]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_ipv4.c
Merge remote-tracking branch 'asoc/fix/cs4271' into tmp
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 dst = inet_csk_update_pmtu(sk, mtu);
285 if (!dst)
286 return;
287
288 /* Something is about to be wrong... Remember soft error
289 * for the case, if this connection will not able to recover.
290 */
291 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 sk->sk_err_soft = EMSGSIZE;
293
294 mtu = dst_mtu(dst);
295
296 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 tcp_sync_mss(sk, mtu);
299
300 /* Resend the TCP packet because it's
301 * clear that the old packet has been
302 * dropped. This is the new "fast" path mtu
303 * discovery.
304 */
305 tcp_simple_retransmit(sk);
306 } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313 if (dst)
314 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition. If err < 0 then the socket should
320 * be closed and the error returned to the user. If err > 0
321 * it's just the icmp type << 8 | icmp code. After adjustment
322 * header points to the first 8 bytes of the tcp header. We need
323 * to find the appropriate port.
324 *
325 * The locking strategy used here is very "optimistic". When
326 * someone else accesses the socket the ICMP is just dropped
327 * and for some paths there is no check at all.
328 * A more general error queue to queue errors for later handling
329 * is probably better.
330 *
331 */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 struct inet_connection_sock *icsk;
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 const int type = icmp_hdr(icmp_skb)->type;
341 const int code = icmp_hdr(icmp_skb)->code;
342 struct sock *sk;
343 struct sk_buff *skb;
344 struct request_sock *req;
345 __u32 seq;
346 __u32 remaining;
347 int err;
348 struct net *net = dev_net(icmp_skb->dev);
349
350 if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354
355 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 iph->saddr, th->source, inet_iif(icmp_skb));
357 if (!sk) {
358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 return;
360 }
361 if (sk->sk_state == TCP_TIME_WAIT) {
362 inet_twsk_put(inet_twsk(sk));
363 return;
364 }
365
366 bh_lock_sock(sk);
367 /* If too many ICMPs get dropped on busy
368 * servers this needs to be solved differently.
369 * We do take care of PMTU discovery (RFC1191) special case :
370 * we can receive locally generated ICMP messages while socket is held.
371 */
372 if (sock_owned_by_user(sk) &&
373 type != ICMP_DEST_UNREACH &&
374 code != ICMP_FRAG_NEEDED)
375 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377 if (sk->sk_state == TCP_CLOSE)
378 goto out;
379
380 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382 goto out;
383 }
384
385 icsk = inet_csk(sk);
386 tp = tcp_sk(sk);
387 req = tp->fastopen_rsk;
388 seq = ntohl(th->seq);
389 if (sk->sk_state != TCP_LISTEN &&
390 !between(seq, tp->snd_una, tp->snd_nxt) &&
391 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392 /* For a Fast Open socket, allow seq to be snt_isn. */
393 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394 goto out;
395 }
396
397 switch (type) {
398 case ICMP_REDIRECT:
399 do_redirect(icmp_skb, sk);
400 goto out;
401 case ICMP_SOURCE_QUENCH:
402 /* Just silently ignore these. */
403 goto out;
404 case ICMP_PARAMETERPROB:
405 err = EPROTO;
406 break;
407 case ICMP_DEST_UNREACH:
408 if (code > NR_ICMP_UNREACH)
409 goto out;
410
411 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412 tp->mtu_info = info;
413 if (!sock_owned_by_user(sk)) {
414 tcp_v4_mtu_reduced(sk);
415 } else {
416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 sock_hold(sk);
418 }
419 goto out;
420 }
421
422 err = icmp_err_convert[code].errno;
423 /* check if icmp_skb allows revert of backoff
424 * (see draft-zimmermann-tcp-lcd) */
425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 break;
427 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
428 !icsk->icsk_backoff)
429 break;
430
431 /* XXX (TFO) - revisit the following logic for TFO */
432
433 if (sock_owned_by_user(sk))
434 break;
435
436 icsk->icsk_backoff--;
437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 tcp_bound_rto(sk);
440
441 skb = tcp_write_queue_head(sk);
442 BUG_ON(!skb);
443
444 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447 if (remaining) {
448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 remaining, TCP_RTO_MAX);
450 } else {
451 /* RTO revert clocked out retransmission.
452 * Will retransmit now */
453 tcp_retransmit_timer(sk);
454 }
455
456 break;
457 case ICMP_TIME_EXCEEDED:
458 err = EHOSTUNREACH;
459 break;
460 default:
461 goto out;
462 }
463
464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 * than following the TCP_SYN_RECV case and closing the socket,
466 * we ignore the ICMP error and keep trying like a fully established
467 * socket. Is this the right thing to do?
468 */
469 if (req && req->sk == NULL)
470 goto out;
471
472 switch (sk->sk_state) {
473 struct request_sock *req, **prev;
474 case TCP_LISTEN:
475 if (sock_owned_by_user(sk))
476 goto out;
477
478 req = inet_csk_search_req(sk, &prev, th->dest,
479 iph->daddr, iph->saddr);
480 if (!req)
481 goto out;
482
483 /* ICMPs are not backlogged, hence we cannot get
484 an established socket here.
485 */
486 WARN_ON(req->sk);
487
488 if (seq != tcp_rsk(req)->snt_isn) {
489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 goto out;
491 }
492
493 /*
494 * Still in SYN_RECV, just remove it silently.
495 * There is no good way to pass the error to the newly
496 * created socket, and POSIX does not want network
497 * errors returned from accept().
498 */
499 inet_csk_reqsk_queue_drop(sk, req, prev);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->daddr,
661 ntohs(th->source), inet_iif(skb));
662 /* don't send rst if it can't find key */
663 if (!sk1)
664 return;
665 rcu_read_lock();
666 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667 &ip_hdr(skb)->saddr, AF_INET);
668 if (!key)
669 goto release_sk1;
670
671 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673 goto release_sk1;
674 } else {
675 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676 &ip_hdr(skb)->saddr,
677 AF_INET) : NULL;
678 }
679
680 if (key) {
681 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682 (TCPOPT_NOP << 16) |
683 (TCPOPT_MD5SIG << 8) |
684 TCPOLEN_MD5SIG);
685 /* Update length and the length the header thinks exists */
686 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687 rep.th.doff = arg.iov[0].iov_len / 4;
688
689 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690 key, ip_hdr(skb)->saddr,
691 ip_hdr(skb)->daddr, &rep.th);
692 }
693 #endif
694 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695 ip_hdr(skb)->saddr, /* XXX */
696 arg.iov[0].iov_len, IPPROTO_TCP, 0);
697 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699 /* When socket is gone, all binding information is lost.
700 * routing might fail in this case. No choice here, if we choose to force
701 * input interface, we will misroute in case of asymmetric route.
702 */
703 if (sk)
704 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706 net = dev_net(skb_dst(skb)->dev);
707 arg.tos = ip_hdr(skb)->tos;
708 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716 if (sk1) {
717 rcu_read_unlock();
718 sock_put(sk1);
719 }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724 outside socket context is ugly, certainly. What can I do?
725 */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728 u32 win, u32 ts, int oif,
729 struct tcp_md5sig_key *key,
730 int reply_flags, u8 tos)
731 {
732 const struct tcphdr *th = tcp_hdr(skb);
733 struct {
734 struct tcphdr th;
735 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739 ];
740 } rep;
741 struct ip_reply_arg arg;
742 struct net *net = dev_net(skb_dst(skb)->dev);
743
744 memset(&rep.th, 0, sizeof(struct tcphdr));
745 memset(&arg, 0, sizeof(arg));
746
747 arg.iov[0].iov_base = (unsigned char *)&rep;
748 arg.iov[0].iov_len = sizeof(rep.th);
749 if (ts) {
750 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751 (TCPOPT_TIMESTAMP << 8) |
752 TCPOLEN_TIMESTAMP);
753 rep.opt[1] = htonl(tcp_time_stamp);
754 rep.opt[2] = htonl(ts);
755 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756 }
757
758 /* Swap the send and the receive. */
759 rep.th.dest = th->source;
760 rep.th.source = th->dest;
761 rep.th.doff = arg.iov[0].iov_len / 4;
762 rep.th.seq = htonl(seq);
763 rep.th.ack_seq = htonl(ack);
764 rep.th.ack = 1;
765 rep.th.window = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768 if (key) {
769 int offset = (ts) ? 3 : 0;
770
771 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772 (TCPOPT_NOP << 16) |
773 (TCPOPT_MD5SIG << 8) |
774 TCPOLEN_MD5SIG);
775 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776 rep.th.doff = arg.iov[0].iov_len/4;
777
778 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779 key, ip_hdr(skb)->saddr,
780 ip_hdr(skb)->daddr, &rep.th);
781 }
782 #endif
783 arg.flags = reply_flags;
784 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785 ip_hdr(skb)->saddr, /* XXX */
786 arg.iov[0].iov_len, IPPROTO_TCP, 0);
787 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788 if (oif)
789 arg.bound_dev_if = oif;
790 arg.tos = tos;
791 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799 struct inet_timewait_sock *tw = inet_twsk(sk);
800 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804 tcptw->tw_ts_recent,
805 tw->tw_bound_dev_if,
806 tcp_twsk_md5_key(tcptw),
807 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 tw->tw_tos
809 );
810
811 inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815 struct request_sock *req)
816 {
817 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819 */
820 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823 req->ts_recent,
824 0,
825 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826 AF_INET),
827 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828 ip_hdr(skb)->tos);
829 }
830
831 /*
832 * Send a SYN-ACK after having received a SYN.
