]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
Merge tag 'libnvdimm-for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127
128 #define REXMIT_NONE 0 /* no loss recovery to do */
129 #define REXMIT_LOST 1 /* retransmit packets marked lost */
130 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131
132 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
133 {
134 static bool __once __read_mostly;
135
136 if (!__once) {
137 struct net_device *dev;
138
139 __once = true;
140
141 rcu_read_lock();
142 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
143 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
144 dev ? dev->name : "Unknown driver");
145 rcu_read_unlock();
146 }
147 }
148
149 /* Adapt the MSS value used to make delayed ack decision to the
150 * real world.
151 */
152 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
153 {
154 struct inet_connection_sock *icsk = inet_csk(sk);
155 const unsigned int lss = icsk->icsk_ack.last_seg_size;
156 unsigned int len;
157
158 icsk->icsk_ack.last_seg_size = 0;
159
160 /* skb->len may jitter because of SACKs, even if peer
161 * sends good full-sized frames.
162 */
163 len = skb_shinfo(skb)->gso_size ? : skb->len;
164 if (len >= icsk->icsk_ack.rcv_mss) {
165 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
166 tcp_sk(sk)->advmss);
167 if (unlikely(icsk->icsk_ack.rcv_mss != len))
168 tcp_gro_dev_warn(sk, skb);
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
175 len += skb->data - skb_transport_header(skb);
176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
190 if (len == lss) {
191 icsk->icsk_ack.rcv_mss = len;
192 return;
193 }
194 }
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 }
199 }
200
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 struct inet_connection_sock *icsk = inet_csk(sk);
204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205
206 if (quickacks == 0)
207 quickacks = 2;
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
222 */
223
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 const struct inet_connection_sock *icsk = inet_csk(sk);
227 const struct dst_entry *dst = __sk_dst_get(sk);
228
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 if (tp->ecn_flags & TCP_ECN_OK)
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 case INET_ECN_NOT_ECT:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
257 */
258 if (tp->ecn_flags & TCP_ECN_SEEN)
259 tcp_enter_quickack_mode((struct sock *)tp);
260 break;
261 case INET_ECN_CE:
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 }
270 tp->ecn_flags |= TCP_ECN_SEEN;
271 break;
272 default:
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 tp->ecn_flags |= TCP_ECN_SEEN;
276 break;
277 }
278 }
279
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
284 }
285
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 return true;
302 return false;
303 }
304
305 /* Buffer size and advertised window tuning.
306 *
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308 */
309
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 const struct tcp_sock *tp = tcp_sk(sk);
313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 int sndmem, per_mss;
315 u32 nr_segs;
316
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
319 */
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 MAX_TCP_HEADER +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
326
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
333 */
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
336
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 *
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
352 *
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
360 *
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
364 */
365
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370 /* Optimize this! */
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377
378 truesize >>= 1;
379 window >>= 1;
380 }
381 return 0;
382 }
383
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 struct tcp_sock *tp = tcp_sk(sk);
387
388 /* Check #1 */
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 !tcp_under_memory_pressure(sk)) {
392 int incr;
393
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
396 */
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
398 incr = 2 * tp->advmss;
399 else
400 incr = __tcp_grow_window(sk, skb);
401
402 if (incr) {
403 incr = max_t(int, incr, 2 * skb->len);
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 tp->window_clamp);
406 inet_csk(sk)->icsk_ack.quick |= 1;
407 }
408 }
409 }
410
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 u32 mss = tcp_sk(sk)->advmss;
415 int rcvmem;
416
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
419
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
422 */
423 if (sysctl_tcp_moderate_rcvbuf)
424 rcvmem <<= 2;
425
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429
430 /* 4. Try to fixup all. It is made immediately after connection enters
431 * established state.
432 */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 tcp_sndbuf_expand(sk);
442
443 tp->rcvq_space.space = tp->rcv_wnd;
444 tp->rcvq_space.time = tcp_time_stamp;
445 tp->rcvq_space.seq = tp->copied_seq;
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> sysctl_tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 tp->snd_cwnd_stamp = tcp_time_stamp;
466 }
467
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock *sk)
470 {
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct inet_connection_sock *icsk = inet_csk(sk);
473
474 icsk->icsk_ack.quick = 0;
475
476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 sysctl_tcp_rmem[2]);
482 }
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506
507 /* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
512 *
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 u32 new_sample = tp->rcv_rtt_est.rtt;
521 long m = sample;
522
523 if (m == 0)
524 m = 1;
525
526 if (new_sample != 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
531 *
532 * Also, since we are only going for a minimum in the
533 * non-timestamp case, we do not smooth things out
534 * else with timestamps disabled convergence takes too
535 * long.
536 */
537 if (!win_dep) {
538 m -= (new_sample >> 3);
539 new_sample += m;
540 } else {
541 m <<= 3;
542 if (m < new_sample)
543 new_sample = m;
544 }
545 } else {
546 /* No previous measure. */
547 new_sample = m << 3;
548 }
549
550 if (tp->rcv_rtt_est.rtt != new_sample)
551 tp->rcv_rtt_est.rtt = new_sample;
552 }
553
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 if (tp->rcv_rtt_est.time == 0)
557 goto new_measure;
558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
559 return;
560 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
561
562 new_measure:
563 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
564 tp->rcv_rtt_est.time = tcp_time_stamp;
565 }
566
567 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
568 const struct sk_buff *skb)
569 {
570 struct tcp_sock *tp = tcp_sk(sk);
571 if (tp->rx_opt.rcv_tsecr &&
572 (TCP_SKB_CB(skb)->end_seq -
573 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
574 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
575 }
576
577 /*
578 * This function should be called every time data is copied to user space.
579 * It calculates the appropriate TCP receive buffer space.
580 */
581 void tcp_rcv_space_adjust(struct sock *sk)
582 {
583 struct tcp_sock *tp = tcp_sk(sk);
584 int time;
585 int copied;
586
587 time = tcp_time_stamp - tp->rcvq_space.time;
588 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
589 return;
590
591 /* Number of bytes copied to user in last RTT */
592 copied = tp->copied_seq - tp->rcvq_space.seq;
593 if (copied <= tp->rcvq_space.space)
594 goto new_measure;
595
596 /* A bit of theory :
597 * copied = bytes received in previous RTT, our base window
598 * To cope with packet losses, we need a 2x factor
599 * To cope with slow start, and sender growing its cwin by 100 %
600 * every RTT, we need a 4x factor, because the ACK we are sending
601 * now is for the next RTT, not the current one :
602 * <prev RTT . ><current RTT .. ><next RTT .... >
603 */
604
605 if (sysctl_tcp_moderate_rcvbuf &&
606 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607 int rcvwin, rcvmem, rcvbuf;
608
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
611 */
612 rcvwin = (copied << 1) + 16 * tp->advmss;
613
614 /* If rate increased by 25%,
615 * assume slow start, rcvwin = 3 * copied
616 * If rate increased by 50%,
617 * assume sender can use 2x growth, rcvwin = 4 * copied
618 */
619 if (copied >=
620 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
621 if (copied >=
622 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
623 rcvwin <<= 1;
624 else
625 rcvwin += (rcvwin >> 1);
626 }
627
628 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
629 while (tcp_win_from_space(rcvmem) < tp->advmss)
630 rcvmem += 128;
631
632 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
633 if (rcvbuf > sk->sk_rcvbuf) {
634 sk->sk_rcvbuf = rcvbuf;
635
636 /* Make the window clamp follow along. */
637 tp->window_clamp = rcvwin;
638 }
639 }
640 tp->rcvq_space.space = copied;
641
642 new_measure:
643 tp->rcvq_space.seq = tp->copied_seq;
644 tp->rcvq_space.time = tcp_time_stamp;
645 }
646
647 /* There is something which you must keep in mind when you analyze the
648 * behavior of the tp->ato delayed ack timeout interval. When a
649 * connection starts up, we want to ack as quickly as possible. The
650 * problem is that "good" TCP's do slow start at the beginning of data
651 * transmission. The means that until we send the first few ACK's the
652 * sender will sit on his end and only queue most of his data, because
653 * he can only send snd_cwnd unacked packets at any given time. For
654 * each ACK we send, he increments snd_cwnd and transmits more of his
655 * queue. -DaveM
656 */
657 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct inet_connection_sock *icsk = inet_csk(sk);
661 u32 now;
662
663 inet_csk_schedule_ack(sk);
664
665 tcp_measure_rcv_mss(sk, skb);
666
667 tcp_rcv_rtt_measure(tp);
668
669 now = tcp_time_stamp;
670
671 if (!icsk->icsk_ack.ato) {
672 /* The _first_ data packet received, initialize
673 * delayed ACK engine.
674 */
675 tcp_incr_quickack(sk);
676 icsk->icsk_ack.ato = TCP_ATO_MIN;
677 } else {
678 int m = now - icsk->icsk_ack.lrcvtime;
679
680 if (m <= TCP_ATO_MIN / 2) {
681 /* The fastest case is the first. */
682 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
683 } else if (m < icsk->icsk_ack.ato) {
684 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
685 if (icsk->icsk_ack.ato > icsk->icsk_rto)
686 icsk->icsk_ack.ato = icsk->icsk_rto;
687 } else if (m > icsk->icsk_rto) {
688 /* Too long gap. Apparently sender failed to
689 * restart window, so that we send ACKs quickly.
690 */
691 tcp_incr_quickack(sk);
692 sk_mem_reclaim(sk);
693 }
694 }
695 icsk->icsk_ack.lrcvtime = now;
696
697 tcp_ecn_check_ce(tp, skb);
698
699 if (skb->len >= 128)
700 tcp_grow_window(sk, skb);
701 }
702
703 /* Called to compute a smoothed rtt estimate. The data fed to this
704 * routine either comes from timestamps, or from segments that were
705 * known _not_ to have been retransmitted [see Karn/Partridge
706 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
707 * piece by Van Jacobson.
708 * NOTE: the next three routines used to be one big routine.
709 * To save cycles in the RFC 1323 implementation it was better to break
710 * it up into three procedures. -- erics
711 */
712 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
713 {
714 struct tcp_sock *tp = tcp_sk(sk);
715 long m = mrtt_us; /* RTT */
716 u32 srtt = tp->srtt_us;
717
718 /* The following amusing code comes from Jacobson's
719 * article in SIGCOMM '88. Note that rtt and mdev
720 * are scaled versions of rtt and mean deviation.
721 * This is designed to be as fast as possible
722 * m stands for "measurement".
723 *
724 * On a 1990 paper the rto value is changed to:
725 * RTO = rtt + 4 * mdev
726 *
727 * Funny. This algorithm seems to be very broken.
728 * These formulae increase RTO, when it should be decreased, increase
729 * too slowly, when it should be increased quickly, decrease too quickly
730 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
731 * does not matter how to _calculate_ it. Seems, it was trap
732 * that VJ failed to avoid. 8)
733 */
734 if (srtt != 0) {
735 m -= (srtt >> 3); /* m is now error in rtt est */
736 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
737 if (m < 0) {
738 m = -m; /* m is now abs(error) */
739 m -= (tp->mdev_us >> 2); /* similar update on mdev */
740 /* This is similar to one of Eifel findings.
741 * Eifel blocks mdev updates when rtt decreases.
742 * This solution is a bit different: we use finer gain
743 * for mdev in this case (alpha*beta).
744 * Like Eifel it also prevents growth of rto,
745 * but also it limits too fast rto decreases,
746 * happening in pure Eifel.
747 */
748 if (m > 0)
749 m >>= 3;
750 } else {
751 m -= (tp->mdev_us >> 2); /* similar update on mdev */
752 }
753 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
754 if (tp->mdev_us > tp->mdev_max_us) {
755 tp->mdev_max_us = tp->mdev_us;
756 if (tp->mdev_max_us > tp->rttvar_us)
757 tp->rttvar_us = tp->mdev_max_us;
758 }
759 if (after(tp->snd_una, tp->rtt_seq)) {
760 if (tp->mdev_max_us < tp->rttvar_us)
761 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
762 tp->rtt_seq = tp->snd_nxt;
763 tp->mdev_max_us = tcp_rto_min_us(sk);
764 }
765 } else {
766 /* no previous measure. */
767 srtt = m << 3; /* take the measured time to be rtt */
768 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
769 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
770 tp->mdev_max_us = tp->rttvar_us;
771 tp->rtt_seq = tp->snd_nxt;
772 }
773 tp->srtt_us = max(1U, srtt);
774 }
775
776 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
777 * Note: TCP stack does not yet implement pacing.
778 * FQ packet scheduler can be used to implement cheap but effective
779 * TCP pacing, to smooth the burst on large writes when packets
780 * in flight is significantly lower than cwnd (or rwin)
781 */
782 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
783 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
784
785 static void tcp_update_pacing_rate(struct sock *sk)
786 {
787 const struct tcp_sock *tp = tcp_sk(sk);
788 u64 rate;
789
790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
791 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
792
793 /* current rate is (cwnd * mss) / srtt
794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 * In Congestion Avoidance phase, set it to 120 % the current rate.
796 *
797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 * end of slow start and should slow down.
800 */
801 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
802 rate *= sysctl_tcp_pacing_ss_ratio;
803 else
804 rate *= sysctl_tcp_pacing_ca_ratio;
805
806 rate *= max(tp->snd_cwnd, tp->packets_out);
807
808 if (likely(tp->srtt_us))
809 do_div(rate, tp->srtt_us);
810
811 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 * without any lock. We want to make sure compiler wont store
813 * intermediate values in this location.
814 */
815 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
816 sk->sk_max_pacing_rate);
817 }
818
819 /* Calculate rto without backoff. This is the second half of Van Jacobson's
820 * routine referred to above.
821 */
822 static void tcp_set_rto(struct sock *sk)
823 {
824 const struct tcp_sock *tp = tcp_sk(sk);
825 /* Old crap is replaced with new one. 8)
826 *
827 * More seriously:
828 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 * It cannot be less due to utterly erratic ACK generation made
830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 * to do with delayed acks, because at cwnd>2 true delack timeout
832 * is invisible. Actually, Linux-2.4 also generates erratic
833 * ACKs in some circumstances.
834 */
835 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
836
837 /* 2. Fixups made earlier cannot be right.
838 * If we do not estimate RTO correctly without them,
839 * all the algo is pure shit and should be replaced
840 * with correct one. It is exactly, which we pretend to do.
841 */
842
843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 * guarantees that rto is higher.
845 */
846 tcp_bound_rto(sk);
847 }
848
849 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
850 {
851 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
852
853 if (!cwnd)
854 cwnd = TCP_INIT_CWND;
855 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
856 }
857
858 /*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
862 void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 static void tcp_update_reordering(struct sock *sk, const int metric,
877 const int ts)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 if (metric > tp->reordering) {
881 int mib_idx;
882
883 tp->reordering = min(sysctl_tcp_max_reordering, metric);
884
885 /* This exciting event is worth to be remembered. 8) */
886 if (ts)
887 mib_idx = LINUX_MIB_TCPTSREORDER;
888 else if (tcp_is_reno(tp))
889 mib_idx = LINUX_MIB_TCPRENOREORDER;
890 else if (tcp_is_fack(tp))
891 mib_idx = LINUX_MIB_TCPFACKREORDER;
892 else
893 mib_idx = LINUX_MIB_TCPSACKREORDER;
894
895 NET_INC_STATS(sock_net(sk), mib_idx);
896 #if FASTRETRANS_DEBUG > 1
897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 tp->reordering,
900 tp->fackets_out,
901 tp->sacked_out,
902 tp->undo_marker ? tp->undo_retrans : 0);
903 #endif
904 tcp_disable_fack(tp);
905 }
906
907 if (metric > 0)
908 tcp_disable_early_retrans(tp);
909 tp->rack.reord = 1;
910 }
911
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914 {
915 if (!tp->retransmit_skb_hint ||
916 before(TCP_SKB_CB(skb)->seq,
917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
918 tp->retransmit_skb_hint = skb;
919
920 if (!tp->lost_out ||
921 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
922 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
923 }
924
925 /* Sum the number of packets on the wire we have marked as lost.
926 * There are two cases we care about here:
927 * a) Packet hasn't been marked lost (nor retransmitted),
928 * and this is the first loss.
929 * b) Packet has been marked both lost and retransmitted,
930 * and this means we think it was lost again.
931 */
932 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 __u8 sacked = TCP_SKB_CB(skb)->sacked;
935
936 if (!(sacked & TCPCB_LOST) ||
937 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
938 tp->lost += tcp_skb_pcount(skb);
939 }
940
941 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
942 {
943 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 tcp_verify_retransmit_hint(tp, skb);
945
946 tp->lost_out += tcp_skb_pcount(skb);
947 tcp_sum_lost(tp, skb);
948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 }
950 }
951
952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
953 {
954 tcp_verify_retransmit_hint(tp, skb);
955
956 tcp_sum_lost(tp, skb);
957 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
958 tp->lost_out += tcp_skb_pcount(skb);
959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
960 }
961 }
962
963 /* This procedure tags the retransmission queue when SACKs arrive.
964 *
965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966 * Packets in queue with these bits set are counted in variables
967 * sacked_out, retrans_out and lost_out, correspondingly.
968 *
969 * Valid combinations are:
970 * Tag InFlight Description
971 * 0 1 - orig segment is in flight.
972 * S 0 - nothing flies, orig reached receiver.
973 * L 0 - nothing flies, orig lost by net.
974 * R 2 - both orig and retransmit are in flight.
975 * L|R 1 - orig is lost, retransmit is in flight.
976 * S|R 1 - orig reached receiver, retrans is still in flight.
977 * (L|S|R is logically valid, it could occur when L|R is sacked,
978 * but it is equivalent to plain S and code short-curcuits it to S.
979 * L|S is logically invalid, it would mean -1 packet in flight 8))
980 *
981 * These 6 states form finite state machine, controlled by the following events:
982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
984 * 3. Loss detection event of two flavors:
985 * A. Scoreboard estimator decided the packet is lost.
986 * A'. Reno "three dupacks" marks head of queue lost.
987 * A''. Its FACK modification, head until snd.fack is lost.
988 * B. SACK arrives sacking SND.NXT at the moment, when the
989 * segment was retransmitted.
990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
991 *
992 * It is pleasant to note, that state diagram turns out to be commutative,
993 * so that we are allowed not to be bothered by order of our actions,
994 * when multiple events arrive simultaneously. (see the function below).
995 *
996 * Reordering detection.
997 * --------------------
998 * Reordering metric is maximal distance, which a packet can be displaced
999 * in packet stream. With SACKs we can estimate it:
1000 *
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 * ever retransmitted -> reordering. Alas, we cannot use it
1003 * when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 * for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
1008 *
1009 * SACK block validation.
1010 * ----------------------
1011 *
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment. Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
1024 *
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029 * wrap (s_w):
1030 *
1031 * <- outs wnd -> <- wrapzone ->
1032 * u e n u_w e_w s n_w
1033 * | | | | | | |
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->| |<--------...
1036 * ...---- >2^31 ------>| |<--------...
1037 *
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1043 *
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046 * again, D-SACK block must not to go across snd_una (for the same reason as
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1056 */
1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058 u32 start_seq, u32 end_seq)
1059 {
1060 /* Too far in future, or reversed (interpretation is ambiguous) */
1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1062 return false;
1063
1064 /* Nasty start_seq wrap-around check (see comments above) */
1065 if (!before(start_seq, tp->snd_nxt))
1066 return false;
1067
1068 /* In outstanding window? ...This is valid exit for D-SACKs too.
1069 * start_seq == snd_una is non-sensical (see comments above)
1070 */
1071 if (after(start_seq, tp->snd_una))
1072 return true;
1073
1074 if (!is_dsack || !tp->undo_marker)
1075 return false;
1076
1077 /* ...Then it's D-SACK, and must reside below snd_una completely */
1078 if (after(end_seq, tp->snd_una))
1079 return false;
1080
1081 if (!before(start_seq, tp->undo_marker))
1082 return true;
1083
1084 /* Too old */
1085 if (!after(end_seq, tp->undo_marker))
1086 return false;
1087
1088 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 * start_seq < undo_marker and end_seq >= undo_marker.
1090 */
1091 return !before(start_seq, end_seq - tp->max_window);
1092 }
1093
1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 struct tcp_sack_block_wire *sp, int num_sacks,
1096 u32 prior_snd_una)
1097 {
1098 struct tcp_sock *tp = tcp_sk(sk);
1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 bool dup_sack = false;
1102
1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 dup_sack = true;
1105 tcp_dsack_seen(tp);
1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 } else if (num_sacks > 1) {
1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110
1111 if (!after(end_seq_0, end_seq_1) &&
1112 !before(start_seq_0, start_seq_1)) {
1113 dup_sack = true;
1114 tcp_dsack_seen(tp);
1115 NET_INC_STATS(sock_net(sk),
1116 LINUX_MIB_TCPDSACKOFORECV);
1117 }
1118 }
1119
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 !after(end_seq_0, prior_snd_una) &&
1123 after(end_seq_0, tp->undo_marker))
1124 tp->undo_retrans--;
1125
1126 return dup_sack;
1127 }
1128
1129 struct tcp_sacktag_state {
1130 int reord;
1131 int fack_count;
1132 /* Timestamps for earliest and latest never-retransmitted segment
1133 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134 * but congestion control should still get an accurate delay signal.
1135 */
1136 struct skb_mstamp first_sackt;
1137 struct skb_mstamp last_sackt;
1138 struct rate_sample *rate;
1139 int flag;
1140 };
1141
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1146 * returns).
