]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
tcp: allow tcp_sacktag_one() to tag ranges not aligned with skbs
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204 if (tp->ecn_flags & TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 if (!(tp->ecn_flags & TCP_ECN_OK))
222 return;
223
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
229 */
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 /* fallinto */
236 default:
237 tp->ecn_flags |= TCP_ECN_SEEN;
238 }
239 }
240
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 return 1;
257 return 0;
258 }
259
260 /* Buffer size and advertised window tuning.
261 *
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263 */
264
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269 sndmem *= TCP_INIT_CWND;
270 if (sk->sk_sndbuf < sndmem)
271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275 *
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
285 *
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
293 *
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
297 */
298
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302 struct tcp_sock *tp = tcp_sk(sk);
303 /* Optimize this! */
304 int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307 while (tp->rcv_ssthresh <= window) {
308 if (truesize <= skb->len)
309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311 truesize >>= 1;
312 window >>= 1;
313 }
314 return 0;
315 }
316
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319 struct tcp_sock *tp = tcp_sk(sk);
320
321 /* Check #1 */
322 if (tp->rcv_ssthresh < tp->window_clamp &&
323 (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 !sk_under_memory_pressure(sk)) {
325 int incr;
326
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
329 */
330 if (tcp_win_from_space(skb->truesize) <= skb->len)
331 incr = 2 * tp->advmss;
332 else
333 incr = __tcp_grow_window(sk, skb);
334
335 if (incr) {
336 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 tp->window_clamp);
338 inet_csk(sk)->icsk_ack.quick |= 1;
339 }
340 }
341 }
342
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347 u32 mss = tcp_sk(sk)->advmss;
348 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 int rcvmem;
350
351 /* Limit to 10 segments if mss <= 1460,
352 * or 14600/mss segments, with a minimum of two segments.
353 */
354 if (mss > 1460)
355 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 while (tcp_win_from_space(rcvmem) < mss)
359 rcvmem += 128;
360
361 rcvmem *= icwnd;
362
363 if (sk->sk_rcvbuf < rcvmem)
364 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366
367 /* 4. Try to fixup all. It is made immediately after connection enters
368 * established state.
369 */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372 struct tcp_sock *tp = tcp_sk(sk);
373 int maxwin;
374
375 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 tcp_fixup_rcvbuf(sk);
377 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 tcp_fixup_sndbuf(sk);
379
380 tp->rcvq_space.space = tp->rcv_wnd;
381
382 maxwin = tcp_full_space(sk);
383
384 if (tp->window_clamp >= maxwin) {
385 tp->window_clamp = maxwin;
386
387 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 tp->window_clamp = max(maxwin -
389 (maxwin >> sysctl_tcp_app_win),
390 4 * tp->advmss);
391 }
392
393 /* Force reservation of one segment. */
394 if (sysctl_tcp_app_win &&
395 tp->window_clamp > 2 * tp->advmss &&
396 tp->window_clamp + tp->advmss > maxwin)
397 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406 struct tcp_sock *tp = tcp_sk(sk);
407 struct inet_connection_sock *icsk = inet_csk(sk);
408
409 icsk->icsk_ack.quick = 0;
410
411 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 !sk_under_memory_pressure(sk) &&
414 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 sysctl_tcp_rmem[2]);
417 }
418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421
422 /* Initialize RCV_MSS value.
423 * RCV_MSS is an our guess about MSS used by the peer.
424 * We haven't any direct information about the MSS.
425 * It's better to underestimate the RCV_MSS rather than overestimate.
426 * Overestimations make us ACKing less frequently than needed.
427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428 */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431 const struct tcp_sock *tp = tcp_sk(sk);
432 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434 hint = min(hint, tp->rcv_wnd / 2);
435 hint = min(hint, TCP_MSS_DEFAULT);
436 hint = max(hint, TCP_MIN_MSS);
437
438 inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442 /* Receiver "autotuning" code.
443 *
444 * The algorithm for RTT estimation w/o timestamps is based on
445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
447 *
448 * More detail on this code can be found at
449 * <http://staff.psc.edu/jheffner/>,
450 * though this reference is out of date. A new paper
451 * is pending.
452 */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455 u32 new_sample = tp->rcv_rtt_est.rtt;
456 long m = sample;
457
458 if (m == 0)
459 m = 1;
460
461 if (new_sample != 0) {
462 /* If we sample in larger samples in the non-timestamp
463 * case, we could grossly overestimate the RTT especially
464 * with chatty applications or bulk transfer apps which
465 * are stalled on filesystem I/O.
466 *
467 * Also, since we are only going for a minimum in the
468 * non-timestamp case, we do not smooth things out
469 * else with timestamps disabled convergence takes too
470 * long.
471 */
472 if (!win_dep) {
473 m -= (new_sample >> 3);
474 new_sample += m;
475 } else if (m < new_sample)
476 new_sample = m << 3;
477 } else {
478 /* No previous measure. */
479 new_sample = m << 3;
480 }
481
482 if (tp->rcv_rtt_est.rtt != new_sample)
483 tp->rcv_rtt_est.rtt = new_sample;
484 }
485
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488 if (tp->rcv_rtt_est.time == 0)
489 goto new_measure;
490 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 return;
492 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494 new_measure:
495 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 const struct sk_buff *skb)
501 {
502 struct tcp_sock *tp = tcp_sk(sk);
503 if (tp->rx_opt.rcv_tsecr &&
504 (TCP_SKB_CB(skb)->end_seq -
505 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508
509 /*
510 * This function should be called every time data is copied to user space.
511 * It calculates the appropriate TCP receive buffer space.
512 */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515 struct tcp_sock *tp = tcp_sk(sk);
516 int time;
517 int space;
518
519 if (tp->rcvq_space.time == 0)
520 goto new_measure;
521
522 time = tcp_time_stamp - tp->rcvq_space.time;
523 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 return;
525
526 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528 space = max(tp->rcvq_space.space, space);
529
530 if (tp->rcvq_space.space != space) {
531 int rcvmem;
532
533 tp->rcvq_space.space = space;
534
535 if (sysctl_tcp_moderate_rcvbuf &&
536 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 int new_clamp = space;
538
539 /* Receive space grows, normalize in order to
540 * take into account packet headers and sk_buff
541 * structure overhead.
542 */
543 space /= tp->advmss;
544 if (!space)
545 space = 1;
546 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 while (tcp_win_from_space(rcvmem) < tp->advmss)
548 rcvmem += 128;
549 space *= rcvmem;
550 space = min(space, sysctl_tcp_rmem[2]);
551 if (space > sk->sk_rcvbuf) {
552 sk->sk_rcvbuf = space;
553
554 /* Make the window clamp follow along. */
555 tp->window_clamp = new_clamp;
556 }
557 }
558 }
559
560 new_measure:
561 tp->rcvq_space.seq = tp->copied_seq;
562 tp->rcvq_space.time = tcp_time_stamp;
563 }
564
565 /* There is something which you must keep in mind when you analyze the
566 * behavior of the tp->ato delayed ack timeout interval. When a
567 * connection starts up, we want to ack as quickly as possible. The
568 * problem is that "good" TCP's do slow start at the beginning of data
569 * transmission. The means that until we send the first few ACK's the
570 * sender will sit on his end and only queue most of his data, because
571 * he can only send snd_cwnd unacked packets at any given time. For
572 * each ACK we send, he increments snd_cwnd and transmits more of his
573 * queue. -DaveM
574 */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577 struct tcp_sock *tp = tcp_sk(sk);
578 struct inet_connection_sock *icsk = inet_csk(sk);
579 u32 now;
580
581 inet_csk_schedule_ack(sk);
582
583 tcp_measure_rcv_mss(sk, skb);
584
585 tcp_rcv_rtt_measure(tp);
586
587 now = tcp_time_stamp;
588
589 if (!icsk->icsk_ack.ato) {
590 /* The _first_ data packet received, initialize
591 * delayed ACK engine.
592 */
593 tcp_incr_quickack(sk);
594 icsk->icsk_ack.ato = TCP_ATO_MIN;
595 } else {
596 int m = now - icsk->icsk_ack.lrcvtime;
597
598 if (m <= TCP_ATO_MIN / 2) {
599 /* The fastest case is the first. */
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 } else if (m < icsk->icsk_ack.ato) {
602 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 icsk->icsk_ack.ato = icsk->icsk_rto;
605 } else if (m > icsk->icsk_rto) {
606 /* Too long gap. Apparently sender failed to
607 * restart window, so that we send ACKs quickly.
608 */
609 tcp_incr_quickack(sk);
610 sk_mem_reclaim(sk);
611 }
612 }
613 icsk->icsk_ack.lrcvtime = now;
614
615 TCP_ECN_check_ce(tp, skb);
616
617 if (skb->len >= 128)
618 tcp_grow_window(sk, skb);
619 }
620
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622 * routine either comes from timestamps, or from segments that were
623 * known _not_ to have been retransmitted [see Karn/Partridge
624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625 * piece by Van Jacobson.
626 * NOTE: the next three routines used to be one big routine.
627 * To save cycles in the RFC 1323 implementation it was better to break
628 * it up into three procedures. -- erics
629 */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632 struct tcp_sock *tp = tcp_sk(sk);
633 long m = mrtt; /* RTT */
634
635 /* The following amusing code comes from Jacobson's
636 * article in SIGCOMM '88. Note that rtt and mdev
637 * are scaled versions of rtt and mean deviation.
638 * This is designed to be as fast as possible
639 * m stands for "measurement".
640 *
641 * On a 1990 paper the rto value is changed to:
642 * RTO = rtt + 4 * mdev
643 *
644 * Funny. This algorithm seems to be very broken.
645 * These formulae increase RTO, when it should be decreased, increase
646 * too slowly, when it should be increased quickly, decrease too quickly
647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 * does not matter how to _calculate_ it. Seems, it was trap
649 * that VJ failed to avoid. 8)
650 */
651 if (m == 0)
652 m = 1;
653 if (tp->srtt != 0) {
654 m -= (tp->srtt >> 3); /* m is now error in rtt est */
655 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
656 if (m < 0) {
657 m = -m; /* m is now abs(error) */
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 /* This is similar to one of Eifel findings.
660 * Eifel blocks mdev updates when rtt decreases.
661 * This solution is a bit different: we use finer gain
662 * for mdev in this case (alpha*beta).
663 * Like Eifel it also prevents growth of rto,
664 * but also it limits too fast rto decreases,
665 * happening in pure Eifel.
666 */
667 if (m > 0)
668 m >>= 3;
669 } else {
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 }
672 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
673 if (tp->mdev > tp->mdev_max) {
674 tp->mdev_max = tp->mdev;
675 if (tp->mdev_max > tp->rttvar)
676 tp->rttvar = tp->mdev_max;
677 }
678 if (after(tp->snd_una, tp->rtt_seq)) {
679 if (tp->mdev_max < tp->rttvar)
680 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 tp->rtt_seq = tp->snd_nxt;
682 tp->mdev_max = tcp_rto_min(sk);
683 }
684 } else {
685 /* no previous measure. */
686 tp->srtt = m << 3; /* take the measured time to be rtt */
687 tp->mdev = m << 1; /* make sure rto = 3*rtt */
688 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 tp->rtt_seq = tp->snd_nxt;
690 }
691 }
692
693 /* Calculate rto without backoff. This is the second half of Van Jacobson's
694 * routine referred to above.
695 */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698 const struct tcp_sock *tp = tcp_sk(sk);
699 /* Old crap is replaced with new one. 8)
700 *
701 * More seriously:
702 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 * It cannot be less due to utterly erratic ACK generation made
704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 * to do with delayed acks, because at cwnd>2 true delack timeout
706 * is invisible. Actually, Linux-2.4 also generates erratic
707 * ACKs in some circumstances.
708 */
709 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711 /* 2. Fixups made earlier cannot be right.
712 * If we do not estimate RTO correctly without them,
713 * all the algo is pure shit and should be replaced
714 * with correct one. It is exactly, which we pretend to do.
715 */
716
717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 * guarantees that rto is higher.
719 */
720 tcp_bound_rto(sk);
721 }
722
723 /* Save metrics learned by this TCP session.
724 This function is called only, when TCP finishes successfully
725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726 */
727 void tcp_update_metrics(struct sock *sk)
728 {
729 struct tcp_sock *tp = tcp_sk(sk);
730 struct dst_entry *dst = __sk_dst_get(sk);
731
732 if (sysctl_tcp_nometrics_save)
733 return;
734
735 dst_confirm(dst);
736
737 if (dst && (dst->flags & DST_HOST)) {
738 const struct inet_connection_sock *icsk = inet_csk(sk);
739 int m;
740 unsigned long rtt;
741
742 if (icsk->icsk_backoff || !tp->srtt) {
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
745 * Reset our results.
746 */
747 if (!(dst_metric_locked(dst, RTAX_RTT)))
748 dst_metric_set(dst, RTAX_RTT, 0);
749 return;
750 }
751
752 rtt = dst_metric_rtt(dst, RTAX_RTT);
753 m = rtt - tp->srtt;
754
755 /* If newly calculated rtt larger than stored one,
756 * store new one. Otherwise, use EWMA. Remember,
757 * rtt overestimation is always better than underestimation.
758 */
759 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 if (m <= 0)
761 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 else
763 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764 }
765
766 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 unsigned long var;
768 if (m < 0)
769 m = -m;
770
771 /* Scale deviation to rttvar fixed point */
772 m >>= 1;
773 if (m < tp->mdev)
774 m = tp->mdev;
775
776 var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 if (m >= var)
778 var = m;
779 else
780 var -= (var - m) >> 2;
781
782 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783 }
784
785 if (tcp_in_initial_slowstart(tp)) {
786 /* Slow start still did not finish. */
787 if (dst_metric(dst, RTAX_SSTHRESH) &&
788 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 if (!dst_metric_locked(dst, RTAX_CWND) &&
792 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 icsk->icsk_ca_state == TCP_CA_Open) {
796 /* Cong. avoidance phase, cwnd is reliable. */
797 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH,
799 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 if (!dst_metric_locked(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND,
802 (dst_metric(dst, RTAX_CWND) +
803 tp->snd_cwnd) >> 1);
804 } else {
805 /* Else slow start did not finish, cwnd is non-sense,
806 ssthresh may be also invalid.
807 */
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_ssthresh) >> 1);
812 if (dst_metric(dst, RTAX_SSTHRESH) &&
813 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816 }
817
818 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 tp->reordering != sysctl_tcp_reordering)
821 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 }
823 }
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838 struct tcp_sock *tp = tcp_sk(sk);
839 const struct inet_connection_sock *icsk = inet_csk(sk);
840
841 tp->prior_ssthresh = 0;
842 tp->bytes_acked = 0;
843 if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 tp->undo_marker = 0;
845 if (set_ssthresh)
846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 tp->snd_cwnd = min(tp->snd_cwnd,
848 tcp_packets_in_flight(tp) + 1U);
849 tp->snd_cwnd_cnt = 0;
850 tp->high_seq = tp->snd_nxt;
851 tp->snd_cwnd_stamp = tcp_time_stamp;
852 TCP_ECN_queue_cwr(tp);
853
854 tcp_set_ca_state(sk, TCP_CA_CWR);
855 }
856 }
857
858 /*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880 struct tcp_sock *tp = tcp_sk(sk);
881 struct dst_entry *dst = __sk_dst_get(sk);
882
883 if (dst == NULL)
884 goto reset;
885
886 dst_confirm(dst);
887
888 if (dst_metric_locked(dst, RTAX_CWND))
889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 if (dst_metric(dst, RTAX_SSTHRESH)) {
891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 } else {
895 /* ssthresh may have been reduced unnecessarily during.
896 * 3WHS. Restore it back to its initial default.
897 */
898 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899 }
900 if (dst_metric(dst, RTAX_REORDERING) &&
901 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 tcp_disable_fack(tp);
903 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904 }
905
906 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 reset:
933 if (tp->srtt == 0) {
934 /* RFC2988bis: We've failed to get a valid RTT sample from
935 * 3WHS. This is most likely due to retransmission,
936 * including spurious one. Reset the RTO back to 3secs
937 * from the more aggressive 1sec to avoid more spurious
938 * retransmission.
939 */
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942 }
943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 * retransmission has occurred.
947 */
948 if (tp->total_retrans > 1)
949 tp->snd_cwnd = 1;
950 else
951 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956 const int ts)
957 {
958 struct tcp_sock *tp = tcp_sk(sk);
959 if (metric > tp->reordering) {
960 int mib_idx;
961
962 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964 /* This exciting event is worth to be remembered. 8) */
965 if (ts)
966 mib_idx = LINUX_MIB_TCPTSREORDER;
967 else if (tcp_is_reno(tp))
968 mib_idx = LINUX_MIB_TCPRENOREORDER;
969 else if (tcp_is_fack(tp))
970 mib_idx = LINUX_MIB_TCPFACKREORDER;
971 else
972 mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 tp->reordering,
979 tp->fackets_out,
980 tp->sacked_out,
981 tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983 tcp_disable_fack(tp);
984 }
985 }
986
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 if ((tp->retransmit_skb_hint == NULL) ||
991 before(TCP_SKB_CB(skb)->seq,
992 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 tp->retransmit_skb_hint = skb;
994
995 if (!tp->lost_out ||
996 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 tcp_verify_retransmit_hint(tp, skb);
1004
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 }
1008 }
1009
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 struct sk_buff *skb)
1012 {
1013 tcp_verify_retransmit_hint(tp, skb);
1014
1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 tp->lost_out += tcp_skb_pcount(skb);
1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 }
1019 }
1020
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022 *
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1026 *
1027 * Valid combinations are:
1028 * Tag InFlight Description
1029 * 0 1 - orig segment is in flight.
1030 * S 0 - nothing flies, orig reached receiver.
1031 * L 0 - nothing flies, orig lost by net.
1032 * R 2 - both orig and retransmit are in flight.
1033 * L|R 1 - orig is lost, retransmit is in flight.
1034 * S|R 1 - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 * but it is equivalent to plain S and code short-curcuits it to S.
1037 * L|S is logically invalid, it would mean -1 packet in flight 8))
1038 *
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 * A. Scoreboard estimator decided the packet is lost.
1044 * A'. Reno "three dupacks" marks head of queue lost.
1045 * A''. Its FACK modification, head until snd.fack is lost.
1046 * B. SACK arrives sacking SND.NXT at the moment, when the
1047 * segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049 *
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1053 *
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1058 *
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 * ever retransmitted -> reordering. Alas, we cannot use it
1061 * when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 * for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1066 *
1067 * SACK block validation.
1068 * ----------------------
1069 *
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment. Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1082 *
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087 * wrap (s_w):
1088 *
1089 * <- outs wnd -> <- wrapzone ->
1090 * u e n u_w e_w s n_w
1091 * | | | | | | |
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->| |<--------...
1094 * ...---- >2^31 ------>| |<--------...
1095 *
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1101 *
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1114 */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 u32 start_seq, u32 end_seq)
1117 {
1118 /* Too far in future, or reversed (interpretation is ambiguous) */
1119 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 return 0;
1121
1122 /* Nasty start_seq wrap-around check (see comments above) */
1123 if (!before(start_seq, tp->snd_nxt))
1124 return 0;
1125
1126 /* In outstanding window? ...This is valid exit for D-SACKs too.
1127 * start_seq == snd_una is non-sensical (see comments above)
1128 */
1129 if (after(start_seq, tp->snd_una))
1130 return 1;
1131
1132 if (!is_dsack || !tp->undo_marker)
1133 return 0;
1134
1135 /* ...Then it's D-SACK, and must reside below snd_una completely */
1136 if (after(end_seq, tp->snd_una))
1137 return 0;
1138
1139 if (!before(start_seq, tp->undo_marker))
1140 return 1;
1141
1142 /* Too old */
1143 if (!after(end_seq, tp->undo_marker))
1144 return 0;
1145
1146 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 * start_seq < undo_marker and end_seq >= undo_marker.
1148 */
1149 return !before(start_seq, end_seq - tp->max_window);
1150 }
1151
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1155 *
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1160 */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163 const struct inet_connection_sock *icsk = inet_csk(sk);
1164 struct tcp_sock *tp = tcp_sk(sk);
1165 struct sk_buff *skb;
1166 int cnt = 0;
1167 u32 new_low_seq = tp->snd_nxt;
1168 u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 !after(received_upto, tp->lost_retrans_low) ||
1172 icsk->icsk_ca_state != TCP_CA_Recovery)
1173 return;
1174
1175 tcp_for_write_queue(skb, sk) {
1176 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178 if (skb == tcp_send_head(sk))
1179 break;
1180 if (cnt == tp->retrans_out)
1181 break;
1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 continue;
1184
1185 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 continue;
1187
1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 * constraint here (see above) but figuring out that at
1190 * least tp->reordering SACK blocks reside between ack_seq
1191 * and received_upto is not easy task to do cheaply with
1192 * the available datastructures.
