]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_ipv4.c
7ba2d4f1de39097c050bedf591834db762e46c20
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/inetdevice.h>
84
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87
88 #include <trace/events/tcp.h>
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94
95 struct inet_hashinfo tcp_hashinfo;
96 EXPORT_SYMBOL(tcp_hashinfo);
97
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 return secure_tcp_seq(ip_hdr(skb)->daddr,
101 ip_hdr(skb)->saddr,
102 tcp_hdr(skb)->dest,
103 tcp_hdr(skb)->source);
104 }
105
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
123
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
126 */
127 if (tcptw->tw_ts_recent_stamp &&
128 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
137 }
138
139 return 0;
140 }
141 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
142
143 /* This will initiate an outgoing connection. */
144 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
145 {
146 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 __be16 orig_sport, orig_dport;
150 __be32 daddr, nexthop;
151 struct flowi4 *fl4;
152 struct rtable *rt;
153 int err;
154 struct ip_options_rcu *inet_opt;
155 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
156
157 if (addr_len < sizeof(struct sockaddr_in))
158 return -EINVAL;
159
160 if (usin->sin_family != AF_INET)
161 return -EAFNOSUPPORT;
162
163 nexthop = daddr = usin->sin_addr.s_addr;
164 inet_opt = rcu_dereference_protected(inet->inet_opt,
165 lockdep_sock_is_held(sk));
166 if (inet_opt && inet_opt->opt.srr) {
167 if (!daddr)
168 return -EINVAL;
169 nexthop = inet_opt->opt.faddr;
170 }
171
172 orig_sport = inet->inet_sport;
173 orig_dport = usin->sin_port;
174 fl4 = &inet->cork.fl.u.ip4;
175 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
176 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
177 IPPROTO_TCP,
178 orig_sport, orig_dport, sk);
179 if (IS_ERR(rt)) {
180 err = PTR_ERR(rt);
181 if (err == -ENETUNREACH)
182 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
183 return err;
184 }
185
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 ip_rt_put(rt);
188 return -ENETUNREACH;
189 }
190
191 if (!inet_opt || !inet_opt->opt.srr)
192 daddr = fl4->daddr;
193
194 if (!inet->inet_saddr)
195 inet->inet_saddr = fl4->saddr;
196 sk_rcv_saddr_set(sk, inet->inet_saddr);
197
198 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
202 if (likely(!tp->repair))
203 tp->write_seq = 0;
204 }
205
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 sk_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237 rt = NULL;
238
239 if (likely(!tp->repair)) {
240 if (!tp->write_seq)
241 tp->write_seq = secure_tcp_seq(inet->inet_saddr,
242 inet->inet_daddr,
243 inet->inet_sport,
244 usin->sin_port);
245 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
246 inet->inet_saddr,
247 inet->inet_daddr);
248 }
249
250 inet->inet_id = prandom_u32();
251
252 if (tcp_fastopen_defer_connect(sk, &err))
253 return err;
254 if (err)
255 goto failure;
256
257 err = tcp_connect(sk);
258
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct inet_sock *inet = inet_sk(sk);
285 struct dst_entry *dst;
286 u32 mtu;
287
288 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
289 return;
290 mtu = tcp_sk(sk)->mtu_info;
291 dst = inet_csk_update_pmtu(sk, mtu);
292 if (!dst)
293 return;
294
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
297 */
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
300
301 mtu = dst_mtu(dst);
302
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 ip_sk_accept_pmtu(sk) &&
305 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
306 tcp_sync_mss(sk, mtu);
307
308 /* Resend the TCP packet because it's
309 * clear that the old packet has been
310 * dropped. This is the new "fast" path mtu
311 * discovery.
312 */
313 tcp_simple_retransmit(sk);
314 } /* else let the usual retransmit timer handle it */
315 }
316 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
317
318 static void do_redirect(struct sk_buff *skb, struct sock *sk)
319 {
320 struct dst_entry *dst = __sk_dst_check(sk, 0);
321
322 if (dst)
323 dst->ops->redirect(dst, sk, skb);
324 }
325
326
327 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
328 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
329 {
330 struct request_sock *req = inet_reqsk(sk);
331 struct net *net = sock_net(sk);
332
333 /* ICMPs are not backlogged, hence we cannot get
334 * an established socket here.
335 */
336 if (seq != tcp_rsk(req)->snt_isn) {
337 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
338 } else if (abort) {
339 /*
340 * Still in SYN_RECV, just remove it silently.
341 * There is no good way to pass the error to the newly
342 * created socket, and POSIX does not want network
343 * errors returned from accept().
344 */
345 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
346 tcp_listendrop(req->rsk_listener);
347 }
348 reqsk_put(req);
349 }
350 EXPORT_SYMBOL(tcp_req_err);
351
352 /*
353 * This routine is called by the ICMP module when it gets some
354 * sort of error condition. If err < 0 then the socket should
355 * be closed and the error returned to the user. If err > 0
356 * it's just the icmp type << 8 | icmp code. After adjustment
357 * header points to the first 8 bytes of the tcp header. We need
358 * to find the appropriate port.
359 *
360 * The locking strategy used here is very "optimistic". When
361 * someone else accesses the socket the ICMP is just dropped
362 * and for some paths there is no check at all.
363 * A more general error queue to queue errors for later handling
364 * is probably better.
365 *
366 */
367
368 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
369 {
370 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
371 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
372 struct inet_connection_sock *icsk;
373 struct tcp_sock *tp;
374 struct inet_sock *inet;
375 const int type = icmp_hdr(icmp_skb)->type;
376 const int code = icmp_hdr(icmp_skb)->code;
377 struct sock *sk;
378 struct sk_buff *skb;
379 struct request_sock *fastopen;
380 u32 seq, snd_una;
381 s32 remaining;
382 u32 delta_us;
383 int err;
384 struct net *net = dev_net(icmp_skb->dev);
385
386 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
387 th->dest, iph->saddr, ntohs(th->source),
388 inet_iif(icmp_skb), 0);
389 if (!sk) {
390 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
391 return;
392 }
393 if (sk->sk_state == TCP_TIME_WAIT) {
394 inet_twsk_put(inet_twsk(sk));
395 return;
396 }
397 seq = ntohl(th->seq);
398 if (sk->sk_state == TCP_NEW_SYN_RECV)
399 return tcp_req_err(sk, seq,
400 type == ICMP_PARAMETERPROB ||
401 type == ICMP_TIME_EXCEEDED ||
402 (type == ICMP_DEST_UNREACH &&
403 (code == ICMP_NET_UNREACH ||
404 code == ICMP_HOST_UNREACH)));
405
406 bh_lock_sock(sk);
407 /* If too many ICMPs get dropped on busy
408 * servers this needs to be solved differently.
409 * We do take care of PMTU discovery (RFC1191) special case :
410 * we can receive locally generated ICMP messages while socket is held.
411 */
412 if (sock_owned_by_user(sk)) {
413 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
414 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
415 }
416 if (sk->sk_state == TCP_CLOSE)
417 goto out;
418
419 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
420 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
421 goto out;
422 }
423
424 icsk = inet_csk(sk);
425 tp = tcp_sk(sk);
426 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
427 fastopen = tp->fastopen_rsk;
428 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
429 if (sk->sk_state != TCP_LISTEN &&
430 !between(seq, snd_una, tp->snd_nxt)) {
431 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
432 goto out;
433 }
434
435 switch (type) {
436 case ICMP_REDIRECT:
437 if (!sock_owned_by_user(sk))
438 do_redirect(icmp_skb, sk);
439 goto out;
440 case ICMP_SOURCE_QUENCH:
441 /* Just silently ignore these. */
442 goto out;
443 case ICMP_PARAMETERPROB:
444 err = EPROTO;
445 break;
446 case ICMP_DEST_UNREACH:
447 if (code > NR_ICMP_UNREACH)
448 goto out;
449
450 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
451 /* We are not interested in TCP_LISTEN and open_requests
452 * (SYN-ACKs send out by Linux are always <576bytes so
453 * they should go through unfragmented).
454 */
455 if (sk->sk_state == TCP_LISTEN)
456 goto out;
457
458 tp->mtu_info = info;
459 if (!sock_owned_by_user(sk)) {
460 tcp_v4_mtu_reduced(sk);
461 } else {
462 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
463 sock_hold(sk);
464 }
465 goto out;
466 }
467
468 err = icmp_err_convert[code].errno;
469 /* check if icmp_skb allows revert of backoff
470 * (see draft-zimmermann-tcp-lcd) */
471 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
472 break;
473 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
474 !icsk->icsk_backoff || fastopen)
475 break;
476
477 if (sock_owned_by_user(sk))
478 break;
479
480 skb = tcp_rtx_queue_head(sk);
481 if (WARN_ON_ONCE(!skb))
482 break;
483
484 icsk->icsk_backoff--;
485 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
486 TCP_TIMEOUT_INIT;
487 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
488
489 tcp_mstamp_refresh(tp);
490 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp);
491 remaining = icsk->icsk_rto -
492 usecs_to_jiffies(delta_us);
493
494 if (remaining > 0) {
495 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
496 remaining, TCP_RTO_MAX);
497 } else {
498 /* RTO revert clocked out retransmission.
