RUNNING);
3729
3730 local_bh_enable();
3731 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3732 tp->ucopy.len -= chunk;
3733 tp->copied_seq += chunk;
3734 eaten = (chunk == skb->len && !th->fin);
3735 tcp_rcv_space_adjust(sk);
3736 }
3737 local_bh_disable();
3738 }
3739
3740 if (eaten <= 0) {
3741 queue_and_out:
3742 if (eaten < 0 &&
3743 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3744 !sk_stream_rmem_schedule(sk, skb))) {
3745 if (tcp_prune_queue(sk) < 0 ||
3746 !sk_stream_rmem_schedule(sk, skb))
3747 goto drop;
3748 }
3749 sk_stream_set_owner_r(skb, sk);
3750 __skb_queue_tail(&sk->sk_receive_queue, skb);
3751 }
3752 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3753 if (skb->len)
3754 tcp_event_data_recv(sk, skb);
3755 if (th->fin)
3756 tcp_fin(skb, sk, th);
3757
3758 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3759 tcp_ofo_queue(sk);
3760
3761 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3762 * gap in queue is filled.
3763 */
3764 if (skb_queue_empty(&tp->out_of_order_queue))
3765 inet_csk(sk)->icsk_ack.pingpong = 0;
3766 }
3767
3768 if (tp->rx_opt.num_sacks)
3769 tcp_sack_remove(tp);
3770
3771 tcp_fast_path_check(sk);
3772
3773 if (eaten > 0)
3774 __kfree_skb(skb);
3775 else if (!sock_flag(sk, SOCK_DEAD))
3776 sk->sk_data_ready(sk, 0);
3777 return;
3778 }
3779
3780 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3781 /* A retransmit, 2nd most common case. Force an immediate ack. */
3782 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3783 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3784
3785 out_of_window:
3786 tcp_enter_quickack_mode(sk);
3787 inet_csk_schedule_ack(sk);
3788 drop:
3789 __kfree_skb(skb);
3790 return;
3791 }
3792
3793 /* Out of window. F.e. zero window probe. */
3794 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3795 goto out_of_window;
3796
3797 tcp_enter_quickack_mode(sk);
3798
3799 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3800 /* Partial packet, seq < rcv_next < end_seq */
3801 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3802 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3803 TCP_SKB_CB(skb)->end_seq);
3804
3805 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3806
3807 /* If window is closed, drop tail of packet. But after
3808 * remembering D-SACK for its head made in previous line.
3809 */
3810 if (!tcp_receive_window(tp))
3811 goto out_of_window;
3812 goto queue_and_out;
3813 }
3814
3815 TCP_ECN_check_ce(tp, skb);
3816
3817 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3818 !sk_stream_rmem_schedule(sk, skb)) {
3819 if (tcp_prune_queue(sk) < 0 ||
3820 !sk_stream_rmem_schedule(sk, skb))
3821 goto drop;
3822 }
3823
3824 /* Disable header prediction. */
3825 tp->pred_flags = 0;
3826 inet_csk_schedule_ack(sk);
3827
3828 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3829 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3830
3831 sk_stream_set_owner_r(skb, sk);
3832
3833 if (!skb_peek(&tp->out_of_order_queue)) {
3834 /* Initial out of order segment, build 1 SACK. */
3835 if (tcp_is_sack(tp)) {
3836 tp->rx_opt.num_sacks = 1;
3837 tp->rx_opt.dsack = 0;
3838 tp->rx_opt.eff_sacks = 1;
3839 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3840 tp->selective_acks[0].end_seq =
3841 TCP_SKB_CB(skb)->end_seq;
3842 }
3843 __skb_queue_head(&tp->out_of_order_queue,skb);
3844 } else {
3845 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3846 u32 seq = TCP_SKB_CB(skb)->seq;
3847 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3848
3849 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3850 __skb_append(skb1, skb, &tp->out_of_order_queue);
3851
3852 if (!tp->rx_opt.num_sacks ||
3853 tp->selective_acks[0].end_seq != seq)
3854 goto add_sack;
3855
3856 /* Common case: data arrive in order after hole. */
3857 tp->selective_acks[0].end_seq = end_seq;
3858 return;
3859 }
3860
3861 /* Find place to insert this segment. */
3862 do {
3863 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3864 break;
3865 } while ((skb1 = skb1->prev) !=
3866 (struct sk_buff*)&tp->out_of_order_queue);
3867
3868 /* Do skb overlap to previous one? */
3869 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3870 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3871 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3872 /* All the bits are present. Drop. */
3873 __kfree_skb(skb);
3874 tcp_dsack_set(tp, seq, end_seq);
3875 goto add_sack;
3876 }
3877 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3878 /* Partial overlap. */
3879 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3880 } else {
3881 skb1 = skb1->prev;
3882 }
3883 }
3884 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3885
3886 /* And clean segments covered by new one as whole. */
3887 while ((skb1 = skb->next) !=
3888 (struct sk_buff*)&tp->out_of_order_queue &&
3889 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3890 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3891 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3892 break;
3893 }
3894 __skb_unlink(skb1, &tp->out_of_order_queue);
3895 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3896 __kfree_skb(skb1);
3897 }
3898
3899 add_sack:
3900 if (tcp_is_sack(tp))
3901 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3902 }
3903 }
3904
3905 /* Collapse contiguous sequence of skbs head..tail with
3906 * sequence numbers start..end.
