2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly
;
86 int sysctl_tcp_low_latency __read_mostly
;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency
);
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
93 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
94 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
);
97 struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
103 struct inet_hashinfo tcp_hashinfo
;
104 EXPORT_SYMBOL(tcp_hashinfo
);
106 static inline __u32
tcp_v4_init_sequence(struct sk_buff
*skb
)
108 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
111 tcp_hdr(skb
)->source
);
114 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
116 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
117 struct tcp_sock
*tp
= tcp_sk(sk
);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw
->tw_ts_recent_stamp
&&
131 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
132 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
133 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
134 if (tp
->write_seq
== 0)
136 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
137 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
149 struct inet_sock
*inet
= inet_sk(sk
);
150 struct tcp_sock
*tp
= tcp_sk(sk
);
151 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
153 __be32 daddr
, nexthop
;
157 if (addr_len
< sizeof(struct sockaddr_in
))
160 if (usin
->sin_family
!= AF_INET
)
161 return -EAFNOSUPPORT
;
163 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
164 if (inet
->opt
&& inet
->opt
->srr
) {
167 nexthop
= inet
->opt
->faddr
;
170 tmp
= ip_route_connect(&rt
, nexthop
, inet
->inet_saddr
,
171 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
173 inet
->inet_sport
, usin
->sin_port
, sk
, 1);
175 if (tmp
== -ENETUNREACH
)
176 IP_INC_STATS_BH(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
180 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
185 if (!inet
->opt
|| !inet
->opt
->srr
)
188 if (!inet
->inet_saddr
)
189 inet
->inet_saddr
= rt
->rt_src
;
190 inet
->inet_rcv_saddr
= inet
->inet_saddr
;
192 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->inet_daddr
!= daddr
) {
193 /* Reset inherited state */
194 tp
->rx_opt
.ts_recent
= 0;
195 tp
->rx_opt
.ts_recent_stamp
= 0;
199 if (tcp_death_row
.sysctl_tw_recycle
&&
200 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
201 struct inet_peer
*peer
= rt_get_peer(rt
);
203 * VJ's idea. We save last timestamp seen from
204 * the destination in peer table, when entering state
205 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
206 * when trying new connection.
209 inet_peer_refcheck(peer
);
210 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
<= TCP_PAWS_MSL
) {
211 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
212 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
217 inet
->inet_dport
= usin
->sin_port
;
218 inet
->inet_daddr
= daddr
;
220 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
222 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
224 tp
->rx_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
231 tcp_set_state(sk
, TCP_SYN_SENT
);
232 err
= inet_hash_connect(&tcp_death_row
, sk
);
236 err
= ip_route_newports(&rt
, IPPROTO_TCP
,
237 inet
->inet_sport
, inet
->inet_dport
, sk
);
241 /* OK, now commit destination to socket. */
242 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
243 sk_setup_caps(sk
, &rt
->dst
);
246 tp
->write_seq
= secure_tcp_sequence_number(inet
->inet_saddr
,
251 inet
->inet_id
= tp
->write_seq
^ jiffies
;
253 err
= tcp_connect(sk
);
262 * This unhashes the socket and releases the local port,
265 tcp_set_state(sk
, TCP_CLOSE
);
267 sk
->sk_route_caps
= 0;
268 inet
->inet_dport
= 0;
271 EXPORT_SYMBOL(tcp_v4_connect
);
274 * This routine does path mtu discovery as defined in RFC1191.
276 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
278 struct dst_entry
*dst
;
279 struct inet_sock
*inet
= inet_sk(sk
);
281 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
282 * send out by Linux are always <576bytes so they should go through
285 if (sk
->sk_state
== TCP_LISTEN
)
288 /* We don't check in the destentry if pmtu discovery is forbidden
289 * on this route. We just assume that no packet_to_big packets
290 * are send back when pmtu discovery is not active.
291 * There is a small race when the user changes this flag in the
292 * route, but I think that's acceptable.
294 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
297 dst
->ops
->update_pmtu(dst
, mtu
);
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
302 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
303 sk
->sk_err_soft
= EMSGSIZE
;
307 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
308 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
309 tcp_sync_mss(sk
, mtu
);
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
316 tcp_simple_retransmit(sk
);
317 } /* else let the usual retransmit timer handle it */
321 * This routine is called by the ICMP module when it gets some
322 * sort of error condition. If err < 0 then the socket should
323 * be closed and the error returned to the user. If err > 0
324 * it's just the icmp type << 8 | icmp code. After adjustment
325 * header points to the first 8 bytes of the tcp header. We need
326 * to find the appropriate port.
