]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_ipv4.c
ipv6: adapt connect for repair move
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 dst = inet_csk_update_pmtu(sk, mtu);
285 if (!dst)
286 return;
287
288 /* Something is about to be wrong... Remember soft error
289 * for the case, if this connection will not able to recover.
290 */
291 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 sk->sk_err_soft = EMSGSIZE;
293
294 mtu = dst_mtu(dst);
295
296 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 tcp_sync_mss(sk, mtu);
299
300 /* Resend the TCP packet because it's
301 * clear that the old packet has been
302 * dropped. This is the new "fast" path mtu
303 * discovery.
304 */
305 tcp_simple_retransmit(sk);
306 } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313 if (dst)
314 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition. If err < 0 then the socket should
320 * be closed and the error returned to the user. If err > 0
321 * it's just the icmp type << 8 | icmp code. After adjustment
322 * header points to the first 8 bytes of the tcp header. We need
323 * to find the appropriate port.
324 *
325 * The locking strategy used here is very "optimistic". When
326 * someone else accesses the socket the ICMP is just dropped
327 * and for some paths there is no check at all.
328 * A more general error queue to queue errors for later handling
329 * is probably better.
330 *
331 */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 struct inet_connection_sock *icsk;
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 const int type = icmp_hdr(icmp_skb)->type;
341 const int code = icmp_hdr(icmp_skb)->code;
342 struct sock *sk;
343 struct sk_buff *skb;
344 struct request_sock *req;
345 __u32 seq;
346 __u32 remaining;
347 int err;
348 struct net *net = dev_net(icmp_skb->dev);
349
350 if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354
355 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 iph->saddr, th->source, inet_iif(icmp_skb));
357 if (!sk) {
358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 return;
360 }
361 if (sk->sk_state == TCP_TIME_WAIT) {
362 inet_twsk_put(inet_twsk(sk));
363 return;
364 }
365
366 bh_lock_sock(sk);
367 /* If too many ICMPs get dropped on busy
368 * servers this needs to be solved differently.
369 * We do take care of PMTU discovery (RFC1191) special case :
370 * we can receive locally generated ICMP messages while socket is held.
371 */
372 if (sock_owned_by_user(sk) &&
373 type != ICMP_DEST_UNREACH &&
374 code != ICMP_FRAG_NEEDED)
375 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377 if (sk->sk_state == TCP_CLOSE)
378 goto out;
379
380 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382 goto out;
383 }
384
385 icsk = inet_csk(sk);
386 tp = tcp_sk(sk);
387 req = tp->fastopen_rsk;
388 seq = ntohl(th->seq);
389 if (sk->sk_state != TCP_LISTEN &&
390 !between(seq, tp->snd_una, tp->snd_nxt) &&
391 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392 /* For a Fast Open socket, allow seq to be snt_isn. */
393 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394 goto out;
395 }
396
397 switch (type) {
398 case ICMP_REDIRECT:
399 do_redirect(icmp_skb, sk);
400 goto out;
401 case ICMP_SOURCE_QUENCH:
402 /* Just silently ignore these. */
403 goto out;
404 case ICMP_PARAMETERPROB:
405 err = EPROTO;
406 break;
407 case ICMP_DEST_UNREACH:
408 if (code > NR_ICMP_UNREACH)
409 goto out;
410
411 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412 tp->mtu_info = info;
413 if (!sock_owned_by_user(sk)) {
414 tcp_v4_mtu_reduced(sk);
415 } else {
416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 sock_hold(sk);
418 }
419 goto out;
420 }
421
422 err = icmp_err_convert[code].errno;
423 /* check if icmp_skb allows revert of backoff
424 * (see draft-zimmermann-tcp-lcd) */
425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 break;
427 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
428 !icsk->icsk_backoff)
429 break;
430
431 /* XXX (TFO) - revisit the following logic for TFO */
432
433 if (sock_owned_by_user(sk))
434 break;
435
436 icsk->icsk_backoff--;
437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 tcp_bound_rto(sk);
440
441 skb = tcp_write_queue_head(sk);
442 BUG_ON(!skb);
443
444 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447 if (remaining) {
448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 remaining, TCP_RTO_MAX);
450 } else {
451 /* RTO revert clocked out retransmission.
452 * Will retransmit now */
453 tcp_retransmit_timer(sk);
454 }
455
456 break;
457 case ICMP_TIME_EXCEEDED:
458 err = EHOSTUNREACH;
459 break;
460 default:
461 goto out;
462 }
463
464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 * than following the TCP_SYN_RECV case and closing the socket,
466 * we ignore the ICMP error and keep trying like a fully established
467 * socket. Is this the right thing to do?
468 */
469 if (req && req->sk == NULL)
470 goto out;
471
472 switch (sk->sk_state) {
473 struct request_sock *req, **prev;
474 case TCP_LISTEN:
475 if (sock_owned_by_user(sk))
476 goto out;
477
478 req = inet_csk_search_req(sk, &prev, th->dest,
479 iph->daddr, iph->saddr);
480 if (!req)
481 goto out;
482
483 /* ICMPs are not backlogged, hence we cannot get
484 an established socket here.
485 */
486 WARN_ON(req->sk);
487
488 if (seq != tcp_rsk(req)->snt_isn) {
489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 goto out;
491 }
492
493 /*
494 * Still in SYN_RECV, just remove it silently.
495 * There is no good way to pass the error to the newly
496 * created socket, and POSIX does not want network
497 * errors returned from accept().
498 */
499 inet_csk_reqsk_queue_drop(sk, req, prev);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->daddr,
661 ntohs(th->source), inet_iif(skb));
662 /* don't send rst if it can't find key */
663 if (!sk1)
664 return;
665 rcu_read_lock();
666 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667 &ip_hdr(skb)->saddr, AF_INET);
668 if (!key)
669 goto release_sk1;
670
671 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673 goto release_sk1;
674 } else {
675 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676 &ip_hdr(skb)->saddr,
677 AF_INET) : NULL;
678 }
679
680 if (key) {
681 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682 (TCPOPT_NOP << 16) |
683 (TCPOPT_MD5SIG << 8) |
684 TCPOLEN_MD5SIG);
685 /* Update length and the length the header thinks exists */
686 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687 rep.th.doff = arg.iov[0].iov_len / 4;
688
689 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690 key, ip_hdr(skb)->saddr,
691 ip_hdr(skb)->daddr, &rep.th);
692 }
693 #endif
694 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695 ip_hdr(skb)->saddr, /* XXX */
696 arg.iov[0].iov_len, IPPROTO_TCP, 0);
697 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699 /* When socket is gone, all binding information is lost.
700 * routing might fail in this case. No choice here, if we choose to force
701 * input interface, we will misroute in case of asymmetric route.
702 */
703 if (sk)
704 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706 net = dev_net(skb_dst(skb)->dev);
707 arg.tos = ip_hdr(skb)->tos;
708 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716 if (sk1) {
717 rcu_read_unlock();
718 sock_put(sk1);
719 }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724 outside socket context is ugly, certainly. What can I do?
725 */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728 u32 win, u32 ts, int oif,
729 struct tcp_md5sig_key *key,
730 int reply_flags, u8 tos)
731 {
732 const struct tcphdr *th = tcp_hdr(skb);
733 struct {
734 struct tcphdr th;
735 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739 ];
740 } rep;
741 struct ip_reply_arg arg;
742 struct net *net = dev_net(skb_dst(skb)->dev);
743
744 memset(&rep.th, 0, sizeof(struct tcphdr));
745 memset(&arg, 0, sizeof(arg));
746
747 arg.iov[0].iov_base = (unsigned char *)&rep;
748 arg.iov[0].iov_len = sizeof(rep.th);
749 if (ts) {
750 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751 (TCPOPT_TIMESTAMP << 8) |
752 TCPOLEN_TIMESTAMP);
753 rep.opt[1] = htonl(tcp_time_stamp);
754 rep.opt[2] = htonl(ts);
755 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756 }
757
758 /* Swap the send and the receive. */
759 rep.th.dest = th->source;
760 rep.th.source = th->dest;
761 rep.th.doff = arg.iov[0].iov_len / 4;
762 rep.th.seq = htonl(seq);
763 rep.th.ack_seq = htonl(ack);
764 rep.th.ack = 1;
765 rep.th.window = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768 if (key) {
769 int offset = (ts) ? 3 : 0;
770
771 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772 (TCPOPT_NOP << 16) |
773 (TCPOPT_MD5SIG << 8) |
774 TCPOLEN_MD5SIG);
775 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776 rep.th.doff = arg.iov[0].iov_len/4;
777
778 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779 key, ip_hdr(skb)->saddr,
780 ip_hdr(skb)->daddr, &rep.th);
781 }
782 #endif
783 arg.flags = reply_flags;
784 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785 ip_hdr(skb)->saddr, /* XXX */
786 arg.iov[0].iov_len, IPPROTO_TCP, 0);
787 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788 if (oif)
789 arg.bound_dev_if = oif;
790 arg.tos = tos;
791 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799 struct inet_timewait_sock *tw = inet_twsk(sk);
800 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804 tcptw->tw_ts_recent,
805 tw->tw_bound_dev_if,
806 tcp_twsk_md5_key(tcptw),
807 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 tw->tw_tos
809 );
810
811 inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815 struct request_sock *req)
816 {
817 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819 */
820 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823 req->ts_recent,
824 0,
825 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826 AF_INET),
827 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828 ip_hdr(skb)->tos);
829 }
830
831 /*
832 * Send a SYN-ACK after having received a SYN.
