]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_ipv4.c
[TCP]: SNMPv2 tcpAttemptFails counter error
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 * IPv4 specific functions
11 *
12 *
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
17 *
18 * See tcp.c for author information
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
24 */
25
26 /*
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
53 */
54
55
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
83
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
86
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
89
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
91
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
94 .lhash_users = ATOMIC_INIT(0),
95 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96 };
97
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
99 {
100 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101 inet_csk_bind_conflict);
102 }
103
104 static void tcp_v4_hash(struct sock *sk)
105 {
106 inet_hash(&tcp_hashinfo, sk);
107 }
108
109 void tcp_unhash(struct sock *sk)
110 {
111 inet_unhash(&tcp_hashinfo, sk);
112 }
113
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
115 {
116 return secure_tcp_sequence_number(skb->nh.iph->daddr,
117 skb->nh.iph->saddr,
118 skb->h.th->dest,
119 skb->h.th->source);
120 }
121
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
123 {
124 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125 struct tcp_sock *tp = tcp_sk(sk);
126
127 /* With PAWS, it is safe from the viewpoint
128 of data integrity. Even without PAWS it is safe provided sequence
129 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
130
131 Actually, the idea is close to VJ's one, only timestamp cache is
132 held not per host, but per port pair and TW bucket is used as state
133 holder.
134
135 If TW bucket has been already destroyed we fall back to VJ's scheme
136 and use initial timestamp retrieved from peer table.
137 */
138 if (tcptw->tw_ts_recent_stamp &&
139 (twp == NULL || (sysctl_tcp_tw_reuse &&
140 xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142 if (tp->write_seq == 0)
143 tp->write_seq = 1;
144 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
145 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
146 sock_hold(sktw);
147 return 1;
148 }
149
150 return 0;
151 }
152
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
154
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
157 {
158 struct inet_sock *inet = inet_sk(sk);
159 struct tcp_sock *tp = tcp_sk(sk);
160 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
161 struct rtable *rt;
162 u32 daddr, nexthop;
163 int tmp;
164 int err;
165
166 if (addr_len < sizeof(struct sockaddr_in))
167 return -EINVAL;
168
169 if (usin->sin_family != AF_INET)
170 return -EAFNOSUPPORT;
171
172 nexthop = daddr = usin->sin_addr.s_addr;
173 if (inet->opt && inet->opt->srr) {
174 if (!daddr)
175 return -EINVAL;
176 nexthop = inet->opt->faddr;
177 }
178
179 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181 IPPROTO_TCP,
182 inet->sport, usin->sin_port, sk);
183 if (tmp < 0)
184 return tmp;
185
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 ip_rt_put(rt);
188 return -ENETUNREACH;
189 }
190
191 if (!inet->opt || !inet->opt->srr)
192 daddr = rt->rt_dst;
193
194 if (!inet->saddr)
195 inet->saddr = rt->rt_src;
196 inet->rcv_saddr = inet->saddr;
197
198 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
202 tp->write_seq = 0;
203 }
204
205 if (tcp_death_row.sysctl_tw_recycle &&
206 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207 struct inet_peer *peer = rt_get_peer(rt);
208
209 /* VJ's idea. We save last timestamp seen from
210 * the destination in peer table, when entering state TIME-WAIT
211 * and initialize rx_opt.ts_recent from it, when trying new connection.
212 */
213
214 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216 tp->rx_opt.ts_recent = peer->tcp_ts;
217 }
218 }
219
220 inet->dport = usin->sin_port;
221 inet->daddr = daddr;
222
223 inet_csk(sk)->icsk_ext_hdr_len = 0;
224 if (inet->opt)
225 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
226
227 tp->rx_opt.mss_clamp = 536;
228
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
233 */
234 tcp_set_state(sk, TCP_SYN_SENT);
235 err = inet_hash_connect(&tcp_death_row, sk);
236 if (err)
237 goto failure;
238
239 err = ip_route_newports(&rt, IPPROTO_TCP, inet->sport, inet->dport, sk);
240 if (err)
241 goto failure;
242
243 /* OK, now commit destination to socket. */
244 sk->sk_gso_type = SKB_GSO_TCPV4;
245 sk_setup_caps(sk, &rt->u.dst);
246
247 if (!tp->write_seq)
248 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
249 inet->daddr,
250 inet->sport,
251 usin->sin_port);
252
253 inet->id = tp->write_seq ^ jiffies;
254
255 err = tcp_connect(sk);
256 rt = NULL;
257 if (err)
258 goto failure;
259
260 return 0;
261
262 failure:
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk, TCP_CLOSE);
265 ip_rt_put(rt);
266 sk->sk_route_caps = 0;
267 inet->dport = 0;
268 return err;
269 }
270
271 /*
272 * This routine does path mtu discovery as defined in RFC1191.
273 */
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
275 {
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
278
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
281 * unfragmented).
282 */
283 if (sk->sk_state == TCP_LISTEN)
284 return;
285
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
291 */
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
293 return;
294
295 dst->ops->update_pmtu(dst, mtu);
296
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
299 */
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
302
303 mtu = dst_mtu(dst);
304
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
308
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
312 * discovery.
313 */
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
316 }
317
318 /*
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
325 *
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
331 *
332 */
333
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
335 {
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 int type = skb->h.icmph->type;
341 int code = skb->h.icmph->code;
342 struct sock *sk;
343 __u32 seq;
344 int err;
345
346 if (skb->len < (iph->ihl << 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
348 return;
349 }
350
351 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
352 th->source, inet_iif(skb));
353 if (!sk) {
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
355 return;
356 }
357 if (sk->sk_state == TCP_TIME_WAIT) {
358 inet_twsk_put((struct inet_timewait_sock *)sk);
359 return;
360 }
361
362 bh_lock_sock(sk);
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
365 */
366 if (sock_owned_by_user(sk))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
368
369 if (sk->sk_state == TCP_CLOSE)
370 goto out;
371
372 tp = tcp_sk(sk);
373 seq = ntohl(th->seq);
374 if (sk->sk_state != TCP_LISTEN &&
375 !between(seq, tp->snd_una, tp->snd_nxt)) {
376 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
377 goto out;
378 }
379
380 switch (type) {
381 case ICMP_SOURCE_QUENCH:
382 /* Just silently ignore these. */
383 goto out;
384 case ICMP_PARAMETERPROB:
385 err = EPROTO;
386 break;
387 case ICMP_DEST_UNREACH:
388 if (code > NR_ICMP_UNREACH)
389 goto out;
390
391 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk))
393 do_pmtu_discovery(sk, iph, info);
394 goto out;
395 }
396
397 err = icmp_err_convert[code].errno;
398 break;
399 case ICMP_TIME_EXCEEDED:
400 err = EHOSTUNREACH;
401 break;
402 default:
403 goto out;
404 }
405
406 switch (sk->sk_state) {
407 struct request_sock *req, **prev;
408 case TCP_LISTEN:
409 if (sock_owned_by_user(sk))
410 goto out;
411
412 req = inet_csk_search_req(sk, &prev, th->dest,
413 iph->daddr, iph->saddr);
414 if (!req)
415 goto out;
416
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
419 */
420 BUG_TRAP(!req->sk);
421
422 if (seq != tcp_rsk(req)->snt_isn) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
424 goto out;
425 }
426
427 /*
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
432 */
433 inet_csk_reqsk_queue_drop(sk, req, prev);
434 goto out;
435
436 case TCP_SYN_SENT:
437 case TCP_SYN_RECV: /* Cannot happen.