3907 * Segments with FIN/SYN are not collapsed (only because this
3908 * simplifies code)
3909 */
3910 static void
3911 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3912 struct sk_buff *head, struct sk_buff *tail,
3913 u32 start, u32 end)
3914 {
3915 struct sk_buff *skb;
3916
3917 /* First, check that queue is collapsible and find
3918 * the point where collapsing can be useful. */
3919 for (skb = head; skb != tail; ) {
3920 /* No new bits? It is possible on ofo queue. */
3921 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3922 struct sk_buff *next = skb->next;
3923 __skb_unlink(skb, list);
3924 __kfree_skb(skb);
3925 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3926 skb = next;
3927 continue;
3928 }
3929
3930 /* The first skb to collapse is:
3931 * - not SYN/FIN and
3932 * - bloated or contains data before "start" or
3933 * overlaps to the next one.
3934 */
3935 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3936 (tcp_win_from_space(skb->truesize) > skb->len ||
3937 before(TCP_SKB_CB(skb)->seq, start) ||
3938 (skb->next != tail &&
3939 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3940 break;
3941
3942 /* Decided to skip this, advance start seq. */
3943 start = TCP_SKB_CB(skb)->end_seq;
3944 skb = skb->next;
3945 }
3946 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3947 return;
3948
3949 while (before(start, end)) {
3950 struct sk_buff *nskb;
3951 unsigned int header = skb_headroom(skb);
3952 int copy = SKB_MAX_ORDER(header, 0);
3953
3954 /* Too big header? This can happen with IPv6. */
3955 if (copy < 0)
3956 return;
3957 if (end-start < copy)
3958 copy = end-start;
3959 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3960 if (!nskb)
3961 return;
3962
3963 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3964 skb_set_network_header(nskb, (skb_network_header(skb) -
3965 skb->head));
3966 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3967 skb->head));
3968 skb_reserve(nskb, header);
3969 memcpy(nskb->head, skb->head, header);
3970 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3971 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3972 __skb_insert(nskb, skb->prev, skb, list);
3973 sk_stream_set_owner_r(nskb, sk);
3974
3975 /* Copy data, releasing collapsed skbs. */
3976 while (copy > 0) {
3977 int offset = start - TCP_SKB_CB(skb)->seq;
3978 int size = TCP_SKB_CB(skb)->end_seq - start;
3979
3980 BUG_ON(offset < 0);
3981 if (size > 0) {
3982 size = min(copy, size);
3983 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3984 BUG();
3985 TCP_SKB_CB(nskb)->end_seq += size;
3986 copy -= size;
3987 start += size;
3988 }
3989 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3990 struct sk_buff *next = skb->next;
3991 __skb_unlink(skb, list);
3992 __kfree_skb(skb);
3993 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3994 skb = next;
3995 if (skb == tail ||
3996 tcp_hdr(skb)->syn ||
3997 tcp_hdr(skb)->fin)
3998 return;
3999 }
4000 }
4001 }
4002 }
4003
4004 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4005 * and tcp_collapse() them until all the queue is collapsed.
4006 */
4007 static void tcp_collapse_ofo_queue(struct sock *sk)
4008 {
4009 struct tcp_sock *tp = tcp_sk(sk);
4010 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4011 struct sk_buff *head;
4012 u32 start, end;
4013
4014 if (skb == NULL)
4015 return;
4016
4017 start = TCP_SKB_CB(skb)->seq;
4018 end = TCP_SKB_CB(skb)->end_seq;
4019 head = skb;
4020
4021 for (;;) {
4022 skb = skb->next;
4023
4024 /* Segment is terminated when we see gap or when
4025 * we are at the end of all the queue. */
4026 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4027 after(TCP_SKB_CB(skb)->seq, end) ||
4028 before(TCP_SKB_CB(skb)->end_seq, start)) {
4029 tcp_collapse(sk, &tp->out_of_order_queue,
4030 head, skb, start, end);
4031 head = skb;
4032 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4033 break;
4034 /* Start new segment */
4035 start = TCP_SKB_CB(skb)->seq;
4036 end = TCP_SKB_CB(skb)->end_seq;
4037 } else {
4038 if (before(TCP_SKB_CB(skb)->seq, start))
4039 start = TCP_SKB_CB(skb)->seq;
4040 if (after(TCP_SKB_CB(skb)->end_seq, end))
4041 end = TCP_SKB_CB(skb)->end_seq;
4042 }
4043 }
4044 }
4045
4046 /* Reduce allocated memory if we can, trying to get
4047 * the socket within its memory limits again.
4048 *
4049 * Return less than zero if we should start dropping frames
4050 * until the socket owning process reads some of the data
4051 * to stabilize the situation.
4052 */
4053 static int tcp_prune_queue(struct sock *sk)
4054 {
4055 struct tcp_sock *tp = tcp_sk(sk);
4056
4057 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4058
4059 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4060
4061 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4062 tcp_clamp_window(sk);
4063 else if (tcp_memory_pressure)
4064 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4065
4066 tcp_collapse_ofo_queue(sk);
4067 tcp_collapse(sk, &sk->sk_receive_queue,
4068 sk->sk_receive_queue.next,
4069 (struct sk_buff*)&sk->sk_receive_queue,
4070 tp->copied_seq, tp->rcv_nxt);
4071 sk_stream_mem_reclaim(sk);
4072
4073 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4074 return 0;
4075
4076 /* Collapsing did not help, destructive actions follow.
4077 * This must not ever occur. */
4078
4079 /* First, purge the out_of_order queue. */
4080 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4081 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4082 __skb_queue_purge(&tp->out_of_order_queue);
4083
4084 /* Reset SACK state. A conforming SACK implementation will
4085 * do the same at a timeout based retransmit. When a connection
4086 * is in a sad state like this, we care only about integrity
4087 * of the connection not performance.
4088 */
4089 if (tcp_is_sack(tp))
4090 tcp_sack_reset(&tp->rx_opt);
4091 sk_stream_mem_reclaim(sk);
4092 }
4093
4094 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4095 return 0;
4096
4097 /* If we are really being abused, tell the caller to silently
4098 * drop receive data on the floor. It will get retransmitted
4099 * and hopefully then we'll have sufficient space.
