]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_ipv4.c
0eaf685bddc954f89d4c1fc9f3e32fe6bdcc016f
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 dst = inet_csk_update_pmtu(sk, mtu);
285 if (!dst)
286 return;
287
288 /* Something is about to be wrong... Remember soft error
289 * for the case, if this connection will not able to recover.
290 */
291 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 sk->sk_err_soft = EMSGSIZE;
293
294 mtu = dst_mtu(dst);
295
296 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 tcp_sync_mss(sk, mtu);
299
300 /* Resend the TCP packet because it's
301 * clear that the old packet has been
302 * dropped. This is the new "fast" path mtu
303 * discovery.
304 */
305 tcp_simple_retransmit(sk);
306 } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313 if (dst)
314 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition. If err < 0 then the socket should
320 * be closed and the error returned to the user. If err > 0
321 * it's just the icmp type << 8 | icmp code. After adjustment
322 * header points to the first 8 bytes of the tcp header. We need
323 * to find the appropriate port.
324 *
325 * The locking strategy used here is very "optimistic". When
326 * someone else accesses the socket the ICMP is just dropped
327 * and for some paths there is no check at all.
328 * A more general error queue to queue errors for later handling
329 * is probably better.
330 *
331 */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 struct inet_connection_sock *icsk;
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 const int type = icmp_hdr(icmp_skb)->type;
341 const int code = icmp_hdr(icmp_skb)->code;
342 struct sock *sk;
343 struct sk_buff *skb;
344 struct request_sock *req;
345 __u32 seq;
346 __u32 remaining;
347 int err;
348 struct net *net = dev_net(icmp_skb->dev);
349
350 if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354
355 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 iph->saddr, th->source, inet_iif(icmp_skb));
357 if (!sk) {
358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 return;
360 }
361 if (sk->sk_state == TCP_TIME_WAIT) {
362 inet_twsk_put(inet_twsk(sk));
363 return;
364 }
365
366 bh_lock_sock(sk);
367 /* If too many ICMPs get dropped on busy
368 * servers this needs to be solved differently.
369 * We do take care of PMTU discovery (RFC1191) special case :
370 * we can receive locally generated ICMP messages while socket is held.
371 */
372 if (sock_owned_by_user(sk)) {
373 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375 }
376 if (sk->sk_state == TCP_CLOSE)
377 goto out;
378
379 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381 goto out;
382 }
383
384 icsk = inet_csk(sk);
385 tp = tcp_sk(sk);
386 req = tp->fastopen_rsk;
387 seq = ntohl(th->seq);
388 if (sk->sk_state != TCP_LISTEN &&
389 !between(seq, tp->snd_una, tp->snd_nxt) &&
390 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391 /* For a Fast Open socket, allow seq to be snt_isn. */
392 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 goto out;
394 }
395
396 switch (type) {
397 case ICMP_REDIRECT:
398 do_redirect(icmp_skb, sk);
399 goto out;
400 case ICMP_SOURCE_QUENCH:
401 /* Just silently ignore these. */
402 goto out;
403 case ICMP_PARAMETERPROB:
404 err = EPROTO;
405 break;
406 case ICMP_DEST_UNREACH:
407 if (code > NR_ICMP_UNREACH)
408 goto out;
409
410 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411 tp->mtu_info = info;
412 if (!sock_owned_by_user(sk)) {
413 tcp_v4_mtu_reduced(sk);
414 } else {
415 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416 sock_hold(sk);
417 }
418 goto out;
419 }
420
421 err = icmp_err_convert[code].errno;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 break;
426 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
427 !icsk->icsk_backoff)
428 break;
429
430 /* XXX (TFO) - revisit the following logic for TFO */
431
432 if (sock_owned_by_user(sk))
433 break;
434
435 icsk->icsk_backoff--;
436 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 tcp_bound_rto(sk);
439
440 skb = tcp_write_queue_head(sk);
441 BUG_ON(!skb);
442
443 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446 if (remaining) {
447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 remaining, TCP_RTO_MAX);
449 } else {
450 /* RTO revert clocked out retransmission.
451 * Will retransmit now */
452 tcp_retransmit_timer(sk);
453 }
454
455 break;
456 case ICMP_TIME_EXCEEDED:
457 err = EHOSTUNREACH;
458 break;
459 default:
460 goto out;
461 }
462
463 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464 * than following the TCP_SYN_RECV case and closing the socket,
465 * we ignore the ICMP error and keep trying like a fully established
466 * socket. Is this the right thing to do?
467 */
468 if (req && req->sk == NULL)
469 goto out;
470
471 switch (sk->sk_state) {
472 struct request_sock *req, **prev;
473 case TCP_LISTEN:
474 if (sock_owned_by_user(sk))
475 goto out;
476
477 req = inet_csk_search_req(sk, &prev, th->dest,
478 iph->daddr, iph->saddr);
479 if (!req)
480 goto out;
481
482 /* ICMPs are not backlogged, hence we cannot get
483 an established socket here.
484 */
485 WARN_ON(req->sk);
486
487 if (seq != tcp_rsk(req)->snt_isn) {
488 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489 goto out;
490 }
491
492 /*
493 * Still in SYN_RECV, just remove it silently.
494 * There is no good way to pass the error to the newly
495 * created socket, and POSIX does not want network
496 * errors returned from accept().
497 */
498 inet_csk_reqsk_queue_drop(sk, req, prev);
499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->saddr,
661 th->source, ip_hdr(skb)->daddr,
662 ntohs(th->source), inet_iif(skb));
663 /* don't send rst if it can't find key */
664 if (!sk1)
665 return;
666 rcu_read_lock();
667 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668 &ip_hdr(skb)->saddr, AF_INET);
669 if (!key)
670 goto release_sk1;
671
672 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 goto release_sk1;
675 } else {
676 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677 &ip_hdr(skb)->saddr,
678 AF_INET) : NULL;
679 }
680
681 if (key) {
682 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683 (TCPOPT_NOP << 16) |
684 (TCPOPT_MD5SIG << 8) |
685 TCPOLEN_MD5SIG);
686 /* Update length and the length the header thinks exists */
687 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688 rep.th.doff = arg.iov[0].iov_len / 4;
689
690 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691 key, ip_hdr(skb)->saddr,
692 ip_hdr(skb)->daddr, &rep.th);
693 }
694 #endif
695 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr, /* XXX */
697 arg.iov[0].iov_len, IPPROTO_TCP, 0);
698 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700 /* When socket is gone, all binding information is lost.
701 * routing might fail in this case. No choice here, if we choose to force
702 * input interface, we will misroute in case of asymmetric route.
703 */
704 if (sk)
705 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707 net = dev_net(skb_dst(skb)->dev);
708 arg.tos = ip_hdr(skb)->tos;
709 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717 if (sk1) {
718 rcu_read_unlock();
719 sock_put(sk1);
720 }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725 outside socket context is ugly, certainly. What can I do?
726 */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729 u32 win, u32 ts, int oif,
730 struct tcp_md5sig_key *key,
731 int reply_flags, u8 tos)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734 struct {
735 struct tcphdr th;
736 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740 ];
741 } rep;
742 struct ip_reply_arg arg;
743 struct net *net = dev_net(skb_dst(skb)->dev);
744
745 memset(&rep.th, 0, sizeof(struct tcphdr));
746 memset(&arg, 0, sizeof(arg));
747
748 arg.iov[0].iov_base = (unsigned char *)&rep;
749 arg.iov[0].iov_len = sizeof(rep.th);
750 if (ts) {
751 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752 (TCPOPT_TIMESTAMP << 8) |
753 TCPOLEN_TIMESTAMP);
754 rep.opt[1] = htonl(tcp_time_stamp);
755 rep.opt[2] = htonl(ts);
756 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757 }
758
759 /* Swap the send and the receive. */
760 rep.th.dest = th->source;
761 rep.th.source = th->dest;
762 rep.th.doff = arg.iov[0].iov_len / 4;
763 rep.th.seq = htonl(seq);
764 rep.th.ack_seq = htonl(ack);
765 rep.th.ack = 1;
766 rep.th.window = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769 if (key) {
770 int offset = (ts) ? 3 : 0;
771
772 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773 (TCPOPT_NOP << 16) |
774 (TCPOPT_MD5SIG << 8) |
775 TCPOLEN_MD5SIG);
776 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777 rep.th.doff = arg.iov[0].iov_len/4;
778
779 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780 key, ip_hdr(skb)->saddr,
781 ip_hdr(skb)->daddr, &rep.th);
782 }
783 #endif
784 arg.flags = reply_flags;
785 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786 ip_hdr(skb)->saddr, /* XXX */
787 arg.iov[0].iov_len, IPPROTO_TCP, 0);
788 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789 if (oif)
790 arg.bound_dev_if = oif;
791 arg.tos = tos;
792 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800 struct inet_timewait_sock *tw = inet_twsk(sk);
801 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805 tcptw->tw_ts_recent,
806 tw->tw_bound_dev_if,
807 tcp_twsk_md5_key(tcptw),
808 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
809 tw->tw_tos
810 );
811
812 inet_twsk_put(tw);
813 }
814
815 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
816 struct request_sock *req)
817 {
818 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
819 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
820 */
821 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
822 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
823 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
824 req->ts_recent,
825 0,
826 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
827 AF_INET),
828 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
829 ip_hdr(skb)->tos);
830 }
831
832 /*
833 * Send a SYN-ACK after having received a SYN.