438 It can f.e. if SYNs crossed.
439 */
440 if (!sock_owned_by_user(sk)) {
441 sk->sk_err = err;
442
443 sk->sk_error_report(sk);
444
445 tcp_done(sk);
446 } else {
447 sk->sk_err_soft = err;
448 }
449 goto out;
450 }
451
452 /* If we've already connected we will keep trying
453 * until we time out, or the user gives up.
454 *
455 * rfc1122 4.2.3.9 allows to consider as hard errors
456 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
457 * but it is obsoleted by pmtu discovery).
458 *
459 * Note, that in modern internet, where routing is unreliable
460 * and in each dark corner broken firewalls sit, sending random
461 * errors ordered by their masters even this two messages finally lose
462 * their original sense (even Linux sends invalid PORT_UNREACHs)
463 *
464 * Now we are in compliance with RFCs.
465 * --ANK (980905)
466 */
467
468 inet = inet_sk(sk);
469 if (!sock_owned_by_user(sk) && inet->recverr) {
470 sk->sk_err = err;
471 sk->sk_error_report(sk);
472 } else { /* Only an error on timeout */
473 sk->sk_err_soft = err;
474 }
475
476 out:
477 bh_unlock_sock(sk);
478 sock_put(sk);
479 }
480
481 /* This routine computes an IPv4 TCP checksum. */
482 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
483 {
484 struct inet_sock *inet = inet_sk(sk);
485 struct tcphdr *th = skb->h.th;
486
487 if (skb->ip_summed == CHECKSUM_HW) {
488 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
489 skb->csum = offsetof(struct tcphdr, check);
490 } else {
491 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
492 csum_partial((char *)th,
493 th->doff << 2,
494 skb->csum));
495 }
496 }
497
498 int tcp_v4_gso_send_check(struct sk_buff *skb)
499 {
500 struct iphdr *iph;
501 struct tcphdr *th;
502
503 if (!pskb_may_pull(skb, sizeof(*th)))
504 return -EINVAL;
505
506 iph = skb->nh.iph;
507 th = skb->h.th;
508
509 th->check = 0;
510 th->check = ~tcp_v4_check(th, skb->len, iph->saddr, iph->daddr, 0);
511 skb->csum = offsetof(struct tcphdr, check);
512 skb->ip_summed = CHECKSUM_HW;
513 return 0;
514 }
515
516 /*
517 * This routine will send an RST to the other tcp.
518 *
519 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
520 * for reset.
521 * Answer: if a packet caused RST, it is not for a socket
522 * existing in our system, if it is matched to a socket,
523 * it is just duplicate segment or bug in other side's TCP.
524 * So that we build reply only basing on parameters
525 * arrived with segment.
526 * Exception: precedence violation. We do not implement it in any case.
527 */
528
529 static void tcp_v4_send_reset(struct sk_buff *skb)
530 {
531 struct tcphdr *th = skb->h.th;
532 struct tcphdr rth;
533 struct ip_reply_arg arg;
534
535 /* Never send a reset in response to a reset. */
536 if (th->rst)
537 return;
538
539 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
540 return;
541
542 /* Swap the send and the receive. */
543 memset(&rth, 0, sizeof(struct tcphdr));
544 rth.dest = th->source;
545 rth.source = th->dest;
546 rth.doff = sizeof(struct tcphdr) / 4;
547 rth.rst = 1;
548
549 if (th->ack) {
550 rth.seq = th->ack_seq;
551 } else {
552 rth.ack = 1;
553 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
554 skb->len - (th->doff << 2));
555 }
556
557 memset(&arg, 0, sizeof arg);
558 arg.iov[0].iov_base = (unsigned char *)&rth;
559 arg.iov[0].iov_len = sizeof rth;
560 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
561 skb->nh.iph->saddr, /*XXX*/
562 sizeof(struct tcphdr), IPPROTO_TCP, 0);
563 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
564
565 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
566
567 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
568 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
569 }
570
571 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
572 outside socket context is ugly, certainly. What can I do?
573 */
574
575 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
576 u32 win, u32 ts)
577 {
578 struct tcphdr *th = skb->h.th;
579 struct {
580 struct tcphdr th;
581 u32 tsopt[3];
582 } rep;
583 struct ip_reply_arg arg;
584
585 memset(&rep.th, 0, sizeof(struct tcphdr));
586 memset(&arg, 0, sizeof arg);
587
588 arg.iov[0].iov_base = (unsigned char *)&rep;
589 arg.iov[0].iov_len = sizeof(rep.th);
590 if (ts) {
591 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
592 (TCPOPT_TIMESTAMP << 8) |
593 TCPOLEN_TIMESTAMP);
594 rep.tsopt[1] = htonl(tcp_time_stamp);
595 rep.tsopt[2] = htonl(ts);
596 arg.iov[0].iov_len = sizeof(rep);
597 }
598
599 /* Swap the send and the receive. */
600 rep.th.dest = th->source;
601 rep.th.source = th->dest;
602 rep.th.doff = arg.iov[0].iov_len / 4;
603 rep.th.seq = htonl(seq);
604 rep.th.ack_seq = htonl(ack);
605 rep.th.ack = 1;
606 rep.th.window = htons(win);
607
608 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
609 skb->nh.iph->saddr, /*XXX*/
610 arg.iov[0].iov_len, IPPROTO_TCP, 0);
611 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
612
613 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
614
615 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
616 }
617
618 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
619 {
620 struct inet_timewait_sock *tw = inet_twsk(sk);
621 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
622
623 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
624 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
625
626 inet_twsk_put(tw);
627 }
628
629 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
630 {
631 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
632 req->ts_recent);
633 }
634
635 /*
636 * Send a SYN-ACK after having received an ACK.