833 * This still operates on a request_sock only, not on a big
834 * socket.
835 */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837 struct request_sock *req,
838 struct request_values *rvp,
839 u16 queue_mapping,
840 bool nocache)
841 {
842 const struct inet_request_sock *ireq = inet_rsk(req);
843 struct flowi4 fl4;
844 int err = -1;
845 struct sk_buff * skb;
846
847 /* First, grab a route. */
848 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849 return -1;
850
851 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853 if (skb) {
854 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856 skb_set_queue_mapping(skb, queue_mapping);
857 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858 ireq->rmt_addr,
859 ireq->opt);
860 err = net_xmit_eval(err);
861 if (!tcp_rsk(req)->snt_synack && !err)
862 tcp_rsk(req)->snt_synack = tcp_time_stamp;
863 }
864
865 return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869 struct request_values *rvp)
870 {
871 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873 if (!res)
874 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875 return res;
876 }
877
878 /*
879 * IPv4 request_sock destructor.
880 */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883 kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887 * Return true if a syncookie should be sent
888 */
889 bool tcp_syn_flood_action(struct sock *sk,
890 const struct sk_buff *skb,
891 const char *proto)
892 {
893 const char *msg = "Dropping request";
894 bool want_cookie = false;
895 struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900 if (sysctl_tcp_syncookies) {
901 msg = "Sending cookies";
902 want_cookie = true;
903 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904 } else
905 #endif
906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909 if (!lopt->synflood_warned) {
910 lopt->synflood_warned = 1;
911 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
912 proto, ntohs(tcp_hdr(skb)->dest), msg);
913 }
914 return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919 * Save and compile IPv4 options into the request_sock if needed.
920 */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923 const struct ip_options *opt = &(IPCB(skb)->opt);
924 struct ip_options_rcu *dopt = NULL;
925
926 if (opt && opt->optlen) {
927 int opt_size = sizeof(*dopt) + opt->optlen;
928
929 dopt = kmalloc(opt_size, GFP_ATOMIC);
930 if (dopt) {
931 if (ip_options_echo(&dopt->opt, skb)) {
932 kfree(dopt);
933 dopt = NULL;
934 }
935 }
936 }
937 return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942 * RFC2385 MD5 checksumming requires a mapping of
943 * IP address->MD5 Key.
944 * We need to maintain these in the sk structure.
945 */
946
947 /* Find the Key structure for an address. */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949 const union tcp_md5_addr *addr,
950 int family)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 struct tcp_md5sig_key *key;
954 struct hlist_node *pos;
955 unsigned int size = sizeof(struct in_addr);
956 struct tcp_md5sig_info *md5sig;
957
958 /* caller either holds rcu_read_lock() or socket lock */
959 md5sig = rcu_dereference_check(tp->md5sig_info,
960 sock_owned_by_user(sk) ||
961 lockdep_is_held(&sk->sk_lock.slock));
962 if (!md5sig)
963 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 if (family == AF_INET6)
966 size = sizeof(struct in6_addr);
967 #endif
968 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969 if (key->family != family)
970 continue;
971 if (!memcmp(&key->addr, addr, size))
972 return key;
973 }
974 return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 struct sock *addr_sk)
980 {
981 union tcp_md5_addr *addr;
982
983 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 struct request_sock *req)
990 {
991 union tcp_md5_addr *addr;
992
993 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 /* Add Key to the list */
1002 struct tcp_md5sig_key *key;
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *md5sig;
1005
1006 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007 if (key) {
1008 /* Pre-existing entry - just update that one. */
1009 memcpy(key->key, newkey, newkeylen);
1010 key->keylen = newkeylen;
1011 return 0;
1012 }
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 sock_owned_by_user(sk));
1016 if (!md5sig) {
1017 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 if (!md5sig)
1019 return -ENOMEM;
1020
1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 INIT_HLIST_HEAD(&md5sig->head);
1023 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 }
1025
1026 key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 if (!key)
1028 return -ENOMEM;
1029 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 sock_kfree_s(sk, key, sizeof(*key));
1031 return -ENOMEM;
1032 }
1033
1034 memcpy(key->key, newkey, newkeylen);
1035 key->keylen = newkeylen;
1036 key->family = family;
1037 memcpy(&key->addr, addr,
1038 (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 sizeof(struct in_addr));
1040 hlist_add_head_rcu(&key->node, &md5sig->head);
1041 return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct tcp_md5sig_key *key;
1049 struct tcp_md5sig_info *md5sig;
1050
1051 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052 if (!key)
1053 return -ENOENT;
1054 hlist_del_rcu(&key->node);
1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 kfree_rcu(key, rcu);
1057 md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 sock_owned_by_user(sk));
1059 if (hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 struct tcp_sock *tp = tcp_sk(sk);
1068 struct tcp_md5sig_key *key;
1069 struct hlist_node *pos, *n;
1070 struct tcp_md5sig_info *md5sig;
1071
1072 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074 if (!hlist_empty(&md5sig->head))
1075 tcp_free_md5sig_pool();
1076 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077 hlist_del_rcu(&key->node);
1078 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 kfree_rcu(key, rcu);
1080 }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 int optlen)
1085 {
1086 struct tcp_md5sig cmd;
1087 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089 if (optlen < sizeof(cmd))
1090 return -EINVAL;
1091
1092 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 return -EFAULT;
1094
1095 if (sin->sin_family != AF_INET)
1096 return -EINVAL;
1097
1098 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 AF_INET);
1101
1102 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 return -EINVAL;
1104
1105 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 struct tcp4_pseudohdr *bp;
1114 struct scatterlist sg;
1115
1116 bp = &hp->md5_blk.ip4;
1117
1118 /*
1119 * 1. the TCP pseudo-header (in the order: source IP address,
1120 * destination IP address, zero-padded protocol number, and
1121 * segment length)
1122 */
1123 bp->saddr = saddr;
1124 bp->daddr = daddr;
1125 bp->pad = 0;
1126 bp->protocol = IPPROTO_TCP;
1127 bp->len = cpu_to_be16(nbytes);
1128
1129 sg_init_one(&sg, bp, sizeof(*bp));
1130 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 struct tcp_md5sig_pool *hp;
1137 struct hash_desc *desc;
1138
1139 hp = tcp_get_md5sig_pool();
1140 if (!hp)
1141 goto clear_hash_noput;
1142 desc = &hp->md5_desc;
1143
1144 if (crypto_hash_init(desc))
1145 goto clear_hash;
1146 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 goto clear_hash;
1148 if (tcp_md5_hash_header(hp, th))
1149 goto clear_hash;
1150 if (tcp_md5_hash_key(hp, key))
1151 goto clear_hash;
1152 if (crypto_hash_final(desc, md5_hash))
1153 goto clear_hash;
1154
1155 tcp_put_md5sig_pool();
1156 return 0;
1157
1158 clear_hash:
1159 tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 memset(md5_hash, 0, 16);
1162 return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 const struct sock *sk, const struct request_sock *req,
1167 const struct sk_buff *skb)
1168 {
1169 struct tcp_md5sig_pool *hp;
1170 struct hash_desc *desc;
1171 const struct tcphdr *th = tcp_hdr(skb);
1172 __be32 saddr, daddr;
1173
1174 if (sk) {
1175 saddr = inet_sk(sk)->inet_saddr;
1176 daddr = inet_sk(sk)->inet_daddr;
1177 } else if (req) {
1178 saddr = inet_rsk(req)->loc_addr;
1179 daddr = inet_rsk(req)->rmt_addr;
1180 } else {
1181 const struct iphdr *iph = ip_hdr(skb);
1182 saddr = iph->saddr;
1183 daddr = iph->daddr;
1184 }
1185
1186 hp = tcp_get_md5sig_pool();
1187 if (!hp)
1188 goto clear_hash_noput;
1189 desc = &hp->md5_desc;
1190
1191 if (crypto_hash_init(desc))
1192 goto clear_hash;
1193
1194 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 goto clear_hash;
1196 if (tcp_md5_hash_header(hp, th))
1197 goto clear_hash;
1198 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 goto clear_hash;
1200 if (tcp_md5_hash_key(hp, key))
1201 goto clear_hash;
1202 if (crypto_hash_final(desc, md5_hash))
1203 goto clear_hash;
1204
1205 tcp_put_md5sig_pool();
1206 return 0;
1207
1208 clear_hash:
1209 tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 memset(md5_hash, 0, 16);
1212 return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 /*
1219 * This gets called for each TCP segment that arrives
1220 * so we want to be efficient.
