]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_ipv4.c
833e8d96a63618ada21e9dc1dc387cdbcee6a338
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214 /*
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
219 */
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
225 }
226 }
227 }
228
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
231
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
242 */
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
247
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
254 }
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
258
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
271
272 rt = NULL;
273 if (err)
274 goto failure;
275
276 return 0;
277
278 failure:
279 /*
280 * This unhashes the socket and releases the local port,
281 * if necessary.
282 */
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
288 }
289 EXPORT_SYMBOL(tcp_v4_connect);
290
291 /*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295 {
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
298
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
302 */
303 if (sk->sk_state == TCP_LISTEN)
304 return;
305
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
311 */
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
314
315 dst->ops->update_pmtu(dst, mtu);
316
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
319 */
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
322
323 mtu = dst_mtu(dst);
324
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
328
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
333 */
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
336 }
337
338 /*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
369
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
389 */
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
395
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
399 }
400
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
408 }
409
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
420
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583 }
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724 {
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809 {
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818 }
819
820 /*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping)
829 {
830 const struct inet_request_sock *ireq = inet_rsk(req);
831 struct flowi4 fl4;
832 int err = -1;
833 struct sk_buff * skb;
834
835 /* First, grab a route. */
836 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837 return -1;
838
839 skb = tcp_make_synack(sk, dst, req, rvp);
840
841 if (skb) {
842 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
843
844 skb_set_queue_mapping(skb, queue_mapping);
845 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846 ireq->rmt_addr,
847 ireq->opt);
848 err = net_xmit_eval(err);
849 }
850
851 return err;
852 }
853
854 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
855 struct request_values *rvp)
856 {
857 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
858 return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
859 }
860
861 /*
862 * IPv4 request_sock destructor.
863 */
864 static void tcp_v4_reqsk_destructor(struct request_sock *req)
865 {
866 kfree(inet_rsk(req)->opt);
867 }
868
869 /*
870 * Return true if a syncookie should be sent
871 */
872 bool tcp_syn_flood_action(struct sock *sk,
873 const struct sk_buff *skb,
874 const char *proto)
875 {
876 const char *msg = "Dropping request";
877 bool want_cookie = false;
878 struct listen_sock *lopt;
879
880
881
882 #ifdef CONFIG_SYN_COOKIES
883 if (sysctl_tcp_syncookies) {
884 msg = "Sending cookies";
885 want_cookie = true;
886 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
887 } else
888 #endif
889 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
890
891 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
892 if (!lopt->synflood_warned) {
893 lopt->synflood_warned = 1;
894 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
895 proto, ntohs(tcp_hdr(skb)->dest), msg);
896 }
897 return want_cookie;
898 }
899 EXPORT_SYMBOL(tcp_syn_flood_action);
900
901 /*
902 * Save and compile IPv4 options into the request_sock if needed.
903 */
904 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
905 struct sk_buff *skb)
906 {
907 const struct ip_options *opt = &(IPCB(skb)->opt);
908 struct ip_options_rcu *dopt = NULL;
909
910 if (opt && opt->optlen) {
911 int opt_size = sizeof(*dopt) + opt->optlen;
912
913 dopt = kmalloc(opt_size, GFP_ATOMIC);
914 if (dopt) {
915 if (ip_options_echo(&dopt->opt, skb)) {
916 kfree(dopt);
917 dopt = NULL;
918 }
919 }
920 }
921 return dopt;
922 }
923
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926 * RFC2385 MD5 checksumming requires a mapping of
927 * IP address->MD5 Key.
928 * We need to maintain these in the sk structure.
929 */
930
931 /* Find the Key structure for an address. */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 const union tcp_md5_addr *addr,
934 int family)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 struct tcp_md5sig_key *key;
938 struct hlist_node *pos;
939 unsigned int size = sizeof(struct in_addr);
940 struct tcp_md5sig_info *md5sig;
941
942 /* caller either holds rcu_read_lock() or socket lock */
943 md5sig = rcu_dereference_check(tp->md5sig_info,
944 sock_owned_by_user(sk) ||
945 lockdep_is_held(&sk->sk_lock.slock));
946 if (!md5sig)
947 return NULL;
948 #if IS_ENABLED(CONFIG_IPV6)
949 if (family == AF_INET6)
950 size = sizeof(struct in6_addr);
951 #endif
952 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
953 if (key->family != family)
954 continue;
955 if (!memcmp(&key->addr, addr, size))
956 return key;
957 }
958 return NULL;
959 }
960 EXPORT_SYMBOL(tcp_md5_do_lookup);
961
962 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
963 struct sock *addr_sk)
964 {
965 union tcp_md5_addr *addr;
966
967 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
968 return tcp_md5_do_lookup(sk, addr, AF_INET);
969 }
970 EXPORT_SYMBOL(tcp_v4_md5_lookup);
971
972 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
973 struct request_sock *req)
974 {
975 union tcp_md5_addr *addr;
976
977 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
978 return tcp_md5_do_lookup(sk, addr, AF_INET);
979 }
980
981 /* This can be called on a newly created socket, from other files */
982 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
983 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
984 {
985 /* Add Key to the list */
986 struct tcp_md5sig_key *key;
987 struct tcp_sock *tp = tcp_sk(sk);
988 struct tcp_md5sig_info *md5sig;
989
990 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
991 if (key) {
992 /* Pre-existing entry - just update that one. */
993 memcpy(key->key, newkey, newkeylen);
994 key->keylen = newkeylen;
995 return 0;
996 }
997
998 md5sig = rcu_dereference_protected(tp->md5sig_info,
999 sock_owned_by_user(sk));
1000 if (!md5sig) {
1001 md5sig = kmalloc(sizeof(*md5sig), gfp);
1002 if (!md5sig)
1003 return -ENOMEM;
1004
1005 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1006 INIT_HLIST_HEAD(&md5sig->head);
1007 rcu_assign_pointer(tp->md5sig_info, md5sig);
1008 }
1009
1010 key = sock_kmalloc(sk, sizeof(*key), gfp);
1011 if (!key)
1012 return -ENOMEM;
1013 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1014 sock_kfree_s(sk, key, sizeof(*key));
1015 return -ENOMEM;
1016 }
1017
1018 memcpy(key->key, newkey, newkeylen);
1019 key->keylen = newkeylen;
1020 key->family = family;
1021 memcpy(&key->addr, addr,
1022 (family == AF_INET6) ? sizeof(struct in6_addr) :
1023 sizeof(struct in_addr));