833 * This still operates on a request_sock only, not on a big
834 * socket.
835 */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837 struct request_sock *req,
838 struct request_values *rvp,
839 u16 queue_mapping,
840 bool nocache)
841 {
842 const struct inet_request_sock *ireq = inet_rsk(req);
843 struct flowi4 fl4;
844 int err = -1;
845 struct sk_buff * skb;
846
847 /* First, grab a route. */
848 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849 return -1;
850
851 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853 if (skb) {
854 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856 skb_set_queue_mapping(skb, queue_mapping);
857 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858 ireq->rmt_addr,
859 ireq->opt);
860 err = net_xmit_eval(err);
861 if (!tcp_rsk(req)->snt_synack && !err)
862 tcp_rsk(req)->snt_synack = tcp_time_stamp;
863 }
864
865 return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869 struct request_values *rvp)
870 {
871 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873 if (!res)
874 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875 return res;
876 }
877
878 /*
879 * IPv4 request_sock destructor.
880 */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883 kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887 * Return true if a syncookie should be sent
888 */
889 bool tcp_syn_flood_action(struct sock *sk,
890 const struct sk_buff *skb,
891 const char *proto)
892 {
893 const char *msg = "Dropping request";
894 bool want_cookie = false;
895 struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900 if (sysctl_tcp_syncookies) {
901 msg = "Sending cookies";
902 want_cookie = true;
903 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904 } else
905 #endif
906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909 if (!lopt->synflood_warned) {
910 lopt->synflood_warned = 1;
911 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
912 proto, ntohs(tcp_hdr(skb)->dest), msg);
913 }
914 return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919 * Save and compile IPv4 options into the request_sock if needed.
920 */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923 const struct ip_options *opt = &(IPCB(skb)->opt);
924 struct ip_options_rcu *dopt = NULL;
925
926 if (opt && opt->optlen) {
927 int opt_size = sizeof(*dopt) + opt->optlen;
928
929 dopt = kmalloc(opt_size, GFP_ATOMIC);
930 if (dopt) {
931 if (ip_options_echo(&dopt->opt, skb)) {
932 kfree(dopt);
933 dopt = NULL;
934 }
935 }
936 }
937 return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942 * RFC2385 MD5 checksumming requires a mapping of
943 * IP address->MD5 Key.
944 * We need to maintain these in the sk structure.
945 */
946
947 /* Find the Key structure for an address. */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949 const union tcp_md5_addr *addr,
950 int family)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 struct tcp_md5sig_key *key;
954 struct hlist_node *pos;
955 unsigned int size = sizeof(struct in_addr);
956 struct tcp_md5sig_info *md5sig;
957
958 /* caller either holds rcu_read_lock() or socket lock */
959 md5sig = rcu_dereference_check(tp->md5sig_info,
960 sock_owned_by_user(sk) ||
961 lockdep_is_held(&sk->sk_lock.slock));
962 if (!md5sig)
963 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 if (family == AF_INET6)
966 size = sizeof(struct in6_addr);
967 #endif
968 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969 if (key->family != family)
970 continue;
971 if (!memcmp(&key->addr, addr, size))
972 return key;
973 }
974 return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 struct sock *addr_sk)
980 {
981 union tcp_md5_addr *addr;
982
983 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 struct request_sock *req)
990 {
991 union tcp_md5_addr *addr;
992
993 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 /* Add Key to the list */
1002 struct tcp_md5sig_key *key;
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *md5sig;
1005
1006 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007 if (key) {
1008 /* Pre-existing entry - just update that one. */
1009 memcpy(key->key, newkey, newkeylen);
1010 key->keylen = newkeylen;
1011 return 0;
1012 }
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 sock_owned_by_user(sk));
1016 if (!md5sig) {
1017 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 if (!md5sig)
1019 return -ENOMEM;
1020
1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 INIT_HLIST_HEAD(&md5sig->head);
1023 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 }
1025
1026 key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 if (!key)
1028 return -ENOMEM;
1029 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 sock_kfree_s(sk, key, sizeof(*key));
1031 return -ENOMEM;
1032 }
1033
1034 memcpy(key->key, newkey, newkeylen);
1035 key->keylen = newkeylen;
1036 key->family = family;
1037 memcpy(&key->addr, addr,
1038 (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 sizeof(struct in_addr));
1040 hlist_add_head_rcu(&key->node, &md5sig->head);
1041 return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct tcp_md5sig_key *key;
1049 struct tcp_md5sig_info *md5sig;
1050
1051 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052 if (!key)
1053 return -ENOENT;
1054 hlist_del_rcu(&key->node);
1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 kfree_rcu(key, rcu);
1057 md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 sock_owned_by_user(sk));
1059 if (hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 struct tcp_sock *tp = tcp_sk(sk);
1068 struct tcp_md5sig_key *key;
1069 struct hlist_node *pos, *n;
1070 struct tcp_md5sig_info *md5sig;
1071
1072 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074 if (!hlist_empty(&md5sig->head))
1075 tcp_free_md5sig_pool();
1076 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077 hlist_del_rcu(&key->node);
1078 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 kfree_rcu(key, rcu);
1080 }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 int optlen)
1085 {
1086 struct tcp_md5sig cmd;
1087 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089 if (optlen < sizeof(cmd))
1090 return -EINVAL;
1091
1092 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 return -EFAULT;
1094
1095 if (sin->sin_family != AF_INET)
1096 return -EINVAL;
1097
1098 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 AF_INET);
1101
1102 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 return -EINVAL;
1104
1105 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 struct tcp4_pseudohdr *bp;
1114 struct scatterlist sg;
1115
1116 bp = &hp->md5_blk.ip4;
1117
1118 /*
1119 * 1. the TCP pseudo-header (in the order: source IP address,
1120 * destination IP address, zero-padded protocol number, and
1121 * segment length)
1122 */
1123 bp->saddr = saddr;
1124 bp->daddr = daddr;
1125 bp->pad = 0;
1126 bp->protocol = IPPROTO_TCP;
1127 bp->len = cpu_to_be16(nbytes);
1128
1129 sg_init_one(&sg, bp, sizeof(*bp));
1130 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 struct tcp_md5sig_pool *hp;
1137 struct hash_desc *desc;
1138
1139 hp = tcp_get_md5sig_pool();
1140 if (!hp)
1141 goto clear_hash_noput;
1142 desc = &hp->md5_desc;
1143
1144 if (crypto_hash_init(desc))
1145 goto clear_hash;
1146 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 goto clear_hash;
1148 if (tcp_md5_hash_header(hp, th))
1149 goto clear_hash;
1150 if (tcp_md5_hash_key(hp, key))
1151 goto clear_hash;
1152 if (crypto_hash_final(desc, md5_hash))
1153 goto clear_hash;
1154
1155 tcp_put_md5sig_pool();
1156 return 0;
1157
1158 clear_hash:
1159 tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 memset(md5_hash, 0, 16);
1162 return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 const struct sock *sk, const struct request_sock *req,
1167 const struct sk_buff *skb)
1168 {
1169 struct tcp_md5sig_pool *hp;
1170 struct hash_desc *desc;
1171 const struct tcphdr *th = tcp_hdr(skb);
1172 __be32 saddr, daddr;
1173
1174 if (sk) {
1175 saddr = inet_sk(sk)->inet_saddr;
1176 daddr = inet_sk(sk)->inet_daddr;
1177 } else if (req) {
1178 saddr = inet_rsk(req)->loc_addr;
1179 daddr = inet_rsk(req)->rmt_addr;
1180 } else {
1181 const struct iphdr *iph = ip_hdr(skb);
1182 saddr = iph->saddr;
1183 daddr = iph->daddr;
1184 }
1185
1186 hp = tcp_get_md5sig_pool();
1187 if (!hp)
1188 goto clear_hash_noput;
1189 desc = &hp->md5_desc;
1190
1191 if (crypto_hash_init(desc))
1192 goto clear_hash;
1193
1194 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 goto clear_hash;
1196 if (tcp_md5_hash_header(hp, th))
1197 goto clear_hash;
1198 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 goto clear_hash;
1200 if (tcp_md5_hash_key(hp, key))
1201 goto clear_hash;
1202 if (crypto_hash_final(desc, md5_hash))
1203 goto clear_hash;
1204
1205 tcp_put_md5sig_pool();
1206 return 0;
1207
1208 clear_hash:
1209 tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 memset(md5_hash, 0, 16);
1212 return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 /*
1219 * This gets called for each TCP segment that arrives
1220 * so we want to be efficient.