4100 */
4101 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4102
4103 /* Massive buffer overcommit. */
4104 tp->pred_flags = 0;
4105 return -1;
4106 }
4107
4108
4109 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4110 * As additional protections, we do not touch cwnd in retransmission phases,
4111 * and if application hit its sndbuf limit recently.
4112 */
4113 void tcp_cwnd_application_limited(struct sock *sk)
4114 {
4115 struct tcp_sock *tp = tcp_sk(sk);
4116
4117 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4118 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4119 /* Limited by application or receiver window. */
4120 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4121 u32 win_used = max(tp->snd_cwnd_used, init_win);
4122 if (win_used < tp->snd_cwnd) {
4123 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4124 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4125 }
4126 tp->snd_cwnd_used = 0;
4127 }
4128 tp->snd_cwnd_stamp = tcp_time_stamp;
4129 }
4130
4131 static int tcp_should_expand_sndbuf(struct sock *sk)
4132 {
4133 struct tcp_sock *tp = tcp_sk(sk);
4134
4135 /* If the user specified a specific send buffer setting, do
4136 * not modify it.
4137 */
4138 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4139 return 0;
4140
4141 /* If we are under global TCP memory pressure, do not expand. */
4142 if (tcp_memory_pressure)
4143 return 0;
4144
4145 /* If we are under soft global TCP memory pressure, do not expand. */
4146 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4147 return 0;
4148
4149 /* If we filled the congestion window, do not expand. */
4150 if (tp->packets_out >= tp->snd_cwnd)
4151 return 0;
4152
4153 return 1;
4154 }
4155
4156 /* When incoming ACK allowed to free some skb from write_queue,
4157 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4158 * on the exit from tcp input handler.
4159 *
4160 * PROBLEM: sndbuf expansion does not work well with largesend.
4161 */
4162 static void tcp_new_space(struct sock *sk)
4163 {
4164 struct tcp_sock *tp = tcp_sk(sk);
4165
4166 if (tcp_should_expand_sndbuf(sk)) {
4167 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4168 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4169 demanded = max_t(unsigned int, tp->snd_cwnd,
4170 tp->reordering + 1);
4171 sndmem *= 2*demanded;
4172 if (sndmem > sk->sk_sndbuf)
4173 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4174 tp->snd_cwnd_stamp = tcp_time_stamp;
4175 }
4176
4177 sk->sk_write_space(sk);
4178 }
4179
4180 static void tcp_check_space(struct sock *sk)
4181 {
4182 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4183 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4184 if (sk->sk_socket &&
4185 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4186 tcp_new_space(sk);
4187 }
4188 }
4189
4190 static inline void tcp_data_snd_check(struct sock *sk)
4191 {
4192 tcp_push_pending_frames(sk);
4193 tcp_check_space(sk);
4194 }
4195
4196 /*
4197 * Check if sending an ack is needed.
4198 */
4199 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4200 {
4201 struct tcp_sock *tp = tcp_sk(sk);
4202
4203 /* More than one full frame received... */
4204 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4205 /* ... and right edge of window advances far enough.
4206 * (tcp_recvmsg() will send ACK otherwise). Or...
4207 */
4208 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4209 /* We ACK each frame or... */
4210 tcp_in_quickack_mode(sk) ||
4211 /* We have out of order data. */
4212 (ofo_possible &&
4213 skb_peek(&tp->out_of_order_queue))) {
4214 /* Then ack it now */
4215 tcp_send_ack(sk);
4216 } else {
4217 /* Else, send delayed ack. */
4218 tcp_send_delayed_ack(sk);
4219 }
4220 }
4221
4222 static inline void tcp_ack_snd_check(struct sock *sk)
4223 {
4224 if (!inet_csk_ack_scheduled(sk)) {
4225 /* We sent a data segment already. */
4226 return;
4227 }
4228 __tcp_ack_snd_check(sk, 1);
4229 }
4230
4231 /*
4232 * This routine is only called when we have urgent data
4233 * signaled. Its the 'slow' part of tcp_urg. It could be
4234 * moved inline now as tcp_urg is only called from one
4235 * place. We handle URGent data wrong. We have to - as
4236 * BSD still doesn't use the correction from RFC961.
4237 * For 1003.1g we should support a new option TCP_STDURG to permit
4238 * either form (or just set the sysctl tcp_stdurg).
4239 */
4240
4241 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4242 {
4243 struct tcp_sock *tp = tcp_sk(sk);
4244 u32 ptr = ntohs(th->urg_ptr);
4245
4246 if (ptr && !sysctl_tcp_stdurg)
4247 ptr--;
4248 ptr += ntohl(th->seq);
4249
4250 /* Ignore urgent data that we've already seen and read. */
4251 if (after(tp->copied_seq, ptr))
4252 return;
4253
4254 /* Do not replay urg ptr.
4255 *
4256 * NOTE: interesting situation not covered by specs.
4257 * Misbehaving sender may send urg ptr, pointing to segment,
4258 * which we already have in ofo queue. We are not able to fetch
4259 * such data and will stay in TCP_URG_NOTYET until will be eaten
4260 * by recvmsg(). Seems, we are not obliged to handle such wicked
4261 * situations. But it is worth to think about possibility of some
4262 * DoSes using some hypothetical application level deadlock.
4263 */
4264 if (before(ptr, tp->rcv_nxt))
4265 return;
4266
4267 /* Do we already have a newer (or duplicate) urgent pointer? */
4268 if (tp->urg_data && !after(ptr, tp->urg_seq))
4269 return;
4270
4271 /* Tell the world about our new urgent pointer. */
4272 sk_send_sigurg(sk);
4273
4274 /* We may be adding urgent data when the last byte read was
4275 * urgent. To do this requires some care. We cannot just ignore
4276 * tp->copied_seq since we would read the last urgent byte again
4277 * as data, nor can we alter copied_seq until this data arrives
4278 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4279 *
4280 * NOTE. Double Dutch. Rendering to plain English: author of comment
4281 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4282 * and expect that both A and B disappear from stream. This is _wrong_.