499 * Will retransmit now */
500 tcp_retransmit_timer(sk);
501 }
502
503 break;
504 case ICMP_TIME_EXCEEDED:
505 err = EHOSTUNREACH;
506 break;
507 default:
508 goto out;
509 }
510
511 switch (sk->sk_state) {
512 case TCP_SYN_SENT:
513 case TCP_SYN_RECV:
514 /* Only in fast or simultaneous open. If a fast open socket is
515 * is already accepted it is treated as a connected one below.
516 */
517 if (fastopen && !fastopen->sk)
518 break;
519
520 if (!sock_owned_by_user(sk)) {
521 sk->sk_err = err;
522
523 sk->sk_error_report(sk);
524
525 tcp_done(sk);
526 } else {
527 sk->sk_err_soft = err;
528 }
529 goto out;
530 }
531
532 /* If we've already connected we will keep trying
533 * until we time out, or the user gives up.
534 *
535 * rfc1122 4.2.3.9 allows to consider as hard errors
536 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
537 * but it is obsoleted by pmtu discovery).
538 *
539 * Note, that in modern internet, where routing is unreliable
540 * and in each dark corner broken firewalls sit, sending random
541 * errors ordered by their masters even this two messages finally lose
542 * their original sense (even Linux sends invalid PORT_UNREACHs)
543 *
544 * Now we are in compliance with RFCs.
545 * --ANK (980905)
546 */
547
548 inet = inet_sk(sk);
549 if (!sock_owned_by_user(sk) && inet->recverr) {
550 sk->sk_err = err;
551 sk->sk_error_report(sk);
552 } else { /* Only an error on timeout */
553 sk->sk_err_soft = err;
554 }
555
556 out:
557 bh_unlock_sock(sk);
558 sock_put(sk);
559 }
560
561 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
562 {
563 struct tcphdr *th = tcp_hdr(skb);
564
565 if (skb->ip_summed == CHECKSUM_PARTIAL) {
566 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
567 skb->csum_start = skb_transport_header(skb) - skb->head;
568 skb->csum_offset = offsetof(struct tcphdr, check);
569 } else {
570 th->check = tcp_v4_check(skb->len, saddr, daddr,
571 csum_partial(th,
572 th->doff << 2,
573 skb->csum));
574 }
575 }
576
577 /* This routine computes an IPv4 TCP checksum. */
578 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct inet_sock *inet = inet_sk(sk);
581
582 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
583 }
584 EXPORT_SYMBOL(tcp_v4_send_check);
585
586 /*
587 * This routine will send an RST to the other tcp.
588 *
589 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
590 * for reset.
591 * Answer: if a packet caused RST, it is not for a socket
592 * existing in our system, if it is matched to a socket,
593 * it is just duplicate segment or bug in other side's TCP.
594 * So that we build reply only basing on parameters
595 * arrived with segment.
596 * Exception: precedence violation. We do not implement it in any case.
597 */
598
599 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
600 {
601 const struct tcphdr *th = tcp_hdr(skb);
602 struct {
603 struct tcphdr th;
604 #ifdef CONFIG_TCP_MD5SIG
605 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
606 #endif
607 } rep;
608 struct ip_reply_arg arg;
609 #ifdef CONFIG_TCP_MD5SIG
610 struct tcp_md5sig_key *key = NULL;
611 const __u8 *hash_location = NULL;
612 unsigned char newhash[16];
613 int genhash;
614 struct sock *sk1 = NULL;
615 #endif
616 struct net *net;
617
618 /* Never send a reset in response to a reset. */
619 if (th->rst)
620 return;
621
622 /* If sk not NULL, it means we did a successful lookup and incoming
623 * route had to be correct. prequeue might have dropped our dst.
624 */
625 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
626 return;
627
628 /* Swap the send and the receive. */
629 memset(&rep, 0, sizeof(rep));
630 rep.th.dest = th->source;
631 rep.th.source = th->dest;
632 rep.th.doff = sizeof(struct tcphdr) / 4;
633 rep.th.rst = 1;
634
635 if (th->ack) {
636 rep.th.seq = th->ack_seq;
637 } else {
638 rep.th.ack = 1;
639 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
640 skb->len - (th->doff << 2));
641 }
642
643 memset(&arg, 0, sizeof(arg));
644 arg.iov[0].iov_base = (unsigned char *)&rep;
645 arg.iov[0].iov_len = sizeof(rep.th);
646
647 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
648 #ifdef CONFIG_TCP_MD5SIG
649 rcu_read_lock();
650 hash_location = tcp_parse_md5sig_option(th);
651 if (sk && sk_fullsock(sk)) {
652 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
653 &ip_hdr(skb)->saddr, AF_INET);
654 } else if (hash_location) {
655 /*
656 * active side is lost. Try to find listening socket through
657 * source port, and then find md5 key through listening socket.
658 * we are not loose security here:
659 * Incoming packet is checked with md5 hash with finding key,
660 * no RST generated if md5 hash doesn't match.
661 */
662 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
663 ip_hdr(skb)->saddr,
664 th->source, ip_hdr(skb)->daddr,
665 ntohs(th->source), inet_iif(skb),
666 tcp_v4_sdif(skb));
667 /* don't send rst if it can't find key */
668 if (!sk1)
669 goto out;
670
671 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
672 &ip_hdr(skb)->saddr, AF_INET);
673 if (!key)
674 goto out;
675
676
677 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
678 if (genhash || memcmp(hash_location, newhash, 16) != 0)
679 goto out;
680
681 }
682
683 if (key) {
684 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
685 (TCPOPT_NOP << 16) |
686 (TCPOPT_MD5SIG << 8) |
687 TCPOLEN_MD5SIG);
688 /* Update length and the length the header thinks exists */
689 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
690 rep.th.doff = arg.iov[0].iov_len / 4;
691
692 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
693 key, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &rep.th);
695 }
696 #endif
697 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
698 ip_hdr(skb)->saddr, /* XXX */
699 arg.iov[0].iov_len, IPPROTO_TCP, 0);
700 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
701 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
702
703 /* When socket is gone, all binding information is lost.
704 * routing might fail in this case. No choice here, if we choose to force
705 * input interface, we will misroute in case of asymmetric route.
706 */
707 if (sk) {
708 arg.bound_dev_if = sk->sk_bound_dev_if;
709 if (sk_fullsock(sk))
710 trace_tcp_send_reset(sk, skb);
711 }
712
713 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
714 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
715
716 arg.tos = ip_hdr(skb)->tos;
717 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
718 local_bh_disable();
719 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
720 skb, &TCP_SKB_CB(skb)->header.h4.opt,
721 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
722 &arg, arg.iov[0].iov_len);
723
724 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
725 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
726 local_bh_enable();
727
728 #ifdef CONFIG_TCP_MD5SIG
729 out:
730 rcu_read_unlock();
731 #endif
732 }
733
734 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
735 outside socket context is ugly, certainly. What can I do?
736 */
737
738 static void tcp_v4_send_ack(const struct sock *sk,
739 struct sk_buff *skb, u32 seq, u32 ack,
740 u32 win, u32 tsval, u32 tsecr, int oif,
741 struct tcp_md5sig_key *key,
742 int reply_flags, u8 tos)
743 {
744 const struct tcphdr *th = tcp_hdr(skb);
745 struct {
746 struct tcphdr th;
747 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
748 #ifdef CONFIG_TCP_MD5SIG
749 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
750 #endif
751 ];
752 } rep;
753 struct net *net = sock_net(sk);
754 struct ip_reply_arg arg;
755
756 memset(&rep.th, 0, sizeof(struct tcphdr));
757 memset(&arg, 0, sizeof(arg));
758
759 arg.iov[0].iov_base = (unsigned char *)&rep;
760 arg.iov[0].iov_len = sizeof(rep.th);
761 if (tsecr) {
762 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
763 (TCPOPT_TIMESTAMP << 8) |
764 TCPOLEN_TIMESTAMP);
765 rep.opt[1] = htonl(tsval);
766 rep.opt[2] = htonl(tsecr);
767 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
768 }
769
770 /* Swap the send and the receive. */
771 rep.th.dest = th->source;
772 rep.th.source = th->dest;
773 rep.th.doff = arg.iov[0].iov_len / 4;
774 rep.th.seq = htonl(seq);
775 rep.th.ack_seq = htonl(ack);
776 rep.th.ack = 1;
777 rep.th.window = htons(win);
778
779 #ifdef CONFIG_TCP_MD5SIG
780 if (key) {
781 int offset = (tsecr) ? 3 : 0;
782
783 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
784 (TCPOPT_NOP << 16) |
785 (TCPOPT_MD5SIG << 8) |
786 TCPOLEN_MD5SIG);
787 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
788 rep.th.doff = arg.iov[0].iov_len/4;
789
790 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
791 key, ip_hdr(skb)->saddr,
792 ip_hdr(skb)->daddr, &rep.th);
793 }
794 #endif
795 arg.flags = reply_flags;
796 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
797 ip_hdr(skb)->saddr, /* XXX */
798 arg.iov[0].iov_len, IPPROTO_TCP, 0);
799 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
800 if (oif)
801 arg.bound_dev_if = oif;
802 arg.tos = tos;
803 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
804 local_bh_disable();
805 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
806 skb, &TCP_SKB_CB(skb)->header.h4.opt,
807 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
808 &arg, arg.iov[0].iov_len);
809
810 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
811 local_bh_enable();
812 }
813
814 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
815 {
816 struct inet_timewait_sock *tw = inet_twsk(sk);
817 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
818
819 tcp_v4_send_ack(sk, skb,
820 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
821 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
822 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
823 tcptw->tw_ts_recent,
824 tw->tw_bound_dev_if,
825 tcp_twsk_md5_key(tcptw),
826 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
827 tw->tw_tos
828 );
829
830 inet_twsk_put(tw);
831 }
832
833 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
834 struct request_sock *req)
835 {
836 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
837 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
838 */
839 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
840 tcp_sk(sk)->snd_nxt;
841
842 /* RFC 7323 2.3
843 * The window field (SEG.WND) of every outgoing segment, with the
844 * exception of <SYN> segments, MUST be right-shifted by
845 * Rcv.Wind.Shift bits:
846 */
847 tcp_v4_send_ack(sk, skb, seq,
848 tcp_rsk(req)->rcv_nxt,
849 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
850 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
851 req->ts_recent,
852 0,
853 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
854 AF_INET),
855 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
856 ip_hdr(skb)->tos);
857 }
858
859 /*
860 * Send a SYN-ACK after having received a SYN.
