]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_input.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122 * real world.
123 */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ? : skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks == 0)
176 quickacks = 2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags & TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags & TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize) >> 1;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 /* Check #1 */
310 if (tp->rcv_ssthresh < tp->window_clamp &&
311 (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 !tcp_memory_pressure) {
313 int incr;
314
315 /* Check #2. Increase window, if skb with such overhead
316 * will fit to rcvbuf in future.
317 */
318 if (tcp_win_from_space(skb->truesize) <= skb->len)
319 incr = 2 * tp->advmss;
320 else
321 incr = __tcp_grow_window(sk, skb);
322
323 if (incr) {
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325 tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415 hint = min(hint, tp->rcv_wnd / 2);
416 hint = min(hint, TCP_MIN_RCVMSS);
417 hint = max(hint, TCP_MIN_MSS);
418
419 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423 *
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 *
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date. A new paper
431 * is pending.
432 */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435 u32 new_sample = tp->rcv_rtt_est.rtt;
436 long m = sample;
437
438 if (m == 0)
439 m = 1;
440
441 if (new_sample != 0) {
442 /* If we sample in larger samples in the non-timestamp
443 * case, we could grossly overestimate the RTT especially
444 * with chatty applications or bulk transfer apps which
445 * are stalled on filesystem I/O.
446 *
447 * Also, since we are only going for a minimum in the
448 * non-timestamp case, we do not smooth things out
449 * else with timestamps disabled convergence takes too
450 * long.
451 */
452 if (!win_dep) {
453 m -= (new_sample >> 3);
454 new_sample += m;
455 } else if (m < new_sample)
456 new_sample = m << 3;
457 } else {
458 /* No previous measure. */
459 new_sample = m << 3;
460 }
461
462 if (tp->rcv_rtt_est.rtt != new_sample)
463 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468 if (tp->rcv_rtt_est.time == 0)
469 goto new_measure;
470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 return;
472 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476 tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480 const struct sk_buff *skb)
481 {
482 struct tcp_sock *tp = tcp_sk(sk);
483 if (tp->rx_opt.rcv_tsecr &&
484 (TCP_SKB_CB(skb)->end_seq -
485 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490 * This function should be called every time data is copied to user space.
491 * It calculates the appropriate TCP receive buffer space.
492 */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495 struct tcp_sock *tp = tcp_sk(sk);
496 int time;
497 int space;
498
499 if (tp->rcvq_space.time == 0)
500 goto new_measure;
501
502 time = tcp_time_stamp - tp->rcvq_space.time;
503 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 return;
505
506 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508 space = max(tp->rcvq_space.space, space);
509
510 if (tp->rcvq_space.space != space) {
511 int rcvmem;
512
513 tp->rcvq_space.space = space;
514
515 if (sysctl_tcp_moderate_rcvbuf &&
516 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517 int new_clamp = space;
518
519 /* Receive space grows, normalize in order to
520 * take into account packet headers and sk_buff
521 * structure overhead.
522 */
523 space /= tp->advmss;
524 if (!space)
525 space = 1;
526 rcvmem = (tp->advmss + MAX_TCP_HEADER +
527 16 + sizeof(struct sk_buff));
528 while (tcp_win_from_space(rcvmem) < tp->advmss)
529 rcvmem += 128;
530 space *= rcvmem;
531 space = min(space, sysctl_tcp_rmem[2]);
532 if (space > sk->sk_rcvbuf) {
533 sk->sk_rcvbuf = space;
534
535 /* Make the window clamp follow along. */
536 tp->window_clamp = new_clamp;
537 }
538 }
539 }
540
541 new_measure:
542 tp->rcvq_space.seq = tp->copied_seq;
543 tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547 * behavior of the tp->ato delayed ack timeout interval. When a
548 * connection starts up, we want to ack as quickly as possible. The
549 * problem is that "good" TCP's do slow start at the beginning of data
550 * transmission. The means that until we send the first few ACK's the
551 * sender will sit on his end and only queue most of his data, because
552 * he can only send snd_cwnd unacked packets at any given time. For
553 * each ACK we send, he increments snd_cwnd and transmits more of his
554 * queue. -DaveM
555 */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 struct inet_connection_sock *icsk = inet_csk(sk);
560 u32 now;
561
562 inet_csk_schedule_ack(sk);
563
564 tcp_measure_rcv_mss(sk, skb);
565
566 tcp_rcv_rtt_measure(tp);
567
568 now = tcp_time_stamp;
569
570 if (!icsk->icsk_ack.ato) {
571 /* The _first_ data packet received, initialize
572 * delayed ACK engine.
573 */
574 tcp_incr_quickack(sk);
575 icsk->icsk_ack.ato = TCP_ATO_MIN;
576 } else {
577 int m = now - icsk->icsk_ack.lrcvtime;
578
579 if (m <= TCP_ATO_MIN / 2) {
580 /* The fastest case is the first. */
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582 } else if (m < icsk->icsk_ack.ato) {
583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584 if (icsk->icsk_ack.ato > icsk->icsk_rto)
585 icsk->icsk_ack.ato = icsk->icsk_rto;
586 } else if (m > icsk->icsk_rto) {
587 /* Too long gap. Apparently sender failed to
588 * restart window, so that we send ACKs quickly.
589 */
590 tcp_incr_quickack(sk);
591 sk_mem_reclaim(sk);
592 }
593 }
594 icsk->icsk_ack.lrcvtime = now;
595
596 TCP_ECN_check_ce(tp, skb);
597
598 if (skb->len >= 128)
599 tcp_grow_window(sk, skb);
600 }
601
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604 struct dst_entry *dst = __sk_dst_get(sk);
605 u32 rto_min = TCP_RTO_MIN;
606
607 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608 rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609 return rto_min;
610 }
611
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613 * routine either comes from timestamps, or from segments that were
614 * known _not_ to have been retransmitted [see Karn/Partridge
615 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616 * piece by Van Jacobson.
617 * NOTE: the next three routines used to be one big routine.
618 * To save cycles in the RFC 1323 implementation it was better to break
619 * it up into three procedures. -- erics
620 */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623 struct tcp_sock *tp = tcp_sk(sk);
624 long m = mrtt; /* RTT */
625
626 /* The following amusing code comes from Jacobson's
627 * article in SIGCOMM '88. Note that rtt and mdev
628 * are scaled versions of rtt and mean deviation.
629 * This is designed to be as fast as possible
630 * m stands for "measurement".
631 *
632 * On a 1990 paper the rto value is changed to:
633 * RTO = rtt + 4 * mdev
634 *
635 * Funny. This algorithm seems to be very broken.
636 * These formulae increase RTO, when it should be decreased, increase
637 * too slowly, when it should be increased quickly, decrease too quickly
638 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639 * does not matter how to _calculate_ it. Seems, it was trap
640 * that VJ failed to avoid. 8)
641 */
642 if (m == 0)
643 m = 1;
644 if (tp->srtt != 0) {
645 m -= (tp->srtt >> 3); /* m is now error in rtt est */
646 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
647 if (m < 0) {
648 m = -m; /* m is now abs(error) */
649 m -= (tp->mdev >> 2); /* similar update on mdev */
650 /* This is similar to one of Eifel findings.
651 * Eifel blocks mdev updates when rtt decreases.
652 * This solution is a bit different: we use finer gain
653 * for mdev in this case (alpha*beta).
654 * Like Eifel it also prevents growth of rto,
655 * but also it limits too fast rto decreases,
656 * happening in pure Eifel.
657 */
658 if (m > 0)
659 m >>= 3;
660 } else {
661 m -= (tp->mdev >> 2); /* similar update on mdev */
662 }
663 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
664 if (tp->mdev > tp->mdev_max) {
665 tp->mdev_max = tp->mdev;
666 if (tp->mdev_max > tp->rttvar)
667 tp->rttvar = tp->mdev_max;
668 }
669 if (after(tp->snd_una, tp->rtt_seq)) {
670 if (tp->mdev_max < tp->rttvar)
671 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672 tp->rtt_seq = tp->snd_nxt;
673 tp->mdev_max = tcp_rto_min(sk);
674 }
675 } else {
676 /* no previous measure. */
677 tp->srtt = m << 3; /* take the measured time to be rtt */
678 tp->mdev = m << 1; /* make sure rto = 3*rtt */
679 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680 tp->rtt_seq = tp->snd_nxt;
681 }
682 }
683
684 /* Calculate rto without backoff. This is the second half of Van Jacobson's
685 * routine referred to above.
686 */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689 const struct tcp_sock *tp = tcp_sk(sk);
690 /* Old crap is replaced with new one. 8)
691 *
692 * More seriously:
693 * 1. If rtt variance happened to be less 50msec, it is hallucination.
694 * It cannot be less due to utterly erratic ACK generation made
695 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696 * to do with delayed acks, because at cwnd>2 true delack timeout
697 * is invisible. Actually, Linux-2.4 also generates erratic
698 * ACKs in some circumstances.
699 */
700 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701
702 /* 2. Fixups made earlier cannot be right.
703 * If we do not estimate RTO correctly without them,
704 * all the algo is pure shit and should be replaced
705 * with correct one. It is exactly, which we pretend to do.
706 */
707 }
708
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710 * guarantees that rto is higher.
711 */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717
718 /* Save metrics learned by this TCP session.
719 This function is called only, when TCP finishes successfully
720 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721 */
722 void tcp_update_metrics(struct sock *sk)
723 {
724 struct tcp_sock *tp = tcp_sk(sk);
725 struct dst_entry *dst = __sk_dst_get(sk);
726
727 if (sysctl_tcp_nometrics_save)
728 return;
729
730 dst_confirm(dst);
731
732 if (dst && (dst->flags & DST_HOST)) {
733 const struct inet_connection_sock *icsk = inet_csk(sk);
734 int m;
735
736 if (icsk->icsk_backoff || !tp->srtt) {
737 /* This session failed to estimate rtt. Why?
738 * Probably, no packets returned in time.
739 * Reset our results.
740 */
741 if (!(dst_metric_locked(dst, RTAX_RTT)))
742 dst->metrics[RTAX_RTT - 1] = 0;
743 return;
744 }
745
746 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747
748 /* If newly calculated rtt larger than stored one,
749 * store new one. Otherwise, use EWMA. Remember,
750 * rtt overestimation is always better than underestimation.
751 */
752 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753 if (m <= 0)
754 dst->metrics[RTAX_RTT - 1] = tp->srtt;
755 else
756 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757 }
758
759 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 if (m < 0)
761 m = -m;
762
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
767
768 if (m >= dst_metric(dst, RTAX_RTTVAR))
769 dst->metrics[RTAX_RTTVAR - 1] = m;
770 else
771 dst->metrics[RTAX_RTTVAR-1] -=
772 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773 }
774
775 if (tp->snd_ssthresh >= 0xFFFF) {
776 /* Slow start still did not finish. */
777 if (dst_metric(dst, RTAX_SSTHRESH) &&
778 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 if (!dst_metric_locked(dst, RTAX_CWND) &&
782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 icsk->icsk_ca_state == TCP_CA_Open) {
786 /* Cong. avoidance phase, cwnd is reliable. */
787 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 dst->metrics[RTAX_SSTHRESH-1] =
789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 if (!dst_metric_locked(dst, RTAX_CWND))
791 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792 } else {
793 /* Else slow start did not finish, cwnd is non-sense,
794 ssthresh may be also invalid.
795 */
796 if (!dst_metric_locked(dst, RTAX_CWND))
797 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798 if (dst->metrics[RTAX_SSTHRESH-1] &&
799 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 }
803
804 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806 tp->reordering != sysctl_tcp_reordering)
807 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 }
809 }
810 }
811
812 /* Numbers are taken from RFC3390.
813 *
814 * John Heffner states:
815 *
816 * The RFC specifies a window of no more than 4380 bytes
817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
818 * is a bit misleading because they use a clamp at 4380 bytes
819 * rather than use a multiplier in the relevant range.
820 */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825 if (!cwnd) {
826 if (tp->mss_cache > 1460)
827 cwnd = 2;
828 else
829 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 }
831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 const struct inet_connection_sock *icsk = inet_csk(sk);
839
840 tp->prior_ssthresh = 0;
841 tp->bytes_acked = 0;
842 if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 tp->undo_marker = 0;
844 if (set_ssthresh)
845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 tp->snd_cwnd = min(tp->snd_cwnd,
847 tcp_packets_in_flight(tp) + 1U);
848 tp->snd_cwnd_cnt = 0;
849 tp->high_seq = tp->snd_nxt;
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 TCP_ECN_queue_cwr(tp);
852
853 tcp_set_ca_state(sk, TCP_CA_CWR);
854 }
855 }
856
857 /*
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
860 */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 /* RFC3517 uses different metric in lost marker => reset on change */
864 if (tcp_is_fack(tp))
865 tp->lost_skb_hint = NULL;
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for D-SACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116 * retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120 const struct inet_connection_sock *icsk = inet_csk(sk);
1121 struct tcp_sock *tp = tcp_sk(sk);
1122 struct sk_buff *skb;
1123 int cnt = 0;
1124 u32 new_low_seq = tp->snd_nxt;
1125 u32 received_upto = tcp_highest_sack_seq(tp);
1126
1127 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128 !after(received_upto, tp->lost_retrans_low) ||
1129 icsk->icsk_ca_state != TCP_CA_Recovery)
1130 return;
1131
1132 tcp_for_write_queue(skb, sk) {
1133 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134
1135 if (skb == tcp_send_head(sk))
1136 break;
1137 if (cnt == tp->retrans_out)
1138 break;
1139 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140 continue;
1141
1142 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143 continue;
1144
1145 if (after(received_upto, ack_seq) &&
1146 (tcp_is_fack(tp) ||
1147 !before(received_upto,
1148 ack_seq + tp->reordering * tp->mss_cache))) {
1149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150 tp->retrans_out -= tcp_skb_pcount(skb);
1151
1152 /* clear lost hint */
1153 tp->retransmit_skb_hint = NULL;
1154
1155 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156 tp->lost_out += tcp_skb_pcount(skb);
1157 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158 }
1159 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160 } else {
1161 if (before(ack_seq, new_low_seq))
1162 new_low_seq = ack_seq;
1163 cnt += tcp_skb_pcount(skb);
1164 }
1165 }
1166
1167 if (tp->retrans_out)
1168 tp->lost_retrans_low = new_low_seq;
1169 }
1170
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172 struct tcp_sack_block_wire *sp, int num_sacks,
1173 u32 prior_snd_una)
1174 {
1175 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177 int dup_sack = 0;
1178
1179 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180 dup_sack = 1;
1181 tcp_dsack_seen(tp);
1182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183 } else if (num_sacks > 1) {
1184 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186
1187 if (!after(end_seq_0, end_seq_1) &&
1188 !before(start_seq_0, start_seq_1)) {
1189 dup_sack = 1;
1190 tcp_dsack_seen(tp);
1191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 }
1193 }
1194
1195 /* D-SACK for already forgotten data... Do dumb counting. */
1196 if (dup_sack &&
1197 !after(end_seq_0, prior_snd_una) &&
1198 after(end_seq_0, tp->undo_marker))
1199 tp->undo_retrans--;
1200
1201 return dup_sack;
1202 }
1203
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205 * the incoming SACK may not exactly match but we can find smaller MSS
1206 * aligned portion of it that matches. Therefore we might need to fragment
1207 * which may fail and creates some hassle (caller must handle error case
1208 * returns).
1209 */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211 u32 start_seq, u32 end_seq)
1212 {
1213 int in_sack, err;
1214 unsigned int pkt_len;
1215
1216 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218
1219 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221
1222 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223
1224 if (!in_sack)
1225 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226 else
1227 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229 if (err < 0)
1230 return err;
1231 }
1232
1233 return in_sack;
1234 }
1235
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237 int *reord, int dup_sack, int fack_count)
1238 {
1239 struct tcp_sock *tp = tcp_sk(sk);
1240 u8 sacked = TCP_SKB_CB(skb)->sacked;
1241 int flag = 0;
1242
1243 /* Account D-SACK for retransmitted packet. */
1244 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246 tp->undo_retrans--;
1247 if (sacked & TCPCB_SACKED_ACKED)
1248 *reord = min(fack_count, *reord);
1249 }
1250
1251 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253 return flag;
1254
1255 if (!(sacked & TCPCB_SACKED_ACKED)) {
1256 if (sacked & TCPCB_SACKED_RETRANS) {
1257 /* If the segment is not tagged as lost,
1258 * we do not clear RETRANS, believing
1259 * that retransmission is still in flight.
1260 */
1261 if (sacked & TCPCB_LOST) {
1262 TCP_SKB_CB(skb)->sacked &=
1263 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264 tp->lost_out -= tcp_skb_pcount(skb);
1265 tp->retrans_out -= tcp_skb_pcount(skb);
1266
1267 /* clear lost hint */
1268 tp->retransmit_skb_hint = NULL;
1269 }
1270 } else {
1271 if (!(sacked & TCPCB_RETRANS)) {
1272 /* New sack for not retransmitted frame,
1273 * which was in hole. It is reordering.
1274 */
1275 if (before(TCP_SKB_CB(skb)->seq,
1276 tcp_highest_sack_seq(tp)))
1277 *reord = min(fack_count, *reord);
1278
1279 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281 flag |= FLAG_ONLY_ORIG_SACKED;
1282 }
1283
1284 if (sacked & TCPCB_LOST) {
1285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286 tp->lost_out -= tcp_skb_pcount(skb);
1287
1288 /* clear lost hint */
1289 tp->retransmit_skb_hint = NULL;
1290 }
1291 }
1292
1293 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294 flag |= FLAG_DATA_SACKED;
1295 tp->sacked_out += tcp_skb_pcount(skb);
1296
1297 fack_count += tcp_skb_pcount(skb);
1298
1299 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301 before(TCP_SKB_CB(skb)->seq,
1302 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304
1305 if (fack_count > tp->fackets_out)
1306 tp->fackets_out = fack_count;
1307
1308 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309 tcp_advance_highest_sack(sk, skb);
1310 }
1311
1312 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1313 * frames and clear it. undo_retrans is decreased above, L|R frames
1314 * are accounted above as well.