1147 *
1148 * FIXME: this could be merged to shift decision code
1149 */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 u32 start_seq, u32 end_seq)
1152 {
1153 int err;
1154 bool in_sack;
1155 unsigned int pkt_len;
1156 unsigned int mss;
1157
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160
1161 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 mss = tcp_skb_mss(skb);
1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165
1166 if (!in_sack) {
1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 if (pkt_len < mss)
1169 pkt_len = mss;
1170 } else {
1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 if (pkt_len < mss)
1173 return -EINVAL;
1174 }
1175
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1178 */
1179 if (pkt_len > mss) {
1180 unsigned int new_len = (pkt_len / mss) * mss;
1181 if (!in_sack && new_len < pkt_len) {
1182 new_len += mss;
1183 if (new_len >= skb->len)
1184 return 0;
1185 }
1186 pkt_len = new_len;
1187 }
1188 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189 if (err < 0)
1190 return err;
1191 }
1192
1193 return in_sack;
1194 }
1195
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8 tcp_sacktag_one(struct sock *sk,
1198 struct tcp_sacktag_state *state, u8 sacked,
1199 u32 start_seq, u32 end_seq,
1200 int dup_sack, int pcount,
1201 const struct skb_mstamp *xmit_time)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 int fack_count = state->fack_count;
1205
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 after(end_seq, tp->undo_marker))
1210 tp->undo_retrans--;
1211 if (sacked & TCPCB_SACKED_ACKED)
1212 state->reord = min(fack_count, state->reord);
1213 }
1214
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 if (!after(end_seq, tp->snd_una))
1217 return sacked;
1218
1219 if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 tcp_rack_advance(tp, xmit_time, sacked);
1221
1222 if (sacked & TCPCB_SACKED_RETRANS) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1226 */
1227 if (sacked & TCPCB_LOST) {
1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229 tp->lost_out -= pcount;
1230 tp->retrans_out -= pcount;
1231 }
1232 } else {
1233 if (!(sacked & TCPCB_RETRANS)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1236 */
1237 if (before(start_seq,
1238 tcp_highest_sack_seq(tp)))
1239 state->reord = min(fack_count,
1240 state->reord);
1241 if (!after(end_seq, tp->high_seq))
1242 state->flag |= FLAG_ORIG_SACK_ACKED;
1243 if (state->first_sackt.v64 == 0)
1244 state->first_sackt = *xmit_time;
1245 state->last_sackt = *xmit_time;
1246 }
1247
1248 if (sacked & TCPCB_LOST) {
1249 sacked &= ~TCPCB_LOST;
1250 tp->lost_out -= pcount;
1251 }
1252 }
1253
1254 sacked |= TCPCB_SACKED_ACKED;
1255 state->flag |= FLAG_DATA_SACKED;
1256 tp->sacked_out += pcount;
1257 tp->delivered += pcount; /* Out-of-order packets delivered */
1258
1259 fack_count += pcount;
1260
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1263 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264 tp->lost_cnt_hint += pcount;
1265
1266 if (fack_count > tp->fackets_out)
1267 tp->fackets_out = fack_count;
1268 }
1269
1270 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1271 * frames and clear it. undo_retrans is decreased above, L|R frames
1272 * are accounted above as well.
1273 */
1274 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1275 sacked &= ~TCPCB_SACKED_RETRANS;
1276 tp->retrans_out -= pcount;
1277 }
1278
1279 return sacked;
1280 }
1281
1282 /* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1284 */
1285 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1286 struct tcp_sacktag_state *state,
1287 unsigned int pcount, int shifted, int mss,
1288 bool dup_sack)
1289 {
1290 struct tcp_sock *tp = tcp_sk(sk);
1291 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1292 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1293 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1294
1295 BUG_ON(!pcount);
1296
1297 /* Adjust counters and hints for the newly sacked sequence
1298 * range but discard the return value since prev is already
1299 * marked. We must tag the range first because the seq
1300 * advancement below implicitly advances
1301 * tcp_highest_sack_seq() when skb is highest_sack.
1302 */
1303 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1304 start_seq, end_seq, dup_sack, pcount,
1305 &skb->skb_mstamp);
1306 tcp_rate_skb_delivered(sk, skb, state->rate);
1307
1308 if (skb == tp->lost_skb_hint)
1309 tp->lost_cnt_hint += pcount;
1310
1311 TCP_SKB_CB(prev)->end_seq += shifted;
1312 TCP_SKB_CB(skb)->seq += shifted;
1313
1314 tcp_skb_pcount_add(prev, pcount);
1315 BUG_ON(tcp_skb_pcount(skb) < pcount);
1316 tcp_skb_pcount_add(skb, -pcount);
1317
1318 /* When we're adding to gso_segs == 1, gso_size will be zero,
1319 * in theory this shouldn't be necessary but as long as DSACK
1320 * code can come after this skb later on it's better to keep
1321 * setting gso_size to something.
1322 */
1323 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1324 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1325
1326 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1327 if (tcp_skb_pcount(skb) <= 1)
1328 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1329
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
1335 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 return false;
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1350 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1351 TCP_SKB_CB(prev)->end_seq++;
1352
1353 if (skb == tcp_highest_sack(sk))
1354 tcp_advance_highest_sack(sk, skb);
1355
1356 tcp_skb_collapse_tstamp(prev, skb);
1357 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1358 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1359
1360 tcp_unlink_write_queue(skb, sk);
1361 sk_wmem_free_skb(sk, skb);
1362
1363 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1364
1365 return true;
1366 }
1367
1368 /* I wish gso_size would have a bit more sane initialization than
1369 * something-or-zero which complicates things
1370 */
1371 static int tcp_skb_seglen(const struct sk_buff *skb)
1372 {
1373 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1374 }
1375
1376 /* Shifting pages past head area doesn't work */
1377 static int skb_can_shift(const struct sk_buff *skb)
1378 {
1379 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1380 }
1381
1382 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1383 * skb.
1384 */
1385 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1386 struct tcp_sacktag_state *state,
1387 u32 start_seq, u32 end_seq,
1388 bool dup_sack)
1389 {
1390 struct tcp_sock *tp = tcp_sk(sk);
1391 struct sk_buff *prev;
1392 int mss;
1393 int pcount = 0;
1394 int len;
1395 int in_sack;
1396
1397 if (!sk_can_gso(sk))
1398 goto fallback;
1399
1400 /* Normally R but no L won't result in plain S */
1401 if (!dup_sack &&
1402 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1403 goto fallback;
1404 if (!skb_can_shift(skb))
1405 goto fallback;
1406 /* This frame is about to be dropped (was ACKed). */
1407 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1408 goto fallback;
1409
1410 /* Can only happen with delayed DSACK + discard craziness */
1411 if (unlikely(skb == tcp_write_queue_head(sk)))
1412 goto fallback;
1413 prev = tcp_write_queue_prev(sk, skb);
1414
1415 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1416 goto fallback;
1417
1418 if (!tcp_skb_can_collapse_to(prev))
1419 goto fallback;
1420
1421 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1422 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1423
1424 if (in_sack) {
1425 len = skb->len;
1426 pcount = tcp_skb_pcount(skb);
1427 mss = tcp_skb_seglen(skb);
1428
1429 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1430 * drop this restriction as unnecessary
1431 */
1432 if (mss != tcp_skb_seglen(prev))
1433 goto fallback;
1434 } else {
1435 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1436 goto noop;
1437 /* CHECKME: This is non-MSS split case only?, this will
1438 * cause skipped skbs due to advancing loop btw, original
1439 * has that feature too
1440 */
1441 if (tcp_skb_pcount(skb) <= 1)
1442 goto noop;
1443
1444 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1445 if (!in_sack) {
1446 /* TODO: head merge to next could be attempted here
1447 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1448 * though it might not be worth of the additional hassle
1449 *
1450 * ...we can probably just fallback to what was done
1451 * previously. We could try merging non-SACKed ones
1452 * as well but it probably isn't going to buy off
1453 * because later SACKs might again split them, and
1454 * it would make skb timestamp tracking considerably
1455 * harder problem.
1456 */
1457 goto fallback;
1458 }
1459
1460 len = end_seq - TCP_SKB_CB(skb)->seq;
1461 BUG_ON(len < 0);
1462 BUG_ON(len > skb->len);
1463
1464 /* MSS boundaries should be honoured or else pcount will
1465 * severely break even though it makes things bit trickier.
1466 * Optimize common case to avoid most of the divides
1467 */
1468 mss = tcp_skb_mss(skb);
1469
1470 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1471 * drop this restriction as unnecessary
1472 */
1473 if (mss != tcp_skb_seglen(prev))
1474 goto fallback;
1475
1476 if (len == mss) {
1477 pcount = 1;
1478 } else if (len < mss) {
1479 goto noop;
1480 } else {
1481 pcount = len / mss;
1482 len = pcount * mss;
1483 }
1484 }
1485
1486 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1487 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1488 goto fallback;
1489
1490 if (!skb_shift(prev, skb, len))
1491 goto fallback;
1492 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1493 goto out;
1494
1495 /* Hole filled allows collapsing with the next as well, this is very
1496 * useful when hole on every nth skb pattern happens
1497 */
1498 if (prev == tcp_write_queue_tail(sk))
1499 goto out;
1500 skb = tcp_write_queue_next(sk, prev);
1501
1502 if (!skb_can_shift(skb) ||
1503 (skb == tcp_send_head(sk)) ||
1504 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1505 (mss != tcp_skb_seglen(skb)))
1506 goto out;
1507
1508 len = skb->len;
1509 if (skb_shift(prev, skb, len)) {
1510 pcount += tcp_skb_pcount(skb);
1511 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1512 }
1513
1514 out:
1515 state->fack_count += pcount;
1516 return prev;
1517
1518 noop:
1519 return skb;
1520
1521 fallback:
1522 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1523 return NULL;
1524 }
1525
1526 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1527 struct tcp_sack_block *next_dup,
1528 struct tcp_sacktag_state *state,
1529 u32 start_seq, u32 end_seq,
1530 bool dup_sack_in)
1531 {
1532 struct tcp_sock *tp = tcp_sk(sk);
1533 struct sk_buff *tmp;
1534
1535 tcp_for_write_queue_from(skb, sk) {
1536 int in_sack = 0;
1537 bool dup_sack = dup_sack_in;
1538
1539 if (skb == tcp_send_head(sk))
1540 break;
1541
1542 /* queue is in-order => we can short-circuit the walk early */
1543 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544 break;
1545
1546 if (next_dup &&
1547 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548 in_sack = tcp_match_skb_to_sack(sk, skb,
1549 next_dup->start_seq,
1550 next_dup->end_seq);
1551 if (in_sack > 0)
1552 dup_sack = true;
1553 }
1554
1555 /* skb reference here is a bit tricky to get right, since
1556 * shifting can eat and free both this skb and the next,
1557 * so not even _safe variant of the loop is enough.
1558 */
1559 if (in_sack <= 0) {
1560 tmp = tcp_shift_skb_data(sk, skb, state,
1561 start_seq, end_seq, dup_sack);
1562 if (tmp) {
1563 if (tmp != skb) {
1564 skb = tmp;
1565 continue;
1566 }
1567
1568 in_sack = 0;
1569 } else {
1570 in_sack = tcp_match_skb_to_sack(sk, skb,
1571 start_seq,
1572 end_seq);
1573 }
1574 }
1575
1576 if (unlikely(in_sack < 0))
1577 break;
1578
1579 if (in_sack) {
1580 TCP_SKB_CB(skb)->sacked =
1581 tcp_sacktag_one(sk,
1582 state,
1583 TCP_SKB_CB(skb)->sacked,
1584 TCP_SKB_CB(skb)->seq,
1585 TCP_SKB_CB(skb)->end_seq,
1586 dup_sack,
1587 tcp_skb_pcount(skb),
1588 &skb->skb_mstamp);
1589 tcp_rate_skb_delivered(sk, skb, state->rate);
1590
1591 if (!before(TCP_SKB_CB(skb)->seq,
1592 tcp_highest_sack_seq(tp)))
1593 tcp_advance_highest_sack(sk, skb);
1594 }
1595
1596 state->fack_count += tcp_skb_pcount(skb);
1597 }
1598 return skb;
1599 }
1600
1601 /* Avoid all extra work that is being done by sacktag while walking in
1602 * a normal way
1603 */
1604 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1605 struct tcp_sacktag_state *state,
1606 u32 skip_to_seq)
1607 {
1608 tcp_for_write_queue_from(skb, sk) {
1609 if (skb == tcp_send_head(sk))
1610 break;
1611
1612 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1613 break;
1614
1615 state->fack_count += tcp_skb_pcount(skb);
1616 }
1617 return skb;
1618 }
1619
1620 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1621 struct sock *sk,
1622 struct tcp_sack_block *next_dup,
1623 struct tcp_sacktag_state *state,
1624 u32 skip_to_seq)
1625 {
1626 if (!next_dup)
1627 return skb;
1628
1629 if (before(next_dup->start_seq, skip_to_seq)) {
1630 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1631 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1632 next_dup->start_seq, next_dup->end_seq,
1633 1);
1634 }
1635
1636 return skb;
1637 }
1638
1639 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1640 {
1641 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1642 }
1643
1644 static int
1645 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1646 u32 prior_snd_una, struct tcp_sacktag_state *state)
1647 {
1648 struct tcp_sock *tp = tcp_sk(sk);
1649 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1650 TCP_SKB_CB(ack_skb)->sacked);
1651 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1652 struct tcp_sack_block sp[TCP_NUM_SACKS];
1653 struct tcp_sack_block *cache;
1654 struct sk_buff *skb;
1655 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1656 int used_sacks;
1657 bool found_dup_sack = false;
1658 int i, j;
1659 int first_sack_index;
1660
1661 state->flag = 0;
1662 state->reord = tp->packets_out;
1663
1664 if (!tp->sacked_out) {
1665 if (WARN_ON(tp->fackets_out))
1666 tp->fackets_out = 0;
1667 tcp_highest_sack_reset(sk);
1668 }
1669
1670 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1671 num_sacks, prior_snd_una);
1672 if (found_dup_sack) {
1673 state->flag |= FLAG_DSACKING_ACK;
1674 tp->delivered++; /* A spurious retransmission is delivered */
1675 }
1676
1677 /* Eliminate too old ACKs, but take into
1678 * account more or less fresh ones, they can
1679 * contain valid SACK info.
1680 */
1681 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1682 return 0;
1683
1684 if (!tp->packets_out)
1685 goto out;
1686
1687 used_sacks = 0;
1688 first_sack_index = 0;
1689 for (i = 0; i < num_sacks; i++) {
1690 bool dup_sack = !i && found_dup_sack;
1691
1692 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1693 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1694
1695 if (!tcp_is_sackblock_valid(tp, dup_sack,
1696 sp[used_sacks].start_seq,
1697 sp[used_sacks].end_seq)) {
1698 int mib_idx;
1699
1700 if (dup_sack) {
1701 if (!tp->undo_marker)
1702 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1703 else
1704 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1705 } else {
1706 /* Don't count olds caused by ACK reordering */
1707 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1708 !after(sp[used_sacks].end_seq, tp->snd_una))
1709 continue;
1710 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1711 }
1712
1713 NET_INC_STATS(sock_net(sk), mib_idx);
1714 if (i == 0)
1715 first_sack_index = -1;
1716 continue;
1717 }
1718
1719 /* Ignore very old stuff early */
1720 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1721 continue;
1722
1723 used_sacks++;
1724 }
1725
1726 /* order SACK blocks to allow in order walk of the retrans queue */
1727 for (i = used_sacks - 1; i > 0; i--) {
1728 for (j = 0; j < i; j++) {
1729 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1730 swap(sp[j], sp[j + 1]);
1731
1732 /* Track where the first SACK block goes to */
1733 if (j == first_sack_index)
1734 first_sack_index = j + 1;
1735 }
1736 }
1737 }
1738
1739 skb = tcp_write_queue_head(sk);
1740 state->fack_count = 0;
1741 i = 0;
1742
1743 if (!tp->sacked_out) {
1744 /* It's already past, so skip checking against it */
1745 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1746 } else {
1747 cache = tp->recv_sack_cache;
1748 /* Skip empty blocks in at head of the cache */
1749 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1750 !cache->end_seq)
1751 cache++;
1752 }
1753
1754 while (i < used_sacks) {
1755 u32 start_seq = sp[i].start_seq;
1756 u32 end_seq = sp[i].end_seq;
1757 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1758 struct tcp_sack_block *next_dup = NULL;
1759
1760 if (found_dup_sack && ((i + 1) == first_sack_index))
1761 next_dup = &sp[i + 1];
1762
1763 /* Skip too early cached blocks */
1764 while (tcp_sack_cache_ok(tp, cache) &&
1765 !before(start_seq, cache->end_seq))
1766 cache++;
1767
1768 /* Can skip some work by looking recv_sack_cache? */
1769 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1770 after(end_seq, cache->start_seq)) {
1771
1772 /* Head todo? */
1773 if (before(start_seq, cache->start_seq)) {
1774 skb = tcp_sacktag_skip(skb, sk, state,
1775 start_seq);
1776 skb = tcp_sacktag_walk(skb, sk, next_dup,
1777 state,
1778 start_seq,
1779 cache->start_seq,
1780 dup_sack);
1781 }
1782
1783 /* Rest of the block already fully processed? */
1784 if (!after(end_seq, cache->end_seq))
1785 goto advance_sp;
1786
1787 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1788 state,
1789 cache->end_seq);
1790
1791 /* ...tail remains todo... */
1792 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1793 /* ...but better entrypoint exists! */
1794 skb = tcp_highest_sack(sk);
1795 if (!skb)
1796 break;
1797 state->fack_count = tp->fackets_out;
1798 cache++;
1799 goto walk;
1800 }
1801
1802 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1803 /* Check overlap against next cached too (past this one already) */
1804 cache++;
1805 continue;
1806 }
1807
1808 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1809 skb = tcp_highest_sack(sk);
1810 if (!skb)
1811 break;
1812 state->fack_count = tp->fackets_out;
1813 }
1814 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1815
1816 walk:
1817 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1818 start_seq, end_seq, dup_sack);
1819
1820 advance_sp:
1821 i++;
1822 }
1823
1824 /* Clear the head of the cache sack blocks so we can skip it next time */
1825 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1826 tp->recv_sack_cache[i].start_seq = 0;
1827 tp->recv_sack_cache[i].end_seq = 0;
1828 }
1829 for (j = 0; j < used_sacks; j++)
1830 tp->recv_sack_cache[i++] = sp[j];
1831
1832 if ((state->reord < tp->fackets_out) &&
1833 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1834 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1835
1836 tcp_verify_left_out(tp);
1837 out:
1838
1839 #if FASTRETRANS_DEBUG > 0
1840 WARN_ON((int)tp->sacked_out < 0);
1841 WARN_ON((int)tp->lost_out < 0);
1842 WARN_ON((int)tp->retrans_out < 0);
1843 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1844 #endif
1845 return state->flag;
1846 }
1847
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1850 */
1851 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1852 {
1853 u32 holes;
1854
1855 holes = max(tp->lost_out, 1U);
1856 holes = min(holes, tp->packets_out);
1857
1858 if ((tp->sacked_out + holes) > tp->packets_out) {
1859 tp->sacked_out = tp->packets_out - holes;
1860 return true;
1861 }
1862 return false;
1863 }
1864
1865 /* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1868 */
1869 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1870 {
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 if (tcp_limit_reno_sacked(tp))
1873 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1874 }
1875
1876 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1877
1878 static void tcp_add_reno_sack(struct sock *sk)
1879 {
1880 struct tcp_sock *tp = tcp_sk(sk);
1881 u32 prior_sacked = tp->sacked_out;
1882
1883 tp->sacked_out++;
1884 tcp_check_reno_reordering(sk, 0);
1885 if (tp->sacked_out > prior_sacked)
1886 tp->delivered++; /* Some out-of-order packet is delivered */
1887 tcp_verify_left_out(tp);
1888 }
1889
1890 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1891
1892 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1893 {
1894 struct tcp_sock *tp = tcp_sk(sk);
1895
1896 if (acked > 0) {
1897 /* One ACK acked hole. The rest eat duplicate ACKs. */
1898 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1899 if (acked - 1 >= tp->sacked_out)
1900 tp->sacked_out = 0;
1901 else
1902 tp->sacked_out -= acked - 1;
1903 }
1904 tcp_check_reno_reordering(sk, acked);
1905 tcp_verify_left_out(tp);
1906 }
1907
1908 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1909 {
1910 tp->sacked_out = 0;
1911 }
1912
1913 void tcp_clear_retrans(struct tcp_sock *tp)
1914 {
1915 tp->retrans_out = 0;
1916 tp->lost_out = 0;
1917 tp->undo_marker = 0;
1918 tp->undo_retrans = -1;
1919 tp->fackets_out = 0;
1920 tp->sacked_out = 0;
1921 }
1922
1923 static inline void tcp_init_undo(struct tcp_sock *tp)
1924 {
1925 tp->undo_marker = tp->snd_una;
1926 /* Retransmission still in flight may cause DSACKs later. */
1927 tp->undo_retrans = tp->retrans_out ? : -1;
1928 }
1929
1930 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1931 * and reset tags completely, otherwise preserve SACKs. If receiver
1932 * dropped its ofo queue, we will know this due to reneging detection.
1933 */
1934 void tcp_enter_loss(struct sock *sk)
1935 {
1936 const struct inet_connection_sock *icsk = inet_csk(sk);
1937 struct tcp_sock *tp = tcp_sk(sk);
1938 struct net *net = sock_net(sk);
1939 struct sk_buff *skb;
1940 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1941 bool is_reneg; /* is receiver reneging on SACKs? */
1942 bool mark_lost;
1943
1944 /* Reduce ssthresh if it has not yet been made inside this window. */
1945 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1946 !after(tp->high_seq, tp->snd_una) ||
1947 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1948 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1949 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1950 tcp_ca_event(sk, CA_EVENT_LOSS);
1951 tcp_init_undo(tp);
1952 }
1953 tp->snd_cwnd = 1;
1954 tp->snd_cwnd_cnt = 0;
1955 tp->snd_cwnd_stamp = tcp_time_stamp;
1956
1957 tp->retrans_out = 0;
1958 tp->lost_out = 0;
1959
1960 if (tcp_is_reno(tp))
1961 tcp_reset_reno_sack(tp);
1962
1963 skb = tcp_write_queue_head(sk);
1964 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1965 if (is_reneg) {
1966 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1967 tp->sacked_out = 0;
1968 tp->fackets_out = 0;
1969 }
1970 tcp_clear_all_retrans_hints(tp);
1971
1972 tcp_for_write_queue(skb, sk) {
1973 if (skb == tcp_send_head(sk))
1974 break;
1975
1976 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1977 is_reneg);
1978 if (mark_lost)
1979 tcp_sum_lost(tp, skb);
1980 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1981 if (mark_lost) {
1982 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1983 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1984 tp->lost_out += tcp_skb_pcount(skb);
1985 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1986 }
1987 }
1988 tcp_verify_left_out(tp);
1989
1990 /* Timeout in disordered state after receiving substantial DUPACKs
1991 * suggests that the degree of reordering is over-estimated.
1992 */
1993 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1994 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1995 tp->reordering = min_t(unsigned int, tp->reordering,
1996 net->ipv4.sysctl_tcp_reordering);
1997 tcp_set_ca_state(sk, TCP_CA_Loss);
1998 tp->high_seq = tp->snd_nxt;
1999 tcp_ecn_queue_cwr(tp);
2000
2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 * loss recovery is underway except recurring timeout(s) on
2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2004 */
2005 tp->frto = sysctl_tcp_frto &&
2006 (new_recovery || icsk->icsk_retransmits) &&
2007 !inet_csk(sk)->icsk_mtup.probe_size;
2008 }
2009
2010 /* If ACK arrived pointing to a remembered SACK, it means that our
2011 * remembered SACKs do not reflect real state of receiver i.e.