861 * This still operates on a request_sock only, not on a big
862 * socket.
863 */
864 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
865 struct flowi *fl,
866 struct request_sock *req,
867 struct tcp_fastopen_cookie *foc,
868 enum tcp_synack_type synack_type)
869 {
870 const struct inet_request_sock *ireq = inet_rsk(req);
871 struct flowi4 fl4;
872 int err = -1;
873 struct sk_buff *skb;
874
875 /* First, grab a route. */
876 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
877 return -1;
878
879 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
880
881 if (skb) {
882 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
883
884 rcu_read_lock();
885 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
886 ireq->ir_rmt_addr,
887 rcu_dereference(ireq->ireq_opt));
888 rcu_read_unlock();
889 err = net_xmit_eval(err);
890 }
891
892 return err;
893 }
894
895 /*
896 * IPv4 request_sock destructor.
897 */
898 static void tcp_v4_reqsk_destructor(struct request_sock *req)
899 {
900 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
901 }
902
903 #ifdef CONFIG_TCP_MD5SIG
904 /*
905 * RFC2385 MD5 checksumming requires a mapping of
906 * IP address->MD5 Key.
907 * We need to maintain these in the sk structure.
908 */
909
910 /* Find the Key structure for an address. */
911 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
912 const union tcp_md5_addr *addr,
913 int family)
914 {
915 const struct tcp_sock *tp = tcp_sk(sk);
916 struct tcp_md5sig_key *key;
917 const struct tcp_md5sig_info *md5sig;
918 __be32 mask;
919 struct tcp_md5sig_key *best_match = NULL;
920 bool match;
921
922 /* caller either holds rcu_read_lock() or socket lock */
923 md5sig = rcu_dereference_check(tp->md5sig_info,
924 lockdep_sock_is_held(sk));
925 if (!md5sig)
926 return NULL;
927
928 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
929 if (key->family != family)
930 continue;
931
932 if (family == AF_INET) {
933 mask = inet_make_mask(key->prefixlen);
934 match = (key->addr.a4.s_addr & mask) ==
935 (addr->a4.s_addr & mask);
936 #if IS_ENABLED(CONFIG_IPV6)
937 } else if (family == AF_INET6) {
938 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
939 key->prefixlen);
940 #endif
941 } else {
942 match = false;
943 }
944
945 if (match && (!best_match ||
946 key->prefixlen > best_match->prefixlen))
947 best_match = key;
948 }
949 return best_match;
950 }
951 EXPORT_SYMBOL(tcp_md5_do_lookup);
952
953 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
954 const union tcp_md5_addr *addr,
955 int family, u8 prefixlen)
956 {
957 const struct tcp_sock *tp = tcp_sk(sk);
958 struct tcp_md5sig_key *key;
959 unsigned int size = sizeof(struct in_addr);
960 const struct tcp_md5sig_info *md5sig;
961
962 /* caller either holds rcu_read_lock() or socket lock */
963 md5sig = rcu_dereference_check(tp->md5sig_info,
964 lockdep_sock_is_held(sk));
965 if (!md5sig)
966 return NULL;
967 #if IS_ENABLED(CONFIG_IPV6)
968 if (family == AF_INET6)
969 size = sizeof(struct in6_addr);
970 #endif
971 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
972 if (key->family != family)
973 continue;
974 if (!memcmp(&key->addr, addr, size) &&
975 key->prefixlen == prefixlen)
976 return key;
977 }
978 return NULL;
979 }
980
981 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
982 const struct sock *addr_sk)
983 {
984 const union tcp_md5_addr *addr;
985
986 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
987 return tcp_md5_do_lookup(sk, addr, AF_INET);
988 }
989 EXPORT_SYMBOL(tcp_v4_md5_lookup);
990
991 /* This can be called on a newly created socket, from other files */
992 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
993 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
994 gfp_t gfp)
995 {
996 /* Add Key to the list */
997 struct tcp_md5sig_key *key;
998 struct tcp_sock *tp = tcp_sk(sk);
999 struct tcp_md5sig_info *md5sig;
1000
1001 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1002 if (key) {
1003 /* Pre-existing entry - just update that one. */
1004 memcpy(key->key, newkey, newkeylen);
1005 key->keylen = newkeylen;
1006 return 0;
1007 }
1008
1009 md5sig = rcu_dereference_protected(tp->md5sig_info,
1010 lockdep_sock_is_held(sk));
1011 if (!md5sig) {
1012 md5sig = kmalloc(sizeof(*md5sig), gfp);
1013 if (!md5sig)
1014 return -ENOMEM;
1015
1016 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1017 INIT_HLIST_HEAD(&md5sig->head);
1018 rcu_assign_pointer(tp->md5sig_info, md5sig);
1019 }
1020
1021 key = sock_kmalloc(sk, sizeof(*key), gfp);
1022 if (!key)
1023 return -ENOMEM;
1024 if (!tcp_alloc_md5sig_pool()) {
1025 sock_kfree_s(sk, key, sizeof(*key));
1026 return -ENOMEM;
1027 }
1028
1029 memcpy(key->key, newkey, newkeylen);
1030 key->keylen = newkeylen;
1031 key->family = family;
1032 key->prefixlen = prefixlen;
1033 memcpy(&key->addr, addr,
1034 (family == AF_INET6) ? sizeof(struct in6_addr) :
1035 sizeof(struct in_addr));
1036 hlist_add_head_rcu(&key->node, &md5sig->head);
1037 return 0;
1038 }
1039 EXPORT_SYMBOL(tcp_md5_do_add);
1040
1041 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1042 u8 prefixlen)
1043 {
1044 struct tcp_md5sig_key *key;
1045
1046 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1047 if (!key)
1048 return -ENOENT;
1049 hlist_del_rcu(&key->node);
1050 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1051 kfree_rcu(key, rcu);
1052 return 0;
1053 }
1054 EXPORT_SYMBOL(tcp_md5_do_del);
1055
1056 static void tcp_clear_md5_list(struct sock *sk)
1057 {
1058 struct tcp_sock *tp = tcp_sk(sk);
1059 struct tcp_md5sig_key *key;
1060 struct hlist_node *n;
1061 struct tcp_md5sig_info *md5sig;
1062
1063 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1064
1065 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1066 hlist_del_rcu(&key->node);
1067 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1068 kfree_rcu(key, rcu);
1069 }
1070 }
1071
1072 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1073 char __user *optval, int optlen)
1074 {
1075 struct tcp_md5sig cmd;
1076 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1077 u8 prefixlen = 32;
1078
1079 if (optlen < sizeof(cmd))
1080 return -EINVAL;
1081
1082 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1083 return -EFAULT;
1084
1085 if (sin->sin_family != AF_INET)
1086 return -EINVAL;
1087
1088 if (optname == TCP_MD5SIG_EXT &&
1089 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1090 prefixlen = cmd.tcpm_prefixlen;
1091 if (prefixlen > 32)
1092 return -EINVAL;
1093 }
1094
1095 if (!cmd.tcpm_keylen)
1096 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1097 AF_INET, prefixlen);
1098
1099 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1100 return -EINVAL;
1101
1102 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1103 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1104 GFP_KERNEL);
1105 }
1106
1107 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1108 __be32 daddr, __be32 saddr,
1109 const struct tcphdr *th, int nbytes)
1110 {
1111 struct tcp4_pseudohdr *bp;
1112 struct scatterlist sg;
1113 struct tcphdr *_th;
1114
1115 bp = hp->scratch;
1116 bp->saddr = saddr;
1117 bp->daddr = daddr;
1118 bp->pad = 0;
1119 bp->protocol = IPPROTO_TCP;
1120 bp->len = cpu_to_be16(nbytes);
1121
1122 _th = (struct tcphdr *)(bp + 1);
1123 memcpy(_th, th, sizeof(*th));
1124 _th->check = 0;
1125
1126 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1127 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1128 sizeof(*bp) + sizeof(*th));
1129 return crypto_ahash_update(hp->md5_req);
1130 }
1131
1132 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1133 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1134 {