4283 * Though this happens in BSD with high probability, this is occasional.
4284 * Any application relying on this is buggy. Note also, that fix "works"
4285 * only in this artificial test. Insert some normal data between A and B and we will
4286 * decline of BSD again. Verdict: it is better to remove to trap
4287 * buggy users.
4288 */
4289 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4290 !sock_flag(sk, SOCK_URGINLINE) &&
4291 tp->copied_seq != tp->rcv_nxt) {
4292 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4293 tp->copied_seq++;
4294 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4295 __skb_unlink(skb, &sk->sk_receive_queue);
4296 __kfree_skb(skb);
4297 }
4298 }
4299
4300 tp->urg_data = TCP_URG_NOTYET;
4301 tp->urg_seq = ptr;
4302
4303 /* Disable header prediction. */
4304 tp->pred_flags = 0;
4305 }
4306
4307 /* This is the 'fast' part of urgent handling. */
4308 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4309 {
4310 struct tcp_sock *tp = tcp_sk(sk);
4311
4312 /* Check if we get a new urgent pointer - normally not. */
4313 if (th->urg)
4314 tcp_check_urg(sk,th);
4315
4316 /* Do we wait for any urgent data? - normally not... */
4317 if (tp->urg_data == TCP_URG_NOTYET) {
4318 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4319 th->syn;
4320
4321 /* Is the urgent pointer pointing into this packet? */
4322 if (ptr < skb->len) {
4323 u8 tmp;
4324 if (skb_copy_bits(skb, ptr, &tmp, 1))
4325 BUG();
4326 tp->urg_data = TCP_URG_VALID | tmp;
4327 if (!sock_flag(sk, SOCK_DEAD))
4328 sk->sk_data_ready(sk, 0);
4329 }
4330 }
4331 }
4332
4333 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4334 {
4335 struct tcp_sock *tp = tcp_sk(sk);
4336 int chunk = skb->len - hlen;
4337 int err;
4338
4339 local_bh_enable();
4340 if (skb_csum_unnecessary(skb))
4341 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4342 else
4343 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4344 tp->ucopy.iov);
4345
4346 if (!err) {
4347 tp->ucopy.len -= chunk;
4348 tp->copied_seq += chunk;
4349 tcp_rcv_space_adjust(sk);
4350 }
4351
4352 local_bh_disable();
4353 return err;
4354 }
4355
4356 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4357 {
4358 __sum16 result;
4359
4360 if (sock_owned_by_user(sk)) {
4361 local_bh_enable();
4362 result = __tcp_checksum_complete(skb);
4363 local_bh_disable();
4364 } else {
4365 result = __tcp_checksum_complete(skb);
4366 }
4367 return result;
4368 }
4369
4370 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4371 {
4372 return !skb_csum_unnecessary(skb) &&
4373 __tcp_checksum_complete_user(sk, skb);
4374 }
4375
4376 #ifdef CONFIG_NET_DMA
4377 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4378 {
4379 struct tcp_sock *tp = tcp_sk(sk);
4380 int chunk = skb->len - hlen;
4381 int dma_cookie;
4382 int copied_early = 0;
4383
4384 if (tp->ucopy.wakeup)
4385 return 0;
4386
4387 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4388 tp->ucopy.dma_chan = get_softnet_dma();
4389
4390 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4391
4392 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4393 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4394
4395 if (dma_cookie < 0)
4396 goto out;
4397
4398 tp->ucopy.dma_cookie = dma_cookie;
4399 copied_early = 1;
4400
4401 tp->ucopy.len -= chunk;
4402 tp->copied_seq += chunk;
4403 tcp_rcv_space_adjust(sk);
4404
4405 if ((tp->ucopy.len == 0) ||
4406 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4407 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4408 tp->ucopy.wakeup = 1;
4409 sk->sk_data_ready(sk, 0);
4410 }
4411 } else if (chunk > 0) {
4412 tp->ucopy.wakeup = 1;
4413 sk->sk_data_ready(sk, 0);
4414 }
4415 out:
4416 return copied_early;
4417 }
4418 #endif /* CONFIG_NET_DMA */
4419
4420 /*
4421 * TCP receive function for the ESTABLISHED state.
4422 *
4423 * It is split into a fast path and a slow path. The fast path is
4424 * disabled when:
4425 * - A zero window was announced from us - zero window probing
4426 * is only handled properly in the slow path.
4427 * - Out of order segments arrived.
4428 * - Urgent data is expected.
4429 * - There is no buffer space left
4430 * - Unexpected TCP flags/window values/header lengths are received
4431 * (detected by checking the TCP header against pred_flags)
4432 * - Data is sent in both directions. Fast path only supports pure senders
4433 * or pure receivers (this means either the sequence number or the ack
4434 * value must stay constant)
4435 * - Unexpected TCP option.
4436 *
4437 * When these conditions are not satisfied it drops into a standard
4438 * receive procedure patterned after RFC793 to handle all cases.
4439 * The first three cases are guaranteed by proper pred_flags setting,
4440 * the rest is checked inline. Fast processing is turned on in
4441 * tcp_data_queue when everything is OK.
4442 */
4443 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4444 struct tcphdr *th, unsigned len)
4445 {
4446 struct tcp_sock *tp = tcp_sk(sk);
4447
4448 /*
4449 * Header prediction.
4450 * The code loosely follows the one in the famous
4451 * "30 instruction TCP receive" Van Jacobson mail.