1221 * We have 3 drop cases:
1222 * o No MD5 hash and one expected.
1223 * o MD5 hash and we're not expecting one.
1224 * o MD5 hash and its wrong.
1225 */
1226 const __u8 *hash_location = NULL;
1227 struct tcp_md5sig_key *hash_expected;
1228 const struct iphdr *iph = ip_hdr(skb);
1229 const struct tcphdr *th = tcp_hdr(skb);
1230 int genhash;
1231 unsigned char newhash[16];
1232
1233 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 AF_INET);
1235 hash_location = tcp_parse_md5sig_option(th);
1236
1237 /* We've parsed the options - do we have a hash? */
1238 if (!hash_expected && !hash_location)
1239 return false;
1240
1241 if (hash_expected && !hash_location) {
1242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 return true;
1244 }
1245
1246 if (!hash_expected && hash_location) {
1247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 return true;
1249 }
1250
1251 /* Okay, so this is hash_expected and hash_location -
1252 * so we need to calculate the checksum.
1253 */
1254 genhash = tcp_v4_md5_hash_skb(newhash,
1255 hash_expected,
1256 NULL, NULL, skb);
1257
1258 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 &iph->saddr, ntohs(th->source),
1261 &iph->daddr, ntohs(th->dest),
1262 genhash ? " tcp_v4_calc_md5_hash failed"
1263 : "");
1264 return true;
1265 }
1266 return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 .family = PF_INET,
1273 .obj_size = sizeof(struct tcp_request_sock),
1274 .rtx_syn_ack = tcp_v4_rtx_synack,
1275 .send_ack = tcp_v4_reqsk_send_ack,
1276 .destructor = tcp_v4_reqsk_destructor,
1277 .send_reset = tcp_v4_send_reset,
1278 .syn_ack_timeout = tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1284 .calc_md5_hash = tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 struct request_sock *req,
1290 struct tcp_fastopen_cookie *foc,
1291 struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 bool skip_cookie = false;
1294 struct fastopen_queue *fastopenq;
1295
1296 if (likely(!fastopen_cookie_present(foc))) {
1297 /* See include/net/tcp.h for the meaning of these knobs */
1298 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 skip_cookie = true; /* no cookie to validate */
1302 else
1303 return false;
1304 }
1305 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 /* A FO option is present; bump the counter. */
1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309 /* Make sure the listener has enabled fastopen, and we don't
1310 * exceed the max # of pending TFO requests allowed before trying
1311 * to validating the cookie in order to avoid burning CPU cycles
1312 * unnecessarily.
1313 *
1314 * XXX (TFO) - The implication of checking the max_qlen before
1315 * processing a cookie request is that clients can't differentiate
1316 * between qlen overflow causing Fast Open to be disabled
1317 * temporarily vs a server not supporting Fast Open at all.
1318 */
1319 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 fastopenq == NULL || fastopenq->max_qlen == 0)
1321 return false;
1322
1323 if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 struct request_sock *req1;
1325 spin_lock(&fastopenq->lock);
1326 req1 = fastopenq->rskq_rst_head;
1327 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 spin_unlock(&fastopenq->lock);
1329 NET_INC_STATS_BH(sock_net(sk),
1330 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 foc->len = -1;
1333 return false;
1334 }
1335 fastopenq->rskq_rst_head = req1->dl_next;
1336 fastopenq->qlen--;
1337 spin_unlock(&fastopenq->lock);
1338 reqsk_free(req1);
1339 }
1340 if (skip_cookie) {
1341 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 return true;
1343 }
1344 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 memcmp(&foc->val[0], &valid_foc->val[0],
1349 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 return false;
1351 valid_foc->len = -1;
1352 }
1353 /* Acknowledge the data received from the peer. */
1354 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 return true;
1356 } else if (foc->len == 0) { /* Client requesting a cookie */
1357 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 NET_INC_STATS_BH(sock_net(sk),
1359 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 } else {
1361 /* Client sent a cookie with wrong size. Treat it
1362 * the same as invalid and return a valid one.
1363 */
1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 }
1366 return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 struct sk_buff *skb,
1371 struct sk_buff *skb_synack,
1372 struct request_sock *req,
1373 struct request_values *rvp)
1374 {
1375 struct tcp_sock *tp = tcp_sk(sk);
1376 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377 const struct inet_request_sock *ireq = inet_rsk(req);
1378 struct sock *child;
1379 int err;
1380
1381 req->num_retrans = 0;
1382 req->num_timeout = 0;
1383 req->sk = NULL;
1384
1385 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386 if (child == NULL) {
1387 NET_INC_STATS_BH(sock_net(sk),
1388 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389 kfree_skb(skb_synack);
1390 return -1;
1391 }
1392 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393 ireq->rmt_addr, ireq->opt);
1394 err = net_xmit_eval(err);
1395 if (!err)
1396 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397 /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399 spin_lock(&queue->fastopenq->lock);
1400 queue->fastopenq->qlen++;
1401 spin_unlock(&queue->fastopenq->lock);
1402
1403 /* Initialize the child socket. Have to fix some values to take
1404 * into account the child is a Fast Open socket and is created
1405 * only out of the bits carried in the SYN packet.
1406 */
1407 tp = tcp_sk(child);
1408
1409 tp->fastopen_rsk = req;
1410 /* Do a hold on the listner sk so that if the listener is being
1411 * closed, the child that has been accepted can live on and still
1412 * access listen_lock.
1413 */
1414 sock_hold(sk);
1415 tcp_rsk(req)->listener = sk;
1416
1417 /* RFC1323: The window in SYN & SYN/ACK segments is never
1418 * scaled. So correct it appropriately.
1419 */
1420 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422 /* Activate the retrans timer so that SYNACK can be retransmitted.
1423 * The request socket is not added to the SYN table of the parent
1424 * because it's been added to the accept queue directly.
1425 */
1426 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429 /* Add the child socket directly into the accept queue */
1430 inet_csk_reqsk_queue_add(sk, req, child);
1431
1432 /* Now finish processing the fastopen child socket. */
1433 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434 tcp_init_congestion_control(child);
1435 tcp_mtup_init(child);
1436 tcp_init_buffer_space(child);
1437 tcp_init_metrics(child);
1438
1439 /* Queue the data carried in the SYN packet. We need to first
1440 * bump skb's refcnt because the caller will attempt to free it.
1441 *
1442 * XXX (TFO) - we honor a zero-payload TFO request for now.
1443 * (Any reason not to?)
1444 */
1445 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446 /* Don't queue the skb if there is no payload in SYN.
1447 * XXX (TFO) - How about SYN+FIN?
1448 */
1449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450 } else {
1451 skb = skb_get(skb);
1452 skb_dst_drop(skb);
1453 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454 skb_set_owner_r(skb, child);
1455 __skb_queue_tail(&child->sk_receive_queue, skb);
1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 tp->syn_data_acked = 1;
1458 }
1459 sk->sk_data_ready(sk, 0);
1460 bh_unlock_sock(child);
1461 sock_put(child);
1462 WARN_ON(req->sk == NULL);
1463 return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468 struct tcp_extend_values tmp_ext;
1469 struct tcp_options_received tmp_opt;
1470 const u8 *hash_location;
1471 struct request_sock *req;
1472 struct inet_request_sock *ireq;
1473 struct tcp_sock *tp = tcp_sk(sk);
1474 struct dst_entry *dst = NULL;
1475 __be32 saddr = ip_hdr(skb)->saddr;
1476 __be32 daddr = ip_hdr(skb)->daddr;
1477 __u32 isn = TCP_SKB_CB(skb)->when;
1478 bool want_cookie = false;
1479 struct flowi4 fl4;
1480 struct tcp_fastopen_cookie foc = { .len = -1 };
1481 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482 struct sk_buff *skb_synack;
1483 int do_fastopen;
1484
1485 /* Never answer to SYNs send to broadcast or multicast */
1486 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487 goto drop;
1488
1489 /* TW buckets are converted to open requests without
1490 * limitations, they conserve resources and peer is
1491 * evidently real one.
1492 */
1493 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495 if (!want_cookie)
1496 goto drop;
1497 }
1498
1499 /* Accept backlog is full. If we have already queued enough
1500 * of warm entries in syn queue, drop request. It is better than
1501 * clogging syn queue with openreqs with exponentially increasing
1502 * timeout.