1221 * We have 3 drop cases:
1222 * o No MD5 hash and one expected.
1223 * o MD5 hash and we're not expecting one.
1224 * o MD5 hash and its wrong.
1225 */
1226 const __u8 *hash_location = NULL;
1227 struct tcp_md5sig_key *hash_expected;
1228 const struct iphdr *iph = ip_hdr(skb);
1229 const struct tcphdr *th = tcp_hdr(skb);
1230 int genhash;
1231 unsigned char newhash[16];
1232
1233 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 AF_INET);
1235 hash_location = tcp_parse_md5sig_option(th);
1236
1237 /* We've parsed the options - do we have a hash? */
1238 if (!hash_expected && !hash_location)
1239 return false;
1240
1241 if (hash_expected && !hash_location) {
1242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 return true;
1244 }
1245
1246 if (!hash_expected && hash_location) {
1247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 return true;
1249 }
1250
1251 /* Okay, so this is hash_expected and hash_location -
1252 * so we need to calculate the checksum.
1253 */
1254 genhash = tcp_v4_md5_hash_skb(newhash,
1255 hash_expected,
1256 NULL, NULL, skb);
1257
1258 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 &iph->saddr, ntohs(th->source),
1261 &iph->daddr, ntohs(th->dest),
1262 genhash ? " tcp_v4_calc_md5_hash failed"
1263 : "");
1264 return true;
1265 }
1266 return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 .family = PF_INET,
1273 .obj_size = sizeof(struct tcp_request_sock),
1274 .rtx_syn_ack = tcp_v4_rtx_synack,
1275 .send_ack = tcp_v4_reqsk_send_ack,
1276 .destructor = tcp_v4_reqsk_destructor,
1277 .send_reset = tcp_v4_send_reset,
1278 .syn_ack_timeout = tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1284 .calc_md5_hash = tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 struct request_sock *req,
1290 struct tcp_fastopen_cookie *foc,
1291 struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 bool skip_cookie = false;
1294 struct fastopen_queue *fastopenq;
1295
1296 if (likely(!fastopen_cookie_present(foc))) {
1297 /* See include/net/tcp.h for the meaning of these knobs */
1298 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 skip_cookie = true; /* no cookie to validate */
1302 else
1303 return false;
1304 }
1305 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 /* A FO option is present; bump the counter. */
1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309 /* Make sure the listener has enabled fastopen, and we don't
1310 * exceed the max # of pending TFO requests allowed before trying
1311 * to validating the cookie in order to avoid burning CPU cycles
1312 * unnecessarily.
1313 *
1314 * XXX (TFO) - The implication of checking the max_qlen before
1315 * processing a cookie request is that clients can't differentiate
1316 * between qlen overflow causing Fast Open to be disabled
1317 * temporarily vs a server not supporting Fast Open at all.
1318 */
1319 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 fastopenq == NULL || fastopenq->max_qlen == 0)
1321 return false;
1322
1323 if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 struct request_sock *req1;
1325 spin_lock(&fastopenq->lock);
1326 req1 = fastopenq->rskq_rst_head;
1327 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 spin_unlock(&fastopenq->lock);
1329 NET_INC_STATS_BH(sock_net(sk),
1330 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 foc->len = -1;
1333 return false;
1334 }
1335 fastopenq->rskq_rst_head = req1->dl_next;
1336 fastopenq->qlen--;
1337 spin_unlock(&fastopenq->lock);
1338 reqsk_free(req1);
1339 }
1340 if (skip_cookie) {
1341 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 return true;
1343 }
1344 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 memcmp(&foc->val[0], &valid_foc->val[0],
1349 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 return false;
1351 valid_foc->len = -1;
1352 }
1353 /* Acknowledge the data received from the peer. */
1354 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 return true;
1356 } else if (foc->len == 0) { /* Client requesting a cookie */
1357 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 NET_INC_STATS_BH(sock_net(sk),
1359 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 } else {
1361 /* Client sent a cookie with wrong size. Treat it
1362 * the same as invalid and return a valid one.
1363 */
1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 }
1366 return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 struct sk_buff *skb,
1371 struct sk_buff *skb_synack,
1372 struct request_sock *req,
1373 struct request_values *rvp)
1374 {
1375 struct tcp_sock *tp = tcp_sk(sk);
1376 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377 const struct inet_request_sock *ireq = inet_rsk(req);
1378 struct sock *child;
1379 int err;
1380
1381 req->num_retrans = 0;
1382 req->num_timeout = 0;
1383 req->sk = NULL;
1384
1385 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386 if (child == NULL) {
1387 NET_INC_STATS_BH(sock_net(sk),
1388 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389 kfree_skb(skb_synack);
1390 return -1;
1391 }
1392 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393 ireq->rmt_addr, ireq->opt);
1394 err = net_xmit_eval(err);
1395 if (!err)
1396 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397 /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399 spin_lock(&queue->fastopenq->lock);
1400 queue->fastopenq->qlen++;
1401 spin_unlock(&queue->fastopenq->lock);
1402
1403 /* Initialize the child socket. Have to fix some values to take
1404 * into account the child is a Fast Open socket and is created
1405 * only out of the bits carried in the SYN packet.
1406 */
1407 tp = tcp_sk(child);
1408
1409 tp->fastopen_rsk = req;
1410 /* Do a hold on the listner sk so that if the listener is being
1411 * closed, the child that has been accepted can live on and still
1412 * access listen_lock.
1413 */
1414 sock_hold(sk);
1415 tcp_rsk(req)->listener = sk;
1416
1417 /* RFC1323: The window in SYN & SYN/ACK segments is never
1418 * scaled. So correct it appropriately.
1419 */
1420 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422 /* Activate the retrans timer so that SYNACK can be retransmitted.
1423 * The request socket is not added to the SYN table of the parent
1424 * because it's been added to the accept queue directly.
1425 */
1426 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429 /* Add the child socket directly into the accept queue */
1430 inet_csk_reqsk_queue_add(sk, req, child);
1431
1432 /* Now finish processing the fastopen child socket. */
1433 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434 tcp_init_congestion_control(child);
1435 tcp_mtup_init(child);
1436 tcp_init_buffer_space(child);
1437 tcp_init_metrics(child);
1438
1439 /* Queue the data carried in the SYN packet. We need to first
1440 * bump skb's refcnt because the caller will attempt to free it.
1441 *
1442 * XXX (TFO) - we honor a zero-payload TFO request for now.
1443 * (Any reason not to?)
1444 */
1445 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446 /* Don't queue the skb if there is no payload in SYN.
1447 * XXX (TFO) - How about SYN+FIN?
1448 */
1449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450 } else {
1451 skb = skb_get(skb);
1452 skb_dst_drop(skb);
1453 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454 skb_set_owner_r(skb, child);
1455 __skb_queue_tail(&child->sk_receive_queue, skb);
1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 tp->syn_data_acked = 1;
1458 }
1459 sk->sk_data_ready(sk, 0);
1460 bh_unlock_sock(child);
1461 sock_put(child);
1462 WARN_ON(req->sk == NULL);
1463 return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468 struct tcp_extend_values tmp_ext;
1469 struct tcp_options_received tmp_opt;
1470 const u8 *hash_location;
1471 struct request_sock *req;
1472 struct inet_request_sock *ireq;
1473 struct tcp_sock *tp = tcp_sk(sk);
1474 struct dst_entry *dst = NULL;
1475 __be32 saddr = ip_hdr(skb)->saddr;
1476 __be32 daddr = ip_hdr(skb)->daddr;
1477 __u32 isn = TCP_SKB_CB(skb)->when;
1478 bool want_cookie = false;
1479 struct flowi4 fl4;
1480 struct tcp_fastopen_cookie foc = { .len = -1 };
1481 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482 struct sk_buff *skb_synack;
1483 int do_fastopen;
1484
1485 /* Never answer to SYNs send to broadcast or multicast */
1486 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487 goto drop;
1488
1489 /* TW buckets are converted to open requests without
1490 * limitations, they conserve resources and peer is
1491 * evidently real one.
1492 */
1493 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495 if (!want_cookie)
1496 goto drop;
1497 }
1498
1499 /* Accept backlog is full. If we have already queued enough
1500 * of warm entries in syn queue, drop request. It is better than
1501 * clogging syn queue with openreqs with exponentially increasing
1502 * timeout.