1135 struct tcp_md5sig_pool *hp;
1136 struct ahash_request *req;
1137
1138 hp = tcp_get_md5sig_pool();
1139 if (!hp)
1140 goto clear_hash_noput;
1141 req = hp->md5_req;
1142
1143 if (crypto_ahash_init(req))
1144 goto clear_hash;
1145 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1146 goto clear_hash;
1147 if (tcp_md5_hash_key(hp, key))
1148 goto clear_hash;
1149 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1150 if (crypto_ahash_final(req))
1151 goto clear_hash;
1152
1153 tcp_put_md5sig_pool();
1154 return 0;
1155
1156 clear_hash:
1157 tcp_put_md5sig_pool();
1158 clear_hash_noput:
1159 memset(md5_hash, 0, 16);
1160 return 1;
1161 }
1162
1163 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1164 const struct sock *sk,
1165 const struct sk_buff *skb)
1166 {
1167 struct tcp_md5sig_pool *hp;
1168 struct ahash_request *req;
1169 const struct tcphdr *th = tcp_hdr(skb);
1170 __be32 saddr, daddr;
1171
1172 if (sk) { /* valid for establish/request sockets */
1173 saddr = sk->sk_rcv_saddr;
1174 daddr = sk->sk_daddr;
1175 } else {
1176 const struct iphdr *iph = ip_hdr(skb);
1177 saddr = iph->saddr;
1178 daddr = iph->daddr;
1179 }
1180
1181 hp = tcp_get_md5sig_pool();
1182 if (!hp)
1183 goto clear_hash_noput;
1184 req = hp->md5_req;
1185
1186 if (crypto_ahash_init(req))
1187 goto clear_hash;
1188
1189 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1190 goto clear_hash;
1191 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1192 goto clear_hash;
1193 if (tcp_md5_hash_key(hp, key))
1194 goto clear_hash;
1195 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1196 if (crypto_ahash_final(req))
1197 goto clear_hash;
1198
1199 tcp_put_md5sig_pool();
1200 return 0;
1201
1202 clear_hash:
1203 tcp_put_md5sig_pool();
1204 clear_hash_noput:
1205 memset(md5_hash, 0, 16);
1206 return 1;
1207 }
1208 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1209
1210 #endif
1211
1212 /* Called with rcu_read_lock() */
1213 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1214 const struct sk_buff *skb)
1215 {
1216 #ifdef CONFIG_TCP_MD5SIG
1217 /*
1218 * This gets called for each TCP segment that arrives
1219 * so we want to be efficient.
1220 * We have 3 drop cases:
1221 * o No MD5 hash and one expected.
1222 * o MD5 hash and we're not expecting one.
1223 * o MD5 hash and its wrong.
1224 */
1225 const __u8 *hash_location = NULL;
1226 struct tcp_md5sig_key *hash_expected;
1227 const struct iphdr *iph = ip_hdr(skb);
1228 const struct tcphdr *th = tcp_hdr(skb);
1229 int genhash;
1230 unsigned char newhash[16];
1231
1232 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1233 AF_INET);
1234 hash_location = tcp_parse_md5sig_option(th);
1235
1236 /* We've parsed the options - do we have a hash? */
1237 if (!hash_expected && !hash_location)
1238 return false;
1239
1240 if (hash_expected && !hash_location) {
1241 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1242 return true;
1243 }
1244
1245 if (!hash_expected && hash_location) {
1246 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1247 return true;
1248 }
1249
1250 /* Okay, so this is hash_expected and hash_location -
1251 * so we need to calculate the checksum.
1252 */
1253 genhash = tcp_v4_md5_hash_skb(newhash,
1254 hash_expected,
1255 NULL, skb);
1256
1257 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 &iph->saddr, ntohs(th->source),
1261 &iph->daddr, ntohs(th->dest),
1262 genhash ? " tcp_v4_calc_md5_hash failed"
1263 : "");
1264 return true;
1265 }
1266 return false;
1267 #endif
1268 return false;
1269 }
1270
1271 static void tcp_v4_init_req(struct request_sock *req,
1272 const struct sock *sk_listener,
1273 struct sk_buff *skb)
1274 {
1275 struct inet_request_sock *ireq = inet_rsk(req);
1276 struct net *net = sock_net(sk_listener);
1277
1278 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1279 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1280 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1281 }
1282
1283 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1284 struct flowi *fl,
1285 const struct request_sock *req)
1286 {
1287 return inet_csk_route_req(sk, &fl->u.ip4, req);
1288 }
1289
1290 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1291 .family = PF_INET,
1292 .obj_size = sizeof(struct tcp_request_sock),
1293 .rtx_syn_ack = tcp_rtx_synack,
1294 .send_ack = tcp_v4_reqsk_send_ack,
1295 .destructor = tcp_v4_reqsk_destructor,
1296 .send_reset = tcp_v4_send_reset,
1297 .syn_ack_timeout = tcp_syn_ack_timeout,
1298 };
1299
1300 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1301 .mss_clamp = TCP_MSS_DEFAULT,
1302 #ifdef CONFIG_TCP_MD5SIG
1303 .req_md5_lookup = tcp_v4_md5_lookup,
1304 .calc_md5_hash = tcp_v4_md5_hash_skb,
1305 #endif
1306 .init_req = tcp_v4_init_req,
1307 #ifdef CONFIG_SYN_COOKIES
1308 .cookie_init_seq = cookie_v4_init_sequence,
1309 #endif
1310 .route_req = tcp_v4_route_req,
1311 .init_seq = tcp_v4_init_seq,
1312 .init_ts_off = tcp_v4_init_ts_off,
1313 .send_synack = tcp_v4_send_synack,
1314 };
1315
1316 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1317 {
1318 /* Never answer to SYNs send to broadcast or multicast */
1319 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1320 goto drop;
1321
1322 return tcp_conn_request(&tcp_request_sock_ops,
1323 &tcp_request_sock_ipv4_ops, sk, skb);
1324
1325 drop:
1326 tcp_listendrop(sk);
1327 return 0;
1328 }
1329 EXPORT_SYMBOL(tcp_v4_conn_request);
1330
1331
1332 /*
1333 * The three way handshake has completed - we got a valid synack -
1334 * now create the new socket.
1335 */
1336 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1337 struct request_sock *req,
1338 struct dst_entry *dst,
1339 struct request_sock *req_unhash,
1340 bool *own_req)
1341 {
1342 struct inet_request_sock *ireq;
1343 struct inet_sock *newinet;
1344 struct tcp_sock *newtp;
1345 struct sock *newsk;
1346 #ifdef CONFIG_TCP_MD5SIG
1347 struct tcp_md5sig_key *key;
1348 #endif
1349 struct ip_options_rcu *inet_opt;
1350
1351 if (sk_acceptq_is_full(sk))
1352 goto exit_overflow;
1353
1354 newsk = tcp_create_openreq_child(sk, req, skb);
1355 if (!newsk)
1356 goto exit_nonewsk;
1357
1358 newsk->sk_gso_type = SKB_GSO_TCPV4;
1359 inet_sk_rx_dst_set(newsk, skb);
1360
1361 newtp = tcp_sk(newsk);
1362 newinet = inet_sk(newsk);
1363 ireq = inet_rsk(req);
1364 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1365 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1366 newsk->sk_bound_dev_if = ireq->ir_iif;
1367 newinet->inet_saddr = ireq->ir_loc_addr;
1368 inet_opt = rcu_dereference(ireq->ireq_opt);
1369 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1370 newinet->mc_index = inet_iif(skb);
1371 newinet->mc_ttl = ip_hdr(skb)->ttl;
1372 newinet->rcv_tos = ip_hdr(skb)->tos;
1373 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1374 if (inet_opt)
1375 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1376 newinet->inet_id = prandom_u32();
1377
1378 if (!dst) {
1379 dst = inet_csk_route_child_sock(sk, newsk, req);
1380 if (!dst)
1381 goto put_and_exit;
1382 } else {
1383 /* syncookie case : see end of cookie_v4_check() */
1384 }
1385 sk_setup_caps(newsk, dst);
1386
1387 tcp_ca_openreq_child(newsk, dst);
1388
1389 tcp_sync_mss(newsk, dst_mtu(dst));
1390 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1391
1392 tcp_initialize_rcv_mss(newsk);
1393
1394 #ifdef CONFIG_TCP_MD5SIG
1395 /* Copy over the MD5 key from the original socket */
1396 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1397 AF_INET);
1398 if (key) {
1399 /*
1400 * We're using one, so create a matching key
1401 * on the newsk structure. If we fail to get
1402 * memory, then we end up not copying the key
1403 * across. Shucks.