1024 hlist_add_head_rcu(&key->node, &md5sig->head);
1025 return 0;
1026 }
1027 EXPORT_SYMBOL(tcp_md5_do_add);
1028
1029 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1030 {
1031 struct tcp_sock *tp = tcp_sk(sk);
1032 struct tcp_md5sig_key *key;
1033 struct tcp_md5sig_info *md5sig;
1034
1035 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1036 if (!key)
1037 return -ENOENT;
1038 hlist_del_rcu(&key->node);
1039 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1040 kfree_rcu(key, rcu);
1041 md5sig = rcu_dereference_protected(tp->md5sig_info,
1042 sock_owned_by_user(sk));
1043 if (hlist_empty(&md5sig->head))
1044 tcp_free_md5sig_pool();
1045 return 0;
1046 }
1047 EXPORT_SYMBOL(tcp_md5_do_del);
1048
1049 void tcp_clear_md5_list(struct sock *sk)
1050 {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 struct tcp_md5sig_key *key;
1053 struct hlist_node *pos, *n;
1054 struct tcp_md5sig_info *md5sig;
1055
1056 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1057
1058 if (!hlist_empty(&md5sig->head))
1059 tcp_free_md5sig_pool();
1060 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1061 hlist_del_rcu(&key->node);
1062 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1063 kfree_rcu(key, rcu);
1064 }
1065 }
1066
1067 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1068 int optlen)
1069 {
1070 struct tcp_md5sig cmd;
1071 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1072
1073 if (optlen < sizeof(cmd))
1074 return -EINVAL;
1075
1076 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1077 return -EFAULT;
1078
1079 if (sin->sin_family != AF_INET)
1080 return -EINVAL;
1081
1082 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1083 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1084 AF_INET);
1085
1086 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1087 return -EINVAL;
1088
1089 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1090 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1091 GFP_KERNEL);
1092 }
1093
1094 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1095 __be32 daddr, __be32 saddr, int nbytes)
1096 {
1097 struct tcp4_pseudohdr *bp;
1098 struct scatterlist sg;
1099
1100 bp = &hp->md5_blk.ip4;
1101
1102 /*
1103 * 1. the TCP pseudo-header (in the order: source IP address,
1104 * destination IP address, zero-padded protocol number, and
1105 * segment length)
1106 */
1107 bp->saddr = saddr;
1108 bp->daddr = daddr;
1109 bp->pad = 0;
1110 bp->protocol = IPPROTO_TCP;
1111 bp->len = cpu_to_be16(nbytes);
1112
1113 sg_init_one(&sg, bp, sizeof(*bp));
1114 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1115 }
1116
1117 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1118 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1119 {
1120 struct tcp_md5sig_pool *hp;
1121 struct hash_desc *desc;
1122
1123 hp = tcp_get_md5sig_pool();
1124 if (!hp)
1125 goto clear_hash_noput;
1126 desc = &hp->md5_desc;
1127
1128 if (crypto_hash_init(desc))
1129 goto clear_hash;
1130 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1131 goto clear_hash;
1132 if (tcp_md5_hash_header(hp, th))
1133 goto clear_hash;
1134 if (tcp_md5_hash_key(hp, key))
1135 goto clear_hash;
1136 if (crypto_hash_final(desc, md5_hash))
1137 goto clear_hash;
1138
1139 tcp_put_md5sig_pool();
1140 return 0;
1141
1142 clear_hash:
1143 tcp_put_md5sig_pool();
1144 clear_hash_noput:
1145 memset(md5_hash, 0, 16);
1146 return 1;
1147 }
1148
1149 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1150 const struct sock *sk, const struct request_sock *req,
1151 const struct sk_buff *skb)
1152 {
1153 struct tcp_md5sig_pool *hp;
1154 struct hash_desc *desc;
1155 const struct tcphdr *th = tcp_hdr(skb);
1156 __be32 saddr, daddr;
1157
1158 if (sk) {
1159 saddr = inet_sk(sk)->inet_saddr;
1160 daddr = inet_sk(sk)->inet_daddr;
1161 } else if (req) {
1162 saddr = inet_rsk(req)->loc_addr;
1163 daddr = inet_rsk(req)->rmt_addr;
1164 } else {
1165 const struct iphdr *iph = ip_hdr(skb);
1166 saddr = iph->saddr;
1167 daddr = iph->daddr;
1168 }
1169
1170 hp = tcp_get_md5sig_pool();
1171 if (!hp)
1172 goto clear_hash_noput;
1173 desc = &hp->md5_desc;
1174
1175 if (crypto_hash_init(desc))
1176 goto clear_hash;
1177
1178 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1179 goto clear_hash;
1180 if (tcp_md5_hash_header(hp, th))
1181 goto clear_hash;
1182 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1183 goto clear_hash;
1184 if (tcp_md5_hash_key(hp, key))
1185 goto clear_hash;
1186 if (crypto_hash_final(desc, md5_hash))
1187 goto clear_hash;
1188
1189 tcp_put_md5sig_pool();
1190 return 0;
1191
1192 clear_hash:
1193 tcp_put_md5sig_pool();
1194 clear_hash_noput:
1195 memset(md5_hash, 0, 16);
1196 return 1;
1197 }
1198 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1199
1200 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1201 {
1202 /*
1203 * This gets called for each TCP segment that arrives
1204 * so we want to be efficient.
1205 * We have 3 drop cases:
1206 * o No MD5 hash and one expected.
1207 * o MD5 hash and we're not expecting one.
1208 * o MD5 hash and its wrong.
1209 */
1210 const __u8 *hash_location = NULL;
1211 struct tcp_md5sig_key *hash_expected;
1212 const struct iphdr *iph = ip_hdr(skb);
1213 const struct tcphdr *th = tcp_hdr(skb);
1214 int genhash;
1215 unsigned char newhash[16];
1216
1217 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1218 AF_INET);
1219 hash_location = tcp_parse_md5sig_option(th);
1220
1221 /* We've parsed the options - do we have a hash? */
1222 if (!hash_expected && !hash_location)
1223 return false;
1224
1225 if (hash_expected && !hash_location) {
1226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1227 return true;
1228 }
1229
1230 if (!hash_expected && hash_location) {
1231 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1232 return true;
1233 }
1234
1235 /* Okay, so this is hash_expected and hash_location -
1236 * so we need to calculate the checksum.
1237 */
1238 genhash = tcp_v4_md5_hash_skb(newhash,
1239 hash_expected,
1240 NULL, NULL, skb);
1241
1242 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1243 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1244 &iph->saddr, ntohs(th->source),
1245 &iph->daddr, ntohs(th->dest),
1246 genhash ? " tcp_v4_calc_md5_hash failed"
1247 : "");
1248 return true;
1249 }
1250 return false;
1251 }
1252
1253 #endif
1254
1255 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1256 .family = PF_INET,
1257 .obj_size = sizeof(struct tcp_request_sock),
1258 .rtx_syn_ack = tcp_v4_rtx_synack,
1259 .send_ack = tcp_v4_reqsk_send_ack,
1260 .destructor = tcp_v4_reqsk_destructor,
1261 .send_reset = tcp_v4_send_reset,
1262 .syn_ack_timeout = tcp_syn_ack_timeout,
1263 };
1264
1265 #ifdef CONFIG_TCP_MD5SIG
1266 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1267 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1268 .calc_md5_hash = tcp_v4_md5_hash_skb,
1269 };
1270 #endif
1271
1272 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1273 {
1274 struct tcp_extend_values tmp_ext;
1275 struct tcp_options_received tmp_opt;
1276 const u8 *hash_location;
1277 struct request_sock *req;
1278 struct inet_request_sock *ireq;
1279 struct tcp_sock *tp = tcp_sk(sk);
1280 struct dst_entry *dst = NULL;
1281 __be32 saddr = ip_hdr(skb)->saddr;
1282 __be32 daddr = ip_hdr(skb)->daddr;
1283 __u32 isn = TCP_SKB_CB(skb)->when;
1284 bool want_cookie = false;
1285
1286 /* Never answer to SYNs send to broadcast or multicast */
1287 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1288 goto drop;
1289
1290 /* TW buckets are converted to open requests without
1291 * limitations, they conserve resources and peer is
1292 * evidently real one.