1503 */
1504 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505 goto drop;
1506
1507 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508 if (!req)
1509 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515 tcp_clear_options(&tmp_opt);
1516 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517 tmp_opt.user_mss = tp->rx_opt.user_mss;
1518 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519 want_cookie ? NULL : &foc);
1520
1521 if (tmp_opt.cookie_plus > 0 &&
1522 tmp_opt.saw_tstamp &&
1523 !tp->rx_opt.cookie_out_never &&
1524 (sysctl_tcp_cookie_size > 0 ||
1525 (tp->cookie_values != NULL &&
1526 tp->cookie_values->cookie_desired > 0))) {
1527 u8 *c;
1528 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530
1531 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532 goto drop_and_release;
1533
1534 /* Secret recipe starts with IP addresses */
1535 *mess++ ^= (__force u32)daddr;
1536 *mess++ ^= (__force u32)saddr;
1537
1538 /* plus variable length Initiator Cookie */
1539 c = (u8 *)mess;
1540 while (l-- > 0)
1541 *c++ ^= *hash_location++;
1542
1543 want_cookie = false; /* not our kind of cookie */
1544 tmp_ext.cookie_out_never = 0; /* false */
1545 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546 } else if (!tp->rx_opt.cookie_in_always) {
1547 /* redundant indications, but ensure initialization. */
1548 tmp_ext.cookie_out_never = 1; /* true */
1549 tmp_ext.cookie_plus = 0;
1550 } else {
1551 goto drop_and_release;
1552 }
1553 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554
1555 if (want_cookie && !tmp_opt.saw_tstamp)
1556 tcp_clear_options(&tmp_opt);
1557
1558 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559 tcp_openreq_init(req, &tmp_opt, skb);
1560
1561 ireq = inet_rsk(req);
1562 ireq->loc_addr = daddr;
1563 ireq->rmt_addr = saddr;
1564 ireq->no_srccheck = inet_sk(sk)->transparent;
1565 ireq->opt = tcp_v4_save_options(skb);
1566
1567 if (security_inet_conn_request(sk, skb, req))
1568 goto drop_and_free;
1569
1570 if (!want_cookie || tmp_opt.tstamp_ok)
1571 TCP_ECN_create_request(req, skb);
1572
1573 if (want_cookie) {
1574 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575 req->cookie_ts = tmp_opt.tstamp_ok;
1576 } else if (!isn) {
1577 /* VJ's idea. We save last timestamp seen
1578 * from the destination in peer table, when entering
1579 * state TIME-WAIT, and check against it before
1580 * accepting new connection request.
1581 *
1582 * If "isn" is not zero, this request hit alive
1583 * timewait bucket, so that all the necessary checks
1584 * are made in the function processing timewait state.
1585 */
1586 if (tmp_opt.saw_tstamp &&
1587 tcp_death_row.sysctl_tw_recycle &&
1588 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589 fl4.daddr == saddr) {
1590 if (!tcp_peer_is_proven(req, dst, true)) {
1591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592 goto drop_and_release;
1593 }
1594 }
1595 /* Kill the following clause, if you dislike this way. */
1596 else if (!sysctl_tcp_syncookies &&
1597 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598 (sysctl_max_syn_backlog >> 2)) &&
1599 !tcp_peer_is_proven(req, dst, false)) {
1600 /* Without syncookies last quarter of
1601 * backlog is filled with destinations,
1602 * proven to be alive.
1603 * It means that we continue to communicate
1604 * to destinations, already remembered
1605 * to the moment of synflood.
1606 */
1607 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608 &saddr, ntohs(tcp_hdr(skb)->source));
1609 goto drop_and_release;
1610 }
1611
1612 isn = tcp_v4_init_sequence(skb);
1613 }
1614 tcp_rsk(req)->snt_isn = isn;
1615
1616 if (dst == NULL) {
1617 dst = inet_csk_route_req(sk, &fl4, req);
1618 if (dst == NULL)
1619 goto drop_and_free;
1620 }
1621 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622
1623 /* We don't call tcp_v4_send_synack() directly because we need
1624 * to make sure a child socket can be created successfully before
1625 * sending back synack!
1626 *
1627 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628 * (or better yet, call tcp_send_synack() in the child context
1629 * directly, but will have to fix bunch of other code first)
1630 * after syn_recv_sock() except one will need to first fix the
1631 * latter to remove its dependency on the current implementation
1632 * of tcp_v4_send_synack()->tcp_select_initial_window().
1633 */
1634 skb_synack = tcp_make_synack(sk, dst, req,
1635 (struct request_values *)&tmp_ext,
1636 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637
1638 if (skb_synack) {
1639 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641 } else
1642 goto drop_and_free;
1643
1644 if (likely(!do_fastopen)) {
1645 int err;
1646 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647 ireq->rmt_addr, ireq->opt);
1648 err = net_xmit_eval(err);
1649 if (err || want_cookie)
1650 goto drop_and_free;
1651
1652 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653 tcp_rsk(req)->listener = NULL;
1654 /* Add the request_sock to the SYN table */
1655 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656 if (fastopen_cookie_present(&foc) && foc.len != 0)
1657 NET_INC_STATS_BH(sock_net(sk),
1658 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660 (struct request_values *)&tmp_ext))
1661 goto drop_and_free;
1662
1663 return 0;
1664
1665 drop_and_release:
1666 dst_release(dst);
1667 drop_and_free:
1668 reqsk_free(req);
1669 drop:
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673
1674
1675 /*
1676 * The three way handshake has completed - we got a valid synack -
1677 * now create the new socket.
1678 */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680 struct request_sock *req,
1681 struct dst_entry *dst)
1682 {
1683 struct inet_request_sock *ireq;
1684 struct inet_sock *newinet;
1685 struct tcp_sock *newtp;
1686 struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688 struct tcp_md5sig_key *key;
1689 #endif
1690 struct ip_options_rcu *inet_opt;
1691
1692 if (sk_acceptq_is_full(sk))
1693 goto exit_overflow;
1694
1695 newsk = tcp_create_openreq_child(sk, req, skb);
1696 if (!newsk)
1697 goto exit_nonewsk;
1698
1699 newsk->sk_gso_type = SKB_GSO_TCPV4;
1700 inet_sk_rx_dst_set(newsk, skb);
1701
1702 newtp = tcp_sk(newsk);
1703 newinet = inet_sk(newsk);
1704 ireq = inet_rsk(req);
1705 newinet->inet_daddr = ireq->rmt_addr;
1706 newinet->inet_rcv_saddr = ireq->loc_addr;
1707 newinet->inet_saddr = ireq->loc_addr;
1708 inet_opt = ireq->opt;
1709 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710 ireq->opt = NULL;
1711 newinet->mc_index = inet_iif(skb);
1712 newinet->mc_ttl = ip_hdr(skb)->ttl;
1713 newinet->rcv_tos = ip_hdr(skb)->tos;
1714 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715 if (inet_opt)
1716 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717 newinet->inet_id = newtp->write_seq ^ jiffies;
1718
1719 if (!dst) {
1720 dst = inet_csk_route_child_sock(sk, newsk, req);
1721 if (!dst)
1722 goto put_and_exit;
1723 } else {
1724 /* syncookie case : see end of cookie_v4_check() */
1725 }
1726 sk_setup_caps(newsk, dst);
1727
1728 tcp_mtup_init(newsk);
1729 tcp_sync_mss(newsk, dst_mtu(dst));
1730 newtp->advmss = dst_metric_advmss(dst);
1731 if (tcp_sk(sk)->rx_opt.user_mss &&
1732 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734
1735 tcp_initialize_rcv_mss(newsk);
1736 tcp_synack_rtt_meas(newsk, req);
1737 newtp->total_retrans = req->num_retrans;
1738
1739 #ifdef CONFIG_TCP_MD5SIG
1740 /* Copy over the MD5 key from the original socket */
1741 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742 AF_INET);
1743 if (key != NULL) {
1744 /*
1745 * We're using one, so create a matching key
1746 * on the newsk structure. If we fail to get
1747 * memory, then we end up not copying the key
1748 * across. Shucks.