1404 */
1405 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1406 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1407 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1408 }
1409 #endif
1410
1411 if (__inet_inherit_port(sk, newsk) < 0)
1412 goto put_and_exit;
1413 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1414 if (likely(*own_req)) {
1415 tcp_move_syn(newtp, req);
1416 ireq->ireq_opt = NULL;
1417 } else {
1418 newinet->inet_opt = NULL;
1419 }
1420 return newsk;
1421
1422 exit_overflow:
1423 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1424 exit_nonewsk:
1425 dst_release(dst);
1426 exit:
1427 tcp_listendrop(sk);
1428 return NULL;
1429 put_and_exit:
1430 newinet->inet_opt = NULL;
1431 inet_csk_prepare_forced_close(newsk);
1432 tcp_done(newsk);
1433 goto exit;
1434 }
1435 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1436
1437 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1438 {
1439 #ifdef CONFIG_SYN_COOKIES
1440 const struct tcphdr *th = tcp_hdr(skb);
1441
1442 if (!th->syn)
1443 sk = cookie_v4_check(sk, skb);
1444 #endif
1445 return sk;
1446 }
1447
1448 /* The socket must have it's spinlock held when we get
1449 * here, unless it is a TCP_LISTEN socket.
1450 *
1451 * We have a potential double-lock case here, so even when
1452 * doing backlog processing we use the BH locking scheme.
1453 * This is because we cannot sleep with the original spinlock
1454 * held.
1455 */
1456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1457 {
1458 struct sock *rsk;
1459
1460 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1461 struct dst_entry *dst = sk->sk_rx_dst;
1462
1463 sock_rps_save_rxhash(sk, skb);
1464 sk_mark_napi_id(sk, skb);
1465 if (dst) {
1466 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1467 !dst->ops->check(dst, 0)) {
1468 dst_release(dst);
1469 sk->sk_rx_dst = NULL;
1470 }
1471 }
1472 tcp_rcv_established(sk, skb, tcp_hdr(skb));
1473 return 0;
1474 }
1475
1476 if (tcp_checksum_complete(skb))
1477 goto csum_err;
1478
1479 if (sk->sk_state == TCP_LISTEN) {
1480 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1481
1482 if (!nsk)
1483 goto discard;
1484 if (nsk != sk) {
1485 if (tcp_child_process(sk, nsk, skb)) {
1486 rsk = nsk;
1487 goto reset;
1488 }
1489 return 0;
1490 }
1491 } else
1492 sock_rps_save_rxhash(sk, skb);
1493
1494 if (tcp_rcv_state_process(sk, skb)) {
1495 rsk = sk;
1496 goto reset;
1497 }
1498 return 0;
1499
1500 reset:
1501 tcp_v4_send_reset(rsk, skb);
1502 discard:
1503 kfree_skb(skb);
1504 /* Be careful here. If this function gets more complicated and
1505 * gcc suffers from register pressure on the x86, sk (in %ebx)
1506 * might be destroyed here. This current version compiles correctly,
1507 * but you have been warned.
1508 */
1509 return 0;
1510
1511 csum_err:
1512 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1513 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1514 goto discard;
1515 }
1516 EXPORT_SYMBOL(tcp_v4_do_rcv);
1517
1518 int tcp_v4_early_demux(struct sk_buff *skb)
1519 {
1520 const struct iphdr *iph;
1521 const struct tcphdr *th;
1522 struct sock *sk;
1523
1524 if (skb->pkt_type != PACKET_HOST)
1525 return 0;
1526
1527 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1528 return 0;
1529
1530 iph = ip_hdr(skb);
1531 th = tcp_hdr(skb);
1532
1533 if (th->doff < sizeof(struct tcphdr) / 4)
1534 return 0;
1535
1536 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1537 iph->saddr, th->source,
1538 iph->daddr, ntohs(th->dest),
1539 skb->skb_iif, inet_sdif(skb));
1540 if (sk) {
1541 skb->sk = sk;
1542 skb->destructor = sock_edemux;
1543 if (sk_fullsock(sk)) {
1544 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1545
1546 if (dst)
1547 dst = dst_check(dst, 0);
1548 if (dst &&
1549 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1550 skb_dst_set_noref(skb, dst);
1551 }
1552 }
1553 return 0;
1554 }
1555
1556 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1557 {
1558 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1559
1560 /* Only socket owner can try to collapse/prune rx queues
1561 * to reduce memory overhead, so add a little headroom here.
1562 * Few sockets backlog are possibly concurrently non empty.
1563 */
1564 limit += 64*1024;
1565
1566 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1567 * we can fix skb->truesize to its real value to avoid future drops.
1568 * This is valid because skb is not yet charged to the socket.
1569 * It has been noticed pure SACK packets were sometimes dropped
1570 * (if cooked by drivers without copybreak feature).
1571 */
1572 skb_condense(skb);
1573
1574 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1575 bh_unlock_sock(sk);
1576 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1577 return true;
1578 }
1579 return false;
1580 }
1581 EXPORT_SYMBOL(tcp_add_backlog);
1582
1583 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1584 {
1585 struct tcphdr *th = (struct tcphdr *)skb->data;
1586
1587 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1588 }
1589 EXPORT_SYMBOL(tcp_filter);
1590
1591 static void tcp_v4_restore_cb(struct sk_buff *skb)
1592 {
1593 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1594 sizeof(struct inet_skb_parm));
1595 }
1596
1597 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1598 const struct tcphdr *th)
1599 {
1600 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1601 * barrier() makes sure compiler wont play fool^Waliasing games.
1602 */
1603 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1604 sizeof(struct inet_skb_parm));
1605 barrier();
1606
1607 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1608 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1609 skb->len - th->doff * 4);
1610 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1611 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1612 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1613 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1614 TCP_SKB_CB(skb)->sacked = 0;
1615 TCP_SKB_CB(skb)->has_rxtstamp =
1616 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1617 }
1618
1619 /*
1620 * From tcp_input.c
1621 */
1622
1623 int tcp_v4_rcv(struct sk_buff *skb)
1624 {
1625 struct net *net = dev_net(skb->dev);
1626 int sdif = inet_sdif(skb);
1627 const struct iphdr *iph;
1628 const struct tcphdr *th;
1629 bool refcounted;
1630 struct sock *sk;
1631 int ret;
1632
1633 if (skb->pkt_type != PACKET_HOST)
1634 goto discard_it;
1635
1636 /* Count it even if it's bad */
1637 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1638
1639 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1640 goto discard_it;
1641
1642 th = (const struct tcphdr *)skb->data;
1643
1644 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1645 goto bad_packet;
1646 if (!pskb_may_pull(skb, th->doff * 4))
1647 goto discard_it;
1648
1649 /* An explanation is required here, I think.
1650 * Packet length and doff are validated by header prediction,
1651 * provided case of th->doff==0 is eliminated.
1652 * So, we defer the checks. */
1653
1654 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1655 goto csum_error;
1656
1657 th = (const struct tcphdr *)skb->data;
1658 iph = ip_hdr(skb);
1659 lookup:
1660 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1661 th->dest, sdif, &refcounted);
1662 if (!sk)
1663 goto no_tcp_socket;
1664
1665 process:
1666 if (sk->sk_state == TCP_TIME_WAIT)
1667 goto do_time_wait;
1668
1669 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1670 struct request_sock *req = inet_reqsk(sk);
1671 struct sock *nsk;
1672
1673 sk = req->rsk_listener;
1674 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1675 sk_drops_add(sk, skb);
1676 reqsk_put(req);
1677 goto discard_it;
1678 }
1679 if (tcp_checksum_complete(skb)) {
1680 reqsk_put(req);
1681 goto csum_error;
1682 }
1683 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1684 inet_csk_reqsk_queue_drop_and_put(sk, req);
1685 goto lookup;
1686 }
1687 /* We own a reference on the listener, increase it again
1688 * as we might lose it too soon.