1293 */
1294 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1295 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1296 if (!want_cookie)
1297 goto drop;
1298 }
1299
1300 /* Accept backlog is full. If we have already queued enough
1301 * of warm entries in syn queue, drop request. It is better than
1302 * clogging syn queue with openreqs with exponentially increasing
1303 * timeout.
1304 */
1305 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1306 goto drop;
1307
1308 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1309 if (!req)
1310 goto drop;
1311
1312 #ifdef CONFIG_TCP_MD5SIG
1313 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1314 #endif
1315
1316 tcp_clear_options(&tmp_opt);
1317 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1318 tmp_opt.user_mss = tp->rx_opt.user_mss;
1319 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1320
1321 if (tmp_opt.cookie_plus > 0 &&
1322 tmp_opt.saw_tstamp &&
1323 !tp->rx_opt.cookie_out_never &&
1324 (sysctl_tcp_cookie_size > 0 ||
1325 (tp->cookie_values != NULL &&
1326 tp->cookie_values->cookie_desired > 0))) {
1327 u8 *c;
1328 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1329 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1330
1331 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1332 goto drop_and_release;
1333
1334 /* Secret recipe starts with IP addresses */
1335 *mess++ ^= (__force u32)daddr;
1336 *mess++ ^= (__force u32)saddr;
1337
1338 /* plus variable length Initiator Cookie */
1339 c = (u8 *)mess;
1340 while (l-- > 0)
1341 *c++ ^= *hash_location++;
1342
1343 want_cookie = false; /* not our kind of cookie */
1344 tmp_ext.cookie_out_never = 0; /* false */
1345 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1346 } else if (!tp->rx_opt.cookie_in_always) {
1347 /* redundant indications, but ensure initialization. */
1348 tmp_ext.cookie_out_never = 1; /* true */
1349 tmp_ext.cookie_plus = 0;
1350 } else {
1351 goto drop_and_release;
1352 }
1353 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1354
1355 if (want_cookie && !tmp_opt.saw_tstamp)
1356 tcp_clear_options(&tmp_opt);
1357
1358 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1359 tcp_openreq_init(req, &tmp_opt, skb);
1360
1361 ireq = inet_rsk(req);
1362 ireq->loc_addr = daddr;
1363 ireq->rmt_addr = saddr;
1364 ireq->no_srccheck = inet_sk(sk)->transparent;
1365 ireq->opt = tcp_v4_save_options(sk, skb);
1366
1367 if (security_inet_conn_request(sk, skb, req))
1368 goto drop_and_free;
1369
1370 if (!want_cookie || tmp_opt.tstamp_ok)
1371 TCP_ECN_create_request(req, skb);
1372
1373 if (want_cookie) {
1374 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1375 req->cookie_ts = tmp_opt.tstamp_ok;
1376 } else if (!isn) {
1377 struct inet_peer *peer = NULL;
1378 struct flowi4 fl4;
1379
1380 /* VJ's idea. We save last timestamp seen
1381 * from the destination in peer table, when entering
1382 * state TIME-WAIT, and check against it before
1383 * accepting new connection request.
1384 *
1385 * If "isn" is not zero, this request hit alive
1386 * timewait bucket, so that all the necessary checks
1387 * are made in the function processing timewait state.
1388 */
1389 if (tmp_opt.saw_tstamp &&
1390 tcp_death_row.sysctl_tw_recycle &&
1391 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1392 fl4.daddr == saddr &&
1393 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1394 inet_peer_refcheck(peer);
1395 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1396 (s32)(peer->tcp_ts - req->ts_recent) >
1397 TCP_PAWS_WINDOW) {
1398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1399 goto drop_and_release;
1400 }
1401 }
1402 /* Kill the following clause, if you dislike this way. */
1403 else if (!sysctl_tcp_syncookies &&
1404 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1405 (sysctl_max_syn_backlog >> 2)) &&
1406 (!peer || !peer->tcp_ts_stamp) &&
1407 (!dst || !dst_metric(dst, RTAX_RTT))) {
1408 /* Without syncookies last quarter of
1409 * backlog is filled with destinations,
1410 * proven to be alive.
1411 * It means that we continue to communicate
1412 * to destinations, already remembered
1413 * to the moment of synflood.
1414 */
1415 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1416 &saddr, ntohs(tcp_hdr(skb)->source));
1417 goto drop_and_release;
1418 }
1419
1420 isn = tcp_v4_init_sequence(skb);
1421 }
1422 tcp_rsk(req)->snt_isn = isn;
1423 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1424
1425 if (tcp_v4_send_synack(sk, dst, req,
1426 (struct request_values *)&tmp_ext,
1427 skb_get_queue_mapping(skb)) ||
1428 want_cookie)
1429 goto drop_and_free;
1430
1431 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1432 return 0;
1433
1434 drop_and_release:
1435 dst_release(dst);
1436 drop_and_free:
1437 reqsk_free(req);
1438 drop:
1439 return 0;
1440 }
1441 EXPORT_SYMBOL(tcp_v4_conn_request);
1442
1443
1444 /*
1445 * The three way handshake has completed - we got a valid synack -
1446 * now create the new socket.
1447 */
1448 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1449 struct request_sock *req,
1450 struct dst_entry *dst)
1451 {
1452 struct inet_request_sock *ireq;
1453 struct inet_sock *newinet;
1454 struct tcp_sock *newtp;
1455 struct sock *newsk;
1456 #ifdef CONFIG_TCP_MD5SIG
1457 struct tcp_md5sig_key *key;
1458 #endif
1459 struct ip_options_rcu *inet_opt;
1460
1461 if (sk_acceptq_is_full(sk))
1462 goto exit_overflow;
1463
1464 newsk = tcp_create_openreq_child(sk, req, skb);
1465 if (!newsk)
1466 goto exit_nonewsk;
1467
1468 newsk->sk_gso_type = SKB_GSO_TCPV4;
1469
1470 newtp = tcp_sk(newsk);
1471 newinet = inet_sk(newsk);
1472 ireq = inet_rsk(req);
1473 newinet->inet_daddr = ireq->rmt_addr;
1474 newinet->inet_rcv_saddr = ireq->loc_addr;
1475 newinet->inet_saddr = ireq->loc_addr;
1476 inet_opt = ireq->opt;
1477 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1478 ireq->opt = NULL;
1479 newinet->mc_index = inet_iif(skb);
1480 newinet->mc_ttl = ip_hdr(skb)->ttl;
1481 newinet->rcv_tos = ip_hdr(skb)->tos;
1482 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1483 if (inet_opt)
1484 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1485 newinet->inet_id = newtp->write_seq ^ jiffies;
1486
1487 if (!dst) {
1488 dst = inet_csk_route_child_sock(sk, newsk, req);
1489 if (!dst)
1490 goto put_and_exit;
1491 } else {
1492 /* syncookie case : see end of cookie_v4_check() */
1493 }
1494 sk_setup_caps(newsk, dst);
1495
1496 tcp_mtup_init(newsk);
1497 tcp_sync_mss(newsk, dst_mtu(dst));
1498 newtp->advmss = dst_metric_advmss(dst);
1499 if (tcp_sk(sk)->rx_opt.user_mss &&
1500 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1501 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1502
1503 tcp_initialize_rcv_mss(newsk);
1504 if (tcp_rsk(req)->snt_synack)
1505 tcp_valid_rtt_meas(newsk,
1506 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1507 newtp->total_retrans = req->retrans;
1508
1509 #ifdef CONFIG_TCP_MD5SIG
1510 /* Copy over the MD5 key from the original socket */
1511 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1512 AF_INET);
1513 if (key != NULL) {
1514 /*
1515 * We're using one, so create a matching key
1516 * on the newsk structure. If we fail to get
1517 * memory, then we end up not copying the key
1518 * across. Shucks.