637 * This still operates on a request_sock only, not on a big
638 * socket.
639 */
640 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
641 struct dst_entry *dst)
642 {
643 const struct inet_request_sock *ireq = inet_rsk(req);
644 int err = -1;
645 struct sk_buff * skb;
646
647 /* First, grab a route. */
648 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
649 goto out;
650
651 skb = tcp_make_synack(sk, dst, req);
652
653 if (skb) {
654 struct tcphdr *th = skb->h.th;
655
656 th->check = tcp_v4_check(th, skb->len,
657 ireq->loc_addr,
658 ireq->rmt_addr,
659 csum_partial((char *)th, skb->len,
660 skb->csum));
661
662 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
663 ireq->rmt_addr,
664 ireq->opt);
665 if (err == NET_XMIT_CN)
666 err = 0;
667 }
668
669 out:
670 dst_release(dst);
671 return err;
672 }
673
674 /*
675 * IPv4 request_sock destructor.
676 */
677 static void tcp_v4_reqsk_destructor(struct request_sock *req)
678 {
679 kfree(inet_rsk(req)->opt);
680 }
681
682 #ifdef CONFIG_SYN_COOKIES
683 static void syn_flood_warning(struct sk_buff *skb)
684 {
685 static unsigned long warntime;
686
687 if (time_after(jiffies, (warntime + HZ * 60))) {
688 warntime = jiffies;
689 printk(KERN_INFO
690 "possible SYN flooding on port %d. Sending cookies.\n",
691 ntohs(skb->h.th->dest));
692 }
693 }
694 #endif
695
696 /*
697 * Save and compile IPv4 options into the request_sock if needed.
698 */
699 static struct ip_options *tcp_v4_save_options(struct sock *sk,
700 struct sk_buff *skb)
701 {
702 struct ip_options *opt = &(IPCB(skb)->opt);
703 struct ip_options *dopt = NULL;
704
705 if (opt && opt->optlen) {
706 int opt_size = optlength(opt);
707 dopt = kmalloc(opt_size, GFP_ATOMIC);
708 if (dopt) {
709 if (ip_options_echo(dopt, skb)) {
710 kfree(dopt);
711 dopt = NULL;
712 }
713 }
714 }
715 return dopt;
716 }
717
718 struct request_sock_ops tcp_request_sock_ops = {
719 .family = PF_INET,
720 .obj_size = sizeof(struct tcp_request_sock),
721 .rtx_syn_ack = tcp_v4_send_synack,
722 .send_ack = tcp_v4_reqsk_send_ack,
723 .destructor = tcp_v4_reqsk_destructor,
724 .send_reset = tcp_v4_send_reset,
725 };
726
727 static struct timewait_sock_ops tcp_timewait_sock_ops = {
728 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
729 .twsk_unique = tcp_twsk_unique,
730 };
731
732 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
733 {
734 struct inet_request_sock *ireq;
735 struct tcp_options_received tmp_opt;
736 struct request_sock *req;
737 __u32 saddr = skb->nh.iph->saddr;
738 __u32 daddr = skb->nh.iph->daddr;
739 __u32 isn = TCP_SKB_CB(skb)->when;
740 struct dst_entry *dst = NULL;
741 #ifdef CONFIG_SYN_COOKIES
742 int want_cookie = 0;
743 #else
744 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
745 #endif
746
747 /* Never answer to SYNs send to broadcast or multicast */
748 if (((struct rtable *)skb->dst)->rt_flags &
749 (RTCF_BROADCAST | RTCF_MULTICAST))
750 goto drop;
751
752 /* TW buckets are converted to open requests without
753 * limitations, they conserve resources and peer is
754 * evidently real one.
755 */
756 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
757 #ifdef CONFIG_SYN_COOKIES
758 if (sysctl_tcp_syncookies) {
759 want_cookie = 1;
760 } else
761 #endif
762 goto drop;
763 }
764
765 /* Accept backlog is full. If we have already queued enough
766 * of warm entries in syn queue, drop request. It is better than
767 * clogging syn queue with openreqs with exponentially increasing
768 * timeout.
769 */
770 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
771 goto drop;
772
773 req = reqsk_alloc(&tcp_request_sock_ops);
774 if (!req)
775 goto drop;
776
777 tcp_clear_options(&tmp_opt);
778 tmp_opt.mss_clamp = 536;
779 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
780
781 tcp_parse_options(skb, &tmp_opt, 0);
782
783 if (want_cookie) {
784 tcp_clear_options(&tmp_opt);
785 tmp_opt.saw_tstamp = 0;
786 }
787
788 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
789 /* Some OSes (unknown ones, but I see them on web server, which
790 * contains information interesting only for windows'
791 * users) do not send their stamp in SYN. It is easy case.
792 * We simply do not advertise TS support.
793 */
794 tmp_opt.saw_tstamp = 0;
795 tmp_opt.tstamp_ok = 0;
796 }
797 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
798
799 tcp_openreq_init(req, &tmp_opt, skb);
800
801 ireq = inet_rsk(req);
802 ireq->loc_addr = daddr;
803 ireq->rmt_addr = saddr;
804 ireq->opt = tcp_v4_save_options(sk, skb);
805 if (!want_cookie)
806 TCP_ECN_create_request(req, skb->h.th);
807
808 if (want_cookie) {
809 #ifdef CONFIG_SYN_COOKIES
810 syn_flood_warning(skb);
811 #endif
812 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
813 } else if (!isn) {
814 struct inet_peer *peer = NULL;
815
816 /* VJ's idea. We save last timestamp seen
817 * from the destination in peer table, when entering
818 * state TIME-WAIT, and check against it before
819 * accepting new connection request.
820 *
821 * If "isn" is not zero, this request hit alive
822 * timewait bucket, so that all the necessary checks
823 * are made in the function processing timewait state.
