]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_ipv4.c
382f667238ecec4361829c7158445e85e48b373c
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
83
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
86
87
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
96 {
97 return NULL;
98 }
99 #endif
100
101 struct inet_hashinfo tcp_hashinfo;
102
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
104 {
105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 ip_hdr(skb)->saddr,
107 tcp_hdr(skb)->dest,
108 tcp_hdr(skb)->source);
109 }
110
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
123
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
126 */
127 if (tcptw->tw_ts_recent_stamp &&
128 (twp == NULL || (sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
137 }
138
139 return 0;
140 }
141
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
143
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
146 {
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct rtable *rt;
151 __be32 daddr, nexthop;
152 int tmp;
153 int err;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 if (inet->opt && inet->opt->srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet->opt->faddr;
166 }
167
168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 IPPROTO_TCP,
171 inet->inet_sport, usin->sin_port, sk, 1);
172 if (tmp < 0) {
173 if (tmp == -ENETUNREACH)
174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 return tmp;
176 }
177
178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 ip_rt_put(rt);
180 return -ENETUNREACH;
181 }
182
183 if (!inet->opt || !inet->opt->srr)
184 daddr = rt->rt_dst;
185
186 if (!inet->inet_saddr)
187 inet->inet_saddr = rt->rt_src;
188 inet->inet_rcv_saddr = inet->inet_saddr;
189
190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
191 /* Reset inherited state */
192 tp->rx_opt.ts_recent = 0;
193 tp->rx_opt.ts_recent_stamp = 0;
194 tp->write_seq = 0;
195 }
196
197 if (tcp_death_row.sysctl_tw_recycle &&
198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 struct inet_peer *peer = rt_get_peer(rt);
200 /*
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
205 */
206 if (peer != NULL &&
207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 tp->rx_opt.ts_recent = peer->tcp_ts;
210 }
211 }
212
213 inet->inet_dport = usin->sin_port;
214 inet->inet_daddr = daddr;
215
216 inet_csk(sk)->icsk_ext_hdr_len = 0;
217 if (inet->opt)
218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
219
220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
221
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
226 */
227 tcp_set_state(sk, TCP_SYN_SENT);
228 err = inet_hash_connect(&tcp_death_row, sk);
229 if (err)
230 goto failure;
231
232 err = ip_route_newports(&rt, IPPROTO_TCP,
233 inet->inet_sport, inet->inet_dport, sk);
234 if (err)
235 goto failure;
236
237 /* OK, now commit destination to socket. */
238 sk->sk_gso_type = SKB_GSO_TCPV4;
239 sk_setup_caps(sk, &rt->u.dst);
240
241 if (!tp->write_seq)
242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
243 inet->inet_daddr,
244 inet->inet_sport,
245 usin->sin_port);
246
247 inet->inet_id = tp->write_seq ^ jiffies;
248
249 err = tcp_connect(sk);
250 rt = NULL;
251 if (err)
252 goto failure;
253
254 return 0;
255
256 failure:
257 /*
258 * This unhashes the socket and releases the local port,
259 * if necessary.
260 */
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
266 }
267
268 /*
269 * This routine does path mtu discovery as defined in RFC1191.
270 */
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
278 * unfragmented).
279 */
280 if (sk->sk_state == TCP_LISTEN)
281 return;
282
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
288 */
289 if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 return;
291
292 dst->ops->update_pmtu(dst, mtu);
293
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
296 */
297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 sk->sk_err_soft = EMSGSIZE;
299
300 mtu = dst_mtu(dst);
301
302 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 tcp_sync_mss(sk, mtu);
305
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
309 * discovery.
310 */
311 tcp_simple_retransmit(sk);
312 } /* else let the usual retransmit timer handle it */
313 }
314
315 /*
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
322 *
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
328 *
329 */
330
331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
332 {
333 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
335 struct inet_connection_sock *icsk;
336 struct tcp_sock *tp;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(icmp_skb)->type;
339 const int code = icmp_hdr(icmp_skb)->code;
340 struct sock *sk;
341 struct sk_buff *skb;
342 __u32 seq;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349 return;
350 }
351
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
354 if (!sk) {
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356 return;
357 }
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
360 return;
361 }
362
363 bh_lock_sock(sk);
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
366 */
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
372
373 icsk = inet_csk(sk);
374 tp = tcp_sk(sk);
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
379 goto out;
380 }
381
382 switch (type) {
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
385 goto out;
386 case ICMP_PARAMETERPROB:
387 err = EPROTO;
388 break;
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
391 goto out;
392
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
396 goto out;
397 }
398
399 err = icmp_err_convert[code].errno;
400 /* check if icmp_skb allows revert of backoff
401 * (see draft-zimmermann-tcp-lcd) */
402 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
403 break;
404 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
405 !icsk->icsk_backoff)
406 break;
407
408 icsk->icsk_backoff--;
409 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
410 icsk->icsk_backoff;
411 tcp_bound_rto(sk);
412
413 skb = tcp_write_queue_head(sk);
414 BUG_ON(!skb);
415
416 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
417 tcp_time_stamp - TCP_SKB_CB(skb)->when);
418
419 if (remaining) {
420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
421 remaining, TCP_RTO_MAX);
422 } else if (sock_owned_by_user(sk)) {
423 /* RTO revert clocked out retransmission,
424 * but socket is locked. Will defer. */
425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
426 HZ/20, TCP_RTO_MAX);
427 } else {
428 /* RTO revert clocked out retransmission.
429 * Will retransmit now */
430 tcp_retransmit_timer(sk);
431 }
432
433 break;
434 case ICMP_TIME_EXCEEDED:
435 err = EHOSTUNREACH;
436 break;
437 default:
438 goto out;
439 }
440
441 switch (sk->sk_state) {
442 struct request_sock *req, **prev;
443 case TCP_LISTEN:
444 if (sock_owned_by_user(sk))
445 goto out;
446
447 req = inet_csk_search_req(sk, &prev, th->dest,
448 iph->daddr, iph->saddr);
449 if (!req)
450 goto out;
451
452 /* ICMPs are not backlogged, hence we cannot get
453 an established socket here.
454 */
455 WARN_ON(req->sk);
456
457 if (seq != tcp_rsk(req)->snt_isn) {
458 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
459 goto out;
460 }
461
462 /*
463 * Still in SYN_RECV, just remove it silently.
464 * There is no good way to pass the error to the newly
465 * created socket, and POSIX does not want network
466 * errors returned from accept().
467 */
468 inet_csk_reqsk_queue_drop(sk, req, prev);
469 goto out;
470
471 case TCP_SYN_SENT:
472 case TCP_SYN_RECV: /* Cannot happen.
473 It can f.e. if SYNs crossed.
474 */
475 if (!sock_owned_by_user(sk)) {
476 sk->sk_err = err;
477
478 sk->sk_error_report(sk);
479
480 tcp_done(sk);
481 } else {
482 sk->sk_err_soft = err;
483 }
484 goto out;
485 }
486
487 /* If we've already connected we will keep trying
488 * until we time out, or the user gives up.
489 *
490 * rfc1122 4.2.3.9 allows to consider as hard errors
491 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
492 * but it is obsoleted by pmtu discovery).
493 *
494 * Note, that in modern internet, where routing is unreliable
495 * and in each dark corner broken firewalls sit, sending random
496 * errors ordered by their masters even this two messages finally lose
497 * their original sense (even Linux sends invalid PORT_UNREACHs)
498 *
499 * Now we are in compliance with RFCs.
500 * --ANK (980905)
501 */
502
503 inet = inet_sk(sk);
504 if (!sock_owned_by_user(sk) && inet->recverr) {
505 sk->sk_err = err;
506 sk->sk_error_report(sk);
507 } else { /* Only an error on timeout */
508 sk->sk_err_soft = err;
509 }
510
511 out:
512 bh_unlock_sock(sk);
513 sock_put(sk);
514 }
515
516 /* This routine computes an IPv4 TCP checksum. */
517 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
518 {
519 struct inet_sock *inet = inet_sk(sk);
520 struct tcphdr *th = tcp_hdr(skb);
521
522 if (skb->ip_summed == CHECKSUM_PARTIAL) {
523 th->check = ~tcp_v4_check(len, inet->inet_saddr,
524 inet->inet_daddr, 0);
525 skb->csum_start = skb_transport_header(skb) - skb->head;
526 skb->csum_offset = offsetof(struct tcphdr, check);
527 } else {
528 th->check = tcp_v4_check(len, inet->inet_saddr,
529 inet->inet_daddr,
530 csum_partial(th,
531 th->doff << 2,
532 skb->csum));
533 }
534 }
535
536 int tcp_v4_gso_send_check(struct sk_buff *skb)
537 {
538 const struct iphdr *iph;
539 struct tcphdr *th;
540
541 if (!pskb_may_pull(skb, sizeof(*th)))
542 return -EINVAL;
543
544 iph = ip_hdr(skb);
545 th = tcp_hdr(skb);
546
547 th->check = 0;
548 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 skb->ip_summed = CHECKSUM_PARTIAL;
552 return 0;
553 }
554
555 /*
556 * This routine will send an RST to the other tcp.