2012 * receiver _host_ is heavily congested (or buggy).
2013 *
2014 * To avoid big spurious retransmission bursts due to transient SACK
2015 * scoreboard oddities that look like reneging, we give the receiver a
2016 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2017 * restore sanity to the SACK scoreboard. If the apparent reneging
2018 * persists until this RTO then we'll clear the SACK scoreboard.
2019 */
2020 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2021 {
2022 if (flag & FLAG_SACK_RENEGING) {
2023 struct tcp_sock *tp = tcp_sk(sk);
2024 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2025 msecs_to_jiffies(10));
2026
2027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2028 delay, TCP_RTO_MAX);
2029 return true;
2030 }
2031 return false;
2032 }
2033
2034 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2035 {
2036 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2037 }
2038
2039 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2040 * counter when SACK is enabled (without SACK, sacked_out is used for
2041 * that purpose).
2042 *
2043 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2044 * segments up to the highest received SACK block so far and holes in
2045 * between them.
2046 *
2047 * With reordering, holes may still be in flight, so RFC3517 recovery
2048 * uses pure sacked_out (total number of SACKed segments) even though
2049 * it violates the RFC that uses duplicate ACKs, often these are equal
2050 * but when e.g. out-of-window ACKs or packet duplication occurs,
2051 * they differ. Since neither occurs due to loss, TCP should really
2052 * ignore them.
2053 */
2054 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2055 {
2056 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2057 }
2058
2059 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2060 {
2061 struct tcp_sock *tp = tcp_sk(sk);
2062 unsigned long delay;
2063
2064 /* Delay early retransmit and entering fast recovery for
2065 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2066 * available, or RTO is scheduled to fire first.
2067 */
2068 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2069 (flag & FLAG_ECE) || !tp->srtt_us)
2070 return false;
2071
2072 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2073 msecs_to_jiffies(2));
2074
2075 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2076 return false;
2077
2078 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2079 TCP_RTO_MAX);
2080 return true;
2081 }
2082
2083 /* Linux NewReno/SACK/FACK/ECN state machine.
2084 * --------------------------------------
2085 *
2086 * "Open" Normal state, no dubious events, fast path.
2087 * "Disorder" In all the respects it is "Open",
2088 * but requires a bit more attention. It is entered when
2089 * we see some SACKs or dupacks. It is split of "Open"
2090 * mainly to move some processing from fast path to slow one.
2091 * "CWR" CWND was reduced due to some Congestion Notification event.
2092 * It can be ECN, ICMP source quench, local device congestion.
2093 * "Recovery" CWND was reduced, we are fast-retransmitting.
2094 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2095 *
2096 * tcp_fastretrans_alert() is entered:
2097 * - each incoming ACK, if state is not "Open"
2098 * - when arrived ACK is unusual, namely:
2099 * * SACK
2100 * * Duplicate ACK.
2101 * * ECN ECE.
2102 *
2103 * Counting packets in flight is pretty simple.
2104 *
2105 * in_flight = packets_out - left_out + retrans_out
2106 *
2107 * packets_out is SND.NXT-SND.UNA counted in packets.
2108 *
2109 * retrans_out is number of retransmitted segments.
2110 *
2111 * left_out is number of segments left network, but not ACKed yet.
2112 *
2113 * left_out = sacked_out + lost_out
2114 *
2115 * sacked_out: Packets, which arrived to receiver out of order
2116 * and hence not ACKed. With SACKs this number is simply
2117 * amount of SACKed data. Even without SACKs
2118 * it is easy to give pretty reliable estimate of this number,
2119 * counting duplicate ACKs.
2120 *
2121 * lost_out: Packets lost by network. TCP has no explicit
2122 * "loss notification" feedback from network (for now).
2123 * It means that this number can be only _guessed_.
2124 * Actually, it is the heuristics to predict lossage that
2125 * distinguishes different algorithms.
2126 *
2127 * F.e. after RTO, when all the queue is considered as lost,
2128 * lost_out = packets_out and in_flight = retrans_out.
2129 *
2130 * Essentially, we have now two algorithms counting
2131 * lost packets.
2132 *
2133 * FACK: It is the simplest heuristics. As soon as we decided
2134 * that something is lost, we decide that _all_ not SACKed
2135 * packets until the most forward SACK are lost. I.e.
2136 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2137 * It is absolutely correct estimate, if network does not reorder
2138 * packets. And it loses any connection to reality when reordering
2139 * takes place. We use FACK by default until reordering
2140 * is suspected on the path to this destination.
2141 *
2142 * NewReno: when Recovery is entered, we assume that one segment
2143 * is lost (classic Reno). While we are in Recovery and
2144 * a partial ACK arrives, we assume that one more packet
2145 * is lost (NewReno). This heuristics are the same in NewReno
2146 * and SACK.
2147 *
2148 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2149 * deflation etc. CWND is real congestion window, never inflated, changes
2150 * only according to classic VJ rules.
2151 *
2152 * Really tricky (and requiring careful tuning) part of algorithm
2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2154 * The first determines the moment _when_ we should reduce CWND and,
2155 * hence, slow down forward transmission. In fact, it determines the moment
2156 * when we decide that hole is caused by loss, rather than by a reorder.
2157 *
2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2159 * holes, caused by lost packets.
2160 *
2161 * And the most logically complicated part of algorithm is undo
2162 * heuristics. We detect false retransmits due to both too early
2163 * fast retransmit (reordering) and underestimated RTO, analyzing
2164 * timestamps and D-SACKs. When we detect that some segments were
2165 * retransmitted by mistake and CWND reduction was wrong, we undo
2166 * window reduction and abort recovery phase. This logic is hidden
2167 * inside several functions named tcp_try_undo_<something>.
2168 */
2169
2170 /* This function decides, when we should leave Disordered state
2171 * and enter Recovery phase, reducing congestion window.
2172 *
2173 * Main question: may we further continue forward transmission
2174 * with the same cwnd?
2175 */
2176 static bool tcp_time_to_recover(struct sock *sk, int flag)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 __u32 packets_out;
2180 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2181
2182 /* Trick#1: The loss is proven. */
2183 if (tp->lost_out)
2184 return true;
2185
2186 /* Not-A-Trick#2 : Classic rule... */
2187 if (tcp_dupack_heuristics(tp) > tp->reordering)
2188 return true;
2189
2190 /* Trick#4: It is still not OK... But will it be useful to delay
2191 * recovery more?
2192 */
2193 packets_out = tp->packets_out;
2194 if (packets_out <= tp->reordering &&
2195 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2196 !tcp_may_send_now(sk)) {
2197 /* We have nothing to send. This connection is limited
2198 * either by receiver window or by application.
2199 */
2200 return true;
2201 }
2202
2203 /* If a thin stream is detected, retransmit after first
2204 * received dupack. Employ only if SACK is supported in order
2205 * to avoid possible corner-case series of spurious retransmissions
2206 * Use only if there are no unsent data.
2207 */
2208 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2209 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2210 tcp_is_sack(tp) && !tcp_send_head(sk))
2211 return true;
2212
2213 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2214 * retransmissions due to small network reorderings, we implement
2215 * Mitigation A.3 in the RFC and delay the retransmission for a short
2216 * interval if appropriate.
2217 */
2218 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2219 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2220 !tcp_may_send_now(sk))
2221 return !tcp_pause_early_retransmit(sk, flag);
2222
2223 return false;
2224 }
2225
2226 /* Detect loss in event "A" above by marking head of queue up as lost.
2227 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2228 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2229 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2230 * the maximum SACKed segments to pass before reaching this limit.
2231 */
2232 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2233 {
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 struct sk_buff *skb;
2236 int cnt, oldcnt, lost;
2237 unsigned int mss;
2238 /* Use SACK to deduce losses of new sequences sent during recovery */
2239 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2240
2241 WARN_ON(packets > tp->packets_out);
2242 if (tp->lost_skb_hint) {
2243 skb = tp->lost_skb_hint;
2244 cnt = tp->lost_cnt_hint;
2245 /* Head already handled? */
2246 if (mark_head && skb != tcp_write_queue_head(sk))
2247 return;
2248 } else {
2249 skb = tcp_write_queue_head(sk);
2250 cnt = 0;
2251 }
2252
2253 tcp_for_write_queue_from(skb, sk) {
2254 if (skb == tcp_send_head(sk))
2255 break;
2256 /* TODO: do this better */
2257 /* this is not the most efficient way to do this... */
2258 tp->lost_skb_hint = skb;
2259 tp->lost_cnt_hint = cnt;
2260
2261 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2262 break;
2263
2264 oldcnt = cnt;
2265 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2266 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2267 cnt += tcp_skb_pcount(skb);
2268
2269 if (cnt > packets) {
2270 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2271 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2272 (oldcnt >= packets))
2273 break;
2274
2275 mss = tcp_skb_mss(skb);
2276 /* If needed, chop off the prefix to mark as lost. */
2277 lost = (packets - oldcnt) * mss;
2278 if (lost < skb->len &&
2279 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2280 break;
2281 cnt = packets;
2282 }
2283
2284 tcp_skb_mark_lost(tp, skb);
2285
2286 if (mark_head)
2287 break;
2288 }
2289 tcp_verify_left_out(tp);
2290 }
2291
2292 /* Account newly detected lost packet(s) */
2293
2294 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2295 {
2296 struct tcp_sock *tp = tcp_sk(sk);
2297
2298 if (tcp_is_reno(tp)) {
2299 tcp_mark_head_lost(sk, 1, 1);
2300 } else if (tcp_is_fack(tp)) {
2301 int lost = tp->fackets_out - tp->reordering;
2302 if (lost <= 0)
2303 lost = 1;
2304 tcp_mark_head_lost(sk, lost, 0);
2305 } else {
2306 int sacked_upto = tp->sacked_out - tp->reordering;
2307 if (sacked_upto >= 0)
2308 tcp_mark_head_lost(sk, sacked_upto, 0);
2309 else if (fast_rexmit)
2310 tcp_mark_head_lost(sk, 1, 1);
2311 }
2312 }
2313
2314 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2315 {
2316 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2317 before(tp->rx_opt.rcv_tsecr, when);
2318 }
2319
2320 /* skb is spurious retransmitted if the returned timestamp echo
2321 * reply is prior to the skb transmission time
2322 */
2323 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2324 const struct sk_buff *skb)
2325 {
2326 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2327 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2328 }
2329
2330 /* Nothing was retransmitted or returned timestamp is less
2331 * than timestamp of the first retransmission.
2332 */
2333 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2334 {
2335 return !tp->retrans_stamp ||
2336 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2337 }
2338
2339 /* Undo procedures. */
2340
2341 /* We can clear retrans_stamp when there are no retransmissions in the
2342 * window. It would seem that it is trivially available for us in
2343 * tp->retrans_out, however, that kind of assumptions doesn't consider
2344 * what will happen if errors occur when sending retransmission for the
2345 * second time. ...It could the that such segment has only
2346 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2347 * the head skb is enough except for some reneging corner cases that
2348 * are not worth the effort.
2349 *
2350 * Main reason for all this complexity is the fact that connection dying
2351 * time now depends on the validity of the retrans_stamp, in particular,
2352 * that successive retransmissions of a segment must not advance
2353 * retrans_stamp under any conditions.
2354 */
2355 static bool tcp_any_retrans_done(const struct sock *sk)
2356 {
2357 const struct tcp_sock *tp = tcp_sk(sk);
2358 struct sk_buff *skb;
2359
2360 if (tp->retrans_out)
2361 return true;
2362
2363 skb = tcp_write_queue_head(sk);
2364 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2365 return true;
2366
2367 return false;
2368 }
2369
2370 #if FASTRETRANS_DEBUG > 1
2371 static void DBGUNDO(struct sock *sk, const char *msg)
2372 {
2373 struct tcp_sock *tp = tcp_sk(sk);
2374 struct inet_sock *inet = inet_sk(sk);
2375
2376 if (sk->sk_family == AF_INET) {
2377 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2378 msg,
2379 &inet->inet_daddr, ntohs(inet->inet_dport),
2380 tp->snd_cwnd, tcp_left_out(tp),
2381 tp->snd_ssthresh, tp->prior_ssthresh,
2382 tp->packets_out);
2383 }
2384 #if IS_ENABLED(CONFIG_IPV6)
2385 else if (sk->sk_family == AF_INET6) {
2386 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2387 msg,
2388 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2389 tp->snd_cwnd, tcp_left_out(tp),
2390 tp->snd_ssthresh, tp->prior_ssthresh,
2391 tp->packets_out);
2392 }
2393 #endif
2394 }
2395 #else
2396 #define DBGUNDO(x...) do { } while (0)
2397 #endif
2398
2399 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2400 {
2401 struct tcp_sock *tp = tcp_sk(sk);
2402
2403 if (unmark_loss) {
2404 struct sk_buff *skb;
2405
2406 tcp_for_write_queue(skb, sk) {
2407 if (skb == tcp_send_head(sk))
2408 break;
2409 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2410 }
2411 tp->lost_out = 0;
2412 tcp_clear_all_retrans_hints(tp);
2413 }
2414
2415 if (tp->prior_ssthresh) {
2416 const struct inet_connection_sock *icsk = inet_csk(sk);
2417
2418 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2419
2420 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2421 tp->snd_ssthresh = tp->prior_ssthresh;
2422 tcp_ecn_withdraw_cwr(tp);
2423 }
2424 }
2425 tp->snd_cwnd_stamp = tcp_time_stamp;
2426 tp->undo_marker = 0;
2427 }
2428
2429 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2430 {
2431 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2432 }
2433
2434 /* People celebrate: "We love our President!" */
2435 static bool tcp_try_undo_recovery(struct sock *sk)
2436 {
2437 struct tcp_sock *tp = tcp_sk(sk);
2438
2439 if (tcp_may_undo(tp)) {
2440 int mib_idx;
2441
2442 /* Happy end! We did not retransmit anything
2443 * or our original transmission succeeded.
2444 */
2445 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2446 tcp_undo_cwnd_reduction(sk, false);
2447 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2448 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2449 else
2450 mib_idx = LINUX_MIB_TCPFULLUNDO;
2451
2452 NET_INC_STATS(sock_net(sk), mib_idx);
2453 }
2454 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2455 /* Hold old state until something *above* high_seq
2456 * is ACKed. For Reno it is MUST to prevent false
2457 * fast retransmits (RFC2582). SACK TCP is safe. */
2458 if (!tcp_any_retrans_done(sk))
2459 tp->retrans_stamp = 0;
2460 return true;
2461 }
2462 tcp_set_ca_state(sk, TCP_CA_Open);
2463 return false;
2464 }
2465
2466 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2467 static bool tcp_try_undo_dsack(struct sock *sk)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 if (tp->undo_marker && !tp->undo_retrans) {
2472 DBGUNDO(sk, "D-SACK");
2473 tcp_undo_cwnd_reduction(sk, false);
2474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2475 return true;
2476 }
2477 return false;
2478 }
2479
2480 /* Undo during loss recovery after partial ACK or using F-RTO. */
2481 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484
2485 if (frto_undo || tcp_may_undo(tp)) {
2486 tcp_undo_cwnd_reduction(sk, true);
2487
2488 DBGUNDO(sk, "partial loss");
2489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2490 if (frto_undo)
2491 NET_INC_STATS(sock_net(sk),
2492 LINUX_MIB_TCPSPURIOUSRTOS);
2493 inet_csk(sk)->icsk_retransmits = 0;
2494 if (frto_undo || tcp_is_sack(tp))
2495 tcp_set_ca_state(sk, TCP_CA_Open);
2496 return true;
2497 }
2498 return false;
2499 }
2500
2501 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2502 * It computes the number of packets to send (sndcnt) based on packets newly
2503 * delivered:
2504 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2505 * cwnd reductions across a full RTT.
2506 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2507 * But when the retransmits are acked without further losses, PRR
2508 * slow starts cwnd up to ssthresh to speed up the recovery.
2509 */
2510 static void tcp_init_cwnd_reduction(struct sock *sk)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513
2514 tp->high_seq = tp->snd_nxt;
2515 tp->tlp_high_seq = 0;
2516 tp->snd_cwnd_cnt = 0;
2517 tp->prior_cwnd = tp->snd_cwnd;
2518 tp->prr_delivered = 0;
2519 tp->prr_out = 0;
2520 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2521 tcp_ecn_queue_cwr(tp);
2522 }
2523
2524 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2525 int flag)
2526 {
2527 struct tcp_sock *tp = tcp_sk(sk);
2528 int sndcnt = 0;
2529 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2530
2531 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2532 return;
2533
2534 tp->prr_delivered += newly_acked_sacked;
2535 if (delta < 0) {
2536 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2537 tp->prior_cwnd - 1;
2538 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2539 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2540 !(flag & FLAG_LOST_RETRANS)) {
2541 sndcnt = min_t(int, delta,
2542 max_t(int, tp->prr_delivered - tp->prr_out,
2543 newly_acked_sacked) + 1);
2544 } else {
2545 sndcnt = min(delta, newly_acked_sacked);
2546 }
2547 /* Force a fast retransmit upon entering fast recovery */
2548 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2549 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2550 }
2551
2552 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2553 {
2554 struct tcp_sock *tp = tcp_sk(sk);
2555
2556 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2557 return;
2558
2559 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2560 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2561 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2562 tp->snd_cwnd = tp->snd_ssthresh;
2563 tp->snd_cwnd_stamp = tcp_time_stamp;
2564 }
2565 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2566 }
2567
2568 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2569 void tcp_enter_cwr(struct sock *sk)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572
2573 tp->prior_ssthresh = 0;
2574 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2575 tp->undo_marker = 0;
2576 tcp_init_cwnd_reduction(sk);
2577 tcp_set_ca_state(sk, TCP_CA_CWR);
2578 }
2579 }
2580 EXPORT_SYMBOL(tcp_enter_cwr);
2581
2582 static void tcp_try_keep_open(struct sock *sk)
2583 {
2584 struct tcp_sock *tp = tcp_sk(sk);
2585 int state = TCP_CA_Open;
2586
2587 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2588 state = TCP_CA_Disorder;
2589
2590 if (inet_csk(sk)->icsk_ca_state != state) {
2591 tcp_set_ca_state(sk, state);
2592 tp->high_seq = tp->snd_nxt;
2593 }
2594 }
2595
2596 static void tcp_try_to_open(struct sock *sk, int flag)
2597 {
2598 struct tcp_sock *tp = tcp_sk(sk);
2599
2600 tcp_verify_left_out(tp);
2601
2602 if (!tcp_any_retrans_done(sk))
2603 tp->retrans_stamp = 0;
2604
2605 if (flag & FLAG_ECE)
2606 tcp_enter_cwr(sk);
2607
2608 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2609 tcp_try_keep_open(sk);
2610 }
2611 }
2612
2613 static void tcp_mtup_probe_failed(struct sock *sk)
2614 {
2615 struct inet_connection_sock *icsk = inet_csk(sk);
2616
2617 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2618 icsk->icsk_mtup.probe_size = 0;
2619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2620 }
2621
2622 static void tcp_mtup_probe_success(struct sock *sk)
2623 {
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 struct inet_connection_sock *icsk = inet_csk(sk);
2626
2627 /* FIXME: breaks with very large cwnd */
2628 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2629 tp->snd_cwnd = tp->snd_cwnd *
2630 tcp_mss_to_mtu(sk, tp->mss_cache) /
2631 icsk->icsk_mtup.probe_size;
2632 tp->snd_cwnd_cnt = 0;
2633 tp->snd_cwnd_stamp = tcp_time_stamp;
2634 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2635
2636 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2637 icsk->icsk_mtup.probe_size = 0;
2638 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2640 }
2641
2642 /* Do a simple retransmit without using the backoff mechanisms in
2643 * tcp_timer. This is used for path mtu discovery.
2644 * The socket is already locked here.
2645 */
2646 void tcp_simple_retransmit(struct sock *sk)
2647 {
2648 const struct inet_connection_sock *icsk = inet_csk(sk);
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 struct sk_buff *skb;
2651 unsigned int mss = tcp_current_mss(sk);
2652 u32 prior_lost = tp->lost_out;
2653
2654 tcp_for_write_queue(skb, sk) {
2655 if (skb == tcp_send_head(sk))
2656 break;
2657 if (tcp_skb_seglen(skb) > mss &&
2658 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2659 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2660 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2661 tp->retrans_out -= tcp_skb_pcount(skb);
2662 }
2663 tcp_skb_mark_lost_uncond_verify(tp, skb);
2664 }
2665 }
2666
2667 tcp_clear_retrans_hints_partial(tp);
2668
2669 if (prior_lost == tp->lost_out)
2670 return;
2671
2672 if (tcp_is_reno(tp))
2673 tcp_limit_reno_sacked(tp);
2674
2675 tcp_verify_left_out(tp);
2676
2677 /* Don't muck with the congestion window here.
2678 * Reason is that we do not increase amount of _data_
2679 * in network, but units changed and effective
2680 * cwnd/ssthresh really reduced now.
2681 */
2682 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2683 tp->high_seq = tp->snd_nxt;
2684 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2685 tp->prior_ssthresh = 0;
2686 tp->undo_marker = 0;
2687 tcp_set_ca_state(sk, TCP_CA_Loss);
2688 }
2689 tcp_xmit_retransmit_queue(sk);
2690 }
2691 EXPORT_SYMBOL(tcp_simple_retransmit);
2692
2693 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2694 {
2695 struct tcp_sock *tp = tcp_sk(sk);
2696 int mib_idx;
2697
2698 if (tcp_is_reno(tp))
2699 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2700 else
2701 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2702
2703 NET_INC_STATS(sock_net(sk), mib_idx);
2704
2705 tp->prior_ssthresh = 0;
2706 tcp_init_undo(tp);
2707
2708 if (!tcp_in_cwnd_reduction(sk)) {
2709 if (!ece_ack)
2710 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2711 tcp_init_cwnd_reduction(sk);
2712 }
2713 tcp_set_ca_state(sk, TCP_CA_Recovery);
2714 }
2715
2716 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2717 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2718 */
2719 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2720 int *rexmit)
2721 {
2722 struct tcp_sock *tp = tcp_sk(sk);
2723 bool recovered = !before(tp->snd_una, tp->high_seq);
2724
2725 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2726 tcp_try_undo_loss(sk, false))
2727 return;
2728
2729 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2730 /* Step 3.b. A timeout is spurious if not all data are
2731 * lost, i.e., never-retransmitted data are (s)acked.