1749 */
1750 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753 }
1754 #endif
1755
1756 if (__inet_inherit_port(sk, newsk) < 0)
1757 goto put_and_exit;
1758 __inet_hash_nolisten(newsk, NULL);
1759
1760 return newsk;
1761
1762 exit_overflow:
1763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765 dst_release(dst);
1766 exit:
1767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768 return NULL;
1769 put_and_exit:
1770 tcp_clear_xmit_timers(newsk);
1771 tcp_cleanup_congestion_control(newsk);
1772 bh_unlock_sock(newsk);
1773 sock_put(newsk);
1774 goto exit;
1775 }
1776 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1777
1778 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1779 {
1780 struct tcphdr *th = tcp_hdr(skb);
1781 const struct iphdr *iph = ip_hdr(skb);
1782 struct sock *nsk;
1783 struct request_sock **prev;
1784 /* Find possible connection requests. */
1785 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1786 iph->saddr, iph->daddr);
1787 if (req)
1788 return tcp_check_req(sk, skb, req, prev, false);
1789
1790 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1791 th->source, iph->daddr, th->dest, inet_iif(skb));
1792
1793 if (nsk) {
1794 if (nsk->sk_state != TCP_TIME_WAIT) {
1795 bh_lock_sock(nsk);
1796 return nsk;
1797 }
1798 inet_twsk_put(inet_twsk(nsk));
1799 return NULL;
1800 }
1801
1802 #ifdef CONFIG_SYN_COOKIES
1803 if (!th->syn)
1804 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1805 #endif
1806 return sk;
1807 }
1808
1809 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1810 {
1811 const struct iphdr *iph = ip_hdr(skb);
1812
1813 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1814 if (!tcp_v4_check(skb->len, iph->saddr,
1815 iph->daddr, skb->csum)) {
1816 skb->ip_summed = CHECKSUM_UNNECESSARY;
1817 return 0;
1818 }
1819 }
1820
1821 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1822 skb->len, IPPROTO_TCP, 0);
1823
1824 if (skb->len <= 76) {
1825 return __skb_checksum_complete(skb);
1826 }
1827 return 0;
1828 }
1829
1830
1831 /* The socket must have it's spinlock held when we get
1832 * here.
1833 *
1834 * We have a potential double-lock case here, so even when
1835 * doing backlog processing we use the BH locking scheme.
1836 * This is because we cannot sleep with the original spinlock
1837 * held.
1838 */
1839 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1840 {
1841 struct sock *rsk;
1842 #ifdef CONFIG_TCP_MD5SIG
1843 /*
1844 * We really want to reject the packet as early as possible
1845 * if:
1846 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1847 * o There is an MD5 option and we're not expecting one
1848 */
1849 if (tcp_v4_inbound_md5_hash(sk, skb))
1850 goto discard;
1851 #endif
1852
1853 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1854 struct dst_entry *dst = sk->sk_rx_dst;
1855
1856 sock_rps_save_rxhash(sk, skb);
1857 if (dst) {
1858 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1859 dst->ops->check(dst, 0) == NULL) {
1860 dst_release(dst);
1861 sk->sk_rx_dst = NULL;
1862 }
1863 }
1864 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1865 rsk = sk;
1866 goto reset;
1867 }
1868 return 0;
1869 }
1870
1871 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1872 goto csum_err;
1873
1874 if (sk->sk_state == TCP_LISTEN) {
1875 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1876 if (!nsk)
1877 goto discard;
1878
1879 if (nsk != sk) {
1880 sock_rps_save_rxhash(nsk, skb);
1881 if (tcp_child_process(sk, nsk, skb)) {
1882 rsk = nsk;
1883 goto reset;
1884 }
1885 return 0;
1886 }
1887 } else
1888 sock_rps_save_rxhash(sk, skb);
1889
1890 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1891 rsk = sk;
1892 goto reset;
1893 }
1894 return 0;
1895
1896 reset:
1897 tcp_v4_send_reset(rsk, skb);
1898 discard:
1899 kfree_skb(skb);
1900 /* Be careful here. If this function gets more complicated and
1901 * gcc suffers from register pressure on the x86, sk (in %ebx)
1902 * might be destroyed here. This current version compiles correctly,
1903 * but you have been warned.
1904 */
1905 return 0;
1906
1907 csum_err:
1908 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1909 goto discard;
1910 }
1911 EXPORT_SYMBOL(tcp_v4_do_rcv);
1912
1913 void tcp_v4_early_demux(struct sk_buff *skb)
1914 {
1915 const struct iphdr *iph;
1916 const struct tcphdr *th;
1917 struct sock *sk;
1918
1919 if (skb->pkt_type != PACKET_HOST)
1920 return;
1921
1922 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1923 return;
1924
1925 iph = ip_hdr(skb);
1926 th = tcp_hdr(skb);
1927
1928 if (th->doff < sizeof(struct tcphdr) / 4)
1929 return;
1930
1931 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1932 iph->saddr, th->source,
1933 iph->daddr, ntohs(th->dest),
1934 skb->skb_iif);
1935 if (sk) {
1936 skb->sk = sk;
1937 skb->destructor = sock_edemux;
1938 if (sk->sk_state != TCP_TIME_WAIT) {
1939 struct dst_entry *dst = sk->sk_rx_dst;
1940
1941 if (dst)
1942 dst = dst_check(dst, 0);
1943 if (dst &&
1944 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1945 skb_dst_set_noref(skb, dst);
1946 }
1947 }
1948 }
1949
1950 /*
1951 * From tcp_input.c
1952 */
1953
1954 int tcp_v4_rcv(struct sk_buff *skb)
1955 {
1956 const struct iphdr *iph;
1957 const struct tcphdr *th;
1958 struct sock *sk;
1959 int ret;
1960 struct net *net = dev_net(skb->dev);
1961
1962 if (skb->pkt_type != PACKET_HOST)
1963 goto discard_it;
1964
1965 /* Count it even if it's bad */
1966 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1967
1968 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1969 goto discard_it;
1970
1971 th = tcp_hdr(skb);
1972
1973 if (th->doff < sizeof(struct tcphdr) / 4)
1974 goto bad_packet;
1975 if (!pskb_may_pull(skb, th->doff * 4))
1976 goto discard_it;
1977
1978 /* An explanation is required here, I think.
1979 * Packet length and doff are validated by header prediction,
1980 * provided case of th->doff==0 is eliminated.
1981 * So, we defer the checks. */
1982 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1983 goto bad_packet;
1984
1985 th = tcp_hdr(skb);
1986 iph = ip_hdr(skb);
1987 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1988 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1989 skb->len - th->doff * 4);
1990 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1991 TCP_SKB_CB(skb)->when = 0;
1992 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1993 TCP_SKB_CB(skb)->sacked = 0;
1994
1995 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1996 if (!sk)
1997 goto no_tcp_socket;
1998
1999 process:
2000 if (sk->sk_state == TCP_TIME_WAIT)
2001 goto do_time_wait;
2002
2003 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2004 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2005 goto discard_and_relse;
2006 }
2007
2008 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2009 goto discard_and_relse;
2010 nf_reset(skb);
2011
2012 if (sk_filter(sk, skb))
2013 goto discard_and_relse;
2014
2015 skb->dev = NULL;
2016
2017 bh_lock_sock_nested(sk);
2018 ret = 0;
2019 if (!sock_owned_by_user(sk)) {
2020 #ifdef CONFIG_NET_DMA
2021 struct tcp_sock *tp = tcp_sk(sk);
2022 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2023 tp->ucopy.dma_chan = net_dma_find_channel();
2024 if (tp->ucopy.dma_chan)
2025 ret = tcp_v4_do_rcv(sk, skb);
2026 else
2027 #endif
2028 {
2029 if (!tcp_prequeue(sk, skb))
2030 ret = tcp_v4_do_rcv(sk, skb);
2031 }
2032 } else if (unlikely(sk_add_backlog(sk, skb,
2033 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2034 bh_unlock_sock(sk);
2035 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2036 goto discard_and_relse;
2037 }
2038 bh_unlock_sock(sk);
2039
2040 sock_put(sk);
2041
2042 return ret;
2043
2044 no_tcp_socket:
2045 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2046 goto discard_it;
2047
2048 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2049 bad_packet:
2050 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2051 } else {
2052 tcp_v4_send_reset(NULL, skb);
2053 }
2054
2055 discard_it:
2056 /* Discard frame. */
2057 kfree_skb(skb);
2058 return 0;
2059
2060 discard_and_relse:
2061 sock_put(sk);
2062 goto discard_it;
2063
2064 do_time_wait:
2065 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2066 inet_twsk_put(inet_twsk(sk));
2067 goto discard_it;
2068 }
2069
2070 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2071 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2072 inet_twsk_put(inet_twsk(sk));
2073 goto discard_it;
2074 }
2075 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2076 case TCP_TW_SYN: {
2077 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2078 &tcp_hashinfo,
2079 iph->daddr, th->dest,
2080 inet_iif(skb));
2081 if (sk2) {
2082 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2083 inet_twsk_put(inet_twsk(sk));
2084 sk = sk2;
2085 goto process;
2086 }
2087 /* Fall through to ACK */
2088 }
2089 case TCP_TW_ACK:
2090 tcp_v4_timewait_ack(sk, skb);
2091 break;
2092 case TCP_TW_RST:
2093 goto no_tcp_socket;
2094 case TCP_TW_SUCCESS:;
2095 }
2096 goto discard_it;
2097 }
2098
2099 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2100 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2101 .twsk_unique = tcp_twsk_unique,
2102 .twsk_destructor= tcp_twsk_destructor,
2103 };
2104
2105 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2106 {
2107 struct dst_entry *dst = skb_dst(skb);
2108
2109 dst_hold(dst);
2110 sk->sk_rx_dst = dst;
2111 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2112 }
2113 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2114
2115 const struct inet_connection_sock_af_ops ipv4_specific = {
2116 .queue_xmit = ip_queue_xmit,
2117 .send_check = tcp_v4_send_check,
2118 .rebuild_header = inet_sk_rebuild_header,
2119 .sk_rx_dst_set = inet_sk_rx_dst_set,
2120 .conn_request = tcp_v4_conn_request,
2121 .syn_recv_sock = tcp_v4_syn_recv_sock,
2122 .net_header_len = sizeof(struct iphdr),
2123 .setsockopt = ip_setsockopt,
2124 .getsockopt = ip_getsockopt,
2125 .addr2sockaddr = inet_csk_addr2sockaddr,
2126 .sockaddr_len = sizeof(struct sockaddr_in),
2127 .bind_conflict = inet_csk_bind_conflict,
2128 #ifdef CONFIG_COMPAT
2129 .compat_setsockopt = compat_ip_setsockopt,
2130 .compat_getsockopt = compat_ip_getsockopt,
2131 #endif
2132 };
2133 EXPORT_SYMBOL(ipv4_specific);
2134
2135 #ifdef CONFIG_TCP_MD5SIG
2136 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2137 .md5_lookup = tcp_v4_md5_lookup,
2138 .calc_md5_hash = tcp_v4_md5_hash_skb,
2139 .md5_parse = tcp_v4_parse_md5_keys,
2140 };
2141 #endif
2142
2143 /* NOTE: A lot of things set to zero explicitly by call to
2144 * sk_alloc() so need not be done here.