557 *
558 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
559 * for reset.
560 * Answer: if a packet caused RST, it is not for a socket
561 * existing in our system, if it is matched to a socket,
562 * it is just duplicate segment or bug in other side's TCP.
563 * So that we build reply only basing on parameters
564 * arrived with segment.
565 * Exception: precedence violation. We do not implement it in any case.
566 */
567
568 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
569 {
570 struct tcphdr *th = tcp_hdr(skb);
571 struct {
572 struct tcphdr th;
573 #ifdef CONFIG_TCP_MD5SIG
574 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
575 #endif
576 } rep;
577 struct ip_reply_arg arg;
578 #ifdef CONFIG_TCP_MD5SIG
579 struct tcp_md5sig_key *key;
580 #endif
581 struct net *net;
582
583 /* Never send a reset in response to a reset. */
584 if (th->rst)
585 return;
586
587 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
588 return;
589
590 /* Swap the send and the receive. */
591 memset(&rep, 0, sizeof(rep));
592 rep.th.dest = th->source;
593 rep.th.source = th->dest;
594 rep.th.doff = sizeof(struct tcphdr) / 4;
595 rep.th.rst = 1;
596
597 if (th->ack) {
598 rep.th.seq = th->ack_seq;
599 } else {
600 rep.th.ack = 1;
601 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
602 skb->len - (th->doff << 2));
603 }
604
605 memset(&arg, 0, sizeof(arg));
606 arg.iov[0].iov_base = (unsigned char *)&rep;
607 arg.iov[0].iov_len = sizeof(rep.th);
608
609 #ifdef CONFIG_TCP_MD5SIG
610 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
611 if (key) {
612 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
613 (TCPOPT_NOP << 16) |
614 (TCPOPT_MD5SIG << 8) |
615 TCPOLEN_MD5SIG);
616 /* Update length and the length the header thinks exists */
617 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
618 rep.th.doff = arg.iov[0].iov_len / 4;
619
620 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
621 key, ip_hdr(skb)->saddr,
622 ip_hdr(skb)->daddr, &rep.th);
623 }
624 #endif
625 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
626 ip_hdr(skb)->saddr, /* XXX */
627 arg.iov[0].iov_len, IPPROTO_TCP, 0);
628 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
629 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
630
631 net = dev_net(skb_dst(skb)->dev);
632 ip_send_reply(net->ipv4.tcp_sock, skb,
633 &arg, arg.iov[0].iov_len);
634
635 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
636 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
637 }
638
639 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
640 outside socket context is ugly, certainly. What can I do?
641 */
642
643 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
644 u32 win, u32 ts, int oif,
645 struct tcp_md5sig_key *key,
646 int reply_flags)
647 {
648 struct tcphdr *th = tcp_hdr(skb);
649 struct {
650 struct tcphdr th;
651 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
652 #ifdef CONFIG_TCP_MD5SIG
653 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
654 #endif
655 ];
656 } rep;
657 struct ip_reply_arg arg;
658 struct net *net = dev_net(skb_dst(skb)->dev);
659
660 memset(&rep.th, 0, sizeof(struct tcphdr));
661 memset(&arg, 0, sizeof(arg));
662
663 arg.iov[0].iov_base = (unsigned char *)&rep;
664 arg.iov[0].iov_len = sizeof(rep.th);
665 if (ts) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
667 (TCPOPT_TIMESTAMP << 8) |
668 TCPOLEN_TIMESTAMP);
669 rep.opt[1] = htonl(tcp_time_stamp);
670 rep.opt[2] = htonl(ts);
671 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
672 }
673
674 /* Swap the send and the receive. */
675 rep.th.dest = th->source;
676 rep.th.source = th->dest;
677 rep.th.doff = arg.iov[0].iov_len / 4;
678 rep.th.seq = htonl(seq);
679 rep.th.ack_seq = htonl(ack);
680 rep.th.ack = 1;
681 rep.th.window = htons(win);
682
683 #ifdef CONFIG_TCP_MD5SIG
684 if (key) {
685 int offset = (ts) ? 3 : 0;
686
687 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
688 (TCPOPT_NOP << 16) |
689 (TCPOPT_MD5SIG << 8) |
690 TCPOLEN_MD5SIG);
691 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
692 rep.th.doff = arg.iov[0].iov_len/4;
693
694 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
695 key, ip_hdr(skb)->saddr,
696 ip_hdr(skb)->daddr, &rep.th);
697 }
698 #endif
699 arg.flags = reply_flags;
700 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
701 ip_hdr(skb)->saddr, /* XXX */
702 arg.iov[0].iov_len, IPPROTO_TCP, 0);
703 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
704 if (oif)
705 arg.bound_dev_if = oif;
706
707 ip_send_reply(net->ipv4.tcp_sock, skb,
708 &arg, arg.iov[0].iov_len);
709
710 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
711 }
712
713 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
714 {
715 struct inet_timewait_sock *tw = inet_twsk(sk);
716 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
717
718 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
719 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
720 tcptw->tw_ts_recent,
721 tw->tw_bound_dev_if,
722 tcp_twsk_md5_key(tcptw),
723 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
724 );
725
726 inet_twsk_put(tw);
727 }
728
729 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
730 struct request_sock *req)
731 {
732 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
734 req->ts_recent,
735 0,
736 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
737 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
738 }
739
740 /*
741 * Send a SYN-ACK after having received a SYN.
742 * This still operates on a request_sock only, not on a big
743 * socket.
744 */
745 static int __tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
746 struct request_sock *req,
747 struct request_values *rvp)
748 {
749 const struct inet_request_sock *ireq = inet_rsk(req);
750 int err = -1;
751 struct sk_buff * skb;
752
753 /* First, grab a route. */
754 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
755 return -1;
756
757 skb = tcp_make_synack(sk, dst, req, rvp);
758
759 if (skb) {
760 struct tcphdr *th = tcp_hdr(skb);
761
762 th->check = tcp_v4_check(skb->len,
763 ireq->loc_addr,
764 ireq->rmt_addr,
765 csum_partial(th, skb->len,
766 skb->csum));
767
768 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
769 ireq->rmt_addr,
770 ireq->opt);
771 err = net_xmit_eval(err);
772 }
773
774 dst_release(dst);
775 return err;
776 }
777
778 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
779 struct request_values *rvp)
780 {
781 return __tcp_v4_send_synack(sk, NULL, req, rvp);
782 }
783
784 /*
785 * IPv4 request_sock destructor.
786 */
787 static void tcp_v4_reqsk_destructor(struct request_sock *req)
788 {
789 kfree(inet_rsk(req)->opt);
790 }
791
792 #ifdef CONFIG_SYN_COOKIES
793 static void syn_flood_warning(struct sk_buff *skb)
794 {
795 static unsigned long warntime;
796
797 if (time_after(jiffies, (warntime + HZ * 60))) {
798 warntime = jiffies;
799 printk(KERN_INFO
800 "possible SYN flooding on port %d. Sending cookies.\n",
801 ntohs(tcp_hdr(skb)->dest));
802 }
803 }
804 #endif
805
806 /*
807 * Save and compile IPv4 options into the request_sock if needed.
808 */
809 static struct ip_options *tcp_v4_save_options(struct sock *sk,
810 struct sk_buff *skb)
811 {
812 struct ip_options *opt = &(IPCB(skb)->opt);
813 struct ip_options *dopt = NULL;
814
815 if (opt && opt->optlen) {
816 int opt_size = optlength(opt);
817 dopt = kmalloc(opt_size, GFP_ATOMIC);
818 if (dopt) {
819 if (ip_options_echo(dopt, skb)) {
820 kfree(dopt);
821 dopt = NULL;
822 }
823 }
824 }
825 return dopt;
826 }
827
828 #ifdef CONFIG_TCP_MD5SIG
829 /*
830 * RFC2385 MD5 checksumming requires a mapping of
831 * IP address->MD5 Key.
832 * We need to maintain these in the sk structure.