2732 */
2733 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2734 tcp_try_undo_loss(sk, true))
2735 return;
2736
2737 if (after(tp->snd_nxt, tp->high_seq)) {
2738 if (flag & FLAG_DATA_SACKED || is_dupack)
2739 tp->frto = 0; /* Step 3.a. loss was real */
2740 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2741 tp->high_seq = tp->snd_nxt;
2742 /* Step 2.b. Try send new data (but deferred until cwnd
2743 * is updated in tcp_ack()). Otherwise fall back to
2744 * the conventional recovery.
2745 */
2746 if (tcp_send_head(sk) &&
2747 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2748 *rexmit = REXMIT_NEW;
2749 return;
2750 }
2751 tp->frto = 0;
2752 }
2753 }
2754
2755 if (recovered) {
2756 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2757 tcp_try_undo_recovery(sk);
2758 return;
2759 }
2760 if (tcp_is_reno(tp)) {
2761 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2762 * delivered. Lower inflight to clock out (re)tranmissions.
2763 */
2764 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2765 tcp_add_reno_sack(sk);
2766 else if (flag & FLAG_SND_UNA_ADVANCED)
2767 tcp_reset_reno_sack(tp);
2768 }
2769 *rexmit = REXMIT_LOST;
2770 }
2771
2772 /* Undo during fast recovery after partial ACK. */
2773 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2774 {
2775 struct tcp_sock *tp = tcp_sk(sk);
2776
2777 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2778 /* Plain luck! Hole if filled with delayed
2779 * packet, rather than with a retransmit.
2780 */
2781 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2782
2783 /* We are getting evidence that the reordering degree is higher
2784 * than we realized. If there are no retransmits out then we
2785 * can undo. Otherwise we clock out new packets but do not
2786 * mark more packets lost or retransmit more.
2787 */
2788 if (tp->retrans_out)
2789 return true;
2790
2791 if (!tcp_any_retrans_done(sk))
2792 tp->retrans_stamp = 0;
2793
2794 DBGUNDO(sk, "partial recovery");
2795 tcp_undo_cwnd_reduction(sk, true);
2796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2797 tcp_try_keep_open(sk);
2798 return true;
2799 }
2800 return false;
2801 }
2802
2803 /* Process an event, which can update packets-in-flight not trivially.
2804 * Main goal of this function is to calculate new estimate for left_out,
2805 * taking into account both packets sitting in receiver's buffer and
2806 * packets lost by network.
2807 *
2808 * Besides that it updates the congestion state when packet loss or ECN
2809 * is detected. But it does not reduce the cwnd, it is done by the
2810 * congestion control later.
2811 *
2812 * It does _not_ decide what to send, it is made in function
2813 * tcp_xmit_retransmit_queue().
2814 */
2815 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2816 bool is_dupack, int *ack_flag, int *rexmit)
2817 {
2818 struct inet_connection_sock *icsk = inet_csk(sk);
2819 struct tcp_sock *tp = tcp_sk(sk);
2820 int fast_rexmit = 0, flag = *ack_flag;
2821 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2822 (tcp_fackets_out(tp) > tp->reordering));
2823
2824 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2825 tp->sacked_out = 0;
2826 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2827 tp->fackets_out = 0;
2828
2829 /* Now state machine starts.
2830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2831 if (flag & FLAG_ECE)
2832 tp->prior_ssthresh = 0;
2833
2834 /* B. In all the states check for reneging SACKs. */
2835 if (tcp_check_sack_reneging(sk, flag))
2836 return;
2837
2838 /* C. Check consistency of the current state. */
2839 tcp_verify_left_out(tp);
2840
2841 /* D. Check state exit conditions. State can be terminated
2842 * when high_seq is ACKed. */
2843 if (icsk->icsk_ca_state == TCP_CA_Open) {
2844 WARN_ON(tp->retrans_out != 0);
2845 tp->retrans_stamp = 0;
2846 } else if (!before(tp->snd_una, tp->high_seq)) {
2847 switch (icsk->icsk_ca_state) {
2848 case TCP_CA_CWR:
2849 /* CWR is to be held something *above* high_seq
2850 * is ACKed for CWR bit to reach receiver. */
2851 if (tp->snd_una != tp->high_seq) {
2852 tcp_end_cwnd_reduction(sk);
2853 tcp_set_ca_state(sk, TCP_CA_Open);
2854 }
2855 break;
2856
2857 case TCP_CA_Recovery:
2858 if (tcp_is_reno(tp))
2859 tcp_reset_reno_sack(tp);
2860 if (tcp_try_undo_recovery(sk))
2861 return;
2862 tcp_end_cwnd_reduction(sk);
2863 break;
2864 }
2865 }
2866
2867 /* Use RACK to detect loss */
2868 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2869 tcp_rack_mark_lost(sk)) {
2870 flag |= FLAG_LOST_RETRANS;
2871 *ack_flag |= FLAG_LOST_RETRANS;
2872 }
2873
2874 /* E. Process state. */
2875 switch (icsk->icsk_ca_state) {
2876 case TCP_CA_Recovery:
2877 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2878 if (tcp_is_reno(tp) && is_dupack)
2879 tcp_add_reno_sack(sk);
2880 } else {
2881 if (tcp_try_undo_partial(sk, acked))
2882 return;
2883 /* Partial ACK arrived. Force fast retransmit. */
2884 do_lost = tcp_is_reno(tp) ||
2885 tcp_fackets_out(tp) > tp->reordering;
2886 }
2887 if (tcp_try_undo_dsack(sk)) {
2888 tcp_try_keep_open(sk);
2889 return;
2890 }
2891 break;
2892 case TCP_CA_Loss:
2893 tcp_process_loss(sk, flag, is_dupack, rexmit);
2894 if (icsk->icsk_ca_state != TCP_CA_Open &&
2895 !(flag & FLAG_LOST_RETRANS))
2896 return;
2897 /* Change state if cwnd is undone or retransmits are lost */
2898 default:
2899 if (tcp_is_reno(tp)) {
2900 if (flag & FLAG_SND_UNA_ADVANCED)
2901 tcp_reset_reno_sack(tp);
2902 if (is_dupack)
2903 tcp_add_reno_sack(sk);
2904 }
2905
2906 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2907 tcp_try_undo_dsack(sk);
2908
2909 if (!tcp_time_to_recover(sk, flag)) {
2910 tcp_try_to_open(sk, flag);
2911 return;
2912 }
2913
2914 /* MTU probe failure: don't reduce cwnd */
2915 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2916 icsk->icsk_mtup.probe_size &&
2917 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2918 tcp_mtup_probe_failed(sk);
2919 /* Restores the reduction we did in tcp_mtup_probe() */
2920 tp->snd_cwnd++;
2921 tcp_simple_retransmit(sk);
2922 return;
2923 }
2924
2925 /* Otherwise enter Recovery state */
2926 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2927 fast_rexmit = 1;
2928 }
2929
2930 if (do_lost)
2931 tcp_update_scoreboard(sk, fast_rexmit);
2932 *rexmit = REXMIT_LOST;
2933 }
2934
2935 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2936 {
2937 struct tcp_sock *tp = tcp_sk(sk);
2938 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2939
2940 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2941 rtt_us ? : jiffies_to_usecs(1));
2942 }
2943
2944 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2945 long seq_rtt_us, long sack_rtt_us,
2946 long ca_rtt_us)
2947 {
2948 const struct tcp_sock *tp = tcp_sk(sk);
2949
2950 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2951 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2952 * Karn's algorithm forbids taking RTT if some retransmitted data
2953 * is acked (RFC6298).
2954 */
2955 if (seq_rtt_us < 0)
2956 seq_rtt_us = sack_rtt_us;
2957
2958 /* RTTM Rule: A TSecr value received in a segment is used to
2959 * update the averaged RTT measurement only if the segment
2960 * acknowledges some new data, i.e., only if it advances the
2961 * left edge of the send window.
2962 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2963 */
2964 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2965 flag & FLAG_ACKED)
2966 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2967 tp->rx_opt.rcv_tsecr);
2968 if (seq_rtt_us < 0)
2969 return false;
2970
2971 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2972 * always taken together with ACK, SACK, or TS-opts. Any negative
2973 * values will be skipped with the seq_rtt_us < 0 check above.
2974 */
2975 tcp_update_rtt_min(sk, ca_rtt_us);
2976 tcp_rtt_estimator(sk, seq_rtt_us);
2977 tcp_set_rto(sk);
2978
2979 /* RFC6298: only reset backoff on valid RTT measurement. */
2980 inet_csk(sk)->icsk_backoff = 0;
2981 return true;
2982 }
2983
2984 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2985 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2986 {
2987 long rtt_us = -1L;
2988
2989 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2990 struct skb_mstamp now;
2991
2992 skb_mstamp_get(&now);
2993 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2994 }
2995
2996 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2997 }
2998
2999
3000 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3001 {
3002 const struct inet_connection_sock *icsk = inet_csk(sk);
3003
3004 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3005 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3006 }
3007
3008 /* Restart timer after forward progress on connection.
3009 * RFC2988 recommends to restart timer to now+rto.
3010 */
3011 void tcp_rearm_rto(struct sock *sk)
3012 {
3013 const struct inet_connection_sock *icsk = inet_csk(sk);
3014 struct tcp_sock *tp = tcp_sk(sk);
3015
3016 /* If the retrans timer is currently being used by Fast Open
3017 * for SYN-ACK retrans purpose, stay put.
3018 */
3019 if (tp->fastopen_rsk)
3020 return;
3021
3022 if (!tp->packets_out) {
3023 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3024 } else {
3025 u32 rto = inet_csk(sk)->icsk_rto;
3026 /* Offset the time elapsed after installing regular RTO */
3027 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3028 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3029 struct sk_buff *skb = tcp_write_queue_head(sk);
3030 const u32 rto_time_stamp =
3031 tcp_skb_timestamp(skb) + rto;
3032 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3033 /* delta may not be positive if the socket is locked
3034 * when the retrans timer fires and is rescheduled.
3035 */
3036 if (delta > 0)
3037 rto = delta;
3038 }
3039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3040 TCP_RTO_MAX);
3041 }
3042 }
3043
3044 /* This function is called when the delayed ER timer fires. TCP enters
3045 * fast recovery and performs fast-retransmit.
3046 */
3047 void tcp_resume_early_retransmit(struct sock *sk)
3048 {
3049 struct tcp_sock *tp = tcp_sk(sk);
3050
3051 tcp_rearm_rto(sk);
3052
3053 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3054 if (!tp->do_early_retrans)
3055 return;
3056
3057 tcp_enter_recovery(sk, false);
3058 tcp_update_scoreboard(sk, 1);
3059 tcp_xmit_retransmit_queue(sk);
3060 }
3061
3062 /* If we get here, the whole TSO packet has not been acked. */
3063 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3064 {
3065 struct tcp_sock *tp = tcp_sk(sk);
3066 u32 packets_acked;
3067
3068 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3069
3070 packets_acked = tcp_skb_pcount(skb);
3071 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3072 return 0;
3073 packets_acked -= tcp_skb_pcount(skb);
3074
3075 if (packets_acked) {
3076 BUG_ON(tcp_skb_pcount(skb) == 0);
3077 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3078 }
3079
3080 return packets_acked;
3081 }
3082
3083 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3084 u32 prior_snd_una)
3085 {
3086 const struct skb_shared_info *shinfo;
3087
3088 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3089 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3090 return;
3091
3092 shinfo = skb_shinfo(skb);
3093 if (!before(shinfo->tskey, prior_snd_una) &&
3094 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3095 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3096 }
3097
3098 /* Remove acknowledged frames from the retransmission queue. If our packet
3099 * is before the ack sequence we can discard it as it's confirmed to have
3100 * arrived at the other end.
3101 */
3102 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3103 u32 prior_snd_una, int *acked,
3104 struct tcp_sacktag_state *sack,
3105 struct skb_mstamp *now)
3106 {
3107 const struct inet_connection_sock *icsk = inet_csk(sk);
3108 struct skb_mstamp first_ackt, last_ackt;
3109 struct tcp_sock *tp = tcp_sk(sk);
3110 u32 prior_sacked = tp->sacked_out;
3111 u32 reord = tp->packets_out;
3112 bool fully_acked = true;
3113 long sack_rtt_us = -1L;
3114 long seq_rtt_us = -1L;
3115 long ca_rtt_us = -1L;
3116 struct sk_buff *skb;
3117 u32 pkts_acked = 0;
3118 u32 last_in_flight = 0;
3119 bool rtt_update;
3120 int flag = 0;
3121
3122 first_ackt.v64 = 0;
3123
3124 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3125 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3126 u8 sacked = scb->sacked;
3127 u32 acked_pcount;
3128
3129 tcp_ack_tstamp(sk, skb, prior_snd_una);
3130
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb->end_seq, tp->snd_una)) {
3133 if (tcp_skb_pcount(skb) == 1 ||
3134 !after(tp->snd_una, scb->seq))
3135 break;
3136
3137 acked_pcount = tcp_tso_acked(sk, skb);
3138 if (!acked_pcount)
3139 break;
3140 fully_acked = false;
3141 } else {
3142 /* Speedup tcp_unlink_write_queue() and next loop */
3143 prefetchw(skb->next);
3144 acked_pcount = tcp_skb_pcount(skb);
3145 }
3146
3147 if (unlikely(sacked & TCPCB_RETRANS)) {
3148 if (sacked & TCPCB_SACKED_RETRANS)
3149 tp->retrans_out -= acked_pcount;
3150 flag |= FLAG_RETRANS_DATA_ACKED;
3151 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152 last_ackt = skb->skb_mstamp;
3153 WARN_ON_ONCE(last_ackt.v64 == 0);
3154 if (!first_ackt.v64)
3155 first_ackt = last_ackt;
3156
3157 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3158 reord = min(pkts_acked, reord);
3159 if (!after(scb->end_seq, tp->high_seq))
3160 flag |= FLAG_ORIG_SACK_ACKED;
3161 }
3162
3163 if (sacked & TCPCB_SACKED_ACKED) {
3164 tp->sacked_out -= acked_pcount;
3165 } else if (tcp_is_sack(tp)) {
3166 tp->delivered += acked_pcount;
3167 if (!tcp_skb_spurious_retrans(tp, skb))
3168 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3169 }
3170 if (sacked & TCPCB_LOST)
3171 tp->lost_out -= acked_pcount;
3172
3173 tp->packets_out -= acked_pcount;
3174 pkts_acked += acked_pcount;
3175 tcp_rate_skb_delivered(sk, skb, sack->rate);
3176
3177 /* Initial outgoing SYN's get put onto the write_queue
3178 * just like anything else we transmit. It is not
3179 * true data, and if we misinform our callers that
3180 * this ACK acks real data, we will erroneously exit
3181 * connection startup slow start one packet too
3182 * quickly. This is severely frowned upon behavior.
3183 */
3184 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3185 flag |= FLAG_DATA_ACKED;
3186 } else {
3187 flag |= FLAG_SYN_ACKED;
3188 tp->retrans_stamp = 0;
3189 }
3190
3191 if (!fully_acked)
3192 break;
3193
3194 tcp_unlink_write_queue(skb, sk);
3195 sk_wmem_free_skb(sk, skb);
3196 if (unlikely(skb == tp->retransmit_skb_hint))
3197 tp->retransmit_skb_hint = NULL;
3198 if (unlikely(skb == tp->lost_skb_hint))
3199 tp->lost_skb_hint = NULL;
3200 }
3201
3202 if (!skb)
3203 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3204
3205 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3206 tp->snd_up = tp->snd_una;
3207
3208 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3209 flag |= FLAG_SACK_RENEGING;
3210
3211 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3212 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3213 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3214 }
3215 if (sack->first_sackt.v64) {
3216 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3217 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3218 }
3219 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3220 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3221 ca_rtt_us);
3222
3223 if (flag & FLAG_ACKED) {
3224 tcp_rearm_rto(sk);
3225 if (unlikely(icsk->icsk_mtup.probe_size &&
3226 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3227 tcp_mtup_probe_success(sk);
3228 }
3229
3230 if (tcp_is_reno(tp)) {
3231 tcp_remove_reno_sacks(sk, pkts_acked);
3232 } else {
3233 int delta;
3234
3235 /* Non-retransmitted hole got filled? That's reordering */
3236 if (reord < prior_fackets)
3237 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3238
3239 delta = tcp_is_fack(tp) ? pkts_acked :
3240 prior_sacked - tp->sacked_out;
3241 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3242 }
3243
3244 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3245
3246 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3247 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3248 /* Do not re-arm RTO if the sack RTT is measured from data sent
3249 * after when the head was last (re)transmitted. Otherwise the
3250 * timeout may continue to extend in loss recovery.
3251 */
3252 tcp_rearm_rto(sk);
3253 }
3254
3255 if (icsk->icsk_ca_ops->pkts_acked) {
3256 struct ack_sample sample = { .pkts_acked = pkts_acked,
3257 .rtt_us = ca_rtt_us,
3258 .in_flight = last_in_flight };
3259
3260 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3261 }
3262
3263 #if FASTRETRANS_DEBUG > 0
3264 WARN_ON((int)tp->sacked_out < 0);
3265 WARN_ON((int)tp->lost_out < 0);
3266 WARN_ON((int)tp->retrans_out < 0);
3267 if (!tp->packets_out && tcp_is_sack(tp)) {
3268 icsk = inet_csk(sk);
3269 if (tp->lost_out) {
3270 pr_debug("Leak l=%u %d\n",
3271 tp->lost_out, icsk->icsk_ca_state);
3272 tp->lost_out = 0;
3273 }
3274 if (tp->sacked_out) {
3275 pr_debug("Leak s=%u %d\n",
3276 tp->sacked_out, icsk->icsk_ca_state);
3277 tp->sacked_out = 0;
3278 }
3279 if (tp->retrans_out) {
3280 pr_debug("Leak r=%u %d\n",
3281 tp->retrans_out, icsk->icsk_ca_state);
3282 tp->retrans_out = 0;
3283 }
3284 }
3285 #endif
3286 *acked = pkts_acked;
3287 return flag;
3288 }
3289
3290 static void tcp_ack_probe(struct sock *sk)
3291 {
3292 const struct tcp_sock *tp = tcp_sk(sk);
3293 struct inet_connection_sock *icsk = inet_csk(sk);
3294
3295 /* Was it a usable window open? */
3296
3297 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3298 icsk->icsk_backoff = 0;
3299 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3300 /* Socket must be waked up by subsequent tcp_data_snd_check().
3301 * This function is not for random using!
3302 */
3303 } else {
3304 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3305
3306 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3307 when, TCP_RTO_MAX);
3308 }
3309 }
3310
3311 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3312 {
3313 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3314 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3315 }
3316
3317 /* Decide wheather to run the increase function of congestion control. */
3318 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3319 {
3320 /* If reordering is high then always grow cwnd whenever data is
3321 * delivered regardless of its ordering. Otherwise stay conservative
3322 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323 * new SACK or ECE mark may first advance cwnd here and later reduce
3324 * cwnd in tcp_fastretrans_alert() based on more states.
3325 */
3326 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3327 return flag & FLAG_FORWARD_PROGRESS;
3328
3329 return flag & FLAG_DATA_ACKED;
3330 }
3331
3332 /* The "ultimate" congestion control function that aims to replace the rigid
3333 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3334 * It's called toward the end of processing an ACK with precise rate
3335 * information. All transmission or retransmission are delayed afterwards.
3336 */
3337 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3338 int flag, const struct rate_sample *rs)
3339 {
3340 const struct inet_connection_sock *icsk = inet_csk(sk);
3341
3342 if (icsk->icsk_ca_ops->cong_control) {
3343 icsk->icsk_ca_ops->cong_control(sk, rs);
3344 return;
3345 }
3346
3347 if (tcp_in_cwnd_reduction(sk)) {
3348 /* Reduce cwnd if state mandates */
3349 tcp_cwnd_reduction(sk, acked_sacked, flag);
3350 } else if (tcp_may_raise_cwnd(sk, flag)) {
3351 /* Advance cwnd if state allows */
3352 tcp_cong_avoid(sk, ack, acked_sacked);
3353 }
3354 tcp_update_pacing_rate(sk);
3355 }
3356
3357 /* Check that window update is acceptable.
3358 * The function assumes that snd_una<=ack<=snd_next.
3359 */
3360 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3361 const u32 ack, const u32 ack_seq,
3362 const u32 nwin)
3363 {
3364 return after(ack, tp->snd_una) ||
3365 after(ack_seq, tp->snd_wl1) ||
3366 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3367 }
3368
3369 /* If we update tp->snd_una, also update tp->bytes_acked */
3370 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3371 {
3372 u32 delta = ack - tp->snd_una;
3373
3374 sock_owned_by_me((struct sock *)tp);
3375 tp->bytes_acked += delta;
3376 tp->snd_una = ack;
3377 }
3378
3379 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3380 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3381 {
3382 u32 delta = seq - tp->rcv_nxt;
3383
3384 sock_owned_by_me((struct sock *)tp);
3385 tp->bytes_received += delta;
3386 tp->rcv_nxt = seq;
3387 }
3388
3389 /* Update our send window.
3390 *
3391 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3392 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3393 */
3394 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3395 u32 ack_seq)
3396 {
3397 struct tcp_sock *tp = tcp_sk(sk);
3398 int flag = 0;
3399 u32 nwin = ntohs(tcp_hdr(skb)->window);
3400
3401 if (likely(!tcp_hdr(skb)->syn))
3402 nwin <<= tp->rx_opt.snd_wscale;
3403
3404 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3405 flag |= FLAG_WIN_UPDATE;
3406 tcp_update_wl(tp, ack_seq);
3407
3408 if (tp->snd_wnd != nwin) {
3409 tp->snd_wnd = nwin;
3410
3411 /* Note, it is the only place, where
3412 * fast path is recovered for sending TCP.