1315 */
1316 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 tp->retrans_out -= tcp_skb_pcount(skb);
1319 tp->retransmit_skb_hint = NULL;
1320 }
1321
1322 return flag;
1323 }
1324
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326 struct tcp_sack_block *next_dup,
1327 u32 start_seq, u32 end_seq,
1328 int dup_sack_in, int *fack_count,
1329 int *reord, int *flag)
1330 {
1331 tcp_for_write_queue_from(skb, sk) {
1332 int in_sack = 0;
1333 int dup_sack = dup_sack_in;
1334
1335 if (skb == tcp_send_head(sk))
1336 break;
1337
1338 /* queue is in-order => we can short-circuit the walk early */
1339 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340 break;
1341
1342 if ((next_dup != NULL) &&
1343 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344 in_sack = tcp_match_skb_to_sack(sk, skb,
1345 next_dup->start_seq,
1346 next_dup->end_seq);
1347 if (in_sack > 0)
1348 dup_sack = 1;
1349 }
1350
1351 if (in_sack <= 0)
1352 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353 end_seq);
1354 if (unlikely(in_sack < 0))
1355 break;
1356
1357 if (in_sack)
1358 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359 *fack_count);
1360
1361 *fack_count += tcp_skb_pcount(skb);
1362 }
1363 return skb;
1364 }
1365
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367 * a normal way
1368 */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370 u32 skip_to_seq, int *fack_count)
1371 {
1372 tcp_for_write_queue_from(skb, sk) {
1373 if (skb == tcp_send_head(sk))
1374 break;
1375
1376 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377 break;
1378
1379 *fack_count += tcp_skb_pcount(skb);
1380 }
1381 return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 struct sock *sk,
1386 struct tcp_sack_block *next_dup,
1387 u32 skip_to_seq,
1388 int *fack_count, int *reord,
1389 int *flag)
1390 {
1391 if (next_dup == NULL)
1392 return skb;
1393
1394 if (before(next_dup->start_seq, skip_to_seq)) {
1395 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396 tcp_sacktag_walk(skb, sk, NULL,
1397 next_dup->start_seq, next_dup->end_seq,
1398 1, fack_count, reord, flag);
1399 }
1400
1401 return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411 u32 prior_snd_una)
1412 {
1413 const struct inet_connection_sock *icsk = inet_csk(sk);
1414 struct tcp_sock *tp = tcp_sk(sk);
1415 unsigned char *ptr = (skb_transport_header(ack_skb) +
1416 TCP_SKB_CB(ack_skb)->sacked);
1417 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418 struct tcp_sack_block sp[4];
1419 struct tcp_sack_block *cache;
1420 struct sk_buff *skb;
1421 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422 int used_sacks;
1423 int reord = tp->packets_out;
1424 int flag = 0;
1425 int found_dup_sack = 0;
1426 int fack_count;
1427 int i, j;
1428 int first_sack_index;
1429
1430 if (!tp->sacked_out) {
1431 if (WARN_ON(tp->fackets_out))
1432 tp->fackets_out = 0;
1433 tcp_highest_sack_reset(sk);
1434 }
1435
1436 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437 num_sacks, prior_snd_una);
1438 if (found_dup_sack)
1439 flag |= FLAG_DSACKING_ACK;
1440
1441 /* Eliminate too old ACKs, but take into
1442 * account more or less fresh ones, they can
1443 * contain valid SACK info.
1444 */
1445 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446 return 0;
1447
1448 if (!tp->packets_out)
1449 goto out;
1450
1451 used_sacks = 0;
1452 first_sack_index = 0;
1453 for (i = 0; i < num_sacks; i++) {
1454 int dup_sack = !i && found_dup_sack;
1455
1456 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458
1459 if (!tcp_is_sackblock_valid(tp, dup_sack,
1460 sp[used_sacks].start_seq,
1461 sp[used_sacks].end_seq)) {
1462 if (dup_sack) {
1463 if (!tp->undo_marker)
1464 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465 else
1466 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467 } else {
1468 /* Don't count olds caused by ACK reordering */
1469 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470 !after(sp[used_sacks].end_seq, tp->snd_una))
1471 continue;
1472 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473 }
1474 if (i == 0)
1475 first_sack_index = -1;
1476 continue;
1477 }
1478
1479 /* Ignore very old stuff early */
1480 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481 continue;
1482
1483 used_sacks++;
1484 }
1485
1486 /* order SACK blocks to allow in order walk of the retrans queue */
1487 for (i = used_sacks - 1; i > 0; i--) {
1488 for (j = 0; j < i; j++) {
1489 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490 struct tcp_sack_block tmp;
1491
1492 tmp = sp[j];
1493 sp[j] = sp[j + 1];
1494 sp[j + 1] = tmp;
1495
1496 /* Track where the first SACK block goes to */
1497 if (j == first_sack_index)
1498 first_sack_index = j + 1;
1499 }
1500 }
1501 }
1502
1503 skb = tcp_write_queue_head(sk);
1504 fack_count = 0;
1505 i = 0;
1506
1507 if (!tp->sacked_out) {
1508 /* It's already past, so skip checking against it */
1509 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510 } else {
1511 cache = tp->recv_sack_cache;
1512 /* Skip empty blocks in at head of the cache */
1513 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514 !cache->end_seq)
1515 cache++;
1516 }
1517
1518 while (i < used_sacks) {
1519 u32 start_seq = sp[i].start_seq;
1520 u32 end_seq = sp[i].end_seq;
1521 int dup_sack = (found_dup_sack && (i == first_sack_index));
1522 struct tcp_sack_block *next_dup = NULL;
1523
1524 if (found_dup_sack && ((i + 1) == first_sack_index))
1525 next_dup = &sp[i + 1];
1526
1527 /* Event "B" in the comment above. */
1528 if (after(end_seq, tp->high_seq))
1529 flag |= FLAG_DATA_LOST;
1530
1531 /* Skip too early cached blocks */
1532 while (tcp_sack_cache_ok(tp, cache) &&
1533 !before(start_seq, cache->end_seq))
1534 cache++;
1535
1536 /* Can skip some work by looking recv_sack_cache? */
1537 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538 after(end_seq, cache->start_seq)) {
1539
1540 /* Head todo? */
1541 if (before(start_seq, cache->start_seq)) {
1542 skb = tcp_sacktag_skip(skb, sk, start_seq,
1543 &fack_count);
1544 skb = tcp_sacktag_walk(skb, sk, next_dup,
1545 start_seq,
1546 cache->start_seq,
1547 dup_sack, &fack_count,
1548 &reord, &flag);
1549 }
1550
1551 /* Rest of the block already fully processed? */
1552 if (!after(end_seq, cache->end_seq))
1553 goto advance_sp;
1554
1555 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556 cache->end_seq,
1557 &fack_count, &reord,
1558 &flag);
1559
1560 /* ...tail remains todo... */
1561 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562 /* ...but better entrypoint exists! */
1563 skb = tcp_highest_sack(sk);
1564 if (skb == NULL)
1565 break;
1566 fack_count = tp->fackets_out;
1567 cache++;
1568 goto walk;
1569 }
1570
1571 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572 &fack_count);
1573 /* Check overlap against next cached too (past this one already) */
1574 cache++;
1575 continue;
1576 }
1577
1578 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579 skb = tcp_highest_sack(sk);
1580 if (skb == NULL)
1581 break;
1582 fack_count = tp->fackets_out;
1583 }
1584 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585
1586 walk:
1587 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588 dup_sack, &fack_count, &reord, &flag);
1589
1590 advance_sp:
1591 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592 * due to in-order walk
1593 */
1594 if (after(end_seq, tp->frto_highmark))
1595 flag &= ~FLAG_ONLY_ORIG_SACKED;
1596
1597 i++;
1598 }
1599
1600 /* Clear the head of the cache sack blocks so we can skip it next time */
1601 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602 tp->recv_sack_cache[i].start_seq = 0;
1603 tp->recv_sack_cache[i].end_seq = 0;
1604 }
1605 for (j = 0; j < used_sacks; j++)
1606 tp->recv_sack_cache[i++] = sp[j];
1607
1608 tcp_mark_lost_retrans(sk);
1609
1610 tcp_verify_left_out(tp);
1611
1612 if ((reord < tp->fackets_out) &&
1613 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616
1617 out:
1618
1619 #if FASTRETRANS_DEBUG > 0
1620 BUG_TRAP((int)tp->sacked_out >= 0);
1621 BUG_TRAP((int)tp->lost_out >= 0);
1622 BUG_TRAP((int)tp->retrans_out >= 0);
1623 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625 return flag;
1626 }
1627
1628 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1629 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1630 */
1631 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1632 {
1633 u32 holes;
1634
1635 holes = max(tp->lost_out, 1U);
1636 holes = min(holes, tp->packets_out);
1637
1638 if ((tp->sacked_out + holes) > tp->packets_out) {
1639 tp->sacked_out = tp->packets_out - holes;
1640 return 1;
1641 }
1642 return 0;
1643 }
1644
1645 /* If we receive more dupacks than we expected counting segments
1646 * in assumption of absent reordering, interpret this as reordering.
1647 * The only another reason could be bug in receiver TCP.
1648 */
1649 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1650 {
1651 struct tcp_sock *tp = tcp_sk(sk);
1652 if (tcp_limit_reno_sacked(tp))
1653 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1654 }
1655
1656 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1657
1658 static void tcp_add_reno_sack(struct sock *sk)
1659 {
1660 struct tcp_sock *tp = tcp_sk(sk);
1661 tp->sacked_out++;
1662 tcp_check_reno_reordering(sk, 0);
1663 tcp_verify_left_out(tp);
1664 }
1665
1666 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1667
1668 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1669 {
1670 struct tcp_sock *tp = tcp_sk(sk);
1671
1672 if (acked > 0) {
1673 /* One ACK acked hole. The rest eat duplicate ACKs. */
1674 if (acked - 1 >= tp->sacked_out)
1675 tp->sacked_out = 0;
1676 else
1677 tp->sacked_out -= acked - 1;
1678 }
1679 tcp_check_reno_reordering(sk, acked);
1680 tcp_verify_left_out(tp);
1681 }
1682
1683 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1684 {
1685 tp->sacked_out = 0;
1686 }
1687
1688 /* F-RTO can only be used if TCP has never retransmitted anything other than
1689 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1690 */
1691 int tcp_use_frto(struct sock *sk)
1692 {
1693 const struct tcp_sock *tp = tcp_sk(sk);
1694 const struct inet_connection_sock *icsk = inet_csk(sk);
1695 struct sk_buff *skb;
1696
1697 if (!sysctl_tcp_frto)
1698 return 0;
1699
1700 /* MTU probe and F-RTO won't really play nicely along currently */
1701 if (icsk->icsk_mtup.probe_size)
1702 return 0;
1703
1704 if (IsSackFrto())
1705 return 1;
1706
1707 /* Avoid expensive walking of rexmit queue if possible */
1708 if (tp->retrans_out > 1)
1709 return 0;
1710
1711 skb = tcp_write_queue_head(sk);
1712 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1713 tcp_for_write_queue_from(skb, sk) {
1714 if (skb == tcp_send_head(sk))
1715 break;
1716 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1717 return 0;
1718 /* Short-circuit when first non-SACKed skb has been checked */
1719 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1720 break;
1721 }
1722 return 1;
1723 }
1724
1725 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1726 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1727 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1728 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1729 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1730 * bits are handled if the Loss state is really to be entered (in
1731 * tcp_enter_frto_loss).
1732 *
1733 * Do like tcp_enter_loss() would; when RTO expires the second time it
1734 * does:
1735 * "Reduce ssthresh if it has not yet been made inside this window."
1736 */
1737 void tcp_enter_frto(struct sock *sk)
1738 {
1739 const struct inet_connection_sock *icsk = inet_csk(sk);
1740 struct tcp_sock *tp = tcp_sk(sk);
1741 struct sk_buff *skb;
1742
1743 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1744 tp->snd_una == tp->high_seq ||
1745 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1746 !icsk->icsk_retransmits)) {
1747 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1748 /* Our state is too optimistic in ssthresh() call because cwnd
1749 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1750 * recovery has not yet completed. Pattern would be this: RTO,
1751 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1752 * up here twice).
1753 * RFC4138 should be more specific on what to do, even though
1754 * RTO is quite unlikely to occur after the first Cumulative ACK
1755 * due to back-off and complexity of triggering events ...
1756 */
1757 if (tp->frto_counter) {
1758 u32 stored_cwnd;
1759 stored_cwnd = tp->snd_cwnd;
1760 tp->snd_cwnd = 2;
1761 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1762 tp->snd_cwnd = stored_cwnd;
1763 } else {
1764 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1765 }
1766 /* ... in theory, cong.control module could do "any tricks" in
1767 * ssthresh(), which means that ca_state, lost bits and lost_out
1768 * counter would have to be faked before the call occurs. We
1769 * consider that too expensive, unlikely and hacky, so modules
1770 * using these in ssthresh() must deal these incompatibility
1771 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1772 */
1773 tcp_ca_event(sk, CA_EVENT_FRTO);
1774 }
1775
1776 tp->undo_marker = tp->snd_una;
1777 tp->undo_retrans = 0;
1778
1779 skb = tcp_write_queue_head(sk);
1780 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1781 tp->undo_marker = 0;
1782 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1783 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1784 tp->retrans_out -= tcp_skb_pcount(skb);
1785 }
1786 tcp_verify_left_out(tp);
1787
1788 /* Too bad if TCP was application limited */
1789 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1790
1791 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1792 * The last condition is necessary at least in tp->frto_counter case.
1793 */
1794 if (IsSackFrto() && (tp->frto_counter ||
1795 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1796 after(tp->high_seq, tp->snd_una)) {
1797 tp->frto_highmark = tp->high_seq;
1798 } else {
1799 tp->frto_highmark = tp->snd_nxt;
1800 }
1801 tcp_set_ca_state(sk, TCP_CA_Disorder);
1802 tp->high_seq = tp->snd_nxt;
1803 tp->frto_counter = 1;
1804 }
1805
1806 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1807 * which indicates that we should follow the traditional RTO recovery,
1808 * i.e. mark everything lost and do go-back-N retransmission.
1809 */
1810 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 struct sk_buff *skb;
1814
1815 tp->lost_out = 0;
1816 tp->retrans_out = 0;
1817 if (tcp_is_reno(tp))
1818 tcp_reset_reno_sack(tp);
1819
1820 tcp_for_write_queue(skb, sk) {
1821 if (skb == tcp_send_head(sk))
1822 break;
1823
1824 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1825 /*
1826 * Count the retransmission made on RTO correctly (only when
1827 * waiting for the first ACK and did not get it)...
1828 */
1829 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1830 /* For some reason this R-bit might get cleared? */
1831 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1832 tp->retrans_out += tcp_skb_pcount(skb);
1833 /* ...enter this if branch just for the first segment */
1834 flag |= FLAG_DATA_ACKED;
1835 } else {
1836 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1837 tp->undo_marker = 0;
1838 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1839 }
1840
1841 /* Don't lost mark skbs that were fwd transmitted after RTO */
1842 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1843 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1844 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1845 tp->lost_out += tcp_skb_pcount(skb);
1846 }
1847 }
1848 tcp_verify_left_out(tp);
1849
1850 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1851 tp->snd_cwnd_cnt = 0;
1852 tp->snd_cwnd_stamp = tcp_time_stamp;
1853 tp->frto_counter = 0;
1854 tp->bytes_acked = 0;
1855
1856 tp->reordering = min_t(unsigned int, tp->reordering,
1857 sysctl_tcp_reordering);
1858 tcp_set_ca_state(sk, TCP_CA_Loss);
1859 tp->high_seq = tp->frto_highmark;
1860 TCP_ECN_queue_cwr(tp);
1861
1862 tcp_clear_retrans_hints_partial(tp);
1863 }
1864
1865 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1866 {
1867 tp->retrans_out = 0;
1868 tp->lost_out = 0;
1869
1870 tp->undo_marker = 0;
1871 tp->undo_retrans = 0;
1872 }
1873
1874 void tcp_clear_retrans(struct tcp_sock *tp)
1875 {
1876 tcp_clear_retrans_partial(tp);
1877
1878 tp->fackets_out = 0;
1879 tp->sacked_out = 0;
1880 }
1881
1882 /* Enter Loss state. If "how" is not zero, forget all SACK information
1883 * and reset tags completely, otherwise preserve SACKs. If receiver
1884 * dropped its ofo queue, we will know this due to reneging detection.
1885 */
1886 void tcp_enter_loss(struct sock *sk, int how)
1887 {
1888 const struct inet_connection_sock *icsk = inet_csk(sk);
1889 struct tcp_sock *tp = tcp_sk(sk);
1890 struct sk_buff *skb;
1891
1892 /* Reduce ssthresh if it has not yet been made inside this window. */
1893 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1894 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1895 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1897 tcp_ca_event(sk, CA_EVENT_LOSS);
1898 }
1899 tp->snd_cwnd = 1;
1900 tp->snd_cwnd_cnt = 0;
1901 tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903 tp->bytes_acked = 0;
1904 tcp_clear_retrans_partial(tp);
1905
1906 if (tcp_is_reno(tp))
1907 tcp_reset_reno_sack(tp);
1908
1909 if (!how) {
1910 /* Push undo marker, if it was plain RTO and nothing
1911 * was retransmitted. */
1912 tp->undo_marker = tp->snd_una;
1913 tcp_clear_retrans_hints_partial(tp);
1914 } else {
1915 tp->sacked_out = 0;
1916 tp->fackets_out = 0;
1917 tcp_clear_all_retrans_hints(tp);
1918 }
1919
1920 tcp_for_write_queue(skb, sk) {
1921 if (skb == tcp_send_head(sk))
1922 break;
1923
1924 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1925 tp->undo_marker = 0;
1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 tp->lost_out += tcp_skb_pcount(skb);
1931 }
1932 }
1933 tcp_verify_left_out(tp);
1934
1935 tp->reordering = min_t(unsigned int, tp->reordering,
1936 sysctl_tcp_reordering);
1937 tcp_set_ca_state(sk, TCP_CA_Loss);
1938 tp->high_seq = tp->snd_nxt;
1939 TCP_ECN_queue_cwr(tp);
1940 /* Abort F-RTO algorithm if one is in progress */
1941 tp->frto_counter = 0;
1942 }
1943
1944 /* If ACK arrived pointing to a remembered SACK, it means that our
1945 * remembered SACKs do not reflect real state of receiver i.e.