1689 */
1690 sock_hold(sk);
1691 refcounted = true;
1692 nsk = NULL;
1693 if (!tcp_filter(sk, skb)) {
1694 th = (const struct tcphdr *)skb->data;
1695 iph = ip_hdr(skb);
1696 tcp_v4_fill_cb(skb, iph, th);
1697 nsk = tcp_check_req(sk, skb, req, false);
1698 }
1699 if (!nsk) {
1700 reqsk_put(req);
1701 goto discard_and_relse;
1702 }
1703 if (nsk == sk) {
1704 reqsk_put(req);
1705 tcp_v4_restore_cb(skb);
1706 } else if (tcp_child_process(sk, nsk, skb)) {
1707 tcp_v4_send_reset(nsk, skb);
1708 goto discard_and_relse;
1709 } else {
1710 sock_put(sk);
1711 return 0;
1712 }
1713 }
1714 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1715 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1716 goto discard_and_relse;
1717 }
1718
1719 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1720 goto discard_and_relse;
1721
1722 if (tcp_v4_inbound_md5_hash(sk, skb))
1723 goto discard_and_relse;
1724
1725 nf_reset(skb);
1726
1727 if (tcp_filter(sk, skb))
1728 goto discard_and_relse;
1729 th = (const struct tcphdr *)skb->data;
1730 iph = ip_hdr(skb);
1731 tcp_v4_fill_cb(skb, iph, th);
1732
1733 skb->dev = NULL;
1734
1735 if (sk->sk_state == TCP_LISTEN) {
1736 ret = tcp_v4_do_rcv(sk, skb);
1737 goto put_and_return;
1738 }
1739
1740 sk_incoming_cpu_update(sk);
1741
1742 bh_lock_sock_nested(sk);
1743 tcp_segs_in(tcp_sk(sk), skb);
1744 ret = 0;
1745 if (!sock_owned_by_user(sk)) {
1746 ret = tcp_v4_do_rcv(sk, skb);
1747 } else if (tcp_add_backlog(sk, skb)) {
1748 goto discard_and_relse;
1749 }
1750 bh_unlock_sock(sk);
1751
1752 put_and_return:
1753 if (refcounted)
1754 sock_put(sk);
1755
1756 return ret;
1757
1758 no_tcp_socket:
1759 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1760 goto discard_it;
1761
1762 tcp_v4_fill_cb(skb, iph, th);
1763
1764 if (tcp_checksum_complete(skb)) {
1765 csum_error:
1766 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1767 bad_packet:
1768 __TCP_INC_STATS(net, TCP_MIB_INERRS);
1769 } else {
1770 tcp_v4_send_reset(NULL, skb);
1771 }
1772
1773 discard_it:
1774 /* Discard frame. */
1775 kfree_skb(skb);
1776 return 0;
1777
1778 discard_and_relse:
1779 sk_drops_add(sk, skb);
1780 if (refcounted)
1781 sock_put(sk);
1782 goto discard_it;
1783
1784 do_time_wait:
1785 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1786 inet_twsk_put(inet_twsk(sk));
1787 goto discard_it;
1788 }
1789
1790 tcp_v4_fill_cb(skb, iph, th);
1791
1792 if (tcp_checksum_complete(skb)) {
1793 inet_twsk_put(inet_twsk(sk));
1794 goto csum_error;
1795 }
1796 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1797 case TCP_TW_SYN: {
1798 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1799 &tcp_hashinfo, skb,
1800 __tcp_hdrlen(th),
1801 iph->saddr, th->source,
1802 iph->daddr, th->dest,
1803 inet_iif(skb),
1804 sdif);
1805 if (sk2) {
1806 inet_twsk_deschedule_put(inet_twsk(sk));
1807 sk = sk2;
1808 tcp_v4_restore_cb(skb);
1809 refcounted = false;
1810 goto process;
1811 }
1812 }
1813 /* to ACK */
1814 /* fall through */
1815 case TCP_TW_ACK:
1816 tcp_v4_timewait_ack(sk, skb);
1817 break;
1818 case TCP_TW_RST:
1819 tcp_v4_send_reset(sk, skb);
1820 inet_twsk_deschedule_put(inet_twsk(sk));
1821 goto discard_it;
1822 case TCP_TW_SUCCESS:;
1823 }
1824 goto discard_it;
1825 }
1826
1827 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1828 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1829 .twsk_unique = tcp_twsk_unique,
1830 .twsk_destructor= tcp_twsk_destructor,
1831 };
1832
1833 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1834 {
1835 struct dst_entry *dst = skb_dst(skb);
1836
1837 if (dst && dst_hold_safe(dst)) {
1838 sk->sk_rx_dst = dst;
1839 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1840 }
1841 }
1842 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1843
1844 const struct inet_connection_sock_af_ops ipv4_specific = {
1845 .queue_xmit = ip_queue_xmit,
1846 .send_check = tcp_v4_send_check,
1847 .rebuild_header = inet_sk_rebuild_header,
1848 .sk_rx_dst_set = inet_sk_rx_dst_set,
1849 .conn_request = tcp_v4_conn_request,
1850 .syn_recv_sock = tcp_v4_syn_recv_sock,
1851 .net_header_len = sizeof(struct iphdr),
1852 .setsockopt = ip_setsockopt,
1853 .getsockopt = ip_getsockopt,
1854 .addr2sockaddr = inet_csk_addr2sockaddr,
1855 .sockaddr_len = sizeof(struct sockaddr_in),
1856 #ifdef CONFIG_COMPAT
1857 .compat_setsockopt = compat_ip_setsockopt,
1858 .compat_getsockopt = compat_ip_getsockopt,
1859 #endif
1860 .mtu_reduced = tcp_v4_mtu_reduced,
1861 };
1862 EXPORT_SYMBOL(ipv4_specific);
1863
1864 #ifdef CONFIG_TCP_MD5SIG
1865 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1866 .md5_lookup = tcp_v4_md5_lookup,
1867 .calc_md5_hash = tcp_v4_md5_hash_skb,
1868 .md5_parse = tcp_v4_parse_md5_keys,
1869 };
1870 #endif
1871
1872 /* NOTE: A lot of things set to zero explicitly by call to
1873 * sk_alloc() so need not be done here.
1874 */
1875 static int tcp_v4_init_sock(struct sock *sk)
1876 {
1877 struct inet_connection_sock *icsk = inet_csk(sk);
1878
1879 tcp_init_sock(sk);
1880
1881 icsk->icsk_af_ops = &ipv4_specific;
1882
1883 #ifdef CONFIG_TCP_MD5SIG
1884 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1885 #endif
1886
1887 return 0;
1888 }
1889
1890 void tcp_v4_destroy_sock(struct sock *sk)
1891 {
1892 struct tcp_sock *tp = tcp_sk(sk);
1893
1894 trace_tcp_destroy_sock(sk);
1895
1896 tcp_clear_xmit_timers(sk);
1897
1898 tcp_cleanup_congestion_control(sk);
1899
1900 tcp_cleanup_ulp(sk);
1901
1902 /* Cleanup up the write buffer. */
1903 tcp_write_queue_purge(sk);
1904
1905 /* Check if we want to disable active TFO */
1906 tcp_fastopen_active_disable_ofo_check(sk);
1907
1908 /* Cleans up our, hopefully empty, out_of_order_queue. */
1909 skb_rbtree_purge(&tp->out_of_order_queue);
1910
1911 #ifdef CONFIG_TCP_MD5SIG
1912 /* Clean up the MD5 key list, if any */
1913 if (tp->md5sig_info) {
1914 tcp_clear_md5_list(sk);
1915 kfree_rcu(tp->md5sig_info, rcu);
1916 tp->md5sig_info = NULL;
1917 }
1918 #endif
1919
1920 /* Clean up a referenced TCP bind bucket. */
1921 if (inet_csk(sk)->icsk_bind_hash)
1922 inet_put_port(sk);
1923
1924 BUG_ON(tp->fastopen_rsk);
1925
1926 /* If socket is aborted during connect operation */
1927 tcp_free_fastopen_req(tp);
1928 tcp_fastopen_destroy_cipher(sk);
1929 tcp_saved_syn_free(tp);
1930
1931 sk_sockets_allocated_dec(sk);
1932 }
1933 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1934
1935 #ifdef CONFIG_PROC_FS
1936 /* Proc filesystem TCP sock list dumping. */
1937
1938 /*
1939 * Get next listener socket follow cur. If cur is NULL, get first socket
1940 * starting from bucket given in st->bucket; when st->bucket is zero the
1941 * very first socket in the hash table is returned.
1942 */
1943 static void *listening_get_next(struct seq_file *seq, void *cur)
1944 {
1945 struct tcp_iter_state *st = seq->private;
1946 struct net *net = seq_file_net(seq);
1947 struct inet_listen_hashbucket *ilb;
1948 struct sock *sk = cur;
1949
1950 if (!sk) {
1951 get_head:
1952 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1953 spin_lock(&ilb->lock);
1954 sk = sk_head(&ilb->head);
1955 st->offset = 0;
1956 goto get_sk;
1957 }
1958 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1959 ++st->num;
1960 ++st->offset;
1961
1962 sk = sk_next(sk);
1963 get_sk:
1964 sk_for_each_from(sk) {
1965 if (!net_eq(sock_net(sk), net))
1966 continue;
1967 if (sk->sk_family == st->family)
1968 return sk;
1969 }
1970 spin_unlock(&ilb->lock);
1971 st->offset = 0;
1972 if (++st->bucket < INET_LHTABLE_SIZE)
1973 goto get_head;
1974 return NULL;
1975 }
1976
1977 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1978 {
1979 struct tcp_iter_state *st = seq->private;
1980 void *rc;
1981
1982 st->bucket = 0;
1983 st->offset = 0;
1984 rc = listening_get_next(seq, NULL);
1985
1986 while (rc && *pos) {
1987 rc = listening_get_next(seq, rc);
1988 --*pos;
1989 }
1990 return rc;
1991 }
1992
1993 static inline bool empty_bucket(const struct tcp_iter_state *st)
1994 {
1995 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1996 }
1997
1998 /*
1999 * Get first established socket starting from bucket given in st->bucket.
2000 * If st->bucket is zero, the very first socket in the hash is returned.