834 * This still operates on a request_sock only, not on a big
835 * socket.
836 */
837 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
838 struct request_sock *req,
839 struct request_values *rvp,
840 u16 queue_mapping,
841 bool nocache)
842 {
843 const struct inet_request_sock *ireq = inet_rsk(req);
844 struct flowi4 fl4;
845 int err = -1;
846 struct sk_buff * skb;
847
848 /* First, grab a route. */
849 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
850 return -1;
851
852 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
853
854 if (skb) {
855 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
856
857 skb_set_queue_mapping(skb, queue_mapping);
858 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
859 ireq->rmt_addr,
860 ireq->opt);
861 err = net_xmit_eval(err);
862 if (!tcp_rsk(req)->snt_synack && !err)
863 tcp_rsk(req)->snt_synack = tcp_time_stamp;
864 }
865
866 return err;
867 }
868
869 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
870 struct request_values *rvp)
871 {
872 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
873
874 if (!res)
875 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876 return res;
877 }
878
879 /*
880 * IPv4 request_sock destructor.
881 */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884 kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888 * Return true if a syncookie should be sent
889 */
890 bool tcp_syn_flood_action(struct sock *sk,
891 const struct sk_buff *skb,
892 const char *proto)
893 {
894 const char *msg = "Dropping request";
895 bool want_cookie = false;
896 struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901 if (sysctl_tcp_syncookies) {
902 msg = "Sending cookies";
903 want_cookie = true;
904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905 } else
906 #endif
907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910 if (!lopt->synflood_warned) {
911 lopt->synflood_warned = 1;
912 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
913 proto, ntohs(tcp_hdr(skb)->dest), msg);
914 }
915 return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920 * Save and compile IPv4 options into the request_sock if needed.
921 */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924 const struct ip_options *opt = &(IPCB(skb)->opt);
925 struct ip_options_rcu *dopt = NULL;
926
927 if (opt && opt->optlen) {
928 int opt_size = sizeof(*dopt) + opt->optlen;
929
930 dopt = kmalloc(opt_size, GFP_ATOMIC);
931 if (dopt) {
932 if (ip_options_echo(&dopt->opt, skb)) {
933 kfree(dopt);
934 dopt = NULL;
935 }
936 }
937 }
938 return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943 * RFC2385 MD5 checksumming requires a mapping of
944 * IP address->MD5 Key.
945 * We need to maintain these in the sk structure.
946 */
947
948 /* Find the Key structure for an address. */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950 const union tcp_md5_addr *addr,
951 int family)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 struct tcp_md5sig_key *key;
955 struct hlist_node *pos;
956 unsigned int size = sizeof(struct in_addr);
957 struct tcp_md5sig_info *md5sig;
958
959 /* caller either holds rcu_read_lock() or socket lock */
960 md5sig = rcu_dereference_check(tp->md5sig_info,
961 sock_owned_by_user(sk) ||
962 lockdep_is_held(&sk->sk_lock.slock));
963 if (!md5sig)
964 return NULL;
965 #if IS_ENABLED(CONFIG_IPV6)
966 if (family == AF_INET6)
967 size = sizeof(struct in6_addr);
968 #endif
969 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
970 if (key->family != family)
971 continue;
972 if (!memcmp(&key->addr, addr, size))
973 return key;
974 }
975 return NULL;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_lookup);
978
979 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
980 struct sock *addr_sk)
981 {
982 union tcp_md5_addr *addr;
983
984 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
985 return tcp_md5_do_lookup(sk, addr, AF_INET);
986 }
987 EXPORT_SYMBOL(tcp_v4_md5_lookup);
988
989 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
990 struct request_sock *req)
991 {
992 union tcp_md5_addr *addr;
993
994 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
995 return tcp_md5_do_lookup(sk, addr, AF_INET);
996 }
997
998 /* This can be called on a newly created socket, from other files */
999 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1000 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1001 {
1002 /* Add Key to the list */
1003 struct tcp_md5sig_key *key;
1004 struct tcp_sock *tp = tcp_sk(sk);
1005 struct tcp_md5sig_info *md5sig;
1006
1007 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1008 if (key) {
1009 /* Pre-existing entry - just update that one. */
1010 memcpy(key->key, newkey, newkeylen);
1011 key->keylen = newkeylen;
1012 return 0;
1013 }
1014
1015 md5sig = rcu_dereference_protected(tp->md5sig_info,
1016 sock_owned_by_user(sk));
1017 if (!md5sig) {
1018 md5sig = kmalloc(sizeof(*md5sig), gfp);
1019 if (!md5sig)
1020 return -ENOMEM;
1021
1022 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1023 INIT_HLIST_HEAD(&md5sig->head);
1024 rcu_assign_pointer(tp->md5sig_info, md5sig);
1025 }
1026
1027 key = sock_kmalloc(sk, sizeof(*key), gfp);
1028 if (!key)
1029 return -ENOMEM;
1030 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1031 sock_kfree_s(sk, key, sizeof(*key));
1032 return -ENOMEM;
1033 }
1034
1035 memcpy(key->key, newkey, newkeylen);
1036 key->keylen = newkeylen;
1037 key->family = family;
1038 memcpy(&key->addr, addr,
1039 (family == AF_INET6) ? sizeof(struct in6_addr) :
1040 sizeof(struct in_addr));
1041 hlist_add_head_rcu(&key->node, &md5sig->head);
1042 return 0;
1043 }
1044 EXPORT_SYMBOL(tcp_md5_do_add);
1045
1046 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1047 {
1048 struct tcp_sock *tp = tcp_sk(sk);
1049 struct tcp_md5sig_key *key;
1050 struct tcp_md5sig_info *md5sig;
1051
1052 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1053 if (!key)
1054 return -ENOENT;
1055 hlist_del_rcu(&key->node);
1056 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1057 kfree_rcu(key, rcu);
1058 md5sig = rcu_dereference_protected(tp->md5sig_info,
1059 sock_owned_by_user(sk));
1060 if (hlist_empty(&md5sig->head))
1061 tcp_free_md5sig_pool();
1062 return 0;
1063 }
1064 EXPORT_SYMBOL(tcp_md5_do_del);
1065
1066 static void tcp_clear_md5_list(struct sock *sk)
1067 {
1068 struct tcp_sock *tp = tcp_sk(sk);
1069 struct tcp_md5sig_key *key;
1070 struct hlist_node *pos, *n;
1071 struct tcp_md5sig_info *md5sig;
1072
1073 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1074
1075 if (!hlist_empty(&md5sig->head))
1076 tcp_free_md5sig_pool();
1077 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1078 hlist_del_rcu(&key->node);
1079 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1080 kfree_rcu(key, rcu);
1081 }
1082 }
1083
1084 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1085 int optlen)
1086 {
1087 struct tcp_md5sig cmd;
1088 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1089
1090 if (optlen < sizeof(cmd))
1091 return -EINVAL;
1092
1093 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1094 return -EFAULT;
1095
1096 if (sin->sin_family != AF_INET)
1097 return -EINVAL;
1098
1099 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1100 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1101 AF_INET);
1102
1103 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1104 return -EINVAL;
1105
1106 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1107 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1108 GFP_KERNEL);
1109 }
1110
1111 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1112 __be32 daddr, __be32 saddr, int nbytes)
1113 {
1114 struct tcp4_pseudohdr *bp;
1115 struct scatterlist sg;
1116
1117 bp = &hp->md5_blk.ip4;
1118
1119 /*
1120 * 1. the TCP pseudo-header (in the order: source IP address,
1121 * destination IP address, zero-padded protocol number, and
1122 * segment length)
1123 */
1124 bp->saddr = saddr;
1125 bp->daddr = daddr;
1126 bp->pad = 0;
1127 bp->protocol = IPPROTO_TCP;
1128 bp->len = cpu_to_be16(nbytes);
1129
1130 sg_init_one(&sg, bp, sizeof(*bp));
1131 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1132 }
1133
1134 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1135 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1136 {
1137 struct tcp_md5sig_pool *hp;
1138 struct hash_desc *desc;
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1148 goto clear_hash;
1149 if (tcp_md5_hash_header(hp, th))
1150 goto clear_hash;
1151 if (tcp_md5_hash_key(hp, key))
1152 goto clear_hash;
1153 if (crypto_hash_final(desc, md5_hash))
1154 goto clear_hash;
1155
1156 tcp_put_md5sig_pool();
1157 return 0;
1158
1159 clear_hash:
1160 tcp_put_md5sig_pool();
1161 clear_hash_noput:
1162 memset(md5_hash, 0, 16);
1163 return 1;
1164 }
1165
1166 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1167 const struct sock *sk, const struct request_sock *req,
1168 const struct sk_buff *skb)
1169 {
1170 struct tcp_md5sig_pool *hp;
1171 struct hash_desc *desc;
1172 const struct tcphdr *th = tcp_hdr(skb);
1173 __be32 saddr, daddr;
1174
1175 if (sk) {
1176 saddr = inet_sk(sk)->inet_saddr;
1177 daddr = inet_sk(sk)->inet_daddr;
1178 } else if (req) {
1179 saddr = inet_rsk(req)->loc_addr;
1180 daddr = inet_rsk(req)->rmt_addr;
1181 } else {
1182 const struct iphdr *iph = ip_hdr(skb);
1183 saddr = iph->saddr;
1184 daddr = iph->daddr;
1185 }
1186
1187 hp = tcp_get_md5sig_pool();
1188 if (!hp)
1189 goto clear_hash_noput;
1190 desc = &hp->md5_desc;
1191
1192 if (crypto_hash_init(desc))
1193 goto clear_hash;
1194
1195 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1196 goto clear_hash;
1197 if (tcp_md5_hash_header(hp, th))
1198 goto clear_hash;
1199 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1200 goto clear_hash;
1201 if (tcp_md5_hash_key(hp, key))
1202 goto clear_hash;
1203 if (crypto_hash_final(desc, md5_hash))
1204 goto clear_hash;
1205
1206 tcp_put_md5sig_pool();
1207 return 0;
1208
1209 clear_hash:
1210 tcp_put_md5sig_pool();
1211 clear_hash_noput:
1212 memset(md5_hash, 0, 16);
1213 return 1;
1214 }
1215 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1216
1217 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1218 {
1219 /*
1220 * This gets called for each TCP segment that arrives
1221 * so we want to be efficient.