3413 */
3414 tp->pred_flags = 0;
3415 tcp_fast_path_check(sk);
3416
3417 if (tcp_send_head(sk))
3418 tcp_slow_start_after_idle_check(sk);
3419
3420 if (nwin > tp->max_window) {
3421 tp->max_window = nwin;
3422 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3423 }
3424 }
3425 }
3426
3427 tcp_snd_una_update(tp, ack);
3428
3429 return flag;
3430 }
3431
3432 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3433 u32 *last_oow_ack_time)
3434 {
3435 if (*last_oow_ack_time) {
3436 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3437
3438 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3439 NET_INC_STATS(net, mib_idx);
3440 return true; /* rate-limited: don't send yet! */
3441 }
3442 }
3443
3444 *last_oow_ack_time = tcp_time_stamp;
3445
3446 return false; /* not rate-limited: go ahead, send dupack now! */
3447 }
3448
3449 /* Return true if we're currently rate-limiting out-of-window ACKs and
3450 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3451 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3452 * attacks that send repeated SYNs or ACKs for the same connection. To
3453 * do this, we do not send a duplicate SYNACK or ACK if the remote
3454 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3455 */
3456 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3457 int mib_idx, u32 *last_oow_ack_time)
3458 {
3459 /* Data packets without SYNs are not likely part of an ACK loop. */
3460 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3461 !tcp_hdr(skb)->syn)
3462 return false;
3463
3464 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3465 }
3466
3467 /* RFC 5961 7 [ACK Throttling] */
3468 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3469 {
3470 /* unprotected vars, we dont care of overwrites */
3471 static u32 challenge_timestamp;
3472 static unsigned int challenge_count;
3473 struct tcp_sock *tp = tcp_sk(sk);
3474 u32 count, now;
3475
3476 /* First check our per-socket dupack rate limit. */
3477 if (__tcp_oow_rate_limited(sock_net(sk),
3478 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3479 &tp->last_oow_ack_time))
3480 return;
3481
3482 /* Then check host-wide RFC 5961 rate limit. */
3483 now = jiffies / HZ;
3484 if (now != challenge_timestamp) {
3485 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3486
3487 challenge_timestamp = now;
3488 WRITE_ONCE(challenge_count, half +
3489 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3490 }
3491 count = READ_ONCE(challenge_count);
3492 if (count > 0) {
3493 WRITE_ONCE(challenge_count, count - 1);
3494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3495 tcp_send_ack(sk);
3496 }
3497 }
3498
3499 static void tcp_store_ts_recent(struct tcp_sock *tp)
3500 {
3501 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3502 tp->rx_opt.ts_recent_stamp = get_seconds();
3503 }
3504
3505 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3506 {
3507 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3508 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3509 * extra check below makes sure this can only happen
3510 * for pure ACK frames. -DaveM
3511 *
3512 * Not only, also it occurs for expired timestamps.
3513 */
3514
3515 if (tcp_paws_check(&tp->rx_opt, 0))
3516 tcp_store_ts_recent(tp);
3517 }
3518 }
3519
3520 /* This routine deals with acks during a TLP episode.
3521 * We mark the end of a TLP episode on receiving TLP dupack or when
3522 * ack is after tlp_high_seq.
3523 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3524 */
3525 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3526 {
3527 struct tcp_sock *tp = tcp_sk(sk);
3528
3529 if (before(ack, tp->tlp_high_seq))
3530 return;
3531
3532 if (flag & FLAG_DSACKING_ACK) {
3533 /* This DSACK means original and TLP probe arrived; no loss */
3534 tp->tlp_high_seq = 0;
3535 } else if (after(ack, tp->tlp_high_seq)) {
3536 /* ACK advances: there was a loss, so reduce cwnd. Reset
3537 * tlp_high_seq in tcp_init_cwnd_reduction()
3538 */
3539 tcp_init_cwnd_reduction(sk);
3540 tcp_set_ca_state(sk, TCP_CA_CWR);
3541 tcp_end_cwnd_reduction(sk);
3542 tcp_try_keep_open(sk);
3543 NET_INC_STATS(sock_net(sk),
3544 LINUX_MIB_TCPLOSSPROBERECOVERY);
3545 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3546 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3547 /* Pure dupack: original and TLP probe arrived; no loss */
3548 tp->tlp_high_seq = 0;
3549 }
3550 }
3551
3552 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3553 {
3554 const struct inet_connection_sock *icsk = inet_csk(sk);
3555
3556 if (icsk->icsk_ca_ops->in_ack_event)
3557 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3558 }
3559
3560 /* Congestion control has updated the cwnd already. So if we're in
3561 * loss recovery then now we do any new sends (for FRTO) or
3562 * retransmits (for CA_Loss or CA_recovery) that make sense.
3563 */
3564 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3565 {
3566 struct tcp_sock *tp = tcp_sk(sk);
3567
3568 if (rexmit == REXMIT_NONE)
3569 return;
3570
3571 if (unlikely(rexmit == 2)) {
3572 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3573 TCP_NAGLE_OFF);
3574 if (after(tp->snd_nxt, tp->high_seq))
3575 return;
3576 tp->frto = 0;
3577 }
3578 tcp_xmit_retransmit_queue(sk);
3579 }
3580
3581 /* This routine deals with incoming acks, but not outgoing ones. */
3582 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3583 {
3584 struct inet_connection_sock *icsk = inet_csk(sk);
3585 struct tcp_sock *tp = tcp_sk(sk);
3586 struct tcp_sacktag_state sack_state;
3587 struct rate_sample rs = { .prior_delivered = 0 };
3588 u32 prior_snd_una = tp->snd_una;
3589 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3590 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3591 bool is_dupack = false;
3592 u32 prior_fackets;
3593 int prior_packets = tp->packets_out;
3594 u32 delivered = tp->delivered;
3595 u32 lost = tp->lost;
3596 int acked = 0; /* Number of packets newly acked */
3597 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3598 struct skb_mstamp now;
3599
3600 sack_state.first_sackt.v64 = 0;
3601 sack_state.rate = &rs;
3602
3603 /* We very likely will need to access write queue head. */
3604 prefetchw(sk->sk_write_queue.next);
3605
3606 /* If the ack is older than previous acks
3607 * then we can probably ignore it.
3608 */
3609 if (before(ack, prior_snd_una)) {
3610 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3611 if (before(ack, prior_snd_una - tp->max_window)) {
3612 tcp_send_challenge_ack(sk, skb);
3613 return -1;
3614 }
3615 goto old_ack;
3616 }
3617
3618 /* If the ack includes data we haven't sent yet, discard
3619 * this segment (RFC793 Section 3.9).
3620 */
3621 if (after(ack, tp->snd_nxt))
3622 goto invalid_ack;
3623
3624 skb_mstamp_get(&now);
3625
3626 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3627 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3628 tcp_rearm_rto(sk);
3629
3630 if (after(ack, prior_snd_una)) {
3631 flag |= FLAG_SND_UNA_ADVANCED;
3632 icsk->icsk_retransmits = 0;
3633 }
3634
3635 prior_fackets = tp->fackets_out;
3636 rs.prior_in_flight = tcp_packets_in_flight(tp);
3637
3638 /* ts_recent update must be made after we are sure that the packet
3639 * is in window.
3640 */
3641 if (flag & FLAG_UPDATE_TS_RECENT)
3642 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3643
3644 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3645 /* Window is constant, pure forward advance.
3646 * No more checks are required.
3647 * Note, we use the fact that SND.UNA>=SND.WL2.
3648 */
3649 tcp_update_wl(tp, ack_seq);
3650 tcp_snd_una_update(tp, ack);
3651 flag |= FLAG_WIN_UPDATE;
3652
3653 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3654
3655 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3656 } else {
3657 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3658
3659 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3660 flag |= FLAG_DATA;
3661 else
3662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3663
3664 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3665
3666 if (TCP_SKB_CB(skb)->sacked)
3667 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3668 &sack_state);
3669
3670 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3671 flag |= FLAG_ECE;
3672 ack_ev_flags |= CA_ACK_ECE;
3673 }
3674
3675 if (flag & FLAG_WIN_UPDATE)
3676 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3677
3678 tcp_in_ack_event(sk, ack_ev_flags);
3679 }
3680
3681 /* We passed data and got it acked, remove any soft error
3682 * log. Something worked...
3683 */
3684 sk->sk_err_soft = 0;
3685 icsk->icsk_probes_out = 0;
3686 tp->rcv_tstamp = tcp_time_stamp;
3687 if (!prior_packets)
3688 goto no_queue;
3689
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3692 &sack_state, &now);
3693
3694 if (tcp_ack_is_dubious(sk, flag)) {
3695 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3696 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3697 }
3698 if (tp->tlp_high_seq)
3699 tcp_process_tlp_ack(sk, ack, flag);
3700
3701 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3702 struct dst_entry *dst = __sk_dst_get(sk);
3703 if (dst)
3704 dst_confirm(dst);
3705 }
3706
3707 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3708 tcp_schedule_loss_probe(sk);
3709 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3710 lost = tp->lost - lost; /* freshly marked lost */
3711 tcp_rate_gen(sk, delivered, lost, &now, &rs);
3712 tcp_cong_control(sk, ack, delivered, flag, &rs);
3713 tcp_xmit_recovery(sk, rexmit);
3714 return 1;
3715
3716 no_queue:
3717 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 if (flag & FLAG_DSACKING_ACK)
3719 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3720 /* If this ack opens up a zero window, clear backoff. It was
3721 * being used to time the probes, and is probably far higher than
3722 * it needs to be for normal retransmission.
3723 */
3724 if (tcp_send_head(sk))
3725 tcp_ack_probe(sk);
3726
3727 if (tp->tlp_high_seq)
3728 tcp_process_tlp_ack(sk, ack, flag);
3729 return 1;
3730
3731 invalid_ack:
3732 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3733 return -1;
3734
3735 old_ack:
3736 /* If data was SACKed, tag it and see if we should send more data.
3737 * If data was DSACKed, see if we can undo a cwnd reduction.
3738 */
3739 if (TCP_SKB_CB(skb)->sacked) {
3740 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3741 &sack_state);
3742 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3743 tcp_xmit_recovery(sk, rexmit);
3744 }
3745
3746 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3747 return 0;
3748 }
3749
3750 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3751 bool syn, struct tcp_fastopen_cookie *foc,
3752 bool exp_opt)
3753 {
3754 /* Valid only in SYN or SYN-ACK with an even length. */
3755 if (!foc || !syn || len < 0 || (len & 1))
3756 return;
3757
3758 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3759 len <= TCP_FASTOPEN_COOKIE_MAX)
3760 memcpy(foc->val, cookie, len);
3761 else if (len != 0)
3762 len = -1;
3763 foc->len = len;
3764 foc->exp = exp_opt;
3765 }
3766
3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3768 * But, this can also be called on packets in the established flow when
3769 * the fast version below fails.
3770 */
3771 void tcp_parse_options(const struct sk_buff *skb,
3772 struct tcp_options_received *opt_rx, int estab,
3773 struct tcp_fastopen_cookie *foc)
3774 {
3775 const unsigned char *ptr;
3776 const struct tcphdr *th = tcp_hdr(skb);
3777 int length = (th->doff * 4) - sizeof(struct tcphdr);
3778
3779 ptr = (const unsigned char *)(th + 1);
3780 opt_rx->saw_tstamp = 0;
3781
3782 while (length > 0) {
3783 int opcode = *ptr++;
3784 int opsize;
3785
3786 switch (opcode) {
3787 case TCPOPT_EOL:
3788 return;
3789 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3790 length--;
3791 continue;
3792 default:
3793 opsize = *ptr++;
3794 if (opsize < 2) /* "silly options" */
3795 return;
3796 if (opsize > length)
3797 return; /* don't parse partial options */
3798 switch (opcode) {
3799 case TCPOPT_MSS:
3800 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3801 u16 in_mss = get_unaligned_be16(ptr);
3802 if (in_mss) {
3803 if (opt_rx->user_mss &&
3804 opt_rx->user_mss < in_mss)
3805 in_mss = opt_rx->user_mss;
3806 opt_rx->mss_clamp = in_mss;
3807 }
3808 }
3809 break;
3810 case TCPOPT_WINDOW:
3811 if (opsize == TCPOLEN_WINDOW && th->syn &&
3812 !estab && sysctl_tcp_window_scaling) {
3813 __u8 snd_wscale = *(__u8 *)ptr;
3814 opt_rx->wscale_ok = 1;
3815 if (snd_wscale > 14) {
3816 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3817 __func__,
3818 snd_wscale);
3819 snd_wscale = 14;
3820 }
3821 opt_rx->snd_wscale = snd_wscale;
3822 }
3823 break;
3824 case TCPOPT_TIMESTAMP:
3825 if ((opsize == TCPOLEN_TIMESTAMP) &&
3826 ((estab && opt_rx->tstamp_ok) ||
3827 (!estab && sysctl_tcp_timestamps))) {
3828 opt_rx->saw_tstamp = 1;
3829 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3830 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3831 }
3832 break;
3833 case TCPOPT_SACK_PERM:
3834 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3835 !estab && sysctl_tcp_sack) {
3836 opt_rx->sack_ok = TCP_SACK_SEEN;
3837 tcp_sack_reset(opt_rx);
3838 }
3839 break;
3840
3841 case TCPOPT_SACK:
3842 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3843 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3844 opt_rx->sack_ok) {
3845 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3846 }
3847 break;
3848 #ifdef CONFIG_TCP_MD5SIG
3849 case TCPOPT_MD5SIG:
3850 /*
3851 * The MD5 Hash has already been
3852 * checked (see tcp_v{4,6}_do_rcv()).
3853 */
3854 break;
3855 #endif
3856 case TCPOPT_FASTOPEN:
3857 tcp_parse_fastopen_option(
3858 opsize - TCPOLEN_FASTOPEN_BASE,
3859 ptr, th->syn, foc, false);
3860 break;
3861
3862 case TCPOPT_EXP:
3863 /* Fast Open option shares code 254 using a
3864 * 16 bits magic number.
3865 */
3866 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3867 get_unaligned_be16(ptr) ==
3868 TCPOPT_FASTOPEN_MAGIC)
3869 tcp_parse_fastopen_option(opsize -
3870 TCPOLEN_EXP_FASTOPEN_BASE,
3871 ptr + 2, th->syn, foc, true);
3872 break;
3873
3874 }
3875 ptr += opsize-2;
3876 length -= opsize;
3877 }
3878 }
3879 }
3880 EXPORT_SYMBOL(tcp_parse_options);
3881
3882 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3883 {
3884 const __be32 *ptr = (const __be32 *)(th + 1);
3885
3886 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3887 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3888 tp->rx_opt.saw_tstamp = 1;
3889 ++ptr;
3890 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3891 ++ptr;
3892 if (*ptr)
3893 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3894 else
3895 tp->rx_opt.rcv_tsecr = 0;
3896 return true;
3897 }
3898 return false;
3899 }
3900
3901 /* Fast parse options. This hopes to only see timestamps.
3902 * If it is wrong it falls back on tcp_parse_options().
3903 */
3904 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3905 const struct tcphdr *th, struct tcp_sock *tp)
3906 {
3907 /* In the spirit of fast parsing, compare doff directly to constant
3908 * values. Because equality is used, short doff can be ignored here.
3909 */
3910 if (th->doff == (sizeof(*th) / 4)) {
3911 tp->rx_opt.saw_tstamp = 0;
3912 return false;
3913 } else if (tp->rx_opt.tstamp_ok &&
3914 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3915 if (tcp_parse_aligned_timestamp(tp, th))
3916 return true;
3917 }
3918
3919 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3921 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3922
3923 return true;
3924 }
3925
3926 #ifdef CONFIG_TCP_MD5SIG
3927 /*
3928 * Parse MD5 Signature option
3929 */
3930 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3931 {
3932 int length = (th->doff << 2) - sizeof(*th);
3933 const u8 *ptr = (const u8 *)(th + 1);
3934
3935 /* If the TCP option is too short, we can short cut */
3936 if (length < TCPOLEN_MD5SIG)
3937 return NULL;
3938
3939 while (length > 0) {
3940 int opcode = *ptr++;
3941 int opsize;
3942
3943 switch (opcode) {
3944 case TCPOPT_EOL:
3945 return NULL;
3946 case TCPOPT_NOP:
3947 length--;
3948 continue;
3949 default:
3950 opsize = *ptr++;
3951 if (opsize < 2 || opsize > length)
3952 return NULL;
3953 if (opcode == TCPOPT_MD5SIG)
3954 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3955 }
3956 ptr += opsize - 2;
3957 length -= opsize;
3958 }
3959 return NULL;
3960 }
3961 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3962 #endif
3963
3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3965 *
3966 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967 * it can pass through stack. So, the following predicate verifies that
3968 * this segment is not used for anything but congestion avoidance or
3969 * fast retransmit. Moreover, we even are able to eliminate most of such
3970 * second order effects, if we apply some small "replay" window (~RTO)
3971 * to timestamp space.
3972 *
3973 * All these measures still do not guarantee that we reject wrapped ACKs
3974 * on networks with high bandwidth, when sequence space is recycled fastly,
3975 * but it guarantees that such events will be very rare and do not affect
3976 * connection seriously. This doesn't look nice, but alas, PAWS is really
3977 * buggy extension.
3978 *
3979 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980 * states that events when retransmit arrives after original data are rare.
3981 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982 * the biggest problem on large power networks even with minor reordering.
3983 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984 * up to bandwidth of 18Gigabit/sec. 8) ]
3985 */
3986
3987 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3988 {
3989 const struct tcp_sock *tp = tcp_sk(sk);
3990 const struct tcphdr *th = tcp_hdr(skb);
3991 u32 seq = TCP_SKB_CB(skb)->seq;
3992 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993
3994 return (/* 1. Pure ACK with correct sequence number. */
3995 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3996
3997 /* 2. ... and duplicate ACK. */
3998 ack == tp->snd_una &&
3999
4000 /* 3. ... and does not update window. */
4001 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4002
4003 /* 4. ... and sits in replay window. */
4004 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4005 }
4006
4007 static inline bool tcp_paws_discard(const struct sock *sk,
4008 const struct sk_buff *skb)
4009 {
4010 const struct tcp_sock *tp = tcp_sk(sk);
4011
4012 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4013 !tcp_disordered_ack(sk, skb);
4014 }
4015
4016 /* Check segment sequence number for validity.
4017 *
4018 * Segment controls are considered valid, if the segment
4019 * fits to the window after truncation to the window. Acceptability
4020 * of data (and SYN, FIN, of course) is checked separately.
4021 * See tcp_data_queue(), for example.
4022 *
4023 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026 * (borrowed from freebsd)
4027 */
4028
4029 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4030 {
4031 return !before(end_seq, tp->rcv_wup) &&
4032 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4033 }
4034
4035 /* When we get a reset we do this. */
4036 void tcp_reset(struct sock *sk)
4037 {
4038 /* We want the right error as BSD sees it (and indeed as we do). */
4039 switch (sk->sk_state) {
4040 case TCP_SYN_SENT:
4041 sk->sk_err = ECONNREFUSED;
4042 break;
4043 case TCP_CLOSE_WAIT:
4044 sk->sk_err = EPIPE;
4045 break;
4046 case TCP_CLOSE:
4047 return;
4048 default:
4049 sk->sk_err = ECONNRESET;
4050 }
4051 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4052 smp_wmb();
4053
4054 if (!sock_flag(sk, SOCK_DEAD))
4055 sk->sk_error_report(sk);
4056
4057 tcp_done(sk);
4058 }
4059
4060 /*
4061 * Process the FIN bit. This now behaves as it is supposed to work
4062 * and the FIN takes effect when it is validly part of sequence
4063 * space. Not before when we get holes.
4064 *
4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4067 * TIME-WAIT)
4068 *
4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 * close and we go into CLOSING (and later onto TIME-WAIT)
4071 *
4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4073 */
4074 void tcp_fin(struct sock *sk)
4075 {
4076 struct tcp_sock *tp = tcp_sk(sk);
4077
4078 inet_csk_schedule_ack(sk);
4079
4080 sk->sk_shutdown |= RCV_SHUTDOWN;
4081 sock_set_flag(sk, SOCK_DONE);
4082
4083 switch (sk->sk_state) {
4084 case TCP_SYN_RECV:
4085 case TCP_ESTABLISHED:
4086 /* Move to CLOSE_WAIT */
4087 tcp_set_state(sk, TCP_CLOSE_WAIT);
4088 inet_csk(sk)->icsk_ack.pingpong = 1;
4089 break;
4090
4091 case TCP_CLOSE_WAIT:
4092 case TCP_CLOSING:
4093 /* Received a retransmission of the FIN, do
4094 * nothing.
4095 */
4096 break;
4097 case TCP_LAST_ACK:
4098 /* RFC793: Remain in the LAST-ACK state. */
4099 break;
4100
4101 case TCP_FIN_WAIT1:
4102 /* This case occurs when a simultaneous close
4103 * happens, we must ack the received FIN and
4104 * enter the CLOSING state.
4105 */
4106 tcp_send_ack(sk);
4107 tcp_set_state(sk, TCP_CLOSING);
4108 break;
4109 case TCP_FIN_WAIT2:
4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4111 tcp_send_ack(sk);
4112 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4113 break;
4114 default:
4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 * cases we should never reach this piece of code.
4117 */
4118 pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 __func__, sk->sk_state);
4120 break;
4121 }
4122
4123 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 * Probably, we should reset in this case. For now drop them.
4125 */
4126 skb_rbtree_purge(&tp->out_of_order_queue);
4127 if (tcp_is_sack(tp))
4128 tcp_sack_reset(&tp->rx_opt);
4129 sk_mem_reclaim(sk);
4130
4131 if (!sock_flag(sk, SOCK_DEAD)) {
4132 sk->sk_state_change(sk);
4133
4134 /* Do not send POLL_HUP for half duplex close. */
4135 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4136 sk->sk_state == TCP_CLOSE)
4137 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4138 else
4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4140 }
4141 }
4142
4143 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4144 u32 end_seq)
4145 {
4146 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4147 if (before(seq, sp->start_seq))
4148 sp->start_seq = seq;
4149 if (after(end_seq, sp->end_seq))
4150 sp->end_seq = end_seq;
4151 return true;
4152 }
4153 return false;
4154 }
4155
4156 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4157 {
4158 struct tcp_sock *tp = tcp_sk(sk);
4159
4160 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4161 int mib_idx;
4162
4163 if (before(seq, tp->rcv_nxt))
4164 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4165 else
4166 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4167
4168 NET_INC_STATS(sock_net(sk), mib_idx);
4169
4170 tp->rx_opt.dsack = 1;
4171 tp->duplicate_sack[0].start_seq = seq;
4172 tp->duplicate_sack[0].end_seq = end_seq;
4173 }
4174 }
4175
4176 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4177 {
4178 struct tcp_sock *tp = tcp_sk(sk);
4179
4180 if (!tp->rx_opt.dsack)
4181 tcp_dsack_set(sk, seq, end_seq);
4182 else
4183 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4184 }
4185
4186 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4187 {
4188 struct tcp_sock *tp = tcp_sk(sk);
4189
4190 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4191 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4192 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4193 tcp_enter_quickack_mode(sk);
4194
4195 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4196 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4197
4198 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4199 end_seq = tp->rcv_nxt;
4200 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4201 }
4202 }
4203
4204 tcp_send_ack(sk);
4205 }
4206
4207 /* These routines update the SACK block as out-of-order packets arrive or
4208 * in-order packets close up the sequence space.