1193 *
1194 * Whether FACK should check here for tp->reordering segs
1195 * in-between one could argue for either way (it would be
1196 * rather simple to implement as we could count fack_count
1197 * during the walk and do tp->fackets_out - fack_count).
1198 */
1199 if (after(received_upto, ack_seq)) {
1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203 tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 } else {
1206 if (before(ack_seq, new_low_seq))
1207 new_low_seq = ack_seq;
1208 cnt += tcp_skb_pcount(skb);
1209 }
1210 }
1211
1212 if (tp->retrans_out)
1213 tp->lost_retrans_low = new_low_seq;
1214 }
1215
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 struct tcp_sack_block_wire *sp, int num_sacks,
1218 u32 prior_snd_una)
1219 {
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 int dup_sack = 0;
1224
1225 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 dup_sack = 1;
1227 tcp_dsack_seen(tp);
1228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 } else if (num_sacks > 1) {
1230 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233 if (!after(end_seq_0, end_seq_1) &&
1234 !before(start_seq_0, start_seq_1)) {
1235 dup_sack = 1;
1236 tcp_dsack_seen(tp);
1237 NET_INC_STATS_BH(sock_net(sk),
1238 LINUX_MIB_TCPDSACKOFORECV);
1239 }
1240 }
1241
1242 /* D-SACK for already forgotten data... Do dumb counting. */
1243 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 !after(end_seq_0, prior_snd_una) &&
1245 after(end_seq_0, tp->undo_marker))
1246 tp->undo_retrans--;
1247
1248 return dup_sack;
1249 }
1250
1251 struct tcp_sacktag_state {
1252 int reord;
1253 int fack_count;
1254 int flag;
1255 };
1256
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1261 * returns).
1262 *
1263 * FIXME: this could be merged to shift decision code
1264 */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 u32 start_seq, u32 end_seq)
1267 {
1268 int in_sack, err;
1269 unsigned int pkt_len;
1270 unsigned int mss;
1271
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 mss = tcp_skb_mss(skb);
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280 if (!in_sack) {
1281 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 if (pkt_len < mss)
1283 pkt_len = mss;
1284 } else {
1285 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 if (pkt_len < mss)
1287 return -EINVAL;
1288 }
1289
1290 /* Round if necessary so that SACKs cover only full MSSes
1291 * and/or the remaining small portion (if present)
1292 */
1293 if (pkt_len > mss) {
1294 unsigned int new_len = (pkt_len / mss) * mss;
1295 if (!in_sack && new_len < pkt_len) {
1296 new_len += mss;
1297 if (new_len > skb->len)
1298 return 0;
1299 }
1300 pkt_len = new_len;
1301 }
1302 err = tcp_fragment(sk, skb, pkt_len, mss);
1303 if (err < 0)
1304 return err;
1305 }
1306
1307 return in_sack;
1308 }
1309
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8 tcp_sacktag_one(struct sock *sk,
1312 struct tcp_sacktag_state *state, u8 sacked,
1313 u32 start_seq, u32 end_seq,
1314 int dup_sack, int pcount)
1315 {
1316 struct tcp_sock *tp = tcp_sk(sk);
1317 int fack_count = state->fack_count;
1318
1319 /* Account D-SACK for retransmitted packet. */
1320 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321 if (tp->undo_marker && tp->undo_retrans &&
1322 after(end_seq, tp->undo_marker))
1323 tp->undo_retrans--;
1324 if (sacked & TCPCB_SACKED_ACKED)
1325 state->reord = min(fack_count, state->reord);
1326 }
1327
1328 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329 if (!after(end_seq, tp->snd_una))
1330 return sacked;
1331
1332 if (!(sacked & TCPCB_SACKED_ACKED)) {
1333 if (sacked & TCPCB_SACKED_RETRANS) {
1334 /* If the segment is not tagged as lost,
1335 * we do not clear RETRANS, believing
1336 * that retransmission is still in flight.
1337 */
1338 if (sacked & TCPCB_LOST) {
1339 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340 tp->lost_out -= pcount;
1341 tp->retrans_out -= pcount;
1342 }
1343 } else {
1344 if (!(sacked & TCPCB_RETRANS)) {
1345 /* New sack for not retransmitted frame,
1346 * which was in hole. It is reordering.
1347 */
1348 if (before(start_seq,
1349 tcp_highest_sack_seq(tp)))
1350 state->reord = min(fack_count,
1351 state->reord);
1352
1353 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354 if (!after(end_seq, tp->frto_highmark))
1355 state->flag |= FLAG_ONLY_ORIG_SACKED;
1356 }
1357
1358 if (sacked & TCPCB_LOST) {
1359 sacked &= ~TCPCB_LOST;
1360 tp->lost_out -= pcount;
1361 }
1362 }
1363
1364 sacked |= TCPCB_SACKED_ACKED;
1365 state->flag |= FLAG_DATA_SACKED;
1366 tp->sacked_out += pcount;
1367
1368 fack_count += pcount;
1369
1370 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 tp->lost_cnt_hint += pcount;
1374
1375 if (fack_count > tp->fackets_out)
1376 tp->fackets_out = fack_count;
1377 }
1378
1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 * are accounted above as well.
1382 */
1383 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 sacked &= ~TCPCB_SACKED_RETRANS;
1385 tp->retrans_out -= pcount;
1386 }
1387
1388 return sacked;
1389 }
1390
1391 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 unsigned int pcount, int shifted, int mss,
1394 int dup_sack)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1398
1399 BUG_ON(!pcount);
1400
1401 if (skb == tp->lost_skb_hint)
1402 tp->lost_cnt_hint += pcount;
1403
1404 TCP_SKB_CB(prev)->end_seq += shifted;
1405 TCP_SKB_CB(skb)->seq += shifted;
1406
1407 skb_shinfo(prev)->gso_segs += pcount;
1408 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409 skb_shinfo(skb)->gso_segs -= pcount;
1410
1411 /* When we're adding to gso_segs == 1, gso_size will be zero,
1412 * in theory this shouldn't be necessary but as long as DSACK
1413 * code can come after this skb later on it's better to keep
1414 * setting gso_size to something.
1415 */
1416 if (!skb_shinfo(prev)->gso_size) {
1417 skb_shinfo(prev)->gso_size = mss;
1418 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419 }
1420
1421 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422 if (skb_shinfo(skb)->gso_segs <= 1) {
1423 skb_shinfo(skb)->gso_size = 0;
1424 skb_shinfo(skb)->gso_type = 0;
1425 }
1426
1427 /* We discard results */
1428 tcp_sacktag_one(sk, state,
1429 TCP_SKB_CB(skb)->sacked,
1430 TCP_SKB_CB(skb)->seq,
1431 TCP_SKB_CB(skb)->end_seq,
1432 dup_sack, pcount);
1433
1434 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1435 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1436
1437 if (skb->len > 0) {
1438 BUG_ON(!tcp_skb_pcount(skb));
1439 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1440 return 0;
1441 }
1442
1443 /* Whole SKB was eaten :-) */
1444
1445 if (skb == tp->retransmit_skb_hint)
1446 tp->retransmit_skb_hint = prev;
1447 if (skb == tp->scoreboard_skb_hint)
1448 tp->scoreboard_skb_hint = prev;
1449 if (skb == tp->lost_skb_hint) {
1450 tp->lost_skb_hint = prev;
1451 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1452 }
1453
1454 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1455 if (skb == tcp_highest_sack(sk))
1456 tcp_advance_highest_sack(sk, skb);
1457
1458 tcp_unlink_write_queue(skb, sk);
1459 sk_wmem_free_skb(sk, skb);
1460
1461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1462
1463 return 1;
1464 }
1465
1466 /* I wish gso_size would have a bit more sane initialization than
1467 * something-or-zero which complicates things
1468 */
1469 static int tcp_skb_seglen(const struct sk_buff *skb)
1470 {
1471 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1472 }
1473
1474 /* Shifting pages past head area doesn't work */
1475 static int skb_can_shift(const struct sk_buff *skb)
1476 {
1477 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1478 }
1479
1480 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1481 * skb.
1482 */
1483 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1484 struct tcp_sacktag_state *state,
1485 u32 start_seq, u32 end_seq,
1486 int dup_sack)
1487 {
1488 struct tcp_sock *tp = tcp_sk(sk);
1489 struct sk_buff *prev;
1490 int mss;
1491 int pcount = 0;
1492 int len;
1493 int in_sack;
1494
1495 if (!sk_can_gso(sk))
1496 goto fallback;
1497
1498 /* Normally R but no L won't result in plain S */
1499 if (!dup_sack &&
1500 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1501 goto fallback;
1502 if (!skb_can_shift(skb))
1503 goto fallback;
1504 /* This frame is about to be dropped (was ACKed). */
1505 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1506 goto fallback;
1507
1508 /* Can only happen with delayed DSACK + discard craziness */
1509 if (unlikely(skb == tcp_write_queue_head(sk)))
1510 goto fallback;
1511 prev = tcp_write_queue_prev(sk, skb);
1512
1513 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1514 goto fallback;
1515
1516 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1517 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1518
1519 if (in_sack) {
1520 len = skb->len;
1521 pcount = tcp_skb_pcount(skb);
1522 mss = tcp_skb_seglen(skb);
1523
1524 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1525 * drop this restriction as unnecessary
1526 */
1527 if (mss != tcp_skb_seglen(prev))
1528 goto fallback;
1529 } else {
1530 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1531 goto noop;
1532 /* CHECKME: This is non-MSS split case only?, this will
1533 * cause skipped skbs due to advancing loop btw, original
1534 * has that feature too
1535 */
1536 if (tcp_skb_pcount(skb) <= 1)
1537 goto noop;
1538
1539 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1540 if (!in_sack) {
1541 /* TODO: head merge to next could be attempted here
1542 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1543 * though it might not be worth of the additional hassle
1544 *
1545 * ...we can probably just fallback to what was done
1546 * previously. We could try merging non-SACKed ones
1547 * as well but it probably isn't going to buy off
1548 * because later SACKs might again split them, and
1549 * it would make skb timestamp tracking considerably
1550 * harder problem.
1551 */
1552 goto fallback;
1553 }
1554
1555 len = end_seq - TCP_SKB_CB(skb)->seq;
1556 BUG_ON(len < 0);
1557 BUG_ON(len > skb->len);
1558
1559 /* MSS boundaries should be honoured or else pcount will
1560 * severely break even though it makes things bit trickier.
1561 * Optimize common case to avoid most of the divides
1562 */
1563 mss = tcp_skb_mss(skb);
1564
1565 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1566 * drop this restriction as unnecessary
1567 */
1568 if (mss != tcp_skb_seglen(prev))
1569 goto fallback;
1570
1571 if (len == mss) {
1572 pcount = 1;
1573 } else if (len < mss) {
1574 goto noop;
1575 } else {
1576 pcount = len / mss;
1577 len = pcount * mss;
1578 }
1579 }
1580
1581 if (!skb_shift(prev, skb, len))
1582 goto fallback;
1583 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1584 goto out;
1585
1586 /* Hole filled allows collapsing with the next as well, this is very
1587 * useful when hole on every nth skb pattern happens
1588 */
1589 if (prev == tcp_write_queue_tail(sk))
1590 goto out;
1591 skb = tcp_write_queue_next(sk, prev);
1592
1593 if (!skb_can_shift(skb) ||
1594 (skb == tcp_send_head(sk)) ||
1595 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1596 (mss != tcp_skb_seglen(skb)))
1597 goto out;
1598
1599 len = skb->len;
1600 if (skb_shift(prev, skb, len)) {
1601 pcount += tcp_skb_pcount(skb);
1602 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1603 }
1604
1605 out:
1606 state->fack_count += pcount;
1607 return prev;
1608
1609 noop:
1610 return skb;
1611
1612 fallback:
1613 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1614 return NULL;
1615 }
1616
1617 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1618 struct tcp_sack_block *next_dup,
1619 struct tcp_sacktag_state *state,
1620 u32 start_seq, u32 end_seq,
1621 int dup_sack_in)
1622 {
1623 struct tcp_sock *tp = tcp_sk(sk);
1624 struct sk_buff *tmp;
1625
1626 tcp_for_write_queue_from(skb, sk) {
1627 int in_sack = 0;
1628 int dup_sack = dup_sack_in;
1629
1630 if (skb == tcp_send_head(sk))
1631 break;
1632
1633 /* queue is in-order => we can short-circuit the walk early */
1634 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1635 break;
1636
1637 if ((next_dup != NULL) &&
1638 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1639 in_sack = tcp_match_skb_to_sack(sk, skb,
1640 next_dup->start_seq,
1641 next_dup->end_seq);
1642 if (in_sack > 0)
1643 dup_sack = 1;
1644 }
1645
1646 /* skb reference here is a bit tricky to get right, since
1647 * shifting can eat and free both this skb and the next,
1648 * so not even _safe variant of the loop is enough.
1649 */
1650 if (in_sack <= 0) {
1651 tmp = tcp_shift_skb_data(sk, skb, state,
1652 start_seq, end_seq, dup_sack);
1653 if (tmp != NULL) {
1654 if (tmp != skb) {
1655 skb = tmp;
1656 continue;
1657 }
1658
1659 in_sack = 0;
1660 } else {
1661 in_sack = tcp_match_skb_to_sack(sk, skb,
1662 start_seq,
1663 end_seq);
1664 }
1665 }
1666
1667 if (unlikely(in_sack < 0))
1668 break;
1669
1670 if (in_sack) {
1671 TCP_SKB_CB(skb)->sacked =
1672 tcp_sacktag_one(sk,
1673 state,
1674 TCP_SKB_CB(skb)->sacked,
1675 TCP_SKB_CB(skb)->seq,
1676 TCP_SKB_CB(skb)->end_seq,
1677 dup_sack,
1678 tcp_skb_pcount(skb));
1679
1680 if (!before(TCP_SKB_CB(skb)->seq,
1681 tcp_highest_sack_seq(tp)))
1682 tcp_advance_highest_sack(sk, skb);
1683 }
1684
1685 state->fack_count += tcp_skb_pcount(skb);
1686 }
1687 return skb;
1688 }
1689
1690 /* Avoid all extra work that is being done by sacktag while walking in
1691 * a normal way
1692 */
1693 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1694 struct tcp_sacktag_state *state,
1695 u32 skip_to_seq)
1696 {
1697 tcp_for_write_queue_from(skb, sk) {
1698 if (skb == tcp_send_head(sk))
1699 break;
1700
1701 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1702 break;
1703
1704 state->fack_count += tcp_skb_pcount(skb);
1705 }
1706 return skb;
1707 }
1708
1709 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1710 struct sock *sk,
1711 struct tcp_sack_block *next_dup,
1712 struct tcp_sacktag_state *state,
1713 u32 skip_to_seq)
1714 {
1715 if (next_dup == NULL)
1716 return skb;
1717
1718 if (before(next_dup->start_seq, skip_to_seq)) {
1719 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1720 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1721 next_dup->start_seq, next_dup->end_seq,
1722 1);
1723 }
1724
1725 return skb;
1726 }
1727
1728 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1729 {
1730 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 }
1732
1733 static int
1734 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1735 u32 prior_snd_una)
1736 {
1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1738 struct tcp_sock *tp = tcp_sk(sk);
1739 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1740 TCP_SKB_CB(ack_skb)->sacked);
1741 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1742 struct tcp_sack_block sp[TCP_NUM_SACKS];
1743 struct tcp_sack_block *cache;
1744 struct tcp_sacktag_state state;
1745 struct sk_buff *skb;
1746 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1747 int used_sacks;
1748 int found_dup_sack = 0;
1749 int i, j;
1750 int first_sack_index;
1751
1752 state.flag = 0;
1753 state.reord = tp->packets_out;
1754
1755 if (!tp->sacked_out) {
1756 if (WARN_ON(tp->fackets_out))
1757 tp->fackets_out = 0;
1758 tcp_highest_sack_reset(sk);
1759 }
1760
1761 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1762 num_sacks, prior_snd_una);
1763 if (found_dup_sack)
1764 state.flag |= FLAG_DSACKING_ACK;
1765
1766 /* Eliminate too old ACKs, but take into
1767 * account more or less fresh ones, they can
1768 * contain valid SACK info.
1769 */
1770 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1771 return 0;
1772
1773 if (!tp->packets_out)
1774 goto out;
1775
1776 used_sacks = 0;
1777 first_sack_index = 0;
1778 for (i = 0; i < num_sacks; i++) {
1779 int dup_sack = !i && found_dup_sack;
1780
1781 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1782 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1783
1784 if (!tcp_is_sackblock_valid(tp, dup_sack,
1785 sp[used_sacks].start_seq,
1786 sp[used_sacks].end_seq)) {
1787 int mib_idx;
1788
1789 if (dup_sack) {
1790 if (!tp->undo_marker)
1791 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1792 else
1793 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1794 } else {
1795 /* Don't count olds caused by ACK reordering */
1796 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1797 !after(sp[used_sacks].end_seq, tp->snd_una))
1798 continue;
1799 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1800 }
1801
1802 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1803 if (i == 0)
1804 first_sack_index = -1;
1805 continue;
1806 }
1807
1808 /* Ignore very old stuff early */
1809 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1810 continue;
1811
1812 used_sacks++;
1813 }
1814
1815 /* order SACK blocks to allow in order walk of the retrans queue */
1816 for (i = used_sacks - 1; i > 0; i--) {
1817 for (j = 0; j < i; j++) {
1818 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1819 swap(sp[j], sp[j + 1]);
1820
1821 /* Track where the first SACK block goes to */
1822 if (j == first_sack_index)
1823 first_sack_index = j + 1;
1824 }
1825 }
1826 }
1827
1828 skb = tcp_write_queue_head(sk);
1829 state.fack_count = 0;
1830 i = 0;
1831
1832 if (!tp->sacked_out) {
1833 /* It's already past, so skip checking against it */
1834 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1835 } else {
1836 cache = tp->recv_sack_cache;
1837 /* Skip empty blocks in at head of the cache */
1838 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1839 !cache->end_seq)
1840 cache++;
1841 }
1842
1843 while (i < used_sacks) {
1844 u32 start_seq = sp[i].start_seq;
1845 u32 end_seq = sp[i].end_seq;
1846 int dup_sack = (found_dup_sack && (i == first_sack_index));
1847 struct tcp_sack_block *next_dup = NULL;
1848
1849 if (found_dup_sack && ((i + 1) == first_sack_index))
1850 next_dup = &sp[i + 1];
1851
1852 /* Skip too early cached blocks */
1853 while (tcp_sack_cache_ok(tp, cache) &&
1854 !before(start_seq, cache->end_seq))
1855 cache++;
1856
1857 /* Can skip some work by looking recv_sack_cache? */
1858 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1859 after(end_seq, cache->start_seq)) {
1860
1861 /* Head todo? */
1862 if (before(start_seq, cache->start_seq)) {
1863 skb = tcp_sacktag_skip(skb, sk, &state,
1864 start_seq);
1865 skb = tcp_sacktag_walk(skb, sk, next_dup,
1866 &state,
1867 start_seq,
1868 cache->start_seq,
1869 dup_sack);
1870 }
1871
1872 /* Rest of the block already fully processed? */
1873 if (!after(end_seq, cache->end_seq))
1874 goto advance_sp;
1875
1876 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1877 &state,
1878 cache->end_seq);
1879
1880 /* ...tail remains todo... */
1881 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1882 /* ...but better entrypoint exists! */
1883 skb = tcp_highest_sack(sk);
1884 if (skb == NULL)
1885 break;
1886 state.fack_count = tp->fackets_out;
1887 cache++;
1888 goto walk;
1889 }
1890
1891 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1892 /* Check overlap against next cached too (past this one already) */
1893 cache++;
1894 continue;
1895 }
1896
1897 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1898 skb = tcp_highest_sack(sk);
1899 if (skb == NULL)
1900 break;
1901 state.fack_count = tp->fackets_out;
1902 }
1903 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1904
1905 walk:
1906 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1907 start_seq, end_seq, dup_sack);
1908
1909 advance_sp:
1910 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1911 * due to in-order walk
1912 */
1913 if (after(end_seq, tp->frto_highmark))
1914 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1915
1916 i++;
1917 }
1918
1919 /* Clear the head of the cache sack blocks so we can skip it next time */
1920 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1921 tp->recv_sack_cache[i].start_seq = 0;
1922 tp->recv_sack_cache[i].end_seq = 0;
1923 }
1924 for (j = 0; j < used_sacks; j++)
1925 tp->recv_sack_cache[i++] = sp[j];
1926
1927 tcp_mark_lost_retrans(sk);
1928
1929 tcp_verify_left_out(tp);
1930
1931 if ((state.reord < tp->fackets_out) &&
1932 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1933 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1934 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1935
1936 out:
1937
1938 #if FASTRETRANS_DEBUG > 0
1939 WARN_ON((int)tp->sacked_out < 0);
1940 WARN_ON((int)tp->lost_out < 0);
1941 WARN_ON((int)tp->retrans_out < 0);
1942 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1943 #endif
1944 return state.flag;
1945 }
1946
1947 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1948 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1949 */
1950 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1951 {
1952 u32 holes;
1953
1954 holes = max(tp->lost_out, 1U);
1955 holes = min(holes, tp->packets_out);
1956
1957 if ((tp->sacked_out + holes) > tp->packets_out) {
1958 tp->sacked_out = tp->packets_out - holes;
1959 return 1;
1960 }
1961 return 0;
1962 }
1963
1964 /* If we receive more dupacks than we expected counting segments
1965 * in assumption of absent reordering, interpret this as reordering.