1222 * We have 3 drop cases:
1223 * o No MD5 hash and one expected.
1224 * o MD5 hash and we're not expecting one.
1225 * o MD5 hash and its wrong.
1226 */
1227 const __u8 *hash_location = NULL;
1228 struct tcp_md5sig_key *hash_expected;
1229 const struct iphdr *iph = ip_hdr(skb);
1230 const struct tcphdr *th = tcp_hdr(skb);
1231 int genhash;
1232 unsigned char newhash[16];
1233
1234 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1235 AF_INET);
1236 hash_location = tcp_parse_md5sig_option(th);
1237
1238 /* We've parsed the options - do we have a hash? */
1239 if (!hash_expected && !hash_location)
1240 return false;
1241
1242 if (hash_expected && !hash_location) {
1243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1244 return true;
1245 }
1246
1247 if (!hash_expected && hash_location) {
1248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1249 return true;
1250 }
1251
1252 /* Okay, so this is hash_expected and hash_location -
1253 * so we need to calculate the checksum.
1254 */
1255 genhash = tcp_v4_md5_hash_skb(newhash,
1256 hash_expected,
1257 NULL, NULL, skb);
1258
1259 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1260 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1261 &iph->saddr, ntohs(th->source),
1262 &iph->daddr, ntohs(th->dest),
1263 genhash ? " tcp_v4_calc_md5_hash failed"
1264 : "");
1265 return true;
1266 }
1267 return false;
1268 }
1269
1270 #endif
1271
1272 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1273 .family = PF_INET,
1274 .obj_size = sizeof(struct tcp_request_sock),
1275 .rtx_syn_ack = tcp_v4_rtx_synack,
1276 .send_ack = tcp_v4_reqsk_send_ack,
1277 .destructor = tcp_v4_reqsk_destructor,
1278 .send_reset = tcp_v4_send_reset,
1279 .syn_ack_timeout = tcp_syn_ack_timeout,
1280 };
1281
1282 #ifdef CONFIG_TCP_MD5SIG
1283 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1284 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1285 .calc_md5_hash = tcp_v4_md5_hash_skb,
1286 };
1287 #endif
1288
1289 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1290 struct request_sock *req,
1291 struct tcp_fastopen_cookie *foc,
1292 struct tcp_fastopen_cookie *valid_foc)
1293 {
1294 bool skip_cookie = false;
1295 struct fastopen_queue *fastopenq;
1296
1297 if (likely(!fastopen_cookie_present(foc))) {
1298 /* See include/net/tcp.h for the meaning of these knobs */
1299 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1300 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1301 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1302 skip_cookie = true; /* no cookie to validate */
1303 else
1304 return false;
1305 }
1306 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1307 /* A FO option is present; bump the counter. */
1308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1309
1310 /* Make sure the listener has enabled fastopen, and we don't
1311 * exceed the max # of pending TFO requests allowed before trying
1312 * to validating the cookie in order to avoid burning CPU cycles
1313 * unnecessarily.
1314 *
1315 * XXX (TFO) - The implication of checking the max_qlen before
1316 * processing a cookie request is that clients can't differentiate
1317 * between qlen overflow causing Fast Open to be disabled
1318 * temporarily vs a server not supporting Fast Open at all.
1319 */
1320 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1321 fastopenq == NULL || fastopenq->max_qlen == 0)
1322 return false;
1323
1324 if (fastopenq->qlen >= fastopenq->max_qlen) {
1325 struct request_sock *req1;
1326 spin_lock(&fastopenq->lock);
1327 req1 = fastopenq->rskq_rst_head;
1328 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1329 spin_unlock(&fastopenq->lock);
1330 NET_INC_STATS_BH(sock_net(sk),
1331 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1332 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1333 foc->len = -1;
1334 return false;
1335 }
1336 fastopenq->rskq_rst_head = req1->dl_next;
1337 fastopenq->qlen--;
1338 spin_unlock(&fastopenq->lock);
1339 reqsk_free(req1);
1340 }
1341 if (skip_cookie) {
1342 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1343 return true;
1344 }
1345 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1346 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1347 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1348 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1349 memcmp(&foc->val[0], &valid_foc->val[0],
1350 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1351 return false;
1352 valid_foc->len = -1;
1353 }
1354 /* Acknowledge the data received from the peer. */
1355 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1356 return true;
1357 } else if (foc->len == 0) { /* Client requesting a cookie */
1358 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1359 NET_INC_STATS_BH(sock_net(sk),
1360 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1361 } else {
1362 /* Client sent a cookie with wrong size. Treat it
1363 * the same as invalid and return a valid one.
1364 */
1365 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366 }
1367 return false;
1368 }
1369
1370 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1371 struct sk_buff *skb,
1372 struct sk_buff *skb_synack,
1373 struct request_sock *req,
1374 struct request_values *rvp)
1375 {
1376 struct tcp_sock *tp = tcp_sk(sk);
1377 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1378 const struct inet_request_sock *ireq = inet_rsk(req);
1379 struct sock *child;
1380 int err;
1381
1382 req->num_retrans = 0;
1383 req->num_timeout = 0;
1384 req->sk = NULL;
1385
1386 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1387 if (child == NULL) {
1388 NET_INC_STATS_BH(sock_net(sk),
1389 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1390 kfree_skb(skb_synack);
1391 return -1;
1392 }
1393 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1394 ireq->rmt_addr, ireq->opt);
1395 err = net_xmit_eval(err);
1396 if (!err)
1397 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1398 /* XXX (TFO) - is it ok to ignore error and continue? */
1399
1400 spin_lock(&queue->fastopenq->lock);
1401 queue->fastopenq->qlen++;
1402 spin_unlock(&queue->fastopenq->lock);
1403
1404 /* Initialize the child socket. Have to fix some values to take
1405 * into account the child is a Fast Open socket and is created
1406 * only out of the bits carried in the SYN packet.
1407 */
1408 tp = tcp_sk(child);
1409
1410 tp->fastopen_rsk = req;
1411 /* Do a hold on the listner sk so that if the listener is being
1412 * closed, the child that has been accepted can live on and still
1413 * access listen_lock.
1414 */
1415 sock_hold(sk);
1416 tcp_rsk(req)->listener = sk;
1417
1418 /* RFC1323: The window in SYN & SYN/ACK segments is never
1419 * scaled. So correct it appropriately.
1420 */
1421 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1422
1423 /* Activate the retrans timer so that SYNACK can be retransmitted.
1424 * The request socket is not added to the SYN table of the parent
1425 * because it's been added to the accept queue directly.
1426 */
1427 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1428 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1429
1430 /* Add the child socket directly into the accept queue */
1431 inet_csk_reqsk_queue_add(sk, req, child);
1432
1433 /* Now finish processing the fastopen child socket. */
1434 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1435 tcp_init_congestion_control(child);
1436 tcp_mtup_init(child);
1437 tcp_init_buffer_space(child);
1438 tcp_init_metrics(child);
1439
1440 /* Queue the data carried in the SYN packet. We need to first
1441 * bump skb's refcnt because the caller will attempt to free it.
1442 *
1443 * XXX (TFO) - we honor a zero-payload TFO request for now.
1444 * (Any reason not to?)
1445 */
1446 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1447 /* Don't queue the skb if there is no payload in SYN.
1448 * XXX (TFO) - How about SYN+FIN?