1503 */
1504 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505 goto drop;
1506
1507 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508 if (!req)
1509 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515 tcp_clear_options(&tmp_opt);
1516 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517 tmp_opt.user_mss = tp->rx_opt.user_mss;
1518 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519 want_cookie ? NULL : &foc);
1520
1521 if (tmp_opt.cookie_plus > 0 &&
1522 tmp_opt.saw_tstamp &&
1523 !tp->rx_opt.cookie_out_never &&
1524 (sysctl_tcp_cookie_size > 0 ||
1525 (tp->cookie_values != NULL &&
1526 tp->cookie_values->cookie_desired > 0))) {
1527 u8 *c;
1528 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530
1531 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532 goto drop_and_release;
1533
1534 /* Secret recipe starts with IP addresses */
1535 *mess++ ^= (__force u32)daddr;
1536 *mess++ ^= (__force u32)saddr;
1537
1538 /* plus variable length Initiator Cookie */
1539 c = (u8 *)mess;
1540 while (l-- > 0)
1541 *c++ ^= *hash_location++;
1542
1543 want_cookie = false; /* not our kind of cookie */
1544 tmp_ext.cookie_out_never = 0; /* false */
1545 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546 } else if (!tp->rx_opt.cookie_in_always) {
1547 /* redundant indications, but ensure initialization. */
1548 tmp_ext.cookie_out_never = 1; /* true */
1549 tmp_ext.cookie_plus = 0;
1550 } else {
1551 goto drop_and_release;
1552 }
1553 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554
1555 if (want_cookie && !tmp_opt.saw_tstamp)
1556 tcp_clear_options(&tmp_opt);
1557
1558 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559 tcp_openreq_init(req, &tmp_opt, skb);
1560
1561 ireq = inet_rsk(req);
1562 ireq->loc_addr = daddr;
1563 ireq->rmt_addr = saddr;
1564 ireq->no_srccheck = inet_sk(sk)->transparent;
1565 ireq->opt = tcp_v4_save_options(skb);
1566
1567 if (security_inet_conn_request(sk, skb, req))
1568 goto drop_and_free;
1569
1570 if (!want_cookie || tmp_opt.tstamp_ok)
1571 TCP_ECN_create_request(req, skb);
1572
1573 if (want_cookie) {
1574 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575 req->cookie_ts = tmp_opt.tstamp_ok;
1576 } else if (!isn) {
1577 /* VJ's idea. We save last timestamp seen
1578 * from the destination in peer table, when entering
1579 * state TIME-WAIT, and check against it before
1580 * accepting new connection request.
1581 *
1582 * If "isn" is not zero, this request hit alive
1583 * timewait bucket, so that all the necessary checks
1584 * are made in the function processing timewait state.
1585 */
1586 if (tmp_opt.saw_tstamp &&
1587 tcp_death_row.sysctl_tw_recycle &&
1588 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589 fl4.daddr == saddr) {
1590 if (!tcp_peer_is_proven(req, dst, true)) {
1591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592 goto drop_and_release;
1593 }
1594 }
1595 /* Kill the following clause, if you dislike this way. */
1596 else if (!sysctl_tcp_syncookies &&
1597 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598 (sysctl_max_syn_backlog >> 2)) &&
1599 !tcp_peer_is_proven(req, dst, false)) {
1600 /* Without syncookies last quarter of
1601 * backlog is filled with destinations,
1602 * proven to be alive.
1603 * It means that we continue to communicate
1604 * to destinations, already remembered
1605 * to the moment of synflood.
1606 */
1607 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608 &saddr, ntohs(tcp_hdr(skb)->source));
1609 goto drop_and_release;
1610 }
1611
1612 isn = tcp_v4_init_sequence(skb);
1613 }
1614 tcp_rsk(req)->snt_isn = isn;
1615
1616 if (dst == NULL) {
1617 dst = inet_csk_route_req(sk, &fl4, req);
1618 if (dst == NULL)
1619 goto drop_and_free;
1620 }
1621 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622
1623 /* We don't call tcp_v4_send_synack() directly because we need
1624 * to make sure a child socket can be created successfully before
1625 * sending back synack!
1626 *
1627 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628 * (or better yet, call tcp_send_synack() in the child context
1629 * directly, but will have to fix bunch of other code first)
1630 * after syn_recv_sock() except one will need to first fix the
1631 * latter to remove its dependency on the current implementation
1632 * of tcp_v4_send_synack()->tcp_select_initial_window().
1633 */
1634 skb_synack = tcp_make_synack(sk, dst, req,
1635 (struct request_values *)&tmp_ext,
1636 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637
1638 if (skb_synack) {
1639 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641 } else
1642 goto drop_and_free;
1643
1644 if (likely(!do_fastopen)) {
1645 int err;
1646 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647 ireq->rmt_addr, ireq->opt);
1648 err = net_xmit_eval(err);
1649 if (err || want_cookie)
1650 goto drop_and_free;
1651
1652 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653 tcp_rsk(req)->listener = NULL;
1654 /* Add the request_sock to the SYN table */
1655 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656 if (fastopen_cookie_present(&foc) && foc.len != 0)
1657 NET_INC_STATS_BH(sock_net(sk),
1658 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660 (struct request_values *)&tmp_ext))
1661 goto drop_and_free;
1662
1663 return 0;
1664
1665 drop_and_release:
1666 dst_release(dst);
1667 drop_and_free:
1668 reqsk_free(req);
1669 drop:
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673
1674
1675 /*
1676 * The three way handshake has completed - we got a valid synack -
1677 * now create the new socket.
1678 */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680 struct request_sock *req,
1681 struct dst_entry *dst)
1682 {
1683 struct inet_request_sock *ireq;
1684 struct inet_sock *newinet;
1685 struct tcp_sock *newtp;
1686 struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688 struct tcp_md5sig_key *key;
1689 #endif
1690 struct ip_options_rcu *inet_opt;
1691
1692 if (sk_acceptq_is_full(sk))
1693 goto exit_overflow;
1694
1695 newsk = tcp_create_openreq_child(sk, req, skb);
1696 if (!newsk)
1697 goto exit_nonewsk;
1698
1699 newsk->sk_gso_type = SKB_GSO_TCPV4;
1700 inet_sk_rx_dst_set(newsk, skb);
1701
1702 newtp = tcp_sk(newsk);
1703 newinet = inet_sk(newsk);
1704 ireq = inet_rsk(req);
1705 newinet->inet_daddr = ireq->rmt_addr;
1706 newinet->inet_rcv_saddr = ireq->loc_addr;
1707 newinet->inet_saddr = ireq->loc_addr;
1708 inet_opt = ireq->opt;
1709 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710 ireq->opt = NULL;
1711 newinet->mc_index = inet_iif(skb);
1712 newinet->mc_ttl = ip_hdr(skb)->ttl;
1713 newinet->rcv_tos = ip_hdr(skb)->tos;
1714 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715 if (inet_opt)
1716 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717 newinet->inet_id = newtp->write_seq ^ jiffies;
1718
1719 if (!dst) {
1720 dst = inet_csk_route_child_sock(sk, newsk, req);
1721 if (!dst)
1722 goto put_and_exit;
1723 } else {
1724 /* syncookie case : see end of cookie_v4_check() */
1725 }
1726 sk_setup_caps(newsk, dst);
1727
1728 tcp_mtup_init(newsk);
1729 tcp_sync_mss(newsk, dst_mtu(dst));
1730 newtp->advmss = dst_metric_advmss(dst);
1731 if (tcp_sk(sk)->rx_opt.user_mss &&
1732 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734
1735 tcp_initialize_rcv_mss(newsk);
1736 tcp_synack_rtt_meas(newsk, req);
1737 newtp->total_retrans = req->num_retrans;
1738
1739 #ifdef CONFIG_TCP_MD5SIG
1740 /* Copy over the MD5 key from the original socket */
1741 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742 AF_INET);
1743 if (key != NULL) {
1744 /*
1745 * We're using one, so create a matching key
1746 * on the newsk structure. If we fail to get
1747 * memory, then we end up not copying the key
1748 * across. Shucks.