1966 * The only another reason could be bug in receiver TCP.
1967 */
1968 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1969 {
1970 struct tcp_sock *tp = tcp_sk(sk);
1971 if (tcp_limit_reno_sacked(tp))
1972 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1973 }
1974
1975 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1976
1977 static void tcp_add_reno_sack(struct sock *sk)
1978 {
1979 struct tcp_sock *tp = tcp_sk(sk);
1980 tp->sacked_out++;
1981 tcp_check_reno_reordering(sk, 0);
1982 tcp_verify_left_out(tp);
1983 }
1984
1985 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1986
1987 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1988 {
1989 struct tcp_sock *tp = tcp_sk(sk);
1990
1991 if (acked > 0) {
1992 /* One ACK acked hole. The rest eat duplicate ACKs. */
1993 if (acked - 1 >= tp->sacked_out)
1994 tp->sacked_out = 0;
1995 else
1996 tp->sacked_out -= acked - 1;
1997 }
1998 tcp_check_reno_reordering(sk, acked);
1999 tcp_verify_left_out(tp);
2000 }
2001
2002 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2003 {
2004 tp->sacked_out = 0;
2005 }
2006
2007 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2008 {
2009 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2010 }
2011
2012 /* F-RTO can only be used if TCP has never retransmitted anything other than
2013 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2014 */
2015 int tcp_use_frto(struct sock *sk)
2016 {
2017 const struct tcp_sock *tp = tcp_sk(sk);
2018 const struct inet_connection_sock *icsk = inet_csk(sk);
2019 struct sk_buff *skb;
2020
2021 if (!sysctl_tcp_frto)
2022 return 0;
2023
2024 /* MTU probe and F-RTO won't really play nicely along currently */
2025 if (icsk->icsk_mtup.probe_size)
2026 return 0;
2027
2028 if (tcp_is_sackfrto(tp))
2029 return 1;
2030
2031 /* Avoid expensive walking of rexmit queue if possible */
2032 if (tp->retrans_out > 1)
2033 return 0;
2034
2035 skb = tcp_write_queue_head(sk);
2036 if (tcp_skb_is_last(sk, skb))
2037 return 1;
2038 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2039 tcp_for_write_queue_from(skb, sk) {
2040 if (skb == tcp_send_head(sk))
2041 break;
2042 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2043 return 0;
2044 /* Short-circuit when first non-SACKed skb has been checked */
2045 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2046 break;
2047 }
2048 return 1;
2049 }
2050
2051 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2052 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2053 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2054 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2055 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2056 * bits are handled if the Loss state is really to be entered (in
2057 * tcp_enter_frto_loss).
2058 *
2059 * Do like tcp_enter_loss() would; when RTO expires the second time it
2060 * does:
2061 * "Reduce ssthresh if it has not yet been made inside this window."
2062 */
2063 void tcp_enter_frto(struct sock *sk)
2064 {
2065 const struct inet_connection_sock *icsk = inet_csk(sk);
2066 struct tcp_sock *tp = tcp_sk(sk);
2067 struct sk_buff *skb;
2068
2069 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2070 tp->snd_una == tp->high_seq ||
2071 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2072 !icsk->icsk_retransmits)) {
2073 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2074 /* Our state is too optimistic in ssthresh() call because cwnd
2075 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2076 * recovery has not yet completed. Pattern would be this: RTO,
2077 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2078 * up here twice).
2079 * RFC4138 should be more specific on what to do, even though
2080 * RTO is quite unlikely to occur after the first Cumulative ACK
2081 * due to back-off and complexity of triggering events ...
2082 */
2083 if (tp->frto_counter) {
2084 u32 stored_cwnd;
2085 stored_cwnd = tp->snd_cwnd;
2086 tp->snd_cwnd = 2;
2087 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2088 tp->snd_cwnd = stored_cwnd;
2089 } else {
2090 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2091 }
2092 /* ... in theory, cong.control module could do "any tricks" in
2093 * ssthresh(), which means that ca_state, lost bits and lost_out
2094 * counter would have to be faked before the call occurs. We
2095 * consider that too expensive, unlikely and hacky, so modules
2096 * using these in ssthresh() must deal these incompatibility
2097 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2098 */
2099 tcp_ca_event(sk, CA_EVENT_FRTO);
2100 }
2101
2102 tp->undo_marker = tp->snd_una;
2103 tp->undo_retrans = 0;
2104
2105 skb = tcp_write_queue_head(sk);
2106 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2107 tp->undo_marker = 0;
2108 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2109 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2110 tp->retrans_out -= tcp_skb_pcount(skb);
2111 }
2112 tcp_verify_left_out(tp);
2113
2114 /* Too bad if TCP was application limited */
2115 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2116
2117 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2118 * The last condition is necessary at least in tp->frto_counter case.
2119 */
2120 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2121 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2122 after(tp->high_seq, tp->snd_una)) {
2123 tp->frto_highmark = tp->high_seq;
2124 } else {
2125 tp->frto_highmark = tp->snd_nxt;
2126 }
2127 tcp_set_ca_state(sk, TCP_CA_Disorder);
2128 tp->high_seq = tp->snd_nxt;
2129 tp->frto_counter = 1;
2130 }
2131
2132 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2133 * which indicates that we should follow the traditional RTO recovery,
2134 * i.e. mark everything lost and do go-back-N retransmission.
2135 */
2136 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2137 {
2138 struct tcp_sock *tp = tcp_sk(sk);
2139 struct sk_buff *skb;
2140
2141 tp->lost_out = 0;
2142 tp->retrans_out = 0;
2143 if (tcp_is_reno(tp))
2144 tcp_reset_reno_sack(tp);
2145
2146 tcp_for_write_queue(skb, sk) {
2147 if (skb == tcp_send_head(sk))
2148 break;
2149
2150 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2151 /*
2152 * Count the retransmission made on RTO correctly (only when
2153 * waiting for the first ACK and did not get it)...
2154 */
2155 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2156 /* For some reason this R-bit might get cleared? */
2157 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2158 tp->retrans_out += tcp_skb_pcount(skb);
2159 /* ...enter this if branch just for the first segment */
2160 flag |= FLAG_DATA_ACKED;
2161 } else {
2162 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2163 tp->undo_marker = 0;
2164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2165 }
2166
2167 /* Marking forward transmissions that were made after RTO lost
2168 * can cause unnecessary retransmissions in some scenarios,
2169 * SACK blocks will mitigate that in some but not in all cases.
2170 * We used to not mark them but it was causing break-ups with
2171 * receivers that do only in-order receival.
2172 *
2173 * TODO: we could detect presence of such receiver and select
2174 * different behavior per flow.
2175 */
2176 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2177 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2178 tp->lost_out += tcp_skb_pcount(skb);
2179 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2180 }
2181 }
2182 tcp_verify_left_out(tp);
2183
2184 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2185 tp->snd_cwnd_cnt = 0;
2186 tp->snd_cwnd_stamp = tcp_time_stamp;
2187 tp->frto_counter = 0;
2188 tp->bytes_acked = 0;
2189
2190 tp->reordering = min_t(unsigned int, tp->reordering,
2191 sysctl_tcp_reordering);
2192 tcp_set_ca_state(sk, TCP_CA_Loss);
2193 tp->high_seq = tp->snd_nxt;
2194 TCP_ECN_queue_cwr(tp);
2195
2196 tcp_clear_all_retrans_hints(tp);
2197 }
2198
2199 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2200 {
2201 tp->retrans_out = 0;
2202 tp->lost_out = 0;
2203
2204 tp->undo_marker = 0;
2205 tp->undo_retrans = 0;
2206 }
2207
2208 void tcp_clear_retrans(struct tcp_sock *tp)
2209 {
2210 tcp_clear_retrans_partial(tp);
2211
2212 tp->fackets_out = 0;
2213 tp->sacked_out = 0;
2214 }
2215
2216 /* Enter Loss state. If "how" is not zero, forget all SACK information
2217 * and reset tags completely, otherwise preserve SACKs. If receiver
2218 * dropped its ofo queue, we will know this due to reneging detection.
2219 */
2220 void tcp_enter_loss(struct sock *sk, int how)
2221 {
2222 const struct inet_connection_sock *icsk = inet_csk(sk);
2223 struct tcp_sock *tp = tcp_sk(sk);
2224 struct sk_buff *skb;
2225
2226 /* Reduce ssthresh if it has not yet been made inside this window. */
2227 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2228 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2229 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2230 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2231 tcp_ca_event(sk, CA_EVENT_LOSS);
2232 }
2233 tp->snd_cwnd = 1;
2234 tp->snd_cwnd_cnt = 0;
2235 tp->snd_cwnd_stamp = tcp_time_stamp;
2236
2237 tp->bytes_acked = 0;
2238 tcp_clear_retrans_partial(tp);
2239
2240 if (tcp_is_reno(tp))
2241 tcp_reset_reno_sack(tp);
2242
2243 if (!how) {
2244 /* Push undo marker, if it was plain RTO and nothing
2245 * was retransmitted. */
2246 tp->undo_marker = tp->snd_una;
2247 } else {
2248 tp->sacked_out = 0;
2249 tp->fackets_out = 0;
2250 }
2251 tcp_clear_all_retrans_hints(tp);
2252
2253 tcp_for_write_queue(skb, sk) {
2254 if (skb == tcp_send_head(sk))
2255 break;
2256
2257 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2258 tp->undo_marker = 0;
2259 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2260 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2261 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2262 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2263 tp->lost_out += tcp_skb_pcount(skb);
2264 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2265 }
2266 }
2267 tcp_verify_left_out(tp);
2268
2269 tp->reordering = min_t(unsigned int, tp->reordering,
2270 sysctl_tcp_reordering);
2271 tcp_set_ca_state(sk, TCP_CA_Loss);
2272 tp->high_seq = tp->snd_nxt;
2273 TCP_ECN_queue_cwr(tp);
2274 /* Abort F-RTO algorithm if one is in progress */
2275 tp->frto_counter = 0;
2276 }
2277
2278 /* If ACK arrived pointing to a remembered SACK, it means that our
2279 * remembered SACKs do not reflect real state of receiver i.e.
2280 * receiver _host_ is heavily congested (or buggy).
2281 *
2282 * Do processing similar to RTO timeout.
2283 */
2284 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2285 {
2286 if (flag & FLAG_SACK_RENEGING) {
2287 struct inet_connection_sock *icsk = inet_csk(sk);
2288 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2289
2290 tcp_enter_loss(sk, 1);
2291 icsk->icsk_retransmits++;
2292 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2293 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2294 icsk->icsk_rto, TCP_RTO_MAX);
2295 return 1;
2296 }
2297 return 0;
2298 }
2299
2300 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2301 {
2302 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2303 }
2304
2305 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2306 * counter when SACK is enabled (without SACK, sacked_out is used for
2307 * that purpose).
2308 *
2309 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2310 * segments up to the highest received SACK block so far and holes in
2311 * between them.
2312 *
2313 * With reordering, holes may still be in flight, so RFC3517 recovery
2314 * uses pure sacked_out (total number of SACKed segments) even though
2315 * it violates the RFC that uses duplicate ACKs, often these are equal
2316 * but when e.g. out-of-window ACKs or packet duplication occurs,
2317 * they differ. Since neither occurs due to loss, TCP should really
2318 * ignore them.
2319 */
2320 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2321 {
2322 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2323 }
2324
2325 static inline int tcp_skb_timedout(const struct sock *sk,
2326 const struct sk_buff *skb)
2327 {
2328 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2329 }
2330
2331 static inline int tcp_head_timedout(const struct sock *sk)
2332 {
2333 const struct tcp_sock *tp = tcp_sk(sk);
2334
2335 return tp->packets_out &&
2336 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2337 }
2338
2339 /* Linux NewReno/SACK/FACK/ECN state machine.
2340 * --------------------------------------
2341 *
2342 * "Open" Normal state, no dubious events, fast path.
2343 * "Disorder" In all the respects it is "Open",
2344 * but requires a bit more attention. It is entered when
2345 * we see some SACKs or dupacks. It is split of "Open"
2346 * mainly to move some processing from fast path to slow one.
2347 * "CWR" CWND was reduced due to some Congestion Notification event.
2348 * It can be ECN, ICMP source quench, local device congestion.
2349 * "Recovery" CWND was reduced, we are fast-retransmitting.
2350 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2351 *
2352 * tcp_fastretrans_alert() is entered:
2353 * - each incoming ACK, if state is not "Open"
2354 * - when arrived ACK is unusual, namely:
2355 * * SACK
2356 * * Duplicate ACK.
2357 * * ECN ECE.
2358 *
2359 * Counting packets in flight is pretty simple.
2360 *
2361 * in_flight = packets_out - left_out + retrans_out
2362 *
2363 * packets_out is SND.NXT-SND.UNA counted in packets.
2364 *
2365 * retrans_out is number of retransmitted segments.
2366 *
2367 * left_out is number of segments left network, but not ACKed yet.
2368 *
2369 * left_out = sacked_out + lost_out
2370 *
2371 * sacked_out: Packets, which arrived to receiver out of order
2372 * and hence not ACKed. With SACKs this number is simply
2373 * amount of SACKed data. Even without SACKs
2374 * it is easy to give pretty reliable estimate of this number,
2375 * counting duplicate ACKs.
2376 *
2377 * lost_out: Packets lost by network. TCP has no explicit
2378 * "loss notification" feedback from network (for now).
2379 * It means that this number can be only _guessed_.
2380 * Actually, it is the heuristics to predict lossage that
2381 * distinguishes different algorithms.
2382 *
2383 * F.e. after RTO, when all the queue is considered as lost,
2384 * lost_out = packets_out and in_flight = retrans_out.
2385 *
2386 * Essentially, we have now two algorithms counting
2387 * lost packets.
2388 *
2389 * FACK: It is the simplest heuristics. As soon as we decided
2390 * that something is lost, we decide that _all_ not SACKed
2391 * packets until the most forward SACK are lost. I.e.
2392 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2393 * It is absolutely correct estimate, if network does not reorder
2394 * packets. And it loses any connection to reality when reordering
2395 * takes place. We use FACK by default until reordering
2396 * is suspected on the path to this destination.
2397 *
2398 * NewReno: when Recovery is entered, we assume that one segment
2399 * is lost (classic Reno). While we are in Recovery and
2400 * a partial ACK arrives, we assume that one more packet
2401 * is lost (NewReno). This heuristics are the same in NewReno
2402 * and SACK.
2403 *
2404 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2405 * deflation etc. CWND is real congestion window, never inflated, changes
2406 * only according to classic VJ rules.
2407 *
2408 * Really tricky (and requiring careful tuning) part of algorithm
2409 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2410 * The first determines the moment _when_ we should reduce CWND and,
2411 * hence, slow down forward transmission. In fact, it determines the moment
2412 * when we decide that hole is caused by loss, rather than by a reorder.
2413 *
2414 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2415 * holes, caused by lost packets.
2416 *
2417 * And the most logically complicated part of algorithm is undo
2418 * heuristics. We detect false retransmits due to both too early
2419 * fast retransmit (reordering) and underestimated RTO, analyzing
2420 * timestamps and D-SACKs. When we detect that some segments were
2421 * retransmitted by mistake and CWND reduction was wrong, we undo
2422 * window reduction and abort recovery phase. This logic is hidden
2423 * inside several functions named tcp_try_undo_<something>.
2424 */
2425
2426 /* This function decides, when we should leave Disordered state
2427 * and enter Recovery phase, reducing congestion window.
2428 *
2429 * Main question: may we further continue forward transmission
2430 * with the same cwnd?
2431 */
2432 static int tcp_time_to_recover(struct sock *sk)
2433 {
2434 struct tcp_sock *tp = tcp_sk(sk);
2435 __u32 packets_out;
2436
2437 /* Do not perform any recovery during F-RTO algorithm */
2438 if (tp->frto_counter)
2439 return 0;
2440
2441 /* Trick#1: The loss is proven. */
2442 if (tp->lost_out)
2443 return 1;
2444
2445 /* Not-A-Trick#2 : Classic rule... */
2446 if (tcp_dupack_heuristics(tp) > tp->reordering)
2447 return 1;
2448
2449 /* Trick#3 : when we use RFC2988 timer restart, fast
2450 * retransmit can be triggered by timeout of queue head.
2451 */
2452 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2453 return 1;
2454
2455 /* Trick#4: It is still not OK... But will it be useful to delay
2456 * recovery more?
2457 */
2458 packets_out = tp->packets_out;
2459 if (packets_out <= tp->reordering &&
2460 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2461 !tcp_may_send_now(sk)) {
2462 /* We have nothing to send. This connection is limited
2463 * either by receiver window or by application.
2464 */
2465 return 1;
2466 }
2467
2468 /* If a thin stream is detected, retransmit after first
2469 * received dupack. Employ only if SACK is supported in order
2470 * to avoid possible corner-case series of spurious retransmissions
2471 * Use only if there are no unsent data.
2472 */
2473 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2474 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2475 tcp_is_sack(tp) && !tcp_send_head(sk))
2476 return 1;
2477
2478 return 0;
2479 }
2480
2481 /* New heuristics: it is possible only after we switched to restart timer
2482 * each time when something is ACKed. Hence, we can detect timed out packets
2483 * during fast retransmit without falling to slow start.
2484 *
2485 * Usefulness of this as is very questionable, since we should know which of
2486 * the segments is the next to timeout which is relatively expensive to find
2487 * in general case unless we add some data structure just for that. The
2488 * current approach certainly won't find the right one too often and when it
2489 * finally does find _something_ it usually marks large part of the window
2490 * right away (because a retransmission with a larger timestamp blocks the
2491 * loop from advancing). -ij
2492 */
2493 static void tcp_timeout_skbs(struct sock *sk)
2494 {
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 struct sk_buff *skb;
2497
2498 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2499 return;
2500
2501 skb = tp->scoreboard_skb_hint;
2502 if (tp->scoreboard_skb_hint == NULL)
2503 skb = tcp_write_queue_head(sk);
2504
2505 tcp_for_write_queue_from(skb, sk) {
2506 if (skb == tcp_send_head(sk))
2507 break;
2508 if (!tcp_skb_timedout(sk, skb))
2509 break;
2510
2511 tcp_skb_mark_lost(tp, skb);
2512 }
2513
2514 tp->scoreboard_skb_hint = skb;
2515
2516 tcp_verify_left_out(tp);
2517 }
2518
2519 /* Detect loss in event "A" above by marking head of queue up as lost.
2520 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2521 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2522 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2523 * the maximum SACKed segments to pass before reaching this limit.
2524 */
2525 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2526 {
2527 struct tcp_sock *tp = tcp_sk(sk);
2528 struct sk_buff *skb;
2529 int cnt, oldcnt;
2530 int err;
2531 unsigned int mss;
2532 /* Use SACK to deduce losses of new sequences sent during recovery */
2533 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2534
2535 WARN_ON(packets > tp->packets_out);
2536 if (tp->lost_skb_hint) {
2537 skb = tp->lost_skb_hint;
2538 cnt = tp->lost_cnt_hint;
2539 /* Head already handled? */
2540 if (mark_head && skb != tcp_write_queue_head(sk))
2541 return;
2542 } else {
2543 skb = tcp_write_queue_head(sk);
2544 cnt = 0;
2545 }
2546
2547 tcp_for_write_queue_from(skb, sk) {
2548 if (skb == tcp_send_head(sk))
2549 break;
2550 /* TODO: do this better */
2551 /* this is not the most efficient way to do this... */
2552 tp->lost_skb_hint = skb;
2553 tp->lost_cnt_hint = cnt;
2554
2555 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2556 break;
2557
2558 oldcnt = cnt;
2559 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2560 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2561 cnt += tcp_skb_pcount(skb);
2562
2563 if (cnt > packets) {
2564 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2565 (oldcnt >= packets))
2566 break;
2567
2568 mss = skb_shinfo(skb)->gso_size;
2569 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2570 if (err < 0)
2571 break;
2572 cnt = packets;
2573 }
2574
2575 tcp_skb_mark_lost(tp, skb);
2576
2577 if (mark_head)
2578 break;
2579 }
2580 tcp_verify_left_out(tp);
2581 }
2582
2583 /* Account newly detected lost packet(s) */
2584
2585 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588
2589 if (tcp_is_reno(tp)) {
2590 tcp_mark_head_lost(sk, 1, 1);
2591 } else if (tcp_is_fack(tp)) {
2592 int lost = tp->fackets_out - tp->reordering;
2593 if (lost <= 0)
2594 lost = 1;
2595 tcp_mark_head_lost(sk, lost, 0);
2596 } else {
2597 int sacked_upto = tp->sacked_out - tp->reordering;
2598 if (sacked_upto >= 0)
2599 tcp_mark_head_lost(sk, sacked_upto, 0);
2600 else if (fast_rexmit)
2601 tcp_mark_head_lost(sk, 1, 1);
2602 }
2603
2604 tcp_timeout_skbs(sk);
2605 }
2606
2607 /* CWND moderation, preventing bursts due to too big ACKs
2608 * in dubious situations.