4209 */
4210 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4211 {
4212 int this_sack;
4213 struct tcp_sack_block *sp = &tp->selective_acks[0];
4214 struct tcp_sack_block *swalk = sp + 1;
4215
4216 /* See if the recent change to the first SACK eats into
4217 * or hits the sequence space of other SACK blocks, if so coalesce.
4218 */
4219 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4220 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4221 int i;
4222
4223 /* Zap SWALK, by moving every further SACK up by one slot.
4224 * Decrease num_sacks.
4225 */
4226 tp->rx_opt.num_sacks--;
4227 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4228 sp[i] = sp[i + 1];
4229 continue;
4230 }
4231 this_sack++, swalk++;
4232 }
4233 }
4234
4235 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4236 {
4237 struct tcp_sock *tp = tcp_sk(sk);
4238 struct tcp_sack_block *sp = &tp->selective_acks[0];
4239 int cur_sacks = tp->rx_opt.num_sacks;
4240 int this_sack;
4241
4242 if (!cur_sacks)
4243 goto new_sack;
4244
4245 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4246 if (tcp_sack_extend(sp, seq, end_seq)) {
4247 /* Rotate this_sack to the first one. */
4248 for (; this_sack > 0; this_sack--, sp--)
4249 swap(*sp, *(sp - 1));
4250 if (cur_sacks > 1)
4251 tcp_sack_maybe_coalesce(tp);
4252 return;
4253 }
4254 }
4255
4256 /* Could not find an adjacent existing SACK, build a new one,
4257 * put it at the front, and shift everyone else down. We
4258 * always know there is at least one SACK present already here.
4259 *
4260 * If the sack array is full, forget about the last one.
4261 */
4262 if (this_sack >= TCP_NUM_SACKS) {
4263 this_sack--;
4264 tp->rx_opt.num_sacks--;
4265 sp--;
4266 }
4267 for (; this_sack > 0; this_sack--, sp--)
4268 *sp = *(sp - 1);
4269
4270 new_sack:
4271 /* Build the new head SACK, and we're done. */
4272 sp->start_seq = seq;
4273 sp->end_seq = end_seq;
4274 tp->rx_opt.num_sacks++;
4275 }
4276
4277 /* RCV.NXT advances, some SACKs should be eaten. */
4278
4279 static void tcp_sack_remove(struct tcp_sock *tp)
4280 {
4281 struct tcp_sack_block *sp = &tp->selective_acks[0];
4282 int num_sacks = tp->rx_opt.num_sacks;
4283 int this_sack;
4284
4285 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4286 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4287 tp->rx_opt.num_sacks = 0;
4288 return;
4289 }
4290
4291 for (this_sack = 0; this_sack < num_sacks;) {
4292 /* Check if the start of the sack is covered by RCV.NXT. */
4293 if (!before(tp->rcv_nxt, sp->start_seq)) {
4294 int i;
4295
4296 /* RCV.NXT must cover all the block! */
4297 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4298
4299 /* Zap this SACK, by moving forward any other SACKS. */
4300 for (i = this_sack+1; i < num_sacks; i++)
4301 tp->selective_acks[i-1] = tp->selective_acks[i];
4302 num_sacks--;
4303 continue;
4304 }
4305 this_sack++;
4306 sp++;
4307 }
4308 tp->rx_opt.num_sacks = num_sacks;
4309 }
4310
4311 /**
4312 * tcp_try_coalesce - try to merge skb to prior one
4313 * @sk: socket
4314 * @to: prior buffer
4315 * @from: buffer to add in queue
4316 * @fragstolen: pointer to boolean
4317 *
4318 * Before queueing skb @from after @to, try to merge them
4319 * to reduce overall memory use and queue lengths, if cost is small.
4320 * Packets in ofo or receive queues can stay a long time.
4321 * Better try to coalesce them right now to avoid future collapses.
4322 * Returns true if caller should free @from instead of queueing it
4323 */
4324 static bool tcp_try_coalesce(struct sock *sk,
4325 struct sk_buff *to,
4326 struct sk_buff *from,
4327 bool *fragstolen)
4328 {
4329 int delta;
4330
4331 *fragstolen = false;
4332
4333 /* Its possible this segment overlaps with prior segment in queue */
4334 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4335 return false;
4336
4337 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4338 return false;
4339
4340 atomic_add(delta, &sk->sk_rmem_alloc);
4341 sk_mem_charge(sk, delta);
4342 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4343 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4344 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4345 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4346 return true;
4347 }
4348
4349 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4350 {
4351 sk_drops_add(sk, skb);
4352 __kfree_skb(skb);
4353 }
4354
4355 /* This one checks to see if we can put data from the
4356 * out_of_order queue into the receive_queue.
4357 */
4358 static void tcp_ofo_queue(struct sock *sk)
4359 {
4360 struct tcp_sock *tp = tcp_sk(sk);
4361 __u32 dsack_high = tp->rcv_nxt;
4362 bool fin, fragstolen, eaten;
4363 struct sk_buff *skb, *tail;
4364 struct rb_node *p;
4365
4366 p = rb_first(&tp->out_of_order_queue);
4367 while (p) {
4368 skb = rb_entry(p, struct sk_buff, rbnode);
4369 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4370 break;
4371
4372 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4373 __u32 dsack = dsack_high;
4374 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4375 dsack_high = TCP_SKB_CB(skb)->end_seq;
4376 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4377 }
4378 p = rb_next(p);
4379 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4380
4381 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4382 SOCK_DEBUG(sk, "ofo packet was already received\n");
4383 tcp_drop(sk, skb);
4384 continue;
4385 }
4386 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4387 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4388 TCP_SKB_CB(skb)->end_seq);
4389
4390 tail = skb_peek_tail(&sk->sk_receive_queue);
4391 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4392 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4393 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4394 if (!eaten)
4395 __skb_queue_tail(&sk->sk_receive_queue, skb);
4396 else
4397 kfree_skb_partial(skb, fragstolen);
4398
4399 if (unlikely(fin)) {
4400 tcp_fin(sk);
4401 /* tcp_fin() purges tp->out_of_order_queue,
4402 * so we must end this loop right now.
4403 */
4404 break;
4405 }
4406 }
4407 }
4408
4409 static bool tcp_prune_ofo_queue(struct sock *sk);
4410 static int tcp_prune_queue(struct sock *sk);
4411
4412 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4413 unsigned int size)
4414 {
4415 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4416 !sk_rmem_schedule(sk, skb, size)) {
4417
4418 if (tcp_prune_queue(sk) < 0)
4419 return -1;
4420
4421 while (!sk_rmem_schedule(sk, skb, size)) {
4422 if (!tcp_prune_ofo_queue(sk))
4423 return -1;
4424 }
4425 }
4426 return 0;
4427 }
4428
4429 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4430 {
4431 struct tcp_sock *tp = tcp_sk(sk);
4432 struct rb_node **p, *q, *parent;
4433 struct sk_buff *skb1;
4434 u32 seq, end_seq;
4435 bool fragstolen;
4436
4437 tcp_ecn_check_ce(tp, skb);
4438
4439 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4441 tcp_drop(sk, skb);
4442 return;
4443 }
4444
4445 /* Disable header prediction. */
4446 tp->pred_flags = 0;
4447 inet_csk_schedule_ack(sk);
4448
4449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4450 seq = TCP_SKB_CB(skb)->seq;
4451 end_seq = TCP_SKB_CB(skb)->end_seq;
4452 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4453 tp->rcv_nxt, seq, end_seq);
4454
4455 p = &tp->out_of_order_queue.rb_node;
4456 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4457 /* Initial out of order segment, build 1 SACK. */
4458 if (tcp_is_sack(tp)) {
4459 tp->rx_opt.num_sacks = 1;
4460 tp->selective_acks[0].start_seq = seq;
4461 tp->selective_acks[0].end_seq = end_seq;
4462 }
4463 rb_link_node(&skb->rbnode, NULL, p);
4464 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4465 tp->ooo_last_skb = skb;
4466 goto end;
4467 }
4468
4469 /* In the typical case, we are adding an skb to the end of the list.
4470 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4471 */
4472 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4473 coalesce_done:
4474 tcp_grow_window(sk, skb);
4475 kfree_skb_partial(skb, fragstolen);
4476 skb = NULL;
4477 goto add_sack;
4478 }
4479 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4480 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4481 parent = &tp->ooo_last_skb->rbnode;
4482 p = &parent->rb_right;
4483 goto insert;
4484 }
4485
4486 /* Find place to insert this segment. Handle overlaps on the way. */
4487 parent = NULL;
4488 while (*p) {
4489 parent = *p;
4490 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4491 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4492 p = &parent->rb_left;
4493 continue;
4494 }
4495 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4496 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4497 /* All the bits are present. Drop. */
4498 NET_INC_STATS(sock_net(sk),
4499 LINUX_MIB_TCPOFOMERGE);
4500 __kfree_skb(skb);
4501 skb = NULL;
4502 tcp_dsack_set(sk, seq, end_seq);
4503 goto add_sack;
4504 }
4505 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4506 /* Partial overlap. */
4507 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4508 } else {
4509 /* skb's seq == skb1's seq and skb covers skb1.
4510 * Replace skb1 with skb.
4511 */
4512 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4513 &tp->out_of_order_queue);
4514 tcp_dsack_extend(sk,
4515 TCP_SKB_CB(skb1)->seq,
4516 TCP_SKB_CB(skb1)->end_seq);
4517 NET_INC_STATS(sock_net(sk),
4518 LINUX_MIB_TCPOFOMERGE);
4519 __kfree_skb(skb1);
4520 goto merge_right;
4521 }
4522 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4523 goto coalesce_done;
4524 }
4525 p = &parent->rb_right;
4526 }
4527 insert:
4528 /* Insert segment into RB tree. */
4529 rb_link_node(&skb->rbnode, parent, p);
4530 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4531
4532 merge_right:
4533 /* Remove other segments covered by skb. */
4534 while ((q = rb_next(&skb->rbnode)) != NULL) {
4535 skb1 = rb_entry(q, struct sk_buff, rbnode);
4536
4537 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4538 break;
4539 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4540 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4541 end_seq);
4542 break;
4543 }
4544 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4545 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4546 TCP_SKB_CB(skb1)->end_seq);
4547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4548 tcp_drop(sk, skb1);
4549 }
4550 /* If there is no skb after us, we are the last_skb ! */
4551 if (!q)
4552 tp->ooo_last_skb = skb;
4553
4554 add_sack:
4555 if (tcp_is_sack(tp))
4556 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4557 end:
4558 if (skb) {
4559 tcp_grow_window(sk, skb);
4560 skb_set_owner_r(skb, sk);
4561 }
4562 }
4563
4564 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4565 bool *fragstolen)
4566 {
4567 int eaten;
4568 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4569
4570 __skb_pull(skb, hdrlen);
4571 eaten = (tail &&
4572 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4573 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4574 if (!eaten) {
4575 __skb_queue_tail(&sk->sk_receive_queue, skb);
4576 skb_set_owner_r(skb, sk);
4577 }
4578 return eaten;
4579 }
4580
4581 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4582 {
4583 struct sk_buff *skb;
4584 int err = -ENOMEM;
4585 int data_len = 0;
4586 bool fragstolen;
4587
4588 if (size == 0)
4589 return 0;
4590
4591 if (size > PAGE_SIZE) {
4592 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4593
4594 data_len = npages << PAGE_SHIFT;
4595 size = data_len + (size & ~PAGE_MASK);
4596 }
4597 skb = alloc_skb_with_frags(size - data_len, data_len,
4598 PAGE_ALLOC_COSTLY_ORDER,
4599 &err, sk->sk_allocation);
4600 if (!skb)
4601 goto err;
4602
4603 skb_put(skb, size - data_len);
4604 skb->data_len = data_len;
4605 skb->len = size;
4606
4607 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4608 goto err_free;
4609
4610 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4611 if (err)
4612 goto err_free;
4613
4614 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4615 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4616 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4617
4618 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4619 WARN_ON_ONCE(fragstolen); /* should not happen */
4620 __kfree_skb(skb);
4621 }
4622 return size;
4623
4624 err_free:
4625 kfree_skb(skb);
4626 err:
4627 return err;
4628
4629 }
4630
4631 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4632 {
4633 struct tcp_sock *tp = tcp_sk(sk);
4634 bool fragstolen = false;
4635 int eaten = -1;
4636
4637 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4638 __kfree_skb(skb);
4639 return;
4640 }
4641 skb_dst_drop(skb);
4642 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4643
4644 tcp_ecn_accept_cwr(tp, skb);
4645
4646 tp->rx_opt.dsack = 0;
4647
4648 /* Queue data for delivery to the user.
4649 * Packets in sequence go to the receive queue.
4650 * Out of sequence packets to the out_of_order_queue.
4651 */
4652 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4653 if (tcp_receive_window(tp) == 0)
4654 goto out_of_window;
4655
4656 /* Ok. In sequence. In window. */
4657 if (tp->ucopy.task == current &&
4658 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4659 sock_owned_by_user(sk) && !tp->urg_data) {
4660 int chunk = min_t(unsigned int, skb->len,
4661 tp->ucopy.len);
4662
4663 __set_current_state(TASK_RUNNING);
4664
4665 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4666 tp->ucopy.len -= chunk;
4667 tp->copied_seq += chunk;
4668 eaten = (chunk == skb->len);
4669 tcp_rcv_space_adjust(sk);
4670 }
4671 }
4672
4673 if (eaten <= 0) {
4674 queue_and_out:
4675 if (eaten < 0) {
4676 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4677 sk_forced_mem_schedule(sk, skb->truesize);
4678 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4679 goto drop;
4680 }
4681 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4682 }
4683 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4684 if (skb->len)
4685 tcp_event_data_recv(sk, skb);
4686 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4687 tcp_fin(sk);
4688
4689 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4690 tcp_ofo_queue(sk);
4691
4692 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4693 * gap in queue is filled.
4694 */
4695 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4696 inet_csk(sk)->icsk_ack.pingpong = 0;
4697 }
4698
4699 if (tp->rx_opt.num_sacks)
4700 tcp_sack_remove(tp);
4701
4702 tcp_fast_path_check(sk);
4703
4704 if (eaten > 0)
4705 kfree_skb_partial(skb, fragstolen);
4706 if (!sock_flag(sk, SOCK_DEAD))
4707 sk->sk_data_ready(sk);
4708 return;
4709 }
4710
4711 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4712 /* A retransmit, 2nd most common case. Force an immediate ack. */
4713 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4714 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4715
4716 out_of_window:
4717 tcp_enter_quickack_mode(sk);
4718 inet_csk_schedule_ack(sk);
4719 drop:
4720 tcp_drop(sk, skb);
4721 return;
4722 }
4723
4724 /* Out of window. F.e. zero window probe. */
4725 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4726 goto out_of_window;
4727
4728 tcp_enter_quickack_mode(sk);
4729
4730 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4731 /* Partial packet, seq < rcv_next < end_seq */
4732 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4733 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4734 TCP_SKB_CB(skb)->end_seq);
4735
4736 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4737
4738 /* If window is closed, drop tail of packet. But after
4739 * remembering D-SACK for its head made in previous line.
4740 */
4741 if (!tcp_receive_window(tp))
4742 goto out_of_window;
4743 goto queue_and_out;
4744 }
4745
4746 tcp_data_queue_ofo(sk, skb);
4747 }
4748
4749 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4750 {
4751 if (list)
4752 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4753
4754 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4755 }
4756
4757 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4758 struct sk_buff_head *list,
4759 struct rb_root *root)
4760 {
4761 struct sk_buff *next = tcp_skb_next(skb, list);
4762
4763 if (list)
4764 __skb_unlink(skb, list);
4765 else
4766 rb_erase(&skb->rbnode, root);
4767
4768 __kfree_skb(skb);
4769 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4770
4771 return next;
4772 }
4773
4774 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4775 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4776 {
4777 struct rb_node **p = &root->rb_node;
4778 struct rb_node *parent = NULL;
4779 struct sk_buff *skb1;
4780
4781 while (*p) {
4782 parent = *p;
4783 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4784 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4785 p = &parent->rb_left;
4786 else
4787 p = &parent->rb_right;
4788 }
4789 rb_link_node(&skb->rbnode, parent, p);
4790 rb_insert_color(&skb->rbnode, root);
4791 }
4792
4793 /* Collapse contiguous sequence of skbs head..tail with
4794 * sequence numbers start..end.
4795 *
4796 * If tail is NULL, this means until the end of the queue.
4797 *
4798 * Segments with FIN/SYN are not collapsed (only because this
4799 * simplifies code)
4800 */
4801 static void
4802 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4803 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4804 {
4805 struct sk_buff *skb = head, *n;
4806 struct sk_buff_head tmp;
4807 bool end_of_skbs;
4808
4809 /* First, check that queue is collapsible and find
4810 * the point where collapsing can be useful.
4811 */
4812 restart:
4813 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4814 n = tcp_skb_next(skb, list);
4815
4816 /* No new bits? It is possible on ofo queue. */
4817 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4818 skb = tcp_collapse_one(sk, skb, list, root);
4819 if (!skb)
4820 break;
4821 goto restart;
4822 }
4823
4824 /* The first skb to collapse is:
4825 * - not SYN/FIN and
4826 * - bloated or contains data before "start" or
4827 * overlaps to the next one.
4828 */
4829 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4830 (tcp_win_from_space(skb->truesize) > skb->len ||
4831 before(TCP_SKB_CB(skb)->seq, start))) {
4832 end_of_skbs = false;
4833 break;
4834 }
4835
4836 if (n && n != tail &&
4837 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4838 end_of_skbs = false;
4839 break;
4840 }
4841
4842 /* Decided to skip this, advance start seq. */
4843 start = TCP_SKB_CB(skb)->end_seq;
4844 }
4845 if (end_of_skbs ||
4846 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4847 return;
4848
4849 __skb_queue_head_init(&tmp);
4850
4851 while (before(start, end)) {
4852 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4853 struct sk_buff *nskb;
4854
4855 nskb = alloc_skb(copy, GFP_ATOMIC);
4856 if (!nskb)
4857 break;
4858
4859 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4860 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4861 if (list)
4862 __skb_queue_before(list, skb, nskb);
4863 else
4864 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4865 skb_set_owner_r(nskb, sk);
4866
4867 /* Copy data, releasing collapsed skbs. */
4868 while (copy > 0) {
4869 int offset = start - TCP_SKB_CB(skb)->seq;
4870 int size = TCP_SKB_CB(skb)->end_seq - start;
4871
4872 BUG_ON(offset < 0);
4873 if (size > 0) {
4874 size = min(copy, size);
4875 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4876 BUG();
4877 TCP_SKB_CB(nskb)->end_seq += size;
4878 copy -= size;
4879 start += size;
4880 }
4881 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4882 skb = tcp_collapse_one(sk, skb, list, root);
4883 if (!skb ||
4884 skb == tail ||
4885 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4886 goto end;
4887 }
4888 }
4889 }
4890 end:
4891 skb_queue_walk_safe(&tmp, skb, n)
4892 tcp_rbtree_insert(root, skb);
4893 }
4894
4895 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4896 * and tcp_collapse() them until all the queue is collapsed.
4897 */
4898 static void tcp_collapse_ofo_queue(struct sock *sk)
4899 {
4900 struct tcp_sock *tp = tcp_sk(sk);
4901 struct sk_buff *skb, *head;
4902 struct rb_node *p;
4903 u32 start, end;
4904
4905 p = rb_first(&tp->out_of_order_queue);
4906 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4907 new_range:
4908 if (!skb) {
4909 p = rb_last(&tp->out_of_order_queue);
4910 /* Note: This is possible p is NULL here. We do not
4911 * use rb_entry_safe(), as ooo_last_skb is valid only
4912 * if rbtree is not empty.
4913 */
4914 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4915 return;
4916 }
4917 start = TCP_SKB_CB(skb)->seq;
4918 end = TCP_SKB_CB(skb)->end_seq;
4919
4920 for (head = skb;;) {
4921 skb = tcp_skb_next(skb, NULL);
4922
4923 /* Range is terminated when we see a gap or when
4924 * we are at the queue end.
4925 */
4926 if (!skb ||
4927 after(TCP_SKB_CB(skb)->seq, end) ||
4928 before(TCP_SKB_CB(skb)->end_seq, start)) {
4929 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4930 head, skb, start, end);
4931 goto new_range;
4932 }
4933
4934 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4935 start = TCP_SKB_CB(skb)->seq;
4936 if (after(TCP_SKB_CB(skb)->end_seq, end))
4937 end = TCP_SKB_CB(skb)->end_seq;
4938 }
4939 }
4940
4941 /*
4942 * Clean the out-of-order queue to make room.
4943 * We drop high sequences packets to :
4944 * 1) Let a chance for holes to be filled.
4945 * 2) not add too big latencies if thousands of packets sit there.
4946 * (But if application shrinks SO_RCVBUF, we could still end up
4947 * freeing whole queue here)
4948 *
4949 * Return true if queue has shrunk.
4950 */
4951 static bool tcp_prune_ofo_queue(struct sock *sk)
4952 {
4953 struct tcp_sock *tp = tcp_sk(sk);
4954 struct rb_node *node, *prev;
4955
4956 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4957 return false;
4958
4959 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4960 node = &tp->ooo_last_skb->rbnode;
4961 do {
4962 prev = rb_prev(node);
4963 rb_erase(node, &tp->out_of_order_queue);
4964 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4965 sk_mem_reclaim(sk);
4966 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4967 !tcp_under_memory_pressure(sk))
4968 break;
4969 node = prev;
4970 } while (node);
4971 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4972
4973 /* Reset SACK state. A conforming SACK implementation will
4974 * do the same at a timeout based retransmit. When a connection
4975 * is in a sad state like this, we care only about integrity
4976 * of the connection not performance.
4977 */
4978 if (tp->rx_opt.sack_ok)
4979 tcp_sack_reset(&tp->rx_opt);
4980 return true;
4981 }
4982
4983 /* Reduce allocated memory if we can, trying to get
4984 * the socket within its memory limits again.
4985 *
4986 * Return less than zero if we should start dropping frames
4987 * until the socket owning process reads some of the data
4988 * to stabilize the situation.