1749 */
1750 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753 }
1754 #endif
1755
1756 if (__inet_inherit_port(sk, newsk) < 0)
1757 goto put_and_exit;
1758 __inet_hash_nolisten(newsk, NULL);
1759
1760 return newsk;
1761
1762 exit_overflow:
1763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765 dst_release(dst);
1766 exit:
1767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768 return NULL;
1769 put_and_exit:
1770 inet_csk_prepare_forced_close(newsk);
1771 tcp_done(newsk);
1772 goto exit;
1773 }
1774 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1775
1776 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1777 {
1778 struct tcphdr *th = tcp_hdr(skb);
1779 const struct iphdr *iph = ip_hdr(skb);
1780 struct sock *nsk;
1781 struct request_sock **prev;
1782 /* Find possible connection requests. */
1783 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1784 iph->saddr, iph->daddr);
1785 if (req)
1786 return tcp_check_req(sk, skb, req, prev, false);
1787
1788 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1789 th->source, iph->daddr, th->dest, inet_iif(skb));
1790
1791 if (nsk) {
1792 if (nsk->sk_state != TCP_TIME_WAIT) {
1793 bh_lock_sock(nsk);
1794 return nsk;
1795 }
1796 inet_twsk_put(inet_twsk(nsk));
1797 return NULL;
1798 }
1799
1800 #ifdef CONFIG_SYN_COOKIES
1801 if (!th->syn)
1802 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1803 #endif
1804 return sk;
1805 }
1806
1807 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1808 {
1809 const struct iphdr *iph = ip_hdr(skb);
1810
1811 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1812 if (!tcp_v4_check(skb->len, iph->saddr,
1813 iph->daddr, skb->csum)) {
1814 skb->ip_summed = CHECKSUM_UNNECESSARY;
1815 return 0;
1816 }
1817 }
1818
1819 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1820 skb->len, IPPROTO_TCP, 0);
1821
1822 if (skb->len <= 76) {
1823 return __skb_checksum_complete(skb);
1824 }
1825 return 0;
1826 }
1827
1828
1829 /* The socket must have it's spinlock held when we get
1830 * here.
1831 *
1832 * We have a potential double-lock case here, so even when
1833 * doing backlog processing we use the BH locking scheme.
1834 * This is because we cannot sleep with the original spinlock
1835 * held.
1836 */
1837 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1838 {
1839 struct sock *rsk;
1840 #ifdef CONFIG_TCP_MD5SIG
1841 /*
1842 * We really want to reject the packet as early as possible
1843 * if:
1844 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1845 * o There is an MD5 option and we're not expecting one
1846 */
1847 if (tcp_v4_inbound_md5_hash(sk, skb))
1848 goto discard;
1849 #endif
1850
1851 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1852 struct dst_entry *dst = sk->sk_rx_dst;
1853
1854 sock_rps_save_rxhash(sk, skb);
1855 if (dst) {
1856 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1857 dst->ops->check(dst, 0) == NULL) {
1858 dst_release(dst);
1859 sk->sk_rx_dst = NULL;
1860 }
1861 }
1862 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1863 rsk = sk;
1864 goto reset;
1865 }
1866 return 0;
1867 }
1868
1869 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1870 goto csum_err;
1871
1872 if (sk->sk_state == TCP_LISTEN) {
1873 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1874 if (!nsk)
1875 goto discard;
1876
1877 if (nsk != sk) {
1878 sock_rps_save_rxhash(nsk, skb);
1879 if (tcp_child_process(sk, nsk, skb)) {
1880 rsk = nsk;
1881 goto reset;
1882 }
1883 return 0;
1884 }
1885 } else
1886 sock_rps_save_rxhash(sk, skb);
1887
1888 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1889 rsk = sk;
1890 goto reset;
1891 }
1892 return 0;
1893
1894 reset:
1895 tcp_v4_send_reset(rsk, skb);
1896 discard:
1897 kfree_skb(skb);
1898 /* Be careful here. If this function gets more complicated and
1899 * gcc suffers from register pressure on the x86, sk (in %ebx)
1900 * might be destroyed here. This current version compiles correctly,
1901 * but you have been warned.
1902 */
1903 return 0;
1904
1905 csum_err:
1906 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1907 goto discard;
1908 }
1909 EXPORT_SYMBOL(tcp_v4_do_rcv);
1910
1911 void tcp_v4_early_demux(struct sk_buff *skb)
1912 {
1913 const struct iphdr *iph;
1914 const struct tcphdr *th;
1915 struct sock *sk;
1916
1917 if (skb->pkt_type != PACKET_HOST)
1918 return;
1919
1920 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1921 return;
1922
1923 iph = ip_hdr(skb);
1924 th = tcp_hdr(skb);
1925
1926 if (th->doff < sizeof(struct tcphdr) / 4)
1927 return;
1928
1929 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1930 iph->saddr, th->source,
1931 iph->daddr, ntohs(th->dest),
1932 skb->skb_iif);
1933 if (sk) {
1934 skb->sk = sk;
1935 skb->destructor = sock_edemux;
1936 if (sk->sk_state != TCP_TIME_WAIT) {
1937 struct dst_entry *dst = sk->sk_rx_dst;
1938
1939 if (dst)
1940 dst = dst_check(dst, 0);
1941 if (dst &&
1942 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1943 skb_dst_set_noref(skb, dst);
1944 }
1945 }
1946 }
1947
1948 /*
1949 * From tcp_input.c
1950 */
1951
1952 int tcp_v4_rcv(struct sk_buff *skb)
1953 {
1954 const struct iphdr *iph;
1955 const struct tcphdr *th;
1956 struct sock *sk;
1957 int ret;
1958 struct net *net = dev_net(skb->dev);
1959
1960 if (skb->pkt_type != PACKET_HOST)
1961 goto discard_it;
1962
1963 /* Count it even if it's bad */
1964 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1965
1966 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1967 goto discard_it;
1968
1969 th = tcp_hdr(skb);
1970
1971 if (th->doff < sizeof(struct tcphdr) / 4)
1972 goto bad_packet;
1973 if (!pskb_may_pull(skb, th->doff * 4))
1974 goto discard_it;
1975
1976 /* An explanation is required here, I think.
1977 * Packet length and doff are validated by header prediction,
1978 * provided case of th->doff==0 is eliminated.
1979 * So, we defer the checks. */
1980 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1981 goto bad_packet;
1982
1983 th = tcp_hdr(skb);
1984 iph = ip_hdr(skb);
1985 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1986 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1987 skb->len - th->doff * 4);
1988 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1989 TCP_SKB_CB(skb)->when = 0;
1990 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1991 TCP_SKB_CB(skb)->sacked = 0;
1992
1993 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1994 if (!sk)
1995 goto no_tcp_socket;
1996
1997 process:
1998 if (sk->sk_state == TCP_TIME_WAIT)
1999 goto do_time_wait;
2000
2001 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2002 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2003 goto discard_and_relse;
2004 }
2005
2006 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2007 goto discard_and_relse;
2008 nf_reset(skb);
2009
2010 if (sk_filter(sk, skb))
2011 goto discard_and_relse;
2012
2013 skb->dev = NULL;
2014
2015 bh_lock_sock_nested(sk);
2016 ret = 0;
2017 if (!sock_owned_by_user(sk)) {
2018 #ifdef CONFIG_NET_DMA
2019 struct tcp_sock *tp = tcp_sk(sk);
2020 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2021 tp->ucopy.dma_chan = net_dma_find_channel();
2022 if (tp->ucopy.dma_chan)
2023 ret = tcp_v4_do_rcv(sk, skb);
2024 else
2025 #endif
2026 {
2027 if (!tcp_prequeue(sk, skb))
2028 ret = tcp_v4_do_rcv(sk, skb);
2029 }
2030 } else if (unlikely(sk_add_backlog(sk, skb,
2031 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2032 bh_unlock_sock(sk);
2033 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2034 goto discard_and_relse;
2035 }
2036 bh_unlock_sock(sk);
2037
2038 sock_put(sk);
2039
2040 return ret;
2041
2042 no_tcp_socket:
2043 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2044 goto discard_it;
2045
2046 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2047 bad_packet:
2048 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2049 } else {
2050 tcp_v4_send_reset(NULL, skb);
2051 }
2052
2053 discard_it:
2054 /* Discard frame. */
2055 kfree_skb(skb);
2056 return 0;
2057
2058 discard_and_relse:
2059 sock_put(sk);
2060 goto discard_it;
2061
2062 do_time_wait:
2063 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2064 inet_twsk_put(inet_twsk(sk));
2065 goto discard_it;
2066 }
2067
2068 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2069 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2070 inet_twsk_put(inet_twsk(sk));
2071 goto discard_it;
2072 }
2073 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2074 case TCP_TW_SYN: {
2075 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2076 &tcp_hashinfo,
2077 iph->daddr, th->dest,
2078 inet_iif(skb));
2079 if (sk2) {
2080 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2081 inet_twsk_put(inet_twsk(sk));
2082 sk = sk2;
2083 goto process;
2084 }
2085 /* Fall through to ACK */
2086 }
2087 case TCP_TW_ACK:
2088 tcp_v4_timewait_ack(sk, skb);
2089 break;
2090 case TCP_TW_RST:
2091 goto no_tcp_socket;
2092 case TCP_TW_SUCCESS:;
2093 }
2094 goto discard_it;
2095 }
2096
2097 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2098 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2099 .twsk_unique = tcp_twsk_unique,
2100 .twsk_destructor= tcp_twsk_destructor,
2101 };
2102
2103 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2104 {
2105 struct dst_entry *dst = skb_dst(skb);
2106
2107 dst_hold(dst);
2108 sk->sk_rx_dst = dst;
2109 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2110 }
2111 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2112
2113 const struct inet_connection_sock_af_ops ipv4_specific = {
2114 .queue_xmit = ip_queue_xmit,
2115 .send_check = tcp_v4_send_check,
2116 .rebuild_header = inet_sk_rebuild_header,
2117 .sk_rx_dst_set = inet_sk_rx_dst_set,
2118 .conn_request = tcp_v4_conn_request,
2119 .syn_recv_sock = tcp_v4_syn_recv_sock,
2120 .net_header_len = sizeof(struct iphdr),
2121 .setsockopt = ip_setsockopt,
2122 .getsockopt = ip_getsockopt,
2123 .addr2sockaddr = inet_csk_addr2sockaddr,
2124 .sockaddr_len = sizeof(struct sockaddr_in),
2125 .bind_conflict = inet_csk_bind_conflict,
2126 #ifdef CONFIG_COMPAT
2127 .compat_setsockopt = compat_ip_setsockopt,
2128 .compat_getsockopt = compat_ip_getsockopt,
2129 #endif
2130 };
2131 EXPORT_SYMBOL(ipv4_specific);
2132
2133 #ifdef CONFIG_TCP_MD5SIG
2134 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2135 .md5_lookup = tcp_v4_md5_lookup,
2136 .calc_md5_hash = tcp_v4_md5_hash_skb,
2137 .md5_parse = tcp_v4_parse_md5_keys,
2138 };
2139 #endif
2140
2141 /* NOTE: A lot of things set to zero explicitly by call to
2142 * sk_alloc() so need not be done here.