2609 */
2610 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2611 {
2612 tp->snd_cwnd = min(tp->snd_cwnd,
2613 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2614 tp->snd_cwnd_stamp = tcp_time_stamp;
2615 }
2616
2617 /* Lower bound on congestion window is slow start threshold
2618 * unless congestion avoidance choice decides to overide it.
2619 */
2620 static inline u32 tcp_cwnd_min(const struct sock *sk)
2621 {
2622 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2623
2624 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2625 }
2626
2627 /* Decrease cwnd each second ack. */
2628 static void tcp_cwnd_down(struct sock *sk, int flag)
2629 {
2630 struct tcp_sock *tp = tcp_sk(sk);
2631 int decr = tp->snd_cwnd_cnt + 1;
2632
2633 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2634 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2635 tp->snd_cwnd_cnt = decr & 1;
2636 decr >>= 1;
2637
2638 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2639 tp->snd_cwnd -= decr;
2640
2641 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2642 tp->snd_cwnd_stamp = tcp_time_stamp;
2643 }
2644 }
2645
2646 /* Nothing was retransmitted or returned timestamp is less
2647 * than timestamp of the first retransmission.
2648 */
2649 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2650 {
2651 return !tp->retrans_stamp ||
2652 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2653 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2654 }
2655
2656 /* Undo procedures. */
2657
2658 #if FASTRETRANS_DEBUG > 1
2659 static void DBGUNDO(struct sock *sk, const char *msg)
2660 {
2661 struct tcp_sock *tp = tcp_sk(sk);
2662 struct inet_sock *inet = inet_sk(sk);
2663
2664 if (sk->sk_family == AF_INET) {
2665 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2666 msg,
2667 &inet->inet_daddr, ntohs(inet->inet_dport),
2668 tp->snd_cwnd, tcp_left_out(tp),
2669 tp->snd_ssthresh, tp->prior_ssthresh,
2670 tp->packets_out);
2671 }
2672 #if IS_ENABLED(CONFIG_IPV6)
2673 else if (sk->sk_family == AF_INET6) {
2674 struct ipv6_pinfo *np = inet6_sk(sk);
2675 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2676 msg,
2677 &np->daddr, ntohs(inet->inet_dport),
2678 tp->snd_cwnd, tcp_left_out(tp),
2679 tp->snd_ssthresh, tp->prior_ssthresh,
2680 tp->packets_out);
2681 }
2682 #endif
2683 }
2684 #else
2685 #define DBGUNDO(x...) do { } while (0)
2686 #endif
2687
2688 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2689 {
2690 struct tcp_sock *tp = tcp_sk(sk);
2691
2692 if (tp->prior_ssthresh) {
2693 const struct inet_connection_sock *icsk = inet_csk(sk);
2694
2695 if (icsk->icsk_ca_ops->undo_cwnd)
2696 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2697 else
2698 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2699
2700 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2701 tp->snd_ssthresh = tp->prior_ssthresh;
2702 TCP_ECN_withdraw_cwr(tp);
2703 }
2704 } else {
2705 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2706 }
2707 tp->snd_cwnd_stamp = tcp_time_stamp;
2708 }
2709
2710 static inline int tcp_may_undo(const struct tcp_sock *tp)
2711 {
2712 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2713 }
2714
2715 /* People celebrate: "We love our President!" */
2716 static int tcp_try_undo_recovery(struct sock *sk)
2717 {
2718 struct tcp_sock *tp = tcp_sk(sk);
2719
2720 if (tcp_may_undo(tp)) {
2721 int mib_idx;
2722
2723 /* Happy end! We did not retransmit anything
2724 * or our original transmission succeeded.
2725 */
2726 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2727 tcp_undo_cwr(sk, true);
2728 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2729 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2730 else
2731 mib_idx = LINUX_MIB_TCPFULLUNDO;
2732
2733 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2734 tp->undo_marker = 0;
2735 }
2736 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2737 /* Hold old state until something *above* high_seq
2738 * is ACKed. For Reno it is MUST to prevent false
2739 * fast retransmits (RFC2582). SACK TCP is safe. */
2740 tcp_moderate_cwnd(tp);
2741 return 1;
2742 }
2743 tcp_set_ca_state(sk, TCP_CA_Open);
2744 return 0;
2745 }
2746
2747 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2748 static void tcp_try_undo_dsack(struct sock *sk)
2749 {
2750 struct tcp_sock *tp = tcp_sk(sk);
2751
2752 if (tp->undo_marker && !tp->undo_retrans) {
2753 DBGUNDO(sk, "D-SACK");
2754 tcp_undo_cwr(sk, true);
2755 tp->undo_marker = 0;
2756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2757 }
2758 }
2759
2760 /* We can clear retrans_stamp when there are no retransmissions in the
2761 * window. It would seem that it is trivially available for us in
2762 * tp->retrans_out, however, that kind of assumptions doesn't consider
2763 * what will happen if errors occur when sending retransmission for the
2764 * second time. ...It could the that such segment has only
2765 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2766 * the head skb is enough except for some reneging corner cases that
2767 * are not worth the effort.
2768 *
2769 * Main reason for all this complexity is the fact that connection dying
2770 * time now depends on the validity of the retrans_stamp, in particular,
2771 * that successive retransmissions of a segment must not advance
2772 * retrans_stamp under any conditions.
2773 */
2774 static int tcp_any_retrans_done(const struct sock *sk)
2775 {
2776 const struct tcp_sock *tp = tcp_sk(sk);
2777 struct sk_buff *skb;
2778
2779 if (tp->retrans_out)
2780 return 1;
2781
2782 skb = tcp_write_queue_head(sk);
2783 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2784 return 1;
2785
2786 return 0;
2787 }
2788
2789 /* Undo during fast recovery after partial ACK. */
2790
2791 static int tcp_try_undo_partial(struct sock *sk, int acked)
2792 {
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 /* Partial ACK arrived. Force Hoe's retransmit. */
2795 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2796
2797 if (tcp_may_undo(tp)) {
2798 /* Plain luck! Hole if filled with delayed
2799 * packet, rather than with a retransmit.
2800 */
2801 if (!tcp_any_retrans_done(sk))
2802 tp->retrans_stamp = 0;
2803
2804 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2805
2806 DBGUNDO(sk, "Hoe");
2807 tcp_undo_cwr(sk, false);
2808 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2809
2810 /* So... Do not make Hoe's retransmit yet.
2811 * If the first packet was delayed, the rest
2812 * ones are most probably delayed as well.
2813 */
2814 failed = 0;
2815 }
2816 return failed;
2817 }
2818
2819 /* Undo during loss recovery after partial ACK. */
2820 static int tcp_try_undo_loss(struct sock *sk)
2821 {
2822 struct tcp_sock *tp = tcp_sk(sk);
2823
2824 if (tcp_may_undo(tp)) {
2825 struct sk_buff *skb;
2826 tcp_for_write_queue(skb, sk) {
2827 if (skb == tcp_send_head(sk))
2828 break;
2829 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2830 }
2831
2832 tcp_clear_all_retrans_hints(tp);
2833
2834 DBGUNDO(sk, "partial loss");
2835 tp->lost_out = 0;
2836 tcp_undo_cwr(sk, true);
2837 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2838 inet_csk(sk)->icsk_retransmits = 0;
2839 tp->undo_marker = 0;
2840 if (tcp_is_sack(tp))
2841 tcp_set_ca_state(sk, TCP_CA_Open);
2842 return 1;
2843 }
2844 return 0;
2845 }
2846
2847 static inline void tcp_complete_cwr(struct sock *sk)
2848 {
2849 struct tcp_sock *tp = tcp_sk(sk);
2850
2851 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2852 if (tp->undo_marker) {
2853 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2854 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2855 else /* PRR */
2856 tp->snd_cwnd = tp->snd_ssthresh;
2857 tp->snd_cwnd_stamp = tcp_time_stamp;
2858 }
2859 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2860 }
2861
2862 static void tcp_try_keep_open(struct sock *sk)
2863 {
2864 struct tcp_sock *tp = tcp_sk(sk);
2865 int state = TCP_CA_Open;
2866
2867 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2868 state = TCP_CA_Disorder;
2869
2870 if (inet_csk(sk)->icsk_ca_state != state) {
2871 tcp_set_ca_state(sk, state);
2872 tp->high_seq = tp->snd_nxt;
2873 }
2874 }
2875
2876 static void tcp_try_to_open(struct sock *sk, int flag)
2877 {
2878 struct tcp_sock *tp = tcp_sk(sk);
2879
2880 tcp_verify_left_out(tp);
2881
2882 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2883 tp->retrans_stamp = 0;
2884
2885 if (flag & FLAG_ECE)
2886 tcp_enter_cwr(sk, 1);
2887
2888 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2889 tcp_try_keep_open(sk);
2890 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2891 tcp_moderate_cwnd(tp);
2892 } else {
2893 tcp_cwnd_down(sk, flag);
2894 }
2895 }
2896
2897 static void tcp_mtup_probe_failed(struct sock *sk)
2898 {
2899 struct inet_connection_sock *icsk = inet_csk(sk);
2900
2901 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2902 icsk->icsk_mtup.probe_size = 0;
2903 }
2904
2905 static void tcp_mtup_probe_success(struct sock *sk)
2906 {
2907 struct tcp_sock *tp = tcp_sk(sk);
2908 struct inet_connection_sock *icsk = inet_csk(sk);
2909
2910 /* FIXME: breaks with very large cwnd */
2911 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2912 tp->snd_cwnd = tp->snd_cwnd *
2913 tcp_mss_to_mtu(sk, tp->mss_cache) /
2914 icsk->icsk_mtup.probe_size;
2915 tp->snd_cwnd_cnt = 0;
2916 tp->snd_cwnd_stamp = tcp_time_stamp;
2917 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2918
2919 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2920 icsk->icsk_mtup.probe_size = 0;
2921 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2922 }
2923
2924 /* Do a simple retransmit without using the backoff mechanisms in
2925 * tcp_timer. This is used for path mtu discovery.
2926 * The socket is already locked here.
2927 */
2928 void tcp_simple_retransmit(struct sock *sk)
2929 {
2930 const struct inet_connection_sock *icsk = inet_csk(sk);
2931 struct tcp_sock *tp = tcp_sk(sk);
2932 struct sk_buff *skb;
2933 unsigned int mss = tcp_current_mss(sk);
2934 u32 prior_lost = tp->lost_out;
2935
2936 tcp_for_write_queue(skb, sk) {
2937 if (skb == tcp_send_head(sk))
2938 break;
2939 if (tcp_skb_seglen(skb) > mss &&
2940 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2941 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2942 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2943 tp->retrans_out -= tcp_skb_pcount(skb);
2944 }
2945 tcp_skb_mark_lost_uncond_verify(tp, skb);
2946 }
2947 }
2948
2949 tcp_clear_retrans_hints_partial(tp);
2950
2951 if (prior_lost == tp->lost_out)
2952 return;
2953
2954 if (tcp_is_reno(tp))
2955 tcp_limit_reno_sacked(tp);
2956
2957 tcp_verify_left_out(tp);
2958
2959 /* Don't muck with the congestion window here.
2960 * Reason is that we do not increase amount of _data_
2961 * in network, but units changed and effective
2962 * cwnd/ssthresh really reduced now.
2963 */
2964 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2965 tp->high_seq = tp->snd_nxt;
2966 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2967 tp->prior_ssthresh = 0;
2968 tp->undo_marker = 0;
2969 tcp_set_ca_state(sk, TCP_CA_Loss);
2970 }
2971 tcp_xmit_retransmit_queue(sk);
2972 }
2973 EXPORT_SYMBOL(tcp_simple_retransmit);
2974
2975 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2976 * (proportional rate reduction with slow start reduction bound) as described in
2977 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2978 * It computes the number of packets to send (sndcnt) based on packets newly
2979 * delivered:
2980 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2981 * cwnd reductions across a full RTT.
2982 * 2) If packets in flight is lower than ssthresh (such as due to excess
2983 * losses and/or application stalls), do not perform any further cwnd
2984 * reductions, but instead slow start up to ssthresh.
2985 */
2986 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2987 int fast_rexmit, int flag)
2988 {
2989 struct tcp_sock *tp = tcp_sk(sk);
2990 int sndcnt = 0;
2991 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2992
2993 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2994 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2995 tp->prior_cwnd - 1;
2996 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2997 } else {
2998 sndcnt = min_t(int, delta,
2999 max_t(int, tp->prr_delivered - tp->prr_out,
3000 newly_acked_sacked) + 1);
3001 }
3002
3003 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3004 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3005 }
3006
3007 /* Process an event, which can update packets-in-flight not trivially.
3008 * Main goal of this function is to calculate new estimate for left_out,
3009 * taking into account both packets sitting in receiver's buffer and
3010 * packets lost by network.
3011 *
3012 * Besides that it does CWND reduction, when packet loss is detected
3013 * and changes state of machine.
3014 *
3015 * It does _not_ decide what to send, it is made in function
3016 * tcp_xmit_retransmit_queue().
3017 */
3018 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3019 int newly_acked_sacked, bool is_dupack,
3020 int flag)
3021 {
3022 struct inet_connection_sock *icsk = inet_csk(sk);
3023 struct tcp_sock *tp = tcp_sk(sk);
3024 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3025 (tcp_fackets_out(tp) > tp->reordering));
3026 int fast_rexmit = 0, mib_idx;
3027
3028 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3029 tp->sacked_out = 0;
3030 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3031 tp->fackets_out = 0;
3032
3033 /* Now state machine starts.
3034 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3035 if (flag & FLAG_ECE)
3036 tp->prior_ssthresh = 0;
3037
3038 /* B. In all the states check for reneging SACKs. */
3039 if (tcp_check_sack_reneging(sk, flag))
3040 return;
3041
3042 /* C. Check consistency of the current state. */
3043 tcp_verify_left_out(tp);
3044
3045 /* D. Check state exit conditions. State can be terminated
3046 * when high_seq is ACKed. */
3047 if (icsk->icsk_ca_state == TCP_CA_Open) {
3048 WARN_ON(tp->retrans_out != 0);
3049 tp->retrans_stamp = 0;
3050 } else if (!before(tp->snd_una, tp->high_seq)) {
3051 switch (icsk->icsk_ca_state) {
3052 case TCP_CA_Loss:
3053 icsk->icsk_retransmits = 0;
3054 if (tcp_try_undo_recovery(sk))
3055 return;
3056 break;
3057
3058 case TCP_CA_CWR:
3059 /* CWR is to be held something *above* high_seq
3060 * is ACKed for CWR bit to reach receiver. */
3061 if (tp->snd_una != tp->high_seq) {
3062 tcp_complete_cwr(sk);
3063 tcp_set_ca_state(sk, TCP_CA_Open);
3064 }
3065 break;
3066
3067 case TCP_CA_Recovery:
3068 if (tcp_is_reno(tp))
3069 tcp_reset_reno_sack(tp);
3070 if (tcp_try_undo_recovery(sk))
3071 return;
3072 tcp_complete_cwr(sk);
3073 break;
3074 }
3075 }
3076
3077 /* E. Process state. */
3078 switch (icsk->icsk_ca_state) {
3079 case TCP_CA_Recovery:
3080 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3081 if (tcp_is_reno(tp) && is_dupack)
3082 tcp_add_reno_sack(sk);
3083 } else
3084 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3085 break;
3086 case TCP_CA_Loss:
3087 if (flag & FLAG_DATA_ACKED)
3088 icsk->icsk_retransmits = 0;
3089 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3090 tcp_reset_reno_sack(tp);
3091 if (!tcp_try_undo_loss(sk)) {
3092 tcp_moderate_cwnd(tp);
3093 tcp_xmit_retransmit_queue(sk);
3094 return;
3095 }
3096 if (icsk->icsk_ca_state != TCP_CA_Open)
3097 return;
3098 /* Loss is undone; fall through to processing in Open state. */
3099 default:
3100 if (tcp_is_reno(tp)) {
3101 if (flag & FLAG_SND_UNA_ADVANCED)
3102 tcp_reset_reno_sack(tp);
3103 if (is_dupack)
3104 tcp_add_reno_sack(sk);
3105 }
3106
3107 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3108 tcp_try_undo_dsack(sk);
3109
3110 if (!tcp_time_to_recover(sk)) {
3111 tcp_try_to_open(sk, flag);
3112 return;
3113 }
3114
3115 /* MTU probe failure: don't reduce cwnd */
3116 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3117 icsk->icsk_mtup.probe_size &&
3118 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3119 tcp_mtup_probe_failed(sk);
3120 /* Restores the reduction we did in tcp_mtup_probe() */
3121 tp->snd_cwnd++;
3122 tcp_simple_retransmit(sk);
3123 return;
3124 }
3125
3126 /* Otherwise enter Recovery state */
3127
3128 if (tcp_is_reno(tp))
3129 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3130 else
3131 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3132
3133 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3134
3135 tp->high_seq = tp->snd_nxt;
3136 tp->prior_ssthresh = 0;
3137 tp->undo_marker = tp->snd_una;
3138 tp->undo_retrans = tp->retrans_out;
3139
3140 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3141 if (!(flag & FLAG_ECE))
3142 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3143 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3144 TCP_ECN_queue_cwr(tp);
3145 }
3146
3147 tp->bytes_acked = 0;
3148 tp->snd_cwnd_cnt = 0;
3149 tp->prior_cwnd = tp->snd_cwnd;
3150 tp->prr_delivered = 0;
3151 tp->prr_out = 0;
3152 tcp_set_ca_state(sk, TCP_CA_Recovery);
3153 fast_rexmit = 1;
3154 }
3155
3156 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3157 tcp_update_scoreboard(sk, fast_rexmit);
3158 tp->prr_delivered += newly_acked_sacked;
3159 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3160 tcp_xmit_retransmit_queue(sk);
3161 }
3162
3163 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3164 {
3165 tcp_rtt_estimator(sk, seq_rtt);
3166 tcp_set_rto(sk);
3167 inet_csk(sk)->icsk_backoff = 0;
3168 }
3169 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3170
3171 /* Read draft-ietf-tcplw-high-performance before mucking
3172 * with this code. (Supersedes RFC1323)
3173 */
3174 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3175 {
3176 /* RTTM Rule: A TSecr value received in a segment is used to
3177 * update the averaged RTT measurement only if the segment
3178 * acknowledges some new data, i.e., only if it advances the
3179 * left edge of the send window.
3180 *
3181 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3182 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3183 *
3184 * Changed: reset backoff as soon as we see the first valid sample.
3185 * If we do not, we get strongly overestimated rto. With timestamps
3186 * samples are accepted even from very old segments: f.e., when rtt=1
3187 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3188 * answer arrives rto becomes 120 seconds! If at least one of segments
3189 * in window is lost... Voila. --ANK (010210)
3190 */
3191 struct tcp_sock *tp = tcp_sk(sk);
3192
3193 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3194 }
3195
3196 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3197 {
3198 /* We don't have a timestamp. Can only use
3199 * packets that are not retransmitted to determine
3200 * rtt estimates. Also, we must not reset the
3201 * backoff for rto until we get a non-retransmitted
3202 * packet. This allows us to deal with a situation
3203 * where the network delay has increased suddenly.
3204 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3205 */
3206
3207 if (flag & FLAG_RETRANS_DATA_ACKED)
3208 return;
3209
3210 tcp_valid_rtt_meas(sk, seq_rtt);
3211 }
3212
3213 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3214 const s32 seq_rtt)
3215 {
3216 const struct tcp_sock *tp = tcp_sk(sk);
3217 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3218 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3219 tcp_ack_saw_tstamp(sk, flag);
3220 else if (seq_rtt >= 0)
3221 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3222 }
3223
3224 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3225 {
3226 const struct inet_connection_sock *icsk = inet_csk(sk);
3227 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3228 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3229 }
3230
3231 /* Restart timer after forward progress on connection.
3232 * RFC2988 recommends to restart timer to now+rto.