328 * The locking strategy used here is very "optimistic". When
329 * someone else accesses the socket the ICMP is just dropped
330 * and for some paths there is no check at all.
331 * A more general error queue to queue errors for later handling
332 * is probably better.
336 void tcp_v4_err(struct sk_buff
*icmp_skb
, u32 info
)
338 struct iphdr
*iph
= (struct iphdr
*)icmp_skb
->data
;
339 struct tcphdr
*th
= (struct tcphdr
*)(icmp_skb
->data
+ (iph
->ihl
<< 2));
340 struct inet_connection_sock
*icsk
;
342 struct inet_sock
*inet
;
343 const int type
= icmp_hdr(icmp_skb
)->type
;
344 const int code
= icmp_hdr(icmp_skb
)->code
;
350 struct net
*net
= dev_net(icmp_skb
->dev
);
352 if (icmp_skb
->len
< (iph
->ihl
<< 2) + 8) {
353 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
357 sk
= inet_lookup(net
, &tcp_hashinfo
, iph
->daddr
, th
->dest
,
358 iph
->saddr
, th
->source
, inet_iif(icmp_skb
));
360 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
363 if (sk
->sk_state
== TCP_TIME_WAIT
) {
364 inet_twsk_put(inet_twsk(sk
));
369 /* If too many ICMPs get dropped on busy
370 * servers this needs to be solved differently.
372 if (sock_owned_by_user(sk
))
373 NET_INC_STATS_BH(net
, LINUX_MIB_LOCKDROPPEDICMPS
);
375 if (sk
->sk_state
== TCP_CLOSE
)
378 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
379 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
385 seq
= ntohl(th
->seq
);
386 if (sk
->sk_state
!= TCP_LISTEN
&&
387 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
388 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
393 case ICMP_SOURCE_QUENCH
:
394 /* Just silently ignore these. */
396 case ICMP_PARAMETERPROB
:
399 case ICMP_DEST_UNREACH
:
400 if (code
> NR_ICMP_UNREACH
)
403 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
404 if (!sock_owned_by_user(sk
))
405 do_pmtu_discovery(sk
, iph
, info
);
409 err
= icmp_err_convert
[code
].errno
;
410 /* check if icmp_skb allows revert of backoff
411 * (see draft-zimmermann-tcp-lcd) */
412 if (code
!= ICMP_NET_UNREACH
&& code
!= ICMP_HOST_UNREACH
)
414 if (seq
!= tp
->snd_una
|| !icsk
->icsk_retransmits
||
418 if (sock_owned_by_user(sk
))
421 icsk
->icsk_backoff
--;
422 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
) <<
426 skb
= tcp_write_queue_head(sk
);
429 remaining
= icsk
->icsk_rto
- min(icsk
->icsk_rto
,
430 tcp_time_stamp
- TCP_SKB_CB(skb
)->when
);
433 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
434 remaining
, TCP_RTO_MAX
);
436 /* RTO revert clocked out retransmission.
437 * Will retransmit now */
438 tcp_retransmit_timer(sk
);
442 case ICMP_TIME_EXCEEDED
:
449 switch (sk
->sk_state
) {
450 struct request_sock
*req
, **prev
;
452 if (sock_owned_by_user(sk
))
455 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
456 iph
->daddr
, iph
->saddr
);
460 /* ICMPs are not backlogged, hence we cannot get
461 an established socket here.
465 if (seq
!= tcp_rsk(req
)->snt_isn
) {
466 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
471 * Still in SYN_RECV, just remove it silently.
472 * There is no good way to pass the error to the newly
473 * created socket, and POSIX does not want network
474 * errors returned from accept().
476 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
480 case TCP_SYN_RECV
: /* Cannot happen.
481 It can f.e. if SYNs crossed.
483 if (!sock_owned_by_user(sk
)) {
486 sk
->sk_error_report(sk
);
490 sk
->sk_err_soft
= err
;
495 /* If we've already connected we will keep trying
496 * until we time out, or the user gives up.
498 * rfc1122 4.2.3.9 allows to consider as hard errors
499 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
500 * but it is obsoleted by pmtu discovery).
502 * Note, that in modern internet, where routing is unreliable
503 * and in each dark corner broken firewalls sit, sending random
504 * errors ordered by their masters even this two messages finally lose
505 * their original sense (even Linux sends invalid PORT_UNREACHs)
507 * Now we are in compliance with RFCs.