2145 */
2146 static int tcp_v4_init_sock(struct sock *sk)
2147 {
2148 struct inet_connection_sock *icsk = inet_csk(sk);
2149
2150 tcp_init_sock(sk);
2151
2152 icsk->icsk_af_ops = &ipv4_specific;
2153
2154 #ifdef CONFIG_TCP_MD5SIG
2155 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2156 #endif
2157
2158 return 0;
2159 }
2160
2161 void tcp_v4_destroy_sock(struct sock *sk)
2162 {
2163 struct tcp_sock *tp = tcp_sk(sk);
2164
2165 tcp_clear_xmit_timers(sk);
2166
2167 tcp_cleanup_congestion_control(sk);
2168
2169 /* Cleanup up the write buffer. */
2170 tcp_write_queue_purge(sk);
2171
2172 /* Cleans up our, hopefully empty, out_of_order_queue. */
2173 __skb_queue_purge(&tp->out_of_order_queue);
2174
2175 #ifdef CONFIG_TCP_MD5SIG
2176 /* Clean up the MD5 key list, if any */
2177 if (tp->md5sig_info) {
2178 tcp_clear_md5_list(sk);
2179 kfree_rcu(tp->md5sig_info, rcu);
2180 tp->md5sig_info = NULL;
2181 }
2182 #endif
2183
2184 #ifdef CONFIG_NET_DMA
2185 /* Cleans up our sk_async_wait_queue */
2186 __skb_queue_purge(&sk->sk_async_wait_queue);
2187 #endif
2188
2189 /* Clean prequeue, it must be empty really */
2190 __skb_queue_purge(&tp->ucopy.prequeue);
2191
2192 /* Clean up a referenced TCP bind bucket. */
2193 if (inet_csk(sk)->icsk_bind_hash)
2194 inet_put_port(sk);
2195
2196 /* TCP Cookie Transactions */
2197 if (tp->cookie_values != NULL) {
2198 kref_put(&tp->cookie_values->kref,
2199 tcp_cookie_values_release);
2200 tp->cookie_values = NULL;
2201 }
2202 BUG_ON(tp->fastopen_rsk != NULL);
2203
2204 /* If socket is aborted during connect operation */
2205 tcp_free_fastopen_req(tp);
2206
2207 sk_sockets_allocated_dec(sk);
2208 sock_release_memcg(sk);
2209 }
2210 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2211
2212 #ifdef CONFIG_PROC_FS
2213 /* Proc filesystem TCP sock list dumping. */
2214
2215 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2216 {
2217 return hlist_nulls_empty(head) ? NULL :
2218 list_entry(head->first, struct inet_timewait_sock, tw_node);
2219 }
2220
2221 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2222 {
2223 return !is_a_nulls(tw->tw_node.next) ?
2224 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2225 }
2226
2227 /*
2228 * Get next listener socket follow cur. If cur is NULL, get first socket
2229 * starting from bucket given in st->bucket; when st->bucket is zero the
2230 * very first socket in the hash table is returned.
2231 */
2232 static void *listening_get_next(struct seq_file *seq, void *cur)
2233 {
2234 struct inet_connection_sock *icsk;
2235 struct hlist_nulls_node *node;
2236 struct sock *sk = cur;
2237 struct inet_listen_hashbucket *ilb;
2238 struct tcp_iter_state *st = seq->private;
2239 struct net *net = seq_file_net(seq);
2240
2241 if (!sk) {
2242 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2243 spin_lock_bh(&ilb->lock);
2244 sk = sk_nulls_head(&ilb->head);
2245 st->offset = 0;
2246 goto get_sk;
2247 }
2248 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249 ++st->num;
2250 ++st->offset;
2251
2252 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2253 struct request_sock *req = cur;
2254
2255 icsk = inet_csk(st->syn_wait_sk);
2256 req = req->dl_next;
2257 while (1) {
2258 while (req) {
2259 if (req->rsk_ops->family == st->family) {
2260 cur = req;
2261 goto out;
2262 }
2263 req = req->dl_next;
2264 }
2265 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2266 break;
2267 get_req:
2268 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2269 }
2270 sk = sk_nulls_next(st->syn_wait_sk);
2271 st->state = TCP_SEQ_STATE_LISTENING;
2272 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273 } else {
2274 icsk = inet_csk(sk);
2275 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2277 goto start_req;
2278 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279 sk = sk_nulls_next(sk);
2280 }
2281 get_sk:
2282 sk_nulls_for_each_from(sk, node) {
2283 if (!net_eq(sock_net(sk), net))
2284 continue;
2285 if (sk->sk_family == st->family) {
2286 cur = sk;
2287 goto out;
2288 }
2289 icsk = inet_csk(sk);
2290 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2292 start_req:
2293 st->uid = sock_i_uid(sk);
2294 st->syn_wait_sk = sk;
2295 st->state = TCP_SEQ_STATE_OPENREQ;
2296 st->sbucket = 0;
2297 goto get_req;
2298 }
2299 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2300 }
2301 spin_unlock_bh(&ilb->lock);
2302 st->offset = 0;
2303 if (++st->bucket < INET_LHTABLE_SIZE) {
2304 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2305 spin_lock_bh(&ilb->lock);
2306 sk = sk_nulls_head(&ilb->head);
2307 goto get_sk;
2308 }
2309 cur = NULL;
2310 out:
2311 return cur;
2312 }
2313
2314 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2315 {
2316 struct tcp_iter_state *st = seq->private;
2317 void *rc;
2318
2319 st->bucket = 0;
2320 st->offset = 0;
2321 rc = listening_get_next(seq, NULL);
2322
2323 while (rc && *pos) {
2324 rc = listening_get_next(seq, rc);
2325 --*pos;
2326 }
2327 return rc;
2328 }
2329
2330 static inline bool empty_bucket(struct tcp_iter_state *st)
2331 {
2332 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2333 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2334 }
2335
2336 /*
2337 * Get first established socket starting from bucket given in st->bucket.
2338 * If st->bucket is zero, the very first socket in the hash is returned.