1519 */
1520 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1521 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1522 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1523 }
1524 #endif
1525
1526 if (__inet_inherit_port(sk, newsk) < 0)
1527 goto put_and_exit;
1528 __inet_hash_nolisten(newsk, NULL);
1529
1530 return newsk;
1531
1532 exit_overflow:
1533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1534 exit_nonewsk:
1535 dst_release(dst);
1536 exit:
1537 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1538 return NULL;
1539 put_and_exit:
1540 tcp_clear_xmit_timers(newsk);
1541 tcp_cleanup_congestion_control(newsk);
1542 bh_unlock_sock(newsk);
1543 sock_put(newsk);
1544 goto exit;
1545 }
1546 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1547
1548 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1549 {
1550 struct tcphdr *th = tcp_hdr(skb);
1551 const struct iphdr *iph = ip_hdr(skb);
1552 struct sock *nsk;
1553 struct request_sock **prev;
1554 /* Find possible connection requests. */
1555 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1556 iph->saddr, iph->daddr);
1557 if (req)
1558 return tcp_check_req(sk, skb, req, prev);
1559
1560 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1561 th->source, iph->daddr, th->dest, inet_iif(skb));
1562
1563 if (nsk) {
1564 if (nsk->sk_state != TCP_TIME_WAIT) {
1565 bh_lock_sock(nsk);
1566 return nsk;
1567 }
1568 inet_twsk_put(inet_twsk(nsk));
1569 return NULL;
1570 }
1571
1572 #ifdef CONFIG_SYN_COOKIES
1573 if (!th->syn)
1574 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1575 #endif
1576 return sk;
1577 }
1578
1579 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1580 {
1581 const struct iphdr *iph = ip_hdr(skb);
1582
1583 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1584 if (!tcp_v4_check(skb->len, iph->saddr,
1585 iph->daddr, skb->csum)) {
1586 skb->ip_summed = CHECKSUM_UNNECESSARY;
1587 return 0;
1588 }
1589 }
1590
1591 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1592 skb->len, IPPROTO_TCP, 0);
1593
1594 if (skb->len <= 76) {
1595 return __skb_checksum_complete(skb);
1596 }
1597 return 0;
1598 }
1599
1600
1601 /* The socket must have it's spinlock held when we get
1602 * here.
1603 *
1604 * We have a potential double-lock case here, so even when
1605 * doing backlog processing we use the BH locking scheme.
1606 * This is because we cannot sleep with the original spinlock
1607 * held.
1608 */
1609 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1610 {
1611 struct sock *rsk;
1612 #ifdef CONFIG_TCP_MD5SIG
1613 /*
1614 * We really want to reject the packet as early as possible
1615 * if:
1616 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1617 * o There is an MD5 option and we're not expecting one
1618 */
1619 if (tcp_v4_inbound_md5_hash(sk, skb))
1620 goto discard;
1621 #endif
1622
1623 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1624 sock_rps_save_rxhash(sk, skb);
1625 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1626 rsk = sk;
1627 goto reset;
1628 }
1629 return 0;
1630 }
1631
1632 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1633 goto csum_err;
1634
1635 if (sk->sk_state == TCP_LISTEN) {
1636 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1637 if (!nsk)
1638 goto discard;
1639
1640 if (nsk != sk) {
1641 sock_rps_save_rxhash(nsk, skb);
1642 if (tcp_child_process(sk, nsk, skb)) {
1643 rsk = nsk;
1644 goto reset;
1645 }
1646 return 0;
1647 }
1648 } else
1649 sock_rps_save_rxhash(sk, skb);
1650
1651 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1652 rsk = sk;
1653 goto reset;
1654 }
1655 return 0;
1656
1657 reset:
1658 tcp_v4_send_reset(rsk, skb);
1659 discard:
1660 kfree_skb(skb);
1661 /* Be careful here. If this function gets more complicated and
1662 * gcc suffers from register pressure on the x86, sk (in %ebx)
1663 * might be destroyed here. This current version compiles correctly,
1664 * but you have been warned.
1665 */
1666 return 0;
1667
1668 csum_err:
1669 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1670 goto discard;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_do_rcv);
1673
1674 /*
1675 * From tcp_input.c
1676 */
1677
1678 int tcp_v4_rcv(struct sk_buff *skb)
1679 {
1680 const struct iphdr *iph;
1681 const struct tcphdr *th;
1682 struct sock *sk;
1683 int ret;
1684 struct net *net = dev_net(skb->dev);
1685
1686 if (skb->pkt_type != PACKET_HOST)
1687 goto discard_it;
1688
1689 /* Count it even if it's bad */
1690 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1691
1692 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1693 goto discard_it;
1694
1695 th = tcp_hdr(skb);
1696
1697 if (th->doff < sizeof(struct tcphdr) / 4)
1698 goto bad_packet;
1699 if (!pskb_may_pull(skb, th->doff * 4))
1700 goto discard_it;
1701
1702 /* An explanation is required here, I think.
1703 * Packet length and doff are validated by header prediction,
1704 * provided case of th->doff==0 is eliminated.