3233 */
3234 static void tcp_rearm_rto(struct sock *sk)
3235 {
3236 const struct tcp_sock *tp = tcp_sk(sk);
3237
3238 if (!tp->packets_out) {
3239 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3240 } else {
3241 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3242 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3243 }
3244 }
3245
3246 /* If we get here, the whole TSO packet has not been acked. */
3247 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3248 {
3249 struct tcp_sock *tp = tcp_sk(sk);
3250 u32 packets_acked;
3251
3252 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3253
3254 packets_acked = tcp_skb_pcount(skb);
3255 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3256 return 0;
3257 packets_acked -= tcp_skb_pcount(skb);
3258
3259 if (packets_acked) {
3260 BUG_ON(tcp_skb_pcount(skb) == 0);
3261 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3262 }
3263
3264 return packets_acked;
3265 }
3266
3267 /* Remove acknowledged frames from the retransmission queue. If our packet
3268 * is before the ack sequence we can discard it as it's confirmed to have
3269 * arrived at the other end.
3270 */
3271 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3272 u32 prior_snd_una)
3273 {
3274 struct tcp_sock *tp = tcp_sk(sk);
3275 const struct inet_connection_sock *icsk = inet_csk(sk);
3276 struct sk_buff *skb;
3277 u32 now = tcp_time_stamp;
3278 int fully_acked = 1;
3279 int flag = 0;
3280 u32 pkts_acked = 0;
3281 u32 reord = tp->packets_out;
3282 u32 prior_sacked = tp->sacked_out;
3283 s32 seq_rtt = -1;
3284 s32 ca_seq_rtt = -1;
3285 ktime_t last_ackt = net_invalid_timestamp();
3286
3287 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3288 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3289 u32 acked_pcount;
3290 u8 sacked = scb->sacked;
3291
3292 /* Determine how many packets and what bytes were acked, tso and else */
3293 if (after(scb->end_seq, tp->snd_una)) {
3294 if (tcp_skb_pcount(skb) == 1 ||
3295 !after(tp->snd_una, scb->seq))
3296 break;
3297
3298 acked_pcount = tcp_tso_acked(sk, skb);
3299 if (!acked_pcount)
3300 break;
3301
3302 fully_acked = 0;
3303 } else {
3304 acked_pcount = tcp_skb_pcount(skb);
3305 }
3306
3307 if (sacked & TCPCB_RETRANS) {
3308 if (sacked & TCPCB_SACKED_RETRANS)
3309 tp->retrans_out -= acked_pcount;
3310 flag |= FLAG_RETRANS_DATA_ACKED;
3311 ca_seq_rtt = -1;
3312 seq_rtt = -1;
3313 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3314 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3315 } else {
3316 ca_seq_rtt = now - scb->when;
3317 last_ackt = skb->tstamp;
3318 if (seq_rtt < 0) {
3319 seq_rtt = ca_seq_rtt;
3320 }
3321 if (!(sacked & TCPCB_SACKED_ACKED))
3322 reord = min(pkts_acked, reord);
3323 }
3324
3325 if (sacked & TCPCB_SACKED_ACKED)
3326 tp->sacked_out -= acked_pcount;
3327 if (sacked & TCPCB_LOST)
3328 tp->lost_out -= acked_pcount;
3329
3330 tp->packets_out -= acked_pcount;
3331 pkts_acked += acked_pcount;
3332
3333 /* Initial outgoing SYN's get put onto the write_queue
3334 * just like anything else we transmit. It is not
3335 * true data, and if we misinform our callers that
3336 * this ACK acks real data, we will erroneously exit
3337 * connection startup slow start one packet too
3338 * quickly. This is severely frowned upon behavior.
3339 */
3340 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3341 flag |= FLAG_DATA_ACKED;
3342 } else {
3343 flag |= FLAG_SYN_ACKED;
3344 tp->retrans_stamp = 0;
3345 }
3346
3347 if (!fully_acked)
3348 break;
3349
3350 tcp_unlink_write_queue(skb, sk);
3351 sk_wmem_free_skb(sk, skb);
3352 tp->scoreboard_skb_hint = NULL;
3353 if (skb == tp->retransmit_skb_hint)
3354 tp->retransmit_skb_hint = NULL;
3355 if (skb == tp->lost_skb_hint)
3356 tp->lost_skb_hint = NULL;
3357 }
3358
3359 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3360 tp->snd_up = tp->snd_una;
3361
3362 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3363 flag |= FLAG_SACK_RENEGING;
3364
3365 if (flag & FLAG_ACKED) {
3366 const struct tcp_congestion_ops *ca_ops
3367 = inet_csk(sk)->icsk_ca_ops;
3368
3369 if (unlikely(icsk->icsk_mtup.probe_size &&
3370 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3371 tcp_mtup_probe_success(sk);
3372 }
3373
3374 tcp_ack_update_rtt(sk, flag, seq_rtt);
3375 tcp_rearm_rto(sk);
3376
3377 if (tcp_is_reno(tp)) {
3378 tcp_remove_reno_sacks(sk, pkts_acked);
3379 } else {
3380 int delta;
3381
3382 /* Non-retransmitted hole got filled? That's reordering */
3383 if (reord < prior_fackets)
3384 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3385
3386 delta = tcp_is_fack(tp) ? pkts_acked :
3387 prior_sacked - tp->sacked_out;
3388 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3389 }
3390
3391 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3392
3393 if (ca_ops->pkts_acked) {
3394 s32 rtt_us = -1;
3395
3396 /* Is the ACK triggering packet unambiguous? */
3397 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3398 /* High resolution needed and available? */
3399 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3400 !ktime_equal(last_ackt,
3401 net_invalid_timestamp()))
3402 rtt_us = ktime_us_delta(ktime_get_real(),
3403 last_ackt);
3404 else if (ca_seq_rtt >= 0)
3405 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3406 }
3407
3408 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3409 }
3410 }
3411
3412 #if FASTRETRANS_DEBUG > 0
3413 WARN_ON((int)tp->sacked_out < 0);
3414 WARN_ON((int)tp->lost_out < 0);
3415 WARN_ON((int)tp->retrans_out < 0);
3416 if (!tp->packets_out && tcp_is_sack(tp)) {
3417 icsk = inet_csk(sk);
3418 if (tp->lost_out) {
3419 printk(KERN_DEBUG "Leak l=%u %d\n",
3420 tp->lost_out, icsk->icsk_ca_state);
3421 tp->lost_out = 0;
3422 }
3423 if (tp->sacked_out) {
3424 printk(KERN_DEBUG "Leak s=%u %d\n",
3425 tp->sacked_out, icsk->icsk_ca_state);
3426 tp->sacked_out = 0;
3427 }
3428 if (tp->retrans_out) {
3429 printk(KERN_DEBUG "Leak r=%u %d\n",
3430 tp->retrans_out, icsk->icsk_ca_state);
3431 tp->retrans_out = 0;
3432 }
3433 }
3434 #endif
3435 return flag;
3436 }
3437
3438 static void tcp_ack_probe(struct sock *sk)
3439 {
3440 const struct tcp_sock *tp = tcp_sk(sk);
3441 struct inet_connection_sock *icsk = inet_csk(sk);
3442
3443 /* Was it a usable window open? */
3444
3445 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3446 icsk->icsk_backoff = 0;
3447 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3448 /* Socket must be waked up by subsequent tcp_data_snd_check().
3449 * This function is not for random using!
3450 */
3451 } else {
3452 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3453 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3454 TCP_RTO_MAX);
3455 }
3456 }
3457
3458 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3459 {
3460 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3461 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3462 }
3463
3464 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3465 {
3466 const struct tcp_sock *tp = tcp_sk(sk);
3467 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3468 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3469 }
3470
3471 /* Check that window update is acceptable.
3472 * The function assumes that snd_una<=ack<=snd_next.
3473 */
3474 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3475 const u32 ack, const u32 ack_seq,
3476 const u32 nwin)
3477 {
3478 return after(ack, tp->snd_una) ||
3479 after(ack_seq, tp->snd_wl1) ||
3480 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3481 }
3482
3483 /* Update our send window.
3484 *
3485 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3486 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3487 */
3488 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3489 u32 ack_seq)
3490 {
3491 struct tcp_sock *tp = tcp_sk(sk);
3492 int flag = 0;
3493 u32 nwin = ntohs(tcp_hdr(skb)->window);
3494
3495 if (likely(!tcp_hdr(skb)->syn))
3496 nwin <<= tp->rx_opt.snd_wscale;
3497
3498 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3499 flag |= FLAG_WIN_UPDATE;
3500 tcp_update_wl(tp, ack_seq);
3501
3502 if (tp->snd_wnd != nwin) {
3503 tp->snd_wnd = nwin;
3504
3505 /* Note, it is the only place, where
3506 * fast path is recovered for sending TCP.
3507 */
3508 tp->pred_flags = 0;
3509 tcp_fast_path_check(sk);
3510
3511 if (nwin > tp->max_window) {
3512 tp->max_window = nwin;
3513 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3514 }
3515 }
3516 }
3517
3518 tp->snd_una = ack;
3519
3520 return flag;
3521 }
3522
3523 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3524 * continue in congestion avoidance.
3525 */
3526 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3527 {
3528 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3529 tp->snd_cwnd_cnt = 0;
3530 tp->bytes_acked = 0;
3531 TCP_ECN_queue_cwr(tp);
3532 tcp_moderate_cwnd(tp);
3533 }
3534
3535 /* A conservative spurious RTO response algorithm: reduce cwnd using
3536 * rate halving and continue in congestion avoidance.
3537 */
3538 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3539 {
3540 tcp_enter_cwr(sk, 0);
3541 }
3542
3543 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3544 {
3545 if (flag & FLAG_ECE)
3546 tcp_ratehalving_spur_to_response(sk);
3547 else
3548 tcp_undo_cwr(sk, true);
3549 }
3550
3551 /* F-RTO spurious RTO detection algorithm (RFC4138)
3552 *
3553 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3554 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3555 * window (but not to or beyond highest sequence sent before RTO):
3556 * On First ACK, send two new segments out.
3557 * On Second ACK, RTO was likely spurious. Do spurious response (response
3558 * algorithm is not part of the F-RTO detection algorithm
3559 * given in RFC4138 but can be selected separately).
3560 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3561 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3562 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3563 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3564 *
3565 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3566 * original window even after we transmit two new data segments.
3567 *
3568 * SACK version:
3569 * on first step, wait until first cumulative ACK arrives, then move to
3570 * the second step. In second step, the next ACK decides.
3571 *
3572 * F-RTO is implemented (mainly) in four functions:
3573 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3574 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3575 * called when tcp_use_frto() showed green light
3576 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3577 * - tcp_enter_frto_loss() is called if there is not enough evidence
3578 * to prove that the RTO is indeed spurious. It transfers the control
3579 * from F-RTO to the conventional RTO recovery
3580 */
3581 static int tcp_process_frto(struct sock *sk, int flag)
3582 {
3583 struct tcp_sock *tp = tcp_sk(sk);
3584
3585 tcp_verify_left_out(tp);
3586
3587 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3588 if (flag & FLAG_DATA_ACKED)
3589 inet_csk(sk)->icsk_retransmits = 0;
3590
3591 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3592 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3593 tp->undo_marker = 0;
3594
3595 if (!before(tp->snd_una, tp->frto_highmark)) {
3596 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3597 return 1;
3598 }
3599
3600 if (!tcp_is_sackfrto(tp)) {
3601 /* RFC4138 shortcoming in step 2; should also have case c):
3602 * ACK isn't duplicate nor advances window, e.g., opposite dir
3603 * data, winupdate
3604 */
3605 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3606 return 1;
3607
3608 if (!(flag & FLAG_DATA_ACKED)) {
3609 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3610 flag);
3611 return 1;
3612 }
3613 } else {
3614 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3615 /* Prevent sending of new data. */
3616 tp->snd_cwnd = min(tp->snd_cwnd,
3617 tcp_packets_in_flight(tp));
3618 return 1;
3619 }
3620
3621 if ((tp->frto_counter >= 2) &&
3622 (!(flag & FLAG_FORWARD_PROGRESS) ||
3623 ((flag & FLAG_DATA_SACKED) &&
3624 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3625 /* RFC4138 shortcoming (see comment above) */
3626 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3627 (flag & FLAG_NOT_DUP))
3628 return 1;
3629
3630 tcp_enter_frto_loss(sk, 3, flag);
3631 return 1;
3632 }
3633 }
3634
3635 if (tp->frto_counter == 1) {
3636 /* tcp_may_send_now needs to see updated state */
3637 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3638 tp->frto_counter = 2;
3639
3640 if (!tcp_may_send_now(sk))
3641 tcp_enter_frto_loss(sk, 2, flag);
3642
3643 return 1;
3644 } else {
3645 switch (sysctl_tcp_frto_response) {
3646 case 2:
3647 tcp_undo_spur_to_response(sk, flag);
3648 break;
3649 case 1:
3650 tcp_conservative_spur_to_response(tp);
3651 break;
3652 default:
3653 tcp_ratehalving_spur_to_response(sk);
3654 break;
3655 }
3656 tp->frto_counter = 0;
3657 tp->undo_marker = 0;
3658 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3659 }
3660 return 0;
3661 }
3662
3663 /* This routine deals with incoming acks, but not outgoing ones. */
3664 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3665 {
3666 struct inet_connection_sock *icsk = inet_csk(sk);
3667 struct tcp_sock *tp = tcp_sk(sk);
3668 u32 prior_snd_una = tp->snd_una;
3669 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3670 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3671 bool is_dupack = false;
3672 u32 prior_in_flight;
3673 u32 prior_fackets;
3674 int prior_packets;
3675 int prior_sacked = tp->sacked_out;
3676 int pkts_acked = 0;
3677 int newly_acked_sacked = 0;
3678 int frto_cwnd = 0;
3679
3680 /* If the ack is older than previous acks
3681 * then we can probably ignore it.
3682 */
3683 if (before(ack, prior_snd_una))
3684 goto old_ack;
3685
3686 /* If the ack includes data we haven't sent yet, discard
3687 * this segment (RFC793 Section 3.9).
3688 */
3689 if (after(ack, tp->snd_nxt))
3690 goto invalid_ack;
3691
3692 if (after(ack, prior_snd_una))
3693 flag |= FLAG_SND_UNA_ADVANCED;
3694
3695 if (sysctl_tcp_abc) {
3696 if (icsk->icsk_ca_state < TCP_CA_CWR)
3697 tp->bytes_acked += ack - prior_snd_una;
3698 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3699 /* we assume just one segment left network */
3700 tp->bytes_acked += min(ack - prior_snd_una,
3701 tp->mss_cache);
3702 }
3703
3704 prior_fackets = tp->fackets_out;
3705 prior_in_flight = tcp_packets_in_flight(tp);
3706
3707 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3708 /* Window is constant, pure forward advance.
3709 * No more checks are required.
3710 * Note, we use the fact that SND.UNA>=SND.WL2.
3711 */
3712 tcp_update_wl(tp, ack_seq);
3713 tp->snd_una = ack;
3714 flag |= FLAG_WIN_UPDATE;
3715
3716 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3717
3718 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3719 } else {
3720 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3721 flag |= FLAG_DATA;
3722 else
3723 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3724
3725 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3726
3727 if (TCP_SKB_CB(skb)->sacked)
3728 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3729
3730 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3731 flag |= FLAG_ECE;
3732
3733 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3734 }
3735
3736 /* We passed data and got it acked, remove any soft error
3737 * log. Something worked...
3738 */
3739 sk->sk_err_soft = 0;
3740 icsk->icsk_probes_out = 0;
3741 tp->rcv_tstamp = tcp_time_stamp;
3742 prior_packets = tp->packets_out;
3743 if (!prior_packets)
3744 goto no_queue;
3745
3746 /* See if we can take anything off of the retransmit queue. */
3747 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3748
3749 pkts_acked = prior_packets - tp->packets_out;
3750 newly_acked_sacked = (prior_packets - prior_sacked) -
3751 (tp->packets_out - tp->sacked_out);
3752
3753 if (tp->frto_counter)
3754 frto_cwnd = tcp_process_frto(sk, flag);
3755 /* Guarantee sacktag reordering detection against wrap-arounds */
3756 if (before(tp->frto_highmark, tp->snd_una))
3757 tp->frto_highmark = 0;
3758
3759 if (tcp_ack_is_dubious(sk, flag)) {
3760 /* Advance CWND, if state allows this. */
3761 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3762 tcp_may_raise_cwnd(sk, flag))
3763 tcp_cong_avoid(sk, ack, prior_in_flight);
3764 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3765 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3766 is_dupack, flag);
3767 } else {
3768 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3769 tcp_cong_avoid(sk, ack, prior_in_flight);
3770 }
3771
3772 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3773 dst_confirm(__sk_dst_get(sk));
3774
3775 return 1;
3776
3777 no_queue:
3778 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3779 if (flag & FLAG_DSACKING_ACK)
3780 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3781 is_dupack, flag);
3782 /* If this ack opens up a zero window, clear backoff. It was
3783 * being used to time the probes, and is probably far higher than
3784 * it needs to be for normal retransmission.
3785 */
3786 if (tcp_send_head(sk))
3787 tcp_ack_probe(sk);
3788 return 1;
3789
3790 invalid_ack:
3791 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3792 return -1;
3793
3794 old_ack:
3795 /* If data was SACKed, tag it and see if we should send more data.
3796 * If data was DSACKed, see if we can undo a cwnd reduction.
3797 */
3798 if (TCP_SKB_CB(skb)->sacked) {
3799 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3800 newly_acked_sacked = tp->sacked_out - prior_sacked;
3801 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3802 is_dupack, flag);
3803 }
3804
3805 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3806 return 0;
3807 }
3808
3809 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3810 * But, this can also be called on packets in the established flow when
3811 * the fast version below fails.
3812 */
3813 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3814 const u8 **hvpp, int estab)
3815 {
3816 const unsigned char *ptr;
3817 const struct tcphdr *th = tcp_hdr(skb);
3818 int length = (th->doff * 4) - sizeof(struct tcphdr);
3819
3820 ptr = (const unsigned char *)(th + 1);
3821 opt_rx->saw_tstamp = 0;
3822
3823 while (length > 0) {
3824 int opcode = *ptr++;
3825 int opsize;
3826
3827 switch (opcode) {
3828 case TCPOPT_EOL:
3829 return;
3830 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3831 length--;
3832 continue;
3833 default:
3834 opsize = *ptr++;
3835 if (opsize < 2) /* "silly options" */
3836 return;
3837 if (opsize > length)
3838 return; /* don't parse partial options */
3839 switch (opcode) {
3840 case TCPOPT_MSS:
3841 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3842 u16 in_mss = get_unaligned_be16(ptr);
3843 if (in_mss) {
3844 if (opt_rx->user_mss &&
3845 opt_rx->user_mss < in_mss)
3846 in_mss = opt_rx->user_mss;
3847 opt_rx->mss_clamp = in_mss;
3848 }
3849 }
3850 break;
3851 case TCPOPT_WINDOW:
3852 if (opsize == TCPOLEN_WINDOW && th->syn &&
3853 !estab && sysctl_tcp_window_scaling) {
3854 __u8 snd_wscale = *(__u8 *)ptr;
3855 opt_rx->wscale_ok = 1;
3856 if (snd_wscale > 14) {
3857 if (net_ratelimit())
3858 printk(KERN_INFO "tcp_parse_options: Illegal window "
3859 "scaling value %d >14 received.\n",
3860 snd_wscale);
3861 snd_wscale = 14;
3862 }
3863 opt_rx->snd_wscale = snd_wscale;
3864 }
3865 break;
3866 case TCPOPT_TIMESTAMP:
3867 if ((opsize == TCPOLEN_TIMESTAMP) &&
3868 ((estab && opt_rx->tstamp_ok) ||
3869 (!estab && sysctl_tcp_timestamps))) {
3870 opt_rx->saw_tstamp = 1;
3871 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3872 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3873 }
3874 break;
3875 case TCPOPT_SACK_PERM:
3876 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3877 !estab && sysctl_tcp_sack) {
3878 opt_rx->sack_ok = TCP_SACK_SEEN;
3879 tcp_sack_reset(opt_rx);
3880 }
3881 break;
3882
3883 case TCPOPT_SACK:
3884 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3885 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3886 opt_rx->sack_ok) {
3887 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3888 }
3889 break;
3890 #ifdef CONFIG_TCP_MD5SIG
3891 case TCPOPT_MD5SIG:
3892 /*
3893 * The MD5 Hash has already been
3894 * checked (see tcp_v{4,6}_do_rcv()).
3895 */
3896 break;
3897 #endif
3898 case TCPOPT_COOKIE:
3899 /* This option is variable length.