4452 *
4453 * Van's trick is to deposit buffers into socket queue
4454 * on a device interrupt, to call tcp_recv function
4455 * on the receive process context and checksum and copy
4456 * the buffer to user space. smart...
4457 *
4458 * Our current scheme is not silly either but we take the
4459 * extra cost of the net_bh soft interrupt processing...
4460 * We do checksum and copy also but from device to kernel.
4461 */
4462
4463 tp->rx_opt.saw_tstamp = 0;
4464
4465 /* pred_flags is 0xS?10 << 16 + snd_wnd
4466 * if header_prediction is to be made
4467 * 'S' will always be tp->tcp_header_len >> 2
4468 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4469 * turn it off (when there are holes in the receive
4470 * space for instance)
4471 * PSH flag is ignored.
4472 */
4473
4474 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4475 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4476 int tcp_header_len = tp->tcp_header_len;
4477
4478 /* Timestamp header prediction: tcp_header_len
4479 * is automatically equal to th->doff*4 due to pred_flags
4480 * match.
4481 */
4482
4483 /* Check timestamp */
4484 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4485 __be32 *ptr = (__be32 *)(th + 1);
4486
4487 /* No? Slow path! */
4488 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4489 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4490 goto slow_path;
4491
4492 tp->rx_opt.saw_tstamp = 1;
4493 ++ptr;
4494 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4495 ++ptr;
4496 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4497
4498 /* If PAWS failed, check it more carefully in slow path */
4499 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4500 goto slow_path;
4501
4502 /* DO NOT update ts_recent here, if checksum fails
4503 * and timestamp was corrupted part, it will result
4504 * in a hung connection since we will drop all
4505 * future packets due to the PAWS test.
4506 */
4507 }
4508
4509 if (len <= tcp_header_len) {
4510 /* Bulk data transfer: sender */
4511 if (len == tcp_header_len) {
4512 /* Predicted packet is in window by definition.
4513 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4514 * Hence, check seq<=rcv_wup reduces to:
4515 */
4516 if (tcp_header_len ==
4517 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4518 tp->rcv_nxt == tp->rcv_wup)
4519 tcp_store_ts_recent(tp);
4520
4521 /* We know that such packets are checksummed
4522 * on entry.
4523 */
4524 tcp_ack(sk, skb, 0);
4525 __kfree_skb(skb);
4526 tcp_data_snd_check(sk);
4527 return 0;
4528 } else { /* Header too small */
4529 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4530 goto discard;
4531 }
4532 } else {
4533 int eaten = 0;
4534 int copied_early = 0;
4535
4536 if (tp->copied_seq == tp->rcv_nxt &&
4537 len - tcp_header_len <= tp->ucopy.len) {
4538 #ifdef CONFIG_NET_DMA
4539 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4540 copied_early = 1;
4541 eaten = 1;
4542 }
4543 #endif
4544 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4545 __set_current_state(TASK_RUNNING);
4546
4547 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4548 eaten = 1;
4549 }
4550 if (eaten) {
4551 /* Predicted packet is in window by definition.
4552 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4553 * Hence, check seq<=rcv_wup reduces to:
4554 */
4555 if (tcp_header_len ==
4556 (sizeof(struct tcphdr) +
4557 TCPOLEN_TSTAMP_ALIGNED) &&
4558 tp->rcv_nxt == tp->rcv_wup)
4559 tcp_store_ts_recent(tp);
4560
4561 tcp_rcv_rtt_measure_ts(sk, skb);
4562
4563 __skb_pull(skb, tcp_header_len);
4564 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4565 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4566 }
4567 if (copied_early)
4568 tcp_cleanup_rbuf(sk, skb->len);
4569 }
4570 if (!eaten) {
4571 if (tcp_checksum_complete_user(sk, skb))
4572 goto csum_error;
4573
4574 /* Predicted packet is in window by definition.
4575 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4576 * Hence, check seq<=rcv_wup reduces to:
4577 */
4578 if (tcp_header_len ==
4579 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4580 tp->rcv_nxt == tp->rcv_wup)
4581 tcp_store_ts_recent(tp);
4582
4583 tcp_rcv_rtt_measure_ts(sk, skb);
4584
4585 if ((int)skb->truesize > sk->sk_forward_alloc)
4586 goto step5;
4587
4588 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4589
4590 /* Bulk data transfer: receiver */
4591 __skb_pull(skb,tcp_header_len);
4592 __skb_queue_tail(&sk->sk_receive_queue, skb);
4593 sk_stream_set_owner_r(skb, sk);
4594 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4595 }
4596
4597 tcp_event_data_recv(sk, skb);
4598
4599 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4600 /* Well, only one small jumplet in fast path... */
4601 tcp_ack(sk, skb, FLAG_DATA);
4602 tcp_data_snd_check(sk);
4603 if (!inet_csk_ack_scheduled(sk))
4604 goto no_ack;
4605 }
4606
4607 __tcp_ack_snd_check(sk, 0);
4608 no_ack:
4609 #ifdef CONFIG_NET_DMA
4610 if (copied_early)
4611 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4612 else
4613 #endif
4614 if (eaten)
4615 __kfree_skb(skb);
4616 else
4617 sk->sk_data_ready(sk, 0);
4618 return 0;
4619 }
4620 }
4621
4622 slow_path:
4623 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4624 goto csum_error;
4625
4626 /*
4627 * RFC1323: H1. Apply PAWS check first.
4628 */
4629 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4630 tcp_paws_discard(sk, skb)) {
4631 if (!th->rst) {
4632 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4633 tcp_send_dupack(sk, skb);
4634 goto discard;
4635 }
4636 /* Resets are accepted even if PAWS failed.
4637
4638 ts_recent update must be made after we are sure
4639 that the packet is in window.