833 */
834
835 /* Find the Key structure for an address. */
836 static struct tcp_md5sig_key *
837 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
838 {
839 struct tcp_sock *tp = tcp_sk(sk);
840 int i;
841
842 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
843 return NULL;
844 for (i = 0; i < tp->md5sig_info->entries4; i++) {
845 if (tp->md5sig_info->keys4[i].addr == addr)
846 return &tp->md5sig_info->keys4[i].base;
847 }
848 return NULL;
849 }
850
851 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
852 struct sock *addr_sk)
853 {
854 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
855 }
856
857 EXPORT_SYMBOL(tcp_v4_md5_lookup);
858
859 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
860 struct request_sock *req)
861 {
862 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
863 }
864
865 /* This can be called on a newly created socket, from other files */
866 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
867 u8 *newkey, u8 newkeylen)
868 {
869 /* Add Key to the list */
870 struct tcp_md5sig_key *key;
871 struct tcp_sock *tp = tcp_sk(sk);
872 struct tcp4_md5sig_key *keys;
873
874 key = tcp_v4_md5_do_lookup(sk, addr);
875 if (key) {
876 /* Pre-existing entry - just update that one. */
877 kfree(key->key);
878 key->key = newkey;
879 key->keylen = newkeylen;
880 } else {
881 struct tcp_md5sig_info *md5sig;
882
883 if (!tp->md5sig_info) {
884 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
885 GFP_ATOMIC);
886 if (!tp->md5sig_info) {
887 kfree(newkey);
888 return -ENOMEM;
889 }
890 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
891 }
892 if (tcp_alloc_md5sig_pool(sk) == NULL) {
893 kfree(newkey);
894 return -ENOMEM;
895 }
896 md5sig = tp->md5sig_info;
897
898 if (md5sig->alloced4 == md5sig->entries4) {
899 keys = kmalloc((sizeof(*keys) *
900 (md5sig->entries4 + 1)), GFP_ATOMIC);
901 if (!keys) {
902 kfree(newkey);
903 tcp_free_md5sig_pool();
904 return -ENOMEM;
905 }
906
907 if (md5sig->entries4)
908 memcpy(keys, md5sig->keys4,
909 sizeof(*keys) * md5sig->entries4);
910
911 /* Free old key list, and reference new one */
912 kfree(md5sig->keys4);
913 md5sig->keys4 = keys;
914 md5sig->alloced4++;
915 }
916 md5sig->entries4++;
917 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
918 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
919 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
920 }
921 return 0;
922 }
923
924 EXPORT_SYMBOL(tcp_v4_md5_do_add);
925
926 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
927 u8 *newkey, u8 newkeylen)
928 {
929 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
930 newkey, newkeylen);
931 }
932
933 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
934 {
935 struct tcp_sock *tp = tcp_sk(sk);
936 int i;
937
938 for (i = 0; i < tp->md5sig_info->entries4; i++) {
939 if (tp->md5sig_info->keys4[i].addr == addr) {
940 /* Free the key */
941 kfree(tp->md5sig_info->keys4[i].base.key);
942 tp->md5sig_info->entries4--;
943
944 if (tp->md5sig_info->entries4 == 0) {
945 kfree(tp->md5sig_info->keys4);
946 tp->md5sig_info->keys4 = NULL;
947 tp->md5sig_info->alloced4 = 0;
948 } else if (tp->md5sig_info->entries4 != i) {
949 /* Need to do some manipulation */
950 memmove(&tp->md5sig_info->keys4[i],
951 &tp->md5sig_info->keys4[i+1],
952 (tp->md5sig_info->entries4 - i) *
953 sizeof(struct tcp4_md5sig_key));
954 }
955 tcp_free_md5sig_pool();
956 return 0;
957 }
958 }
959 return -ENOENT;
960 }
961
962 EXPORT_SYMBOL(tcp_v4_md5_do_del);
963
964 static void tcp_v4_clear_md5_list(struct sock *sk)
965 {
966 struct tcp_sock *tp = tcp_sk(sk);
967
968 /* Free each key, then the set of key keys,
969 * the crypto element, and then decrement our
970 * hold on the last resort crypto.
971 */
972 if (tp->md5sig_info->entries4) {
973 int i;
974 for (i = 0; i < tp->md5sig_info->entries4; i++)
975 kfree(tp->md5sig_info->keys4[i].base.key);
976 tp->md5sig_info->entries4 = 0;
977 tcp_free_md5sig_pool();
978 }
979 if (tp->md5sig_info->keys4) {
980 kfree(tp->md5sig_info->keys4);
981 tp->md5sig_info->keys4 = NULL;
982 tp->md5sig_info->alloced4 = 0;
983 }
984 }
985
986 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
987 int optlen)
988 {
989 struct tcp_md5sig cmd;
990 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
991 u8 *newkey;
992
993 if (optlen < sizeof(cmd))
994 return -EINVAL;
995
996 if (copy_from_user(&cmd, optval, sizeof(cmd)))
997 return -EFAULT;
998
999 if (sin->sin_family != AF_INET)
1000 return -EINVAL;
1001
1002 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1003 if (!tcp_sk(sk)->md5sig_info)
1004 return -ENOENT;
1005 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1006 }
1007
1008 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1009 return -EINVAL;
1010
1011 if (!tcp_sk(sk)->md5sig_info) {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013 struct tcp_md5sig_info *p;
1014
1015 p = kzalloc(sizeof(*p), sk->sk_allocation);
1016 if (!p)
1017 return -EINVAL;
1018
1019 tp->md5sig_info = p;
1020 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1021 }
1022
1023 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1024 if (!newkey)
1025 return -ENOMEM;
1026 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1027 newkey, cmd.tcpm_keylen);
1028 }
1029
1030 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1031 __be32 daddr, __be32 saddr, int nbytes)
1032 {
1033 struct tcp4_pseudohdr *bp;
1034 struct scatterlist sg;
1035
1036 bp = &hp->md5_blk.ip4;
1037
1038 /*
1039 * 1. the TCP pseudo-header (in the order: source IP address,
1040 * destination IP address, zero-padded protocol number, and
1041 * segment length)
1042 */
1043 bp->saddr = saddr;
1044 bp->daddr = daddr;
1045 bp->pad = 0;
1046 bp->protocol = IPPROTO_TCP;
1047 bp->len = cpu_to_be16(nbytes);
1048
1049 sg_init_one(&sg, bp, sizeof(*bp));
1050 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1051 }
1052
1053 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1054 __be32 daddr, __be32 saddr, struct tcphdr *th)
1055 {
1056 struct tcp_md5sig_pool *hp;
1057 struct hash_desc *desc;
1058
1059 hp = tcp_get_md5sig_pool();
1060 if (!hp)
1061 goto clear_hash_noput;
1062 desc = &hp->md5_desc;
1063
1064 if (crypto_hash_init(desc))
1065 goto clear_hash;
1066 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1067 goto clear_hash;
1068 if (tcp_md5_hash_header(hp, th))
1069 goto clear_hash;
1070 if (tcp_md5_hash_key(hp, key))
1071 goto clear_hash;
1072 if (crypto_hash_final(desc, md5_hash))
1073 goto clear_hash;
1074
1075 tcp_put_md5sig_pool();
1076 return 0;
1077
1078 clear_hash:
1079 tcp_put_md5sig_pool();
1080 clear_hash_noput:
1081 memset(md5_hash, 0, 16);
1082 return 1;
1083 }
1084
1085 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1086 struct sock *sk, struct request_sock *req,
1087 struct sk_buff *skb)
1088 {
1089 struct tcp_md5sig_pool *hp;
1090 struct hash_desc *desc;
1091 struct tcphdr *th = tcp_hdr(skb);
1092 __be32 saddr, daddr;
1093
1094 if (sk) {
1095 saddr = inet_sk(sk)->inet_saddr;
1096 daddr = inet_sk(sk)->inet_daddr;
1097 } else if (req) {
1098 saddr = inet_rsk(req)->loc_addr;
1099 daddr = inet_rsk(req)->rmt_addr;
1100 } else {
1101 const struct iphdr *iph = ip_hdr(skb);
1102 saddr = iph->saddr;
1103 daddr = iph->daddr;
1104 }
1105
1106 hp = tcp_get_md5sig_pool();
1107 if (!hp)
1108 goto clear_hash_noput;
1109 desc = &hp->md5_desc;
1110
1111 if (crypto_hash_init(desc))
1112 goto clear_hash;
1113
1114 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1115 goto clear_hash;
1116 if (tcp_md5_hash_header(hp, th))
1117 goto clear_hash;
1118 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1119 goto clear_hash;
1120 if (tcp_md5_hash_key(hp, key))
1121 goto clear_hash;
1122 if (crypto_hash_final(desc, md5_hash))
1123 goto clear_hash;
1124
1125 tcp_put_md5sig_pool();
1126 return 0;
1127
1128 clear_hash:
1129 tcp_put_md5sig_pool();
1130 clear_hash_noput:
1131 memset(md5_hash, 0, 16);
1132 return 1;
1133 }
1134
1135 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1136
1137 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1138 {
1139 /*
1140 * This gets called for each TCP segment that arrives
1141 * so we want to be efficient.
1142 * We have 3 drop cases:
1143 * o No MD5 hash and one expected.
1144 * o MD5 hash and we're not expecting one.
1145 * o MD5 hash and its wrong.