2143 */
2144 static int tcp_v4_init_sock(struct sock *sk)
2145 {
2146 struct inet_connection_sock *icsk = inet_csk(sk);
2147
2148 tcp_init_sock(sk);
2149
2150 icsk->icsk_af_ops = &ipv4_specific;
2151
2152 #ifdef CONFIG_TCP_MD5SIG
2153 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2154 #endif
2155
2156 return 0;
2157 }
2158
2159 void tcp_v4_destroy_sock(struct sock *sk)
2160 {
2161 struct tcp_sock *tp = tcp_sk(sk);
2162
2163 tcp_clear_xmit_timers(sk);
2164
2165 tcp_cleanup_congestion_control(sk);
2166
2167 /* Cleanup up the write buffer. */
2168 tcp_write_queue_purge(sk);
2169
2170 /* Cleans up our, hopefully empty, out_of_order_queue. */
2171 __skb_queue_purge(&tp->out_of_order_queue);
2172
2173 #ifdef CONFIG_TCP_MD5SIG
2174 /* Clean up the MD5 key list, if any */
2175 if (tp->md5sig_info) {
2176 tcp_clear_md5_list(sk);
2177 kfree_rcu(tp->md5sig_info, rcu);
2178 tp->md5sig_info = NULL;
2179 }
2180 #endif
2181
2182 #ifdef CONFIG_NET_DMA
2183 /* Cleans up our sk_async_wait_queue */
2184 __skb_queue_purge(&sk->sk_async_wait_queue);
2185 #endif
2186
2187 /* Clean prequeue, it must be empty really */
2188 __skb_queue_purge(&tp->ucopy.prequeue);
2189
2190 /* Clean up a referenced TCP bind bucket. */
2191 if (inet_csk(sk)->icsk_bind_hash)
2192 inet_put_port(sk);
2193
2194 /* TCP Cookie Transactions */
2195 if (tp->cookie_values != NULL) {
2196 kref_put(&tp->cookie_values->kref,
2197 tcp_cookie_values_release);
2198 tp->cookie_values = NULL;
2199 }
2200 BUG_ON(tp->fastopen_rsk != NULL);
2201
2202 /* If socket is aborted during connect operation */
2203 tcp_free_fastopen_req(tp);
2204
2205 sk_sockets_allocated_dec(sk);
2206 sock_release_memcg(sk);
2207 }
2208 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2209
2210 #ifdef CONFIG_PROC_FS
2211 /* Proc filesystem TCP sock list dumping. */
2212
2213 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2214 {
2215 return hlist_nulls_empty(head) ? NULL :
2216 list_entry(head->first, struct inet_timewait_sock, tw_node);
2217 }
2218
2219 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2220 {
2221 return !is_a_nulls(tw->tw_node.next) ?
2222 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2223 }
2224
2225 /*
2226 * Get next listener socket follow cur. If cur is NULL, get first socket
2227 * starting from bucket given in st->bucket; when st->bucket is zero the
2228 * very first socket in the hash table is returned.
2229 */
2230 static void *listening_get_next(struct seq_file *seq, void *cur)
2231 {
2232 struct inet_connection_sock *icsk;
2233 struct hlist_nulls_node *node;
2234 struct sock *sk = cur;
2235 struct inet_listen_hashbucket *ilb;
2236 struct tcp_iter_state *st = seq->private;
2237 struct net *net = seq_file_net(seq);
2238
2239 if (!sk) {
2240 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2241 spin_lock_bh(&ilb->lock);
2242 sk = sk_nulls_head(&ilb->head);
2243 st->offset = 0;
2244 goto get_sk;
2245 }
2246 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2247 ++st->num;
2248 ++st->offset;
2249
2250 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2251 struct request_sock *req = cur;
2252
2253 icsk = inet_csk(st->syn_wait_sk);
2254 req = req->dl_next;
2255 while (1) {
2256 while (req) {
2257 if (req->rsk_ops->family == st->family) {
2258 cur = req;
2259 goto out;
2260 }
2261 req = req->dl_next;
2262 }
2263 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2264 break;
2265 get_req:
2266 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2267 }
2268 sk = sk_nulls_next(st->syn_wait_sk);
2269 st->state = TCP_SEQ_STATE_LISTENING;
2270 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2271 } else {
2272 icsk = inet_csk(sk);
2273 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2275 goto start_req;
2276 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277 sk = sk_nulls_next(sk);
2278 }
2279 get_sk:
2280 sk_nulls_for_each_from(sk, node) {
2281 if (!net_eq(sock_net(sk), net))
2282 continue;
2283 if (sk->sk_family == st->family) {
2284 cur = sk;
2285 goto out;
2286 }
2287 icsk = inet_csk(sk);
2288 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2289 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2290 start_req:
2291 st->uid = sock_i_uid(sk);
2292 st->syn_wait_sk = sk;
2293 st->state = TCP_SEQ_STATE_OPENREQ;
2294 st->sbucket = 0;
2295 goto get_req;
2296 }
2297 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2298 }
2299 spin_unlock_bh(&ilb->lock);
2300 st->offset = 0;
2301 if (++st->bucket < INET_LHTABLE_SIZE) {
2302 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2303 spin_lock_bh(&ilb->lock);
2304 sk = sk_nulls_head(&ilb->head);
2305 goto get_sk;
2306 }
2307 cur = NULL;
2308 out:
2309 return cur;
2310 }
2311
2312 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2313 {
2314 struct tcp_iter_state *st = seq->private;
2315 void *rc;
2316
2317 st->bucket = 0;
2318 st->offset = 0;
2319 rc = listening_get_next(seq, NULL);
2320
2321 while (rc && *pos) {
2322 rc = listening_get_next(seq, rc);
2323 --*pos;
2324 }
2325 return rc;
2326 }
2327
2328 static inline bool empty_bucket(struct tcp_iter_state *st)
2329 {
2330 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2331 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2332 }
2333
2334 /*
2335 * Get first established socket starting from bucket given in st->bucket.
2336 * If st->bucket is zero, the very first socket in the hash is returned.