3900 */
3901 switch (opsize) {
3902 case TCPOLEN_COOKIE_BASE:
3903 /* not yet implemented */
3904 break;
3905 case TCPOLEN_COOKIE_PAIR:
3906 /* not yet implemented */
3907 break;
3908 case TCPOLEN_COOKIE_MIN+0:
3909 case TCPOLEN_COOKIE_MIN+2:
3910 case TCPOLEN_COOKIE_MIN+4:
3911 case TCPOLEN_COOKIE_MIN+6:
3912 case TCPOLEN_COOKIE_MAX:
3913 /* 16-bit multiple */
3914 opt_rx->cookie_plus = opsize;
3915 *hvpp = ptr;
3916 break;
3917 default:
3918 /* ignore option */
3919 break;
3920 }
3921 break;
3922 }
3923
3924 ptr += opsize-2;
3925 length -= opsize;
3926 }
3927 }
3928 }
3929 EXPORT_SYMBOL(tcp_parse_options);
3930
3931 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3932 {
3933 const __be32 *ptr = (const __be32 *)(th + 1);
3934
3935 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3936 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3937 tp->rx_opt.saw_tstamp = 1;
3938 ++ptr;
3939 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3940 ++ptr;
3941 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3942 return 1;
3943 }
3944 return 0;
3945 }
3946
3947 /* Fast parse options. This hopes to only see timestamps.
3948 * If it is wrong it falls back on tcp_parse_options().
3949 */
3950 static int tcp_fast_parse_options(const struct sk_buff *skb,
3951 const struct tcphdr *th,
3952 struct tcp_sock *tp, const u8 **hvpp)
3953 {
3954 /* In the spirit of fast parsing, compare doff directly to constant
3955 * values. Because equality is used, short doff can be ignored here.
3956 */
3957 if (th->doff == (sizeof(*th) / 4)) {
3958 tp->rx_opt.saw_tstamp = 0;
3959 return 0;
3960 } else if (tp->rx_opt.tstamp_ok &&
3961 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3962 if (tcp_parse_aligned_timestamp(tp, th))
3963 return 1;
3964 }
3965 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3966 return 1;
3967 }
3968
3969 #ifdef CONFIG_TCP_MD5SIG
3970 /*
3971 * Parse MD5 Signature option
3972 */
3973 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3974 {
3975 int length = (th->doff << 2) - sizeof(*th);
3976 const u8 *ptr = (const u8 *)(th + 1);
3977
3978 /* If the TCP option is too short, we can short cut */
3979 if (length < TCPOLEN_MD5SIG)
3980 return NULL;
3981
3982 while (length > 0) {
3983 int opcode = *ptr++;
3984 int opsize;
3985
3986 switch(opcode) {
3987 case TCPOPT_EOL:
3988 return NULL;
3989 case TCPOPT_NOP:
3990 length--;
3991 continue;
3992 default:
3993 opsize = *ptr++;
3994 if (opsize < 2 || opsize > length)
3995 return NULL;
3996 if (opcode == TCPOPT_MD5SIG)
3997 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3998 }
3999 ptr += opsize - 2;
4000 length -= opsize;
4001 }
4002 return NULL;
4003 }
4004 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4005 #endif
4006
4007 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4008 {
4009 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4010 tp->rx_opt.ts_recent_stamp = get_seconds();
4011 }
4012
4013 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4014 {
4015 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4016 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4017 * extra check below makes sure this can only happen
4018 * for pure ACK frames. -DaveM
4019 *
4020 * Not only, also it occurs for expired timestamps.
4021 */
4022
4023 if (tcp_paws_check(&tp->rx_opt, 0))
4024 tcp_store_ts_recent(tp);
4025 }
4026 }
4027
4028 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4029 *
4030 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4031 * it can pass through stack. So, the following predicate verifies that
4032 * this segment is not used for anything but congestion avoidance or
4033 * fast retransmit. Moreover, we even are able to eliminate most of such
4034 * second order effects, if we apply some small "replay" window (~RTO)
4035 * to timestamp space.
4036 *
4037 * All these measures still do not guarantee that we reject wrapped ACKs
4038 * on networks with high bandwidth, when sequence space is recycled fastly,
4039 * but it guarantees that such events will be very rare and do not affect
4040 * connection seriously. This doesn't look nice, but alas, PAWS is really
4041 * buggy extension.
4042 *
4043 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4044 * states that events when retransmit arrives after original data are rare.
4045 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4046 * the biggest problem on large power networks even with minor reordering.
4047 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4048 * up to bandwidth of 18Gigabit/sec. 8) ]
4049 */
4050
4051 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4052 {
4053 const struct tcp_sock *tp = tcp_sk(sk);
4054 const struct tcphdr *th = tcp_hdr(skb);
4055 u32 seq = TCP_SKB_CB(skb)->seq;
4056 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4057
4058 return (/* 1. Pure ACK with correct sequence number. */
4059 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4060
4061 /* 2. ... and duplicate ACK. */
4062 ack == tp->snd_una &&
4063
4064 /* 3. ... and does not update window. */
4065 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4066
4067 /* 4. ... and sits in replay window. */
4068 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4069 }
4070
4071 static inline int tcp_paws_discard(const struct sock *sk,
4072 const struct sk_buff *skb)
4073 {
4074 const struct tcp_sock *tp = tcp_sk(sk);
4075
4076 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4077 !tcp_disordered_ack(sk, skb);
4078 }
4079
4080 /* Check segment sequence number for validity.
4081 *
4082 * Segment controls are considered valid, if the segment
4083 * fits to the window after truncation to the window. Acceptability
4084 * of data (and SYN, FIN, of course) is checked separately.
4085 * See tcp_data_queue(), for example.
4086 *
4087 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4088 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4089 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4090 * (borrowed from freebsd)
4091 */
4092
4093 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4094 {
4095 return !before(end_seq, tp->rcv_wup) &&
4096 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4097 }
4098
4099 /* When we get a reset we do this. */
4100 static void tcp_reset(struct sock *sk)
4101 {
4102 /* We want the right error as BSD sees it (and indeed as we do). */
4103 switch (sk->sk_state) {
4104 case TCP_SYN_SENT:
4105 sk->sk_err = ECONNREFUSED;
4106 break;
4107 case TCP_CLOSE_WAIT:
4108 sk->sk_err = EPIPE;
4109 break;
4110 case TCP_CLOSE:
4111 return;
4112 default:
4113 sk->sk_err = ECONNRESET;
4114 }
4115 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4116 smp_wmb();
4117
4118 if (!sock_flag(sk, SOCK_DEAD))
4119 sk->sk_error_report(sk);
4120
4121 tcp_done(sk);
4122 }
4123
4124 /*
4125 * Process the FIN bit. This now behaves as it is supposed to work
4126 * and the FIN takes effect when it is validly part of sequence
4127 * space. Not before when we get holes.
4128 *
4129 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4130 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4131 * TIME-WAIT)
4132 *
4133 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4134 * close and we go into CLOSING (and later onto TIME-WAIT)
4135 *
4136 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4137 */
4138 static void tcp_fin(struct sock *sk)
4139 {
4140 struct tcp_sock *tp = tcp_sk(sk);
4141
4142 inet_csk_schedule_ack(sk);
4143
4144 sk->sk_shutdown |= RCV_SHUTDOWN;
4145 sock_set_flag(sk, SOCK_DONE);
4146
4147 switch (sk->sk_state) {
4148 case TCP_SYN_RECV:
4149 case TCP_ESTABLISHED:
4150 /* Move to CLOSE_WAIT */
4151 tcp_set_state(sk, TCP_CLOSE_WAIT);
4152 inet_csk(sk)->icsk_ack.pingpong = 1;
4153 break;
4154
4155 case TCP_CLOSE_WAIT:
4156 case TCP_CLOSING:
4157 /* Received a retransmission of the FIN, do
4158 * nothing.
4159 */
4160 break;
4161 case TCP_LAST_ACK:
4162 /* RFC793: Remain in the LAST-ACK state. */
4163 break;
4164
4165 case TCP_FIN_WAIT1:
4166 /* This case occurs when a simultaneous close
4167 * happens, we must ack the received FIN and
4168 * enter the CLOSING state.
4169 */
4170 tcp_send_ack(sk);
4171 tcp_set_state(sk, TCP_CLOSING);
4172 break;
4173 case TCP_FIN_WAIT2:
4174 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4175 tcp_send_ack(sk);
4176 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4177 break;
4178 default:
4179 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4180 * cases we should never reach this piece of code.
4181 */
4182 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4183 __func__, sk->sk_state);
4184 break;
4185 }
4186
4187 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4188 * Probably, we should reset in this case. For now drop them.
4189 */
4190 __skb_queue_purge(&tp->out_of_order_queue);
4191 if (tcp_is_sack(tp))
4192 tcp_sack_reset(&tp->rx_opt);
4193 sk_mem_reclaim(sk);
4194
4195 if (!sock_flag(sk, SOCK_DEAD)) {
4196 sk->sk_state_change(sk);
4197
4198 /* Do not send POLL_HUP for half duplex close. */
4199 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4200 sk->sk_state == TCP_CLOSE)
4201 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4202 else
4203 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4204 }
4205 }
4206
4207 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4208 u32 end_seq)
4209 {
4210 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4211 if (before(seq, sp->start_seq))
4212 sp->start_seq = seq;
4213 if (after(end_seq, sp->end_seq))
4214 sp->end_seq = end_seq;
4215 return 1;
4216 }
4217 return 0;
4218 }
4219
4220 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4221 {
4222 struct tcp_sock *tp = tcp_sk(sk);
4223
4224 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4225 int mib_idx;
4226
4227 if (before(seq, tp->rcv_nxt))
4228 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4229 else
4230 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4231
4232 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4233
4234 tp->rx_opt.dsack = 1;
4235 tp->duplicate_sack[0].start_seq = seq;
4236 tp->duplicate_sack[0].end_seq = end_seq;
4237 }
4238 }
4239
4240 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4241 {
4242 struct tcp_sock *tp = tcp_sk(sk);
4243
4244 if (!tp->rx_opt.dsack)
4245 tcp_dsack_set(sk, seq, end_seq);
4246 else
4247 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4248 }
4249
4250 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4251 {
4252 struct tcp_sock *tp = tcp_sk(sk);
4253
4254 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4255 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4257 tcp_enter_quickack_mode(sk);
4258
4259 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4260 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4261
4262 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4263 end_seq = tp->rcv_nxt;
4264 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4265 }
4266 }
4267
4268 tcp_send_ack(sk);
4269 }
4270
4271 /* These routines update the SACK block as out-of-order packets arrive or
4272 * in-order packets close up the sequence space.
4273 */
4274 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4275 {
4276 int this_sack;
4277 struct tcp_sack_block *sp = &tp->selective_acks[0];
4278 struct tcp_sack_block *swalk = sp + 1;
4279
4280 /* See if the recent change to the first SACK eats into
4281 * or hits the sequence space of other SACK blocks, if so coalesce.
4282 */
4283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4284 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4285 int i;
4286
4287 /* Zap SWALK, by moving every further SACK up by one slot.
4288 * Decrease num_sacks.
4289 */
4290 tp->rx_opt.num_sacks--;
4291 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4292 sp[i] = sp[i + 1];
4293 continue;
4294 }
4295 this_sack++, swalk++;
4296 }
4297 }
4298
4299 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4300 {
4301 struct tcp_sock *tp = tcp_sk(sk);
4302 struct tcp_sack_block *sp = &tp->selective_acks[0];
4303 int cur_sacks = tp->rx_opt.num_sacks;
4304 int this_sack;
4305
4306 if (!cur_sacks)
4307 goto new_sack;
4308
4309 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4310 if (tcp_sack_extend(sp, seq, end_seq)) {
4311 /* Rotate this_sack to the first one. */
4312 for (; this_sack > 0; this_sack--, sp--)
4313 swap(*sp, *(sp - 1));
4314 if (cur_sacks > 1)
4315 tcp_sack_maybe_coalesce(tp);
4316 return;
4317 }
4318 }
4319
4320 /* Could not find an adjacent existing SACK, build a new one,
4321 * put it at the front, and shift everyone else down. We
4322 * always know there is at least one SACK present already here.
4323 *
4324 * If the sack array is full, forget about the last one.
4325 */
4326 if (this_sack >= TCP_NUM_SACKS) {
4327 this_sack--;
4328 tp->rx_opt.num_sacks--;
4329 sp--;
4330 }
4331 for (; this_sack > 0; this_sack--, sp--)
4332 *sp = *(sp - 1);
4333
4334 new_sack:
4335 /* Build the new head SACK, and we're done. */
4336 sp->start_seq = seq;
4337 sp->end_seq = end_seq;
4338 tp->rx_opt.num_sacks++;
4339 }
4340
4341 /* RCV.NXT advances, some SACKs should be eaten. */
4342
4343 static void tcp_sack_remove(struct tcp_sock *tp)
4344 {
4345 struct tcp_sack_block *sp = &tp->selective_acks[0];
4346 int num_sacks = tp->rx_opt.num_sacks;
4347 int this_sack;
4348
4349 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4350 if (skb_queue_empty(&tp->out_of_order_queue)) {
4351 tp->rx_opt.num_sacks = 0;
4352 return;
4353 }
4354
4355 for (this_sack = 0; this_sack < num_sacks;) {
4356 /* Check if the start of the sack is covered by RCV.NXT. */
4357 if (!before(tp->rcv_nxt, sp->start_seq)) {
4358 int i;
4359
4360 /* RCV.NXT must cover all the block! */
4361 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4362
4363 /* Zap this SACK, by moving forward any other SACKS. */
4364 for (i=this_sack+1; i < num_sacks; i++)
4365 tp->selective_acks[i-1] = tp->selective_acks[i];
4366 num_sacks--;
4367 continue;
4368 }
4369 this_sack++;
4370 sp++;
4371 }
4372 tp->rx_opt.num_sacks = num_sacks;
4373 }
4374
4375 /* This one checks to see if we can put data from the
4376 * out_of_order queue into the receive_queue.
4377 */
4378 static void tcp_ofo_queue(struct sock *sk)
4379 {
4380 struct tcp_sock *tp = tcp_sk(sk);
4381 __u32 dsack_high = tp->rcv_nxt;
4382 struct sk_buff *skb;
4383
4384 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4385 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4386 break;
4387
4388 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4389 __u32 dsack = dsack_high;
4390 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4391 dsack_high = TCP_SKB_CB(skb)->end_seq;
4392 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4393 }
4394
4395 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4396 SOCK_DEBUG(sk, "ofo packet was already received\n");
4397 __skb_unlink(skb, &tp->out_of_order_queue);
4398 __kfree_skb(skb);
4399 continue;
4400 }
4401 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4402 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4403 TCP_SKB_CB(skb)->end_seq);
4404
4405 __skb_unlink(skb, &tp->out_of_order_queue);
4406 __skb_queue_tail(&sk->sk_receive_queue, skb);
4407 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4408 if (tcp_hdr(skb)->fin)
4409 tcp_fin(sk);
4410 }
4411 }
4412
4413 static int tcp_prune_ofo_queue(struct sock *sk);
4414 static int tcp_prune_queue(struct sock *sk);
4415
4416 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4417 {
4418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4419 !sk_rmem_schedule(sk, size)) {
4420
4421 if (tcp_prune_queue(sk) < 0)
4422 return -1;
4423
4424 if (!sk_rmem_schedule(sk, size)) {
4425 if (!tcp_prune_ofo_queue(sk))
4426 return -1;
4427
4428 if (!sk_rmem_schedule(sk, size))
4429 return -1;
4430 }
4431 }
4432 return 0;
4433 }
4434
4435 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4436 {
4437 const struct tcphdr *th = tcp_hdr(skb);
4438 struct tcp_sock *tp = tcp_sk(sk);
4439 int eaten = -1;
4440
4441 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4442 goto drop;
4443
4444 skb_dst_drop(skb);
4445 __skb_pull(skb, th->doff * 4);
4446
4447 TCP_ECN_accept_cwr(tp, skb);
4448
4449 tp->rx_opt.dsack = 0;
4450
4451 /* Queue data for delivery to the user.
4452 * Packets in sequence go to the receive queue.
4453 * Out of sequence packets to the out_of_order_queue.
4454 */
4455 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4456 if (tcp_receive_window(tp) == 0)
4457 goto out_of_window;
4458
4459 /* Ok. In sequence. In window. */
4460 if (tp->ucopy.task == current &&
4461 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4462 sock_owned_by_user(sk) && !tp->urg_data) {
4463 int chunk = min_t(unsigned int, skb->len,
4464 tp->ucopy.len);
4465
4466 __set_current_state(TASK_RUNNING);
4467
4468 local_bh_enable();
4469 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4470 tp->ucopy.len -= chunk;
4471 tp->copied_seq += chunk;
4472 eaten = (chunk == skb->len);
4473 tcp_rcv_space_adjust(sk);
4474 }
4475 local_bh_disable();
4476 }
4477
4478 if (eaten <= 0) {
4479 queue_and_out:
4480 if (eaten < 0 &&
4481 tcp_try_rmem_schedule(sk, skb->truesize))
4482 goto drop;
4483
4484 skb_set_owner_r(skb, sk);
4485 __skb_queue_tail(&sk->sk_receive_queue, skb);
4486 }
4487 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4488 if (skb->len)
4489 tcp_event_data_recv(sk, skb);
4490 if (th->fin)
4491 tcp_fin(sk);
4492
4493 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4494 tcp_ofo_queue(sk);
4495
4496 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4497 * gap in queue is filled.
4498 */
4499 if (skb_queue_empty(&tp->out_of_order_queue))
4500 inet_csk(sk)->icsk_ack.pingpong = 0;
4501 }
4502
4503 if (tp->rx_opt.num_sacks)
4504 tcp_sack_remove(tp);
4505
4506 tcp_fast_path_check(sk);
4507
4508 if (eaten > 0)
4509 __kfree_skb(skb);
4510 else if (!sock_flag(sk, SOCK_DEAD))
4511 sk->sk_data_ready(sk, 0);
4512 return;
4513 }
4514
4515 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4516 /* A retransmit, 2nd most common case. Force an immediate ack. */
4517 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4518 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4519
4520 out_of_window:
4521 tcp_enter_quickack_mode(sk);
4522 inet_csk_schedule_ack(sk);
4523 drop:
4524 __kfree_skb(skb);
4525 return;
4526 }
4527
4528 /* Out of window. F.e. zero window probe. */
4529 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4530 goto out_of_window;
4531
4532 tcp_enter_quickack_mode(sk);
4533
4534 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4535 /* Partial packet, seq < rcv_next < end_seq */
4536 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4537 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4538 TCP_SKB_CB(skb)->end_seq);
4539
4540 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4541
4542 /* If window is closed, drop tail of packet. But after
4543 * remembering D-SACK for its head made in previous line.
4544 */
4545 if (!tcp_receive_window(tp))
4546 goto out_of_window;
4547 goto queue_and_out;
4548 }
4549
4550 TCP_ECN_check_ce(tp, skb);
4551
4552 if (tcp_try_rmem_schedule(sk, skb->truesize))
4553 goto drop;
4554
4555 /* Disable header prediction. */
4556 tp->pred_flags = 0;
4557 inet_csk_schedule_ack(sk);
4558
4559 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4560 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4561
4562 skb_set_owner_r(skb, sk);
4563
4564 if (!skb_peek(&tp->out_of_order_queue)) {
4565 /* Initial out of order segment, build 1 SACK. */
4566 if (tcp_is_sack(tp)) {
4567 tp->rx_opt.num_sacks = 1;
4568 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4569 tp->selective_acks[0].end_seq =
4570 TCP_SKB_CB(skb)->end_seq;
4571 }
4572 __skb_queue_head(&tp->out_of_order_queue, skb);
4573 } else {
4574 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4575 u32 seq = TCP_SKB_CB(skb)->seq;
4576 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4577
4578 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4579 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4580
4581 if (!tp->rx_opt.num_sacks ||
4582 tp->selective_acks[0].end_seq != seq)
4583 goto add_sack;
4584
4585 /* Common case: data arrive in order after hole. */
4586 tp->selective_acks[0].end_seq = end_seq;
4587 return;
4588 }
4589
4590 /* Find place to insert this segment. */
4591 while (1) {
4592 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4593 break;
4594 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4595 skb1 = NULL;
4596 break;
4597 }
4598 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4599 }
4600
4601 /* Do skb overlap to previous one? */
4602 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4603 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4604 /* All the bits are present. Drop. */
4605 __kfree_skb(skb);
4606 tcp_dsack_set(sk, seq, end_seq);
4607 goto add_sack;
4608 }
4609 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4610 /* Partial overlap. */
4611 tcp_dsack_set(sk, seq,
4612 TCP_SKB_CB(skb1)->end_seq);
4613 } else {
4614 if (skb_queue_is_first(&tp->out_of_order_queue,
4615 skb1))
4616 skb1 = NULL;
4617 else
4618 skb1 = skb_queue_prev(
4619 &tp->out_of_order_queue,
4620 skb1);
4621 }
4622 }
4623 if (!skb1)
4624 __skb_queue_head(&tp->out_of_order_queue, skb);
4625 else
4626 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4627
4628 /* And clean segments covered by new one as whole. */
4629 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4630 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4631
4632 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4633 break;
4634 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4635 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4636 end_seq);
4637 break;
4638 }
4639 __skb_unlink(skb1, &tp->out_of_order_queue);
4640 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4641 TCP_SKB_CB(skb1)->end_seq);
4642 __kfree_skb(skb1);
4643 }
4644
4645 add_sack:
4646 if (tcp_is_sack(tp))
4647 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4648 }
4649 }
4650
4651 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4652 struct sk_buff_head *list)
4653 {
4654 struct sk_buff *next = NULL;
4655
4656 if (!skb_queue_is_last(list, skb))
4657 next = skb_queue_next(list, skb);
4658
4659 __skb_unlink(skb, list);
4660 __kfree_skb(skb);
4661 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4662
4663 return next;
4664 }
4665
4666 /* Collapse contiguous sequence of skbs head..tail with
4667 * sequence numbers start..end.