1146 */
1147 __u8 *hash_location = NULL;
1148 struct tcp_md5sig_key *hash_expected;
1149 const struct iphdr *iph = ip_hdr(skb);
1150 struct tcphdr *th = tcp_hdr(skb);
1151 int genhash;
1152 unsigned char newhash[16];
1153
1154 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1155 hash_location = tcp_parse_md5sig_option(th);
1156
1157 /* We've parsed the options - do we have a hash? */
1158 if (!hash_expected && !hash_location)
1159 return 0;
1160
1161 if (hash_expected && !hash_location) {
1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1163 return 1;
1164 }
1165
1166 if (!hash_expected && hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1168 return 1;
1169 }
1170
1171 /* Okay, so this is hash_expected and hash_location -
1172 * so we need to calculate the checksum.
1173 */
1174 genhash = tcp_v4_md5_hash_skb(newhash,
1175 hash_expected,
1176 NULL, NULL, skb);
1177
1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1179 if (net_ratelimit()) {
1180 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1181 &iph->saddr, ntohs(th->source),
1182 &iph->daddr, ntohs(th->dest),
1183 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1184 }
1185 return 1;
1186 }
1187 return 0;
1188 }
1189
1190 #endif
1191
1192 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1193 .family = PF_INET,
1194 .obj_size = sizeof(struct tcp_request_sock),
1195 .rtx_syn_ack = tcp_v4_send_synack,
1196 .send_ack = tcp_v4_reqsk_send_ack,
1197 .destructor = tcp_v4_reqsk_destructor,
1198 .send_reset = tcp_v4_send_reset,
1199 };
1200
1201 #ifdef CONFIG_TCP_MD5SIG
1202 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1203 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1204 .calc_md5_hash = tcp_v4_md5_hash_skb,
1205 };
1206 #endif
1207
1208 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1209 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1210 .twsk_unique = tcp_twsk_unique,
1211 .twsk_destructor= tcp_twsk_destructor,
1212 };
1213
1214 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1215 {
1216 struct tcp_extend_values tmp_ext;
1217 struct tcp_options_received tmp_opt;
1218 u8 *hash_location;
1219 struct request_sock *req;
1220 struct inet_request_sock *ireq;
1221 struct tcp_sock *tp = tcp_sk(sk);
1222 struct dst_entry *dst = NULL;
1223 __be32 saddr = ip_hdr(skb)->saddr;
1224 __be32 daddr = ip_hdr(skb)->daddr;
1225 __u32 isn = TCP_SKB_CB(skb)->when;
1226 #ifdef CONFIG_SYN_COOKIES
1227 int want_cookie = 0;
1228 #else
1229 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1230 #endif
1231
1232 /* Never answer to SYNs send to broadcast or multicast */
1233 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1234 goto drop;
1235
1236 /* TW buckets are converted to open requests without
1237 * limitations, they conserve resources and peer is
1238 * evidently real one.
1239 */
1240 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1241 #ifdef CONFIG_SYN_COOKIES
1242 if (sysctl_tcp_syncookies) {
1243 want_cookie = 1;
1244 } else
1245 #endif
1246 goto drop;
1247 }
1248
1249 /* Accept backlog is full. If we have already queued enough
1250 * of warm entries in syn queue, drop request. It is better than
1251 * clogging syn queue with openreqs with exponentially increasing
1252 * timeout.
1253 */
1254 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1255 goto drop;
1256
1257 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1258 if (!req)
1259 goto drop;
1260
1261 #ifdef CONFIG_TCP_MD5SIG
1262 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1263 #endif
1264
1265 tcp_clear_options(&tmp_opt);
1266 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1267 tmp_opt.user_mss = tp->rx_opt.user_mss;
1268 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1269
1270 if (tmp_opt.cookie_plus > 0 &&
1271 tmp_opt.saw_tstamp &&
1272 !tp->rx_opt.cookie_out_never &&
1273 (sysctl_tcp_cookie_size > 0 ||
1274 (tp->cookie_values != NULL &&
1275 tp->cookie_values->cookie_desired > 0))) {
1276 u8 *c;
1277 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1278 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1279
1280 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1281 goto drop_and_release;
1282
1283 /* Secret recipe starts with IP addresses */
1284 *mess++ ^= daddr;
1285 *mess++ ^= saddr;
1286
1287 /* plus variable length Initiator Cookie */
1288 c = (u8 *)mess;
1289 while (l-- > 0)
1290 *c++ ^= *hash_location++;
1291
1292 #ifdef CONFIG_SYN_COOKIES
1293 want_cookie = 0; /* not our kind of cookie */
1294 #endif
1295 tmp_ext.cookie_out_never = 0; /* false */
1296 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1297 } else if (!tp->rx_opt.cookie_in_always) {
1298 /* redundant indications, but ensure initialization. */
1299 tmp_ext.cookie_out_never = 1; /* true */
1300 tmp_ext.cookie_plus = 0;
1301 } else {
1302 goto drop_and_release;
1303 }
1304 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1305
1306 if (want_cookie && !tmp_opt.saw_tstamp)
1307 tcp_clear_options(&tmp_opt);
1308
1309 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1310 tcp_openreq_init(req, &tmp_opt, skb);
1311
1312 ireq = inet_rsk(req);
1313 ireq->loc_addr = daddr;
1314 ireq->rmt_addr = saddr;
1315 ireq->no_srccheck = inet_sk(sk)->transparent;
1316 ireq->opt = tcp_v4_save_options(sk, skb);
1317
1318 if (security_inet_conn_request(sk, skb, req))
1319 goto drop_and_free;
1320
1321 if (!want_cookie)
1322 TCP_ECN_create_request(req, tcp_hdr(skb));
1323
1324 if (want_cookie) {
1325 #ifdef CONFIG_SYN_COOKIES
1326 syn_flood_warning(skb);
1327 req->cookie_ts = tmp_opt.tstamp_ok;
1328 #endif
1329 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1330 } else if (!isn) {
1331 struct inet_peer *peer = NULL;
1332
1333 /* VJ's idea. We save last timestamp seen
1334 * from the destination in peer table, when entering
1335 * state TIME-WAIT, and check against it before
1336 * accepting new connection request.
1337 *
1338 * If "isn" is not zero, this request hit alive
1339 * timewait bucket, so that all the necessary checks
1340 * are made in the function processing timewait state.
1341 */
1342 if (tmp_opt.saw_tstamp &&
1343 tcp_death_row.sysctl_tw_recycle &&
1344 (dst = inet_csk_route_req(sk, req)) != NULL &&
1345 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1346 peer->v4daddr == saddr) {
1347 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1348 (s32)(peer->tcp_ts - req->ts_recent) >
1349 TCP_PAWS_WINDOW) {
1350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1351 goto drop_and_release;
1352 }
1353 }
1354 /* Kill the following clause, if you dislike this way. */
1355 else if (!sysctl_tcp_syncookies &&
1356 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1357 (sysctl_max_syn_backlog >> 2)) &&
1358 (!peer || !peer->tcp_ts_stamp) &&
1359 (!dst || !dst_metric(dst, RTAX_RTT))) {
1360 /* Without syncookies last quarter of
1361 * backlog is filled with destinations,
1362 * proven to be alive.
1363 * It means that we continue to communicate
1364 * to destinations, already remembered
1365 * to the moment of synflood.
1366 */
1367 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1368 &saddr, ntohs(tcp_hdr(skb)->source));
1369 goto drop_and_release;
1370 }
1371
1372 isn = tcp_v4_init_sequence(skb);
1373 }
1374 tcp_rsk(req)->snt_isn = isn;
1375
1376 if (__tcp_v4_send_synack(sk, dst, req,
1377 (struct request_values *)&tmp_ext) ||
1378 want_cookie)
1379 goto drop_and_free;
1380
1381 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1382 return 0;
1383
1384 drop_and_release:
1385 dst_release(dst);
1386 drop_and_free:
1387 reqsk_free(req);
1388 drop:
1389 return 0;
1390 }
1391
1392
1393 /*
1394 * The three way handshake has completed - we got a valid synack -
1395 * now create the new socket.