4989 */
4990 static int tcp_prune_queue(struct sock *sk)
4991 {
4992 struct tcp_sock *tp = tcp_sk(sk);
4993
4994 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4995
4996 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4997
4998 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4999 tcp_clamp_window(sk);
5000 else if (tcp_under_memory_pressure(sk))
5001 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5002
5003 tcp_collapse_ofo_queue(sk);
5004 if (!skb_queue_empty(&sk->sk_receive_queue))
5005 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5006 skb_peek(&sk->sk_receive_queue),
5007 NULL,
5008 tp->copied_seq, tp->rcv_nxt);
5009 sk_mem_reclaim(sk);
5010
5011 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5012 return 0;
5013
5014 /* Collapsing did not help, destructive actions follow.
5015 * This must not ever occur. */
5016
5017 tcp_prune_ofo_queue(sk);
5018
5019 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5020 return 0;
5021
5022 /* If we are really being abused, tell the caller to silently
5023 * drop receive data on the floor. It will get retransmitted
5024 * and hopefully then we'll have sufficient space.
5025 */
5026 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5027
5028 /* Massive buffer overcommit. */
5029 tp->pred_flags = 0;
5030 return -1;
5031 }
5032
5033 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5034 {
5035 const struct tcp_sock *tp = tcp_sk(sk);
5036
5037 /* If the user specified a specific send buffer setting, do
5038 * not modify it.
5039 */
5040 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5041 return false;
5042
5043 /* If we are under global TCP memory pressure, do not expand. */
5044 if (tcp_under_memory_pressure(sk))
5045 return false;
5046
5047 /* If we are under soft global TCP memory pressure, do not expand. */
5048 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5049 return false;
5050
5051 /* If we filled the congestion window, do not expand. */
5052 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5053 return false;
5054
5055 return true;
5056 }
5057
5058 /* When incoming ACK allowed to free some skb from write_queue,
5059 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5060 * on the exit from tcp input handler.
5061 *
5062 * PROBLEM: sndbuf expansion does not work well with largesend.
5063 */
5064 static void tcp_new_space(struct sock *sk)
5065 {
5066 struct tcp_sock *tp = tcp_sk(sk);
5067
5068 if (tcp_should_expand_sndbuf(sk)) {
5069 tcp_sndbuf_expand(sk);
5070 tp->snd_cwnd_stamp = tcp_time_stamp;
5071 }
5072
5073 sk->sk_write_space(sk);
5074 }
5075
5076 static void tcp_check_space(struct sock *sk)
5077 {
5078 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5079 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5080 /* pairs with tcp_poll() */
5081 smp_mb__after_atomic();
5082 if (sk->sk_socket &&
5083 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5084 tcp_new_space(sk);
5085 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5086 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5087 }
5088 }
5089 }
5090
5091 static inline void tcp_data_snd_check(struct sock *sk)
5092 {
5093 tcp_push_pending_frames(sk);
5094 tcp_check_space(sk);
5095 }
5096
5097 /*
5098 * Check if sending an ack is needed.
5099 */
5100 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5101 {
5102 struct tcp_sock *tp = tcp_sk(sk);
5103
5104 /* More than one full frame received... */
5105 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5106 /* ... and right edge of window advances far enough.
5107 * (tcp_recvmsg() will send ACK otherwise). Or...
5108 */
5109 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5110 /* We ACK each frame or... */
5111 tcp_in_quickack_mode(sk) ||
5112 /* We have out of order data. */
5113 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5114 /* Then ack it now */
5115 tcp_send_ack(sk);
5116 } else {
5117 /* Else, send delayed ack. */
5118 tcp_send_delayed_ack(sk);
5119 }
5120 }
5121
5122 static inline void tcp_ack_snd_check(struct sock *sk)
5123 {
5124 if (!inet_csk_ack_scheduled(sk)) {
5125 /* We sent a data segment already. */
5126 return;
5127 }
5128 __tcp_ack_snd_check(sk, 1);
5129 }
5130
5131 /*
5132 * This routine is only called when we have urgent data
5133 * signaled. Its the 'slow' part of tcp_urg. It could be
5134 * moved inline now as tcp_urg is only called from one
5135 * place. We handle URGent data wrong. We have to - as
5136 * BSD still doesn't use the correction from RFC961.
5137 * For 1003.1g we should support a new option TCP_STDURG to permit
5138 * either form (or just set the sysctl tcp_stdurg).
5139 */
5140
5141 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5142 {
5143 struct tcp_sock *tp = tcp_sk(sk);
5144 u32 ptr = ntohs(th->urg_ptr);
5145
5146 if (ptr && !sysctl_tcp_stdurg)
5147 ptr--;
5148 ptr += ntohl(th->seq);
5149
5150 /* Ignore urgent data that we've already seen and read. */
5151 if (after(tp->copied_seq, ptr))
5152 return;
5153
5154 /* Do not replay urg ptr.
5155 *
5156 * NOTE: interesting situation not covered by specs.
5157 * Misbehaving sender may send urg ptr, pointing to segment,
5158 * which we already have in ofo queue. We are not able to fetch
5159 * such data and will stay in TCP_URG_NOTYET until will be eaten
5160 * by recvmsg(). Seems, we are not obliged to handle such wicked
5161 * situations. But it is worth to think about possibility of some
5162 * DoSes using some hypothetical application level deadlock.
5163 */
5164 if (before(ptr, tp->rcv_nxt))
5165 return;
5166
5167 /* Do we already have a newer (or duplicate) urgent pointer? */
5168 if (tp->urg_data && !after(ptr, tp->urg_seq))
5169 return;
5170
5171 /* Tell the world about our new urgent pointer. */
5172 sk_send_sigurg(sk);
5173
5174 /* We may be adding urgent data when the last byte read was
5175 * urgent. To do this requires some care. We cannot just ignore
5176 * tp->copied_seq since we would read the last urgent byte again
5177 * as data, nor can we alter copied_seq until this data arrives
5178 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5179 *
5180 * NOTE. Double Dutch. Rendering to plain English: author of comment
5181 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5182 * and expect that both A and B disappear from stream. This is _wrong_.
5183 * Though this happens in BSD with high probability, this is occasional.
5184 * Any application relying on this is buggy. Note also, that fix "works"
5185 * only in this artificial test. Insert some normal data between A and B and we will
5186 * decline of BSD again. Verdict: it is better to remove to trap
5187 * buggy users.
5188 */
5189 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5190 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5191 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5192 tp->copied_seq++;
5193 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5194 __skb_unlink(skb, &sk->sk_receive_queue);
5195 __kfree_skb(skb);
5196 }
5197 }
5198
5199 tp->urg_data = TCP_URG_NOTYET;
5200 tp->urg_seq = ptr;
5201
5202 /* Disable header prediction. */
5203 tp->pred_flags = 0;
5204 }
5205
5206 /* This is the 'fast' part of urgent handling. */
5207 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5208 {
5209 struct tcp_sock *tp = tcp_sk(sk);
5210
5211 /* Check if we get a new urgent pointer - normally not. */
5212 if (th->urg)
5213 tcp_check_urg(sk, th);
5214
5215 /* Do we wait for any urgent data? - normally not... */
5216 if (tp->urg_data == TCP_URG_NOTYET) {
5217 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5218 th->syn;
5219
5220 /* Is the urgent pointer pointing into this packet? */
5221 if (ptr < skb->len) {
5222 u8 tmp;
5223 if (skb_copy_bits(skb, ptr, &tmp, 1))
5224 BUG();
5225 tp->urg_data = TCP_URG_VALID | tmp;
5226 if (!sock_flag(sk, SOCK_DEAD))
5227 sk->sk_data_ready(sk);
5228 }
5229 }
5230 }
5231
5232 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5233 {
5234 struct tcp_sock *tp = tcp_sk(sk);
5235 int chunk = skb->len - hlen;
5236 int err;
5237
5238 if (skb_csum_unnecessary(skb))
5239 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5240 else
5241 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5242
5243 if (!err) {
5244 tp->ucopy.len -= chunk;
5245 tp->copied_seq += chunk;
5246 tcp_rcv_space_adjust(sk);
5247 }
5248
5249 return err;
5250 }
5251
5252 /* Does PAWS and seqno based validation of an incoming segment, flags will
5253 * play significant role here.
5254 */
5255 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5256 const struct tcphdr *th, int syn_inerr)
5257 {
5258 struct tcp_sock *tp = tcp_sk(sk);
5259 bool rst_seq_match = false;
5260
5261 /* RFC1323: H1. Apply PAWS check first. */
5262 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5263 tcp_paws_discard(sk, skb)) {
5264 if (!th->rst) {
5265 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5266 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267 LINUX_MIB_TCPACKSKIPPEDPAWS,
5268 &tp->last_oow_ack_time))
5269 tcp_send_dupack(sk, skb);
5270 goto discard;
5271 }
5272 /* Reset is accepted even if it did not pass PAWS. */
5273 }
5274
5275 /* Step 1: check sequence number */
5276 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5277 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5278 * (RST) segments are validated by checking their SEQ-fields."
5279 * And page 69: "If an incoming segment is not acceptable,
5280 * an acknowledgment should be sent in reply (unless the RST
5281 * bit is set, if so drop the segment and return)".
5282 */
5283 if (!th->rst) {
5284 if (th->syn)
5285 goto syn_challenge;
5286 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5287 LINUX_MIB_TCPACKSKIPPEDSEQ,
5288 &tp->last_oow_ack_time))
5289 tcp_send_dupack(sk, skb);
5290 }
5291 goto discard;
5292 }
5293
5294 /* Step 2: check RST bit */
5295 if (th->rst) {
5296 /* RFC 5961 3.2 (extend to match against SACK too if available):
5297 * If seq num matches RCV.NXT or the right-most SACK block,
5298 * then
5299 * RESET the connection
5300 * else
5301 * Send a challenge ACK
5302 */
5303 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5304 rst_seq_match = true;
5305 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5306 struct tcp_sack_block *sp = &tp->selective_acks[0];
5307 int max_sack = sp[0].end_seq;
5308 int this_sack;
5309
5310 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5311 ++this_sack) {
5312 max_sack = after(sp[this_sack].end_seq,
5313 max_sack) ?
5314 sp[this_sack].end_seq : max_sack;
5315 }
5316
5317 if (TCP_SKB_CB(skb)->seq == max_sack)
5318 rst_seq_match = true;
5319 }
5320
5321 if (rst_seq_match)
5322 tcp_reset(sk);
5323 else
5324 tcp_send_challenge_ack(sk, skb);
5325 goto discard;
5326 }
5327
5328 /* step 3: check security and precedence [ignored] */
5329
5330 /* step 4: Check for a SYN
5331 * RFC 5961 4.2 : Send a challenge ack
5332 */
5333 if (th->syn) {
5334 syn_challenge:
5335 if (syn_inerr)
5336 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5338 tcp_send_challenge_ack(sk, skb);
5339 goto discard;
5340 }
5341
5342 return true;
5343
5344 discard:
5345 tcp_drop(sk, skb);
5346 return false;
5347 }
5348
5349 /*
5350 * TCP receive function for the ESTABLISHED state.
5351 *
5352 * It is split into a fast path and a slow path. The fast path is
5353 * disabled when:
5354 * - A zero window was announced from us - zero window probing
5355 * is only handled properly in the slow path.
5356 * - Out of order segments arrived.
5357 * - Urgent data is expected.
5358 * - There is no buffer space left
5359 * - Unexpected TCP flags/window values/header lengths are received
5360 * (detected by checking the TCP header against pred_flags)
5361 * - Data is sent in both directions. Fast path only supports pure senders
5362 * or pure receivers (this means either the sequence number or the ack
5363 * value must stay constant)
5364 * - Unexpected TCP option.
5365 *
5366 * When these conditions are not satisfied it drops into a standard
5367 * receive procedure patterned after RFC793 to handle all cases.
5368 * The first three cases are guaranteed by proper pred_flags setting,
5369 * the rest is checked inline. Fast processing is turned on in
5370 * tcp_data_queue when everything is OK.
5371 */
5372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5373 const struct tcphdr *th, unsigned int len)
5374 {
5375 struct tcp_sock *tp = tcp_sk(sk);
5376
5377 if (unlikely(!sk->sk_rx_dst))
5378 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5379 /*
5380 * Header prediction.
5381 * The code loosely follows the one in the famous
5382 * "30 instruction TCP receive" Van Jacobson mail.
5383 *
5384 * Van's trick is to deposit buffers into socket queue
5385 * on a device interrupt, to call tcp_recv function
5386 * on the receive process context and checksum and copy
5387 * the buffer to user space. smart...
5388 *
5389 * Our current scheme is not silly either but we take the
5390 * extra cost of the net_bh soft interrupt processing...
5391 * We do checksum and copy also but from device to kernel.
5392 */
5393
5394 tp->rx_opt.saw_tstamp = 0;
5395
5396 /* pred_flags is 0xS?10 << 16 + snd_wnd
5397 * if header_prediction is to be made
5398 * 'S' will always be tp->tcp_header_len >> 2
5399 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5400 * turn it off (when there are holes in the receive
5401 * space for instance)
5402 * PSH flag is ignored.
5403 */
5404
5405 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5406 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5407 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5408 int tcp_header_len = tp->tcp_header_len;
5409
5410 /* Timestamp header prediction: tcp_header_len
5411 * is automatically equal to th->doff*4 due to pred_flags
5412 * match.
5413 */
5414
5415 /* Check timestamp */
5416 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5417 /* No? Slow path! */
5418 if (!tcp_parse_aligned_timestamp(tp, th))
5419 goto slow_path;
5420
5421 /* If PAWS failed, check it more carefully in slow path */
5422 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5423 goto slow_path;
5424
5425 /* DO NOT update ts_recent here, if checksum fails
5426 * and timestamp was corrupted part, it will result
5427 * in a hung connection since we will drop all
5428 * future packets due to the PAWS test.
5429 */
5430 }
5431
5432 if (len <= tcp_header_len) {
5433 /* Bulk data transfer: sender */
5434 if (len == tcp_header_len) {
5435 /* Predicted packet is in window by definition.
5436 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5437 * Hence, check seq<=rcv_wup reduces to:
5438 */
5439 if (tcp_header_len ==
5440 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5441 tp->rcv_nxt == tp->rcv_wup)
5442 tcp_store_ts_recent(tp);
5443
5444 /* We know that such packets are checksummed
5445 * on entry.
5446 */
5447 tcp_ack(sk, skb, 0);
5448 __kfree_skb(skb);
5449 tcp_data_snd_check(sk);
5450 return;
5451 } else { /* Header too small */
5452 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5453 goto discard;
5454 }
5455 } else {
5456 int eaten = 0;
5457 bool fragstolen = false;
5458
5459 if (tp->ucopy.task == current &&
5460 tp->copied_seq == tp->rcv_nxt &&
5461 len - tcp_header_len <= tp->ucopy.len &&
5462 sock_owned_by_user(sk)) {
5463 __set_current_state(TASK_RUNNING);
5464
5465 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5466 /* Predicted packet is in window by definition.
5467 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5468 * Hence, check seq<=rcv_wup reduces to:
5469 */
5470 if (tcp_header_len ==
5471 (sizeof(struct tcphdr) +
5472 TCPOLEN_TSTAMP_ALIGNED) &&
5473 tp->rcv_nxt == tp->rcv_wup)
5474 tcp_store_ts_recent(tp);
5475
5476 tcp_rcv_rtt_measure_ts(sk, skb);
5477
5478 __skb_pull(skb, tcp_header_len);
5479 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5480 NET_INC_STATS(sock_net(sk),
5481 LINUX_MIB_TCPHPHITSTOUSER);
5482 eaten = 1;
5483 }
5484 }
5485 if (!eaten) {
5486 if (tcp_checksum_complete(skb))
5487 goto csum_error;
5488
5489 if ((int)skb->truesize > sk->sk_forward_alloc)
5490 goto step5;
5491
5492 /* Predicted packet is in window by definition.
5493 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5494 * Hence, check seq<=rcv_wup reduces to:
5495 */
5496 if (tcp_header_len ==
5497 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5498 tp->rcv_nxt == tp->rcv_wup)
5499 tcp_store_ts_recent(tp);
5500
5501 tcp_rcv_rtt_measure_ts(sk, skb);
5502
5503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5504
5505 /* Bulk data transfer: receiver */
5506 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5507 &fragstolen);
5508 }
5509
5510 tcp_event_data_recv(sk, skb);
5511
5512 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5513 /* Well, only one small jumplet in fast path... */
5514 tcp_ack(sk, skb, FLAG_DATA);
5515 tcp_data_snd_check(sk);
5516 if (!inet_csk_ack_scheduled(sk))
5517 goto no_ack;
5518 }
5519
5520 __tcp_ack_snd_check(sk, 0);
5521 no_ack:
5522 if (eaten)
5523 kfree_skb_partial(skb, fragstolen);
5524 sk->sk_data_ready(sk);
5525 return;
5526 }
5527 }
5528
5529 slow_path:
5530 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5531 goto csum_error;
5532
5533 if (!th->ack && !th->rst && !th->syn)
5534 goto discard;
5535
5536 /*
5537 * Standard slow path.
5538 */
5539
5540 if (!tcp_validate_incoming(sk, skb, th, 1))
5541 return;
5542
5543 step5:
5544 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5545 goto discard;
5546
5547 tcp_rcv_rtt_measure_ts(sk, skb);
5548
5549 /* Process urgent data. */
5550 tcp_urg(sk, skb, th);
5551
5552 /* step 7: process the segment text */
5553 tcp_data_queue(sk, skb);
5554
5555 tcp_data_snd_check(sk);
5556 tcp_ack_snd_check(sk);
5557 return;
5558
5559 csum_error:
5560 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5561 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5562
5563 discard:
5564 tcp_drop(sk, skb);
5565 }
5566 EXPORT_SYMBOL(tcp_rcv_established);
5567
5568 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5569 {
5570 struct tcp_sock *tp = tcp_sk(sk);
5571 struct inet_connection_sock *icsk = inet_csk(sk);
5572
5573 tcp_set_state(sk, TCP_ESTABLISHED);
5574
5575 if (skb) {
5576 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5577 security_inet_conn_established(sk, skb);
5578 }
5579
5580 /* Make sure socket is routed, for correct metrics. */
5581 icsk->icsk_af_ops->rebuild_header(sk);
5582
5583 tcp_init_metrics(sk);
5584
5585 tcp_init_congestion_control(sk);
5586
5587 /* Prevent spurious tcp_cwnd_restart() on first data
5588 * packet.
5589 */
5590 tp->lsndtime = tcp_time_stamp;
5591
5592 tcp_init_buffer_space(sk);
5593
5594 if (sock_flag(sk, SOCK_KEEPOPEN))
5595 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5596
5597 if (!tp->rx_opt.snd_wscale)
5598 __tcp_fast_path_on(tp, tp->snd_wnd);
5599 else
5600 tp->pred_flags = 0;
5601
5602 if (!sock_flag(sk, SOCK_DEAD)) {
5603 sk->sk_state_change(sk);
5604 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5605 }
5606 }
5607
5608 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5609 struct tcp_fastopen_cookie *cookie)
5610 {
5611 struct tcp_sock *tp = tcp_sk(sk);
5612 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5613 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5614 bool syn_drop = false;
5615
5616 if (mss == tp->rx_opt.user_mss) {
5617 struct tcp_options_received opt;
5618
5619 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5620 tcp_clear_options(&opt);
5621 opt.user_mss = opt.mss_clamp = 0;
5622 tcp_parse_options(synack, &opt, 0, NULL);
5623 mss = opt.mss_clamp;
5624 }
5625
5626 if (!tp->syn_fastopen) {
5627 /* Ignore an unsolicited cookie */
5628 cookie->len = -1;
5629 } else if (tp->total_retrans) {
5630 /* SYN timed out and the SYN-ACK neither has a cookie nor
5631 * acknowledges data. Presumably the remote received only
5632 * the retransmitted (regular) SYNs: either the original
5633 * SYN-data or the corresponding SYN-ACK was dropped.
5634 */
5635 syn_drop = (cookie->len < 0 && data);
5636 } else if (cookie->len < 0 && !tp->syn_data) {
5637 /* We requested a cookie but didn't get it. If we did not use
5638 * the (old) exp opt format then try so next time (try_exp=1).
5639 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5640 */
5641 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5642 }
5643
5644 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5645
5646 if (data) { /* Retransmit unacked data in SYN */
5647 tcp_for_write_queue_from(data, sk) {
5648 if (data == tcp_send_head(sk) ||
5649 __tcp_retransmit_skb(sk, data, 1))
5650 break;
5651 }
5652 tcp_rearm_rto(sk);
5653 NET_INC_STATS(sock_net(sk),
5654 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5655 return true;
5656 }
5657 tp->syn_data_acked = tp->syn_data;
5658 if (tp->syn_data_acked)
5659 NET_INC_STATS(sock_net(sk),
5660 LINUX_MIB_TCPFASTOPENACTIVE);
5661
5662 tcp_fastopen_add_skb(sk, synack);
5663
5664 return false;
5665 }
5666
5667 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5668 const struct tcphdr *th)
5669 {
5670 struct inet_connection_sock *icsk = inet_csk(sk);
5671 struct tcp_sock *tp = tcp_sk(sk);
5672 struct tcp_fastopen_cookie foc = { .len = -1 };
5673 int saved_clamp = tp->rx_opt.mss_clamp;
5674
5675 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5676 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5677 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5678
5679 if (th->ack) {
5680 /* rfc793:
5681 * "If the state is SYN-SENT then
5682 * first check the ACK bit
5683 * If the ACK bit is set
5684 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5685 * a reset (unless the RST bit is set, if so drop
5686 * the segment and return)"
5687 */
5688 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5689 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5690 goto reset_and_undo;
5691
5692 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5693 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5694 tcp_time_stamp)) {
5695 NET_INC_STATS(sock_net(sk),
5696 LINUX_MIB_PAWSACTIVEREJECTED);
5697 goto reset_and_undo;
5698 }
5699
5700 /* Now ACK is acceptable.
5701 *
5702 * "If the RST bit is set
5703 * If the ACK was acceptable then signal the user "error:
5704 * connection reset", drop the segment, enter CLOSED state,
5705 * delete TCB, and return."
5706 */
5707
5708 if (th->rst) {
5709 tcp_reset(sk);
5710 goto discard;
5711 }
5712
5713 /* rfc793:
5714 * "fifth, if neither of the SYN or RST bits is set then
5715 * drop the segment and return."
5716 *
5717 * See note below!
5718 * --ANK(990513)
5719 */
5720 if (!th->syn)
5721 goto discard_and_undo;
5722
5723 /* rfc793:
5724 * "If the SYN bit is on ...