4668 *
4669 * If tail is NULL, this means until the end of the list.
4670 *
4671 * Segments with FIN/SYN are not collapsed (only because this
4672 * simplifies code)
4673 */
4674 static void
4675 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4676 struct sk_buff *head, struct sk_buff *tail,
4677 u32 start, u32 end)
4678 {
4679 struct sk_buff *skb, *n;
4680 bool end_of_skbs;
4681
4682 /* First, check that queue is collapsible and find
4683 * the point where collapsing can be useful. */
4684 skb = head;
4685 restart:
4686 end_of_skbs = true;
4687 skb_queue_walk_from_safe(list, skb, n) {
4688 if (skb == tail)
4689 break;
4690 /* No new bits? It is possible on ofo queue. */
4691 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4692 skb = tcp_collapse_one(sk, skb, list);
4693 if (!skb)
4694 break;
4695 goto restart;
4696 }
4697
4698 /* The first skb to collapse is:
4699 * - not SYN/FIN and
4700 * - bloated or contains data before "start" or
4701 * overlaps to the next one.
4702 */
4703 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4704 (tcp_win_from_space(skb->truesize) > skb->len ||
4705 before(TCP_SKB_CB(skb)->seq, start))) {
4706 end_of_skbs = false;
4707 break;
4708 }
4709
4710 if (!skb_queue_is_last(list, skb)) {
4711 struct sk_buff *next = skb_queue_next(list, skb);
4712 if (next != tail &&
4713 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4714 end_of_skbs = false;
4715 break;
4716 }
4717 }
4718
4719 /* Decided to skip this, advance start seq. */
4720 start = TCP_SKB_CB(skb)->end_seq;
4721 }
4722 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4723 return;
4724
4725 while (before(start, end)) {
4726 struct sk_buff *nskb;
4727 unsigned int header = skb_headroom(skb);
4728 int copy = SKB_MAX_ORDER(header, 0);
4729
4730 /* Too big header? This can happen with IPv6. */
4731 if (copy < 0)
4732 return;
4733 if (end - start < copy)
4734 copy = end - start;
4735 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4736 if (!nskb)
4737 return;
4738
4739 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4740 skb_set_network_header(nskb, (skb_network_header(skb) -
4741 skb->head));
4742 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4743 skb->head));
4744 skb_reserve(nskb, header);
4745 memcpy(nskb->head, skb->head, header);
4746 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4747 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4748 __skb_queue_before(list, skb, nskb);
4749 skb_set_owner_r(nskb, sk);
4750
4751 /* Copy data, releasing collapsed skbs. */
4752 while (copy > 0) {
4753 int offset = start - TCP_SKB_CB(skb)->seq;
4754 int size = TCP_SKB_CB(skb)->end_seq - start;
4755
4756 BUG_ON(offset < 0);
4757 if (size > 0) {
4758 size = min(copy, size);
4759 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4760 BUG();
4761 TCP_SKB_CB(nskb)->end_seq += size;
4762 copy -= size;
4763 start += size;
4764 }
4765 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4766 skb = tcp_collapse_one(sk, skb, list);
4767 if (!skb ||
4768 skb == tail ||
4769 tcp_hdr(skb)->syn ||
4770 tcp_hdr(skb)->fin)
4771 return;
4772 }
4773 }
4774 }
4775 }
4776
4777 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4778 * and tcp_collapse() them until all the queue is collapsed.
4779 */
4780 static void tcp_collapse_ofo_queue(struct sock *sk)
4781 {
4782 struct tcp_sock *tp = tcp_sk(sk);
4783 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4784 struct sk_buff *head;
4785 u32 start, end;
4786
4787 if (skb == NULL)
4788 return;
4789
4790 start = TCP_SKB_CB(skb)->seq;
4791 end = TCP_SKB_CB(skb)->end_seq;
4792 head = skb;
4793
4794 for (;;) {
4795 struct sk_buff *next = NULL;
4796
4797 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4798 next = skb_queue_next(&tp->out_of_order_queue, skb);
4799 skb = next;
4800
4801 /* Segment is terminated when we see gap or when
4802 * we are at the end of all the queue. */
4803 if (!skb ||
4804 after(TCP_SKB_CB(skb)->seq, end) ||
4805 before(TCP_SKB_CB(skb)->end_seq, start)) {
4806 tcp_collapse(sk, &tp->out_of_order_queue,
4807 head, skb, start, end);
4808 head = skb;
4809 if (!skb)
4810 break;
4811 /* Start new segment */
4812 start = TCP_SKB_CB(skb)->seq;
4813 end = TCP_SKB_CB(skb)->end_seq;
4814 } else {
4815 if (before(TCP_SKB_CB(skb)->seq, start))
4816 start = TCP_SKB_CB(skb)->seq;
4817 if (after(TCP_SKB_CB(skb)->end_seq, end))
4818 end = TCP_SKB_CB(skb)->end_seq;
4819 }
4820 }
4821 }
4822
4823 /*
4824 * Purge the out-of-order queue.
4825 * Return true if queue was pruned.
4826 */
4827 static int tcp_prune_ofo_queue(struct sock *sk)
4828 {
4829 struct tcp_sock *tp = tcp_sk(sk);
4830 int res = 0;
4831
4832 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4833 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4834 __skb_queue_purge(&tp->out_of_order_queue);
4835
4836 /* Reset SACK state. A conforming SACK implementation will
4837 * do the same at a timeout based retransmit. When a connection
4838 * is in a sad state like this, we care only about integrity
4839 * of the connection not performance.
4840 */
4841 if (tp->rx_opt.sack_ok)
4842 tcp_sack_reset(&tp->rx_opt);
4843 sk_mem_reclaim(sk);
4844 res = 1;
4845 }
4846 return res;
4847 }
4848
4849 /* Reduce allocated memory if we can, trying to get
4850 * the socket within its memory limits again.
4851 *
4852 * Return less than zero if we should start dropping frames
4853 * until the socket owning process reads some of the data
4854 * to stabilize the situation.
4855 */
4856 static int tcp_prune_queue(struct sock *sk)
4857 {
4858 struct tcp_sock *tp = tcp_sk(sk);
4859
4860 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4861
4862 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4863
4864 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4865 tcp_clamp_window(sk);
4866 else if (sk_under_memory_pressure(sk))
4867 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4868
4869 tcp_collapse_ofo_queue(sk);
4870 if (!skb_queue_empty(&sk->sk_receive_queue))
4871 tcp_collapse(sk, &sk->sk_receive_queue,
4872 skb_peek(&sk->sk_receive_queue),
4873 NULL,
4874 tp->copied_seq, tp->rcv_nxt);
4875 sk_mem_reclaim(sk);
4876
4877 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4878 return 0;
4879
4880 /* Collapsing did not help, destructive actions follow.
4881 * This must not ever occur. */
4882
4883 tcp_prune_ofo_queue(sk);
4884
4885 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4886 return 0;
4887
4888 /* If we are really being abused, tell the caller to silently
4889 * drop receive data on the floor. It will get retransmitted
4890 * and hopefully then we'll have sufficient space.
4891 */
4892 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4893
4894 /* Massive buffer overcommit. */
4895 tp->pred_flags = 0;
4896 return -1;
4897 }
4898
4899 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4900 * As additional protections, we do not touch cwnd in retransmission phases,
4901 * and if application hit its sndbuf limit recently.
4902 */
4903 void tcp_cwnd_application_limited(struct sock *sk)
4904 {
4905 struct tcp_sock *tp = tcp_sk(sk);
4906
4907 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4908 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4909 /* Limited by application or receiver window. */
4910 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4911 u32 win_used = max(tp->snd_cwnd_used, init_win);
4912 if (win_used < tp->snd_cwnd) {
4913 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4914 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4915 }
4916 tp->snd_cwnd_used = 0;
4917 }
4918 tp->snd_cwnd_stamp = tcp_time_stamp;
4919 }
4920
4921 static int tcp_should_expand_sndbuf(const struct sock *sk)
4922 {
4923 const struct tcp_sock *tp = tcp_sk(sk);
4924
4925 /* If the user specified a specific send buffer setting, do
4926 * not modify it.
4927 */
4928 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4929 return 0;
4930
4931 /* If we are under global TCP memory pressure, do not expand. */
4932 if (sk_under_memory_pressure(sk))
4933 return 0;
4934
4935 /* If we are under soft global TCP memory pressure, do not expand. */
4936 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4937 return 0;
4938
4939 /* If we filled the congestion window, do not expand. */
4940 if (tp->packets_out >= tp->snd_cwnd)
4941 return 0;
4942
4943 return 1;
4944 }
4945
4946 /* When incoming ACK allowed to free some skb from write_queue,
4947 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4948 * on the exit from tcp input handler.
4949 *
4950 * PROBLEM: sndbuf expansion does not work well with largesend.
4951 */
4952 static void tcp_new_space(struct sock *sk)
4953 {
4954 struct tcp_sock *tp = tcp_sk(sk);
4955
4956 if (tcp_should_expand_sndbuf(sk)) {
4957 int sndmem = SKB_TRUESIZE(max_t(u32,
4958 tp->rx_opt.mss_clamp,
4959 tp->mss_cache) +
4960 MAX_TCP_HEADER);
4961 int demanded = max_t(unsigned int, tp->snd_cwnd,
4962 tp->reordering + 1);
4963 sndmem *= 2 * demanded;
4964 if (sndmem > sk->sk_sndbuf)
4965 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4966 tp->snd_cwnd_stamp = tcp_time_stamp;
4967 }
4968
4969 sk->sk_write_space(sk);
4970 }
4971
4972 static void tcp_check_space(struct sock *sk)
4973 {
4974 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4975 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4976 if (sk->sk_socket &&
4977 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4978 tcp_new_space(sk);
4979 }
4980 }
4981
4982 static inline void tcp_data_snd_check(struct sock *sk)
4983 {
4984 tcp_push_pending_frames(sk);
4985 tcp_check_space(sk);
4986 }
4987
4988 /*
4989 * Check if sending an ack is needed.
4990 */
4991 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4992 {
4993 struct tcp_sock *tp = tcp_sk(sk);
4994
4995 /* More than one full frame received... */
4996 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4997 /* ... and right edge of window advances far enough.
4998 * (tcp_recvmsg() will send ACK otherwise). Or...
4999 */
5000 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5001 /* We ACK each frame or... */
5002 tcp_in_quickack_mode(sk) ||
5003 /* We have out of order data. */
5004 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5005 /* Then ack it now */
5006 tcp_send_ack(sk);
5007 } else {
5008 /* Else, send delayed ack. */
5009 tcp_send_delayed_ack(sk);
5010 }
5011 }
5012
5013 static inline void tcp_ack_snd_check(struct sock *sk)
5014 {
5015 if (!inet_csk_ack_scheduled(sk)) {
5016 /* We sent a data segment already. */
5017 return;
5018 }
5019 __tcp_ack_snd_check(sk, 1);
5020 }
5021
5022 /*
5023 * This routine is only called when we have urgent data
5024 * signaled. Its the 'slow' part of tcp_urg. It could be
5025 * moved inline now as tcp_urg is only called from one
5026 * place. We handle URGent data wrong. We have to - as
5027 * BSD still doesn't use the correction from RFC961.
5028 * For 1003.1g we should support a new option TCP_STDURG to permit
5029 * either form (or just set the sysctl tcp_stdurg).
5030 */
5031
5032 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5033 {
5034 struct tcp_sock *tp = tcp_sk(sk);
5035 u32 ptr = ntohs(th->urg_ptr);
5036
5037 if (ptr && !sysctl_tcp_stdurg)
5038 ptr--;
5039 ptr += ntohl(th->seq);
5040
5041 /* Ignore urgent data that we've already seen and read. */
5042 if (after(tp->copied_seq, ptr))
5043 return;
5044
5045 /* Do not replay urg ptr.
5046 *
5047 * NOTE: interesting situation not covered by specs.
5048 * Misbehaving sender may send urg ptr, pointing to segment,
5049 * which we already have in ofo queue. We are not able to fetch
5050 * such data and will stay in TCP_URG_NOTYET until will be eaten
5051 * by recvmsg(). Seems, we are not obliged to handle such wicked
5052 * situations. But it is worth to think about possibility of some
5053 * DoSes using some hypothetical application level deadlock.
5054 */
5055 if (before(ptr, tp->rcv_nxt))
5056 return;
5057
5058 /* Do we already have a newer (or duplicate) urgent pointer? */
5059 if (tp->urg_data && !after(ptr, tp->urg_seq))
5060 return;
5061
5062 /* Tell the world about our new urgent pointer. */
5063 sk_send_sigurg(sk);
5064
5065 /* We may be adding urgent data when the last byte read was
5066 * urgent. To do this requires some care. We cannot just ignore
5067 * tp->copied_seq since we would read the last urgent byte again
5068 * as data, nor can we alter copied_seq until this data arrives
5069 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5070 *
5071 * NOTE. Double Dutch. Rendering to plain English: author of comment
5072 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5073 * and expect that both A and B disappear from stream. This is _wrong_.
5074 * Though this happens in BSD with high probability, this is occasional.
5075 * Any application relying on this is buggy. Note also, that fix "works"
5076 * only in this artificial test. Insert some normal data between A and B and we will
5077 * decline of BSD again. Verdict: it is better to remove to trap
5078 * buggy users.
5079 */
5080 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5081 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5082 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5083 tp->copied_seq++;
5084 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5085 __skb_unlink(skb, &sk->sk_receive_queue);
5086 __kfree_skb(skb);
5087 }
5088 }
5089
5090 tp->urg_data = TCP_URG_NOTYET;
5091 tp->urg_seq = ptr;
5092
5093 /* Disable header prediction. */
5094 tp->pred_flags = 0;
5095 }
5096
5097 /* This is the 'fast' part of urgent handling. */
5098 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5099 {
5100 struct tcp_sock *tp = tcp_sk(sk);
5101
5102 /* Check if we get a new urgent pointer - normally not. */
5103 if (th->urg)
5104 tcp_check_urg(sk, th);
5105
5106 /* Do we wait for any urgent data? - normally not... */
5107 if (tp->urg_data == TCP_URG_NOTYET) {
5108 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5109 th->syn;
5110
5111 /* Is the urgent pointer pointing into this packet? */
5112 if (ptr < skb->len) {
5113 u8 tmp;
5114 if (skb_copy_bits(skb, ptr, &tmp, 1))
5115 BUG();
5116 tp->urg_data = TCP_URG_VALID | tmp;
5117 if (!sock_flag(sk, SOCK_DEAD))
5118 sk->sk_data_ready(sk, 0);
5119 }
5120 }
5121 }
5122
5123 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5124 {
5125 struct tcp_sock *tp = tcp_sk(sk);
5126 int chunk = skb->len - hlen;
5127 int err;
5128
5129 local_bh_enable();
5130 if (skb_csum_unnecessary(skb))
5131 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5132 else
5133 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5134 tp->ucopy.iov);
5135
5136 if (!err) {
5137 tp->ucopy.len -= chunk;
5138 tp->copied_seq += chunk;
5139 tcp_rcv_space_adjust(sk);
5140 }
5141
5142 local_bh_disable();
5143 return err;
5144 }
5145
5146 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5147 struct sk_buff *skb)
5148 {
5149 __sum16 result;
5150
5151 if (sock_owned_by_user(sk)) {
5152 local_bh_enable();
5153 result = __tcp_checksum_complete(skb);
5154 local_bh_disable();
5155 } else {
5156 result = __tcp_checksum_complete(skb);
5157 }
5158 return result;
5159 }
5160
5161 static inline int tcp_checksum_complete_user(struct sock *sk,
5162 struct sk_buff *skb)
5163 {
5164 return !skb_csum_unnecessary(skb) &&
5165 __tcp_checksum_complete_user(sk, skb);
5166 }
5167
5168 #ifdef CONFIG_NET_DMA
5169 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5170 int hlen)
5171 {
5172 struct tcp_sock *tp = tcp_sk(sk);
5173 int chunk = skb->len - hlen;
5174 int dma_cookie;
5175 int copied_early = 0;
5176
5177 if (tp->ucopy.wakeup)
5178 return 0;
5179
5180 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5181 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5182
5183 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5184
5185 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5186 skb, hlen,
5187 tp->ucopy.iov, chunk,
5188 tp->ucopy.pinned_list);
5189
5190 if (dma_cookie < 0)
5191 goto out;
5192
5193 tp->ucopy.dma_cookie = dma_cookie;
5194 copied_early = 1;
5195
5196 tp->ucopy.len -= chunk;
5197 tp->copied_seq += chunk;
5198 tcp_rcv_space_adjust(sk);
5199
5200 if ((tp->ucopy.len == 0) ||
5201 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5202 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5203 tp->ucopy.wakeup = 1;
5204 sk->sk_data_ready(sk, 0);
5205 }
5206 } else if (chunk > 0) {
5207 tp->ucopy.wakeup = 1;
5208 sk->sk_data_ready(sk, 0);
5209 }
5210 out:
5211 return copied_early;
5212 }
5213 #endif /* CONFIG_NET_DMA */
5214
5215 /* Does PAWS and seqno based validation of an incoming segment, flags will
5216 * play significant role here.
5217 */
5218 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5219 const struct tcphdr *th, int syn_inerr)
5220 {
5221 const u8 *hash_location;
5222 struct tcp_sock *tp = tcp_sk(sk);
5223
5224 /* RFC1323: H1. Apply PAWS check first. */
5225 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5226 tp->rx_opt.saw_tstamp &&
5227 tcp_paws_discard(sk, skb)) {
5228 if (!th->rst) {
5229 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5230 tcp_send_dupack(sk, skb);
5231 goto discard;
5232 }
5233 /* Reset is accepted even if it did not pass PAWS. */
5234 }
5235
5236 /* Step 1: check sequence number */
5237 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5238 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5239 * (RST) segments are validated by checking their SEQ-fields."
5240 * And page 69: "If an incoming segment is not acceptable,
5241 * an acknowledgment should be sent in reply (unless the RST
5242 * bit is set, if so drop the segment and return)".
5243 */
5244 if (!th->rst)
5245 tcp_send_dupack(sk, skb);
5246 goto discard;
5247 }
5248
5249 /* Step 2: check RST bit */
5250 if (th->rst) {
5251 tcp_reset(sk);
5252 goto discard;
5253 }
5254
5255 /* ts_recent update must be made after we are sure that the packet
5256 * is in window.
5257 */
5258 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5259
5260 /* step 3: check security and precedence [ignored] */
5261
5262 /* step 4: Check for a SYN in window. */
5263 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5264 if (syn_inerr)
5265 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5266 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5267 tcp_reset(sk);
5268 return -1;
5269 }
5270
5271 return 1;
5272
5273 discard:
5274 __kfree_skb(skb);
5275 return 0;
5276 }
5277
5278 /*
5279 * TCP receive function for the ESTABLISHED state.
5280 *
5281 * It is split into a fast path and a slow path. The fast path is
5282 * disabled when:
5283 * - A zero window was announced from us - zero window probing
5284 * is only handled properly in the slow path.
5285 * - Out of order segments arrived.
5286 * - Urgent data is expected.
5287 * - There is no buffer space left
5288 * - Unexpected TCP flags/window values/header lengths are received
5289 * (detected by checking the TCP header against pred_flags)
5290 * - Data is sent in both directions. Fast path only supports pure senders
5291 * or pure receivers (this means either the sequence number or the ack
5292 * value must stay constant)
5293 * - Unexpected TCP option.
5294 *
5295 * When these conditions are not satisfied it drops into a standard
5296 * receive procedure patterned after RFC793 to handle all cases.
5297 * The first three cases are guaranteed by proper pred_flags setting,
5298 * the rest is checked inline. Fast processing is turned on in
5299 * tcp_data_queue when everything is OK.
5300 */
5301 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5302 const struct tcphdr *th, unsigned int len)
5303 {
5304 struct tcp_sock *tp = tcp_sk(sk);
5305 int res;
5306
5307 /*
5308 * Header prediction.
5309 * The code loosely follows the one in the famous
5310 * "30 instruction TCP receive" Van Jacobson mail.
5311 *
5312 * Van's trick is to deposit buffers into socket queue
5313 * on a device interrupt, to call tcp_recv function
5314 * on the receive process context and checksum and copy
5315 * the buffer to user space. smart...