2001 */
2002 static void *established_get_first(struct seq_file *seq)
2003 {
2004 struct tcp_iter_state *st = seq->private;
2005 struct net *net = seq_file_net(seq);
2006 void *rc = NULL;
2007
2008 st->offset = 0;
2009 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2010 struct sock *sk;
2011 struct hlist_nulls_node *node;
2012 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2013
2014 /* Lockless fast path for the common case of empty buckets */
2015 if (empty_bucket(st))
2016 continue;
2017
2018 spin_lock_bh(lock);
2019 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2020 if (sk->sk_family != st->family ||
2021 !net_eq(sock_net(sk), net)) {
2022 continue;
2023 }
2024 rc = sk;
2025 goto out;
2026 }
2027 spin_unlock_bh(lock);
2028 }
2029 out:
2030 return rc;
2031 }
2032
2033 static void *established_get_next(struct seq_file *seq, void *cur)
2034 {
2035 struct sock *sk = cur;
2036 struct hlist_nulls_node *node;
2037 struct tcp_iter_state *st = seq->private;
2038 struct net *net = seq_file_net(seq);
2039
2040 ++st->num;
2041 ++st->offset;
2042
2043 sk = sk_nulls_next(sk);
2044
2045 sk_nulls_for_each_from(sk, node) {
2046 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2047 return sk;
2048 }
2049
2050 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2051 ++st->bucket;
2052 return established_get_first(seq);
2053 }
2054
2055 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2056 {
2057 struct tcp_iter_state *st = seq->private;
2058 void *rc;
2059
2060 st->bucket = 0;
2061 rc = established_get_first(seq);
2062
2063 while (rc && pos) {
2064 rc = established_get_next(seq, rc);
2065 --pos;
2066 }
2067 return rc;
2068 }
2069
2070 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2071 {
2072 void *rc;
2073 struct tcp_iter_state *st = seq->private;
2074
2075 st->state = TCP_SEQ_STATE_LISTENING;
2076 rc = listening_get_idx(seq, &pos);
2077
2078 if (!rc) {
2079 st->state = TCP_SEQ_STATE_ESTABLISHED;
2080 rc = established_get_idx(seq, pos);
2081 }
2082
2083 return rc;
2084 }
2085
2086 static void *tcp_seek_last_pos(struct seq_file *seq)
2087 {
2088 struct tcp_iter_state *st = seq->private;
2089 int offset = st->offset;
2090 int orig_num = st->num;
2091 void *rc = NULL;
2092
2093 switch (st->state) {
2094 case TCP_SEQ_STATE_LISTENING:
2095 if (st->bucket >= INET_LHTABLE_SIZE)
2096 break;
2097 st->state = TCP_SEQ_STATE_LISTENING;
2098 rc = listening_get_next(seq, NULL);
2099 while (offset-- && rc)
2100 rc = listening_get_next(seq, rc);
2101 if (rc)
2102 break;
2103 st->bucket = 0;
2104 st->state = TCP_SEQ_STATE_ESTABLISHED;
2105 /* Fallthrough */
2106 case TCP_SEQ_STATE_ESTABLISHED:
2107 if (st->bucket > tcp_hashinfo.ehash_mask)
2108 break;
2109 rc = established_get_first(seq);
2110 while (offset-- && rc)
2111 rc = established_get_next(seq, rc);
2112 }
2113
2114 st->num = orig_num;
2115
2116 return rc;
2117 }
2118
2119 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2120 {
2121 struct tcp_iter_state *st = seq->private;
2122 void *rc;
2123
2124 if (*pos && *pos == st->last_pos) {
2125 rc = tcp_seek_last_pos(seq);
2126 if (rc)
2127 goto out;
2128 }
2129
2130 st->state = TCP_SEQ_STATE_LISTENING;
2131 st->num = 0;
2132 st->bucket = 0;
2133 st->offset = 0;
2134 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2135
2136 out:
2137 st->last_pos = *pos;
2138 return rc;
2139 }
2140
2141 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2142 {
2143 struct tcp_iter_state *st = seq->private;
2144 void *rc = NULL;
2145
2146 if (v == SEQ_START_TOKEN) {
2147 rc = tcp_get_idx(seq, 0);
2148 goto out;
2149 }
2150
2151 switch (st->state) {
2152 case TCP_SEQ_STATE_LISTENING:
2153 rc = listening_get_next(seq, v);
2154 if (!rc) {
2155 st->state = TCP_SEQ_STATE_ESTABLISHED;
2156 st->bucket = 0;
2157 st->offset = 0;
2158 rc = established_get_first(seq);
2159 }
2160 break;
2161 case TCP_SEQ_STATE_ESTABLISHED:
2162 rc = established_get_next(seq, v);
2163 break;
2164 }
2165 out:
2166 ++*pos;
2167 st->last_pos = *pos;
2168 return rc;
2169 }
2170
2171 static void tcp_seq_stop(struct seq_file *seq, void *v)
2172 {
2173 struct tcp_iter_state *st = seq->private;
2174
2175 switch (st->state) {
2176 case TCP_SEQ_STATE_LISTENING:
2177 if (v != SEQ_START_TOKEN)
2178 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2179 break;
2180 case TCP_SEQ_STATE_ESTABLISHED:
2181 if (v)
2182 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2183 break;
2184 }
2185 }
2186
2187 int tcp_seq_open(struct inode *inode, struct file *file)
2188 {
2189 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2190 struct tcp_iter_state *s;
2191 int err;
2192
2193 err = seq_open_net(inode, file, &afinfo->seq_ops,
2194 sizeof(struct tcp_iter_state));
2195 if (err < 0)
2196 return err;
2197
2198 s = ((struct seq_file *)file->private_data)->private;
2199 s->family = afinfo->family;
2200 s->last_pos = 0;
2201 return 0;
2202 }
2203 EXPORT_SYMBOL(tcp_seq_open);
2204
2205 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2206 {
2207 int rc = 0;
2208 struct proc_dir_entry *p;
2209
2210 afinfo->seq_ops.start = tcp_seq_start;
2211 afinfo->seq_ops.next = tcp_seq_next;
2212 afinfo->seq_ops.stop = tcp_seq_stop;
2213
2214 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2215 afinfo->seq_fops, afinfo);
2216 if (!p)
2217 rc = -ENOMEM;
2218 return rc;
2219 }
2220 EXPORT_SYMBOL(tcp_proc_register);
2221
2222 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2223 {
2224 remove_proc_entry(afinfo->name, net->proc_net);
2225 }
2226 EXPORT_SYMBOL(tcp_proc_unregister);
2227
2228 static void get_openreq4(const struct request_sock *req,
2229 struct seq_file *f, int i)
2230 {
2231 const struct inet_request_sock *ireq = inet_rsk(req);
2232 long delta = req->rsk_timer.expires - jiffies;
2233
2234 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2235 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2236 i,
2237 ireq->ir_loc_addr,
2238 ireq->ir_num,
2239 ireq->ir_rmt_addr,
2240 ntohs(ireq->ir_rmt_port),
2241 TCP_SYN_RECV,
2242 0, 0, /* could print option size, but that is af dependent. */
2243 1, /* timers active (only the expire timer) */
2244 jiffies_delta_to_clock_t(delta),
2245 req->num_timeout,
2246 from_kuid_munged(seq_user_ns(f),
2247 sock_i_uid(req->rsk_listener)),
2248 0, /* non standard timer */
2249 0, /* open_requests have no inode */
2250 0,
2251 req);
2252 }
2253
2254 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2255 {
2256 int timer_active;
2257 unsigned long timer_expires;
2258 const struct tcp_sock *tp = tcp_sk(sk);
2259 const struct inet_connection_sock *icsk = inet_csk(sk);
2260 const struct inet_sock *inet = inet_sk(sk);
2261 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2262 __be32 dest = inet->inet_daddr;
2263 __be32 src = inet->inet_rcv_saddr;
2264 __u16 destp = ntohs(inet->inet_dport);
2265 __u16 srcp = ntohs(inet->inet_sport);
2266 int rx_queue;
2267 int state;
2268
2269 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2270 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2271 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2272 timer_active = 1;
2273 timer_expires = icsk->icsk_timeout;
2274 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2275 timer_active = 4;
2276 timer_expires = icsk->icsk_timeout;
2277 } else if (timer_pending(&sk->sk_timer)) {
2278 timer_active = 2;
2279 timer_expires = sk->sk_timer.expires;
2280 } else {
2281 timer_active = 0;
2282 timer_expires = jiffies;
2283 }
2284
2285 state = sk_state_load(sk);
2286 if (state == TCP_LISTEN)
2287 rx_queue = sk->sk_ack_backlog;
2288 else
2289 /* Because we don't lock the socket,
2290 * we might find a transient negative value.
2291 */
2292 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2293
2294 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2295 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2296 i, src, srcp, dest, destp, state,
2297 tp->write_seq - tp->snd_una,
2298 rx_queue,
2299 timer_active,
2300 jiffies_delta_to_clock_t(timer_expires - jiffies),
2301 icsk->icsk_retransmits,
2302 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2303 icsk->icsk_probes_out,
2304 sock_i_ino(sk),
2305 refcount_read(&sk->sk_refcnt), sk,
2306 jiffies_to_clock_t(icsk->icsk_rto),
2307 jiffies_to_clock_t(icsk->icsk_ack.ato),
2308 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2309 tp->snd_cwnd,
2310 state == TCP_LISTEN ?