1449 */
1450 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1451 } else {
1452 skb = skb_get(skb);
1453 skb_dst_drop(skb);
1454 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1455 skb_set_owner_r(skb, child);
1456 __skb_queue_tail(&child->sk_receive_queue, skb);
1457 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1458 tp->syn_data_acked = 1;
1459 }
1460 sk->sk_data_ready(sk, 0);
1461 bh_unlock_sock(child);
1462 sock_put(child);
1463 WARN_ON(req->sk == NULL);
1464 return 0;
1465 }
1466
1467 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1468 {
1469 struct tcp_extend_values tmp_ext;
1470 struct tcp_options_received tmp_opt;
1471 const u8 *hash_location;
1472 struct request_sock *req;
1473 struct inet_request_sock *ireq;
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct dst_entry *dst = NULL;
1476 __be32 saddr = ip_hdr(skb)->saddr;
1477 __be32 daddr = ip_hdr(skb)->daddr;
1478 __u32 isn = TCP_SKB_CB(skb)->when;
1479 bool want_cookie = false;
1480 struct flowi4 fl4;
1481 struct tcp_fastopen_cookie foc = { .len = -1 };
1482 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1483 struct sk_buff *skb_synack;
1484 int do_fastopen;
1485
1486 /* Never answer to SYNs send to broadcast or multicast */
1487 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1488 goto drop;
1489
1490 /* TW buckets are converted to open requests without
1491 * limitations, they conserve resources and peer is
1492 * evidently real one.
1493 */
1494 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1495 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1496 if (!want_cookie)
1497 goto drop;
1498 }
1499
1500 /* Accept backlog is full. If we have already queued enough
1501 * of warm entries in syn queue, drop request. It is better than
1502 * clogging syn queue with openreqs with exponentially increasing
1503 * timeout.
1504 */
1505 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1507 goto drop;
1508 }
1509
1510 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1511 if (!req)
1512 goto drop;
1513
1514 #ifdef CONFIG_TCP_MD5SIG
1515 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1516 #endif
1517
1518 tcp_clear_options(&tmp_opt);
1519 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1520 tmp_opt.user_mss = tp->rx_opt.user_mss;
1521 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1522 want_cookie ? NULL : &foc);
1523
1524 if (tmp_opt.cookie_plus > 0 &&
1525 tmp_opt.saw_tstamp &&
1526 !tp->rx_opt.cookie_out_never &&
1527 (sysctl_tcp_cookie_size > 0 ||
1528 (tp->cookie_values != NULL &&
1529 tp->cookie_values->cookie_desired > 0))) {
1530 u8 *c;
1531 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1532 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1533
1534 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1535 goto drop_and_release;
1536
1537 /* Secret recipe starts with IP addresses */
1538 *mess++ ^= (__force u32)daddr;
1539 *mess++ ^= (__force u32)saddr;
1540
1541 /* plus variable length Initiator Cookie */
1542 c = (u8 *)mess;
1543 while (l-- > 0)
1544 *c++ ^= *hash_location++;
1545
1546 want_cookie = false; /* not our kind of cookie */
1547 tmp_ext.cookie_out_never = 0; /* false */
1548 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1549 } else if (!tp->rx_opt.cookie_in_always) {
1550 /* redundant indications, but ensure initialization. */
1551 tmp_ext.cookie_out_never = 1; /* true */
1552 tmp_ext.cookie_plus = 0;
1553 } else {
1554 goto drop_and_release;
1555 }
1556 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1557
1558 if (want_cookie && !tmp_opt.saw_tstamp)
1559 tcp_clear_options(&tmp_opt);
1560
1561 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1562 tcp_openreq_init(req, &tmp_opt, skb);
1563
1564 ireq = inet_rsk(req);
1565 ireq->loc_addr = daddr;
1566 ireq->rmt_addr = saddr;
1567 ireq->no_srccheck = inet_sk(sk)->transparent;
1568 ireq->opt = tcp_v4_save_options(skb);
1569
1570 if (security_inet_conn_request(sk, skb, req))
1571 goto drop_and_free;
1572
1573 if (!want_cookie || tmp_opt.tstamp_ok)
1574 TCP_ECN_create_request(req, skb, sock_net(sk));
1575
1576 if (want_cookie) {
1577 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1578 req->cookie_ts = tmp_opt.tstamp_ok;
1579 } else if (!isn) {
1580 /* VJ's idea. We save last timestamp seen
1581 * from the destination in peer table, when entering
1582 * state TIME-WAIT, and check against it before
1583 * accepting new connection request.
1584 *
1585 * If "isn" is not zero, this request hit alive
1586 * timewait bucket, so that all the necessary checks
1587 * are made in the function processing timewait state.
1588 */
1589 if (tmp_opt.saw_tstamp &&
1590 tcp_death_row.sysctl_tw_recycle &&
1591 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1592 fl4.daddr == saddr) {
1593 if (!tcp_peer_is_proven(req, dst, true)) {
1594 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1595 goto drop_and_release;
1596 }
1597 }
1598 /* Kill the following clause, if you dislike this way. */
1599 else if (!sysctl_tcp_syncookies &&
1600 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1601 (sysctl_max_syn_backlog >> 2)) &&
1602 !tcp_peer_is_proven(req, dst, false)) {
1603 /* Without syncookies last quarter of
1604 * backlog is filled with destinations,
1605 * proven to be alive.
1606 * It means that we continue to communicate
1607 * to destinations, already remembered
1608 * to the moment of synflood.
1609 */
1610 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1611 &saddr, ntohs(tcp_hdr(skb)->source));
1612 goto drop_and_release;
1613 }
1614
1615 isn = tcp_v4_init_sequence(skb);
1616 }
1617 tcp_rsk(req)->snt_isn = isn;
1618
1619 if (dst == NULL) {
1620 dst = inet_csk_route_req(sk, &fl4, req);
1621 if (dst == NULL)
1622 goto drop_and_free;
1623 }
1624 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1625
1626 /* We don't call tcp_v4_send_synack() directly because we need
1627 * to make sure a child socket can be created successfully before
1628 * sending back synack!
1629 *
1630 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1631 * (or better yet, call tcp_send_synack() in the child context
1632 * directly, but will have to fix bunch of other code first)
1633 * after syn_recv_sock() except one will need to first fix the
1634 * latter to remove its dependency on the current implementation
1635 * of tcp_v4_send_synack()->tcp_select_initial_window().
1636 */
1637 skb_synack = tcp_make_synack(sk, dst, req,
1638 (struct request_values *)&tmp_ext,
1639 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1640
1641 if (skb_synack) {
1642 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1643 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1644 } else
1645 goto drop_and_free;
1646
1647 if (likely(!do_fastopen)) {
1648 int err;
1649 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1650 ireq->rmt_addr, ireq->opt);
1651 err = net_xmit_eval(err);
1652 if (err || want_cookie)
1653 goto drop_and_free;
1654
1655 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1656 tcp_rsk(req)->listener = NULL;
1657 /* Add the request_sock to the SYN table */
1658 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1659 if (fastopen_cookie_present(&foc) && foc.len != 0)
1660 NET_INC_STATS_BH(sock_net(sk),
1661 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1662 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1663 (struct request_values *)&tmp_ext))
1664 goto drop_and_free;
1665
1666 return 0;
1667
1668 drop_and_release:
1669 dst_release(dst);
1670 drop_and_free:
1671 reqsk_free(req);
1672 drop:
1673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1674 return 0;
1675 }
1676 EXPORT_SYMBOL(tcp_v4_conn_request);
1677
1678
1679 /*
1680 * The three way handshake has completed - we got a valid synack -
1681 * now create the new socket.
1682 */
1683 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1684 struct request_sock *req,
1685 struct dst_entry *dst)
1686 {
1687 struct inet_request_sock *ireq;
1688 struct inet_sock *newinet;
1689 struct tcp_sock *newtp;
1690 struct sock *newsk;
1691 #ifdef CONFIG_TCP_MD5SIG
1692 struct tcp_md5sig_key *key;
1693 #endif
1694 struct ip_options_rcu *inet_opt;
1695
1696 if (sk_acceptq_is_full(sk))
1697 goto exit_overflow;
1698
1699 newsk = tcp_create_openreq_child(sk, req, skb);
1700 if (!newsk)
1701 goto exit_nonewsk;
1702
1703 newsk->sk_gso_type = SKB_GSO_TCPV4;
1704 inet_sk_rx_dst_set(newsk, skb);
1705
1706 newtp = tcp_sk(newsk);
1707 newinet = inet_sk(newsk);
1708 ireq = inet_rsk(req);
1709 newinet->inet_daddr = ireq->rmt_addr;
1710 newinet->inet_rcv_saddr = ireq->loc_addr;
1711 newinet->inet_saddr = ireq->loc_addr;
1712 inet_opt = ireq->opt;
1713 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1714 ireq->opt = NULL;
1715 newinet->mc_index = inet_iif(skb);
1716 newinet->mc_ttl = ip_hdr(skb)->ttl;
1717 newinet->rcv_tos = ip_hdr(skb)->tos;
1718 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1719 if (inet_opt)
1720 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1721 newinet->inet_id = newtp->write_seq ^ jiffies;
1722
1723 if (!dst) {
1724 dst = inet_csk_route_child_sock(sk, newsk, req);
1725 if (!dst)
1726 goto put_and_exit;
1727 } else {
1728 /* syncookie case : see end of cookie_v4_check() */
1729 }
1730 sk_setup_caps(newsk, dst);
1731
1732 tcp_mtup_init(newsk);
1733 tcp_sync_mss(newsk, dst_mtu(dst));
1734 newtp->advmss = dst_metric_advmss(dst);
1735 if (tcp_sk(sk)->rx_opt.user_mss &&
1736 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1737 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1738
1739 tcp_initialize_rcv_mss(newsk);
1740 tcp_synack_rtt_meas(newsk, req);
1741 newtp->total_retrans = req->num_retrans;
1742
1743 #ifdef CONFIG_TCP_MD5SIG
1744 /* Copy over the MD5 key from the original socket */
1745 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1746 AF_INET);
1747 if (key != NULL) {
1748 /*
1749 * We're using one, so create a matching key
1750 * on the newsk structure. If we fail to get
1751 * memory, then we end up not copying the key
1752 * across. Shucks.