2339 */
2340 static void *established_get_first(struct seq_file *seq)
2341 {
2342 struct tcp_iter_state *st = seq->private;
2343 struct net *net = seq_file_net(seq);
2344 void *rc = NULL;
2345
2346 st->offset = 0;
2347 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2348 struct sock *sk;
2349 struct hlist_nulls_node *node;
2350 struct inet_timewait_sock *tw;
2351 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2352
2353 /* Lockless fast path for the common case of empty buckets */
2354 if (empty_bucket(st))
2355 continue;
2356
2357 spin_lock_bh(lock);
2358 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2359 if (sk->sk_family != st->family ||
2360 !net_eq(sock_net(sk), net)) {
2361 continue;
2362 }
2363 rc = sk;
2364 goto out;
2365 }
2366 st->state = TCP_SEQ_STATE_TIME_WAIT;
2367 inet_twsk_for_each(tw, node,
2368 &tcp_hashinfo.ehash[st->bucket].twchain) {
2369 if (tw->tw_family != st->family ||
2370 !net_eq(twsk_net(tw), net)) {
2371 continue;
2372 }
2373 rc = tw;
2374 goto out;
2375 }
2376 spin_unlock_bh(lock);
2377 st->state = TCP_SEQ_STATE_ESTABLISHED;
2378 }
2379 out:
2380 return rc;
2381 }
2382
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385 struct sock *sk = cur;
2386 struct inet_timewait_sock *tw;
2387 struct hlist_nulls_node *node;
2388 struct tcp_iter_state *st = seq->private;
2389 struct net *net = seq_file_net(seq);
2390
2391 ++st->num;
2392 ++st->offset;
2393
2394 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2395 tw = cur;
2396 tw = tw_next(tw);
2397 get_tw:
2398 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2399 tw = tw_next(tw);
2400 }
2401 if (tw) {
2402 cur = tw;
2403 goto out;
2404 }
2405 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2406 st->state = TCP_SEQ_STATE_ESTABLISHED;
2407
2408 /* Look for next non empty bucket */
2409 st->offset = 0;
2410 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2411 empty_bucket(st))
2412 ;
2413 if (st->bucket > tcp_hashinfo.ehash_mask)
2414 return NULL;
2415
2416 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2417 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2418 } else
2419 sk = sk_nulls_next(sk);
2420
2421 sk_nulls_for_each_from(sk, node) {
2422 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2423 goto found;
2424 }
2425
2426 st->state = TCP_SEQ_STATE_TIME_WAIT;
2427 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2428 goto get_tw;
2429 found:
2430 cur = sk;
2431 out:
2432 return cur;
2433 }
2434
2435 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2436 {
2437 struct tcp_iter_state *st = seq->private;
2438 void *rc;
2439
2440 st->bucket = 0;
2441 rc = established_get_first(seq);
2442
2443 while (rc && pos) {
2444 rc = established_get_next(seq, rc);
2445 --pos;
2446 }
2447 return rc;
2448 }
2449
2450 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452 void *rc;
2453 struct tcp_iter_state *st = seq->private;
2454
2455 st->state = TCP_SEQ_STATE_LISTENING;
2456 rc = listening_get_idx(seq, &pos);
2457
2458 if (!rc) {
2459 st->state = TCP_SEQ_STATE_ESTABLISHED;
2460 rc = established_get_idx(seq, pos);
2461 }
2462
2463 return rc;
2464 }
2465
2466 static void *tcp_seek_last_pos(struct seq_file *seq)
2467 {
2468 struct tcp_iter_state *st = seq->private;
2469 int offset = st->offset;
2470 int orig_num = st->num;
2471 void *rc = NULL;
2472
2473 switch (st->state) {
2474 case TCP_SEQ_STATE_OPENREQ:
2475 case TCP_SEQ_STATE_LISTENING:
2476 if (st->bucket >= INET_LHTABLE_SIZE)
2477 break;
2478 st->state = TCP_SEQ_STATE_LISTENING;
2479 rc = listening_get_next(seq, NULL);
2480 while (offset-- && rc)
2481 rc = listening_get_next(seq, rc);
2482 if (rc)
2483 break;
2484 st->bucket = 0;
2485 /* Fallthrough */
2486 case TCP_SEQ_STATE_ESTABLISHED:
2487 case TCP_SEQ_STATE_TIME_WAIT:
2488 st->state = TCP_SEQ_STATE_ESTABLISHED;
2489 if (st->bucket > tcp_hashinfo.ehash_mask)
2490 break;
2491 rc = established_get_first(seq);
2492 while (offset-- && rc)
2493 rc = established_get_next(seq, rc);
2494 }
2495
2496 st->num = orig_num;
2497
2498 return rc;
2499 }
2500
2501 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2502 {
2503 struct tcp_iter_state *st = seq->private;
2504 void *rc;
2505
2506 if (*pos && *pos == st->last_pos) {
2507 rc = tcp_seek_last_pos(seq);
2508 if (rc)
2509 goto out;
2510 }
2511
2512 st->state = TCP_SEQ_STATE_LISTENING;
2513 st->num = 0;
2514 st->bucket = 0;
2515 st->offset = 0;
2516 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2517
2518 out:
2519 st->last_pos = *pos;
2520 return rc;
2521 }
2522
2523 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2524 {
2525 struct tcp_iter_state *st = seq->private;
2526 void *rc = NULL;
2527
2528 if (v == SEQ_START_TOKEN) {
2529 rc = tcp_get_idx(seq, 0);
2530 goto out;
2531 }
2532
2533 switch (st->state) {
2534 case TCP_SEQ_STATE_OPENREQ:
2535 case TCP_SEQ_STATE_LISTENING:
2536 rc = listening_get_next(seq, v);
2537 if (!rc) {
2538 st->state = TCP_SEQ_STATE_ESTABLISHED;
2539 st->bucket = 0;
2540 st->offset = 0;
2541 rc = established_get_first(seq);
2542 }
2543 break;
2544 case TCP_SEQ_STATE_ESTABLISHED:
2545 case TCP_SEQ_STATE_TIME_WAIT:
2546 rc = established_get_next(seq, v);
2547 break;
2548 }
2549 out:
2550 ++*pos;
2551 st->last_pos = *pos;
2552 return rc;
2553 }
2554
2555 static void tcp_seq_stop(struct seq_file *seq, void *v)
2556 {
2557 struct tcp_iter_state *st = seq->private;
2558
2559 switch (st->state) {
2560 case TCP_SEQ_STATE_OPENREQ:
2561 if (v) {
2562 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2563 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2564 }
2565 case TCP_SEQ_STATE_LISTENING:
2566 if (v != SEQ_START_TOKEN)
2567 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2568 break;
2569 case TCP_SEQ_STATE_TIME_WAIT:
2570 case TCP_SEQ_STATE_ESTABLISHED:
2571 if (v)
2572 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2573 break;
2574 }
2575 }
2576
2577 int tcp_seq_open(struct inode *inode, struct file *file)
2578 {
2579 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2580 struct tcp_iter_state *s;
2581 int err;
2582
2583 err = seq_open_net(inode, file, &afinfo->seq_ops,
2584 sizeof(struct tcp_iter_state));
2585 if (err < 0)
2586 return err;
2587
2588 s = ((struct seq_file *)file->private_data)->private;
2589 s->family = afinfo->family;
2590 s->last_pos = 0;
2591 return 0;
2592 }
2593 EXPORT_SYMBOL(tcp_seq_open);
2594
2595 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597 int rc = 0;
2598 struct proc_dir_entry *p;
2599
2600 afinfo->seq_ops.start = tcp_seq_start;
2601 afinfo->seq_ops.next = tcp_seq_next;
2602 afinfo->seq_ops.stop = tcp_seq_stop;
2603
2604 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2605 afinfo->seq_fops, afinfo);
2606 if (!p)
2607 rc = -ENOMEM;
2608 return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_proc_register);
2611
2612 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2613 {
2614 proc_net_remove(net, afinfo->name);
2615 }
2616 EXPORT_SYMBOL(tcp_proc_unregister);
2617
2618 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2619 struct seq_file *f, int i, kuid_t uid, int *len)
2620 {
2621 const struct inet_request_sock *ireq = inet_rsk(req);
2622 long delta = req->expires - jiffies;
2623
2624 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2626 i,
2627 ireq->loc_addr,
2628 ntohs(inet_sk(sk)->inet_sport),
2629 ireq->rmt_addr,
2630 ntohs(ireq->rmt_port),
2631 TCP_SYN_RECV,
2632 0, 0, /* could print option size, but that is af dependent. */
2633 1, /* timers active (only the expire timer) */
2634 jiffies_delta_to_clock_t(delta),
2635 req->num_timeout,
2636 from_kuid_munged(seq_user_ns(f), uid),
2637 0, /* non standard timer */
2638 0, /* open_requests have no inode */
2639 atomic_read(&sk->sk_refcnt),
2640 req,
2641 len);
2642 }
2643
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2645 {
2646 int timer_active;
2647 unsigned long timer_expires;
2648 const struct tcp_sock *tp = tcp_sk(sk);
2649 const struct inet_connection_sock *icsk = inet_csk(sk);
2650 const struct inet_sock *inet = inet_sk(sk);
2651 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2652 __be32 dest = inet->inet_daddr;
2653 __be32 src = inet->inet_rcv_saddr;
2654 __u16 destp = ntohs(inet->inet_dport);
2655 __u16 srcp = ntohs(inet->inet_sport);
2656 int rx_queue;
2657
2658 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2659 timer_active = 1;
2660 timer_expires = icsk->icsk_timeout;
2661 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2662 timer_active = 4;
2663 timer_expires = icsk->icsk_timeout;
2664 } else if (timer_pending(&sk->sk_timer)) {
2665 timer_active = 2;
2666 timer_expires = sk->sk_timer.expires;
2667 } else {
2668 timer_active = 0;
2669 timer_expires = jiffies;
2670 }
2671
2672 if (sk->sk_state == TCP_LISTEN)
2673 rx_queue = sk->sk_ack_backlog;
2674 else
2675 /*
2676 * because we dont lock socket, we might find a transient negative value
2677 */
2678 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2679
2680 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2681 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2682 i, src, srcp, dest, destp, sk->sk_state,
2683 tp->write_seq - tp->snd_una,
2684 rx_queue,
2685 timer_active,
2686 jiffies_delta_to_clock_t(timer_expires - jiffies),
2687 icsk->icsk_retransmits,
2688 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2689 icsk->icsk_probes_out,
2690 sock_i_ino(sk),
2691 atomic_read(&sk->sk_refcnt), sk,
2692 jiffies_to_clock_t(icsk->icsk_rto),
2693 jiffies_to_clock_t(icsk->icsk_ack.ato),
2694 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2695 tp->snd_cwnd,
2696 sk->sk_state == TCP_LISTEN ?