1946 * receiver _host_ is heavily congested (or buggy).
1947 *
1948 * Do processing similar to RTO timeout.
1949 */
1950 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1951 {
1952 if (flag & FLAG_SACK_RENEGING) {
1953 struct inet_connection_sock *icsk = inet_csk(sk);
1954 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1955
1956 tcp_enter_loss(sk, 1);
1957 icsk->icsk_retransmits++;
1958 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960 icsk->icsk_rto, TCP_RTO_MAX);
1961 return 1;
1962 }
1963 return 0;
1964 }
1965
1966 static inline int tcp_fackets_out(struct tcp_sock *tp)
1967 {
1968 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972 * counter when SACK is enabled (without SACK, sacked_out is used for
1973 * that purpose).
1974 *
1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976 * segments up to the highest received SACK block so far and holes in
1977 * between them.
1978 *
1979 * With reordering, holes may still be in flight, so RFC3517 recovery
1980 * uses pure sacked_out (total number of SACKed segments) even though
1981 * it violates the RFC that uses duplicate ACKs, often these are equal
1982 * but when e.g. out-of-window ACKs or packet duplication occurs,
1983 * they differ. Since neither occurs due to loss, TCP should really
1984 * ignore them.
1985 */
1986 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1987 {
1988 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990
1991 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1992 {
1993 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1994 }
1995
1996 static inline int tcp_head_timedout(struct sock *sk)
1997 {
1998 struct tcp_sock *tp = tcp_sk(sk);
1999
2000 return tp->packets_out &&
2001 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2002 }
2003
2004 /* Linux NewReno/SACK/FACK/ECN state machine.
2005 * --------------------------------------
2006 *
2007 * "Open" Normal state, no dubious events, fast path.
2008 * "Disorder" In all the respects it is "Open",
2009 * but requires a bit more attention. It is entered when
2010 * we see some SACKs or dupacks. It is split of "Open"
2011 * mainly to move some processing from fast path to slow one.
2012 * "CWR" CWND was reduced due to some Congestion Notification event.
2013 * It can be ECN, ICMP source quench, local device congestion.
2014 * "Recovery" CWND was reduced, we are fast-retransmitting.
2015 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2016 *
2017 * tcp_fastretrans_alert() is entered:
2018 * - each incoming ACK, if state is not "Open"
2019 * - when arrived ACK is unusual, namely:
2020 * * SACK
2021 * * Duplicate ACK.
2022 * * ECN ECE.
2023 *
2024 * Counting packets in flight is pretty simple.
2025 *
2026 * in_flight = packets_out - left_out + retrans_out
2027 *
2028 * packets_out is SND.NXT-SND.UNA counted in packets.
2029 *
2030 * retrans_out is number of retransmitted segments.
2031 *
2032 * left_out is number of segments left network, but not ACKed yet.
2033 *
2034 * left_out = sacked_out + lost_out
2035 *
2036 * sacked_out: Packets, which arrived to receiver out of order
2037 * and hence not ACKed. With SACKs this number is simply
2038 * amount of SACKed data. Even without SACKs
2039 * it is easy to give pretty reliable estimate of this number,
2040 * counting duplicate ACKs.
2041 *
2042 * lost_out: Packets lost by network. TCP has no explicit
2043 * "loss notification" feedback from network (for now).
2044 * It means that this number can be only _guessed_.
2045 * Actually, it is the heuristics to predict lossage that
2046 * distinguishes different algorithms.
2047 *
2048 * F.e. after RTO, when all the queue is considered as lost,
2049 * lost_out = packets_out and in_flight = retrans_out.
2050 *
2051 * Essentially, we have now two algorithms counting
2052 * lost packets.
2053 *
2054 * FACK: It is the simplest heuristics. As soon as we decided
2055 * that something is lost, we decide that _all_ not SACKed
2056 * packets until the most forward SACK are lost. I.e.
2057 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2058 * It is absolutely correct estimate, if network does not reorder
2059 * packets. And it loses any connection to reality when reordering
2060 * takes place. We use FACK by default until reordering
2061 * is suspected on the path to this destination.
2062 *
2063 * NewReno: when Recovery is entered, we assume that one segment
2064 * is lost (classic Reno). While we are in Recovery and
2065 * a partial ACK arrives, we assume that one more packet
2066 * is lost (NewReno). This heuristics are the same in NewReno
2067 * and SACK.
2068 *
2069 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2070 * deflation etc. CWND is real congestion window, never inflated, changes
2071 * only according to classic VJ rules.
2072 *
2073 * Really tricky (and requiring careful tuning) part of algorithm
2074 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2075 * The first determines the moment _when_ we should reduce CWND and,
2076 * hence, slow down forward transmission. In fact, it determines the moment
2077 * when we decide that hole is caused by loss, rather than by a reorder.
2078 *
2079 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2080 * holes, caused by lost packets.
2081 *
2082 * And the most logically complicated part of algorithm is undo
2083 * heuristics. We detect false retransmits due to both too early
2084 * fast retransmit (reordering) and underestimated RTO, analyzing
2085 * timestamps and D-SACKs. When we detect that some segments were
2086 * retransmitted by mistake and CWND reduction was wrong, we undo
2087 * window reduction and abort recovery phase. This logic is hidden
2088 * inside several functions named tcp_try_undo_<something>.
2089 */
2090
2091 /* This function decides, when we should leave Disordered state
2092 * and enter Recovery phase, reducing congestion window.
2093 *
2094 * Main question: may we further continue forward transmission
2095 * with the same cwnd?
2096 */
2097 static int tcp_time_to_recover(struct sock *sk)
2098 {
2099 struct tcp_sock *tp = tcp_sk(sk);
2100 __u32 packets_out;
2101
2102 /* Do not perform any recovery during F-RTO algorithm */
2103 if (tp->frto_counter)
2104 return 0;
2105
2106 /* Trick#1: The loss is proven. */
2107 if (tp->lost_out)
2108 return 1;
2109
2110 /* Not-A-Trick#2 : Classic rule... */
2111 if (tcp_dupack_heurestics(tp) > tp->reordering)
2112 return 1;
2113
2114 /* Trick#3 : when we use RFC2988 timer restart, fast
2115 * retransmit can be triggered by timeout of queue head.
2116 */
2117 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2118 return 1;
2119
2120 /* Trick#4: It is still not OK... But will it be useful to delay
2121 * recovery more?
2122 */
2123 packets_out = tp->packets_out;
2124 if (packets_out <= tp->reordering &&
2125 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2126 !tcp_may_send_now(sk)) {
2127 /* We have nothing to send. This connection is limited
2128 * either by receiver window or by application.
2129 */
2130 return 1;
2131 }
2132
2133 return 0;
2134 }
2135
2136 /* RFC: This is from the original, I doubt that this is necessary at all:
2137 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2138 * retransmitted past LOST markings in the first place? I'm not fully sure
2139 * about undo and end of connection cases, which can cause R without L?
2140 */
2141 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2142 {
2143 if ((tp->retransmit_skb_hint != NULL) &&
2144 before(TCP_SKB_CB(skb)->seq,
2145 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2146 tp->retransmit_skb_hint = NULL;
2147 }
2148
2149 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2150 * is against sacked "cnt", otherwise it's against facked "cnt"
2151 */
2152 static void tcp_mark_head_lost(struct sock *sk, int packets)
2153 {
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 struct sk_buff *skb;
2156 int cnt, oldcnt;
2157 int err;
2158 unsigned int mss;
2159
2160 BUG_TRAP(packets <= tp->packets_out);
2161 if (tp->lost_skb_hint) {
2162 skb = tp->lost_skb_hint;
2163 cnt = tp->lost_cnt_hint;
2164 } else {
2165 skb = tcp_write_queue_head(sk);
2166 cnt = 0;
2167 }
2168
2169 tcp_for_write_queue_from(skb, sk) {
2170 if (skb == tcp_send_head(sk))
2171 break;
2172 /* TODO: do this better */
2173 /* this is not the most efficient way to do this... */
2174 tp->lost_skb_hint = skb;
2175 tp->lost_cnt_hint = cnt;
2176
2177 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2178 break;
2179
2180 oldcnt = cnt;
2181 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2182 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2183 cnt += tcp_skb_pcount(skb);
2184
2185 if (cnt > packets) {
2186 if (tcp_is_sack(tp) || (oldcnt >= packets))
2187 break;
2188
2189 mss = skb_shinfo(skb)->gso_size;
2190 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191 if (err < 0)
2192 break;
2193 cnt = packets;
2194 }
2195
2196 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2197 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2198 tp->lost_out += tcp_skb_pcount(skb);
2199 tcp_verify_retransmit_hint(tp, skb);
2200 }
2201 }
2202 tcp_verify_left_out(tp);
2203 }
2204
2205 /* Account newly detected lost packet(s) */
2206
2207 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2208 {
2209 struct tcp_sock *tp = tcp_sk(sk);
2210
2211 if (tcp_is_reno(tp)) {
2212 tcp_mark_head_lost(sk, 1);
2213 } else if (tcp_is_fack(tp)) {
2214 int lost = tp->fackets_out - tp->reordering;
2215 if (lost <= 0)
2216 lost = 1;
2217 tcp_mark_head_lost(sk, lost);
2218 } else {
2219 int sacked_upto = tp->sacked_out - tp->reordering;
2220 if (sacked_upto < fast_rexmit)
2221 sacked_upto = fast_rexmit;
2222 tcp_mark_head_lost(sk, sacked_upto);
2223 }
2224
2225 /* New heuristics: it is possible only after we switched
2226 * to restart timer each time when something is ACKed.
2227 * Hence, we can detect timed out packets during fast
2228 * retransmit without falling to slow start.
2229 */
2230 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2231 struct sk_buff *skb;
2232
2233 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2234 : tcp_write_queue_head(sk);
2235
2236 tcp_for_write_queue_from(skb, sk) {
2237 if (skb == tcp_send_head(sk))
2238 break;
2239 if (!tcp_skb_timedout(sk, skb))
2240 break;
2241
2242 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2243 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2244 tp->lost_out += tcp_skb_pcount(skb);
2245 tcp_verify_retransmit_hint(tp, skb);
2246 }
2247 }
2248
2249 tp->scoreboard_skb_hint = skb;
2250
2251 tcp_verify_left_out(tp);
2252 }
2253 }
2254
2255 /* CWND moderation, preventing bursts due to too big ACKs
2256 * in dubious situations.
2257 */
2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 {
2260 tp->snd_cwnd = min(tp->snd_cwnd,
2261 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262 tp->snd_cwnd_stamp = tcp_time_stamp;
2263 }
2264
2265 /* Lower bound on congestion window is slow start threshold
2266 * unless congestion avoidance choice decides to overide it.
2267 */
2268 static inline u32 tcp_cwnd_min(const struct sock *sk)
2269 {
2270 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2271
2272 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2273 }
2274
2275 /* Decrease cwnd each second ack. */
2276 static void tcp_cwnd_down(struct sock *sk, int flag)
2277 {
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 int decr = tp->snd_cwnd_cnt + 1;
2280
2281 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2282 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2283 tp->snd_cwnd_cnt = decr & 1;
2284 decr >>= 1;
2285
2286 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2287 tp->snd_cwnd -= decr;
2288
2289 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2290 tp->snd_cwnd_stamp = tcp_time_stamp;
2291 }
2292 }
2293
2294 /* Nothing was retransmitted or returned timestamp is less
2295 * than timestamp of the first retransmission.
2296 */
2297 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2298 {
2299 return !tp->retrans_stamp ||
2300 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2301 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2302 }
2303
2304 /* Undo procedures. */
2305
2306 #if FASTRETRANS_DEBUG > 1
2307 static void DBGUNDO(struct sock *sk, const char *msg)
2308 {
2309 struct tcp_sock *tp = tcp_sk(sk);
2310 struct inet_sock *inet = inet_sk(sk);
2311
2312 if (sk->sk_family == AF_INET) {
2313 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2314 msg,
2315 NIPQUAD(inet->daddr), ntohs(inet->dport),
2316 tp->snd_cwnd, tcp_left_out(tp),
2317 tp->snd_ssthresh, tp->prior_ssthresh,
2318 tp->packets_out);
2319 }
2320 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2321 else if (sk->sk_family == AF_INET6) {
2322 struct ipv6_pinfo *np = inet6_sk(sk);
2323 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2324 msg,
2325 NIP6(np->daddr), ntohs(inet->dport),
2326 tp->snd_cwnd, tcp_left_out(tp),
2327 tp->snd_ssthresh, tp->prior_ssthresh,
2328 tp->packets_out);
2329 }
2330 #endif
2331 }
2332 #else
2333 #define DBGUNDO(x...) do { } while (0)
2334 #endif
2335
2336 static void tcp_undo_cwr(struct sock *sk, const int undo)
2337 {
2338 struct tcp_sock *tp = tcp_sk(sk);
2339
2340 if (tp->prior_ssthresh) {
2341 const struct inet_connection_sock *icsk = inet_csk(sk);
2342
2343 if (icsk->icsk_ca_ops->undo_cwnd)
2344 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2345 else
2346 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2347
2348 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2349 tp->snd_ssthresh = tp->prior_ssthresh;
2350 TCP_ECN_withdraw_cwr(tp);
2351 }
2352 } else {
2353 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2354 }
2355 tcp_moderate_cwnd(tp);
2356 tp->snd_cwnd_stamp = tcp_time_stamp;
2357
2358 /* There is something screwy going on with the retrans hints after
2359 an undo */
2360 tcp_clear_all_retrans_hints(tp);
2361 }
2362
2363 static inline int tcp_may_undo(struct tcp_sock *tp)
2364 {
2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367
2368 /* People celebrate: "We love our President!" */
2369 static int tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 struct tcp_sock *tp = tcp_sk(sk);
2372
2373 if (tcp_may_undo(tp)) {
2374 /* Happy end! We did not retransmit anything
2375 * or our original transmission succeeded.
2376 */
2377 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2378 tcp_undo_cwr(sk, 1);
2379 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2380 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2381 else
2382 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2383 tp->undo_marker = 0;
2384 }
2385 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2386 /* Hold old state until something *above* high_seq
2387 * is ACKed. For Reno it is MUST to prevent false
2388 * fast retransmits (RFC2582). SACK TCP is safe. */
2389 tcp_moderate_cwnd(tp);
2390 return 1;
2391 }
2392 tcp_set_ca_state(sk, TCP_CA_Open);
2393 return 0;
2394 }
2395
2396 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2397 static void tcp_try_undo_dsack(struct sock *sk)
2398 {
2399 struct tcp_sock *tp = tcp_sk(sk);
2400
2401 if (tp->undo_marker && !tp->undo_retrans) {
2402 DBGUNDO(sk, "D-SACK");
2403 tcp_undo_cwr(sk, 1);
2404 tp->undo_marker = 0;
2405 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2406 }
2407 }
2408
2409 /* Undo during fast recovery after partial ACK. */
2410
2411 static int tcp_try_undo_partial(struct sock *sk, int acked)
2412 {
2413 struct tcp_sock *tp = tcp_sk(sk);
2414 /* Partial ACK arrived. Force Hoe's retransmit. */
2415 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2416
2417 if (tcp_may_undo(tp)) {
2418 /* Plain luck! Hole if filled with delayed
2419 * packet, rather than with a retransmit.
2420 */
2421 if (tp->retrans_out == 0)
2422 tp->retrans_stamp = 0;
2423
2424 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2425
2426 DBGUNDO(sk, "Hoe");
2427 tcp_undo_cwr(sk, 0);
2428 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2429
2430 /* So... Do not make Hoe's retransmit yet.
2431 * If the first packet was delayed, the rest
2432 * ones are most probably delayed as well.
2433 */
2434 failed = 0;
2435 }
2436 return failed;
2437 }
2438
2439 /* Undo during loss recovery after partial ACK. */
2440 static int tcp_try_undo_loss(struct sock *sk)
2441 {
2442 struct tcp_sock *tp = tcp_sk(sk);
2443
2444 if (tcp_may_undo(tp)) {
2445 struct sk_buff *skb;
2446 tcp_for_write_queue(skb, sk) {
2447 if (skb == tcp_send_head(sk))
2448 break;
2449 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2450 }
2451
2452 tcp_clear_all_retrans_hints(tp);
2453
2454 DBGUNDO(sk, "partial loss");
2455 tp->lost_out = 0;
2456 tcp_undo_cwr(sk, 1);
2457 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2458 inet_csk(sk)->icsk_retransmits = 0;
2459 tp->undo_marker = 0;
2460 if (tcp_is_sack(tp))
2461 tcp_set_ca_state(sk, TCP_CA_Open);
2462 return 1;
2463 }
2464 return 0;
2465 }
2466
2467 static inline void tcp_complete_cwr(struct sock *sk)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2471 tp->snd_cwnd_stamp = tcp_time_stamp;
2472 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 }
2474
2475 static void tcp_try_to_open(struct sock *sk, int flag)
2476 {
2477 struct tcp_sock *tp = tcp_sk(sk);
2478
2479 tcp_verify_left_out(tp);
2480
2481 if (tp->retrans_out == 0)
2482 tp->retrans_stamp = 0;
2483
2484 if (flag & FLAG_ECE)
2485 tcp_enter_cwr(sk, 1);
2486
2487 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2488 int state = TCP_CA_Open;
2489
2490 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2491 state = TCP_CA_Disorder;
2492
2493 if (inet_csk(sk)->icsk_ca_state != state) {
2494 tcp_set_ca_state(sk, state);
2495 tp->high_seq = tp->snd_nxt;
2496 }
2497 tcp_moderate_cwnd(tp);
2498 } else {
2499 tcp_cwnd_down(sk, flag);
2500 }
2501 }
2502
2503 static void tcp_mtup_probe_failed(struct sock *sk)
2504 {
2505 struct inet_connection_sock *icsk = inet_csk(sk);
2506
2507 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2508 icsk->icsk_mtup.probe_size = 0;
2509 }
2510
2511 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2512 {
2513 struct tcp_sock *tp = tcp_sk(sk);
2514 struct inet_connection_sock *icsk = inet_csk(sk);
2515
2516 /* FIXME: breaks with very large cwnd */
2517 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2518 tp->snd_cwnd = tp->snd_cwnd *
2519 tcp_mss_to_mtu(sk, tp->mss_cache) /
2520 icsk->icsk_mtup.probe_size;
2521 tp->snd_cwnd_cnt = 0;
2522 tp->snd_cwnd_stamp = tcp_time_stamp;
2523 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2524
2525 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2526 icsk->icsk_mtup.probe_size = 0;
2527 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2528 }
2529
2530 /* Process an event, which can update packets-in-flight not trivially.