1753 */
1754 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1755 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1756 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1757 }
1758 #endif
1759
1760 if (__inet_inherit_port(sk, newsk) < 0)
1761 goto put_and_exit;
1762 __inet_hash_nolisten(newsk, NULL);
1763
1764 return newsk;
1765
1766 exit_overflow:
1767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1768 exit_nonewsk:
1769 dst_release(dst);
1770 exit:
1771 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1772 return NULL;
1773 put_and_exit:
1774 inet_csk_prepare_forced_close(newsk);
1775 tcp_done(newsk);
1776 goto exit;
1777 }
1778 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1779
1780 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1781 {
1782 struct tcphdr *th = tcp_hdr(skb);
1783 const struct iphdr *iph = ip_hdr(skb);
1784 struct sock *nsk;
1785 struct request_sock **prev;
1786 /* Find possible connection requests. */
1787 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1788 iph->saddr, iph->daddr);
1789 if (req)
1790 return tcp_check_req(sk, skb, req, prev, false);
1791
1792 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1793 th->source, iph->daddr, th->dest, inet_iif(skb));
1794
1795 if (nsk) {
1796 if (nsk->sk_state != TCP_TIME_WAIT) {
1797 bh_lock_sock(nsk);
1798 return nsk;
1799 }
1800 inet_twsk_put(inet_twsk(nsk));
1801 return NULL;
1802 }
1803
1804 #ifdef CONFIG_SYN_COOKIES
1805 if (!th->syn)
1806 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1807 #endif
1808 return sk;
1809 }
1810
1811 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1812 {
1813 const struct iphdr *iph = ip_hdr(skb);
1814
1815 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1816 if (!tcp_v4_check(skb->len, iph->saddr,
1817 iph->daddr, skb->csum)) {
1818 skb->ip_summed = CHECKSUM_UNNECESSARY;
1819 return 0;
1820 }
1821 }
1822
1823 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1824 skb->len, IPPROTO_TCP, 0);
1825
1826 if (skb->len <= 76) {
1827 return __skb_checksum_complete(skb);
1828 }
1829 return 0;
1830 }
1831
1832
1833 /* The socket must have it's spinlock held when we get
1834 * here.
1835 *
1836 * We have a potential double-lock case here, so even when
1837 * doing backlog processing we use the BH locking scheme.
1838 * This is because we cannot sleep with the original spinlock
1839 * held.
1840 */
1841 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1842 {
1843 struct sock *rsk;
1844 #ifdef CONFIG_TCP_MD5SIG
1845 /*
1846 * We really want to reject the packet as early as possible
1847 * if:
1848 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1849 * o There is an MD5 option and we're not expecting one
1850 */
1851 if (tcp_v4_inbound_md5_hash(sk, skb))
1852 goto discard;
1853 #endif
1854
1855 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1856 struct dst_entry *dst = sk->sk_rx_dst;
1857
1858 sock_rps_save_rxhash(sk, skb);
1859 if (dst) {
1860 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1861 dst->ops->check(dst, 0) == NULL) {
1862 dst_release(dst);
1863 sk->sk_rx_dst = NULL;
1864 }
1865 }
1866 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1867 rsk = sk;
1868 goto reset;
1869 }
1870 return 0;
1871 }
1872
1873 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1874 goto csum_err;
1875
1876 if (sk->sk_state == TCP_LISTEN) {
1877 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1878 if (!nsk)
1879 goto discard;
1880
1881 if (nsk != sk) {
1882 sock_rps_save_rxhash(nsk, skb);
1883 if (tcp_child_process(sk, nsk, skb)) {
1884 rsk = nsk;
1885 goto reset;
1886 }
1887 return 0;
1888 }
1889 } else
1890 sock_rps_save_rxhash(sk, skb);
1891
1892 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1893 rsk = sk;
1894 goto reset;
1895 }
1896 return 0;
1897
1898 reset:
1899 tcp_v4_send_reset(rsk, skb);
1900 discard:
1901 kfree_skb(skb);
1902 /* Be careful here. If this function gets more complicated and
1903 * gcc suffers from register pressure on the x86, sk (in %ebx)
1904 * might be destroyed here. This current version compiles correctly,
1905 * but you have been warned.
1906 */
1907 return 0;
1908
1909 csum_err:
1910 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1911 goto discard;
1912 }
1913 EXPORT_SYMBOL(tcp_v4_do_rcv);
1914
1915 void tcp_v4_early_demux(struct sk_buff *skb)
1916 {
1917 const struct iphdr *iph;
1918 const struct tcphdr *th;
1919 struct sock *sk;
1920
1921 if (skb->pkt_type != PACKET_HOST)
1922 return;
1923
1924 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1925 return;
1926
1927 iph = ip_hdr(skb);
1928 th = tcp_hdr(skb);
1929
1930 if (th->doff < sizeof(struct tcphdr) / 4)
1931 return;
1932
1933 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1934 iph->saddr, th->source,
1935 iph->daddr, ntohs(th->dest),
1936 skb->skb_iif);
1937 if (sk) {
1938 skb->sk = sk;
1939 skb->destructor = sock_edemux;
1940 if (sk->sk_state != TCP_TIME_WAIT) {
1941 struct dst_entry *dst = sk->sk_rx_dst;
1942
1943 if (dst)
1944 dst = dst_check(dst, 0);
1945 if (dst &&
1946 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1947 skb_dst_set_noref(skb, dst);
1948 }
1949 }
1950 }
1951
1952 /*
1953 * From tcp_input.c
1954 */
1955
1956 int tcp_v4_rcv(struct sk_buff *skb)
1957 {
1958 const struct iphdr *iph;
1959 const struct tcphdr *th;
1960 struct sock *sk;
1961 int ret;
1962 struct net *net = dev_net(skb->dev);
1963
1964 if (skb->pkt_type != PACKET_HOST)
1965 goto discard_it;
1966
1967 /* Count it even if it's bad */
1968 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1969
1970 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1971 goto discard_it;
1972
1973 th = tcp_hdr(skb);
1974
1975 if (th->doff < sizeof(struct tcphdr) / 4)
1976 goto bad_packet;
1977 if (!pskb_may_pull(skb, th->doff * 4))
1978 goto discard_it;
1979
1980 /* An explanation is required here, I think.
1981 * Packet length and doff are validated by header prediction,
1982 * provided case of th->doff==0 is eliminated.