1396 */
1397 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1398 struct request_sock *req,
1399 struct dst_entry *dst)
1400 {
1401 struct inet_request_sock *ireq;
1402 struct inet_sock *newinet;
1403 struct tcp_sock *newtp;
1404 struct sock *newsk;
1405 #ifdef CONFIG_TCP_MD5SIG
1406 struct tcp_md5sig_key *key;
1407 #endif
1408
1409 if (sk_acceptq_is_full(sk))
1410 goto exit_overflow;
1411
1412 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1413 goto exit;
1414
1415 newsk = tcp_create_openreq_child(sk, req, skb);
1416 if (!newsk)
1417 goto exit;
1418
1419 newsk->sk_gso_type = SKB_GSO_TCPV4;
1420 sk_setup_caps(newsk, dst);
1421
1422 newtp = tcp_sk(newsk);
1423 newinet = inet_sk(newsk);
1424 ireq = inet_rsk(req);
1425 newinet->inet_daddr = ireq->rmt_addr;
1426 newinet->inet_rcv_saddr = ireq->loc_addr;
1427 newinet->inet_saddr = ireq->loc_addr;
1428 newinet->opt = ireq->opt;
1429 ireq->opt = NULL;
1430 newinet->mc_index = inet_iif(skb);
1431 newinet->mc_ttl = ip_hdr(skb)->ttl;
1432 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1433 if (newinet->opt)
1434 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1435 newinet->inet_id = newtp->write_seq ^ jiffies;
1436
1437 tcp_mtup_init(newsk);
1438 tcp_sync_mss(newsk, dst_mtu(dst));
1439 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1440 if (tcp_sk(sk)->rx_opt.user_mss &&
1441 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1442 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1443
1444 tcp_initialize_rcv_mss(newsk);
1445
1446 #ifdef CONFIG_TCP_MD5SIG
1447 /* Copy over the MD5 key from the original socket */
1448 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1449 if (key != NULL) {
1450 /*
1451 * We're using one, so create a matching key
1452 * on the newsk structure. If we fail to get
1453 * memory, then we end up not copying the key
1454 * across. Shucks.
1455 */
1456 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1457 if (newkey != NULL)
1458 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1459 newkey, key->keylen);
1460 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1461 }
1462 #endif
1463
1464 __inet_hash_nolisten(newsk, NULL);
1465 __inet_inherit_port(sk, newsk);
1466
1467 return newsk;
1468
1469 exit_overflow:
1470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1471 exit:
1472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1473 dst_release(dst);
1474 return NULL;
1475 }
1476
1477 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1478 {
1479 struct tcphdr *th = tcp_hdr(skb);
1480 const struct iphdr *iph = ip_hdr(skb);
1481 struct sock *nsk;
1482 struct request_sock **prev;
1483 /* Find possible connection requests. */
1484 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1485 iph->saddr, iph->daddr);
1486 if (req)
1487 return tcp_check_req(sk, skb, req, prev);
1488
1489 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1490 th->source, iph->daddr, th->dest, inet_iif(skb));
1491
1492 if (nsk) {
1493 if (nsk->sk_state != TCP_TIME_WAIT) {
1494 bh_lock_sock(nsk);
1495 return nsk;
1496 }
1497 inet_twsk_put(inet_twsk(nsk));
1498 return NULL;
1499 }
1500
1501 #ifdef CONFIG_SYN_COOKIES
1502 if (!th->rst && !th->syn && th->ack)
1503 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1504 #endif
1505 return sk;
1506 }
1507
1508 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1509 {
1510 const struct iphdr *iph = ip_hdr(skb);
1511
1512 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1513 if (!tcp_v4_check(skb->len, iph->saddr,
1514 iph->daddr, skb->csum)) {
1515 skb->ip_summed = CHECKSUM_UNNECESSARY;
1516 return 0;
1517 }
1518 }
1519
1520 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1521 skb->len, IPPROTO_TCP, 0);
1522
1523 if (skb->len <= 76) {
1524 return __skb_checksum_complete(skb);
1525 }
1526 return 0;
1527 }
1528
1529
1530 /* The socket must have it's spinlock held when we get
1531 * here.
1532 *
1533 * We have a potential double-lock case here, so even when
1534 * doing backlog processing we use the BH locking scheme.
1535 * This is because we cannot sleep with the original spinlock
1536 * held.
1537 */
1538 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1539 {
1540 struct sock *rsk;
1541 #ifdef CONFIG_TCP_MD5SIG
1542 /*
1543 * We really want to reject the packet as early as possible
1544 * if:
1545 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1546 * o There is an MD5 option and we're not expecting one
1547 */
1548 if (tcp_v4_inbound_md5_hash(sk, skb))
1549 goto discard;
1550 #endif
1551
1552 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1553 TCP_CHECK_TIMER(sk);
1554 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1555 rsk = sk;
1556 goto reset;
1557 }
1558 TCP_CHECK_TIMER(sk);
1559 return 0;
1560 }
1561
1562 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1563 goto csum_err;
1564
1565 if (sk->sk_state == TCP_LISTEN) {
1566 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1567 if (!nsk)
1568 goto discard;
1569
1570 if (nsk != sk) {
1571 if (tcp_child_process(sk, nsk, skb)) {
1572 rsk = nsk;
1573 goto reset;
1574 }
1575 return 0;
1576 }
1577 }
1578
1579 TCP_CHECK_TIMER(sk);
1580 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1581 rsk = sk;
1582 goto reset;
1583 }
1584 TCP_CHECK_TIMER(sk);
1585 return 0;
1586
1587 reset:
1588 tcp_v4_send_reset(rsk, skb);
1589 discard:
1590 kfree_skb(skb);
1591 /* Be careful here. If this function gets more complicated and
1592 * gcc suffers from register pressure on the x86, sk (in %ebx)
1593 * might be destroyed here. This current version compiles correctly,
1594 * but you have been warned.
1595 */
1596 return 0;
1597
1598 csum_err:
1599 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1600 goto discard;
1601 }
1602
1603 /*
1604 * From tcp_input.c
1605 */
1606
1607 int tcp_v4_rcv(struct sk_buff *skb)
1608 {
1609 const struct iphdr *iph;
1610 struct tcphdr *th;
1611 struct sock *sk;
1612 int ret;
1613 struct net *net = dev_net(skb->dev);
1614
1615 if (skb->pkt_type != PACKET_HOST)
1616 goto discard_it;
1617
1618 /* Count it even if it's bad */
1619 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1620
1621 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1622 goto discard_it;
1623
1624 th = tcp_hdr(skb);
1625
1626 if (th->doff < sizeof(struct tcphdr) / 4)
1627 goto bad_packet;
1628 if (!pskb_may_pull(skb, th->doff * 4))
1629 goto discard_it;
1630
1631 /* An explanation is required here, I think.
1632 * Packet length and doff are validated by header prediction,
1633 * provided case of th->doff==0 is eliminated.
1634 * So, we defer the checks. */
1635 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1636 goto bad_packet;
1637
1638 th = tcp_hdr(skb);
1639 iph = ip_hdr(skb);
1640 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1641 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1642 skb->len - th->doff * 4);
1643 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1644 TCP_SKB_CB(skb)->when = 0;
1645 TCP_SKB_CB(skb)->flags = iph->tos;
1646 TCP_SKB_CB(skb)->sacked = 0;
1647
1648 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1649 if (!sk)
1650 goto no_tcp_socket;
1651
1652 if (iph->ttl < inet_sk(sk)->min_ttl)
1653 goto discard_and_relse;
1654
1655 process:
1656 if (sk->sk_state == TCP_TIME_WAIT)
1657 goto do_time_wait;
1658
1659 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1660 goto discard_and_relse;
1661 nf_reset(skb);
1662
1663 if (sk_filter(sk, skb))
1664 goto discard_and_relse;
1665
1666 skb->dev = NULL;
1667
1668 bh_lock_sock_nested(sk);
1669 ret = 0;
1670 if (!sock_owned_by_user(sk)) {
1671 #ifdef CONFIG_NET_DMA
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1674 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1675 if (tp->ucopy.dma_chan)
1676 ret = tcp_v4_do_rcv(sk, skb);
1677 else
1678 #endif
1679 {
1680 if (!tcp_prequeue(sk, skb))
1681 ret = tcp_v4_do_rcv(sk, skb);
1682 }
1683 } else
1684 sk_add_backlog(sk, skb);
1685 bh_unlock_sock(sk);
1686
1687 sock_put(sk);
1688
1689 return ret;
1690
1691 no_tcp_socket:
1692 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1693 goto discard_it;
1694
1695 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1696 bad_packet:
1697 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1698 } else {
1699 tcp_v4_send_reset(NULL, skb);
1700 }
1701
1702 discard_it:
1703 /* Discard frame. */
1704 kfree_skb(skb);
1705 return 0;
1706
1707 discard_and_relse:
1708 sock_put(sk);
1709 goto discard_it;
1710
1711 do_time_wait:
1712 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1713 inet_twsk_put(inet_twsk(sk));
1714 goto discard_it;
1715 }
1716
1717 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1718 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1719 inet_twsk_put(inet_twsk(sk));
1720 goto discard_it;
1721 }
1722 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1723 case TCP_TW_SYN: {
1724 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1725 &tcp_hashinfo,
1726 iph->daddr, th->dest,
1727 inet_iif(skb));
1728 if (sk2) {
1729 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1730 inet_twsk_put(inet_twsk(sk));
1731 sk = sk2;
1732 goto process;
1733 }
1734 /* Fall through to ACK */
1735 }
1736 case TCP_TW_ACK:
1737 tcp_v4_timewait_ack(sk, skb);
1738 break;
1739 case TCP_TW_RST:
1740 goto no_tcp_socket;
1741 case TCP_TW_SUCCESS:;
1742 }
1743 goto discard_it;
1744 }
1745
1746 /* VJ's idea. Save last timestamp seen from this destination
1747 * and hold it at least for normal timewait interval to use for duplicate
1748 * segment detection in subsequent connections, before they enter synchronized
1749 * state.