2531 * Main goal of this function is to calculate new estimate for left_out,
2532 * taking into account both packets sitting in receiver's buffer and
2533 * packets lost by network.
2534 *
2535 * Besides that it does CWND reduction, when packet loss is detected
2536 * and changes state of machine.
2537 *
2538 * It does _not_ decide what to send, it is made in function
2539 * tcp_xmit_retransmit_queue().
2540 */
2541 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2542 {
2543 struct inet_connection_sock *icsk = inet_csk(sk);
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2546 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2547 (tcp_fackets_out(tp) > tp->reordering));
2548 int fast_rexmit = 0;
2549
2550 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2551 tp->sacked_out = 0;
2552 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2553 tp->fackets_out = 0;
2554
2555 /* Now state machine starts.
2556 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2557 if (flag & FLAG_ECE)
2558 tp->prior_ssthresh = 0;
2559
2560 /* B. In all the states check for reneging SACKs. */
2561 if (tcp_check_sack_reneging(sk, flag))
2562 return;
2563
2564 /* C. Process data loss notification, provided it is valid. */
2565 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2566 before(tp->snd_una, tp->high_seq) &&
2567 icsk->icsk_ca_state != TCP_CA_Open &&
2568 tp->fackets_out > tp->reordering) {
2569 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2570 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2571 }
2572
2573 /* D. Check consistency of the current state. */
2574 tcp_verify_left_out(tp);
2575
2576 /* E. Check state exit conditions. State can be terminated
2577 * when high_seq is ACKed. */
2578 if (icsk->icsk_ca_state == TCP_CA_Open) {
2579 BUG_TRAP(tp->retrans_out == 0);
2580 tp->retrans_stamp = 0;
2581 } else if (!before(tp->snd_una, tp->high_seq)) {
2582 switch (icsk->icsk_ca_state) {
2583 case TCP_CA_Loss:
2584 icsk->icsk_retransmits = 0;
2585 if (tcp_try_undo_recovery(sk))
2586 return;
2587 break;
2588
2589 case TCP_CA_CWR:
2590 /* CWR is to be held something *above* high_seq
2591 * is ACKed for CWR bit to reach receiver. */
2592 if (tp->snd_una != tp->high_seq) {
2593 tcp_complete_cwr(sk);
2594 tcp_set_ca_state(sk, TCP_CA_Open);
2595 }
2596 break;
2597
2598 case TCP_CA_Disorder:
2599 tcp_try_undo_dsack(sk);
2600 if (!tp->undo_marker ||
2601 /* For SACK case do not Open to allow to undo
2602 * catching for all duplicate ACKs. */
2603 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2604 tp->undo_marker = 0;
2605 tcp_set_ca_state(sk, TCP_CA_Open);
2606 }
2607 break;
2608
2609 case TCP_CA_Recovery:
2610 if (tcp_is_reno(tp))
2611 tcp_reset_reno_sack(tp);
2612 if (tcp_try_undo_recovery(sk))
2613 return;
2614 tcp_complete_cwr(sk);
2615 break;
2616 }
2617 }
2618
2619 /* F. Process state. */
2620 switch (icsk->icsk_ca_state) {
2621 case TCP_CA_Recovery:
2622 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2623 if (tcp_is_reno(tp) && is_dupack)
2624 tcp_add_reno_sack(sk);
2625 } else
2626 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2627 break;
2628 case TCP_CA_Loss:
2629 if (flag & FLAG_DATA_ACKED)
2630 icsk->icsk_retransmits = 0;
2631 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2632 tcp_reset_reno_sack(tp);
2633 if (!tcp_try_undo_loss(sk)) {
2634 tcp_moderate_cwnd(tp);
2635 tcp_xmit_retransmit_queue(sk);
2636 return;
2637 }
2638 if (icsk->icsk_ca_state != TCP_CA_Open)
2639 return;
2640 /* Loss is undone; fall through to processing in Open state. */
2641 default:
2642 if (tcp_is_reno(tp)) {
2643 if (flag & FLAG_SND_UNA_ADVANCED)
2644 tcp_reset_reno_sack(tp);
2645 if (is_dupack)
2646 tcp_add_reno_sack(sk);
2647 }
2648
2649 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2650 tcp_try_undo_dsack(sk);
2651
2652 if (!tcp_time_to_recover(sk)) {
2653 tcp_try_to_open(sk, flag);
2654 return;
2655 }
2656
2657 /* MTU probe failure: don't reduce cwnd */
2658 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2659 icsk->icsk_mtup.probe_size &&
2660 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2661 tcp_mtup_probe_failed(sk);
2662 /* Restores the reduction we did in tcp_mtup_probe() */
2663 tp->snd_cwnd++;
2664 tcp_simple_retransmit(sk);
2665 return;
2666 }
2667
2668 /* Otherwise enter Recovery state */
2669
2670 if (tcp_is_reno(tp))
2671 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2672 else
2673 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2674
2675 tp->high_seq = tp->snd_nxt;
2676 tp->prior_ssthresh = 0;
2677 tp->undo_marker = tp->snd_una;
2678 tp->undo_retrans = tp->retrans_out;
2679
2680 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2681 if (!(flag & FLAG_ECE))
2682 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2683 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2684 TCP_ECN_queue_cwr(tp);
2685 }
2686
2687 tp->bytes_acked = 0;
2688 tp->snd_cwnd_cnt = 0;
2689 tcp_set_ca_state(sk, TCP_CA_Recovery);
2690 fast_rexmit = 1;
2691 }
2692
2693 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2694 tcp_update_scoreboard(sk, fast_rexmit);
2695 tcp_cwnd_down(sk, flag);
2696 tcp_xmit_retransmit_queue(sk);
2697 }
2698
2699 /* Read draft-ietf-tcplw-high-performance before mucking
2700 * with this code. (Supersedes RFC1323)
2701 */
2702 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2703 {
2704 /* RTTM Rule: A TSecr value received in a segment is used to
2705 * update the averaged RTT measurement only if the segment
2706 * acknowledges some new data, i.e., only if it advances the
2707 * left edge of the send window.
2708 *
2709 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2710 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2711 *
2712 * Changed: reset backoff as soon as we see the first valid sample.
2713 * If we do not, we get strongly overestimated rto. With timestamps
2714 * samples are accepted even from very old segments: f.e., when rtt=1
2715 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2716 * answer arrives rto becomes 120 seconds! If at least one of segments
2717 * in window is lost... Voila. --ANK (010210)
2718 */
2719 struct tcp_sock *tp = tcp_sk(sk);
2720 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2721 tcp_rtt_estimator(sk, seq_rtt);
2722 tcp_set_rto(sk);
2723 inet_csk(sk)->icsk_backoff = 0;
2724 tcp_bound_rto(sk);
2725 }
2726
2727 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2728 {
2729 /* We don't have a timestamp. Can only use
2730 * packets that are not retransmitted to determine
2731 * rtt estimates. Also, we must not reset the
2732 * backoff for rto until we get a non-retransmitted
2733 * packet. This allows us to deal with a situation
2734 * where the network delay has increased suddenly.
2735 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2736 */
2737
2738 if (flag & FLAG_RETRANS_DATA_ACKED)
2739 return;
2740
2741 tcp_rtt_estimator(sk, seq_rtt);
2742 tcp_set_rto(sk);
2743 inet_csk(sk)->icsk_backoff = 0;
2744 tcp_bound_rto(sk);
2745 }
2746
2747 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2748 const s32 seq_rtt)
2749 {
2750 const struct tcp_sock *tp = tcp_sk(sk);
2751 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2752 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2753 tcp_ack_saw_tstamp(sk, flag);
2754 else if (seq_rtt >= 0)
2755 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2756 }
2757
2758 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2759 {
2760 const struct inet_connection_sock *icsk = inet_csk(sk);
2761 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2762 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2763 }
2764
2765 /* Restart timer after forward progress on connection.
2766 * RFC2988 recommends to restart timer to now+rto.
2767 */
2768 static void tcp_rearm_rto(struct sock *sk)
2769 {
2770 struct tcp_sock *tp = tcp_sk(sk);
2771
2772 if (!tp->packets_out) {
2773 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2774 } else {
2775 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2776 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2777 }
2778 }
2779
2780 /* If we get here, the whole TSO packet has not been acked. */
2781 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2782 {
2783 struct tcp_sock *tp = tcp_sk(sk);
2784 u32 packets_acked;
2785
2786 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2787
2788 packets_acked = tcp_skb_pcount(skb);
2789 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2790 return 0;
2791 packets_acked -= tcp_skb_pcount(skb);
2792
2793 if (packets_acked) {
2794 BUG_ON(tcp_skb_pcount(skb) == 0);
2795 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2796 }
2797
2798 return packets_acked;
2799 }
2800
2801 /* Remove acknowledged frames from the retransmission queue. If our packet
2802 * is before the ack sequence we can discard it as it's confirmed to have
2803 * arrived at the other end.
2804 */
2805 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2806 {
2807 struct tcp_sock *tp = tcp_sk(sk);
2808 const struct inet_connection_sock *icsk = inet_csk(sk);
2809 struct sk_buff *skb;
2810 u32 now = tcp_time_stamp;
2811 int fully_acked = 1;
2812 int flag = 0;
2813 u32 pkts_acked = 0;
2814 u32 reord = tp->packets_out;
2815 s32 seq_rtt = -1;
2816 s32 ca_seq_rtt = -1;
2817 ktime_t last_ackt = net_invalid_timestamp();
2818
2819 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2820 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2821 u32 end_seq;
2822 u32 acked_pcount;
2823 u8 sacked = scb->sacked;
2824
2825 /* Determine how many packets and what bytes were acked, tso and else */
2826 if (after(scb->end_seq, tp->snd_una)) {
2827 if (tcp_skb_pcount(skb) == 1 ||
2828 !after(tp->snd_una, scb->seq))
2829 break;
2830
2831 acked_pcount = tcp_tso_acked(sk, skb);
2832 if (!acked_pcount)
2833 break;
2834
2835 fully_acked = 0;
2836 end_seq = tp->snd_una;
2837 } else {
2838 acked_pcount = tcp_skb_pcount(skb);
2839 end_seq = scb->end_seq;
2840 }
2841
2842 /* MTU probing checks */
2843 if (fully_acked && icsk->icsk_mtup.probe_size &&
2844 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2845 tcp_mtup_probe_success(sk, skb);
2846 }
2847
2848 if (sacked & TCPCB_RETRANS) {
2849 if (sacked & TCPCB_SACKED_RETRANS)
2850 tp->retrans_out -= acked_pcount;
2851 flag |= FLAG_RETRANS_DATA_ACKED;
2852 ca_seq_rtt = -1;
2853 seq_rtt = -1;
2854 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2855 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2856 } else {
2857 ca_seq_rtt = now - scb->when;
2858 last_ackt = skb->tstamp;
2859 if (seq_rtt < 0) {
2860 seq_rtt = ca_seq_rtt;
2861 }
2862 if (!(sacked & TCPCB_SACKED_ACKED))
2863 reord = min(pkts_acked, reord);
2864 }
2865
2866 if (sacked & TCPCB_SACKED_ACKED)
2867 tp->sacked_out -= acked_pcount;
2868 if (sacked & TCPCB_LOST)
2869 tp->lost_out -= acked_pcount;
2870
2871 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2872 tp->urg_mode = 0;
2873
2874 tp->packets_out -= acked_pcount;
2875 pkts_acked += acked_pcount;
2876
2877 /* Initial outgoing SYN's get put onto the write_queue
2878 * just like anything else we transmit. It is not
2879 * true data, and if we misinform our callers that
2880 * this ACK acks real data, we will erroneously exit
2881 * connection startup slow start one packet too
2882 * quickly. This is severely frowned upon behavior.
2883 */
2884 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2885 flag |= FLAG_DATA_ACKED;
2886 } else {
2887 flag |= FLAG_SYN_ACKED;
2888 tp->retrans_stamp = 0;
2889 }
2890
2891 if (!fully_acked)
2892 break;
2893
2894 tcp_unlink_write_queue(skb, sk);
2895 sk_wmem_free_skb(sk, skb);
2896 tcp_clear_all_retrans_hints(tp);
2897 }
2898
2899 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2900 flag |= FLAG_SACK_RENEGING;
2901
2902 if (flag & FLAG_ACKED) {
2903 const struct tcp_congestion_ops *ca_ops
2904 = inet_csk(sk)->icsk_ca_ops;
2905
2906 tcp_ack_update_rtt(sk, flag, seq_rtt);
2907 tcp_rearm_rto(sk);
2908
2909 if (tcp_is_reno(tp)) {
2910 tcp_remove_reno_sacks(sk, pkts_acked);
2911 } else {
2912 /* Non-retransmitted hole got filled? That's reordering */
2913 if (reord < prior_fackets)
2914 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2915 }
2916
2917 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2918
2919 if (ca_ops->pkts_acked) {
2920 s32 rtt_us = -1;
2921
2922 /* Is the ACK triggering packet unambiguous? */
2923 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2924 /* High resolution needed and available? */
2925 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2926 !ktime_equal(last_ackt,
2927 net_invalid_timestamp()))
2928 rtt_us = ktime_us_delta(ktime_get_real(),
2929 last_ackt);
2930 else if (ca_seq_rtt > 0)
2931 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2932 }
2933
2934 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2935 }
2936 }
2937
2938 #if FASTRETRANS_DEBUG > 0
2939 BUG_TRAP((int)tp->sacked_out >= 0);
2940 BUG_TRAP((int)tp->lost_out >= 0);
2941 BUG_TRAP((int)tp->retrans_out >= 0);
2942 if (!tp->packets_out && tcp_is_sack(tp)) {
2943 icsk = inet_csk(sk);
2944 if (tp->lost_out) {
2945 printk(KERN_DEBUG "Leak l=%u %d\n",
2946 tp->lost_out, icsk->icsk_ca_state);
2947 tp->lost_out = 0;
2948 }
2949 if (tp->sacked_out) {
2950 printk(KERN_DEBUG "Leak s=%u %d\n",
2951 tp->sacked_out, icsk->icsk_ca_state);
2952 tp->sacked_out = 0;
2953 }
2954 if (tp->retrans_out) {
2955 printk(KERN_DEBUG "Leak r=%u %d\n",
2956 tp->retrans_out, icsk->icsk_ca_state);
2957 tp->retrans_out = 0;
2958 }
2959 }
2960 #endif
2961 return flag;
2962 }
2963
2964 static void tcp_ack_probe(struct sock *sk)
2965 {
2966 const struct tcp_sock *tp = tcp_sk(sk);
2967 struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969 /* Was it a usable window open? */
2970
2971 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2972 icsk->icsk_backoff = 0;
2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2974 /* Socket must be waked up by subsequent tcp_data_snd_check().
2975 * This function is not for random using!
2976 */
2977 } else {
2978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2979 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2980 TCP_RTO_MAX);
2981 }
2982 }
2983
2984 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2985 {
2986 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2987 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2988 }
2989
2990 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2991 {
2992 const struct tcp_sock *tp = tcp_sk(sk);
2993 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2994 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2995 }
2996
2997 /* Check that window update is acceptable.
2998 * The function assumes that snd_una<=ack<=snd_next.
2999 */
3000 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3001 const u32 ack, const u32 ack_seq,
3002 const u32 nwin)
3003 {
3004 return (after(ack, tp->snd_una) ||
3005 after(ack_seq, tp->snd_wl1) ||
3006 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3007 }
3008
3009 /* Update our send window.
3010 *
3011 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3012 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3013 */
3014 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3015 u32 ack_seq)
3016 {
3017 struct tcp_sock *tp = tcp_sk(sk);
3018 int flag = 0;
3019 u32 nwin = ntohs(tcp_hdr(skb)->window);
3020
3021 if (likely(!tcp_hdr(skb)->syn))
3022 nwin <<= tp->rx_opt.snd_wscale;
3023
3024 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3025 flag |= FLAG_WIN_UPDATE;
3026 tcp_update_wl(tp, ack, ack_seq);
3027
3028 if (tp->snd_wnd != nwin) {
3029 tp->snd_wnd = nwin;
3030
3031 /* Note, it is the only place, where
3032 * fast path is recovered for sending TCP.
3033 */
3034 tp->pred_flags = 0;
3035 tcp_fast_path_check(sk);
3036
3037 if (nwin > tp->max_window) {
3038 tp->max_window = nwin;
3039 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3040 }
3041 }
3042 }
3043
3044 tp->snd_una = ack;
3045
3046 return flag;
3047 }
3048
3049 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3050 * continue in congestion avoidance.
3051 */
3052 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3053 {
3054 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3055 tp->snd_cwnd_cnt = 0;
3056 tp->bytes_acked = 0;
3057 TCP_ECN_queue_cwr(tp);
3058 tcp_moderate_cwnd(tp);
3059 }
3060
3061 /* A conservative spurious RTO response algorithm: reduce cwnd using
3062 * rate halving and continue in congestion avoidance.