1983 * So, we defer the checks. */
1984 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1985 goto bad_packet;
1986
1987 th = tcp_hdr(skb);
1988 iph = ip_hdr(skb);
1989 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1990 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1991 skb->len - th->doff * 4);
1992 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1993 TCP_SKB_CB(skb)->when = 0;
1994 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1995 TCP_SKB_CB(skb)->sacked = 0;
1996
1997 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1998 if (!sk)
1999 goto no_tcp_socket;
2000
2001 process:
2002 if (sk->sk_state == TCP_TIME_WAIT)
2003 goto do_time_wait;
2004
2005 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2006 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2007 goto discard_and_relse;
2008 }
2009
2010 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2011 goto discard_and_relse;
2012 nf_reset(skb);
2013
2014 if (sk_filter(sk, skb))
2015 goto discard_and_relse;
2016
2017 skb->dev = NULL;
2018
2019 bh_lock_sock_nested(sk);
2020 ret = 0;
2021 if (!sock_owned_by_user(sk)) {
2022 #ifdef CONFIG_NET_DMA
2023 struct tcp_sock *tp = tcp_sk(sk);
2024 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2025 tp->ucopy.dma_chan = net_dma_find_channel();
2026 if (tp->ucopy.dma_chan)
2027 ret = tcp_v4_do_rcv(sk, skb);
2028 else
2029 #endif
2030 {
2031 if (!tcp_prequeue(sk, skb))
2032 ret = tcp_v4_do_rcv(sk, skb);
2033 }
2034 } else if (unlikely(sk_add_backlog(sk, skb,
2035 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2036 bh_unlock_sock(sk);
2037 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2038 goto discard_and_relse;
2039 }
2040 bh_unlock_sock(sk);
2041
2042 sock_put(sk);
2043
2044 return ret;
2045
2046 no_tcp_socket:
2047 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2048 goto discard_it;
2049
2050 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2051 bad_packet:
2052 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2053 } else {
2054 tcp_v4_send_reset(NULL, skb);
2055 }
2056
2057 discard_it:
2058 /* Discard frame. */
2059 kfree_skb(skb);
2060 return 0;
2061
2062 discard_and_relse:
2063 sock_put(sk);
2064 goto discard_it;
2065
2066 do_time_wait:
2067 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2068 inet_twsk_put(inet_twsk(sk));
2069 goto discard_it;
2070 }
2071
2072 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2073 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2074 inet_twsk_put(inet_twsk(sk));
2075 goto discard_it;
2076 }
2077 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2078 case TCP_TW_SYN: {
2079 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2080 &tcp_hashinfo,
2081 iph->saddr, th->source,
2082 iph->daddr, th->dest,
2083 inet_iif(skb));
2084 if (sk2) {
2085 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2086 inet_twsk_put(inet_twsk(sk));
2087 sk = sk2;
2088 goto process;
2089 }
2090 /* Fall through to ACK */
2091 }
2092 case TCP_TW_ACK:
2093 tcp_v4_timewait_ack(sk, skb);
2094 break;
2095 case TCP_TW_RST:
2096 goto no_tcp_socket;
2097 case TCP_TW_SUCCESS:;
2098 }
2099 goto discard_it;
2100 }
2101
2102 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2103 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2104 .twsk_unique = tcp_twsk_unique,
2105 .twsk_destructor= tcp_twsk_destructor,
2106 };
2107
2108 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2109 {
2110 struct dst_entry *dst = skb_dst(skb);
2111
2112 dst_hold(dst);
2113 sk->sk_rx_dst = dst;
2114 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2115 }
2116 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2117
2118 const struct inet_connection_sock_af_ops ipv4_specific = {
2119 .queue_xmit = ip_queue_xmit,
2120 .send_check = tcp_v4_send_check,
2121 .rebuild_header = inet_sk_rebuild_header,
2122 .sk_rx_dst_set = inet_sk_rx_dst_set,
2123 .conn_request = tcp_v4_conn_request,
2124 .syn_recv_sock = tcp_v4_syn_recv_sock,
2125 .net_header_len = sizeof(struct iphdr),
2126 .setsockopt = ip_setsockopt,
2127 .getsockopt = ip_getsockopt,
2128 .addr2sockaddr = inet_csk_addr2sockaddr,
2129 .sockaddr_len = sizeof(struct sockaddr_in),
2130 .bind_conflict = inet_csk_bind_conflict,
2131 #ifdef CONFIG_COMPAT
2132 .compat_setsockopt = compat_ip_setsockopt,
2133 .compat_getsockopt = compat_ip_getsockopt,
2134 #endif
2135 };
2136 EXPORT_SYMBOL(ipv4_specific);
2137
2138 #ifdef CONFIG_TCP_MD5SIG
2139 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2140 .md5_lookup = tcp_v4_md5_lookup,
2141 .calc_md5_hash = tcp_v4_md5_hash_skb,
2142 .md5_parse = tcp_v4_parse_md5_keys,
2143 };
2144 #endif
2145
2146 /* NOTE: A lot of things set to zero explicitly by call to
2147 * sk_alloc() so need not be done here.
2148 */
2149 static int tcp_v4_init_sock(struct sock *sk)
2150 {
2151 struct inet_connection_sock *icsk = inet_csk(sk);
2152
2153 tcp_init_sock(sk);
2154
2155 icsk->icsk_af_ops = &ipv4_specific;
2156
2157 #ifdef CONFIG_TCP_MD5SIG
2158 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2159 #endif
2160
2161 return 0;
2162 }
2163
2164 void tcp_v4_destroy_sock(struct sock *sk)
2165 {
2166 struct tcp_sock *tp = tcp_sk(sk);
2167
2168 tcp_clear_xmit_timers(sk);
2169
2170 tcp_cleanup_congestion_control(sk);
2171
2172 /* Cleanup up the write buffer. */
2173 tcp_write_queue_purge(sk);
2174
2175 /* Cleans up our, hopefully empty, out_of_order_queue. */
2176 __skb_queue_purge(&tp->out_of_order_queue);
2177
2178 #ifdef CONFIG_TCP_MD5SIG
2179 /* Clean up the MD5 key list, if any */
2180 if (tp->md5sig_info) {
2181 tcp_clear_md5_list(sk);
2182 kfree_rcu(tp->md5sig_info, rcu);
2183 tp->md5sig_info = NULL;
2184 }
2185 #endif
2186
2187 #ifdef CONFIG_NET_DMA
2188 /* Cleans up our sk_async_wait_queue */
2189 __skb_queue_purge(&sk->sk_async_wait_queue);
2190 #endif
2191
2192 /* Clean prequeue, it must be empty really */
2193 __skb_queue_purge(&tp->ucopy.prequeue);
2194
2195 /* Clean up a referenced TCP bind bucket. */
2196 if (inet_csk(sk)->icsk_bind_hash)
2197 inet_put_port(sk);
2198
2199 /* TCP Cookie Transactions */
2200 if (tp->cookie_values != NULL) {
2201 kref_put(&tp->cookie_values->kref,
2202 tcp_cookie_values_release);
2203 tp->cookie_values = NULL;
2204 }
2205 BUG_ON(tp->fastopen_rsk != NULL);
2206
2207 /* If socket is aborted during connect operation */
2208 tcp_free_fastopen_req(tp);
2209
2210 sk_sockets_allocated_dec(sk);
2211 sock_release_memcg(sk);
2212 }
2213 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2214
2215 #ifdef CONFIG_PROC_FS
2216 /* Proc filesystem TCP sock list dumping. */
2217
2218 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2219 {
2220 return hlist_nulls_empty(head) ? NULL :
2221 list_entry(head->first, struct inet_timewait_sock, tw_node);
2222 }
2223
2224 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2225 {
2226 return !is_a_nulls(tw->tw_node.next) ?
2227 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2228 }
2229
2230 /*
2231 * Get next listener socket follow cur. If cur is NULL, get first socket
2232 * starting from bucket given in st->bucket; when st->bucket is zero the
2233 * very first socket in the hash table is returned.
2234 */
2235 static void *listening_get_next(struct seq_file *seq, void *cur)
2236 {
2237 struct inet_connection_sock *icsk;
2238 struct hlist_nulls_node *node;
2239 struct sock *sk = cur;
2240 struct inet_listen_hashbucket *ilb;
2241 struct tcp_iter_state *st = seq->private;
2242 struct net *net = seq_file_net(seq);
2243
2244 if (!sk) {
2245 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2246 spin_lock_bh(&ilb->lock);
2247 sk = sk_nulls_head(&ilb->head);
2248 st->offset = 0;
2249 goto get_sk;
2250 }
2251 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2252 ++st->num;
2253 ++st->offset;
2254
2255 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2256 struct request_sock *req = cur;
2257
2258 icsk = inet_csk(st->syn_wait_sk);
2259 req = req->dl_next;
2260 while (1) {
2261 while (req) {
2262 if (req->rsk_ops->family == st->family) {
2263 cur = req;
2264 goto out;
2265 }
2266 req = req->dl_next;
2267 }
2268 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2269 break;
2270 get_req:
2271 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2272 }
2273 sk = sk_nulls_next(st->syn_wait_sk);
2274 st->state = TCP_SEQ_STATE_LISTENING;
2275 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276 } else {
2277 icsk = inet_csk(sk);
2278 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2280 goto start_req;
2281 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2282 sk = sk_nulls_next(sk);
2283 }
2284 get_sk:
2285 sk_nulls_for_each_from(sk, node) {
2286 if (!net_eq(sock_net(sk), net))
2287 continue;
2288 if (sk->sk_family == st->family) {
2289 cur = sk;
2290 goto out;
2291 }
2292 icsk = inet_csk(sk);
2293 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2294 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2295 start_req:
2296 st->uid = sock_i_uid(sk);
2297 st->syn_wait_sk = sk;
2298 st->state = TCP_SEQ_STATE_OPENREQ;
2299 st->sbucket = 0;
2300 goto get_req;
2301 }
2302 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2303 }
2304 spin_unlock_bh(&ilb->lock);
2305 st->offset = 0;
2306 if (++st->bucket < INET_LHTABLE_SIZE) {
2307 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2308 spin_lock_bh(&ilb->lock);
2309 sk = sk_nulls_head(&ilb->head);
2310 goto get_sk;
2311 }
2312 cur = NULL;
2313 out:
2314 return cur;
2315 }
2316
2317 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2318 {
2319 struct tcp_iter_state *st = seq->private;
2320 void *rc;
2321
2322 st->bucket = 0;
2323 st->offset = 0;
2324 rc = listening_get_next(seq, NULL);
2325
2326 while (rc && *pos) {
2327 rc = listening_get_next(seq, rc);
2328 --*pos;
2329 }
2330 return rc;
2331 }
2332
2333 static inline bool empty_bucket(struct tcp_iter_state *st)
2334 {
2335 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2336 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2337 }
2338
2339 /*
2340 * Get first established socket starting from bucket given in st->bucket.
2341 * If st->bucket is zero, the very first socket in the hash is returned.