5725 * are acceptable then ...
5726 * (our SYN has been ACKed), change the connection
5727 * state to ESTABLISHED..."
5728 */
5729
5730 tcp_ecn_rcv_synack(tp, th);
5731
5732 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5733 tcp_ack(sk, skb, FLAG_SLOWPATH);
5734
5735 /* Ok.. it's good. Set up sequence numbers and
5736 * move to established.
5737 */
5738 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5739 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5740
5741 /* RFC1323: The window in SYN & SYN/ACK segments is
5742 * never scaled.
5743 */
5744 tp->snd_wnd = ntohs(th->window);
5745
5746 if (!tp->rx_opt.wscale_ok) {
5747 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5748 tp->window_clamp = min(tp->window_clamp, 65535U);
5749 }
5750
5751 if (tp->rx_opt.saw_tstamp) {
5752 tp->rx_opt.tstamp_ok = 1;
5753 tp->tcp_header_len =
5754 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5756 tcp_store_ts_recent(tp);
5757 } else {
5758 tp->tcp_header_len = sizeof(struct tcphdr);
5759 }
5760
5761 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5762 tcp_enable_fack(tp);
5763
5764 tcp_mtup_init(sk);
5765 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5766 tcp_initialize_rcv_mss(sk);
5767
5768 /* Remember, tcp_poll() does not lock socket!
5769 * Change state from SYN-SENT only after copied_seq
5770 * is initialized. */
5771 tp->copied_seq = tp->rcv_nxt;
5772
5773 smp_mb();
5774
5775 tcp_finish_connect(sk, skb);
5776
5777 if ((tp->syn_fastopen || tp->syn_data) &&
5778 tcp_rcv_fastopen_synack(sk, skb, &foc))
5779 return -1;
5780
5781 if (sk->sk_write_pending ||
5782 icsk->icsk_accept_queue.rskq_defer_accept ||
5783 icsk->icsk_ack.pingpong) {
5784 /* Save one ACK. Data will be ready after
5785 * several ticks, if write_pending is set.
5786 *
5787 * It may be deleted, but with this feature tcpdumps
5788 * look so _wonderfully_ clever, that I was not able
5789 * to stand against the temptation 8) --ANK
5790 */
5791 inet_csk_schedule_ack(sk);
5792 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5793 tcp_enter_quickack_mode(sk);
5794 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5795 TCP_DELACK_MAX, TCP_RTO_MAX);
5796
5797 discard:
5798 tcp_drop(sk, skb);
5799 return 0;
5800 } else {
5801 tcp_send_ack(sk);
5802 }
5803 return -1;
5804 }
5805
5806 /* No ACK in the segment */
5807
5808 if (th->rst) {
5809 /* rfc793:
5810 * "If the RST bit is set
5811 *
5812 * Otherwise (no ACK) drop the segment and return."
5813 */
5814
5815 goto discard_and_undo;
5816 }
5817
5818 /* PAWS check. */
5819 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5820 tcp_paws_reject(&tp->rx_opt, 0))
5821 goto discard_and_undo;
5822
5823 if (th->syn) {
5824 /* We see SYN without ACK. It is attempt of
5825 * simultaneous connect with crossed SYNs.
5826 * Particularly, it can be connect to self.
5827 */
5828 tcp_set_state(sk, TCP_SYN_RECV);
5829
5830 if (tp->rx_opt.saw_tstamp) {
5831 tp->rx_opt.tstamp_ok = 1;
5832 tcp_store_ts_recent(tp);
5833 tp->tcp_header_len =
5834 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5835 } else {
5836 tp->tcp_header_len = sizeof(struct tcphdr);
5837 }
5838
5839 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5840 tp->copied_seq = tp->rcv_nxt;
5841 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5842
5843 /* RFC1323: The window in SYN & SYN/ACK segments is
5844 * never scaled.
5845 */
5846 tp->snd_wnd = ntohs(th->window);
5847 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5848 tp->max_window = tp->snd_wnd;
5849
5850 tcp_ecn_rcv_syn(tp, th);
5851
5852 tcp_mtup_init(sk);
5853 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5854 tcp_initialize_rcv_mss(sk);
5855
5856 tcp_send_synack(sk);
5857 #if 0
5858 /* Note, we could accept data and URG from this segment.
5859 * There are no obstacles to make this (except that we must
5860 * either change tcp_recvmsg() to prevent it from returning data
5861 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5862 *
5863 * However, if we ignore data in ACKless segments sometimes,
5864 * we have no reasons to accept it sometimes.
5865 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5866 * is not flawless. So, discard packet for sanity.
5867 * Uncomment this return to process the data.
5868 */
5869 return -1;
5870 #else
5871 goto discard;
5872 #endif
5873 }
5874 /* "fifth, if neither of the SYN or RST bits is set then
5875 * drop the segment and return."
5876 */
5877
5878 discard_and_undo:
5879 tcp_clear_options(&tp->rx_opt);
5880 tp->rx_opt.mss_clamp = saved_clamp;
5881 goto discard;
5882
5883 reset_and_undo:
5884 tcp_clear_options(&tp->rx_opt);
5885 tp->rx_opt.mss_clamp = saved_clamp;
5886 return 1;
5887 }
5888
5889 /*
5890 * This function implements the receiving procedure of RFC 793 for
5891 * all states except ESTABLISHED and TIME_WAIT.
5892 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5893 * address independent.
5894 */
5895
5896 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5897 {
5898 struct tcp_sock *tp = tcp_sk(sk);
5899 struct inet_connection_sock *icsk = inet_csk(sk);
5900 const struct tcphdr *th = tcp_hdr(skb);
5901 struct request_sock *req;
5902 int queued = 0;
5903 bool acceptable;
5904
5905 switch (sk->sk_state) {
5906 case TCP_CLOSE:
5907 goto discard;
5908
5909 case TCP_LISTEN:
5910 if (th->ack)
5911 return 1;
5912
5913 if (th->rst)
5914 goto discard;
5915
5916 if (th->syn) {
5917 if (th->fin)
5918 goto discard;
5919 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5920 return 1;
5921
5922 consume_skb(skb);
5923 return 0;
5924 }
5925 goto discard;
5926
5927 case TCP_SYN_SENT:
5928 tp->rx_opt.saw_tstamp = 0;
5929 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5930 if (queued >= 0)
5931 return queued;
5932
5933 /* Do step6 onward by hand. */
5934 tcp_urg(sk, skb, th);
5935 __kfree_skb(skb);
5936 tcp_data_snd_check(sk);
5937 return 0;
5938 }
5939
5940 tp->rx_opt.saw_tstamp = 0;
5941 req = tp->fastopen_rsk;
5942 if (req) {
5943 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5944 sk->sk_state != TCP_FIN_WAIT1);
5945
5946 if (!tcp_check_req(sk, skb, req, true))
5947 goto discard;
5948 }
5949
5950 if (!th->ack && !th->rst && !th->syn)
5951 goto discard;
5952
5953 if (!tcp_validate_incoming(sk, skb, th, 0))
5954 return 0;
5955
5956 /* step 5: check the ACK field */
5957 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5958 FLAG_UPDATE_TS_RECENT) > 0;
5959
5960 switch (sk->sk_state) {
5961 case TCP_SYN_RECV:
5962 if (!acceptable)
5963 return 1;
5964
5965 if (!tp->srtt_us)
5966 tcp_synack_rtt_meas(sk, req);
5967
5968 /* Once we leave TCP_SYN_RECV, we no longer need req
5969 * so release it.
5970 */
5971 if (req) {
5972 inet_csk(sk)->icsk_retransmits = 0;
5973 reqsk_fastopen_remove(sk, req, false);
5974 } else {
5975 /* Make sure socket is routed, for correct metrics. */
5976 icsk->icsk_af_ops->rebuild_header(sk);
5977 tcp_init_congestion_control(sk);
5978
5979 tcp_mtup_init(sk);
5980 tp->copied_seq = tp->rcv_nxt;
5981 tcp_init_buffer_space(sk);
5982 }
5983 smp_mb();
5984 tcp_set_state(sk, TCP_ESTABLISHED);
5985 sk->sk_state_change(sk);
5986
5987 /* Note, that this wakeup is only for marginal crossed SYN case.
5988 * Passively open sockets are not waked up, because
5989 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5990 */
5991 if (sk->sk_socket)
5992 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5993
5994 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5995 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5996 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5997
5998 if (tp->rx_opt.tstamp_ok)
5999 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6000
6001 if (req) {
6002 /* Re-arm the timer because data may have been sent out.
6003 * This is similar to the regular data transmission case
6004 * when new data has just been ack'ed.
6005 *
6006 * (TFO) - we could try to be more aggressive and
6007 * retransmitting any data sooner based on when they
6008 * are sent out.
6009 */
6010 tcp_rearm_rto(sk);
6011 } else
6012 tcp_init_metrics(sk);
6013
6014 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6015 tcp_update_pacing_rate(sk);
6016
6017 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6018 tp->lsndtime = tcp_time_stamp;
6019
6020 tcp_initialize_rcv_mss(sk);
6021 tcp_fast_path_on(tp);
6022 break;
6023
6024 case TCP_FIN_WAIT1: {
6025 struct dst_entry *dst;
6026 int tmo;
6027
6028 /* If we enter the TCP_FIN_WAIT1 state and we are a
6029 * Fast Open socket and this is the first acceptable
6030 * ACK we have received, this would have acknowledged
6031 * our SYNACK so stop the SYNACK timer.
6032 */
6033 if (req) {
6034 /* Return RST if ack_seq is invalid.
6035 * Note that RFC793 only says to generate a
6036 * DUPACK for it but for TCP Fast Open it seems
6037 * better to treat this case like TCP_SYN_RECV
6038 * above.
6039 */
6040 if (!acceptable)
6041 return 1;
6042 /* We no longer need the request sock. */
6043 reqsk_fastopen_remove(sk, req, false);
6044 tcp_rearm_rto(sk);
6045 }
6046 if (tp->snd_una != tp->write_seq)
6047 break;
6048
6049 tcp_set_state(sk, TCP_FIN_WAIT2);
6050 sk->sk_shutdown |= SEND_SHUTDOWN;
6051
6052 dst = __sk_dst_get(sk);
6053 if (dst)
6054 dst_confirm(dst);
6055
6056 if (!sock_flag(sk, SOCK_DEAD)) {
6057 /* Wake up lingering close() */
6058 sk->sk_state_change(sk);
6059 break;
6060 }
6061
6062 if (tp->linger2 < 0 ||
6063 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6064 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6065 tcp_done(sk);
6066 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6067 return 1;
6068 }
6069
6070 tmo = tcp_fin_time(sk);
6071 if (tmo > TCP_TIMEWAIT_LEN) {
6072 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6073 } else if (th->fin || sock_owned_by_user(sk)) {
6074 /* Bad case. We could lose such FIN otherwise.
6075 * It is not a big problem, but it looks confusing
6076 * and not so rare event. We still can lose it now,
6077 * if it spins in bh_lock_sock(), but it is really
6078 * marginal case.
6079 */
6080 inet_csk_reset_keepalive_timer(sk, tmo);
6081 } else {
6082 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6083 goto discard;
6084 }
6085 break;
6086 }
6087
6088 case TCP_CLOSING:
6089 if (tp->snd_una == tp->write_seq) {
6090 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6091 goto discard;
6092 }
6093 break;
6094
6095 case TCP_LAST_ACK:
6096 if (tp->snd_una == tp->write_seq) {
6097 tcp_update_metrics(sk);
6098 tcp_done(sk);
6099 goto discard;
6100 }
6101 break;
6102 }
6103
6104 /* step 6: check the URG bit */
6105 tcp_urg(sk, skb, th);
6106
6107 /* step 7: process the segment text */
6108 switch (sk->sk_state) {
6109 case TCP_CLOSE_WAIT:
6110 case TCP_CLOSING:
6111 case TCP_LAST_ACK:
6112 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6113 break;
6114 case TCP_FIN_WAIT1:
6115 case TCP_FIN_WAIT2:
6116 /* RFC 793 says to queue data in these states,
6117 * RFC 1122 says we MUST send a reset.
6118 * BSD 4.4 also does reset.
6119 */
6120 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6124 tcp_reset(sk);
6125 return 1;
6126 }
6127 }
6128 /* Fall through */
6129 case TCP_ESTABLISHED:
6130 tcp_data_queue(sk, skb);
6131 queued = 1;
6132 break;
6133 }
6134
6135 /* tcp_data could move socket to TIME-WAIT */
6136 if (sk->sk_state != TCP_CLOSE) {
6137 tcp_data_snd_check(sk);
6138 tcp_ack_snd_check(sk);
6139 }
6140
6141 if (!queued) {
6142 discard:
6143 tcp_drop(sk, skb);
6144 }
6145 return 0;
6146 }
6147 EXPORT_SYMBOL(tcp_rcv_state_process);
6148
6149 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6150 {
6151 struct inet_request_sock *ireq = inet_rsk(req);
6152
6153 if (family == AF_INET)
6154 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6155 &ireq->ir_rmt_addr, port);
6156 #if IS_ENABLED(CONFIG_IPV6)
6157 else if (family == AF_INET6)
6158 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6159 &ireq->ir_v6_rmt_addr, port);
6160 #endif
6161 }
6162
6163 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6164 *
6165 * If we receive a SYN packet with these bits set, it means a
6166 * network is playing bad games with TOS bits. In order to
6167 * avoid possible false congestion notifications, we disable
6168 * TCP ECN negotiation.
6169 *
6170 * Exception: tcp_ca wants ECN. This is required for DCTCP
6171 * congestion control: Linux DCTCP asserts ECT on all packets,
6172 * including SYN, which is most optimal solution; however,
6173 * others, such as FreeBSD do not.
6174 */
6175 static void tcp_ecn_create_request(struct request_sock *req,
6176 const struct sk_buff *skb,
6177 const struct sock *listen_sk,
6178 const struct dst_entry *dst)
6179 {
6180 const struct tcphdr *th = tcp_hdr(skb);
6181 const struct net *net = sock_net(listen_sk);
6182 bool th_ecn = th->ece && th->cwr;
6183 bool ect, ecn_ok;
6184 u32 ecn_ok_dst;
6185
6186 if (!th_ecn)
6187 return;
6188
6189 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6190 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6191 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6192
6193 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6194 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6195 inet_rsk(req)->ecn_ok = 1;
6196 }
6197
6198 static void tcp_openreq_init(struct request_sock *req,
6199 const struct tcp_options_received *rx_opt,
6200 struct sk_buff *skb, const struct sock *sk)
6201 {
6202 struct inet_request_sock *ireq = inet_rsk(req);
6203
6204 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6205 req->cookie_ts = 0;
6206 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6207 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6208 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6209 tcp_rsk(req)->last_oow_ack_time = 0;
6210 req->mss = rx_opt->mss_clamp;
6211 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6212 ireq->tstamp_ok = rx_opt->tstamp_ok;
6213 ireq->sack_ok = rx_opt->sack_ok;
6214 ireq->snd_wscale = rx_opt->snd_wscale;
6215 ireq->wscale_ok = rx_opt->wscale_ok;
6216 ireq->acked = 0;
6217 ireq->ecn_ok = 0;
6218 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6219 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6220 ireq->ir_mark = inet_request_mark(sk, skb);
6221 }
6222
6223 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6224 struct sock *sk_listener,
6225 bool attach_listener)
6226 {
6227 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6228 attach_listener);
6229
6230 if (req) {
6231 struct inet_request_sock *ireq = inet_rsk(req);
6232
6233 kmemcheck_annotate_bitfield(ireq, flags);
6234 ireq->opt = NULL;
6235 #if IS_ENABLED(CONFIG_IPV6)
6236 ireq->pktopts = NULL;
6237 #endif
6238 atomic64_set(&ireq->ir_cookie, 0);
6239 ireq->ireq_state = TCP_NEW_SYN_RECV;
6240 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6241 ireq->ireq_family = sk_listener->sk_family;
6242 }
6243
6244 return req;
6245 }
6246 EXPORT_SYMBOL(inet_reqsk_alloc);
6247
6248 /*
6249 * Return true if a syncookie should be sent
6250 */
6251 static bool tcp_syn_flood_action(const struct sock *sk,
6252 const struct sk_buff *skb,
6253 const char *proto)
6254 {
6255 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6256 const char *msg = "Dropping request";
6257 bool want_cookie = false;
6258 struct net *net = sock_net(sk);
6259
6260 #ifdef CONFIG_SYN_COOKIES
6261 if (net->ipv4.sysctl_tcp_syncookies) {
6262 msg = "Sending cookies";
6263 want_cookie = true;
6264 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6265 } else
6266 #endif
6267 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6268
6269 if (!queue->synflood_warned &&
6270 net->ipv4.sysctl_tcp_syncookies != 2 &&
6271 xchg(&queue->synflood_warned, 1) == 0)
6272 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6273 proto, ntohs(tcp_hdr(skb)->dest), msg);
6274
6275 return want_cookie;
6276 }
6277
6278 static void tcp_reqsk_record_syn(const struct sock *sk,
6279 struct request_sock *req,
6280 const struct sk_buff *skb)
6281 {
6282 if (tcp_sk(sk)->save_syn) {
6283 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6284 u32 *copy;
6285
6286 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6287 if (copy) {
6288 copy[0] = len;
6289 memcpy(&copy[1], skb_network_header(skb), len);
6290 req->saved_syn = copy;
6291 }
6292 }
6293 }
6294
6295 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6296 const struct tcp_request_sock_ops *af_ops,
6297 struct sock *sk, struct sk_buff *skb)
6298 {
6299 struct tcp_fastopen_cookie foc = { .len = -1 };
6300 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6301 struct tcp_options_received tmp_opt;
6302 struct tcp_sock *tp = tcp_sk(sk);
6303 struct net *net = sock_net(sk);
6304 struct sock *fastopen_sk = NULL;
6305 struct dst_entry *dst = NULL;
6306 struct request_sock *req;
6307 bool want_cookie = false;
6308 struct flowi fl;
6309
6310 /* TW buckets are converted to open requests without
6311 * limitations, they conserve resources and peer is
6312 * evidently real one.
6313 */
6314 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6315 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6316 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6317 if (!want_cookie)
6318 goto drop;
6319 }
6320
6321 if (sk_acceptq_is_full(sk)) {
6322 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6323 goto drop;
6324 }
6325
6326 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6327 if (!req)
6328 goto drop;
6329
6330 tcp_rsk(req)->af_specific = af_ops;
6331 tcp_rsk(req)->ts_off = 0;
6332
6333 tcp_clear_options(&tmp_opt);
6334 tmp_opt.mss_clamp = af_ops->mss_clamp;
6335 tmp_opt.user_mss = tp->rx_opt.user_mss;
6336 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6337
6338 if (want_cookie && !tmp_opt.saw_tstamp)
6339 tcp_clear_options(&tmp_opt);
6340
6341 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6342 tcp_openreq_init(req, &tmp_opt, skb, sk);
6343 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6344
6345 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6346 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6347
6348 af_ops->init_req(req, sk, skb);
6349
6350 if (security_inet_conn_request(sk, skb, req))
6351 goto drop_and_free;
6352
6353 if (isn && tmp_opt.tstamp_ok)
6354 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6355
6356 if (!want_cookie && !isn) {
6357 /* VJ's idea. We save last timestamp seen
6358 * from the destination in peer table, when entering
6359 * state TIME-WAIT, and check against it before
6360 * accepting new connection request.
6361 *
6362 * If "isn" is not zero, this request hit alive
6363 * timewait bucket, so that all the necessary checks
6364 * are made in the function processing timewait state.
6365 */
6366 if (tcp_death_row.sysctl_tw_recycle) {
6367 bool strict;
6368
6369 dst = af_ops->route_req(sk, &fl, req, &strict);
6370
6371 if (dst && strict &&
6372 !tcp_peer_is_proven(req, dst, true,
6373 tmp_opt.saw_tstamp)) {
6374 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6375 goto drop_and_release;
6376 }
6377 }
6378 /* Kill the following clause, if you dislike this way. */
6379 else if (!net->ipv4.sysctl_tcp_syncookies &&
6380 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6381 (sysctl_max_syn_backlog >> 2)) &&
6382 !tcp_peer_is_proven(req, dst, false,
6383 tmp_opt.saw_tstamp)) {
6384 /* Without syncookies last quarter of
6385 * backlog is filled with destinations,
6386 * proven to be alive.
6387 * It means that we continue to communicate
6388 * to destinations, already remembered
6389 * to the moment of synflood.
6390 */
6391 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6392 rsk_ops->family);
6393 goto drop_and_release;
6394 }
6395
6396 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6397 }
6398 if (!dst) {
6399 dst = af_ops->route_req(sk, &fl, req, NULL);
6400 if (!dst)
6401 goto drop_and_free;
6402 }
6403
6404 tcp_ecn_create_request(req, skb, sk, dst);
6405
6406 if (want_cookie) {
6407 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6408 tcp_rsk(req)->ts_off = 0;
6409 req->cookie_ts = tmp_opt.tstamp_ok;
6410 if (!tmp_opt.tstamp_ok)
6411 inet_rsk(req)->ecn_ok = 0;
6412 }
6413
6414 tcp_rsk(req)->snt_isn = isn;
6415 tcp_rsk(req)->txhash = net_tx_rndhash();
6416 tcp_openreq_init_rwin(req, sk, dst);
6417 if (!want_cookie) {
6418 tcp_reqsk_record_syn(sk, req, skb);
6419 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6420 }
6421 if (fastopen_sk) {
6422 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6423 &foc, TCP_SYNACK_FASTOPEN);
6424 /* Add the child socket directly into the accept queue */
6425 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6426 sk->sk_data_ready(sk);
6427 bh_unlock_sock(fastopen_sk);
6428 sock_put(fastopen_sk);
6429 } else {
6430 tcp_rsk(req)->tfo_listener = false;
6431 if (!want_cookie)
6432 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6433 af_ops->send_synack(sk, dst, &fl, req, &foc,
6434 !want_cookie ? TCP_SYNACK_NORMAL :
6435 TCP_SYNACK_COOKIE);
6436 if (want_cookie) {
6437 reqsk_free(req);
6438 return 0;
6439 }
6440 }
6441 reqsk_put(req);
6442 return 0;
6443
6444 drop_and_release:
6445 dst_release(dst);
6446 drop_and_free:
6447 reqsk_free(req);
6448 drop:
6449 tcp_listendrop(sk);
6450 return 0;
6451 }
6452 EXPORT_SYMBOL(tcp_conn_request);