3063 */
3064 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3065 {
3066 tcp_enter_cwr(sk, 0);
3067 }
3068
3069 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3070 {
3071 if (flag & FLAG_ECE)
3072 tcp_ratehalving_spur_to_response(sk);
3073 else
3074 tcp_undo_cwr(sk, 1);
3075 }
3076
3077 /* F-RTO spurious RTO detection algorithm (RFC4138)
3078 *
3079 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3080 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3081 * window (but not to or beyond highest sequence sent before RTO):
3082 * On First ACK, send two new segments out.
3083 * On Second ACK, RTO was likely spurious. Do spurious response (response
3084 * algorithm is not part of the F-RTO detection algorithm
3085 * given in RFC4138 but can be selected separately).
3086 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3087 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3088 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3089 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3090 *
3091 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3092 * original window even after we transmit two new data segments.
3093 *
3094 * SACK version:
3095 * on first step, wait until first cumulative ACK arrives, then move to
3096 * the second step. In second step, the next ACK decides.
3097 *
3098 * F-RTO is implemented (mainly) in four functions:
3099 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3100 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3101 * called when tcp_use_frto() showed green light
3102 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3103 * - tcp_enter_frto_loss() is called if there is not enough evidence
3104 * to prove that the RTO is indeed spurious. It transfers the control
3105 * from F-RTO to the conventional RTO recovery
3106 */
3107 static int tcp_process_frto(struct sock *sk, int flag)
3108 {
3109 struct tcp_sock *tp = tcp_sk(sk);
3110
3111 tcp_verify_left_out(tp);
3112
3113 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3114 if (flag & FLAG_DATA_ACKED)
3115 inet_csk(sk)->icsk_retransmits = 0;
3116
3117 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3118 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3119 tp->undo_marker = 0;
3120
3121 if (!before(tp->snd_una, tp->frto_highmark)) {
3122 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3123 return 1;
3124 }
3125
3126 if (!IsSackFrto() || tcp_is_reno(tp)) {
3127 /* RFC4138 shortcoming in step 2; should also have case c):
3128 * ACK isn't duplicate nor advances window, e.g., opposite dir
3129 * data, winupdate
3130 */
3131 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3132 return 1;
3133
3134 if (!(flag & FLAG_DATA_ACKED)) {
3135 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3136 flag);
3137 return 1;
3138 }
3139 } else {
3140 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3141 /* Prevent sending of new data. */
3142 tp->snd_cwnd = min(tp->snd_cwnd,
3143 tcp_packets_in_flight(tp));
3144 return 1;
3145 }
3146
3147 if ((tp->frto_counter >= 2) &&
3148 (!(flag & FLAG_FORWARD_PROGRESS) ||
3149 ((flag & FLAG_DATA_SACKED) &&
3150 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3151 /* RFC4138 shortcoming (see comment above) */
3152 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3153 (flag & FLAG_NOT_DUP))
3154 return 1;
3155
3156 tcp_enter_frto_loss(sk, 3, flag);
3157 return 1;
3158 }
3159 }
3160
3161 if (tp->frto_counter == 1) {
3162 /* tcp_may_send_now needs to see updated state */
3163 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3164 tp->frto_counter = 2;
3165
3166 if (!tcp_may_send_now(sk))
3167 tcp_enter_frto_loss(sk, 2, flag);
3168
3169 return 1;
3170 } else {
3171 switch (sysctl_tcp_frto_response) {
3172 case 2:
3173 tcp_undo_spur_to_response(sk, flag);
3174 break;
3175 case 1:
3176 tcp_conservative_spur_to_response(tp);
3177 break;
3178 default:
3179 tcp_ratehalving_spur_to_response(sk);
3180 break;
3181 }
3182 tp->frto_counter = 0;
3183 tp->undo_marker = 0;
3184 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3185 }
3186 return 0;
3187 }
3188
3189 /* This routine deals with incoming acks, but not outgoing ones. */
3190 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3191 {
3192 struct inet_connection_sock *icsk = inet_csk(sk);
3193 struct tcp_sock *tp = tcp_sk(sk);
3194 u32 prior_snd_una = tp->snd_una;
3195 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3196 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3197 u32 prior_in_flight;
3198 u32 prior_fackets;
3199 int prior_packets;
3200 int frto_cwnd = 0;
3201
3202 /* If the ack is newer than sent or older than previous acks
3203 * then we can probably ignore it.
3204 */
3205 if (after(ack, tp->snd_nxt))
3206 goto uninteresting_ack;
3207
3208 if (before(ack, prior_snd_una))
3209 goto old_ack;
3210
3211 if (after(ack, prior_snd_una))
3212 flag |= FLAG_SND_UNA_ADVANCED;
3213
3214 if (sysctl_tcp_abc) {
3215 if (icsk->icsk_ca_state < TCP_CA_CWR)
3216 tp->bytes_acked += ack - prior_snd_una;
3217 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3218 /* we assume just one segment left network */
3219 tp->bytes_acked += min(ack - prior_snd_una,
3220 tp->mss_cache);
3221 }
3222
3223 prior_fackets = tp->fackets_out;
3224 prior_in_flight = tcp_packets_in_flight(tp);
3225
3226 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3227 /* Window is constant, pure forward advance.
3228 * No more checks are required.
3229 * Note, we use the fact that SND.UNA>=SND.WL2.
3230 */
3231 tcp_update_wl(tp, ack, ack_seq);
3232 tp->snd_una = ack;
3233 flag |= FLAG_WIN_UPDATE;
3234
3235 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3236
3237 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3238 } else {
3239 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3240 flag |= FLAG_DATA;
3241 else
3242 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3243
3244 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3245
3246 if (TCP_SKB_CB(skb)->sacked)
3247 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3248
3249 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3250 flag |= FLAG_ECE;
3251
3252 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3253 }
3254
3255 /* We passed data and got it acked, remove any soft error
3256 * log. Something worked...
3257 */
3258 sk->sk_err_soft = 0;
3259 tp->rcv_tstamp = tcp_time_stamp;
3260 prior_packets = tp->packets_out;
3261 if (!prior_packets)
3262 goto no_queue;
3263
3264 /* See if we can take anything off of the retransmit queue. */
3265 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3266
3267 if (tp->frto_counter)
3268 frto_cwnd = tcp_process_frto(sk, flag);
3269 /* Guarantee sacktag reordering detection against wrap-arounds */
3270 if (before(tp->frto_highmark, tp->snd_una))
3271 tp->frto_highmark = 0;
3272
3273 if (tcp_ack_is_dubious(sk, flag)) {
3274 /* Advance CWND, if state allows this. */
3275 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3276 tcp_may_raise_cwnd(sk, flag))
3277 tcp_cong_avoid(sk, ack, prior_in_flight);
3278 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3279 flag);
3280 } else {
3281 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3282 tcp_cong_avoid(sk, ack, prior_in_flight);
3283 }
3284
3285 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3286 dst_confirm(sk->sk_dst_cache);
3287
3288 return 1;
3289
3290 no_queue:
3291 icsk->icsk_probes_out = 0;
3292
3293 /* If this ack opens up a zero window, clear backoff. It was
3294 * being used to time the probes, and is probably far higher than
3295 * it needs to be for normal retransmission.
3296 */
3297 if (tcp_send_head(sk))
3298 tcp_ack_probe(sk);
3299 return 1;
3300
3301 old_ack:
3302 if (TCP_SKB_CB(skb)->sacked)
3303 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3304
3305 uninteresting_ack:
3306 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3307 return 0;
3308 }
3309
3310 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3311 * But, this can also be called on packets in the established flow when
3312 * the fast version below fails.
3313 */
3314 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3315 int estab)
3316 {
3317 unsigned char *ptr;
3318 struct tcphdr *th = tcp_hdr(skb);
3319 int length = (th->doff * 4) - sizeof(struct tcphdr);
3320
3321 ptr = (unsigned char *)(th + 1);
3322 opt_rx->saw_tstamp = 0;
3323
3324 while (length > 0) {
3325 int opcode = *ptr++;
3326 int opsize;
3327
3328 switch (opcode) {
3329 case TCPOPT_EOL:
3330 return;
3331 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3332 length--;
3333 continue;
3334 default:
3335 opsize = *ptr++;
3336 if (opsize < 2) /* "silly options" */
3337 return;
3338 if (opsize > length)
3339 return; /* don't parse partial options */
3340 switch (opcode) {
3341 case TCPOPT_MSS:
3342 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3343 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3344 if (in_mss) {
3345 if (opt_rx->user_mss &&
3346 opt_rx->user_mss < in_mss)
3347 in_mss = opt_rx->user_mss;
3348 opt_rx->mss_clamp = in_mss;
3349 }
3350 }
3351 break;
3352 case TCPOPT_WINDOW:
3353 if (opsize == TCPOLEN_WINDOW && th->syn &&
3354 !estab && sysctl_tcp_window_scaling) {
3355 __u8 snd_wscale = *(__u8 *)ptr;
3356 opt_rx->wscale_ok = 1;
3357 if (snd_wscale > 14) {
3358 if (net_ratelimit())
3359 printk(KERN_INFO "tcp_parse_options: Illegal window "
3360 "scaling value %d >14 received.\n",
3361 snd_wscale);
3362 snd_wscale = 14;
3363 }
3364 opt_rx->snd_wscale = snd_wscale;
3365 }
3366 break;
3367 case TCPOPT_TIMESTAMP:
3368 if ((opsize == TCPOLEN_TIMESTAMP) &&
3369 ((estab && opt_rx->tstamp_ok) ||
3370 (!estab && sysctl_tcp_timestamps))) {
3371 opt_rx->saw_tstamp = 1;
3372 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3373 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3374 }
3375 break;
3376 case TCPOPT_SACK_PERM:
3377 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3378 !estab && sysctl_tcp_sack) {
3379 opt_rx->sack_ok = 1;
3380 tcp_sack_reset(opt_rx);
3381 }
3382 break;
3383
3384 case TCPOPT_SACK:
3385 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3386 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3387 opt_rx->sack_ok) {
3388 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3389 }
3390 break;
3391 #ifdef CONFIG_TCP_MD5SIG
3392 case TCPOPT_MD5SIG:
3393 /*
3394 * The MD5 Hash has already been
3395 * checked (see tcp_v{4,6}_do_rcv()).
3396 */
3397 break;
3398 #endif
3399 }
3400
3401 ptr += opsize-2;
3402 length -= opsize;
3403 }
3404 }
3405 }
3406
3407 /* Fast parse options. This hopes to only see timestamps.
3408 * If it is wrong it falls back on tcp_parse_options().
3409 */
3410 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3411 struct tcp_sock *tp)
3412 {
3413 if (th->doff == sizeof(struct tcphdr) >> 2) {
3414 tp->rx_opt.saw_tstamp = 0;
3415 return 0;
3416 } else if (tp->rx_opt.tstamp_ok &&
3417 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3418 __be32 *ptr = (__be32 *)(th + 1);
3419 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3420 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3421 tp->rx_opt.saw_tstamp = 1;
3422 ++ptr;
3423 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3424 ++ptr;
3425 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3426 return 1;
3427 }
3428 }
3429 tcp_parse_options(skb, &tp->rx_opt, 1);
3430 return 1;
3431 }
3432
3433 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3434 {
3435 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3436 tp->rx_opt.ts_recent_stamp = get_seconds();
3437 }
3438
3439 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3440 {
3441 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3442 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3443 * extra check below makes sure this can only happen
3444 * for pure ACK frames. -DaveM
3445 *
3446 * Not only, also it occurs for expired timestamps.
3447 */
3448
3449 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3450 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3451 tcp_store_ts_recent(tp);
3452 }
3453 }
3454
3455 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3456 *
3457 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3458 * it can pass through stack. So, the following predicate verifies that
3459 * this segment is not used for anything but congestion avoidance or
3460 * fast retransmit. Moreover, we even are able to eliminate most of such
3461 * second order effects, if we apply some small "replay" window (~RTO)
3462 * to timestamp space.
3463 *
3464 * All these measures still do not guarantee that we reject wrapped ACKs
3465 * on networks with high bandwidth, when sequence space is recycled fastly,
3466 * but it guarantees that such events will be very rare and do not affect
3467 * connection seriously. This doesn't look nice, but alas, PAWS is really
3468 * buggy extension.
3469 *
3470 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3471 * states that events when retransmit arrives after original data are rare.
3472 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3473 * the biggest problem on large power networks even with minor reordering.
3474 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3475 * up to bandwidth of 18Gigabit/sec. 8) ]
3476 */
3477
3478 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3479 {
3480 struct tcp_sock *tp = tcp_sk(sk);
3481 struct tcphdr *th = tcp_hdr(skb);
3482 u32 seq = TCP_SKB_CB(skb)->seq;
3483 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3484
3485 return (/* 1. Pure ACK with correct sequence number. */
3486 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3487
3488 /* 2. ... and duplicate ACK. */
3489 ack == tp->snd_una &&
3490
3491 /* 3. ... and does not update window. */
3492 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3493
3494 /* 4. ... and sits in replay window. */
3495 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3496 }
3497
3498 static inline int tcp_paws_discard(const struct sock *sk,
3499 const struct sk_buff *skb)
3500 {
3501 const struct tcp_sock *tp = tcp_sk(sk);
3502 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3503 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3504 !tcp_disordered_ack(sk, skb));
3505 }
3506
3507 /* Check segment sequence number for validity.
3508 *
3509 * Segment controls are considered valid, if the segment
3510 * fits to the window after truncation to the window. Acceptability
3511 * of data (and SYN, FIN, of course) is checked separately.
3512 * See tcp_data_queue(), for example.
3513 *
3514 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3515 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3516 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3517 * (borrowed from freebsd)
3518 */
3519
3520 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3521 {
3522 return !before(end_seq, tp->rcv_wup) &&
3523 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3524 }
3525
3526 /* When we get a reset we do this. */
3527 static void tcp_reset(struct sock *sk)
3528 {
3529 /* We want the right error as BSD sees it (and indeed as we do). */
3530 switch (sk->sk_state) {
3531 case TCP_SYN_SENT:
3532 sk->sk_err = ECONNREFUSED;
3533 break;
3534 case TCP_CLOSE_WAIT:
3535 sk->sk_err = EPIPE;
3536 break;
3537 case TCP_CLOSE:
3538 return;
3539 default:
3540 sk->sk_err = ECONNRESET;
3541 }
3542
3543 if (!sock_flag(sk, SOCK_DEAD))
3544 sk->sk_error_report(sk);
3545
3546 tcp_done(sk);
3547 }
3548
3549 /*
3550 * Process the FIN bit. This now behaves as it is supposed to work
3551 * and the FIN takes effect when it is validly part of sequence
3552 * space. Not before when we get holes.
3553 *
3554 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3555 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3556 * TIME-WAIT)
3557 *
3558 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3559 * close and we go into CLOSING (and later onto TIME-WAIT)
3560 *
3561 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3562 */
3563 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3564 {
3565 struct tcp_sock *tp = tcp_sk(sk);
3566
3567 inet_csk_schedule_ack(sk);
3568
3569 sk->sk_shutdown |= RCV_SHUTDOWN;
3570 sock_set_flag(sk, SOCK_DONE);
3571
3572 switch (sk->sk_state) {
3573 case TCP_SYN_RECV:
3574 case TCP_ESTABLISHED:
3575 /* Move to CLOSE_WAIT */
3576 tcp_set_state(sk, TCP_CLOSE_WAIT);
3577 inet_csk(sk)->icsk_ack.pingpong = 1;
3578 break;
3579
3580 case TCP_CLOSE_WAIT:
3581 case TCP_CLOSING:
3582 /* Received a retransmission of the FIN, do
3583 * nothing.
3584 */
3585 break;
3586 case TCP_LAST_ACK:
3587 /* RFC793: Remain in the LAST-ACK state. */
3588 break;
3589
3590 case TCP_FIN_WAIT1:
3591 /* This case occurs when a simultaneous close
3592 * happens, we must ack the received FIN and
3593 * enter the CLOSING state.
3594 */
3595 tcp_send_ack(sk);
3596 tcp_set_state(sk, TCP_CLOSING);
3597 break;
3598 case TCP_FIN_WAIT2:
3599 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3600 tcp_send_ack(sk);
3601 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3602 break;
3603 default:
3604 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3605 * cases we should never reach this piece of code.
3606 */
3607 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3608 __func__, sk->sk_state);
3609 break;
3610 }
3611
3612 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3613 * Probably, we should reset in this case. For now drop them.
3614 */
3615 __skb_queue_purge(&tp->out_of_order_queue);
3616 if (tcp_is_sack(tp))
3617 tcp_sack_reset(&tp->rx_opt);
3618 sk_mem_reclaim(sk);
3619
3620 if (!sock_flag(sk, SOCK_DEAD)) {
3621 sk->sk_state_change(sk);
3622
3623 /* Do not send POLL_HUP for half duplex close. */
3624 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3625 sk->sk_state == TCP_CLOSE)
3626 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3627 else
3628 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3629 }
3630 }
3631
3632 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3633 u32 end_seq)
3634 {
3635 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3636 if (before(seq, sp->start_seq))
3637 sp->start_seq = seq;
3638 if (after(end_seq, sp->end_seq))
3639 sp->end_seq = end_seq;
3640 return 1;
3641 }
3642 return 0;
3643 }
3644
3645 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3646 {
3647 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3648 if (before(seq, tp->rcv_nxt))
3649 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3650 else
3651 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3652
3653 tp->rx_opt.dsack = 1;
3654 tp->duplicate_sack[0].start_seq = seq;
3655 tp->duplicate_sack[0].end_seq = end_seq;
3656 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3657 4 - tp->rx_opt.tstamp_ok);
3658 }
3659 }
3660
3661 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3662 {
3663 if (!tp->rx_opt.dsack)
3664 tcp_dsack_set(tp, seq, end_seq);
3665 else
3666 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3667 }
3668
3669 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3670 {
3671 struct tcp_sock *tp = tcp_sk(sk);
3672
3673 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3674 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3675 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3676 tcp_enter_quickack_mode(sk);
3677
3678 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3679 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3680
3681 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3682 end_seq = tp->rcv_nxt;
3683 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3684 }
3685 }
3686
3687 tcp_send_ack(sk);
3688 }
3689
3690 /* These routines update the SACK block as out-of-order packets arrive or
3691 * in-order packets close up the sequence space.