824 */
825 if (tmp_opt.saw_tstamp &&
826 tcp_death_row.sysctl_tw_recycle &&
827 (dst = inet_csk_route_req(sk, req)) != NULL &&
828 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
829 peer->v4daddr == saddr) {
830 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
831 (s32)(peer->tcp_ts - req->ts_recent) >
832 TCP_PAWS_WINDOW) {
833 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
834 dst_release(dst);
835 goto drop_and_free;
836 }
837 }
838 /* Kill the following clause, if you dislike this way. */
839 else if (!sysctl_tcp_syncookies &&
840 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
841 (sysctl_max_syn_backlog >> 2)) &&
842 (!peer || !peer->tcp_ts_stamp) &&
843 (!dst || !dst_metric(dst, RTAX_RTT))) {
844 /* Without syncookies last quarter of
845 * backlog is filled with destinations,
846 * proven to be alive.
847 * It means that we continue to communicate
848 * to destinations, already remembered
849 * to the moment of synflood.
850 */
851 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
852 "request from %u.%u.%u.%u/%u\n",
853 NIPQUAD(saddr),
854 ntohs(skb->h.th->source));
855 dst_release(dst);
856 goto drop_and_free;
857 }
858
859 isn = tcp_v4_init_sequence(sk, skb);
860 }
861 tcp_rsk(req)->snt_isn = isn;
862
863 if (tcp_v4_send_synack(sk, req, dst))
864 goto drop_and_free;
865
866 if (want_cookie) {
867 reqsk_free(req);
868 } else {
869 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
870 }
871 return 0;
872
873 drop_and_free:
874 reqsk_free(req);
875 drop:
876 return 0;
877 }
878
879
880 /*
881 * The three way handshake has completed - we got a valid synack -
882 * now create the new socket.
883 */
884 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
885 struct request_sock *req,
886 struct dst_entry *dst)
887 {
888 struct inet_request_sock *ireq;
889 struct inet_sock *newinet;
890 struct tcp_sock *newtp;
891 struct sock *newsk;
892
893 if (sk_acceptq_is_full(sk))
894 goto exit_overflow;
895
896 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
897 goto exit;
898
899 newsk = tcp_create_openreq_child(sk, req, skb);
900 if (!newsk)
901 goto exit;
902
903 newsk->sk_gso_type = SKB_GSO_TCPV4;
904 sk_setup_caps(newsk, dst);
905
906 newtp = tcp_sk(newsk);
907 newinet = inet_sk(newsk);
908 ireq = inet_rsk(req);
909 newinet->daddr = ireq->rmt_addr;
910 newinet->rcv_saddr = ireq->loc_addr;
911 newinet->saddr = ireq->loc_addr;
912 newinet->opt = ireq->opt;
913 ireq->opt = NULL;
914 newinet->mc_index = inet_iif(skb);
915 newinet->mc_ttl = skb->nh.iph->ttl;
916 inet_csk(newsk)->icsk_ext_hdr_len = 0;
917 if (newinet->opt)
918 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
919 newinet->id = newtp->write_seq ^ jiffies;
920
921 tcp_mtup_init(newsk);
922 tcp_sync_mss(newsk, dst_mtu(dst));
923 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
924 tcp_initialize_rcv_mss(newsk);
925
926 __inet_hash(&tcp_hashinfo, newsk, 0);
927 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
928
929 return newsk;
930
931 exit_overflow:
932 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
933 exit:
934 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
935 dst_release(dst);
936 return NULL;
937 }
938
939 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
940 {
941 struct tcphdr *th = skb->h.th;
942 struct iphdr *iph = skb->nh.iph;
943 struct sock *nsk;
944 struct request_sock **prev;
945 /* Find possible connection requests. */
946 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
947 iph->saddr, iph->daddr);
948 if (req)
949 return tcp_check_req(sk, skb, req, prev);
950
951 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
952 th->source, skb->nh.iph->daddr,
953 ntohs(th->dest), inet_iif(skb));
954
955 if (nsk) {
956 if (nsk->sk_state != TCP_TIME_WAIT) {
957 bh_lock_sock(nsk);
958 return nsk;
959 }
960 inet_twsk_put((struct inet_timewait_sock *)nsk);
961 return NULL;
962 }
963
964 #ifdef CONFIG_SYN_COOKIES
965 if (!th->rst && !th->syn && th->ack)
966 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
967 #endif
968 return sk;
969 }
970
971 static int tcp_v4_checksum_init(struct sk_buff *skb)
972 {
973 if (skb->ip_summed == CHECKSUM_HW) {
974 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
975 skb->nh.iph->daddr, skb->csum)) {
976 skb->ip_summed = CHECKSUM_UNNECESSARY;
977 return 0;
978 }
979 }
980
981 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
982 skb->len, IPPROTO_TCP, 0);
983
984 if (skb->len <= 76) {
985 return __skb_checksum_complete(skb);
986 }
987 return 0;
988 }
989
990
991 /* The socket must have it's spinlock held when we get
992 * here.
993 *
994 * We have a potential double-lock case here, so even when
995 * doing backlog processing we use the BH locking scheme.
996 * This is because we cannot sleep with the original spinlock
997 * held.
998 */
999 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1000 {
1001 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1002 TCP_CHECK_TIMER(sk);
1003 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1004 goto reset;
1005 TCP_CHECK_TIMER(sk);
1006 return 0;
1007 }
1008
1009 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1010 goto csum_err;
1011
1012 if (sk->sk_state == TCP_LISTEN) {
1013 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1014 if (!nsk)
1015 goto discard;
1016
1017 if (nsk != sk) {
1018 if (tcp_child_process(sk, nsk, skb))
1019 goto reset;
1020 return 0;
1021 }
1022 }
1023
1024 TCP_CHECK_TIMER(sk);
1025 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1026 goto reset;
1027 TCP_CHECK_TIMER(sk);
1028 return 0;
1029
1030 reset:
1031 tcp_v4_send_reset(skb);
1032 discard:
1033 kfree_skb(skb);
1034 /* Be careful here. If this function gets more complicated and
1035 * gcc suffers from register pressure on the x86, sk (in %ebx)
1036 * might be destroyed here. This current version compiles correctly,
1037 * but you have been warned.
1038 */
1039 return 0;
1040
1041 csum_err:
1042 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1043 goto discard;
1044 }
1045
1046 /*
1047 * From tcp_input.c
1048 */
1049
1050 int tcp_v4_rcv(struct sk_buff *skb)
1051 {
1052 struct tcphdr *th;
1053 struct sock *sk;
1054 int ret;
1055
1056 if (skb->pkt_type != PACKET_HOST)
1057 goto discard_it;
1058
1059 /* Count it even if it's bad */
1060 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1061
1062 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1063 goto discard_it;
1064
1065 th = skb->h.th;
1066
1067 if (th->doff < sizeof(struct tcphdr) / 4)
1068 goto bad_packet;
1069 if (!pskb_may_pull(skb, th->doff * 4))
1070 goto discard_it;
1071
1072 /* An explanation is required here, I think.