4640 */
4641 }
4642
4643 /*
4644 * Standard slow path.
4645 */
4646
4647 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4648 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4649 * (RST) segments are validated by checking their SEQ-fields."
4650 * And page 69: "If an incoming segment is not acceptable,
4651 * an acknowledgment should be sent in reply (unless the RST bit
4652 * is set, if so drop the segment and return)".
4653 */
4654 if (!th->rst)
4655 tcp_send_dupack(sk, skb);
4656 goto discard;
4657 }
4658
4659 if (th->rst) {
4660 tcp_reset(sk);
4661 goto discard;
4662 }
4663
4664 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4665
4666 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4667 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4668 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4669 tcp_reset(sk);
4670 return 1;
4671 }
4672
4673 step5:
4674 if (th->ack)
4675 tcp_ack(sk, skb, FLAG_SLOWPATH);
4676
4677 tcp_rcv_rtt_measure_ts(sk, skb);
4678
4679 /* Process urgent data. */
4680 tcp_urg(sk, skb, th);
4681
4682 /* step 7: process the segment text */
4683 tcp_data_queue(sk, skb);
4684
4685 tcp_data_snd_check(sk);
4686 tcp_ack_snd_check(sk);
4687 return 0;
4688
4689 csum_error:
4690 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4691
4692 discard:
4693 __kfree_skb(skb);
4694 return 0;
4695 }
4696
4697 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4698 struct tcphdr *th, unsigned len)
4699 {
4700 struct tcp_sock *tp = tcp_sk(sk);
4701 struct inet_connection_sock *icsk = inet_csk(sk);
4702 int saved_clamp = tp->rx_opt.mss_clamp;
4703
4704 tcp_parse_options(skb, &tp->rx_opt, 0);
4705
4706 if (th->ack) {
4707 /* rfc793:
4708 * "If the state is SYN-SENT then
4709 * first check the ACK bit
4710 * If the ACK bit is set
4711 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4712 * a reset (unless the RST bit is set, if so drop
4713 * the segment and return)"
4714 *
4715 * We do not send data with SYN, so that RFC-correct
4716 * test reduces to:
4717 */
4718 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4719 goto reset_and_undo;
4720
4721 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4722 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4723 tcp_time_stamp)) {
4724 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4725 goto reset_and_undo;
4726 }
4727
4728 /* Now ACK is acceptable.
4729 *
4730 * "If the RST bit is set
4731 * If the ACK was acceptable then signal the user "error:
4732 * connection reset", drop the segment, enter CLOSED state,
4733 * delete TCB, and return."
4734 */
4735
4736 if (th->rst) {
4737 tcp_reset(sk);
4738 goto discard;
4739 }
4740
4741 /* rfc793:
4742 * "fifth, if neither of the SYN or RST bits is set then
4743 * drop the segment and return."
4744 *
4745 * See note below!
4746 * --ANK(990513)
4747 */
4748 if (!th->syn)
4749 goto discard_and_undo;
4750
4751 /* rfc793:
4752 * "If the SYN bit is on ...
4753 * are acceptable then ...
4754 * (our SYN has been ACKed), change the connection
4755 * state to ESTABLISHED..."
4756 */
4757
4758 TCP_ECN_rcv_synack(tp, th);
4759
4760 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4761 tcp_ack(sk, skb, FLAG_SLOWPATH);
4762
4763 /* Ok.. it's good. Set up sequence numbers and
4764 * move to established.
4765 */
4766 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4767 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4768
4769 /* RFC1323: The window in SYN & SYN/ACK segments is
4770 * never scaled.
4771 */
4772 tp->snd_wnd = ntohs(th->window);
4773 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4774
4775 if (!tp->rx_opt.wscale_ok) {
4776 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4777 tp->window_clamp = min(tp->window_clamp, 65535U);
4778 }
4779
4780 if (tp->rx_opt.saw_tstamp) {
4781 tp->rx_opt.tstamp_ok = 1;
4782 tp->tcp_header_len =
4783 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4784 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4785 tcp_store_ts_recent(tp);
4786 } else {
4787 tp->tcp_header_len = sizeof(struct tcphdr);
4788 }
4789
4790 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4791 tcp_enable_fack(tp);
4792
4793 tcp_mtup_init(sk);
4794 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4795 tcp_initialize_rcv_mss(sk);
4796
4797 /* Remember, tcp_poll() does not lock socket!
4798 * Change state from SYN-SENT only after copied_seq
4799 * is initialized. */
4800 tp->copied_seq = tp->rcv_nxt;
4801 smp_mb();
4802 tcp_set_state(sk, TCP_ESTABLISHED);
4803
4804 security_inet_conn_established(sk, skb);
4805
4806 /* Make sure socket is routed, for correct metrics. */
4807 icsk->icsk_af_ops->rebuild_header(sk);
4808
4809 tcp_init_metrics(sk);
4810
4811 tcp_init_congestion_control(sk);
4812
4813 /* Prevent spurious tcp_cwnd_restart() on first data
4814 * packet.
4815 */
4816 tp->lsndtime = tcp_time_stamp;
4817
4818 tcp_init_buffer_space(sk);
4819
4820 if (sock_flag(sk, SOCK_KEEPOPEN))
4821 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4822
4823 if (!tp->rx_opt.snd_wscale)
4824 __tcp_fast_path_on(tp, tp->snd_wnd);
4825 else
4826 tp->pred_flags = 0;
4827
4828 if (!sock_flag(sk, SOCK_DEAD)) {
4829 sk->sk_state_change(sk);
4830 sk_wake_async(sk, 0, POLL_OUT);
4831 }
4832
4833 if (sk->sk_write_pending ||
4834 icsk->icsk_accept_queue.rskq_defer_accept ||
4835 icsk->icsk_ack.pingpong) {
4836 /* Save one ACK. Data will be ready after
4837 * several ticks, if write_pending is set.