1705 * So, we defer the checks. */
1706 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1707 goto bad_packet;
1708
1709 th = tcp_hdr(skb);
1710 iph = ip_hdr(skb);
1711 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1712 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1713 skb->len - th->doff * 4);
1714 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1715 TCP_SKB_CB(skb)->when = 0;
1716 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1717 TCP_SKB_CB(skb)->sacked = 0;
1718
1719 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1720 if (!sk)
1721 goto no_tcp_socket;
1722
1723 process:
1724 if (sk->sk_state == TCP_TIME_WAIT)
1725 goto do_time_wait;
1726
1727 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1728 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1729 goto discard_and_relse;
1730 }
1731
1732 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1733 goto discard_and_relse;
1734 nf_reset(skb);
1735
1736 if (sk_filter(sk, skb))
1737 goto discard_and_relse;
1738
1739 skb->dev = NULL;
1740
1741 bh_lock_sock_nested(sk);
1742 ret = 0;
1743 if (!sock_owned_by_user(sk)) {
1744 #ifdef CONFIG_NET_DMA
1745 struct tcp_sock *tp = tcp_sk(sk);
1746 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1747 tp->ucopy.dma_chan = net_dma_find_channel();
1748 if (tp->ucopy.dma_chan)
1749 ret = tcp_v4_do_rcv(sk, skb);
1750 else
1751 #endif
1752 {
1753 if (!tcp_prequeue(sk, skb))
1754 ret = tcp_v4_do_rcv(sk, skb);
1755 }
1756 } else if (unlikely(sk_add_backlog(sk, skb,
1757 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1758 bh_unlock_sock(sk);
1759 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1760 goto discard_and_relse;
1761 }
1762 bh_unlock_sock(sk);
1763
1764 sock_put(sk);
1765
1766 return ret;
1767
1768 no_tcp_socket:
1769 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1770 goto discard_it;
1771
1772 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1773 bad_packet:
1774 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1775 } else {
1776 tcp_v4_send_reset(NULL, skb);
1777 }
1778
1779 discard_it:
1780 /* Discard frame. */
1781 kfree_skb(skb);
1782 return 0;
1783
1784 discard_and_relse:
1785 sock_put(sk);
1786 goto discard_it;
1787
1788 do_time_wait:
1789 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1790 inet_twsk_put(inet_twsk(sk));
1791 goto discard_it;
1792 }
1793
1794 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1795 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1796 inet_twsk_put(inet_twsk(sk));
1797 goto discard_it;
1798 }
1799 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1800 case TCP_TW_SYN: {
1801 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1802 &tcp_hashinfo,
1803 iph->daddr, th->dest,
1804 inet_iif(skb));
1805 if (sk2) {
1806 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1807 inet_twsk_put(inet_twsk(sk));
1808 sk = sk2;
1809 goto process;
1810 }
1811 /* Fall through to ACK */
1812 }
1813 case TCP_TW_ACK:
1814 tcp_v4_timewait_ack(sk, skb);
1815 break;
1816 case TCP_TW_RST:
1817 goto no_tcp_socket;
1818 case TCP_TW_SUCCESS:;
1819 }
1820 goto discard_it;
1821 }
1822
1823 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1824 {
1825 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1826 struct inet_sock *inet = inet_sk(sk);
1827 struct net *net = sock_net(sk);
1828 struct inet_peer *peer;
1829
1830 if (!rt ||
1831 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832 peer = inet_getpeer_v4(net, inet->inet_daddr, 1);
1833 *release_it = true;
1834 } else {
1835 peer = rt_get_peer_create(rt, inet->inet_daddr);
1836 *release_it = false;
1837 }
1838
1839 return peer;
1840 }
1841 EXPORT_SYMBOL(tcp_v4_get_peer);
1842
1843 void *tcp_v4_tw_get_peer(struct sock *sk)
1844 {
1845 const struct inet_timewait_sock *tw = inet_twsk(sk);
1846 struct net *net = sock_net(sk);
1847
1848 return inet_getpeer_v4(net, tw->tw_daddr, 1);
1849 }
1850 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1851
1852 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1853 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1854 .twsk_unique = tcp_twsk_unique,
1855 .twsk_destructor= tcp_twsk_destructor,
1856 .twsk_getpeer = tcp_v4_tw_get_peer,
1857 };
1858
1859 const struct inet_connection_sock_af_ops ipv4_specific = {
1860 .queue_xmit = ip_queue_xmit,
1861 .send_check = tcp_v4_send_check,
1862 .rebuild_header = inet_sk_rebuild_header,
1863 .conn_request = tcp_v4_conn_request,
1864 .syn_recv_sock = tcp_v4_syn_recv_sock,
1865 .get_peer = tcp_v4_get_peer,
1866 .net_header_len = sizeof(struct iphdr),
1867 .setsockopt = ip_setsockopt,
1868 .getsockopt = ip_getsockopt,
1869 .addr2sockaddr = inet_csk_addr2sockaddr,
1870 .sockaddr_len = sizeof(struct sockaddr_in),
1871 .bind_conflict = inet_csk_bind_conflict,
1872 #ifdef CONFIG_COMPAT
1873 .compat_setsockopt = compat_ip_setsockopt,
1874 .compat_getsockopt = compat_ip_getsockopt,
1875 #endif
1876 };
1877 EXPORT_SYMBOL(ipv4_specific);
1878
1879 #ifdef CONFIG_TCP_MD5SIG
1880 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1881 .md5_lookup = tcp_v4_md5_lookup,
1882 .calc_md5_hash = tcp_v4_md5_hash_skb,
1883 .md5_parse = tcp_v4_parse_md5_keys,
1884 };
1885 #endif
1886
1887 /* NOTE: A lot of things set to zero explicitly by call to
1888 * sk_alloc() so need not be done here.
1889 */
1890 static int tcp_v4_init_sock(struct sock *sk)
1891 {
1892 struct inet_connection_sock *icsk = inet_csk(sk);
1893
1894 tcp_init_sock(sk);
1895
1896 icsk->icsk_af_ops = &ipv4_specific;
1897
1898 #ifdef CONFIG_TCP_MD5SIG
1899 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1900 #endif
1901
1902 return 0;
1903 }
1904
1905 void tcp_v4_destroy_sock(struct sock *sk)
1906 {
1907 struct tcp_sock *tp = tcp_sk(sk);
1908
1909 tcp_clear_xmit_timers(sk);
1910
1911 tcp_cleanup_congestion_control(sk);
1912
1913 /* Cleanup up the write buffer. */
1914 tcp_write_queue_purge(sk);
1915
1916 /* Cleans up our, hopefully empty, out_of_order_queue. */
1917 __skb_queue_purge(&tp->out_of_order_queue);
1918
1919 #ifdef CONFIG_TCP_MD5SIG
1920 /* Clean up the MD5 key list, if any */
1921 if (tp->md5sig_info) {
1922 tcp_clear_md5_list(sk);
1923 kfree_rcu(tp->md5sig_info, rcu);
1924 tp->md5sig_info = NULL;
1925 }
1926 #endif
1927
1928 #ifdef CONFIG_NET_DMA
1929 /* Cleans up our sk_async_wait_queue */
1930 __skb_queue_purge(&sk->sk_async_wait_queue);
1931 #endif
1932
1933 /* Clean prequeue, it must be empty really */
1934 __skb_queue_purge(&tp->ucopy.prequeue);
1935
1936 /* Clean up a referenced TCP bind bucket. */
1937 if (inet_csk(sk)->icsk_bind_hash)
1938 inet_put_port(sk);
1939
1940 /*
1941 * If sendmsg cached page exists, toss it.
1942 */
1943 if (sk->sk_sndmsg_page) {
1944 __free_page(sk->sk_sndmsg_page);
1945 sk->sk_sndmsg_page = NULL;
1946 }
1947
1948 /* TCP Cookie Transactions */
1949 if (tp->cookie_values != NULL) {
1950 kref_put(&tp->cookie_values->kref,
1951 tcp_cookie_values_release);
1952 tp->cookie_values = NULL;
1953 }
1954
1955 sk_sockets_allocated_dec(sk);
1956 sock_release_memcg(sk);
1957 }
1958 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1959
1960 #ifdef CONFIG_PROC_FS
1961 /* Proc filesystem TCP sock list dumping. */
1962
1963 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1964 {
1965 return hlist_nulls_empty(head) ? NULL :
1966 list_entry(head->first, struct inet_timewait_sock, tw_node);
1967 }
1968
1969 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1970 {
1971 return !is_a_nulls(tw->tw_node.next) ?