1750 */
1751
1752 int tcp_v4_remember_stamp(struct sock *sk)
1753 {
1754 struct inet_sock *inet = inet_sk(sk);
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1757 struct inet_peer *peer = NULL;
1758 int release_it = 0;
1759
1760 if (!rt || rt->rt_dst != inet->inet_daddr) {
1761 peer = inet_getpeer(inet->inet_daddr, 1);
1762 release_it = 1;
1763 } else {
1764 if (!rt->peer)
1765 rt_bind_peer(rt, 1);
1766 peer = rt->peer;
1767 }
1768
1769 if (peer) {
1770 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1771 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1772 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1773 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1774 peer->tcp_ts = tp->rx_opt.ts_recent;
1775 }
1776 if (release_it)
1777 inet_putpeer(peer);
1778 return 1;
1779 }
1780
1781 return 0;
1782 }
1783
1784 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1785 {
1786 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1787
1788 if (peer) {
1789 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1790
1791 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1792 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1793 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1794 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1795 peer->tcp_ts = tcptw->tw_ts_recent;
1796 }
1797 inet_putpeer(peer);
1798 return 1;
1799 }
1800
1801 return 0;
1802 }
1803
1804 const struct inet_connection_sock_af_ops ipv4_specific = {
1805 .queue_xmit = ip_queue_xmit,
1806 .send_check = tcp_v4_send_check,
1807 .rebuild_header = inet_sk_rebuild_header,
1808 .conn_request = tcp_v4_conn_request,
1809 .syn_recv_sock = tcp_v4_syn_recv_sock,
1810 .remember_stamp = tcp_v4_remember_stamp,
1811 .net_header_len = sizeof(struct iphdr),
1812 .setsockopt = ip_setsockopt,
1813 .getsockopt = ip_getsockopt,
1814 .addr2sockaddr = inet_csk_addr2sockaddr,
1815 .sockaddr_len = sizeof(struct sockaddr_in),
1816 .bind_conflict = inet_csk_bind_conflict,
1817 #ifdef CONFIG_COMPAT
1818 .compat_setsockopt = compat_ip_setsockopt,
1819 .compat_getsockopt = compat_ip_getsockopt,
1820 #endif
1821 };
1822
1823 #ifdef CONFIG_TCP_MD5SIG
1824 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1825 .md5_lookup = tcp_v4_md5_lookup,
1826 .calc_md5_hash = tcp_v4_md5_hash_skb,
1827 .md5_add = tcp_v4_md5_add_func,
1828 .md5_parse = tcp_v4_parse_md5_keys,
1829 };
1830 #endif
1831
1832 /* NOTE: A lot of things set to zero explicitly by call to
1833 * sk_alloc() so need not be done here.
1834 */
1835 static int tcp_v4_init_sock(struct sock *sk)
1836 {
1837 struct inet_connection_sock *icsk = inet_csk(sk);
1838 struct tcp_sock *tp = tcp_sk(sk);
1839
1840 skb_queue_head_init(&tp->out_of_order_queue);
1841 tcp_init_xmit_timers(sk);
1842 tcp_prequeue_init(tp);
1843
1844 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1845 tp->mdev = TCP_TIMEOUT_INIT;
1846
1847 /* So many TCP implementations out there (incorrectly) count the
1848 * initial SYN frame in their delayed-ACK and congestion control
1849 * algorithms that we must have the following bandaid to talk
1850 * efficiently to them. -DaveM
1851 */
1852 tp->snd_cwnd = 2;
1853
1854 /* See draft-stevens-tcpca-spec-01 for discussion of the
1855 * initialization of these values.
1856 */
1857 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1858 tp->snd_cwnd_clamp = ~0;
1859 tp->mss_cache = TCP_MSS_DEFAULT;
1860
1861 tp->reordering = sysctl_tcp_reordering;
1862 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1863
1864 sk->sk_state = TCP_CLOSE;
1865
1866 sk->sk_write_space = sk_stream_write_space;
1867 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1868
1869 icsk->icsk_af_ops = &ipv4_specific;
1870 icsk->icsk_sync_mss = tcp_sync_mss;
1871 #ifdef CONFIG_TCP_MD5SIG
1872 tp->af_specific = &tcp_sock_ipv4_specific;
1873 #endif
1874
1875 /* TCP Cookie Transactions */
1876 if (sysctl_tcp_cookie_size > 0) {
1877 /* Default, cookies without s_data_payload. */
1878 tp->cookie_values =
1879 kzalloc(sizeof(*tp->cookie_values),
1880 sk->sk_allocation);
1881 if (tp->cookie_values != NULL)
1882 kref_init(&tp->cookie_values->kref);
1883 }
1884 /* Presumed zeroed, in order of appearance:
1885 * cookie_in_always, cookie_out_never,
1886 * s_data_constant, s_data_in, s_data_out
1887 */
1888 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1889 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1890
1891 local_bh_disable();
1892 percpu_counter_inc(&tcp_sockets_allocated);
1893 local_bh_enable();
1894
1895 return 0;
1896 }
1897
1898 void tcp_v4_destroy_sock(struct sock *sk)
1899 {
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1902 tcp_clear_xmit_timers(sk);
1903
1904 tcp_cleanup_congestion_control(sk);
1905
1906 /* Cleanup up the write buffer. */
1907 tcp_write_queue_purge(sk);
1908
1909 /* Cleans up our, hopefully empty, out_of_order_queue. */
1910 __skb_queue_purge(&tp->out_of_order_queue);
1911
1912 #ifdef CONFIG_TCP_MD5SIG
1913 /* Clean up the MD5 key list, if any */
1914 if (tp->md5sig_info) {
1915 tcp_v4_clear_md5_list(sk);
1916 kfree(tp->md5sig_info);
1917 tp->md5sig_info = NULL;
1918 }
1919 #endif
1920
1921 #ifdef CONFIG_NET_DMA
1922 /* Cleans up our sk_async_wait_queue */
1923 __skb_queue_purge(&sk->sk_async_wait_queue);
1924 #endif
1925
1926 /* Clean prequeue, it must be empty really */
1927 __skb_queue_purge(&tp->ucopy.prequeue);
1928
1929 /* Clean up a referenced TCP bind bucket. */
1930 if (inet_csk(sk)->icsk_bind_hash)
1931 inet_put_port(sk);
1932
1933 /*
1934 * If sendmsg cached page exists, toss it.
1935 */
1936 if (sk->sk_sndmsg_page) {
1937 __free_page(sk->sk_sndmsg_page);
1938 sk->sk_sndmsg_page = NULL;
1939 }
1940
1941 /* TCP Cookie Transactions */
1942 if (tp->cookie_values != NULL) {
1943 kref_put(&tp->cookie_values->kref,
1944 tcp_cookie_values_release);
1945 tp->cookie_values = NULL;
1946 }
1947
1948 percpu_counter_dec(&tcp_sockets_allocated);
1949 }
1950
1951 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1952
1953 #ifdef CONFIG_PROC_FS
1954 /* Proc filesystem TCP sock list dumping. */
1955
1956 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1957 {
1958 return hlist_nulls_empty(head) ? NULL :
1959 list_entry(head->first, struct inet_timewait_sock, tw_node);
1960 }
1961
1962 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1963 {
1964 return !is_a_nulls(tw->tw_node.next) ?