4838 *
4839 * It may be deleted, but with this feature tcpdumps
4840 * look so _wonderfully_ clever, that I was not able
4841 * to stand against the temptation 8) --ANK
4842 */
4843 inet_csk_schedule_ack(sk);
4844 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4845 icsk->icsk_ack.ato = TCP_ATO_MIN;
4846 tcp_incr_quickack(sk);
4847 tcp_enter_quickack_mode(sk);
4848 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4849 TCP_DELACK_MAX, TCP_RTO_MAX);
4850
4851 discard:
4852 __kfree_skb(skb);
4853 return 0;
4854 } else {
4855 tcp_send_ack(sk);
4856 }
4857 return -1;
4858 }
4859
4860 /* No ACK in the segment */
4861
4862 if (th->rst) {
4863 /* rfc793:
4864 * "If the RST bit is set
4865 *
4866 * Otherwise (no ACK) drop the segment and return."
4867 */
4868
4869 goto discard_and_undo;
4870 }
4871
4872 /* PAWS check. */
4873 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4874 goto discard_and_undo;
4875
4876 if (th->syn) {
4877 /* We see SYN without ACK. It is attempt of
4878 * simultaneous connect with crossed SYNs.
4879 * Particularly, it can be connect to self.
4880 */
4881 tcp_set_state(sk, TCP_SYN_RECV);
4882
4883 if (tp->rx_opt.saw_tstamp) {
4884 tp->rx_opt.tstamp_ok = 1;
4885 tcp_store_ts_recent(tp);
4886 tp->tcp_header_len =
4887 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4888 } else {
4889 tp->tcp_header_len = sizeof(struct tcphdr);
4890 }
4891
4892 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4893 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4894
4895 /* RFC1323: The window in SYN & SYN/ACK segments is
4896 * never scaled.
4897 */
4898 tp->snd_wnd = ntohs(th->window);
4899 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4900 tp->max_window = tp->snd_wnd;
4901
4902 TCP_ECN_rcv_syn(tp, th);
4903
4904 tcp_mtup_init(sk);
4905 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4906 tcp_initialize_rcv_mss(sk);
4907
4908
4909 tcp_send_synack(sk);
4910 #if 0
4911 /* Note, we could accept data and URG from this segment.
4912 * There are no obstacles to make this.
4913 *
4914 * However, if we ignore data in ACKless segments sometimes,
4915 * we have no reasons to accept it sometimes.
4916 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4917 * is not flawless. So, discard packet for sanity.
4918 * Uncomment this return to process the data.
4919 */
4920 return -1;
4921 #else
4922 goto discard;
4923 #endif
4924 }
4925 /* "fifth, if neither of the SYN or RST bits is set then
4926 * drop the segment and return."
4927 */
4928
4929 discard_and_undo:
4930 tcp_clear_options(&tp->rx_opt);
4931 tp->rx_opt.mss_clamp = saved_clamp;
4932 goto discard;
4933
4934 reset_and_undo:
4935 tcp_clear_options(&tp->rx_opt);
4936 tp->rx_opt.mss_clamp = saved_clamp;
4937 return 1;
4938 }
4939
4940
4941 /*
4942 * This function implements the receiving procedure of RFC 793 for
4943 * all states except ESTABLISHED and TIME_WAIT.
4944 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4945 * address independent.
4946 */
4947
4948 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4949 struct tcphdr *th, unsigned len)
4950 {
4951 struct tcp_sock *tp = tcp_sk(sk);
4952 struct inet_connection_sock *icsk = inet_csk(sk);
4953 int queued = 0;
4954
4955 tp->rx_opt.saw_tstamp = 0;
4956
4957 switch (sk->sk_state) {
4958 case TCP_CLOSE:
4959 goto discard;
4960
4961 case TCP_LISTEN:
4962 if (th->ack)
4963 return 1;
4964
4965 if (th->rst)
4966 goto discard;
4967
4968 if (th->syn) {
4969 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4970 return 1;
4971
4972 /* Now we have several options: In theory there is
4973 * nothing else in the frame. KA9Q has an option to
4974 * send data with the syn, BSD accepts data with the
4975 * syn up to the [to be] advertised window and
4976 * Solaris 2.1 gives you a protocol error. For now
4977 * we just ignore it, that fits the spec precisely
4978 * and avoids incompatibilities. It would be nice in
4979 * future to drop through and process the data.
4980 *
4981 * Now that TTCP is starting to be used we ought to
4982 * queue this data.
4983 * But, this leaves one open to an easy denial of
4984 * service attack, and SYN cookies can't defend
4985 * against this problem. So, we drop the data
4986 * in the interest of security over speed unless
4987 * it's still in use.
4988 */
4989 kfree_skb(skb);
4990 return 0;
4991 }
4992 goto discard;
4993
4994 case TCP_SYN_SENT:
4995 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4996 if (queued >= 0)
4997 return queued;
4998
4999 /* Do step6 onward by hand. */
5000 tcp_urg(sk, skb, th);
5001 __kfree_skb(skb);
5002 tcp_data_snd_check(sk);
5003 return 0;
5004 }
5005
5006 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5007 tcp_paws_discard(sk, skb)) {
5008 if (!th->rst) {
5009 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5010 tcp_send_dupack(sk, skb);
5011 goto discard;
5012 }
5013 /* Reset is accepted even if it did not pass PAWS. */
5014 }
5015
5016 /* step 1: check sequence number */
5017 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5018 if (!th->rst)
5019 tcp_send_dupack(sk, skb);
5020 goto discard;
5021 }
5022
5023 /* step 2: check RST bit */
5024 if (th->rst) {
5025 tcp_reset(sk);
5026 goto discard;
5027 }
5028
5029 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5030
5031 /* step 3: check security and precedence [ignored] */
5032
5033 /* step 4:
5034 *
5035 * Check for a SYN in window.