3692 */
3693 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3694 {
3695 int this_sack;
3696 struct tcp_sack_block *sp = &tp->selective_acks[0];
3697 struct tcp_sack_block *swalk = sp + 1;
3698
3699 /* See if the recent change to the first SACK eats into
3700 * or hits the sequence space of other SACK blocks, if so coalesce.
3701 */
3702 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3703 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3704 int i;
3705
3706 /* Zap SWALK, by moving every further SACK up by one slot.
3707 * Decrease num_sacks.
3708 */
3709 tp->rx_opt.num_sacks--;
3710 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3711 tp->rx_opt.dsack,
3712 4 - tp->rx_opt.tstamp_ok);
3713 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3714 sp[i] = sp[i + 1];
3715 continue;
3716 }
3717 this_sack++, swalk++;
3718 }
3719 }
3720
3721 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3722 struct tcp_sack_block *sack2)
3723 {
3724 __u32 tmp;
3725
3726 tmp = sack1->start_seq;
3727 sack1->start_seq = sack2->start_seq;
3728 sack2->start_seq = tmp;
3729
3730 tmp = sack1->end_seq;
3731 sack1->end_seq = sack2->end_seq;
3732 sack2->end_seq = tmp;
3733 }
3734
3735 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3736 {
3737 struct tcp_sock *tp = tcp_sk(sk);
3738 struct tcp_sack_block *sp = &tp->selective_acks[0];
3739 int cur_sacks = tp->rx_opt.num_sacks;
3740 int this_sack;
3741
3742 if (!cur_sacks)
3743 goto new_sack;
3744
3745 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3746 if (tcp_sack_extend(sp, seq, end_seq)) {
3747 /* Rotate this_sack to the first one. */
3748 for (; this_sack > 0; this_sack--, sp--)
3749 tcp_sack_swap(sp, sp - 1);
3750 if (cur_sacks > 1)
3751 tcp_sack_maybe_coalesce(tp);
3752 return;
3753 }
3754 }
3755
3756 /* Could not find an adjacent existing SACK, build a new one,
3757 * put it at the front, and shift everyone else down. We
3758 * always know there is at least one SACK present already here.
3759 *
3760 * If the sack array is full, forget about the last one.
3761 */
3762 if (this_sack >= 4) {
3763 this_sack--;
3764 tp->rx_opt.num_sacks--;
3765 sp--;
3766 }
3767 for (; this_sack > 0; this_sack--, sp--)
3768 *sp = *(sp - 1);
3769
3770 new_sack:
3771 /* Build the new head SACK, and we're done. */
3772 sp->start_seq = seq;
3773 sp->end_seq = end_seq;
3774 tp->rx_opt.num_sacks++;
3775 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3776 4 - tp->rx_opt.tstamp_ok);
3777 }
3778
3779 /* RCV.NXT advances, some SACKs should be eaten. */
3780
3781 static void tcp_sack_remove(struct tcp_sock *tp)
3782 {
3783 struct tcp_sack_block *sp = &tp->selective_acks[0];
3784 int num_sacks = tp->rx_opt.num_sacks;
3785 int this_sack;
3786
3787 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3788 if (skb_queue_empty(&tp->out_of_order_queue)) {
3789 tp->rx_opt.num_sacks = 0;
3790 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3791 return;
3792 }
3793
3794 for (this_sack = 0; this_sack < num_sacks;) {
3795 /* Check if the start of the sack is covered by RCV.NXT. */
3796 if (!before(tp->rcv_nxt, sp->start_seq)) {
3797 int i;
3798
3799 /* RCV.NXT must cover all the block! */
3800 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3801
3802 /* Zap this SACK, by moving forward any other SACKS. */
3803 for (i=this_sack+1; i < num_sacks; i++)
3804 tp->selective_acks[i-1] = tp->selective_acks[i];
3805 num_sacks--;
3806 continue;
3807 }
3808 this_sack++;
3809 sp++;
3810 }
3811 if (num_sacks != tp->rx_opt.num_sacks) {
3812 tp->rx_opt.num_sacks = num_sacks;
3813 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3814 tp->rx_opt.dsack,
3815 4 - tp->rx_opt.tstamp_ok);
3816 }
3817 }
3818
3819 /* This one checks to see if we can put data from the
3820 * out_of_order queue into the receive_queue.
3821 */
3822 static void tcp_ofo_queue(struct sock *sk)
3823 {
3824 struct tcp_sock *tp = tcp_sk(sk);
3825 __u32 dsack_high = tp->rcv_nxt;
3826 struct sk_buff *skb;
3827
3828 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3829 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3830 break;
3831
3832 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3833 __u32 dsack = dsack_high;
3834 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3835 dsack_high = TCP_SKB_CB(skb)->end_seq;
3836 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3837 }
3838
3839 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3840 SOCK_DEBUG(sk, "ofo packet was already received \n");
3841 __skb_unlink(skb, &tp->out_of_order_queue);
3842 __kfree_skb(skb);
3843 continue;
3844 }
3845 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3846 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3847 TCP_SKB_CB(skb)->end_seq);
3848
3849 __skb_unlink(skb, &tp->out_of_order_queue);
3850 __skb_queue_tail(&sk->sk_receive_queue, skb);
3851 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3852 if (tcp_hdr(skb)->fin)
3853 tcp_fin(skb, sk, tcp_hdr(skb));
3854 }
3855 }
3856
3857 static int tcp_prune_ofo_queue(struct sock *sk);
3858 static int tcp_prune_queue(struct sock *sk);
3859
3860 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3861 {
3862 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3863 !sk_rmem_schedule(sk, size)) {
3864
3865 if (tcp_prune_queue(sk) < 0)
3866 return -1;
3867
3868 if (!sk_rmem_schedule(sk, size)) {
3869 if (!tcp_prune_ofo_queue(sk))
3870 return -1;
3871
3872 if (!sk_rmem_schedule(sk, size))
3873 return -1;
3874 }
3875 }
3876 return 0;
3877 }
3878
3879 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3880 {
3881 struct tcphdr *th = tcp_hdr(skb);
3882 struct tcp_sock *tp = tcp_sk(sk);
3883 int eaten = -1;
3884
3885 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3886 goto drop;
3887
3888 __skb_pull(skb, th->doff * 4);
3889
3890 TCP_ECN_accept_cwr(tp, skb);
3891
3892 if (tp->rx_opt.dsack) {
3893 tp->rx_opt.dsack = 0;
3894 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3895 4 - tp->rx_opt.tstamp_ok);
3896 }
3897
3898 /* Queue data for delivery to the user.
3899 * Packets in sequence go to the receive queue.
3900 * Out of sequence packets to the out_of_order_queue.
3901 */
3902 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3903 if (tcp_receive_window(tp) == 0)
3904 goto out_of_window;
3905
3906 /* Ok. In sequence. In window. */
3907 if (tp->ucopy.task == current &&
3908 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3909 sock_owned_by_user(sk) && !tp->urg_data) {
3910 int chunk = min_t(unsigned int, skb->len,
3911 tp->ucopy.len);
3912
3913 __set_current_state(TASK_RUNNING);
3914
3915 local_bh_enable();
3916 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3917 tp->ucopy.len -= chunk;
3918 tp->copied_seq += chunk;
3919 eaten = (chunk == skb->len && !th->fin);
3920 tcp_rcv_space_adjust(sk);
3921 }
3922 local_bh_disable();
3923 }
3924
3925 if (eaten <= 0) {
3926 queue_and_out:
3927 if (eaten < 0 &&
3928 tcp_try_rmem_schedule(sk, skb->truesize))
3929 goto drop;
3930
3931 skb_set_owner_r(skb, sk);
3932 __skb_queue_tail(&sk->sk_receive_queue, skb);
3933 }
3934 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3935 if (skb->len)
3936 tcp_event_data_recv(sk, skb);
3937 if (th->fin)
3938 tcp_fin(skb, sk, th);
3939
3940 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3941 tcp_ofo_queue(sk);
3942
3943 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3944 * gap in queue is filled.
3945 */
3946 if (skb_queue_empty(&tp->out_of_order_queue))
3947 inet_csk(sk)->icsk_ack.pingpong = 0;
3948 }
3949
3950 if (tp->rx_opt.num_sacks)
3951 tcp_sack_remove(tp);
3952
3953 tcp_fast_path_check(sk);
3954
3955 if (eaten > 0)
3956 __kfree_skb(skb);
3957 else if (!sock_flag(sk, SOCK_DEAD))
3958 sk->sk_data_ready(sk, 0);
3959 return;
3960 }
3961
3962 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3963 /* A retransmit, 2nd most common case. Force an immediate ack. */
3964 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3965 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3966
3967 out_of_window:
3968 tcp_enter_quickack_mode(sk);
3969 inet_csk_schedule_ack(sk);
3970 drop:
3971 __kfree_skb(skb);
3972 return;
3973 }
3974
3975 /* Out of window. F.e. zero window probe. */
3976 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3977 goto out_of_window;
3978
3979 tcp_enter_quickack_mode(sk);
3980
3981 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3982 /* Partial packet, seq < rcv_next < end_seq */
3983 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3984 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3985 TCP_SKB_CB(skb)->end_seq);
3986
3987 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3988
3989 /* If window is closed, drop tail of packet. But after
3990 * remembering D-SACK for its head made in previous line.
3991 */
3992 if (!tcp_receive_window(tp))
3993 goto out_of_window;
3994 goto queue_and_out;
3995 }
3996
3997 TCP_ECN_check_ce(tp, skb);
3998
3999 if (tcp_try_rmem_schedule(sk, skb->truesize))
4000 goto drop;
4001
4002 /* Disable header prediction. */
4003 tp->pred_flags = 0;
4004 inet_csk_schedule_ack(sk);
4005
4006 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4007 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4008
4009 skb_set_owner_r(skb, sk);
4010
4011 if (!skb_peek(&tp->out_of_order_queue)) {
4012 /* Initial out of order segment, build 1 SACK. */
4013 if (tcp_is_sack(tp)) {
4014 tp->rx_opt.num_sacks = 1;
4015 tp->rx_opt.dsack = 0;
4016 tp->rx_opt.eff_sacks = 1;
4017 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4018 tp->selective_acks[0].end_seq =
4019 TCP_SKB_CB(skb)->end_seq;
4020 }
4021 __skb_queue_head(&tp->out_of_order_queue, skb);
4022 } else {
4023 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4024 u32 seq = TCP_SKB_CB(skb)->seq;
4025 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4026
4027 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4028 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4029
4030 if (!tp->rx_opt.num_sacks ||
4031 tp->selective_acks[0].end_seq != seq)
4032 goto add_sack;
4033
4034 /* Common case: data arrive in order after hole. */
4035 tp->selective_acks[0].end_seq = end_seq;
4036 return;
4037 }
4038
4039 /* Find place to insert this segment. */
4040 do {
4041 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4042 break;
4043 } while ((skb1 = skb1->prev) !=
4044 (struct sk_buff *)&tp->out_of_order_queue);
4045
4046 /* Do skb overlap to previous one? */
4047 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4048 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4049 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4050 /* All the bits are present. Drop. */
4051 __kfree_skb(skb);
4052 tcp_dsack_set(tp, seq, end_seq);
4053 goto add_sack;
4054 }
4055 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4056 /* Partial overlap. */
4057 tcp_dsack_set(tp, seq,
4058 TCP_SKB_CB(skb1)->end_seq);
4059 } else {
4060 skb1 = skb1->prev;
4061 }
4062 }
4063 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4064
4065 /* And clean segments covered by new one as whole. */
4066 while ((skb1 = skb->next) !=
4067 (struct sk_buff *)&tp->out_of_order_queue &&
4068 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4069 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4071 end_seq);
4072 break;
4073 }
4074 __skb_unlink(skb1, &tp->out_of_order_queue);
4075 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4076 TCP_SKB_CB(skb1)->end_seq);
4077 __kfree_skb(skb1);
4078 }
4079
4080 add_sack:
4081 if (tcp_is_sack(tp))
4082 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4083 }
4084 }
4085
4086 /* Collapse contiguous sequence of skbs head..tail with
4087 * sequence numbers start..end.
4088 * Segments with FIN/SYN are not collapsed (only because this
4089 * simplifies code)
4090 */
4091 static void
4092 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4093 struct sk_buff *head, struct sk_buff *tail,
4094 u32 start, u32 end)
4095 {
4096 struct sk_buff *skb;
4097
4098 /* First, check that queue is collapsible and find
4099 * the point where collapsing can be useful. */
4100 for (skb = head; skb != tail;) {
4101 /* No new bits? It is possible on ofo queue. */
4102 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4103 struct sk_buff *next = skb->next;
4104 __skb_unlink(skb, list);
4105 __kfree_skb(skb);
4106 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4107 skb = next;
4108 continue;
4109 }
4110
4111 /* The first skb to collapse is:
4112 * - not SYN/FIN and
4113 * - bloated or contains data before "start" or
4114 * overlaps to the next one.
4115 */
4116 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4117 (tcp_win_from_space(skb->truesize) > skb->len ||
4118 before(TCP_SKB_CB(skb)->seq, start) ||
4119 (skb->next != tail &&
4120 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4121 break;
4122
4123 /* Decided to skip this, advance start seq. */
4124 start = TCP_SKB_CB(skb)->end_seq;
4125 skb = skb->next;
4126 }
4127 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4128 return;
4129
4130 while (before(start, end)) {
4131 struct sk_buff *nskb;
4132 unsigned int header = skb_headroom(skb);
4133 int copy = SKB_MAX_ORDER(header, 0);
4134
4135 /* Too big header? This can happen with IPv6. */
4136 if (copy < 0)
4137 return;
4138 if (end - start < copy)
4139 copy = end - start;
4140 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4141 if (!nskb)
4142 return;
4143
4144 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4145 skb_set_network_header(nskb, (skb_network_header(skb) -
4146 skb->head));
4147 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4148 skb->head));
4149 skb_reserve(nskb, header);
4150 memcpy(nskb->head, skb->head, header);
4151 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4152 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4153 __skb_insert(nskb, skb->prev, skb, list);
4154 skb_set_owner_r(nskb, sk);
4155
4156 /* Copy data, releasing collapsed skbs. */
4157 while (copy > 0) {
4158 int offset = start - TCP_SKB_CB(skb)->seq;
4159 int size = TCP_SKB_CB(skb)->end_seq - start;
4160
4161 BUG_ON(offset < 0);
4162 if (size > 0) {
4163 size = min(copy, size);
4164 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4165 BUG();
4166 TCP_SKB_CB(nskb)->end_seq += size;
4167 copy -= size;
4168 start += size;
4169 }
4170 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4171 struct sk_buff *next = skb->next;
4172 __skb_unlink(skb, list);
4173 __kfree_skb(skb);
4174 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4175 skb = next;
4176 if (skb == tail ||
4177 tcp_hdr(skb)->syn ||
4178 tcp_hdr(skb)->fin)
4179 return;
4180 }
4181 }
4182 }
4183 }
4184
4185 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4186 * and tcp_collapse() them until all the queue is collapsed.
4187 */
4188 static void tcp_collapse_ofo_queue(struct sock *sk)
4189 {
4190 struct tcp_sock *tp = tcp_sk(sk);
4191 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4192 struct sk_buff *head;
4193 u32 start, end;
4194
4195 if (skb == NULL)
4196 return;
4197
4198 start = TCP_SKB_CB(skb)->seq;
4199 end = TCP_SKB_CB(skb)->end_seq;
4200 head = skb;
4201
4202 for (;;) {
4203 skb = skb->next;
4204
4205 /* Segment is terminated when we see gap or when
4206 * we are at the end of all the queue. */
4207 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4208 after(TCP_SKB_CB(skb)->seq, end) ||
4209 before(TCP_SKB_CB(skb)->end_seq, start)) {
4210 tcp_collapse(sk, &tp->out_of_order_queue,
4211 head, skb, start, end);
4212 head = skb;
4213 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4214 break;
4215 /* Start new segment */
4216 start = TCP_SKB_CB(skb)->seq;
4217 end = TCP_SKB_CB(skb)->end_seq;
4218 } else {
4219 if (before(TCP_SKB_CB(skb)->seq, start))
4220 start = TCP_SKB_CB(skb)->seq;
4221 if (after(TCP_SKB_CB(skb)->end_seq, end))
4222 end = TCP_SKB_CB(skb)->end_seq;
4223 }
4224 }
4225 }
4226
4227 /*
4228 * Purge the out-of-order queue.
4229 * Return true if queue was pruned.
4230 */
4231 static int tcp_prune_ofo_queue(struct sock *sk)
4232 {
4233 struct tcp_sock *tp = tcp_sk(sk);
4234 int res = 0;
4235
4236 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4237 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4238 __skb_queue_purge(&tp->out_of_order_queue);
4239
4240 /* Reset SACK state. A conforming SACK implementation will
4241 * do the same at a timeout based retransmit. When a connection
4242 * is in a sad state like this, we care only about integrity
4243 * of the connection not performance.
4244 */
4245 if (tp->rx_opt.sack_ok)
4246 tcp_sack_reset(&tp->rx_opt);
4247 sk_mem_reclaim(sk);
4248 res = 1;
4249 }
4250 return res;
4251 }
4252
4253 /* Reduce allocated memory if we can, trying to get
4254 * the socket within its memory limits again.
4255 *
4256 * Return less than zero if we should start dropping frames
4257 * until the socket owning process reads some of the data
4258 * to stabilize the situation.
4259 */
4260 static int tcp_prune_queue(struct sock *sk)
4261 {
4262 struct tcp_sock *tp = tcp_sk(sk);
4263
4264 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4265
4266 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4267
4268 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4269 tcp_clamp_window(sk);
4270 else if (tcp_memory_pressure)
4271 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4272
4273 tcp_collapse_ofo_queue(sk);
4274 tcp_collapse(sk, &sk->sk_receive_queue,
4275 sk->sk_receive_queue.next,
4276 (struct sk_buff *)&sk->sk_receive_queue,
4277 tp->copied_seq, tp->rcv_nxt);
4278 sk_mem_reclaim(sk);
4279
4280 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4281 return 0;
4282
4283 /* Collapsing did not help, destructive actions follow.