1965 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1966 }
1967
1968 static void *listening_get_next(struct seq_file *seq, void *cur)
1969 {
1970 struct inet_connection_sock *icsk;
1971 struct hlist_nulls_node *node;
1972 struct sock *sk = cur;
1973 struct inet_listen_hashbucket *ilb;
1974 struct tcp_iter_state *st = seq->private;
1975 struct net *net = seq_file_net(seq);
1976
1977 if (!sk) {
1978 st->bucket = 0;
1979 ilb = &tcp_hashinfo.listening_hash[0];
1980 spin_lock_bh(&ilb->lock);
1981 sk = sk_nulls_head(&ilb->head);
1982 goto get_sk;
1983 }
1984 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1985 ++st->num;
1986
1987 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1988 struct request_sock *req = cur;
1989
1990 icsk = inet_csk(st->syn_wait_sk);
1991 req = req->dl_next;
1992 while (1) {
1993 while (req) {
1994 if (req->rsk_ops->family == st->family) {
1995 cur = req;
1996 goto out;
1997 }
1998 req = req->dl_next;
1999 }
2000 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2001 break;
2002 get_req:
2003 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2004 }
2005 sk = sk_next(st->syn_wait_sk);
2006 st->state = TCP_SEQ_STATE_LISTENING;
2007 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2008 } else {
2009 icsk = inet_csk(sk);
2010 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2011 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2012 goto start_req;
2013 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2014 sk = sk_next(sk);
2015 }
2016 get_sk:
2017 sk_nulls_for_each_from(sk, node) {
2018 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2019 cur = sk;
2020 goto out;
2021 }
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2025 start_req:
2026 st->uid = sock_i_uid(sk);
2027 st->syn_wait_sk = sk;
2028 st->state = TCP_SEQ_STATE_OPENREQ;
2029 st->sbucket = 0;
2030 goto get_req;
2031 }
2032 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2033 }
2034 spin_unlock_bh(&ilb->lock);
2035 if (++st->bucket < INET_LHTABLE_SIZE) {
2036 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2037 spin_lock_bh(&ilb->lock);
2038 sk = sk_nulls_head(&ilb->head);
2039 goto get_sk;
2040 }
2041 cur = NULL;
2042 out:
2043 return cur;
2044 }
2045
2046 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2047 {
2048 void *rc = listening_get_next(seq, NULL);
2049
2050 while (rc && *pos) {
2051 rc = listening_get_next(seq, rc);
2052 --*pos;
2053 }
2054 return rc;
2055 }
2056
2057 static inline int empty_bucket(struct tcp_iter_state *st)
2058 {
2059 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2060 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2061 }
2062
2063 static void *established_get_first(struct seq_file *seq)
2064 {
2065 struct tcp_iter_state *st = seq->private;
2066 struct net *net = seq_file_net(seq);
2067 void *rc = NULL;
2068
2069 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2070 struct sock *sk;
2071 struct hlist_nulls_node *node;
2072 struct inet_timewait_sock *tw;
2073 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2074
2075 /* Lockless fast path for the common case of empty buckets */
2076 if (empty_bucket(st))
2077 continue;
2078
2079 spin_lock_bh(lock);
2080 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2081 if (sk->sk_family != st->family ||
2082 !net_eq(sock_net(sk), net)) {
2083 continue;
2084 }
2085 rc = sk;
2086 goto out;
2087 }
2088 st->state = TCP_SEQ_STATE_TIME_WAIT;
2089 inet_twsk_for_each(tw, node,
2090 &tcp_hashinfo.ehash[st->bucket].twchain) {
2091 if (tw->tw_family != st->family ||
2092 !net_eq(twsk_net(tw), net)) {
2093 continue;
2094 }
2095 rc = tw;
2096 goto out;
2097 }
2098 spin_unlock_bh(lock);
2099 st->state = TCP_SEQ_STATE_ESTABLISHED;
2100 }
2101 out:
2102 return rc;
2103 }
2104
2105 static void *established_get_next(struct seq_file *seq, void *cur)
2106 {
2107 struct sock *sk = cur;
2108 struct inet_timewait_sock *tw;
2109 struct hlist_nulls_node *node;
2110 struct tcp_iter_state *st = seq->private;
2111 struct net *net = seq_file_net(seq);
2112
2113 ++st->num;
2114
2115 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2116 tw = cur;
2117 tw = tw_next(tw);
2118 get_tw:
2119 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2120 tw = tw_next(tw);
2121 }
2122 if (tw) {
2123 cur = tw;
2124 goto out;
2125 }
2126 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2127 st->state = TCP_SEQ_STATE_ESTABLISHED;
2128
2129 /* Look for next non empty bucket */
2130 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2131 empty_bucket(st))
2132 ;
2133 if (st->bucket > tcp_hashinfo.ehash_mask)
2134 return NULL;
2135
2136 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2137 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2138 } else
2139 sk = sk_nulls_next(sk);
2140
2141 sk_nulls_for_each_from(sk, node) {
2142 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2143 goto found;
2144 }
2145
2146 st->state = TCP_SEQ_STATE_TIME_WAIT;
2147 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2148 goto get_tw;
2149 found:
2150 cur = sk;
2151 out:
2152 return cur;
2153 }
2154
2155 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2156 {
2157 void *rc = established_get_first(seq);
2158
2159 while (rc && pos) {
2160 rc = established_get_next(seq, rc);
2161 --pos;
2162 }
2163 return rc;
2164 }
2165
2166 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2167 {
2168 void *rc;
2169 struct tcp_iter_state *st = seq->private;
2170
2171 st->state = TCP_SEQ_STATE_LISTENING;
2172 rc = listening_get_idx(seq, &pos);
2173
2174 if (!rc) {
2175 st->state = TCP_SEQ_STATE_ESTABLISHED;
2176 rc = established_get_idx(seq, pos);
2177 }
2178
2179 return rc;
2180 }
2181
2182 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2183 {
2184 struct tcp_iter_state *st = seq->private;
2185 st->state = TCP_SEQ_STATE_LISTENING;
2186 st->num = 0;
2187 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2188 }
2189
2190 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2191 {
2192 void *rc = NULL;
2193 struct tcp_iter_state *st;
2194
2195 if (v == SEQ_START_TOKEN) {
2196 rc = tcp_get_idx(seq, 0);
2197 goto out;
2198 }
2199 st = seq->private;
2200
2201 switch (st->state) {
2202 case TCP_SEQ_STATE_OPENREQ:
2203 case TCP_SEQ_STATE_LISTENING:
2204 rc = listening_get_next(seq, v);
2205 if (!rc) {
2206 st->state = TCP_SEQ_STATE_ESTABLISHED;
2207 rc = established_get_first(seq);
2208 }
2209 break;
2210 case TCP_SEQ_STATE_ESTABLISHED:
2211 case TCP_SEQ_STATE_TIME_WAIT:
2212 rc = established_get_next(seq, v);
2213 break;
2214 }
2215 out:
2216 ++*pos;
2217 return rc;
2218 }
2219
2220 static void tcp_seq_stop(struct seq_file *seq, void *v)
2221 {
2222 struct tcp_iter_state *st = seq->private;
2223
2224 switch (st->state) {
2225 case TCP_SEQ_STATE_OPENREQ:
2226 if (v) {
2227 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2228 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2229 }
2230 case TCP_SEQ_STATE_LISTENING:
2231 if (v != SEQ_START_TOKEN)
2232 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2233 break;
2234 case TCP_SEQ_STATE_TIME_WAIT:
2235 case TCP_SEQ_STATE_ESTABLISHED:
2236 if (v)
2237 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2238 break;
2239 }
2240 }
2241
2242 static int tcp_seq_open(struct inode *inode, struct file *file)
2243 {
2244 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2245 struct tcp_iter_state *s;
2246 int err;
2247
2248 err = seq_open_net(inode, file, &afinfo->seq_ops,
2249 sizeof(struct tcp_iter_state));
2250 if (err < 0)
2251 return err;
2252
2253 s = ((struct seq_file *)file->private_data)->private;
2254 s->family = afinfo->family;
2255 return 0;
2256 }
2257
2258 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2259 {
2260 int rc = 0;
2261 struct proc_dir_entry *p;
2262
2263 afinfo->seq_fops.open = tcp_seq_open;
2264 afinfo->seq_fops.read = seq_read;
2265 afinfo->seq_fops.llseek = seq_lseek;
2266 afinfo->seq_fops.release = seq_release_net;
2267
2268 afinfo->seq_ops.start = tcp_seq_start;
2269 afinfo->seq_ops.next = tcp_seq_next;
2270 afinfo->seq_ops.stop = tcp_seq_stop;
2271
2272 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2273 &afinfo->seq_fops, afinfo);
2274 if (!p)
2275 rc = -ENOMEM;
2276 return rc;
2277 }
2278
2279 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2280 {
2281 proc_net_remove(net, afinfo->name);
2282 }
2283
2284 static void get_openreq4(struct sock *sk, struct request_sock *req,
2285 struct seq_file *f, int i, int uid, int *len)