1972 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1973 }
1974
1975 /*
1976 * Get next listener socket follow cur. If cur is NULL, get first socket
1977 * starting from bucket given in st->bucket; when st->bucket is zero the
1978 * very first socket in the hash table is returned.
1979 */
1980 static void *listening_get_next(struct seq_file *seq, void *cur)
1981 {
1982 struct inet_connection_sock *icsk;
1983 struct hlist_nulls_node *node;
1984 struct sock *sk = cur;
1985 struct inet_listen_hashbucket *ilb;
1986 struct tcp_iter_state *st = seq->private;
1987 struct net *net = seq_file_net(seq);
1988
1989 if (!sk) {
1990 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1991 spin_lock_bh(&ilb->lock);
1992 sk = sk_nulls_head(&ilb->head);
1993 st->offset = 0;
1994 goto get_sk;
1995 }
1996 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1997 ++st->num;
1998 ++st->offset;
1999
2000 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2001 struct request_sock *req = cur;
2002
2003 icsk = inet_csk(st->syn_wait_sk);
2004 req = req->dl_next;
2005 while (1) {
2006 while (req) {
2007 if (req->rsk_ops->family == st->family) {
2008 cur = req;
2009 goto out;
2010 }
2011 req = req->dl_next;
2012 }
2013 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2014 break;
2015 get_req:
2016 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2017 }
2018 sk = sk_nulls_next(st->syn_wait_sk);
2019 st->state = TCP_SEQ_STATE_LISTENING;
2020 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021 } else {
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2025 goto start_req;
2026 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2027 sk = sk_nulls_next(sk);
2028 }
2029 get_sk:
2030 sk_nulls_for_each_from(sk, node) {
2031 if (!net_eq(sock_net(sk), net))
2032 continue;
2033 if (sk->sk_family == st->family) {
2034 cur = sk;
2035 goto out;
2036 }
2037 icsk = inet_csk(sk);
2038 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2040 start_req:
2041 st->uid = sock_i_uid(sk);
2042 st->syn_wait_sk = sk;
2043 st->state = TCP_SEQ_STATE_OPENREQ;
2044 st->sbucket = 0;
2045 goto get_req;
2046 }
2047 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2048 }
2049 spin_unlock_bh(&ilb->lock);
2050 st->offset = 0;
2051 if (++st->bucket < INET_LHTABLE_SIZE) {
2052 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2053 spin_lock_bh(&ilb->lock);
2054 sk = sk_nulls_head(&ilb->head);
2055 goto get_sk;
2056 }
2057 cur = NULL;
2058 out:
2059 return cur;
2060 }
2061
2062 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2063 {
2064 struct tcp_iter_state *st = seq->private;
2065 void *rc;
2066
2067 st->bucket = 0;
2068 st->offset = 0;
2069 rc = listening_get_next(seq, NULL);
2070
2071 while (rc && *pos) {
2072 rc = listening_get_next(seq, rc);
2073 --*pos;
2074 }
2075 return rc;
2076 }
2077
2078 static inline bool empty_bucket(struct tcp_iter_state *st)
2079 {
2080 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2081 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2082 }
2083
2084 /*
2085 * Get first established socket starting from bucket given in st->bucket.
2086 * If st->bucket is zero, the very first socket in the hash is returned.
2087 */
2088 static void *established_get_first(struct seq_file *seq)
2089 {
2090 struct tcp_iter_state *st = seq->private;
2091 struct net *net = seq_file_net(seq);
2092 void *rc = NULL;
2093
2094 st->offset = 0;
2095 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2096 struct sock *sk;
2097 struct hlist_nulls_node *node;
2098 struct inet_timewait_sock *tw;
2099 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2100
2101 /* Lockless fast path for the common case of empty buckets */
2102 if (empty_bucket(st))
2103 continue;
2104
2105 spin_lock_bh(lock);
2106 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2107 if (sk->sk_family != st->family ||
2108 !net_eq(sock_net(sk), net)) {
2109 continue;
2110 }
2111 rc = sk;
2112 goto out;
2113 }
2114 st->state = TCP_SEQ_STATE_TIME_WAIT;
2115 inet_twsk_for_each(tw, node,
2116 &tcp_hashinfo.ehash[st->bucket].twchain) {
2117 if (tw->tw_family != st->family ||
2118 !net_eq(twsk_net(tw), net)) {
2119 continue;
2120 }
2121 rc = tw;
2122 goto out;
2123 }
2124 spin_unlock_bh(lock);
2125 st->state = TCP_SEQ_STATE_ESTABLISHED;
2126 }
2127 out:
2128 return rc;
2129 }
2130
2131 static void *established_get_next(struct seq_file *seq, void *cur)
2132 {
2133 struct sock *sk = cur;
2134 struct inet_timewait_sock *tw;
2135 struct hlist_nulls_node *node;
2136 struct tcp_iter_state *st = seq->private;
2137 struct net *net = seq_file_net(seq);
2138
2139 ++st->num;
2140 ++st->offset;
2141
2142 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2143 tw = cur;
2144 tw = tw_next(tw);
2145 get_tw:
2146 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2147 tw = tw_next(tw);
2148 }
2149 if (tw) {
2150 cur = tw;
2151 goto out;
2152 }
2153 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2154 st->state = TCP_SEQ_STATE_ESTABLISHED;
2155
2156 /* Look for next non empty bucket */
2157 st->offset = 0;
2158 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2159 empty_bucket(st))
2160 ;
2161 if (st->bucket > tcp_hashinfo.ehash_mask)
2162 return NULL;
2163
2164 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2165 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2166 } else
2167 sk = sk_nulls_next(sk);
2168
2169 sk_nulls_for_each_from(sk, node) {
2170 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2171 goto found;
2172 }
2173
2174 st->state = TCP_SEQ_STATE_TIME_WAIT;
2175 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2176 goto get_tw;
2177 found:
2178 cur = sk;
2179 out:
2180 return cur;
2181 }
2182
2183 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2184 {
2185 struct tcp_iter_state *st = seq->private;
2186 void *rc;
2187
2188 st->bucket = 0;
2189 rc = established_get_first(seq);
2190
2191 while (rc && pos) {
2192 rc = established_get_next(seq, rc);
2193 --pos;
2194 }
2195 return rc;
2196 }
2197
2198 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2199 {
2200 void *rc;
2201 struct tcp_iter_state *st = seq->private;
2202
2203 st->state = TCP_SEQ_STATE_LISTENING;
2204 rc = listening_get_idx(seq, &pos);