2337 */
2338 static void *established_get_first(struct seq_file *seq)
2339 {
2340 struct tcp_iter_state *st = seq->private;
2341 struct net *net = seq_file_net(seq);
2342 void *rc = NULL;
2343
2344 st->offset = 0;
2345 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2346 struct sock *sk;
2347 struct hlist_nulls_node *node;
2348 struct inet_timewait_sock *tw;
2349 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2350
2351 /* Lockless fast path for the common case of empty buckets */
2352 if (empty_bucket(st))
2353 continue;
2354
2355 spin_lock_bh(lock);
2356 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2357 if (sk->sk_family != st->family ||
2358 !net_eq(sock_net(sk), net)) {
2359 continue;
2360 }
2361 rc = sk;
2362 goto out;
2363 }
2364 st->state = TCP_SEQ_STATE_TIME_WAIT;
2365 inet_twsk_for_each(tw, node,
2366 &tcp_hashinfo.ehash[st->bucket].twchain) {
2367 if (tw->tw_family != st->family ||
2368 !net_eq(twsk_net(tw), net)) {
2369 continue;
2370 }
2371 rc = tw;
2372 goto out;
2373 }
2374 spin_unlock_bh(lock);
2375 st->state = TCP_SEQ_STATE_ESTABLISHED;
2376 }
2377 out:
2378 return rc;
2379 }
2380
2381 static void *established_get_next(struct seq_file *seq, void *cur)
2382 {
2383 struct sock *sk = cur;
2384 struct inet_timewait_sock *tw;
2385 struct hlist_nulls_node *node;
2386 struct tcp_iter_state *st = seq->private;
2387 struct net *net = seq_file_net(seq);
2388
2389 ++st->num;
2390 ++st->offset;
2391
2392 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2393 tw = cur;
2394 tw = tw_next(tw);
2395 get_tw:
2396 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2397 tw = tw_next(tw);
2398 }
2399 if (tw) {
2400 cur = tw;
2401 goto out;
2402 }
2403 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2404 st->state = TCP_SEQ_STATE_ESTABLISHED;
2405
2406 /* Look for next non empty bucket */
2407 st->offset = 0;
2408 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2409 empty_bucket(st))
2410 ;
2411 if (st->bucket > tcp_hashinfo.ehash_mask)
2412 return NULL;
2413
2414 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2415 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2416 } else
2417 sk = sk_nulls_next(sk);
2418
2419 sk_nulls_for_each_from(sk, node) {
2420 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2421 goto found;
2422 }
2423
2424 st->state = TCP_SEQ_STATE_TIME_WAIT;
2425 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2426 goto get_tw;
2427 found:
2428 cur = sk;
2429 out:
2430 return cur;
2431 }
2432
2433 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434 {
2435 struct tcp_iter_state *st = seq->private;
2436 void *rc;
2437
2438 st->bucket = 0;
2439 rc = established_get_first(seq);
2440
2441 while (rc && pos) {
2442 rc = established_get_next(seq, rc);
2443 --pos;
2444 }
2445 return rc;
2446 }
2447
2448 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449 {
2450 void *rc;
2451 struct tcp_iter_state *st = seq->private;
2452
2453 st->state = TCP_SEQ_STATE_LISTENING;
2454 rc = listening_get_idx(seq, &pos);
2455
2456 if (!rc) {
2457 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 rc = established_get_idx(seq, pos);
2459 }
2460
2461 return rc;
2462 }
2463
2464 static void *tcp_seek_last_pos(struct seq_file *seq)
2465 {
2466 struct tcp_iter_state *st = seq->private;
2467 int offset = st->offset;
2468 int orig_num = st->num;
2469 void *rc = NULL;
2470
2471 switch (st->state) {
2472 case TCP_SEQ_STATE_OPENREQ:
2473 case TCP_SEQ_STATE_LISTENING:
2474 if (st->bucket >= INET_LHTABLE_SIZE)
2475 break;
2476 st->state = TCP_SEQ_STATE_LISTENING;
2477 rc = listening_get_next(seq, NULL);
2478 while (offset-- && rc)
2479 rc = listening_get_next(seq, rc);
2480 if (rc)
2481 break;
2482 st->bucket = 0;
2483 /* Fallthrough */
2484 case TCP_SEQ_STATE_ESTABLISHED:
2485 case TCP_SEQ_STATE_TIME_WAIT:
2486 st->state = TCP_SEQ_STATE_ESTABLISHED;
2487 if (st->bucket > tcp_hashinfo.ehash_mask)
2488 break;
2489 rc = established_get_first(seq);
2490 while (offset-- && rc)
2491 rc = established_get_next(seq, rc);
2492 }
2493
2494 st->num = orig_num;
2495
2496 return rc;
2497 }
2498
2499 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2500 {
2501 struct tcp_iter_state *st = seq->private;
2502 void *rc;
2503
2504 if (*pos && *pos == st->last_pos) {
2505 rc = tcp_seek_last_pos(seq);
2506 if (rc)
2507 goto out;
2508 }
2509
2510 st->state = TCP_SEQ_STATE_LISTENING;
2511 st->num = 0;
2512 st->bucket = 0;
2513 st->offset = 0;
2514 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2515
2516 out:
2517 st->last_pos = *pos;
2518 return rc;
2519 }
2520
2521 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523 struct tcp_iter_state *st = seq->private;
2524 void *rc = NULL;
2525
2526 if (v == SEQ_START_TOKEN) {
2527 rc = tcp_get_idx(seq, 0);
2528 goto out;
2529 }
2530
2531 switch (st->state) {
2532 case TCP_SEQ_STATE_OPENREQ:
2533 case TCP_SEQ_STATE_LISTENING:
2534 rc = listening_get_next(seq, v);
2535 if (!rc) {
2536 st->state = TCP_SEQ_STATE_ESTABLISHED;
2537 st->bucket = 0;
2538 st->offset = 0;
2539 rc = established_get_first(seq);
2540 }
2541 break;
2542 case TCP_SEQ_STATE_ESTABLISHED:
2543 case TCP_SEQ_STATE_TIME_WAIT:
2544 rc = established_get_next(seq, v);
2545 break;
2546 }
2547 out:
2548 ++*pos;
2549 st->last_pos = *pos;
2550 return rc;
2551 }
2552
2553 static void tcp_seq_stop(struct seq_file *seq, void *v)
2554 {
2555 struct tcp_iter_state *st = seq->private;
2556
2557 switch (st->state) {
2558 case TCP_SEQ_STATE_OPENREQ:
2559 if (v) {
2560 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2561 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2562 }
2563 case TCP_SEQ_STATE_LISTENING:
2564 if (v != SEQ_START_TOKEN)
2565 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2566 break;
2567 case TCP_SEQ_STATE_TIME_WAIT:
2568 case TCP_SEQ_STATE_ESTABLISHED:
2569 if (v)
2570 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2571 break;
2572 }
2573 }
2574
2575 int tcp_seq_open(struct inode *inode, struct file *file)
2576 {
2577 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2578 struct tcp_iter_state *s;
2579 int err;
2580
2581 err = seq_open_net(inode, file, &afinfo->seq_ops,
2582 sizeof(struct tcp_iter_state));
2583 if (err < 0)
2584 return err;
2585
2586 s = ((struct seq_file *)file->private_data)->private;
2587 s->family = afinfo->family;
2588 s->last_pos = 0;
2589 return 0;
2590 }
2591 EXPORT_SYMBOL(tcp_seq_open);
2592
2593 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2594 {
2595 int rc = 0;
2596 struct proc_dir_entry *p;
2597
2598 afinfo->seq_ops.start = tcp_seq_start;
2599 afinfo->seq_ops.next = tcp_seq_next;
2600 afinfo->seq_ops.stop = tcp_seq_stop;
2601
2602 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2603 afinfo->seq_fops, afinfo);
2604 if (!p)
2605 rc = -ENOMEM;
2606 return rc;
2607 }
2608 EXPORT_SYMBOL(tcp_proc_register);
2609
2610 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2611 {
2612 proc_net_remove(net, afinfo->name);
2613 }
2614 EXPORT_SYMBOL(tcp_proc_unregister);
2615
2616 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2617 struct seq_file *f, int i, kuid_t uid, int *len)
2618 {
2619 const struct inet_request_sock *ireq = inet_rsk(req);
2620 long delta = req->expires - jiffies;
2621
2622 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2623 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2624 i,
2625 ireq->loc_addr,
2626 ntohs(inet_sk(sk)->inet_sport),
2627 ireq->rmt_addr,
2628 ntohs(ireq->rmt_port),
2629 TCP_SYN_RECV,
2630 0, 0, /* could print option size, but that is af dependent. */
2631 1, /* timers active (only the expire timer) */
2632 jiffies_delta_to_clock_t(delta),
2633 req->num_timeout,
2634 from_kuid_munged(seq_user_ns(f), uid),
2635 0, /* non standard timer */
2636 0, /* open_requests have no inode */
2637 atomic_read(&sk->sk_refcnt),
2638 req,
2639 len);
2640 }
2641
2642 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2643 {
2644 int timer_active;
2645 unsigned long timer_expires;
2646 const struct tcp_sock *tp = tcp_sk(sk);
2647 const struct inet_connection_sock *icsk = inet_csk(sk);
2648 const struct inet_sock *inet = inet_sk(sk);
2649 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2650 __be32 dest = inet->inet_daddr;
2651 __be32 src = inet->inet_rcv_saddr;
2652 __u16 destp = ntohs(inet->inet_dport);
2653 __u16 srcp = ntohs(inet->inet_sport);
2654 int rx_queue;
2655
2656 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2657 timer_active = 1;
2658 timer_expires = icsk->icsk_timeout;
2659 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2660 timer_active = 4;
2661 timer_expires = icsk->icsk_timeout;
2662 } else if (timer_pending(&sk->sk_timer)) {
2663 timer_active = 2;
2664 timer_expires = sk->sk_timer.expires;
2665 } else {
2666 timer_active = 0;
2667 timer_expires = jiffies;
2668 }
2669
2670 if (sk->sk_state == TCP_LISTEN)
2671 rx_queue = sk->sk_ack_backlog;
2672 else
2673 /*
2674 * because we dont lock socket, we might find a transient negative value
2675 */
2676 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2677
2678 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2679 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2680 i, src, srcp, dest, destp, sk->sk_state,
2681 tp->write_seq - tp->snd_una,
2682 rx_queue,
2683 timer_active,
2684 jiffies_delta_to_clock_t(timer_expires - jiffies),
2685 icsk->icsk_retransmits,
2686 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2687 icsk->icsk_probes_out,
2688 sock_i_ino(sk),
2689 atomic_read(&sk->sk_refcnt), sk,
2690 jiffies_to_clock_t(icsk->icsk_rto),
2691 jiffies_to_clock_t(icsk->icsk_ack.ato),
2692 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2693 tp->snd_cwnd,
2694 sk->sk_state == TCP_LISTEN ?