2311 fastopenq->max_qlen :
2312 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2313 }
2314
2315 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2316 struct seq_file *f, int i)
2317 {
2318 long delta = tw->tw_timer.expires - jiffies;
2319 __be32 dest, src;
2320 __u16 destp, srcp;
2321
2322 dest = tw->tw_daddr;
2323 src = tw->tw_rcv_saddr;
2324 destp = ntohs(tw->tw_dport);
2325 srcp = ntohs(tw->tw_sport);
2326
2327 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2328 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2329 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2330 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2331 refcount_read(&tw->tw_refcnt), tw);
2332 }
2333
2334 #define TMPSZ 150
2335
2336 static int tcp4_seq_show(struct seq_file *seq, void *v)
2337 {
2338 struct tcp_iter_state *st;
2339 struct sock *sk = v;
2340
2341 seq_setwidth(seq, TMPSZ - 1);
2342 if (v == SEQ_START_TOKEN) {
2343 seq_puts(seq, " sl local_address rem_address st tx_queue "
2344 "rx_queue tr tm->when retrnsmt uid timeout "
2345 "inode");
2346 goto out;
2347 }
2348 st = seq->private;
2349
2350 if (sk->sk_state == TCP_TIME_WAIT)
2351 get_timewait4_sock(v, seq, st->num);
2352 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2353 get_openreq4(v, seq, st->num);
2354 else
2355 get_tcp4_sock(v, seq, st->num);
2356 out:
2357 seq_pad(seq, '\n');
2358 return 0;
2359 }
2360
2361 static const struct file_operations tcp_afinfo_seq_fops = {
2362 .owner = THIS_MODULE,
2363 .open = tcp_seq_open,
2364 .read = seq_read,
2365 .llseek = seq_lseek,
2366 .release = seq_release_net
2367 };
2368
2369 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2370 .name = "tcp",
2371 .family = AF_INET,
2372 .seq_fops = &tcp_afinfo_seq_fops,
2373 .seq_ops = {
2374 .show = tcp4_seq_show,
2375 },
2376 };
2377
2378 static int __net_init tcp4_proc_init_net(struct net *net)
2379 {
2380 return tcp_proc_register(net, &tcp4_seq_afinfo);
2381 }
2382
2383 static void __net_exit tcp4_proc_exit_net(struct net *net)
2384 {
2385 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2386 }
2387
2388 static struct pernet_operations tcp4_net_ops = {
2389 .init = tcp4_proc_init_net,
2390 .exit = tcp4_proc_exit_net,
2391 };
2392
2393 int __init tcp4_proc_init(void)
2394 {
2395 return register_pernet_subsys(&tcp4_net_ops);
2396 }
2397
2398 void tcp4_proc_exit(void)
2399 {
2400 unregister_pernet_subsys(&tcp4_net_ops);
2401 }
2402 #endif /* CONFIG_PROC_FS */
2403
2404 struct proto tcp_prot = {
2405 .name = "TCP",
2406 .owner = THIS_MODULE,
2407 .close = tcp_close,
2408 .connect = tcp_v4_connect,
2409 .disconnect = tcp_disconnect,
2410 .accept = inet_csk_accept,
2411 .ioctl = tcp_ioctl,
2412 .init = tcp_v4_init_sock,
2413 .destroy = tcp_v4_destroy_sock,
2414 .shutdown = tcp_shutdown,
2415 .setsockopt = tcp_setsockopt,
2416 .getsockopt = tcp_getsockopt,
2417 .keepalive = tcp_set_keepalive,
2418 .recvmsg = tcp_recvmsg,
2419 .sendmsg = tcp_sendmsg,
2420 .sendpage = tcp_sendpage,
2421 .backlog_rcv = tcp_v4_do_rcv,
2422 .release_cb = tcp_release_cb,
2423 .hash = inet_hash,
2424 .unhash = inet_unhash,
2425 .get_port = inet_csk_get_port,
2426 .enter_memory_pressure = tcp_enter_memory_pressure,
2427 .leave_memory_pressure = tcp_leave_memory_pressure,
2428 .stream_memory_free = tcp_stream_memory_free,
2429 .sockets_allocated = &tcp_sockets_allocated,
2430 .orphan_count = &tcp_orphan_count,
2431 .memory_allocated = &tcp_memory_allocated,
2432 .memory_pressure = &tcp_memory_pressure,
2433 .sysctl_mem = sysctl_tcp_mem,
2434 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2435 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2436 .max_header = MAX_TCP_HEADER,
2437 .obj_size = sizeof(struct tcp_sock),
2438 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2439 .twsk_prot = &tcp_timewait_sock_ops,
2440 .rsk_prot = &tcp_request_sock_ops,
2441 .h.hashinfo = &tcp_hashinfo,
2442 .no_autobind = true,
2443 #ifdef CONFIG_COMPAT
2444 .compat_setsockopt = compat_tcp_setsockopt,
2445 .compat_getsockopt = compat_tcp_getsockopt,
2446 #endif
2447 .diag_destroy = tcp_abort,
2448 };
2449 EXPORT_SYMBOL(tcp_prot);
2450
2451 static void __net_exit tcp_sk_exit(struct net *net)
2452 {
2453 int cpu;
2454
2455 if (net->ipv4.tcp_congestion_control)
2456 module_put(net->ipv4.tcp_congestion_control->owner);
2457
2458 for_each_possible_cpu(cpu)
2459 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2460 free_percpu(net->ipv4.tcp_sk);
2461 }
2462
2463 static int __net_init tcp_sk_init(struct net *net)
2464 {
2465 int res, cpu, cnt;
2466
2467 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2468 if (!net->ipv4.tcp_sk)
2469 return -ENOMEM;
2470
2471 for_each_possible_cpu(cpu) {
2472 struct sock *sk;
2473
2474 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2475 IPPROTO_TCP, net);
2476 if (res)
2477 goto fail;
2478 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2479
2480 /* Please enforce IP_DF and IPID==0 for RST and
2481 * ACK sent in SYN-RECV and TIME-WAIT state.
2482 */
2483 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2484
2485 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2486 }
2487
2488 net->ipv4.sysctl_tcp_ecn = 2;
2489 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2490
2491 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2492 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2493 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2494 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2495
2496 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2497 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2498 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2499
2500 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2501 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2502 net->ipv4.sysctl_tcp_syncookies = 1;
2503 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2504 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2505 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2506 net->ipv4.sysctl_tcp_orphan_retries = 0;
2507 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2508 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2509 net->ipv4.sysctl_tcp_tw_reuse = 0;
2510
2511 cnt = tcp_hashinfo.ehash_mask + 1;
2512 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2513 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2514
2515 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2516 net->ipv4.sysctl_tcp_sack = 1;
2517 net->ipv4.sysctl_tcp_window_scaling = 1;
2518 net->ipv4.sysctl_tcp_timestamps = 1;
2519 net->ipv4.sysctl_tcp_early_retrans = 3;
2520 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2521 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2522 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2523 net->ipv4.sysctl_tcp_max_reordering = 300;
2524 net->ipv4.sysctl_tcp_dsack = 1;
2525 net->ipv4.sysctl_tcp_app_win = 31;
2526 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2527 net->ipv4.sysctl_tcp_frto = 2;
2528 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2529 /* This limits the percentage of the congestion window which we
2530 * will allow a single TSO frame to consume. Building TSO frames
2531 * which are too large can cause TCP streams to be bursty.
2532 */
2533 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2534 /* Default TSQ limit of four TSO segments */
2535 net->ipv4.sysctl_tcp_limit_output_bytes = 262144;
2536 /* rfc5961 challenge ack rate limiting */
2537 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2538 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2539 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2540 net->ipv4.sysctl_tcp_autocorking = 1;
2541 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2542 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2543 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2544 if (net != &init_net) {
2545 memcpy(net->ipv4.sysctl_tcp_rmem,
2546 init_net.ipv4.sysctl_tcp_rmem,
2547 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2548 memcpy(net->ipv4.sysctl_tcp_wmem,
2549 init_net.ipv4.sysctl_tcp_wmem,
2550 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2551 }
2552 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2553 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2554 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2555 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2556
2557 /* Reno is always built in */
2558 if (!net_eq(net, &init_net) &&
2559 try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2560 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2561 else
2562 net->ipv4.tcp_congestion_control = &tcp_reno;
2563
2564 return 0;
2565 fail:
2566 tcp_sk_exit(net);
2567
2568 return res;
2569 }
2570
2571 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2572 {
2573 struct net *net;
2574
2575 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2576
2577 list_for_each_entry(net, net_exit_list, exit_list)
2578 tcp_fastopen_ctx_destroy(net);
2579 }
2580
2581 static struct pernet_operations __net_initdata tcp_sk_ops = {
2582 .init = tcp_sk_init,
2583 .exit = tcp_sk_exit,
2584 .exit_batch = tcp_sk_exit_batch,
2585 };
2586
2587 void __init tcp_v4_init(void)
2588 {
2589 if (register_pernet_subsys(&tcp_sk_ops))
2590 panic("Failed to create the TCP control socket.\n");
2591 }