2342 */
2343 static void *established_get_first(struct seq_file *seq)
2344 {
2345 struct tcp_iter_state *st = seq->private;
2346 struct net *net = seq_file_net(seq);
2347 void *rc = NULL;
2348
2349 st->offset = 0;
2350 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2351 struct sock *sk;
2352 struct hlist_nulls_node *node;
2353 struct inet_timewait_sock *tw;
2354 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2355
2356 /* Lockless fast path for the common case of empty buckets */
2357 if (empty_bucket(st))
2358 continue;
2359
2360 spin_lock_bh(lock);
2361 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2362 if (sk->sk_family != st->family ||
2363 !net_eq(sock_net(sk), net)) {
2364 continue;
2365 }
2366 rc = sk;
2367 goto out;
2368 }
2369 st->state = TCP_SEQ_STATE_TIME_WAIT;
2370 inet_twsk_for_each(tw, node,
2371 &tcp_hashinfo.ehash[st->bucket].twchain) {
2372 if (tw->tw_family != st->family ||
2373 !net_eq(twsk_net(tw), net)) {
2374 continue;
2375 }
2376 rc = tw;
2377 goto out;
2378 }
2379 spin_unlock_bh(lock);
2380 st->state = TCP_SEQ_STATE_ESTABLISHED;
2381 }
2382 out:
2383 return rc;
2384 }
2385
2386 static void *established_get_next(struct seq_file *seq, void *cur)
2387 {
2388 struct sock *sk = cur;
2389 struct inet_timewait_sock *tw;
2390 struct hlist_nulls_node *node;
2391 struct tcp_iter_state *st = seq->private;
2392 struct net *net = seq_file_net(seq);
2393
2394 ++st->num;
2395 ++st->offset;
2396
2397 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2398 tw = cur;
2399 tw = tw_next(tw);
2400 get_tw:
2401 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2402 tw = tw_next(tw);
2403 }
2404 if (tw) {
2405 cur = tw;
2406 goto out;
2407 }
2408 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2409 st->state = TCP_SEQ_STATE_ESTABLISHED;
2410
2411 /* Look for next non empty bucket */
2412 st->offset = 0;
2413 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2414 empty_bucket(st))
2415 ;
2416 if (st->bucket > tcp_hashinfo.ehash_mask)
2417 return NULL;
2418
2419 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2420 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2421 } else
2422 sk = sk_nulls_next(sk);
2423
2424 sk_nulls_for_each_from(sk, node) {
2425 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2426 goto found;
2427 }
2428
2429 st->state = TCP_SEQ_STATE_TIME_WAIT;
2430 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2431 goto get_tw;
2432 found:
2433 cur = sk;
2434 out:
2435 return cur;
2436 }
2437
2438 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2439 {
2440 struct tcp_iter_state *st = seq->private;
2441 void *rc;
2442
2443 st->bucket = 0;
2444 rc = established_get_first(seq);
2445
2446 while (rc && pos) {
2447 rc = established_get_next(seq, rc);
2448 --pos;
2449 }
2450 return rc;
2451 }
2452
2453 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2454 {
2455 void *rc;
2456 struct tcp_iter_state *st = seq->private;
2457
2458 st->state = TCP_SEQ_STATE_LISTENING;
2459 rc = listening_get_idx(seq, &pos);
2460
2461 if (!rc) {
2462 st->state = TCP_SEQ_STATE_ESTABLISHED;
2463 rc = established_get_idx(seq, pos);
2464 }
2465
2466 return rc;
2467 }
2468
2469 static void *tcp_seek_last_pos(struct seq_file *seq)
2470 {
2471 struct tcp_iter_state *st = seq->private;
2472 int offset = st->offset;
2473 int orig_num = st->num;
2474 void *rc = NULL;
2475
2476 switch (st->state) {
2477 case TCP_SEQ_STATE_OPENREQ:
2478 case TCP_SEQ_STATE_LISTENING:
2479 if (st->bucket >= INET_LHTABLE_SIZE)
2480 break;
2481 st->state = TCP_SEQ_STATE_LISTENING;
2482 rc = listening_get_next(seq, NULL);
2483 while (offset-- && rc)
2484 rc = listening_get_next(seq, rc);
2485 if (rc)
2486 break;
2487 st->bucket = 0;
2488 /* Fallthrough */
2489 case TCP_SEQ_STATE_ESTABLISHED:
2490 case TCP_SEQ_STATE_TIME_WAIT:
2491 st->state = TCP_SEQ_STATE_ESTABLISHED;
2492 if (st->bucket > tcp_hashinfo.ehash_mask)
2493 break;
2494 rc = established_get_first(seq);
2495 while (offset-- && rc)
2496 rc = established_get_next(seq, rc);
2497 }
2498
2499 st->num = orig_num;
2500
2501 return rc;
2502 }
2503
2504 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2505 {
2506 struct tcp_iter_state *st = seq->private;
2507 void *rc;
2508
2509 if (*pos && *pos == st->last_pos) {
2510 rc = tcp_seek_last_pos(seq);
2511 if (rc)
2512 goto out;
2513 }
2514
2515 st->state = TCP_SEQ_STATE_LISTENING;
2516 st->num = 0;
2517 st->bucket = 0;
2518 st->offset = 0;
2519 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2520
2521 out:
2522 st->last_pos = *pos;
2523 return rc;
2524 }
2525
2526 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2527 {
2528 struct tcp_iter_state *st = seq->private;
2529 void *rc = NULL;
2530
2531 if (v == SEQ_START_TOKEN) {
2532 rc = tcp_get_idx(seq, 0);
2533 goto out;
2534 }
2535
2536 switch (st->state) {
2537 case TCP_SEQ_STATE_OPENREQ:
2538 case TCP_SEQ_STATE_LISTENING:
2539 rc = listening_get_next(seq, v);
2540 if (!rc) {
2541 st->state = TCP_SEQ_STATE_ESTABLISHED;
2542 st->bucket = 0;
2543 st->offset = 0;
2544 rc = established_get_first(seq);
2545 }
2546 break;
2547 case TCP_SEQ_STATE_ESTABLISHED:
2548 case TCP_SEQ_STATE_TIME_WAIT:
2549 rc = established_get_next(seq, v);
2550 break;
2551 }
2552 out:
2553 ++*pos;
2554 st->last_pos = *pos;
2555 return rc;
2556 }
2557
2558 static void tcp_seq_stop(struct seq_file *seq, void *v)
2559 {
2560 struct tcp_iter_state *st = seq->private;
2561
2562 switch (st->state) {
2563 case TCP_SEQ_STATE_OPENREQ:
2564 if (v) {
2565 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2566 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2567 }
2568 case TCP_SEQ_STATE_LISTENING:
2569 if (v != SEQ_START_TOKEN)
2570 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2571 break;
2572 case TCP_SEQ_STATE_TIME_WAIT:
2573 case TCP_SEQ_STATE_ESTABLISHED:
2574 if (v)
2575 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2576 break;
2577 }
2578 }
2579
2580 int tcp_seq_open(struct inode *inode, struct file *file)
2581 {
2582 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2583 struct tcp_iter_state *s;
2584 int err;
2585
2586 err = seq_open_net(inode, file, &afinfo->seq_ops,
2587 sizeof(struct tcp_iter_state));
2588 if (err < 0)
2589 return err;
2590
2591 s = ((struct seq_file *)file->private_data)->private;
2592 s->family = afinfo->family;
2593 s->last_pos = 0;
2594 return 0;
2595 }
2596 EXPORT_SYMBOL(tcp_seq_open);
2597
2598 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2599 {
2600 int rc = 0;
2601 struct proc_dir_entry *p;
2602
2603 afinfo->seq_ops.start = tcp_seq_start;
2604 afinfo->seq_ops.next = tcp_seq_next;
2605 afinfo->seq_ops.stop = tcp_seq_stop;
2606
2607 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2608 afinfo->seq_fops, afinfo);
2609 if (!p)
2610 rc = -ENOMEM;
2611 return rc;
2612 }
2613 EXPORT_SYMBOL(tcp_proc_register);
2614
2615 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2616 {
2617 proc_net_remove(net, afinfo->name);
2618 }
2619 EXPORT_SYMBOL(tcp_proc_unregister);
2620
2621 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2622 struct seq_file *f, int i, kuid_t uid, int *len)
2623 {
2624 const struct inet_request_sock *ireq = inet_rsk(req);
2625 long delta = req->expires - jiffies;
2626
2627 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2628 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2629 i,
2630 ireq->loc_addr,
2631 ntohs(inet_sk(sk)->inet_sport),
2632 ireq->rmt_addr,
2633 ntohs(ireq->rmt_port),
2634 TCP_SYN_RECV,
2635 0, 0, /* could print option size, but that is af dependent. */
2636 1, /* timers active (only the expire timer) */
2637 jiffies_delta_to_clock_t(delta),
2638 req->num_timeout,
2639 from_kuid_munged(seq_user_ns(f), uid),
2640 0, /* non standard timer */
2641 0, /* open_requests have no inode */
2642 atomic_read(&sk->sk_refcnt),
2643 req,
2644 len);
2645 }
2646
2647 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2648 {
2649 int timer_active;
2650 unsigned long timer_expires;
2651 const struct tcp_sock *tp = tcp_sk(sk);
2652 const struct inet_connection_sock *icsk = inet_csk(sk);
2653 const struct inet_sock *inet = inet_sk(sk);
2654 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2655 __be32 dest = inet->inet_daddr;
2656 __be32 src = inet->inet_rcv_saddr;
2657 __u16 destp = ntohs(inet->inet_dport);
2658 __u16 srcp = ntohs(inet->inet_sport);
2659 int rx_queue;
2660
2661 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2662 timer_active = 1;
2663 timer_expires = icsk->icsk_timeout;
2664 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2665 timer_active = 4;
2666 timer_expires = icsk->icsk_timeout;
2667 } else if (timer_pending(&sk->sk_timer)) {
2668 timer_active = 2;
2669 timer_expires = sk->sk_timer.expires;
2670 } else {
2671 timer_active = 0;
2672 timer_expires = jiffies;
2673 }
2674
2675 if (sk->sk_state == TCP_LISTEN)
2676 rx_queue = sk->sk_ack_backlog;
2677 else
2678 /*
2679 * because we dont lock socket, we might find a transient negative value
2680 */
2681 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2682
2683 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2684 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2685 i, src, srcp, dest, destp, sk->sk_state,
2686 tp->write_seq - tp->snd_una,
2687 rx_queue,
2688 timer_active,
2689 jiffies_delta_to_clock_t(timer_expires - jiffies),
2690 icsk->icsk_retransmits,
2691 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2692 icsk->icsk_probes_out,
2693 sock_i_ino(sk),
2694 atomic_read(&sk->sk_refcnt), sk,
2695 jiffies_to_clock_t(icsk->icsk_rto),
2696 jiffies_to_clock_t(icsk->icsk_ack.ato),
2697 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2698 tp->snd_cwnd,
2699 sk->sk_state == TCP_LISTEN ?