2205
2206 if (!rc) {
2207 st->state = TCP_SEQ_STATE_ESTABLISHED;
2208 rc = established_get_idx(seq, pos);
2209 }
2210
2211 return rc;
2212 }
2213
2214 static void *tcp_seek_last_pos(struct seq_file *seq)
2215 {
2216 struct tcp_iter_state *st = seq->private;
2217 int offset = st->offset;
2218 int orig_num = st->num;
2219 void *rc = NULL;
2220
2221 switch (st->state) {
2222 case TCP_SEQ_STATE_OPENREQ:
2223 case TCP_SEQ_STATE_LISTENING:
2224 if (st->bucket >= INET_LHTABLE_SIZE)
2225 break;
2226 st->state = TCP_SEQ_STATE_LISTENING;
2227 rc = listening_get_next(seq, NULL);
2228 while (offset-- && rc)
2229 rc = listening_get_next(seq, rc);
2230 if (rc)
2231 break;
2232 st->bucket = 0;
2233 /* Fallthrough */
2234 case TCP_SEQ_STATE_ESTABLISHED:
2235 case TCP_SEQ_STATE_TIME_WAIT:
2236 st->state = TCP_SEQ_STATE_ESTABLISHED;
2237 if (st->bucket > tcp_hashinfo.ehash_mask)
2238 break;
2239 rc = established_get_first(seq);
2240 while (offset-- && rc)
2241 rc = established_get_next(seq, rc);
2242 }
2243
2244 st->num = orig_num;
2245
2246 return rc;
2247 }
2248
2249 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2250 {
2251 struct tcp_iter_state *st = seq->private;
2252 void *rc;
2253
2254 if (*pos && *pos == st->last_pos) {
2255 rc = tcp_seek_last_pos(seq);
2256 if (rc)
2257 goto out;
2258 }
2259
2260 st->state = TCP_SEQ_STATE_LISTENING;
2261 st->num = 0;
2262 st->bucket = 0;
2263 st->offset = 0;
2264 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2265
2266 out:
2267 st->last_pos = *pos;
2268 return rc;
2269 }
2270
2271 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2272 {
2273 struct tcp_iter_state *st = seq->private;
2274 void *rc = NULL;
2275
2276 if (v == SEQ_START_TOKEN) {
2277 rc = tcp_get_idx(seq, 0);
2278 goto out;
2279 }
2280
2281 switch (st->state) {
2282 case TCP_SEQ_STATE_OPENREQ:
2283 case TCP_SEQ_STATE_LISTENING:
2284 rc = listening_get_next(seq, v);
2285 if (!rc) {
2286 st->state = TCP_SEQ_STATE_ESTABLISHED;
2287 st->bucket = 0;
2288 st->offset = 0;
2289 rc = established_get_first(seq);
2290 }
2291 break;
2292 case TCP_SEQ_STATE_ESTABLISHED:
2293 case TCP_SEQ_STATE_TIME_WAIT:
2294 rc = established_get_next(seq, v);
2295 break;
2296 }
2297 out:
2298 ++*pos;
2299 st->last_pos = *pos;
2300 return rc;
2301 }
2302
2303 static void tcp_seq_stop(struct seq_file *seq, void *v)
2304 {
2305 struct tcp_iter_state *st = seq->private;
2306
2307 switch (st->state) {
2308 case TCP_SEQ_STATE_OPENREQ:
2309 if (v) {
2310 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2311 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2312 }
2313 case TCP_SEQ_STATE_LISTENING:
2314 if (v != SEQ_START_TOKEN)
2315 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2316 break;
2317 case TCP_SEQ_STATE_TIME_WAIT:
2318 case TCP_SEQ_STATE_ESTABLISHED:
2319 if (v)
2320 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2321 break;
2322 }
2323 }
2324
2325 int tcp_seq_open(struct inode *inode, struct file *file)
2326 {
2327 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2328 struct tcp_iter_state *s;
2329 int err;
2330
2331 err = seq_open_net(inode, file, &afinfo->seq_ops,
2332 sizeof(struct tcp_iter_state));
2333 if (err < 0)
2334 return err;
2335
2336 s = ((struct seq_file *)file->private_data)->private;
2337 s->family = afinfo->family;
2338 s->last_pos = 0;
2339 return 0;
2340 }
2341 EXPORT_SYMBOL(tcp_seq_open);
2342
2343 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2344 {
2345 int rc = 0;
2346 struct proc_dir_entry *p;
2347
2348 afinfo->seq_ops.start = tcp_seq_start;
2349 afinfo->seq_ops.next = tcp_seq_next;
2350 afinfo->seq_ops.stop = tcp_seq_stop;
2351
2352 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2353 afinfo->seq_fops, afinfo);
2354 if (!p)
2355 rc = -ENOMEM;
2356 return rc;
2357 }
2358 EXPORT_SYMBOL(tcp_proc_register);
2359
2360 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2361 {
2362 proc_net_remove(net, afinfo->name);
2363 }
2364 EXPORT_SYMBOL(tcp_proc_unregister);
2365
2366 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2367 struct seq_file *f, int i, int uid, int *len)
2368 {
2369 const struct inet_request_sock *ireq = inet_rsk(req);
2370 int ttd = req->expires - jiffies;
2371
2372 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2373 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2374 i,
2375 ireq->loc_addr,
2376 ntohs(inet_sk(sk)->inet_sport),
2377 ireq->rmt_addr,
2378 ntohs(ireq->rmt_port),
2379 TCP_SYN_RECV,
2380 0, 0, /* could print option size, but that is af dependent. */
2381 1, /* timers active (only the expire timer) */
2382 jiffies_to_clock_t(ttd),
2383 req->retrans,
2384 uid,
2385 0, /* non standard timer */
2386 0, /* open_requests have no inode */
2387 atomic_read(&sk->sk_refcnt),
2388 req,
2389 len);
2390 }
2391
2392 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2393 {
2394 int timer_active;
2395 unsigned long timer_expires;
2396 const struct tcp_sock *tp = tcp_sk(sk);
2397 const struct inet_connection_sock *icsk = inet_csk(sk);
2398 const struct inet_sock *inet = inet_sk(sk);
2399 __be32 dest = inet->inet_daddr;
2400 __be32 src = inet->inet_rcv_saddr;
2401 __u16 destp = ntohs(inet->inet_dport);
2402 __u16 srcp = ntohs(inet->inet_sport);
2403 int rx_queue;
2404
2405 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2406 timer_active = 1;
2407 timer_expires = icsk->icsk_timeout;
2408 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2409 timer_active = 4;
2410 timer_expires = icsk->icsk_timeout;
2411 } else if (timer_pending(&sk->sk_timer)) {
2412 timer_active = 2;
2413 timer_expires = sk->sk_timer.expires;
2414 } else {
2415 timer_active = 0;
2416 timer_expires = jiffies;
2417 }
2418
2419 if (sk->sk_state == TCP_LISTEN)
2420 rx_queue = sk->sk_ack_backlog;
2421 else
2422 /*
2423 * because we dont lock socket, we might find a transient negative value
2424 */
2425 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2426
2427 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2428 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2429 i, src, srcp, dest, destp, sk->sk_state,
2430 tp->write_seq - tp->snd_una,
2431 rx_queue,
2432 timer_active,
2433 jiffies_to_clock_t(timer_expires - jiffies),