5036 */
5037 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5038 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5039 tcp_reset(sk);
5040 return 1;
5041 }
5042
5043 /* step 5: check the ACK field */
5044 if (th->ack) {
5045 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5046
5047 switch (sk->sk_state) {
5048 case TCP_SYN_RECV:
5049 if (acceptable) {
5050 tp->copied_seq = tp->rcv_nxt;
5051 smp_mb();
5052 tcp_set_state(sk, TCP_ESTABLISHED);
5053 sk->sk_state_change(sk);
5054
5055 /* Note, that this wakeup is only for marginal
5056 * crossed SYN case. Passively open sockets
5057 * are not waked up, because sk->sk_sleep ==
5058 * NULL and sk->sk_socket == NULL.
5059 */
5060 if (sk->sk_socket) {
5061 sk_wake_async(sk,0,POLL_OUT);
5062 }
5063
5064 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5065 tp->snd_wnd = ntohs(th->window) <<
5066 tp->rx_opt.snd_wscale;
5067 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5068 TCP_SKB_CB(skb)->seq);
5069
5070 /* tcp_ack considers this ACK as duplicate
5071 * and does not calculate rtt.
5072 * Fix it at least with timestamps.
5073 */
5074 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5075 !tp->srtt)
5076 tcp_ack_saw_tstamp(sk, 0);
5077
5078 if (tp->rx_opt.tstamp_ok)
5079 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5080
5081 /* Make sure socket is routed, for
5082 * correct metrics.
5083 */
5084 icsk->icsk_af_ops->rebuild_header(sk);
5085
5086 tcp_init_metrics(sk);
5087
5088 tcp_init_congestion_control(sk);
5089
5090 /* Prevent spurious tcp_cwnd_restart() on
5091 * first data packet.
5092 */
5093 tp->lsndtime = tcp_time_stamp;
5094
5095 tcp_mtup_init(sk);
5096 tcp_initialize_rcv_mss(sk);
5097 tcp_init_buffer_space(sk);
5098 tcp_fast_path_on(tp);
5099 } else {
5100 return 1;
5101 }
5102 break;
5103
5104 case TCP_FIN_WAIT1:
5105 if (tp->snd_una == tp->write_seq) {
5106 tcp_set_state(sk, TCP_FIN_WAIT2);
5107 sk->sk_shutdown |= SEND_SHUTDOWN;
5108 dst_confirm(sk->sk_dst_cache);
5109
5110 if (!sock_flag(sk, SOCK_DEAD))
5111 /* Wake up lingering close() */
5112 sk->sk_state_change(sk);
5113 else {
5114 int tmo;
5115
5116 if (tp->linger2 < 0 ||
5117 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5118 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5119 tcp_done(sk);
5120 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5121 return 1;
5122 }
5123
5124 tmo = tcp_fin_time(sk);
5125 if (tmo > TCP_TIMEWAIT_LEN) {
5126 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5127 } else if (th->fin || sock_owned_by_user(sk)) {
5128 /* Bad case. We could lose such FIN otherwise.
5129 * It is not a big problem, but it looks confusing
5130 * and not so rare event. We still can lose it now,
5131 * if it spins in bh_lock_sock(), but it is really
5132 * marginal case.
5133 */
5134 inet_csk_reset_keepalive_timer(sk, tmo);
5135 } else {
5136 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5137 goto discard;
5138 }
5139 }
5140 }
5141 break;
5142
5143 case TCP_CLOSING:
5144 if (tp->snd_una == tp->write_seq) {
5145 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5146 goto discard;
5147 }
5148 break;
5149
5150 case TCP_LAST_ACK:
5151 if (tp->snd_una == tp->write_seq) {
5152 tcp_update_metrics(sk);
5153 tcp_done(sk);
5154 goto discard;
5155 }
5156 break;
5157 }
5158 } else
5159 goto discard;
5160
5161 /* step 6: check the URG bit */
5162 tcp_urg(sk, skb, th);
5163
5164 /* step 7: process the segment text */
5165 switch (sk->sk_state) {
5166 case TCP_CLOSE_WAIT:
5167 case TCP_CLOSING:
5168 case TCP_LAST_ACK:
5169 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5170 break;
5171 case TCP_FIN_WAIT1:
5172 case TCP_FIN_WAIT2:
5173 /* RFC 793 says to queue data in these states,
5174 * RFC 1122 says we MUST send a reset.
5175 * BSD 4.4 also does reset.
5176 */
5177 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5178 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5179 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5180 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5181 tcp_reset(sk);
5182 return 1;
5183 }
5184 }
5185 /* Fall through */
5186 case TCP_ESTABLISHED:
5187 tcp_data_queue(sk, skb);
5188 queued = 1;
5189 break;
5190 }
5191
5192 /* tcp_data could move socket to TIME-WAIT */
5193 if (sk->sk_state != TCP_CLOSE) {
5194 tcp_data_snd_check(sk);
5195 tcp_ack_snd_check(sk);
5196 }
5197
5198 if (!queued) {
5199 discard:
5200 __kfree_skb(skb);
5201 }
5202 return 0;
5203 }
5204
5205 EXPORT_SYMBOL(sysctl_tcp_ecn);
5206 EXPORT_SYMBOL(sysctl_tcp_reordering);
5207 EXPORT_SYMBOL(tcp_parse_options);
5208 EXPORT_SYMBOL(tcp_rcv_established);
5209 EXPORT_SYMBOL(tcp_rcv_state_process);
5210 EXPORT_SYMBOL(tcp_initialize_rcv_mss);