1073 * Packet length and doff are validated by header prediction,
1074 * provided case of th->doff==0 is eliminated.
1075 * So, we defer the checks. */
1076 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1077 tcp_v4_checksum_init(skb)))
1078 goto bad_packet;
1079
1080 th = skb->h.th;
1081 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1082 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1083 skb->len - th->doff * 4);
1084 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1085 TCP_SKB_CB(skb)->when = 0;
1086 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1087 TCP_SKB_CB(skb)->sacked = 0;
1088
1089 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1090 skb->nh.iph->daddr, ntohs(th->dest),
1091 inet_iif(skb));
1092
1093 if (!sk)
1094 goto no_tcp_socket;
1095
1096 process:
1097 if (sk->sk_state == TCP_TIME_WAIT)
1098 goto do_time_wait;
1099
1100 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1101 goto discard_and_relse;
1102 nf_reset(skb);
1103
1104 if (sk_filter(sk, skb, 0))
1105 goto discard_and_relse;
1106
1107 skb->dev = NULL;
1108
1109 bh_lock_sock_nested(sk);
1110 ret = 0;
1111 if (!sock_owned_by_user(sk)) {
1112 #ifdef CONFIG_NET_DMA
1113 struct tcp_sock *tp = tcp_sk(sk);
1114 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1115 tp->ucopy.dma_chan = get_softnet_dma();
1116 if (tp->ucopy.dma_chan)
1117 ret = tcp_v4_do_rcv(sk, skb);
1118 else
1119 #endif
1120 {
1121 if (!tcp_prequeue(sk, skb))
1122 ret = tcp_v4_do_rcv(sk, skb);
1123 }
1124 } else
1125 sk_add_backlog(sk, skb);
1126 bh_unlock_sock(sk);
1127
1128 sock_put(sk);
1129
1130 return ret;
1131
1132 no_tcp_socket:
1133 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1134 goto discard_it;
1135
1136 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1137 bad_packet:
1138 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1139 } else {
1140 tcp_v4_send_reset(skb);
1141 }
1142
1143 discard_it:
1144 /* Discard frame. */
1145 kfree_skb(skb);
1146 return 0;
1147
1148 discard_and_relse:
1149 sock_put(sk);
1150 goto discard_it;
1151
1152 do_time_wait:
1153 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1154 inet_twsk_put((struct inet_timewait_sock *) sk);
1155 goto discard_it;
1156 }
1157
1158 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1159 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1160 inet_twsk_put((struct inet_timewait_sock *) sk);
1161 goto discard_it;
1162 }
1163 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1164 skb, th)) {
1165 case TCP_TW_SYN: {
1166 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1167 skb->nh.iph->daddr,
1168 ntohs(th->dest),
1169 inet_iif(skb));
1170 if (sk2) {
1171 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1172 &tcp_death_row);
1173 inet_twsk_put((struct inet_timewait_sock *)sk);
1174 sk = sk2;
1175 goto process;
1176 }
1177 /* Fall through to ACK */
1178 }
1179 case TCP_TW_ACK:
1180 tcp_v4_timewait_ack(sk, skb);
1181 break;
1182 case TCP_TW_RST:
1183 goto no_tcp_socket;
1184 case TCP_TW_SUCCESS:;
1185 }
1186 goto discard_it;
1187 }
1188
1189 /* VJ's idea. Save last timestamp seen from this destination
1190 * and hold it at least for normal timewait interval to use for duplicate
1191 * segment detection in subsequent connections, before they enter synchronized
1192 * state.
1193 */
1194
1195 int tcp_v4_remember_stamp(struct sock *sk)
1196 {
1197 struct inet_sock *inet = inet_sk(sk);
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1200 struct inet_peer *peer = NULL;
1201 int release_it = 0;
1202
1203 if (!rt || rt->rt_dst != inet->daddr) {
1204 peer = inet_getpeer(inet->daddr, 1);
1205 release_it = 1;
1206 } else {
1207 if (!rt->peer)
1208 rt_bind_peer(rt, 1);
1209 peer = rt->peer;
1210 }
1211
1212 if (peer) {
1213 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1214 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1215 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1216 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1217 peer->tcp_ts = tp->rx_opt.ts_recent;
1218 }
1219 if (release_it)
1220 inet_putpeer(peer);
1221 return 1;
1222 }
1223
1224 return 0;
1225 }
1226
1227 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1228 {
1229 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1230
1231 if (peer) {
1232 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1233
1234 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1235 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1236 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1237 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1238 peer->tcp_ts = tcptw->tw_ts_recent;
1239 }
1240 inet_putpeer(peer);
1241 return 1;
1242 }
1243
1244 return 0;
1245 }
1246
1247 struct inet_connection_sock_af_ops ipv4_specific = {
1248 .queue_xmit = ip_queue_xmit,
1249 .send_check = tcp_v4_send_check,
1250 .rebuild_header = inet_sk_rebuild_header,
1251 .conn_request = tcp_v4_conn_request,
1252 .syn_recv_sock = tcp_v4_syn_recv_sock,
1253 .remember_stamp = tcp_v4_remember_stamp,
1254 .net_header_len = sizeof(struct iphdr),
1255 .setsockopt = ip_setsockopt,
1256 .getsockopt = ip_getsockopt,
1257 .addr2sockaddr = inet_csk_addr2sockaddr,
1258 .sockaddr_len = sizeof(struct sockaddr_in),
1259 #ifdef CONFIG_COMPAT
1260 .compat_setsockopt = compat_ip_setsockopt,
1261 .compat_getsockopt = compat_ip_getsockopt,
1262 #endif
1263 };
1264
1265 /* NOTE: A lot of things set to zero explicitly by call to
1266 * sk_alloc() so need not be done here.
1267 */
1268 static int tcp_v4_init_sock(struct sock *sk)
1269 {
1270 struct inet_connection_sock *icsk = inet_csk(sk);
1271 struct tcp_sock *tp = tcp_sk(sk);
1272
1273 skb_queue_head_init(&tp->out_of_order_queue);
1274 tcp_init_xmit_timers(sk);
1275 tcp_prequeue_init(tp);
1276
1277 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1278 tp->mdev = TCP_TIMEOUT_INIT;
1279
1280 /* So many TCP implementations out there (incorrectly) count the
1281 * initial SYN frame in their delayed-ACK and congestion control
1282 * algorithms that we must have the following bandaid to talk
1283 * efficiently to them. -DaveM
1284 */
1285 tp->snd_cwnd = 2;
1286
1287 /* See draft-stevens-tcpca-spec-01 for discussion of the
1288 * initialization of these values.