2286 {
2287 const struct inet_request_sock *ireq = inet_rsk(req);
2288 int ttd = req->expires - jiffies;
2289
2290 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2291 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2292 i,
2293 ireq->loc_addr,
2294 ntohs(inet_sk(sk)->inet_sport),
2295 ireq->rmt_addr,
2296 ntohs(ireq->rmt_port),
2297 TCP_SYN_RECV,
2298 0, 0, /* could print option size, but that is af dependent. */
2299 1, /* timers active (only the expire timer) */
2300 jiffies_to_clock_t(ttd),
2301 req->retrans,
2302 uid,
2303 0, /* non standard timer */
2304 0, /* open_requests have no inode */
2305 atomic_read(&sk->sk_refcnt),
2306 req,
2307 len);
2308 }
2309
2310 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2311 {
2312 int timer_active;
2313 unsigned long timer_expires;
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 const struct inet_connection_sock *icsk = inet_csk(sk);
2316 struct inet_sock *inet = inet_sk(sk);
2317 __be32 dest = inet->inet_daddr;
2318 __be32 src = inet->inet_rcv_saddr;
2319 __u16 destp = ntohs(inet->inet_dport);
2320 __u16 srcp = ntohs(inet->inet_sport);
2321 int rx_queue;
2322
2323 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2324 timer_active = 1;
2325 timer_expires = icsk->icsk_timeout;
2326 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2327 timer_active = 4;
2328 timer_expires = icsk->icsk_timeout;
2329 } else if (timer_pending(&sk->sk_timer)) {
2330 timer_active = 2;
2331 timer_expires = sk->sk_timer.expires;
2332 } else {
2333 timer_active = 0;
2334 timer_expires = jiffies;
2335 }
2336
2337 if (sk->sk_state == TCP_LISTEN)
2338 rx_queue = sk->sk_ack_backlog;
2339 else
2340 /*
2341 * because we dont lock socket, we might find a transient negative value
2342 */
2343 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2344
2345 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2346 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2347 i, src, srcp, dest, destp, sk->sk_state,
2348 tp->write_seq - tp->snd_una,
2349 rx_queue,
2350 timer_active,
2351 jiffies_to_clock_t(timer_expires - jiffies),
2352 icsk->icsk_retransmits,
2353 sock_i_uid(sk),
2354 icsk->icsk_probes_out,
2355 sock_i_ino(sk),
2356 atomic_read(&sk->sk_refcnt), sk,
2357 jiffies_to_clock_t(icsk->icsk_rto),
2358 jiffies_to_clock_t(icsk->icsk_ack.ato),
2359 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2360 tp->snd_cwnd,
2361 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2362 len);
2363 }
2364
2365 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2366 struct seq_file *f, int i, int *len)
2367 {
2368 __be32 dest, src;
2369 __u16 destp, srcp;
2370 int ttd = tw->tw_ttd - jiffies;
2371
2372 if (ttd < 0)
2373 ttd = 0;
2374
2375 dest = tw->tw_daddr;
2376 src = tw->tw_rcv_saddr;
2377 destp = ntohs(tw->tw_dport);
2378 srcp = ntohs(tw->tw_sport);
2379
2380 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2381 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2382 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2383 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2384 atomic_read(&tw->tw_refcnt), tw, len);
2385 }
2386
2387 #define TMPSZ 150
2388
2389 static int tcp4_seq_show(struct seq_file *seq, void *v)
2390 {
2391 struct tcp_iter_state *st;
2392 int len;
2393
2394 if (v == SEQ_START_TOKEN) {
2395 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2396 " sl local_address rem_address st tx_queue "
2397 "rx_queue tr tm->when retrnsmt uid timeout "
2398 "inode");
2399 goto out;
2400 }
2401 st = seq->private;
2402
2403 switch (st->state) {
2404 case TCP_SEQ_STATE_LISTENING:
2405 case TCP_SEQ_STATE_ESTABLISHED:
2406 get_tcp4_sock(v, seq, st->num, &len);
2407 break;
2408 case TCP_SEQ_STATE_OPENREQ:
2409 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2410 break;
2411 case TCP_SEQ_STATE_TIME_WAIT:
2412 get_timewait4_sock(v, seq, st->num, &len);
2413 break;
2414 }
2415 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2416 out:
2417 return 0;
2418 }
2419
2420 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2421 .name = "tcp",
2422 .family = AF_INET,
2423 .seq_fops = {
2424 .owner = THIS_MODULE,
2425 },
2426 .seq_ops = {
2427 .show = tcp4_seq_show,
2428 },
2429 };
2430
2431 static int tcp4_proc_init_net(struct net *net)
2432 {
2433 return tcp_proc_register(net, &tcp4_seq_afinfo);
2434 }
2435
2436 static void tcp4_proc_exit_net(struct net *net)
2437 {
2438 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2439 }
2440
2441 static struct pernet_operations tcp4_net_ops = {
2442 .init = tcp4_proc_init_net,
2443 .exit = tcp4_proc_exit_net,
2444 };
2445
2446 int __init tcp4_proc_init(void)
2447 {
2448 return register_pernet_subsys(&tcp4_net_ops);
2449 }
2450
2451 void tcp4_proc_exit(void)
2452 {
2453 unregister_pernet_subsys(&tcp4_net_ops);
2454 }
2455 #endif /* CONFIG_PROC_FS */
2456
2457 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2458 {
2459 struct iphdr *iph = skb_gro_network_header(skb);
2460
2461 switch (skb->ip_summed) {
2462 case CHECKSUM_COMPLETE:
2463 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2464 skb->csum)) {
2465 skb->ip_summed = CHECKSUM_UNNECESSARY;
2466 break;
2467 }
2468
2469 /* fall through */
2470 case CHECKSUM_NONE:
2471 NAPI_GRO_CB(skb)->flush = 1;
2472 return NULL;
2473 }
2474
2475 return tcp_gro_receive(head, skb);
2476 }
2477 EXPORT_SYMBOL(tcp4_gro_receive);
2478
2479 int tcp4_gro_complete(struct sk_buff *skb)
2480 {
2481 struct iphdr *iph = ip_hdr(skb);
2482 struct tcphdr *th = tcp_hdr(skb);
2483
2484 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2485 iph->saddr, iph->daddr, 0);
2486 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2487
2488 return tcp_gro_complete(skb);
2489 }
2490 EXPORT_SYMBOL(tcp4_gro_complete);
2491
2492 struct proto tcp_prot = {
2493 .name = "TCP",
2494 .owner = THIS_MODULE,
2495 .close = tcp_close,
2496 .connect = tcp_v4_connect,
2497 .disconnect = tcp_disconnect,
2498 .accept = inet_csk_accept,
2499 .ioctl = tcp_ioctl,
2500 .init = tcp_v4_init_sock,
2501 .destroy = tcp_v4_destroy_sock,
2502 .shutdown = tcp_shutdown,
2503 .setsockopt = tcp_setsockopt,
2504 .getsockopt = tcp_getsockopt,
2505 .recvmsg = tcp_recvmsg,
2506 .backlog_rcv = tcp_v4_do_rcv,
2507 .hash = inet_hash,
2508 .unhash = inet_unhash,
2509 .get_port = inet_csk_get_port,
2510 .enter_memory_pressure = tcp_enter_memory_pressure,
2511 .sockets_allocated = &tcp_sockets_allocated,
2512 .orphan_count = &tcp_orphan_count,
2513 .memory_allocated = &tcp_memory_allocated,
2514 .memory_pressure = &tcp_memory_pressure,
2515 .sysctl_mem = sysctl_tcp_mem,
2516 .sysctl_wmem = sysctl_tcp_wmem,
2517 .sysctl_rmem = sysctl_tcp_rmem,
2518 .max_header = MAX_TCP_HEADER,
2519 .obj_size = sizeof(struct tcp_sock),
2520 .slab_flags = SLAB_DESTROY_BY_RCU,
2521 .twsk_prot = &tcp_timewait_sock_ops,
2522 .rsk_prot = &tcp_request_sock_ops,
2523 .h.hashinfo = &tcp_hashinfo,
2524 #ifdef CONFIG_COMPAT
2525 .compat_setsockopt = compat_tcp_setsockopt,
2526 .compat_getsockopt = compat_tcp_getsockopt,
2527 #endif
2528 };
2529
2530
2531 static int __net_init tcp_sk_init(struct net *net)
2532 {
2533 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2534 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2535 }
2536
2537 static void __net_exit tcp_sk_exit(struct net *net)
2538 {
2539 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2540 }
2541
2542 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2543 {
2544 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2545 }
2546
2547 static struct pernet_operations __net_initdata tcp_sk_ops = {
2548 .init = tcp_sk_init,
2549 .exit = tcp_sk_exit,
2550 .exit_batch = tcp_sk_exit_batch,
2551 };
2552
2553 void __init tcp_v4_init(void)
2554 {
2555 inet_hashinfo_init(&tcp_hashinfo);
2556 if (register_pernet_subsys(&tcp_sk_ops))
2557 panic("Failed to create the TCP control socket.\n");
2558 }
2559
2560 EXPORT_SYMBOL(ipv4_specific);
2561 EXPORT_SYMBOL(tcp_hashinfo);
2562 EXPORT_SYMBOL(tcp_prot);
2563 EXPORT_SYMBOL(tcp_v4_conn_request);
2564 EXPORT_SYMBOL(tcp_v4_connect);
2565 EXPORT_SYMBOL(tcp_v4_do_rcv);
2566 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2567 EXPORT_SYMBOL(tcp_v4_send_check);
2568 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2569
2570 #ifdef CONFIG_PROC_FS
2571 EXPORT_SYMBOL(tcp_proc_register);
2572 EXPORT_SYMBOL(tcp_proc_unregister);
2573 #endif
2574 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2575