4284 * This must not ever occur. */
4285
4286 tcp_prune_ofo_queue(sk);
4287
4288 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4289 return 0;
4290
4291 /* If we are really being abused, tell the caller to silently
4292 * drop receive data on the floor. It will get retransmitted
4293 * and hopefully then we'll have sufficient space.
4294 */
4295 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4296
4297 /* Massive buffer overcommit. */
4298 tp->pred_flags = 0;
4299 return -1;
4300 }
4301
4302 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4303 * As additional protections, we do not touch cwnd in retransmission phases,
4304 * and if application hit its sndbuf limit recently.
4305 */
4306 void tcp_cwnd_application_limited(struct sock *sk)
4307 {
4308 struct tcp_sock *tp = tcp_sk(sk);
4309
4310 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4311 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4312 /* Limited by application or receiver window. */
4313 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4314 u32 win_used = max(tp->snd_cwnd_used, init_win);
4315 if (win_used < tp->snd_cwnd) {
4316 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4317 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4318 }
4319 tp->snd_cwnd_used = 0;
4320 }
4321 tp->snd_cwnd_stamp = tcp_time_stamp;
4322 }
4323
4324 static int tcp_should_expand_sndbuf(struct sock *sk)
4325 {
4326 struct tcp_sock *tp = tcp_sk(sk);
4327
4328 /* If the user specified a specific send buffer setting, do
4329 * not modify it.
4330 */
4331 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4332 return 0;
4333
4334 /* If we are under global TCP memory pressure, do not expand. */
4335 if (tcp_memory_pressure)
4336 return 0;
4337
4338 /* If we are under soft global TCP memory pressure, do not expand. */
4339 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4340 return 0;
4341
4342 /* If we filled the congestion window, do not expand. */
4343 if (tp->packets_out >= tp->snd_cwnd)
4344 return 0;
4345
4346 return 1;
4347 }
4348
4349 /* When incoming ACK allowed to free some skb from write_queue,
4350 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4351 * on the exit from tcp input handler.
4352 *
4353 * PROBLEM: sndbuf expansion does not work well with largesend.
4354 */
4355 static void tcp_new_space(struct sock *sk)
4356 {
4357 struct tcp_sock *tp = tcp_sk(sk);
4358
4359 if (tcp_should_expand_sndbuf(sk)) {
4360 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4361 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4362 demanded = max_t(unsigned int, tp->snd_cwnd,
4363 tp->reordering + 1);
4364 sndmem *= 2 * demanded;
4365 if (sndmem > sk->sk_sndbuf)
4366 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4367 tp->snd_cwnd_stamp = tcp_time_stamp;
4368 }
4369
4370 sk->sk_write_space(sk);
4371 }
4372
4373 static void tcp_check_space(struct sock *sk)
4374 {
4375 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4376 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4377 if (sk->sk_socket &&
4378 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4379 tcp_new_space(sk);
4380 }
4381 }
4382
4383 static inline void tcp_data_snd_check(struct sock *sk)
4384 {
4385 tcp_push_pending_frames(sk);
4386 tcp_check_space(sk);
4387 }
4388
4389 /*
4390 * Check if sending an ack is needed.
4391 */
4392 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4393 {
4394 struct tcp_sock *tp = tcp_sk(sk);
4395
4396 /* More than one full frame received... */
4397 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4398 /* ... and right edge of window advances far enough.
4399 * (tcp_recvmsg() will send ACK otherwise). Or...
4400 */
4401 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4402 /* We ACK each frame or... */
4403 tcp_in_quickack_mode(sk) ||
4404 /* We have out of order data. */
4405 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4406 /* Then ack it now */
4407 tcp_send_ack(sk);
4408 } else {
4409 /* Else, send delayed ack. */
4410 tcp_send_delayed_ack(sk);
4411 }
4412 }
4413
4414 static inline void tcp_ack_snd_check(struct sock *sk)
4415 {
4416 if (!inet_csk_ack_scheduled(sk)) {
4417 /* We sent a data segment already. */
4418 return;
4419 }
4420 __tcp_ack_snd_check(sk, 1);
4421 }
4422
4423 /*
4424 * This routine is only called when we have urgent data
4425 * signaled. Its the 'slow' part of tcp_urg. It could be
4426 * moved inline now as tcp_urg is only called from one
4427 * place. We handle URGent data wrong. We have to - as
4428 * BSD still doesn't use the correction from RFC961.
4429 * For 1003.1g we should support a new option TCP_STDURG to permit
4430 * either form (or just set the sysctl tcp_stdurg).
4431 */
4432
4433 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4434 {
4435 struct tcp_sock *tp = tcp_sk(sk);
4436 u32 ptr = ntohs(th->urg_ptr);
4437
4438 if (ptr && !sysctl_tcp_stdurg)
4439 ptr--;
4440 ptr += ntohl(th->seq);
4441
4442 /* Ignore urgent data that we've already seen and read. */
4443 if (after(tp->copied_seq, ptr))
4444 return;
4445
4446 /* Do not replay urg ptr.
4447 *
4448 * NOTE: interesting situation not covered by specs.
4449 * Misbehaving sender may send urg ptr, pointing to segment,
4450 * which we already have in ofo queue. We are not able to fetch
4451 * such data and will stay in TCP_URG_NOTYET until will be eaten
4452 * by recvmsg(). Seems, we are not obliged to handle such wicked
4453 * situations. But it is worth to think about possibility of some
4454 * DoSes using some hypothetical application level deadlock.
4455 */
4456 if (before(ptr, tp->rcv_nxt))
4457 return;
4458
4459 /* Do we already have a newer (or duplicate) urgent pointer? */
4460 if (tp->urg_data && !after(ptr, tp->urg_seq))
4461 return;
4462
4463 /* Tell the world about our new urgent pointer. */
4464 sk_send_sigurg(sk);
4465
4466 /* We may be adding urgent data when the last byte read was
4467 * urgent. To do this requires some care. We cannot just ignore
4468 * tp->copied_seq since we would read the last urgent byte again
4469 * as data, nor can we alter copied_seq until this data arrives
4470 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4471 *
4472 * NOTE. Double Dutch. Rendering to plain English: author of comment
4473 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4474 * and expect that both A and B disappear from stream. This is _wrong_.
4475 * Though this happens in BSD with high probability, this is occasional.
4476 * Any application relying on this is buggy. Note also, that fix "works"
4477 * only in this artificial test. Insert some normal data between A and B and we will
4478 * decline of BSD again. Verdict: it is better to remove to trap
4479 * buggy users.
4480 */
4481 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4482 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4483 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4484 tp->copied_seq++;
4485 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4486 __skb_unlink(skb, &sk->sk_receive_queue);
4487 __kfree_skb(skb);
4488 }
4489 }
4490
4491 tp->urg_data = TCP_URG_NOTYET;
4492 tp->urg_seq = ptr;
4493
4494 /* Disable header prediction. */
4495 tp->pred_flags = 0;
4496 }
4497
4498 /* This is the 'fast' part of urgent handling. */
4499 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4500 {
4501 struct tcp_sock *tp = tcp_sk(sk);
4502
4503 /* Check if we get a new urgent pointer - normally not. */
4504 if (th->urg)
4505 tcp_check_urg(sk, th);
4506
4507 /* Do we wait for any urgent data? - normally not... */
4508 if (tp->urg_data == TCP_URG_NOTYET) {
4509 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4510 th->syn;
4511
4512 /* Is the urgent pointer pointing into this packet? */
4513 if (ptr < skb->len) {
4514 u8 tmp;
4515 if (skb_copy_bits(skb, ptr, &tmp, 1))
4516 BUG();
4517 tp->urg_data = TCP_URG_VALID | tmp;
4518 if (!sock_flag(sk, SOCK_DEAD))
4519 sk->sk_data_ready(sk, 0);
4520 }
4521 }
4522 }
4523
4524 static int tcp_defer_accept_check(struct sock *sk)
4525 {
4526 struct tcp_sock *tp = tcp_sk(sk);
4527
4528 if (tp->defer_tcp_accept.request) {
4529 int queued_data = tp->rcv_nxt - tp->copied_seq;
4530 int hasfin = !skb_queue_empty(&sk->sk_receive_queue) ?
4531 tcp_hdr((struct sk_buff *)
4532 sk->sk_receive_queue.prev)->fin : 0;
4533
4534 if (queued_data && hasfin)
4535 queued_data--;
4536
4537 if (queued_data &&
4538 tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4539 if (sock_flag(sk, SOCK_KEEPOPEN)) {
4540 inet_csk_reset_keepalive_timer(sk,
4541 keepalive_time_when(tp));
4542 } else {
4543 inet_csk_delete_keepalive_timer(sk);
4544 }
4545
4546 inet_csk_reqsk_queue_add(
4547 tp->defer_tcp_accept.listen_sk,
4548 tp->defer_tcp_accept.request,
4549 sk);
4550
4551 tp->defer_tcp_accept.listen_sk->sk_data_ready(
4552 tp->defer_tcp_accept.listen_sk, 0);
4553
4554 sock_put(tp->defer_tcp_accept.listen_sk);
4555 sock_put(sk);
4556 tp->defer_tcp_accept.listen_sk = NULL;
4557 tp->defer_tcp_accept.request = NULL;
4558 } else if (hasfin ||
4559 tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4560 tcp_reset(sk);
4561 return -1;
4562 }
4563 }
4564 return 0;
4565 }
4566
4567 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4568 {
4569 struct tcp_sock *tp = tcp_sk(sk);
4570 int chunk = skb->len - hlen;
4571 int err;
4572
4573 local_bh_enable();
4574 if (skb_csum_unnecessary(skb))
4575 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4576 else
4577 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4578 tp->ucopy.iov);
4579
4580 if (!err) {
4581 tp->ucopy.len -= chunk;
4582 tp->copied_seq += chunk;
4583 tcp_rcv_space_adjust(sk);
4584 }
4585
4586 local_bh_disable();
4587 return err;
4588 }
4589
4590 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4591 struct sk_buff *skb)
4592 {
4593 __sum16 result;
4594
4595 if (sock_owned_by_user(sk)) {
4596 local_bh_enable();
4597 result = __tcp_checksum_complete(skb);
4598 local_bh_disable();
4599 } else {
4600 result = __tcp_checksum_complete(skb);
4601 }
4602 return result;
4603 }
4604
4605 static inline int tcp_checksum_complete_user(struct sock *sk,
4606 struct sk_buff *skb)
4607 {
4608 return !skb_csum_unnecessary(skb) &&
4609 __tcp_checksum_complete_user(sk, skb);
4610 }
4611
4612 #ifdef CONFIG_NET_DMA
4613 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4614 int hlen)
4615 {
4616 struct tcp_sock *tp = tcp_sk(sk);
4617 int chunk = skb->len - hlen;
4618 int dma_cookie;
4619 int copied_early = 0;
4620
4621 if (tp->ucopy.wakeup)
4622 return 0;
4623
4624 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4625 tp->ucopy.dma_chan = get_softnet_dma();
4626
4627 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4628
4629 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4630 skb, hlen,
4631 tp->ucopy.iov, chunk,
4632 tp->ucopy.pinned_list);
4633
4634 if (dma_cookie < 0)
4635 goto out;
4636
4637 tp->ucopy.dma_cookie = dma_cookie;
4638 copied_early = 1;
4639
4640 tp->ucopy.len -= chunk;
4641 tp->copied_seq += chunk;
4642 tcp_rcv_space_adjust(sk);
4643
4644 if ((tp->ucopy.len == 0) ||
4645 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4646 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4647 tp->ucopy.wakeup = 1;
4648 sk->sk_data_ready(sk, 0);
4649 }
4650 } else if (chunk > 0) {
4651 tp->ucopy.wakeup = 1;
4652 sk->sk_data_ready(sk, 0);
4653 }
4654 out:
4655 return copied_early;
4656 }
4657 #endif /* CONFIG_NET_DMA */
4658
4659 /*
4660 * TCP receive function for the ESTABLISHED state.
4661 *
4662 * It is split into a fast path and a slow path. The fast path is
4663 * disabled when:
4664 * - A zero window was announced from us - zero window probing
4665 * is only handled properly in the slow path.
4666 * - Out of order segments arrived.
4667 * - Urgent data is expected.
4668 * - There is no buffer space left
4669 * - Unexpected TCP flags/window values/header lengths are received
4670 * (detected by checking the TCP header against pred_flags)
4671 * - Data is sent in both directions. Fast path only supports pure senders
4672 * or pure receivers (this means either the sequence number or the ack
4673 * value must stay constant)
4674 * - Unexpected TCP option.
4675 *
4676 * When these conditions are not satisfied it drops into a standard
4677 * receive procedure patterned after RFC793 to handle all cases.
4678 * The first three cases are guaranteed by proper pred_flags setting,
4679 * the rest is checked inline. Fast processing is turned on in
4680 * tcp_data_queue when everything is OK.
4681 */
4682 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4683 struct tcphdr *th, unsigned len)
4684 {
4685 struct tcp_sock *tp = tcp_sk(sk);
4686
4687 /*
4688 * Header prediction.
4689 * The code loosely follows the one in the famous
4690 * "30 instruction TCP receive" Van Jacobson mail.
4691 *
4692 * Van's trick is to deposit buffers into socket queue
4693 * on a device interrupt, to call tcp_recv function
4694 * on the receive process context and checksum and copy
4695 * the buffer to user space. smart...
4696 *
4697 * Our current scheme is not silly either but we take the
4698 * extra cost of the net_bh soft interrupt processing...
4699 * We do checksum and copy also but from device to kernel.
4700 */
4701
4702 tp->rx_opt.saw_tstamp = 0;
4703
4704 /* pred_flags is 0xS?10 << 16 + snd_wnd
4705 * if header_prediction is to be made
4706 * 'S' will always be tp->tcp_header_len >> 2
4707 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4708 * turn it off (when there are holes in the receive
4709 * space for instance)
4710 * PSH flag is ignored.
4711 */
4712
4713 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4714 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4715 int tcp_header_len = tp->tcp_header_len;
4716
4717 /* Timestamp header prediction: tcp_header_len
4718 * is automatically equal to th->doff*4 due to pred_flags
4719 * match.
4720 */
4721
4722 /* Check timestamp */
4723 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4724 __be32 *ptr = (__be32 *)(th + 1);
4725
4726 /* No? Slow path! */
4727 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4728 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4729 goto slow_path;
4730
4731 tp->rx_opt.saw_tstamp = 1;
4732 ++ptr;
4733 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4734 ++ptr;
4735 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4736
4737 /* If PAWS failed, check it more carefully in slow path */
4738 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4739 goto slow_path;
4740
4741 /* DO NOT update ts_recent here, if checksum fails
4742 * and timestamp was corrupted part, it will result
4743 * in a hung connection since we will drop all
4744 * future packets due to the PAWS test.
4745 */
4746 }
4747
4748 if (len <= tcp_header_len) {
4749 /* Bulk data transfer: sender */
4750 if (len == tcp_header_len) {
4751 /* Predicted packet is in window by definition.
4752 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4753 * Hence, check seq<=rcv_wup reduces to:
4754 */
4755 if (tcp_header_len ==
4756 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4757 tp->rcv_nxt == tp->rcv_wup)
4758 tcp_store_ts_recent(tp);
4759
4760 /* We know that such packets are checksummed
4761 * on entry.
4762 */
4763 tcp_ack(sk, skb, 0);
4764 __kfree_skb(skb);
4765 tcp_data_snd_check(sk);
4766 return 0;
4767 } else { /* Header too small */
4768 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4769 goto discard;
4770 }
4771 } else {
4772 int eaten = 0;
4773 int copied_early = 0;
4774
4775 if (tp->copied_seq == tp->rcv_nxt &&
4776 len - tcp_header_len <= tp->ucopy.len) {
4777 #ifdef CONFIG_NET_DMA
4778 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4779 copied_early = 1;
4780 eaten = 1;
4781 }
4782 #endif
4783 if (tp->ucopy.task == current &&
4784 sock_owned_by_user(sk) && !copied_early) {
4785 __set_current_state(TASK_RUNNING);
4786
4787 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4788 eaten = 1;
4789 }
4790 if (eaten) {
4791 /* Predicted packet is in window by definition.
4792 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4793 * Hence, check seq<=rcv_wup reduces to:
4794 */
4795 if (tcp_header_len ==
4796 (sizeof(struct tcphdr) +
4797 TCPOLEN_TSTAMP_ALIGNED) &&
4798 tp->rcv_nxt == tp->rcv_wup)
4799 tcp_store_ts_recent(tp);
4800
4801 tcp_rcv_rtt_measure_ts(sk, skb);
4802
4803 __skb_pull(skb, tcp_header_len);
4804 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4805 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4806 }
4807 if (copied_early)
4808 tcp_cleanup_rbuf(sk, skb->len);
4809 }
4810 if (!eaten) {
4811 if (tcp_checksum_complete_user(sk, skb))
4812 goto csum_error;
4813
4814 /* Predicted packet is in window by definition.
4815 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4816 * Hence, check seq<=rcv_wup reduces to:
4817 */
4818 if (tcp_header_len ==
4819 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4820 tp->rcv_nxt == tp->rcv_wup)
4821 tcp_store_ts_recent(tp);
4822
4823 tcp_rcv_rtt_measure_ts(sk, skb);
4824
4825 if ((int)skb->truesize > sk->sk_forward_alloc)
4826 goto step5;
4827
4828 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4829
4830 /* Bulk data transfer: receiver */
4831 __skb_pull(skb, tcp_header_len);
4832 __skb_queue_tail(&sk->sk_receive_queue, skb);
4833 skb_set_owner_r(skb, sk);
4834 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4835 }
4836
4837 tcp_event_data_recv(sk, skb);
4838
4839 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4840 /* Well, only one small jumplet in fast path... */
4841 tcp_ack(sk, skb, FLAG_DATA);
4842 tcp_data_snd_check(sk);
4843 if (!inet_csk_ack_scheduled(sk))
4844 goto no_ack;
4845 }
4846
4847 __tcp_ack_snd_check(sk, 0);
4848 no_ack:
4849 #ifdef CONFIG_NET_DMA
4850 if (copied_early)
4851 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4852 else
4853 #endif
4854 if (eaten)
4855 __kfree_skb(skb);
4856 else
4857 sk->sk_data_ready(sk, 0);
4858 return 0;
4859 }
4860 }
4861
4862 slow_path:
4863 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4864 goto csum_error;
4865
4866 /*
4867 * RFC1323: H1. Apply PAWS check first.