1289 */
1290 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1291 tp->snd_cwnd_clamp = ~0;
1292 tp->mss_cache = 536;
1293
1294 tp->reordering = sysctl_tcp_reordering;
1295 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1296
1297 sk->sk_state = TCP_CLOSE;
1298
1299 sk->sk_write_space = sk_stream_write_space;
1300 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1301
1302 icsk->icsk_af_ops = &ipv4_specific;
1303 icsk->icsk_sync_mss = tcp_sync_mss;
1304
1305 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1306 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1307
1308 atomic_inc(&tcp_sockets_allocated);
1309
1310 return 0;
1311 }
1312
1313 int tcp_v4_destroy_sock(struct sock *sk)
1314 {
1315 struct tcp_sock *tp = tcp_sk(sk);
1316
1317 tcp_clear_xmit_timers(sk);
1318
1319 tcp_cleanup_congestion_control(sk);
1320
1321 /* Cleanup up the write buffer. */
1322 sk_stream_writequeue_purge(sk);
1323
1324 /* Cleans up our, hopefully empty, out_of_order_queue. */
1325 __skb_queue_purge(&tp->out_of_order_queue);
1326
1327 #ifdef CONFIG_NET_DMA
1328 /* Cleans up our sk_async_wait_queue */
1329 __skb_queue_purge(&sk->sk_async_wait_queue);
1330 #endif
1331
1332 /* Clean prequeue, it must be empty really */
1333 __skb_queue_purge(&tp->ucopy.prequeue);
1334
1335 /* Clean up a referenced TCP bind bucket. */
1336 if (inet_csk(sk)->icsk_bind_hash)
1337 inet_put_port(&tcp_hashinfo, sk);
1338
1339 /*
1340 * If sendmsg cached page exists, toss it.
1341 */
1342 if (sk->sk_sndmsg_page) {
1343 __free_page(sk->sk_sndmsg_page);
1344 sk->sk_sndmsg_page = NULL;
1345 }
1346
1347 atomic_dec(&tcp_sockets_allocated);
1348
1349 return 0;
1350 }
1351
1352 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1353
1354 #ifdef CONFIG_PROC_FS
1355 /* Proc filesystem TCP sock list dumping. */
1356
1357 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1358 {
1359 return hlist_empty(head) ? NULL :
1360 list_entry(head->first, struct inet_timewait_sock, tw_node);
1361 }
1362
1363 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1364 {
1365 return tw->tw_node.next ?
1366 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1367 }
1368
1369 static void *listening_get_next(struct seq_file *seq, void *cur)
1370 {
1371 struct inet_connection_sock *icsk;
1372 struct hlist_node *node;
1373 struct sock *sk = cur;
1374 struct tcp_iter_state* st = seq->private;
1375
1376 if (!sk) {
1377 st->bucket = 0;
1378 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1379 goto get_sk;
1380 }
1381
1382 ++st->num;
1383
1384 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1385 struct request_sock *req = cur;
1386
1387 icsk = inet_csk(st->syn_wait_sk);
1388 req = req->dl_next;
1389 while (1) {
1390 while (req) {
1391 if (req->rsk_ops->family == st->family) {
1392 cur = req;
1393 goto out;
1394 }
1395 req = req->dl_next;
1396 }
1397 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1398 break;
1399 get_req:
1400 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1401 }
1402 sk = sk_next(st->syn_wait_sk);
1403 st->state = TCP_SEQ_STATE_LISTENING;
1404 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1405 } else {
1406 icsk = inet_csk(sk);
1407 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1408 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1409 goto start_req;
1410 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1411 sk = sk_next(sk);
1412 }
1413 get_sk:
1414 sk_for_each_from(sk, node) {
1415 if (sk->sk_family == st->family) {
1416 cur = sk;
1417 goto out;
1418 }
1419 icsk = inet_csk(sk);
1420 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1421 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1422 start_req:
1423 st->uid = sock_i_uid(sk);
1424 st->syn_wait_sk = sk;
1425 st->state = TCP_SEQ_STATE_OPENREQ;
1426 st->sbucket = 0;
1427 goto get_req;
1428 }
1429 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1430 }
1431 if (++st->bucket < INET_LHTABLE_SIZE) {
1432 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1433 goto get_sk;
1434 }
1435 cur = NULL;
1436 out:
1437 return cur;
1438 }
1439
1440 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1441 {
1442 void *rc = listening_get_next(seq, NULL);
1443
1444 while (rc && *pos) {
1445 rc = listening_get_next(seq, rc);
1446 --*pos;
1447 }
1448 return rc;
1449 }
1450
1451 static void *established_get_first(struct seq_file *seq)
1452 {
1453 struct tcp_iter_state* st = seq->private;
1454 void *rc = NULL;
1455
1456 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1457 struct sock *sk;
1458 struct hlist_node *node;
1459 struct inet_timewait_sock *tw;
1460
1461 /* We can reschedule _before_ having picked the target: */
1462 cond_resched_softirq();
1463
1464 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1465 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1466 if (sk->sk_family != st->family) {
1467 continue;
1468 }
1469 rc = sk;
1470 goto out;
1471 }
1472 st->state = TCP_SEQ_STATE_TIME_WAIT;
1473 inet_twsk_for_each(tw, node,
1474 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1475 if (tw->tw_family != st->family) {
1476 continue;
1477 }
1478 rc = tw;
1479 goto out;
1480 }
1481 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1482 st->state = TCP_SEQ_STATE_ESTABLISHED;
1483 }
1484 out:
1485 return rc;
1486 }
1487
1488 static void *established_get_next(struct seq_file *seq, void *cur)
1489 {
1490 struct sock *sk = cur;
1491 struct inet_timewait_sock *tw;
1492 struct hlist_node *node;
1493 struct tcp_iter_state* st = seq->private;
1494
1495 ++st->num;
1496