2700 (fastopenq ? fastopenq->max_qlen : 0) :
2701 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2702 len);
2703 }
2704
2705 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2706 struct seq_file *f, int i, int *len)
2707 {
2708 __be32 dest, src;
2709 __u16 destp, srcp;
2710 long delta = tw->tw_ttd - jiffies;
2711
2712 dest = tw->tw_daddr;
2713 src = tw->tw_rcv_saddr;
2714 destp = ntohs(tw->tw_dport);
2715 srcp = ntohs(tw->tw_sport);
2716
2717 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2718 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2719 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2720 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2721 atomic_read(&tw->tw_refcnt), tw, len);
2722 }
2723
2724 #define TMPSZ 150
2725
2726 static int tcp4_seq_show(struct seq_file *seq, void *v)
2727 {
2728 struct tcp_iter_state *st;
2729 int len;
2730
2731 if (v == SEQ_START_TOKEN) {
2732 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2733 " sl local_address rem_address st tx_queue "
2734 "rx_queue tr tm->when retrnsmt uid timeout "
2735 "inode");
2736 goto out;
2737 }
2738 st = seq->private;
2739
2740 switch (st->state) {
2741 case TCP_SEQ_STATE_LISTENING:
2742 case TCP_SEQ_STATE_ESTABLISHED:
2743 get_tcp4_sock(v, seq, st->num, &len);
2744 break;
2745 case TCP_SEQ_STATE_OPENREQ:
2746 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2747 break;
2748 case TCP_SEQ_STATE_TIME_WAIT:
2749 get_timewait4_sock(v, seq, st->num, &len);
2750 break;
2751 }
2752 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2753 out:
2754 return 0;
2755 }
2756
2757 static const struct file_operations tcp_afinfo_seq_fops = {
2758 .owner = THIS_MODULE,
2759 .open = tcp_seq_open,
2760 .read = seq_read,
2761 .llseek = seq_lseek,
2762 .release = seq_release_net
2763 };
2764
2765 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2766 .name = "tcp",
2767 .family = AF_INET,
2768 .seq_fops = &tcp_afinfo_seq_fops,
2769 .seq_ops = {
2770 .show = tcp4_seq_show,
2771 },
2772 };
2773
2774 static int __net_init tcp4_proc_init_net(struct net *net)
2775 {
2776 return tcp_proc_register(net, &tcp4_seq_afinfo);
2777 }
2778
2779 static void __net_exit tcp4_proc_exit_net(struct net *net)
2780 {
2781 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2782 }
2783
2784 static struct pernet_operations tcp4_net_ops = {
2785 .init = tcp4_proc_init_net,
2786 .exit = tcp4_proc_exit_net,
2787 };
2788
2789 int __init tcp4_proc_init(void)
2790 {
2791 return register_pernet_subsys(&tcp4_net_ops);
2792 }
2793
2794 void tcp4_proc_exit(void)
2795 {
2796 unregister_pernet_subsys(&tcp4_net_ops);
2797 }
2798 #endif /* CONFIG_PROC_FS */
2799
2800 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2801 {
2802 const struct iphdr *iph = skb_gro_network_header(skb);
2803 __wsum wsum;
2804 __sum16 sum;
2805
2806 switch (skb->ip_summed) {
2807 case CHECKSUM_COMPLETE:
2808 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2809 skb->csum)) {
2810 skb->ip_summed = CHECKSUM_UNNECESSARY;
2811 break;
2812 }
2813 flush:
2814 NAPI_GRO_CB(skb)->flush = 1;
2815 return NULL;
2816
2817 case CHECKSUM_NONE:
2818 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2819 skb_gro_len(skb), IPPROTO_TCP, 0);
2820 sum = csum_fold(skb_checksum(skb,
2821 skb_gro_offset(skb),
2822 skb_gro_len(skb),
2823 wsum));
2824 if (sum)
2825 goto flush;
2826
2827 skb->ip_summed = CHECKSUM_UNNECESSARY;
2828 break;
2829 }
2830
2831 return tcp_gro_receive(head, skb);
2832 }
2833
2834 int tcp4_gro_complete(struct sk_buff *skb)
2835 {
2836 const struct iphdr *iph = ip_hdr(skb);
2837 struct tcphdr *th = tcp_hdr(skb);
2838
2839 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2840 iph->saddr, iph->daddr, 0);
2841 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2842
2843 return tcp_gro_complete(skb);
2844 }
2845
2846 struct proto tcp_prot = {
2847 .name = "TCP",
2848 .owner = THIS_MODULE,
2849 .close = tcp_close,
2850 .connect = tcp_v4_connect,
2851 .disconnect = tcp_disconnect,
2852 .accept = inet_csk_accept,
2853 .ioctl = tcp_ioctl,
2854 .init = tcp_v4_init_sock,
2855 .destroy = tcp_v4_destroy_sock,
2856 .shutdown = tcp_shutdown,
2857 .setsockopt = tcp_setsockopt,
2858 .getsockopt = tcp_getsockopt,
2859 .recvmsg = tcp_recvmsg,
2860 .sendmsg = tcp_sendmsg,
2861 .sendpage = tcp_sendpage,
2862 .backlog_rcv = tcp_v4_do_rcv,
2863 .release_cb = tcp_release_cb,
2864 .mtu_reduced = tcp_v4_mtu_reduced,
2865 .hash = inet_hash,
2866 .unhash = inet_unhash,
2867 .get_port = inet_csk_get_port,
2868 .enter_memory_pressure = tcp_enter_memory_pressure,
2869 .sockets_allocated = &tcp_sockets_allocated,
2870 .orphan_count = &tcp_orphan_count,
2871 .memory_allocated = &tcp_memory_allocated,
2872 .memory_pressure = &tcp_memory_pressure,
2873 .sysctl_wmem = sysctl_tcp_wmem,
2874 .sysctl_rmem = sysctl_tcp_rmem,
2875 .max_header = MAX_TCP_HEADER,
2876 .obj_size = sizeof(struct tcp_sock),
2877 .slab_flags = SLAB_DESTROY_BY_RCU,
2878 .twsk_prot = &tcp_timewait_sock_ops,
2879 .rsk_prot = &tcp_request_sock_ops,
2880 .h.hashinfo = &tcp_hashinfo,
2881 .no_autobind = true,
2882 #ifdef CONFIG_COMPAT
2883 .compat_setsockopt = compat_tcp_setsockopt,
2884 .compat_getsockopt = compat_tcp_getsockopt,
2885 #endif
2886 #ifdef CONFIG_MEMCG_KMEM
2887 .init_cgroup = tcp_init_cgroup,
2888 .destroy_cgroup = tcp_destroy_cgroup,
2889 .proto_cgroup = tcp_proto_cgroup,
2890 #endif
2891 };
2892 EXPORT_SYMBOL(tcp_prot);
2893
2894 static int __net_init tcp_sk_init(struct net *net)
2895 {
2896 net->ipv4.sysctl_tcp_ecn = 2;
2897 return 0;
2898 }
2899
2900 static void __net_exit tcp_sk_exit(struct net *net)
2901 {
2902 }
2903
2904 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2905 {
2906 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2907 }
2908
2909 static struct pernet_operations __net_initdata tcp_sk_ops = {
2910 .init = tcp_sk_init,
2911 .exit = tcp_sk_exit,
2912 .exit_batch = tcp_sk_exit_batch,
2913 };
2914
2915 void __init tcp_v4_init(void)
2916 {
2917 inet_hashinfo_init(&tcp_hashinfo);
2918 if (register_pernet_subsys(&tcp_sk_ops))
2919 panic("Failed to create the TCP control socket.\n");
2920 }