4868 */
4869 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4870 tcp_paws_discard(sk, skb)) {
4871 if (!th->rst) {
4872 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4873 tcp_send_dupack(sk, skb);
4874 goto discard;
4875 }
4876 /* Resets are accepted even if PAWS failed.
4877
4878 ts_recent update must be made after we are sure
4879 that the packet is in window.
4880 */
4881 }
4882
4883 /*
4884 * Standard slow path.
4885 */
4886
4887 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4888 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4889 * (RST) segments are validated by checking their SEQ-fields."
4890 * And page 69: "If an incoming segment is not acceptable,
4891 * an acknowledgment should be sent in reply (unless the RST bit
4892 * is set, if so drop the segment and return)".
4893 */
4894 if (!th->rst)
4895 tcp_send_dupack(sk, skb);
4896 goto discard;
4897 }
4898
4899 if (th->rst) {
4900 tcp_reset(sk);
4901 goto discard;
4902 }
4903
4904 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4905
4906 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4907 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4908 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4909 tcp_reset(sk);
4910 return 1;
4911 }
4912
4913 step5:
4914 if (th->ack)
4915 tcp_ack(sk, skb, FLAG_SLOWPATH);
4916
4917 tcp_rcv_rtt_measure_ts(sk, skb);
4918
4919 /* Process urgent data. */
4920 tcp_urg(sk, skb, th);
4921
4922 /* step 7: process the segment text */
4923 tcp_data_queue(sk, skb);
4924
4925 tcp_data_snd_check(sk);
4926 tcp_ack_snd_check(sk);
4927
4928 if (tcp_defer_accept_check(sk))
4929 return -1;
4930 return 0;
4931
4932 csum_error:
4933 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4934
4935 discard:
4936 __kfree_skb(skb);
4937 return 0;
4938 }
4939
4940 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4941 struct tcphdr *th, unsigned len)
4942 {
4943 struct tcp_sock *tp = tcp_sk(sk);
4944 struct inet_connection_sock *icsk = inet_csk(sk);
4945 int saved_clamp = tp->rx_opt.mss_clamp;
4946
4947 tcp_parse_options(skb, &tp->rx_opt, 0);
4948
4949 if (th->ack) {
4950 /* rfc793:
4951 * "If the state is SYN-SENT then
4952 * first check the ACK bit
4953 * If the ACK bit is set
4954 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4955 * a reset (unless the RST bit is set, if so drop
4956 * the segment and return)"
4957 *
4958 * We do not send data with SYN, so that RFC-correct
4959 * test reduces to:
4960 */
4961 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4962 goto reset_and_undo;
4963
4964 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4965 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4966 tcp_time_stamp)) {
4967 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4968 goto reset_and_undo;
4969 }
4970
4971 /* Now ACK is acceptable.
4972 *
4973 * "If the RST bit is set
4974 * If the ACK was acceptable then signal the user "error:
4975 * connection reset", drop the segment, enter CLOSED state,
4976 * delete TCB, and return."
4977 */
4978
4979 if (th->rst) {
4980 tcp_reset(sk);
4981 goto discard;
4982 }
4983
4984 /* rfc793:
4985 * "fifth, if neither of the SYN or RST bits is set then
4986 * drop the segment and return."
4987 *
4988 * See note below!
4989 * --ANK(990513)
4990 */
4991 if (!th->syn)
4992 goto discard_and_undo;
4993
4994 /* rfc793:
4995 * "If the SYN bit is on ...
4996 * are acceptable then ...
4997 * (our SYN has been ACKed), change the connection
4998 * state to ESTABLISHED..."
4999 */
5000
5001 TCP_ECN_rcv_synack(tp, th);
5002
5003 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5004 tcp_ack(sk, skb, FLAG_SLOWPATH);
5005
5006 /* Ok.. it's good. Set up sequence numbers and
5007 * move to established.
5008 */
5009 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5010 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5011
5012 /* RFC1323: The window in SYN & SYN/ACK segments is
5013 * never scaled.
5014 */
5015 tp->snd_wnd = ntohs(th->window);
5016 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5017
5018 if (!tp->rx_opt.wscale_ok) {
5019 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5020 tp->window_clamp = min(tp->window_clamp, 65535U);
5021 }
5022
5023 if (tp->rx_opt.saw_tstamp) {
5024 tp->rx_opt.tstamp_ok = 1;
5025 tp->tcp_header_len =
5026 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5027 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5028 tcp_store_ts_recent(tp);
5029 } else {
5030 tp->tcp_header_len = sizeof(struct tcphdr);
5031 }
5032
5033 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5034 tcp_enable_fack(tp);
5035
5036 tcp_mtup_init(sk);
5037 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5038 tcp_initialize_rcv_mss(sk);
5039
5040 /* Remember, tcp_poll() does not lock socket!
5041 * Change state from SYN-SENT only after copied_seq
5042 * is initialized. */
5043 tp->copied_seq = tp->rcv_nxt;
5044 smp_mb();
5045 tcp_set_state(sk, TCP_ESTABLISHED);
5046
5047 security_inet_conn_established(sk, skb);
5048
5049 /* Make sure socket is routed, for correct metrics. */
5050 icsk->icsk_af_ops->rebuild_header(sk);
5051
5052 tcp_init_metrics(sk);
5053
5054 tcp_init_congestion_control(sk);
5055
5056 /* Prevent spurious tcp_cwnd_restart() on first data
5057 * packet.
5058 */
5059 tp->lsndtime = tcp_time_stamp;
5060
5061 tcp_init_buffer_space(sk);
5062
5063 if (sock_flag(sk, SOCK_KEEPOPEN))
5064 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5065
5066 if (!tp->rx_opt.snd_wscale)
5067 __tcp_fast_path_on(tp, tp->snd_wnd);
5068 else
5069 tp->pred_flags = 0;
5070
5071 if (!sock_flag(sk, SOCK_DEAD)) {
5072 sk->sk_state_change(sk);
5073 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5074 }
5075
5076 if (sk->sk_write_pending ||
5077 icsk->icsk_accept_queue.rskq_defer_accept ||
5078 icsk->icsk_ack.pingpong) {
5079 /* Save one ACK. Data will be ready after
5080 * several ticks, if write_pending is set.
5081 *
5082 * It may be deleted, but with this feature tcpdumps
5083 * look so _wonderfully_ clever, that I was not able
5084 * to stand against the temptation 8) --ANK
5085 */
5086 inet_csk_schedule_ack(sk);
5087 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5088 icsk->icsk_ack.ato = TCP_ATO_MIN;
5089 tcp_incr_quickack(sk);
5090 tcp_enter_quickack_mode(sk);
5091 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5092 TCP_DELACK_MAX, TCP_RTO_MAX);
5093
5094 discard:
5095 __kfree_skb(skb);
5096 return 0;
5097 } else {
5098 tcp_send_ack(sk);
5099 }
5100 return -1;
5101 }
5102
5103 /* No ACK in the segment */
5104
5105 if (th->rst) {
5106 /* rfc793:
5107 * "If the RST bit is set
5108 *
5109 * Otherwise (no ACK) drop the segment and return."
5110 */
5111
5112 goto discard_and_undo;
5113 }
5114
5115 /* PAWS check. */
5116 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5117 tcp_paws_check(&tp->rx_opt, 0))
5118 goto discard_and_undo;
5119
5120 if (th->syn) {
5121 /* We see SYN without ACK. It is attempt of
5122 * simultaneous connect with crossed SYNs.
5123 * Particularly, it can be connect to self.
5124 */
5125 tcp_set_state(sk, TCP_SYN_RECV);
5126
5127 if (tp->rx_opt.saw_tstamp) {
5128 tp->rx_opt.tstamp_ok = 1;
5129 tcp_store_ts_recent(tp);
5130 tp->tcp_header_len =
5131 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5132 } else {
5133 tp->tcp_header_len = sizeof(struct tcphdr);
5134 }
5135
5136 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5137 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5138
5139 /* RFC1323: The window in SYN & SYN/ACK segments is
5140 * never scaled.
5141 */
5142 tp->snd_wnd = ntohs(th->window);
5143 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5144 tp->max_window = tp->snd_wnd;
5145
5146 TCP_ECN_rcv_syn(tp, th);
5147
5148 tcp_mtup_init(sk);
5149 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5150 tcp_initialize_rcv_mss(sk);
5151
5152 tcp_send_synack(sk);
5153 #if 0
5154 /* Note, we could accept data and URG from this segment.
5155 * There are no obstacles to make this.
5156 *
5157 * However, if we ignore data in ACKless segments sometimes,
5158 * we have no reasons to accept it sometimes.
5159 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5160 * is not flawless. So, discard packet for sanity.
5161 * Uncomment this return to process the data.
5162 */
5163 return -1;
5164 #else
5165 goto discard;
5166 #endif
5167 }
5168 /* "fifth, if neither of the SYN or RST bits is set then
5169 * drop the segment and return."
5170 */
5171
5172 discard_and_undo:
5173 tcp_clear_options(&tp->rx_opt);
5174 tp->rx_opt.mss_clamp = saved_clamp;
5175 goto discard;
5176
5177 reset_and_undo:
5178 tcp_clear_options(&tp->rx_opt);
5179 tp->rx_opt.mss_clamp = saved_clamp;
5180 return 1;
5181 }
5182
5183 /*
5184 * This function implements the receiving procedure of RFC 793 for
5185 * all states except ESTABLISHED and TIME_WAIT.
5186 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5187 * address independent.
5188 */
5189
5190 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5191 struct tcphdr *th, unsigned len)
5192 {
5193 struct tcp_sock *tp = tcp_sk(sk);
5194 struct inet_connection_sock *icsk = inet_csk(sk);
5195 int queued = 0;
5196
5197 tp->rx_opt.saw_tstamp = 0;
5198
5199 switch (sk->sk_state) {
5200 case TCP_CLOSE:
5201 goto discard;
5202
5203 case TCP_LISTEN:
5204 if (th->ack)
5205 return 1;
5206
5207 if (th->rst)
5208 goto discard;
5209
5210 if (th->syn) {
5211 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5212 return 1;
5213
5214 /* Now we have several options: In theory there is
5215 * nothing else in the frame. KA9Q has an option to
5216 * send data with the syn, BSD accepts data with the
5217 * syn up to the [to be] advertised window and
5218 * Solaris 2.1 gives you a protocol error. For now
5219 * we just ignore it, that fits the spec precisely
5220 * and avoids incompatibilities. It would be nice in
5221 * future to drop through and process the data.
5222 *
5223 * Now that TTCP is starting to be used we ought to
5224 * queue this data.
5225 * But, this leaves one open to an easy denial of
5226 * service attack, and SYN cookies can't defend
5227 * against this problem. So, we drop the data
5228 * in the interest of security over speed unless
5229 * it's still in use.
5230 */
5231 kfree_skb(skb);
5232 return 0;
5233 }
5234 goto discard;
5235
5236 case TCP_SYN_SENT:
5237 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5238 if (queued >= 0)
5239 return queued;
5240
5241 /* Do step6 onward by hand. */
5242 tcp_urg(sk, skb, th);
5243 __kfree_skb(skb);
5244 tcp_data_snd_check(sk);
5245 return 0;
5246 }
5247
5248 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5249 tcp_paws_discard(sk, skb)) {
5250 if (!th->rst) {
5251 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5252 tcp_send_dupack(sk, skb);
5253 goto discard;
5254 }
5255 /* Reset is accepted even if it did not pass PAWS. */
5256 }
5257
5258 /* step 1: check sequence number */
5259 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5260 if (!th->rst)
5261 tcp_send_dupack(sk, skb);
5262 goto discard;
5263 }
5264
5265 /* step 2: check RST bit */
5266 if (th->rst) {
5267 tcp_reset(sk);
5268 goto discard;
5269 }
5270
5271 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5272
5273 /* step 3: check security and precedence [ignored] */
5274
5275 /* step 4:
5276 *
5277 * Check for a SYN in window.
5278 */
5279 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5280 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5281 tcp_reset(sk);
5282 return 1;
5283 }
5284
5285 /* step 5: check the ACK field */
5286 if (th->ack) {
5287 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5288
5289 switch (sk->sk_state) {
5290 case TCP_SYN_RECV:
5291 if (acceptable) {
5292 tp->copied_seq = tp->rcv_nxt;
5293 smp_mb();
5294 tcp_set_state(sk, TCP_ESTABLISHED);
5295 sk->sk_state_change(sk);
5296
5297 /* Note, that this wakeup is only for marginal
5298 * crossed SYN case. Passively open sockets
5299 * are not waked up, because sk->sk_sleep ==
5300 * NULL and sk->sk_socket == NULL.
5301 */
5302 if (sk->sk_socket)
5303 sk_wake_async(sk,
5304 SOCK_WAKE_IO, POLL_OUT);
5305
5306 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5307 tp->snd_wnd = ntohs(th->window) <<
5308 tp->rx_opt.snd_wscale;
5309 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5310 TCP_SKB_CB(skb)->seq);
5311
5312 /* tcp_ack considers this ACK as duplicate
5313 * and does not calculate rtt.
5314 * Fix it at least with timestamps.
5315 */
5316 if (tp->rx_opt.saw_tstamp &&
5317 tp->rx_opt.rcv_tsecr && !tp->srtt)
5318 tcp_ack_saw_tstamp(sk, 0);
5319
5320 if (tp->rx_opt.tstamp_ok)
5321 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5322
5323 /* Make sure socket is routed, for
5324 * correct metrics.
5325 */
5326 icsk->icsk_af_ops->rebuild_header(sk);
5327
5328 tcp_init_metrics(sk);
5329
5330 tcp_init_congestion_control(sk);
5331
5332 /* Prevent spurious tcp_cwnd_restart() on
5333 * first data packet.
5334 */
5335 tp->lsndtime = tcp_time_stamp;
5336
5337 tcp_mtup_init(sk);
5338 tcp_initialize_rcv_mss(sk);
5339 tcp_init_buffer_space(sk);
5340 tcp_fast_path_on(tp);
5341 } else {
5342 return 1;
5343 }
5344 break;
5345
5346 case TCP_FIN_WAIT1:
5347 if (tp->snd_una == tp->write_seq) {
5348 tcp_set_state(sk, TCP_FIN_WAIT2);
5349 sk->sk_shutdown |= SEND_SHUTDOWN;
5350 dst_confirm(sk->sk_dst_cache);
5351
5352 if (!sock_flag(sk, SOCK_DEAD))
5353 /* Wake up lingering close() */
5354 sk->sk_state_change(sk);
5355 else {
5356 int tmo;
5357
5358 if (tp->linger2 < 0 ||
5359 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5360 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5361 tcp_done(sk);
5362 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5363 return 1;
5364 }
5365
5366 tmo = tcp_fin_time(sk);
5367 if (tmo > TCP_TIMEWAIT_LEN) {
5368 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5369 } else if (th->fin || sock_owned_by_user(sk)) {
5370 /* Bad case. We could lose such FIN otherwise.
5371 * It is not a big problem, but it looks confusing
5372 * and not so rare event. We still can lose it now,
5373 * if it spins in bh_lock_sock(), but it is really
5374 * marginal case.
5375 */
5376 inet_csk_reset_keepalive_timer(sk, tmo);
5377 } else {
5378 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5379 goto discard;
5380 }
5381 }
5382 }
5383 break;
5384
5385 case TCP_CLOSING:
5386 if (tp->snd_una == tp->write_seq) {
5387 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5388 goto discard;
5389 }
5390 break;
5391
5392 case TCP_LAST_ACK:
5393 if (tp->snd_una == tp->write_seq) {
5394 tcp_update_metrics(sk);
5395 tcp_done(sk);
5396 goto discard;
5397 }
5398 break;
5399 }
5400 } else
5401 goto discard;
5402
5403 /* step 6: check the URG bit */
5404 tcp_urg(sk, skb, th);
5405
5406 /* step 7: process the segment text */
5407 switch (sk->sk_state) {
5408 case TCP_CLOSE_WAIT:
5409 case TCP_CLOSING:
5410 case TCP_LAST_ACK:
5411 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5412 break;
5413 case TCP_FIN_WAIT1:
5414 case TCP_FIN_WAIT2:
5415 /* RFC 793 says to queue data in these states,
5416 * RFC 1122 says we MUST send a reset.
5417 * BSD 4.4 also does reset.
5418 */
5419 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5420 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5421 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5422 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5423 tcp_reset(sk);
5424 return 1;
5425 }
5426 }
5427 /* Fall through */
5428 case TCP_ESTABLISHED:
5429 tcp_data_queue(sk, skb);
5430 queued = 1;
5431 break;
5432 }
5433
5434 /* tcp_data could move socket to TIME-WAIT */
5435 if (sk->sk_state != TCP_CLOSE) {
5436 tcp_data_snd_check(sk);
5437 tcp_ack_snd_check(sk);
5438 }
5439
5440 if (!queued) {
5441 discard:
5442 __kfree_skb(skb);
5443 }
5444 return 0;
5445 }
5446
5447 EXPORT_SYMBOL(sysctl_tcp_ecn);
5448 EXPORT_SYMBOL(sysctl_tcp_reordering);
5449 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5450 EXPORT_SYMBOL(tcp_parse_options);
5451 EXPORT_SYMBOL(tcp_rcv_established);
5452 EXPORT_SYMBOL(tcp_rcv_state_process);
5453 EXPORT_SYMBOL(tcp_initialize_rcv_mss);