2695 (fastopenq ? fastopenq->max_qlen : 0) :
2696 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2697 len);
2698 }
2699
2700 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2701 struct seq_file *f, int i, int *len)
2702 {
2703 __be32 dest, src;
2704 __u16 destp, srcp;
2705 long delta = tw->tw_ttd - jiffies;
2706
2707 dest = tw->tw_daddr;
2708 src = tw->tw_rcv_saddr;
2709 destp = ntohs(tw->tw_dport);
2710 srcp = ntohs(tw->tw_sport);
2711
2712 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2713 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2714 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2715 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2716 atomic_read(&tw->tw_refcnt), tw, len);
2717 }
2718
2719 #define TMPSZ 150
2720
2721 static int tcp4_seq_show(struct seq_file *seq, void *v)
2722 {
2723 struct tcp_iter_state *st;
2724 int len;
2725
2726 if (v == SEQ_START_TOKEN) {
2727 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2728 " sl local_address rem_address st tx_queue "
2729 "rx_queue tr tm->when retrnsmt uid timeout "
2730 "inode");
2731 goto out;
2732 }
2733 st = seq->private;
2734
2735 switch (st->state) {
2736 case TCP_SEQ_STATE_LISTENING:
2737 case TCP_SEQ_STATE_ESTABLISHED:
2738 get_tcp4_sock(v, seq, st->num, &len);
2739 break;
2740 case TCP_SEQ_STATE_OPENREQ:
2741 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2742 break;
2743 case TCP_SEQ_STATE_TIME_WAIT:
2744 get_timewait4_sock(v, seq, st->num, &len);
2745 break;
2746 }
2747 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2748 out:
2749 return 0;
2750 }
2751
2752 static const struct file_operations tcp_afinfo_seq_fops = {
2753 .owner = THIS_MODULE,
2754 .open = tcp_seq_open,
2755 .read = seq_read,
2756 .llseek = seq_lseek,
2757 .release = seq_release_net
2758 };
2759
2760 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2761 .name = "tcp",
2762 .family = AF_INET,
2763 .seq_fops = &tcp_afinfo_seq_fops,
2764 .seq_ops = {
2765 .show = tcp4_seq_show,
2766 },
2767 };
2768
2769 static int __net_init tcp4_proc_init_net(struct net *net)
2770 {
2771 return tcp_proc_register(net, &tcp4_seq_afinfo);
2772 }
2773
2774 static void __net_exit tcp4_proc_exit_net(struct net *net)
2775 {
2776 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2777 }
2778
2779 static struct pernet_operations tcp4_net_ops = {
2780 .init = tcp4_proc_init_net,
2781 .exit = tcp4_proc_exit_net,
2782 };
2783
2784 int __init tcp4_proc_init(void)
2785 {
2786 return register_pernet_subsys(&tcp4_net_ops);
2787 }
2788
2789 void tcp4_proc_exit(void)
2790 {
2791 unregister_pernet_subsys(&tcp4_net_ops);
2792 }
2793 #endif /* CONFIG_PROC_FS */
2794
2795 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2796 {
2797 const struct iphdr *iph = skb_gro_network_header(skb);
2798 __wsum wsum;
2799 __sum16 sum;
2800
2801 switch (skb->ip_summed) {
2802 case CHECKSUM_COMPLETE:
2803 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2804 skb->csum)) {
2805 skb->ip_summed = CHECKSUM_UNNECESSARY;
2806 break;
2807 }
2808 flush:
2809 NAPI_GRO_CB(skb)->flush = 1;
2810 return NULL;
2811
2812 case CHECKSUM_NONE:
2813 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2814 skb_gro_len(skb), IPPROTO_TCP, 0);
2815 sum = csum_fold(skb_checksum(skb,
2816 skb_gro_offset(skb),
2817 skb_gro_len(skb),
2818 wsum));
2819 if (sum)
2820 goto flush;
2821
2822 skb->ip_summed = CHECKSUM_UNNECESSARY;
2823 break;
2824 }
2825
2826 return tcp_gro_receive(head, skb);
2827 }
2828
2829 int tcp4_gro_complete(struct sk_buff *skb)
2830 {
2831 const struct iphdr *iph = ip_hdr(skb);
2832 struct tcphdr *th = tcp_hdr(skb);
2833
2834 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2835 iph->saddr, iph->daddr, 0);
2836 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2837
2838 return tcp_gro_complete(skb);
2839 }
2840
2841 struct proto tcp_prot = {
2842 .name = "TCP",
2843 .owner = THIS_MODULE,
2844 .close = tcp_close,
2845 .connect = tcp_v4_connect,
2846 .disconnect = tcp_disconnect,
2847 .accept = inet_csk_accept,
2848 .ioctl = tcp_ioctl,
2849 .init = tcp_v4_init_sock,
2850 .destroy = tcp_v4_destroy_sock,
2851 .shutdown = tcp_shutdown,
2852 .setsockopt = tcp_setsockopt,
2853 .getsockopt = tcp_getsockopt,
2854 .recvmsg = tcp_recvmsg,
2855 .sendmsg = tcp_sendmsg,
2856 .sendpage = tcp_sendpage,
2857 .backlog_rcv = tcp_v4_do_rcv,
2858 .release_cb = tcp_release_cb,
2859 .mtu_reduced = tcp_v4_mtu_reduced,
2860 .hash = inet_hash,
2861 .unhash = inet_unhash,
2862 .get_port = inet_csk_get_port,
2863 .enter_memory_pressure = tcp_enter_memory_pressure,
2864 .sockets_allocated = &tcp_sockets_allocated,
2865 .orphan_count = &tcp_orphan_count,
2866 .memory_allocated = &tcp_memory_allocated,
2867 .memory_pressure = &tcp_memory_pressure,
2868 .sysctl_wmem = sysctl_tcp_wmem,
2869 .sysctl_rmem = sysctl_tcp_rmem,
2870 .max_header = MAX_TCP_HEADER,
2871 .obj_size = sizeof(struct tcp_sock),
2872 .slab_flags = SLAB_DESTROY_BY_RCU,
2873 .twsk_prot = &tcp_timewait_sock_ops,
2874 .rsk_prot = &tcp_request_sock_ops,
2875 .h.hashinfo = &tcp_hashinfo,
2876 .no_autobind = true,
2877 #ifdef CONFIG_COMPAT
2878 .compat_setsockopt = compat_tcp_setsockopt,
2879 .compat_getsockopt = compat_tcp_getsockopt,
2880 #endif
2881 #ifdef CONFIG_MEMCG_KMEM
2882 .init_cgroup = tcp_init_cgroup,
2883 .destroy_cgroup = tcp_destroy_cgroup,
2884 .proto_cgroup = tcp_proto_cgroup,
2885 #endif
2886 };
2887 EXPORT_SYMBOL(tcp_prot);
2888
2889 static int __net_init tcp_sk_init(struct net *net)
2890 {
2891 return 0;
2892 }
2893
2894 static void __net_exit tcp_sk_exit(struct net *net)
2895 {
2896 }
2897
2898 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2899 {
2900 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2901 }
2902
2903 static struct pernet_operations __net_initdata tcp_sk_ops = {
2904 .init = tcp_sk_init,
2905 .exit = tcp_sk_exit,
2906 .exit_batch = tcp_sk_exit_batch,
2907 };
2908
2909 void __init tcp_v4_init(void)
2910 {
2911 inet_hashinfo_init(&tcp_hashinfo);
2912 if (register_pernet_subsys(&tcp_sk_ops))
2913 panic("Failed to create the TCP control socket.\n");
2914 }