2434 icsk->icsk_retransmits,
2435 sock_i_uid(sk),
2436 icsk->icsk_probes_out,
2437 sock_i_ino(sk),
2438 atomic_read(&sk->sk_refcnt), sk,
2439 jiffies_to_clock_t(icsk->icsk_rto),
2440 jiffies_to_clock_t(icsk->icsk_ack.ato),
2441 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2442 tp->snd_cwnd,
2443 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2444 len);
2445 }
2446
2447 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2448 struct seq_file *f, int i, int *len)
2449 {
2450 __be32 dest, src;
2451 __u16 destp, srcp;
2452 int ttd = tw->tw_ttd - jiffies;
2453
2454 if (ttd < 0)
2455 ttd = 0;
2456
2457 dest = tw->tw_daddr;
2458 src = tw->tw_rcv_saddr;
2459 destp = ntohs(tw->tw_dport);
2460 srcp = ntohs(tw->tw_sport);
2461
2462 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2463 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2464 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2465 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2466 atomic_read(&tw->tw_refcnt), tw, len);
2467 }
2468
2469 #define TMPSZ 150
2470
2471 static int tcp4_seq_show(struct seq_file *seq, void *v)
2472 {
2473 struct tcp_iter_state *st;
2474 int len;
2475
2476 if (v == SEQ_START_TOKEN) {
2477 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2478 " sl local_address rem_address st tx_queue "
2479 "rx_queue tr tm->when retrnsmt uid timeout "
2480 "inode");
2481 goto out;
2482 }
2483 st = seq->private;
2484
2485 switch (st->state) {
2486 case TCP_SEQ_STATE_LISTENING:
2487 case TCP_SEQ_STATE_ESTABLISHED:
2488 get_tcp4_sock(v, seq, st->num, &len);
2489 break;
2490 case TCP_SEQ_STATE_OPENREQ:
2491 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2492 break;
2493 case TCP_SEQ_STATE_TIME_WAIT:
2494 get_timewait4_sock(v, seq, st->num, &len);
2495 break;
2496 }
2497 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2498 out:
2499 return 0;
2500 }
2501
2502 static const struct file_operations tcp_afinfo_seq_fops = {
2503 .owner = THIS_MODULE,
2504 .open = tcp_seq_open,
2505 .read = seq_read,
2506 .llseek = seq_lseek,
2507 .release = seq_release_net
2508 };
2509
2510 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2511 .name = "tcp",
2512 .family = AF_INET,
2513 .seq_fops = &tcp_afinfo_seq_fops,
2514 .seq_ops = {
2515 .show = tcp4_seq_show,
2516 },
2517 };
2518
2519 static int __net_init tcp4_proc_init_net(struct net *net)
2520 {
2521 return tcp_proc_register(net, &tcp4_seq_afinfo);
2522 }
2523
2524 static void __net_exit tcp4_proc_exit_net(struct net *net)
2525 {
2526 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2527 }
2528
2529 static struct pernet_operations tcp4_net_ops = {
2530 .init = tcp4_proc_init_net,
2531 .exit = tcp4_proc_exit_net,
2532 };
2533
2534 int __init tcp4_proc_init(void)
2535 {
2536 return register_pernet_subsys(&tcp4_net_ops);
2537 }
2538
2539 void tcp4_proc_exit(void)
2540 {
2541 unregister_pernet_subsys(&tcp4_net_ops);
2542 }
2543 #endif /* CONFIG_PROC_FS */
2544
2545 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2546 {
2547 const struct iphdr *iph = skb_gro_network_header(skb);
2548
2549 switch (skb->ip_summed) {
2550 case CHECKSUM_COMPLETE:
2551 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2552 skb->csum)) {
2553 skb->ip_summed = CHECKSUM_UNNECESSARY;
2554 break;
2555 }
2556
2557 /* fall through */
2558 case CHECKSUM_NONE:
2559 NAPI_GRO_CB(skb)->flush = 1;
2560 return NULL;
2561 }
2562
2563 return tcp_gro_receive(head, skb);
2564 }
2565
2566 int tcp4_gro_complete(struct sk_buff *skb)
2567 {
2568 const struct iphdr *iph = ip_hdr(skb);
2569 struct tcphdr *th = tcp_hdr(skb);
2570
2571 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2572 iph->saddr, iph->daddr, 0);
2573 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2574
2575 return tcp_gro_complete(skb);
2576 }
2577
2578 struct proto tcp_prot = {
2579 .name = "TCP",
2580 .owner = THIS_MODULE,
2581 .close = tcp_close,
2582 .connect = tcp_v4_connect,
2583 .disconnect = tcp_disconnect,
2584 .accept = inet_csk_accept,
2585 .ioctl = tcp_ioctl,
2586 .init = tcp_v4_init_sock,
2587 .destroy = tcp_v4_destroy_sock,
2588 .shutdown = tcp_shutdown,
2589 .setsockopt = tcp_setsockopt,
2590 .getsockopt = tcp_getsockopt,
2591 .recvmsg = tcp_recvmsg,
2592 .sendmsg = tcp_sendmsg,
2593 .sendpage = tcp_sendpage,
2594 .backlog_rcv = tcp_v4_do_rcv,
2595 .hash = inet_hash,
2596 .unhash = inet_unhash,
2597 .get_port = inet_csk_get_port,
2598 .enter_memory_pressure = tcp_enter_memory_pressure,
2599 .sockets_allocated = &tcp_sockets_allocated,
2600 .orphan_count = &tcp_orphan_count,
2601 .memory_allocated = &tcp_memory_allocated,
2602 .memory_pressure = &tcp_memory_pressure,
2603 .sysctl_wmem = sysctl_tcp_wmem,
2604 .sysctl_rmem = sysctl_tcp_rmem,
2605 .max_header = MAX_TCP_HEADER,
2606 .obj_size = sizeof(struct tcp_sock),
2607 .slab_flags = SLAB_DESTROY_BY_RCU,
2608 .twsk_prot = &tcp_timewait_sock_ops,
2609 .rsk_prot = &tcp_request_sock_ops,
2610 .h.hashinfo = &tcp_hashinfo,
2611 .no_autobind = true,
2612 #ifdef CONFIG_COMPAT
2613 .compat_setsockopt = compat_tcp_setsockopt,
2614 .compat_getsockopt = compat_tcp_getsockopt,
2615 #endif
2616 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2617 .init_cgroup = tcp_init_cgroup,
2618 .destroy_cgroup = tcp_destroy_cgroup,
2619 .proto_cgroup = tcp_proto_cgroup,
2620 #endif
2621 };
2622 EXPORT_SYMBOL(tcp_prot);
2623
2624 static int __net_init tcp_sk_init(struct net *net)
2625 {
2626 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2627 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2628 }
2629
2630 static void __net_exit tcp_sk_exit(struct net *net)
2631 {
2632 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2633 }
2634
2635 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2636 {
2637 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2638 }
2639
2640 static struct pernet_operations __net_initdata tcp_sk_ops = {
2641 .init = tcp_sk_init,
2642 .exit = tcp_sk_exit,
2643 .exit_batch = tcp_sk_exit_batch,
2644 };
2645
2646 void __init tcp_v4_init(void)
2647 {
2648 inet_hashinfo_init(&tcp_hashinfo);
2649 if (register_pernet_subsys(&tcp_sk_ops))
2650 panic("Failed to create the TCP control socket.\n");
2651 }