2697 (fastopenq ? fastopenq->max_qlen : 0) :
2698 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2699 len);
2700 }
2701
2702 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2703 struct seq_file *f, int i, int *len)
2704 {
2705 __be32 dest, src;
2706 __u16 destp, srcp;
2707 long delta = tw->tw_ttd - jiffies;
2708
2709 dest = tw->tw_daddr;
2710 src = tw->tw_rcv_saddr;
2711 destp = ntohs(tw->tw_dport);
2712 srcp = ntohs(tw->tw_sport);
2713
2714 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2715 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2716 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2717 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2718 atomic_read(&tw->tw_refcnt), tw, len);
2719 }
2720
2721 #define TMPSZ 150
2722
2723 static int tcp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725 struct tcp_iter_state *st;
2726 int len;
2727
2728 if (v == SEQ_START_TOKEN) {
2729 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2730 " sl local_address rem_address st tx_queue "
2731 "rx_queue tr tm->when retrnsmt uid timeout "
2732 "inode");
2733 goto out;
2734 }
2735 st = seq->private;
2736
2737 switch (st->state) {
2738 case TCP_SEQ_STATE_LISTENING:
2739 case TCP_SEQ_STATE_ESTABLISHED:
2740 get_tcp4_sock(v, seq, st->num, &len);
2741 break;
2742 case TCP_SEQ_STATE_OPENREQ:
2743 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2744 break;
2745 case TCP_SEQ_STATE_TIME_WAIT:
2746 get_timewait4_sock(v, seq, st->num, &len);
2747 break;
2748 }
2749 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2750 out:
2751 return 0;
2752 }
2753
2754 static const struct file_operations tcp_afinfo_seq_fops = {
2755 .owner = THIS_MODULE,
2756 .open = tcp_seq_open,
2757 .read = seq_read,
2758 .llseek = seq_lseek,
2759 .release = seq_release_net
2760 };
2761
2762 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2763 .name = "tcp",
2764 .family = AF_INET,
2765 .seq_fops = &tcp_afinfo_seq_fops,
2766 .seq_ops = {
2767 .show = tcp4_seq_show,
2768 },
2769 };
2770
2771 static int __net_init tcp4_proc_init_net(struct net *net)
2772 {
2773 return tcp_proc_register(net, &tcp4_seq_afinfo);
2774 }
2775
2776 static void __net_exit tcp4_proc_exit_net(struct net *net)
2777 {
2778 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2779 }
2780
2781 static struct pernet_operations tcp4_net_ops = {
2782 .init = tcp4_proc_init_net,
2783 .exit = tcp4_proc_exit_net,
2784 };
2785
2786 int __init tcp4_proc_init(void)
2787 {
2788 return register_pernet_subsys(&tcp4_net_ops);
2789 }
2790
2791 void tcp4_proc_exit(void)
2792 {
2793 unregister_pernet_subsys(&tcp4_net_ops);
2794 }
2795 #endif /* CONFIG_PROC_FS */
2796
2797 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2798 {
2799 const struct iphdr *iph = skb_gro_network_header(skb);
2800 __wsum wsum;
2801 __sum16 sum;
2802
2803 switch (skb->ip_summed) {
2804 case CHECKSUM_COMPLETE:
2805 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2806 skb->csum)) {
2807 skb->ip_summed = CHECKSUM_UNNECESSARY;
2808 break;
2809 }
2810 flush:
2811 NAPI_GRO_CB(skb)->flush = 1;
2812 return NULL;
2813
2814 case CHECKSUM_NONE:
2815 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2816 skb_gro_len(skb), IPPROTO_TCP, 0);
2817 sum = csum_fold(skb_checksum(skb,
2818 skb_gro_offset(skb),
2819 skb_gro_len(skb),
2820 wsum));
2821 if (sum)
2822 goto flush;
2823
2824 skb->ip_summed = CHECKSUM_UNNECESSARY;
2825 break;
2826 }
2827
2828 return tcp_gro_receive(head, skb);
2829 }
2830
2831 int tcp4_gro_complete(struct sk_buff *skb)
2832 {
2833 const struct iphdr *iph = ip_hdr(skb);
2834 struct tcphdr *th = tcp_hdr(skb);
2835
2836 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2837 iph->saddr, iph->daddr, 0);
2838 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2839
2840 return tcp_gro_complete(skb);
2841 }
2842
2843 struct proto tcp_prot = {
2844 .name = "TCP",
2845 .owner = THIS_MODULE,
2846 .close = tcp_close,
2847 .connect = tcp_v4_connect,
2848 .disconnect = tcp_disconnect,
2849 .accept = inet_csk_accept,
2850 .ioctl = tcp_ioctl,
2851 .init = tcp_v4_init_sock,
2852 .destroy = tcp_v4_destroy_sock,
2853 .shutdown = tcp_shutdown,
2854 .setsockopt = tcp_setsockopt,
2855 .getsockopt = tcp_getsockopt,
2856 .recvmsg = tcp_recvmsg,
2857 .sendmsg = tcp_sendmsg,
2858 .sendpage = tcp_sendpage,
2859 .backlog_rcv = tcp_v4_do_rcv,
2860 .release_cb = tcp_release_cb,
2861 .mtu_reduced = tcp_v4_mtu_reduced,
2862 .hash = inet_hash,
2863 .unhash = inet_unhash,
2864 .get_port = inet_csk_get_port,
2865 .enter_memory_pressure = tcp_enter_memory_pressure,
2866 .sockets_allocated = &tcp_sockets_allocated,
2867 .orphan_count = &tcp_orphan_count,
2868 .memory_allocated = &tcp_memory_allocated,
2869 .memory_pressure = &tcp_memory_pressure,
2870 .sysctl_wmem = sysctl_tcp_wmem,
2871 .sysctl_rmem = sysctl_tcp_rmem,
2872 .max_header = MAX_TCP_HEADER,
2873 .obj_size = sizeof(struct tcp_sock),
2874 .slab_flags = SLAB_DESTROY_BY_RCU,
2875 .twsk_prot = &tcp_timewait_sock_ops,
2876 .rsk_prot = &tcp_request_sock_ops,
2877 .h.hashinfo = &tcp_hashinfo,
2878 .no_autobind = true,
2879 #ifdef CONFIG_COMPAT
2880 .compat_setsockopt = compat_tcp_setsockopt,
2881 .compat_getsockopt = compat_tcp_getsockopt,
2882 #endif
2883 #ifdef CONFIG_MEMCG_KMEM
2884 .init_cgroup = tcp_init_cgroup,
2885 .destroy_cgroup = tcp_destroy_cgroup,
2886 .proto_cgroup = tcp_proto_cgroup,
2887 #endif
2888 };
2889 EXPORT_SYMBOL(tcp_prot);
2890
2891 static int __net_init tcp_sk_init(struct net *net)
2892 {
2893 return 0;
2894 }
2895
2896 static void __net_exit tcp_sk_exit(struct net *net)
2897 {
2898 }
2899
2900 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2901 {
2902 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2903 }
2904
2905 static struct pernet_operations __net_initdata tcp_sk_ops = {
2906 .init = tcp_sk_init,
2907 .exit = tcp_sk_exit,
2908 .exit_batch = tcp_sk_exit_batch,
2909 };
2910
2911 void __init tcp_v4_init(void)
2912 {
2913 inet_hashinfo_init(&tcp_hashinfo);
2914 if (register_pernet_subsys(&tcp_sk_ops))
2915 panic("Failed to create the TCP control socket.\n");
2916 }