5316 *
5317 * Our current scheme is not silly either but we take the
5318 * extra cost of the net_bh soft interrupt processing...
5319 * We do checksum and copy also but from device to kernel.
5320 */
5321
5322 tp->rx_opt.saw_tstamp = 0;
5323
5324 /* pred_flags is 0xS?10 << 16 + snd_wnd
5325 * if header_prediction is to be made
5326 * 'S' will always be tp->tcp_header_len >> 2
5327 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5328 * turn it off (when there are holes in the receive
5329 * space for instance)
5330 * PSH flag is ignored.
5331 */
5332
5333 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5334 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5335 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5336 int tcp_header_len = tp->tcp_header_len;
5337
5338 /* Timestamp header prediction: tcp_header_len
5339 * is automatically equal to th->doff*4 due to pred_flags
5340 * match.
5341 */
5342
5343 /* Check timestamp */
5344 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5345 /* No? Slow path! */
5346 if (!tcp_parse_aligned_timestamp(tp, th))
5347 goto slow_path;
5348
5349 /* If PAWS failed, check it more carefully in slow path */
5350 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5351 goto slow_path;
5352
5353 /* DO NOT update ts_recent here, if checksum fails
5354 * and timestamp was corrupted part, it will result
5355 * in a hung connection since we will drop all
5356 * future packets due to the PAWS test.
5357 */
5358 }
5359
5360 if (len <= tcp_header_len) {
5361 /* Bulk data transfer: sender */
5362 if (len == tcp_header_len) {
5363 /* Predicted packet is in window by definition.
5364 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5365 * Hence, check seq<=rcv_wup reduces to:
5366 */
5367 if (tcp_header_len ==
5368 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5369 tp->rcv_nxt == tp->rcv_wup)
5370 tcp_store_ts_recent(tp);
5371
5372 /* We know that such packets are checksummed
5373 * on entry.
5374 */
5375 tcp_ack(sk, skb, 0);
5376 __kfree_skb(skb);
5377 tcp_data_snd_check(sk);
5378 return 0;
5379 } else { /* Header too small */
5380 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5381 goto discard;
5382 }
5383 } else {
5384 int eaten = 0;
5385 int copied_early = 0;
5386
5387 if (tp->copied_seq == tp->rcv_nxt &&
5388 len - tcp_header_len <= tp->ucopy.len) {
5389 #ifdef CONFIG_NET_DMA
5390 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5391 copied_early = 1;
5392 eaten = 1;
5393 }
5394 #endif
5395 if (tp->ucopy.task == current &&
5396 sock_owned_by_user(sk) && !copied_early) {
5397 __set_current_state(TASK_RUNNING);
5398
5399 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5400 eaten = 1;
5401 }
5402 if (eaten) {
5403 /* Predicted packet is in window by definition.
5404 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5405 * Hence, check seq<=rcv_wup reduces to:
5406 */
5407 if (tcp_header_len ==
5408 (sizeof(struct tcphdr) +
5409 TCPOLEN_TSTAMP_ALIGNED) &&
5410 tp->rcv_nxt == tp->rcv_wup)
5411 tcp_store_ts_recent(tp);
5412
5413 tcp_rcv_rtt_measure_ts(sk, skb);
5414
5415 __skb_pull(skb, tcp_header_len);
5416 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5417 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5418 }
5419 if (copied_early)
5420 tcp_cleanup_rbuf(sk, skb->len);
5421 }
5422 if (!eaten) {
5423 if (tcp_checksum_complete_user(sk, skb))
5424 goto csum_error;
5425
5426 /* Predicted packet is in window by definition.
5427 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5428 * Hence, check seq<=rcv_wup reduces to:
5429 */
5430 if (tcp_header_len ==
5431 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5432 tp->rcv_nxt == tp->rcv_wup)
5433 tcp_store_ts_recent(tp);
5434
5435 tcp_rcv_rtt_measure_ts(sk, skb);
5436
5437 if ((int)skb->truesize > sk->sk_forward_alloc)
5438 goto step5;
5439
5440 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5441
5442 /* Bulk data transfer: receiver */
5443 __skb_pull(skb, tcp_header_len);
5444 __skb_queue_tail(&sk->sk_receive_queue, skb);
5445 skb_set_owner_r(skb, sk);
5446 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5447 }
5448
5449 tcp_event_data_recv(sk, skb);
5450
5451 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5452 /* Well, only one small jumplet in fast path... */
5453 tcp_ack(sk, skb, FLAG_DATA);
5454 tcp_data_snd_check(sk);
5455 if (!inet_csk_ack_scheduled(sk))
5456 goto no_ack;
5457 }
5458
5459 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5460 __tcp_ack_snd_check(sk, 0);
5461 no_ack:
5462 #ifdef CONFIG_NET_DMA
5463 if (copied_early)
5464 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5465 else
5466 #endif
5467 if (eaten)
5468 __kfree_skb(skb);
5469 else
5470 sk->sk_data_ready(sk, 0);
5471 return 0;
5472 }
5473 }
5474
5475 slow_path:
5476 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5477 goto csum_error;
5478
5479 /*
5480 * Standard slow path.
5481 */
5482
5483 res = tcp_validate_incoming(sk, skb, th, 1);
5484 if (res <= 0)
5485 return -res;
5486
5487 step5:
5488 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5489 goto discard;
5490
5491 tcp_rcv_rtt_measure_ts(sk, skb);
5492
5493 /* Process urgent data. */
5494 tcp_urg(sk, skb, th);
5495
5496 /* step 7: process the segment text */
5497 tcp_data_queue(sk, skb);
5498
5499 tcp_data_snd_check(sk);
5500 tcp_ack_snd_check(sk);
5501 return 0;
5502
5503 csum_error:
5504 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5505
5506 discard:
5507 __kfree_skb(skb);
5508 return 0;
5509 }
5510 EXPORT_SYMBOL(tcp_rcv_established);
5511
5512 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5513 const struct tcphdr *th, unsigned int len)
5514 {
5515 const u8 *hash_location;
5516 struct inet_connection_sock *icsk = inet_csk(sk);
5517 struct tcp_sock *tp = tcp_sk(sk);
5518 struct tcp_cookie_values *cvp = tp->cookie_values;
5519 int saved_clamp = tp->rx_opt.mss_clamp;
5520
5521 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5522
5523 if (th->ack) {
5524 /* rfc793:
5525 * "If the state is SYN-SENT then
5526 * first check the ACK bit
5527 * If the ACK bit is set
5528 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5529 * a reset (unless the RST bit is set, if so drop
5530 * the segment and return)"
5531 *
5532 * We do not send data with SYN, so that RFC-correct
5533 * test reduces to:
5534 */
5535 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5536 goto reset_and_undo;
5537
5538 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5539 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5540 tcp_time_stamp)) {
5541 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5542 goto reset_and_undo;
5543 }
5544
5545 /* Now ACK is acceptable.
5546 *
5547 * "If the RST bit is set
5548 * If the ACK was acceptable then signal the user "error:
5549 * connection reset", drop the segment, enter CLOSED state,
5550 * delete TCB, and return."
5551 */
5552
5553 if (th->rst) {
5554 tcp_reset(sk);
5555 goto discard;
5556 }
5557
5558 /* rfc793:
5559 * "fifth, if neither of the SYN or RST bits is set then
5560 * drop the segment and return."
5561 *
5562 * See note below!
5563 * --ANK(990513)
5564 */
5565 if (!th->syn)
5566 goto discard_and_undo;
5567
5568 /* rfc793:
5569 * "If the SYN bit is on ...
5570 * are acceptable then ...
5571 * (our SYN has been ACKed), change the connection
5572 * state to ESTABLISHED..."
5573 */
5574
5575 TCP_ECN_rcv_synack(tp, th);
5576
5577 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5578 tcp_ack(sk, skb, FLAG_SLOWPATH);
5579
5580 /* Ok.. it's good. Set up sequence numbers and
5581 * move to established.
5582 */
5583 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5584 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5585
5586 /* RFC1323: The window in SYN & SYN/ACK segments is
5587 * never scaled.
5588 */
5589 tp->snd_wnd = ntohs(th->window);
5590 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5591
5592 if (!tp->rx_opt.wscale_ok) {
5593 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5594 tp->window_clamp = min(tp->window_clamp, 65535U);
5595 }
5596
5597 if (tp->rx_opt.saw_tstamp) {
5598 tp->rx_opt.tstamp_ok = 1;
5599 tp->tcp_header_len =
5600 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5601 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5602 tcp_store_ts_recent(tp);
5603 } else {
5604 tp->tcp_header_len = sizeof(struct tcphdr);
5605 }
5606
5607 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5608 tcp_enable_fack(tp);
5609
5610 tcp_mtup_init(sk);
5611 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5612 tcp_initialize_rcv_mss(sk);
5613
5614 /* Remember, tcp_poll() does not lock socket!
5615 * Change state from SYN-SENT only after copied_seq
5616 * is initialized. */
5617 tp->copied_seq = tp->rcv_nxt;
5618
5619 if (cvp != NULL &&
5620 cvp->cookie_pair_size > 0 &&
5621 tp->rx_opt.cookie_plus > 0) {
5622 int cookie_size = tp->rx_opt.cookie_plus
5623 - TCPOLEN_COOKIE_BASE;
5624 int cookie_pair_size = cookie_size
5625 + cvp->cookie_desired;
5626
5627 /* A cookie extension option was sent and returned.
5628 * Note that each incoming SYNACK replaces the
5629 * Responder cookie. The initial exchange is most
5630 * fragile, as protection against spoofing relies
5631 * entirely upon the sequence and timestamp (above).
5632 * This replacement strategy allows the correct pair to
5633 * pass through, while any others will be filtered via
5634 * Responder verification later.
5635 */
5636 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5637 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5638 hash_location, cookie_size);
5639 cvp->cookie_pair_size = cookie_pair_size;
5640 }
5641 }
5642
5643 smp_mb();
5644 tcp_set_state(sk, TCP_ESTABLISHED);
5645
5646 security_inet_conn_established(sk, skb);
5647
5648 /* Make sure socket is routed, for correct metrics. */
5649 icsk->icsk_af_ops->rebuild_header(sk);
5650
5651 tcp_init_metrics(sk);
5652
5653 tcp_init_congestion_control(sk);
5654
5655 /* Prevent spurious tcp_cwnd_restart() on first data
5656 * packet.
5657 */
5658 tp->lsndtime = tcp_time_stamp;
5659
5660 tcp_init_buffer_space(sk);
5661
5662 if (sock_flag(sk, SOCK_KEEPOPEN))
5663 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5664
5665 if (!tp->rx_opt.snd_wscale)
5666 __tcp_fast_path_on(tp, tp->snd_wnd);
5667 else
5668 tp->pred_flags = 0;
5669
5670 if (!sock_flag(sk, SOCK_DEAD)) {
5671 sk->sk_state_change(sk);
5672 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5673 }
5674
5675 if (sk->sk_write_pending ||
5676 icsk->icsk_accept_queue.rskq_defer_accept ||
5677 icsk->icsk_ack.pingpong) {
5678 /* Save one ACK. Data will be ready after
5679 * several ticks, if write_pending is set.
5680 *
5681 * It may be deleted, but with this feature tcpdumps
5682 * look so _wonderfully_ clever, that I was not able
5683 * to stand against the temptation 8) --ANK
5684 */
5685 inet_csk_schedule_ack(sk);
5686 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5687 icsk->icsk_ack.ato = TCP_ATO_MIN;
5688 tcp_incr_quickack(sk);
5689 tcp_enter_quickack_mode(sk);
5690 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5691 TCP_DELACK_MAX, TCP_RTO_MAX);
5692
5693 discard:
5694 __kfree_skb(skb);
5695 return 0;
5696 } else {
5697 tcp_send_ack(sk);
5698 }
5699 return -1;
5700 }
5701
5702 /* No ACK in the segment */
5703
5704 if (th->rst) {
5705 /* rfc793:
5706 * "If the RST bit is set
5707 *
5708 * Otherwise (no ACK) drop the segment and return."
5709 */
5710
5711 goto discard_and_undo;
5712 }
5713
5714 /* PAWS check. */
5715 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5716 tcp_paws_reject(&tp->rx_opt, 0))
5717 goto discard_and_undo;
5718
5719 if (th->syn) {
5720 /* We see SYN without ACK. It is attempt of
5721 * simultaneous connect with crossed SYNs.
5722 * Particularly, it can be connect to self.
5723 */
5724 tcp_set_state(sk, TCP_SYN_RECV);
5725
5726 if (tp->rx_opt.saw_tstamp) {
5727 tp->rx_opt.tstamp_ok = 1;
5728 tcp_store_ts_recent(tp);
5729 tp->tcp_header_len =
5730 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5731 } else {
5732 tp->tcp_header_len = sizeof(struct tcphdr);
5733 }
5734
5735 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5736 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5737
5738 /* RFC1323: The window in SYN & SYN/ACK segments is
5739 * never scaled.
5740 */
5741 tp->snd_wnd = ntohs(th->window);
5742 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5743 tp->max_window = tp->snd_wnd;
5744
5745 TCP_ECN_rcv_syn(tp, th);
5746
5747 tcp_mtup_init(sk);
5748 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5749 tcp_initialize_rcv_mss(sk);
5750
5751 tcp_send_synack(sk);
5752 #if 0
5753 /* Note, we could accept data and URG from this segment.
5754 * There are no obstacles to make this.
5755 *
5756 * However, if we ignore data in ACKless segments sometimes,
5757 * we have no reasons to accept it sometimes.
5758 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5759 * is not flawless. So, discard packet for sanity.
5760 * Uncomment this return to process the data.
5761 */
5762 return -1;
5763 #else
5764 goto discard;
5765 #endif
5766 }
5767 /* "fifth, if neither of the SYN or RST bits is set then
5768 * drop the segment and return."
5769 */
5770
5771 discard_and_undo:
5772 tcp_clear_options(&tp->rx_opt);
5773 tp->rx_opt.mss_clamp = saved_clamp;
5774 goto discard;
5775
5776 reset_and_undo:
5777 tcp_clear_options(&tp->rx_opt);
5778 tp->rx_opt.mss_clamp = saved_clamp;
5779 return 1;
5780 }
5781
5782 /*
5783 * This function implements the receiving procedure of RFC 793 for
5784 * all states except ESTABLISHED and TIME_WAIT.
5785 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5786 * address independent.
5787 */
5788
5789 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5790 const struct tcphdr *th, unsigned int len)
5791 {
5792 struct tcp_sock *tp = tcp_sk(sk);
5793 struct inet_connection_sock *icsk = inet_csk(sk);
5794 int queued = 0;
5795 int res;
5796
5797 tp->rx_opt.saw_tstamp = 0;
5798
5799 switch (sk->sk_state) {
5800 case TCP_CLOSE:
5801 goto discard;
5802
5803 case TCP_LISTEN:
5804 if (th->ack)
5805 return 1;
5806
5807 if (th->rst)
5808 goto discard;
5809
5810 if (th->syn) {
5811 if (th->fin)
5812 goto discard;
5813 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5814 return 1;
5815
5816 /* Now we have several options: In theory there is
5817 * nothing else in the frame. KA9Q has an option to
5818 * send data with the syn, BSD accepts data with the
5819 * syn up to the [to be] advertised window and
5820 * Solaris 2.1 gives you a protocol error. For now
5821 * we just ignore it, that fits the spec precisely
5822 * and avoids incompatibilities. It would be nice in
5823 * future to drop through and process the data.
5824 *
5825 * Now that TTCP is starting to be used we ought to
5826 * queue this data.
5827 * But, this leaves one open to an easy denial of
5828 * service attack, and SYN cookies can't defend
5829 * against this problem. So, we drop the data
5830 * in the interest of security over speed unless
5831 * it's still in use.
5832 */
5833 kfree_skb(skb);
5834 return 0;
5835 }
5836 goto discard;
5837
5838 case TCP_SYN_SENT:
5839 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5840 if (queued >= 0)
5841 return queued;
5842
5843 /* Do step6 onward by hand. */
5844 tcp_urg(sk, skb, th);
5845 __kfree_skb(skb);
5846 tcp_data_snd_check(sk);
5847 return 0;
5848 }
5849
5850 res = tcp_validate_incoming(sk, skb, th, 0);
5851 if (res <= 0)
5852 return -res;
5853
5854 /* step 5: check the ACK field */
5855 if (th->ack) {
5856 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5857
5858 switch (sk->sk_state) {
5859 case TCP_SYN_RECV:
5860 if (acceptable) {
5861 tp->copied_seq = tp->rcv_nxt;
5862 smp_mb();
5863 tcp_set_state(sk, TCP_ESTABLISHED);
5864 sk->sk_state_change(sk);
5865
5866 /* Note, that this wakeup is only for marginal
5867 * crossed SYN case. Passively open sockets
5868 * are not waked up, because sk->sk_sleep ==
5869 * NULL and sk->sk_socket == NULL.
5870 */
5871 if (sk->sk_socket)
5872 sk_wake_async(sk,
5873 SOCK_WAKE_IO, POLL_OUT);
5874
5875 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5876 tp->snd_wnd = ntohs(th->window) <<
5877 tp->rx_opt.snd_wscale;
5878 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5879
5880 if (tp->rx_opt.tstamp_ok)
5881 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5882
5883 /* Make sure socket is routed, for
5884 * correct metrics.
5885 */
5886 icsk->icsk_af_ops->rebuild_header(sk);
5887
5888 tcp_init_metrics(sk);
5889
5890 tcp_init_congestion_control(sk);
5891
5892 /* Prevent spurious tcp_cwnd_restart() on
5893 * first data packet.
5894 */
5895 tp->lsndtime = tcp_time_stamp;
5896
5897 tcp_mtup_init(sk);
5898 tcp_initialize_rcv_mss(sk);
5899 tcp_init_buffer_space(sk);
5900 tcp_fast_path_on(tp);
5901 } else {
5902 return 1;
5903 }
5904 break;
5905
5906 case TCP_FIN_WAIT1:
5907 if (tp->snd_una == tp->write_seq) {
5908 tcp_set_state(sk, TCP_FIN_WAIT2);
5909 sk->sk_shutdown |= SEND_SHUTDOWN;
5910 dst_confirm(__sk_dst_get(sk));
5911
5912 if (!sock_flag(sk, SOCK_DEAD))
5913 /* Wake up lingering close() */
5914 sk->sk_state_change(sk);
5915 else {
5916 int tmo;
5917
5918 if (tp->linger2 < 0 ||
5919 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5920 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5921 tcp_done(sk);
5922 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5923 return 1;
5924 }
5925
5926 tmo = tcp_fin_time(sk);
5927 if (tmo > TCP_TIMEWAIT_LEN) {
5928 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5929 } else if (th->fin || sock_owned_by_user(sk)) {
5930 /* Bad case. We could lose such FIN otherwise.
5931 * It is not a big problem, but it looks confusing
5932 * and not so rare event. We still can lose it now,
5933 * if it spins in bh_lock_sock(), but it is really
5934 * marginal case.
5935 */
5936 inet_csk_reset_keepalive_timer(sk, tmo);
5937 } else {
5938 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5939 goto discard;
5940 }
5941 }
5942 }
5943 break;
5944
5945 case TCP_CLOSING:
5946 if (tp->snd_una == tp->write_seq) {
5947 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5948 goto discard;
5949 }
5950 break;
5951
5952 case TCP_LAST_ACK:
5953 if (tp->snd_una == tp->write_seq) {
5954 tcp_update_metrics(sk);
5955 tcp_done(sk);
5956 goto discard;
5957 }
5958 break;
5959 }
5960 } else
5961 goto discard;
5962
5963 /* step 6: check the URG bit */
5964 tcp_urg(sk, skb, th);
5965
5966 /* step 7: process the segment text */
5967 switch (sk->sk_state) {
5968 case TCP_CLOSE_WAIT:
5969 case TCP_CLOSING:
5970 case TCP_LAST_ACK:
5971 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5972 break;
5973 case TCP_FIN_WAIT1:
5974 case TCP_FIN_WAIT2:
5975 /* RFC 793 says to queue data in these states,
5976 * RFC 1122 says we MUST send a reset.
5977 * BSD 4.4 also does reset.
5978 */
5979 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5980 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5981 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5982 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983 tcp_reset(sk);
5984 return 1;
5985 }
5986 }
5987 /* Fall through */
5988 case TCP_ESTABLISHED:
5989 tcp_data_queue(sk, skb);
5990 queued = 1;
5991 break;
5992 }
5993
5994 /* tcp_data could move socket to TIME-WAIT */
5995 if (sk->sk_state != TCP_CLOSE) {
5996 tcp_data_snd_check(sk);
5997 tcp_ack_snd_check(sk);
5998 }
5999
6000 if (!queued) {
6001 discard:
6002 __kfree_skb(skb);
6003 }
6004 return 0;
6005 }
6006 EXPORT_SYMBOL(tcp_rcv_state_process);