1497 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1498 tw = cur;
1499 tw = tw_next(tw);
1500 get_tw:
1501 while (tw && tw->tw_family != st->family) {
1502 tw = tw_next(tw);
1503 }
1504 if (tw) {
1505 cur = tw;
1506 goto out;
1507 }
1508 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1509 st->state = TCP_SEQ_STATE_ESTABLISHED;
1510
1511 /* We can reschedule between buckets: */
1512 cond_resched_softirq();
1513
1514 if (++st->bucket < tcp_hashinfo.ehash_size) {
1515 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1516 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1517 } else {
1518 cur = NULL;
1519 goto out;
1520 }
1521 } else
1522 sk = sk_next(sk);
1523
1524 sk_for_each_from(sk, node) {
1525 if (sk->sk_family == st->family)
1526 goto found;
1527 }
1528
1529 st->state = TCP_SEQ_STATE_TIME_WAIT;
1530 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1531 goto get_tw;
1532 found:
1533 cur = sk;
1534 out:
1535 return cur;
1536 }
1537
1538 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1539 {
1540 void *rc = established_get_first(seq);
1541
1542 while (rc && pos) {
1543 rc = established_get_next(seq, rc);
1544 --pos;
1545 }
1546 return rc;
1547 }
1548
1549 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1550 {
1551 void *rc;
1552 struct tcp_iter_state* st = seq->private;
1553
1554 inet_listen_lock(&tcp_hashinfo);
1555 st->state = TCP_SEQ_STATE_LISTENING;
1556 rc = listening_get_idx(seq, &pos);
1557
1558 if (!rc) {
1559 inet_listen_unlock(&tcp_hashinfo);
1560 local_bh_disable();
1561 st->state = TCP_SEQ_STATE_ESTABLISHED;
1562 rc = established_get_idx(seq, pos);
1563 }
1564
1565 return rc;
1566 }
1567
1568 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1569 {
1570 struct tcp_iter_state* st = seq->private;
1571 st->state = TCP_SEQ_STATE_LISTENING;
1572 st->num = 0;
1573 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1574 }
1575
1576 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1577 {
1578 void *rc = NULL;
1579 struct tcp_iter_state* st;
1580
1581 if (v == SEQ_START_TOKEN) {
1582 rc = tcp_get_idx(seq, 0);
1583 goto out;
1584 }
1585 st = seq->private;
1586
1587 switch (st->state) {
1588 case TCP_SEQ_STATE_OPENREQ:
1589 case TCP_SEQ_STATE_LISTENING:
1590 rc = listening_get_next(seq, v);
1591 if (!rc) {
1592 inet_listen_unlock(&tcp_hashinfo);
1593 local_bh_disable();
1594 st->state = TCP_SEQ_STATE_ESTABLISHED;
1595 rc = established_get_first(seq);
1596 }
1597 break;
1598 case TCP_SEQ_STATE_ESTABLISHED:
1599 case TCP_SEQ_STATE_TIME_WAIT:
1600 rc = established_get_next(seq, v);
1601 break;
1602 }
1603 out:
1604 ++*pos;
1605 return rc;
1606 }
1607
1608 static void tcp_seq_stop(struct seq_file *seq, void *v)
1609 {
1610 struct tcp_iter_state* st = seq->private;
1611
1612 switch (st->state) {
1613 case TCP_SEQ_STATE_OPENREQ:
1614 if (v) {
1615 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1616 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1617 }
1618 case TCP_SEQ_STATE_LISTENING:
1619 if (v != SEQ_START_TOKEN)
1620 inet_listen_unlock(&tcp_hashinfo);
1621 break;
1622 case TCP_SEQ_STATE_TIME_WAIT:
1623 case TCP_SEQ_STATE_ESTABLISHED:
1624 if (v)
1625 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1626 local_bh_enable();
1627 break;
1628 }
1629 }
1630
1631 static int tcp_seq_open(struct inode *inode, struct file *file)
1632 {
1633 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1634 struct seq_file *seq;
1635 struct tcp_iter_state *s;
1636 int rc;
1637
1638 if (unlikely(afinfo == NULL))
1639 return -EINVAL;
1640
1641 s = kzalloc(sizeof(*s), GFP_KERNEL);
1642 if (!s)
1643 return -ENOMEM;
1644 s->family = afinfo->family;
1645 s->seq_ops.start = tcp_seq_start;
1646 s->seq_ops.next = tcp_seq_next;
1647 s->seq_ops.show = afinfo->seq_show;
1648 s->seq_ops.stop = tcp_seq_stop;
1649
1650 rc = seq_open(file, &s->seq_ops);
1651 if (rc)
1652 goto out_kfree;
1653 seq = file->private_data;
1654 seq->private = s;
1655 out:
1656 return rc;
1657 out_kfree:
1658 kfree(s);
1659 goto out;
1660 }
1661
1662 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1663 {
1664 int rc = 0;
1665 struct proc_dir_entry *p;
1666
1667 if (!afinfo)
1668 return -EINVAL;
1669 afinfo->seq_fops->owner = afinfo->owner;
1670 afinfo->seq_fops->open = tcp_seq_open;
1671 afinfo->seq_fops->read = seq_read;
1672 afinfo->seq_fops->llseek = seq_lseek;
1673 afinfo->seq_fops->release = seq_release_private;
1674
1675 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1676 if (p)
1677 p->data = afinfo;
1678 else
1679 rc = -ENOMEM;
1680 return rc;
1681 }
1682
1683 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1684 {
1685 if (!afinfo)
1686 return;
1687 proc_net_remove(afinfo->name);
1688 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1689 }
1690
1691 static void get_openreq4(struct sock *sk, struct request_sock *req,
1692 char *tmpbuf, int i, int uid)
1693 {
1694 const struct inet_request_sock *ireq = inet_rsk(req);
1695 int ttd = req->expires - jiffies;
1696
1697 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1698 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1699 i,
1700 ireq->loc_addr,
1701 ntohs(inet_sk(sk)->sport),
1702 ireq->rmt_addr,
1703 ntohs(ireq->rmt_port),
1704 TCP_SYN_RECV,
1705 0, 0, /* could print option size, but that is af dependent. */
1706 1, /* timers active (only the expire timer) */
1707 jiffies_to_clock_t(ttd),
1708 req->retrans,
1709 uid,
1710 0, /* non standard timer */
1711 0, /* open_requests have no inode */
1712 atomic_read(&sk->sk_refcnt),
1713 req);
1714 }
1715
1716 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1717 {
1718 int timer_active;
1719 unsigned long timer_expires;
1720 struct tcp_sock *tp = tcp_sk(sp);
1721 const struct inet_connection_sock *icsk = inet_csk(sp);
1722 struct inet_sock *inet = inet_sk(sp);
1723 unsigned int dest = inet->daddr;
1724 unsigned int src = inet->rcv_saddr;
1725 __u16 destp = ntohs(inet->dport);
1726 __u16 srcp = ntohs(inet->sport);
1727
1728 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1729 timer_active = 1;
1730 timer_expires = icsk->icsk_timeout;
1731 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1732 timer_active = 4;
1733 timer_expires = icsk->icsk_timeout;
1734 } else if (timer_pending(&sp->sk_timer)) {
1735 timer_active = 2;
1736 timer_expires = sp->sk_timer.expires;
1737 } else {
1738 timer_active = 0;
1739 timer_expires = jiffies;
1740 }
1741
1742 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1743 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1744 i, src, srcp, dest, destp, sp->sk_state,
1745 tp->write_seq - tp->snd_una,
1746 (sp->sk_state == TCP_LISTEN) ? sp->sk_ack_backlog : (tp->rcv_nxt - tp->copied_seq),
1747 timer_active,
1748 jiffies_to_clock_t(timer_expires - jiffies),
1749 icsk->icsk_retransmits,
1750 sock_i_uid(sp),
1751 icsk->icsk_probes_out,
1752 sock_i_ino(sp),
1753 atomic_read(&sp->sk_refcnt), sp,
1754 icsk->icsk_rto,
1755 icsk->icsk_ack.ato,
1756 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1757 tp->snd_cwnd,
1758 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1759 }
1760
1761 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1762 {
1763 unsigned int dest, src;
1764 __u16 destp, srcp;
1765 int ttd = tw->tw_ttd - jiffies;
1766
1767 if (ttd < 0)
1768 ttd = 0;
1769
1770 dest = tw->tw_daddr;
1771 src = tw->tw_rcv_saddr;
1772 destp = ntohs(tw->tw_dport);
1773 srcp = ntohs(tw->tw_sport);
1774
1775 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1776 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1777 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1778 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1779 atomic_read(&tw->tw_refcnt), tw);
1780 }
1781
1782 #define TMPSZ 150
1783
1784 static int tcp4_seq_show(struct seq_file *seq, void *v)
1785 {
1786 struct tcp_iter_state* st;
1787 char tmpbuf[TMPSZ + 1];
1788
1789 if (v == SEQ_START_TOKEN) {
1790 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1791 " sl local_address rem_address st tx_queue "
1792 "rx_queue tr tm->when retrnsmt uid timeout "
1793 "inode");
1794 goto out;
1795 }
1796 st = seq->private;
1797
1798 switch (st->state) {
1799 case TCP_SEQ_STATE_LISTENING:
1800 case TCP_SEQ_STATE_ESTABLISHED:
1801 get_tcp4_sock(v, tmpbuf, st->num);
1802 break;
1803 case TCP_SEQ_STATE_OPENREQ:
1804 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1805 break;
1806 case TCP_SEQ_STATE_TIME_WAIT:
1807 get_timewait4_sock(v, tmpbuf, st->num);
1808 break;
1809 }
1810 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1811 out:
1812 return 0;
1813 }
1814
1815 static struct file_operations tcp4_seq_fops;
1816 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1817 .owner = THIS_MODULE,
1818 .name = "tcp",
1819 .family = AF_INET,
1820 .seq_show = tcp4_seq_show,
1821 .seq_fops = &tcp4_seq_fops,
1822 };
1823
1824 int __init tcp4_proc_init(void)
1825 {
1826 return tcp_proc_register(&tcp4_seq_afinfo);
1827 }
1828
1829 void tcp4_proc_exit(void)
1830 {
1831 tcp_proc_unregister(&tcp4_seq_afinfo);
1832 }
1833 #endif /* CONFIG_PROC_FS */
1834
1835 struct proto tcp_prot = {
1836 .name = "TCP",
1837 .owner = THIS_MODULE,
1838 .close = tcp_close,
1839 .connect = tcp_v4_connect,
1840 .disconnect = tcp_disconnect,
1841 .accept = inet_csk_accept,
1842 .ioctl = tcp_ioctl,
1843 .init = tcp_v4_init_sock,
1844 .destroy = tcp_v4_destroy_sock,
1845 .shutdown = tcp_shutdown,
1846 .setsockopt = tcp_setsockopt,
1847 .getsockopt = tcp_getsockopt,
1848 .sendmsg = tcp_sendmsg,
1849 .recvmsg = tcp_recvmsg,
1850 .backlog_rcv = tcp_v4_do_rcv,
1851 .hash = tcp_v4_hash,
1852 .unhash = tcp_unhash,
1853 .get_port = tcp_v4_get_port,
1854 .enter_memory_pressure = tcp_enter_memory_pressure,
1855 .sockets_allocated = &tcp_sockets_allocated,
1856 .orphan_count = &tcp_orphan_count,
1857 .memory_allocated = &tcp_memory_allocated,
1858 .memory_pressure = &tcp_memory_pressure,
1859 .sysctl_mem = sysctl_tcp_mem,
1860 .sysctl_wmem = sysctl_tcp_wmem,
1861 .sysctl_rmem = sysctl_tcp_rmem,
1862 .max_header = MAX_TCP_HEADER,
1863 .obj_size = sizeof(struct tcp_sock),
1864 .twsk_prot = &tcp_timewait_sock_ops,
1865 .rsk_prot = &tcp_request_sock_ops,
1866 #ifdef CONFIG_COMPAT
1867 .compat_setsockopt = compat_tcp_setsockopt,
1868 .compat_getsockopt = compat_tcp_getsockopt,
1869 #endif
1870 };
1871
1872 void __init tcp_v4_init(struct net_proto_family *ops)
1873 {
1874 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, IPPROTO_TCP) < 0)
1875 panic("Failed to create the TCP control socket.\n");
1876 }
1877
1878 EXPORT_SYMBOL(ipv4_specific);
1879 EXPORT_SYMBOL(tcp_hashinfo);
1880 EXPORT_SYMBOL(tcp_prot);
1881 EXPORT_SYMBOL(tcp_unhash);
1882 EXPORT_SYMBOL(tcp_v4_conn_request);
1883 EXPORT_SYMBOL(tcp_v4_connect);
1884 EXPORT_SYMBOL(tcp_v4_do_rcv);
1885 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1886 EXPORT_SYMBOL(tcp_v4_send_check);
1887 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1888
1889 #ifdef CONFIG_PROC_FS
1890 EXPORT_SYMBOL(tcp_proc_register);
1891 EXPORT_SYMBOL(tcp_proc_unregister);
1892 #endif
1893 EXPORT_SYMBOL(sysctl_local_port_range);
1894 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1895