512 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
514 sk
->sk_error_report(sk
);
515 } else { /* Only an error on timeout */
516 sk
->sk_err_soft
= err
;
524 static void __tcp_v4_send_check(struct sk_buff
*skb
,
525 __be32 saddr
, __be32 daddr
)
527 struct tcphdr
*th
= tcp_hdr(skb
);
529 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
530 th
->check
= ~tcp_v4_check(skb
->len
, saddr
, daddr
, 0);
531 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
532 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
534 th
->check
= tcp_v4_check(skb
->len
, saddr
, daddr
,
541 /* This routine computes an IPv4 TCP checksum. */
542 void tcp_v4_send_check(struct sock
*sk
, struct sk_buff
*skb
)
544 struct inet_sock
*inet
= inet_sk(sk
);
546 __tcp_v4_send_check(skb
, inet
->inet_saddr
, inet
->inet_daddr
);
548 EXPORT_SYMBOL(tcp_v4_send_check
);
550 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
552 const struct iphdr
*iph
;
555 if (!pskb_may_pull(skb
, sizeof(*th
)))
562 skb
->ip_summed
= CHECKSUM_PARTIAL
;
563 __tcp_v4_send_check(skb
, iph
->saddr
, iph
->daddr
);
568 * This routine will send an RST to the other tcp.
570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * Answer: if a packet caused RST, it is not for a socket
573 * existing in our system, if it is matched to a socket,
574 * it is just duplicate segment or bug in other side's TCP.
575 * So that we build reply only basing on parameters
576 * arrived with segment.
577 * Exception: precedence violation. We do not implement it in any case.
580 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
582 struct tcphdr
*th
= tcp_hdr(skb
);
585 #ifdef CONFIG_TCP_MD5SIG
586 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
589 struct ip_reply_arg arg
;
590 #ifdef CONFIG_TCP_MD5SIG
591 struct tcp_md5sig_key
*key
;
595 /* Never send a reset in response to a reset. */
599 if (skb_rtable(skb
)->rt_type
!= RTN_LOCAL
)
602 /* Swap the send and the receive. */
603 memset(&rep
, 0, sizeof(rep
));
604 rep
.th
.dest
= th
->source
;
605 rep
.th
.source
= th
->dest
;
606 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
610 rep
.th
.seq
= th
->ack_seq
;
613 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
614 skb
->len
- (th
->doff
<< 2));
617 memset(&arg
, 0, sizeof(arg
));
618 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
619 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
621 #ifdef CONFIG_TCP_MD5SIG
622 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
) : NULL
;
624 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
626 (TCPOPT_MD5SIG
<< 8) |
628 /* Update length and the length the header thinks exists */
629 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
630 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
632 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[1],
633 key
, ip_hdr(skb
)->saddr
,
634 ip_hdr(skb
)->daddr
, &rep
.th
);
637 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
638 ip_hdr(skb
)->saddr
, /* XXX */
639 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
640 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
641 arg
.flags
= (sk
&& inet_sk(sk
)->transparent
) ? IP_REPLY_ARG_NOSRCCHECK
: 0;
643 net
= dev_net(skb_dst(skb
)->dev
);
644 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
645 &arg
, arg
.iov
[0].iov_len
);
647 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
648 TCP_INC_STATS_BH(net
, TCP_MIB_OUTRSTS
);
651 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
652 outside socket context is ugly, certainly. What can I do?
655 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
656 u32 win
, u32 ts
, int oif
,
657 struct tcp_md5sig_key
*key
,
660 struct tcphdr
*th
= tcp_hdr(skb
);
663 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
664 #ifdef CONFIG_TCP_MD5SIG
665 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
669 struct ip_reply_arg arg
;
670 struct net
*net
= dev_net(skb_dst(skb
)->dev
);
672 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
673 memset(&arg
, 0, sizeof(arg
));
675 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
676 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
678 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
679 (TCPOPT_TIMESTAMP
<< 8) |
681 rep
.opt
[1] = htonl(tcp_time_stamp
);
682 rep
.opt
[2] = htonl(ts
);
683 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
686 /* Swap the send and the receive. */
687 rep
.th
.dest
= th
->source
;
688 rep
.th
.source
= th
->dest
;
689 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
690 rep
.th
.seq
= htonl(seq
);
691 rep
.th
.ack_seq
= htonl(ack
);
693 rep
.th
.window
= htons(win
);
695 #ifdef CONFIG_TCP_MD5SIG
697 int offset
= (ts
) ? 3 : 0;
699 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
701 (TCPOPT_MD5SIG
<< 8) |
703 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
704 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
706 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[offset
],
707 key
, ip_hdr(skb
)->saddr
,
708 ip_hdr(skb
)->daddr
, &rep
.th
);
711 arg
.flags
= reply_flags
;
712 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
713 ip_hdr(skb
)->saddr
, /* XXX */
714 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
715 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
717 arg
.bound_dev_if
= oif
;
719 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
720 &arg
, arg
.iov
[0].iov_len
);
722 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
725 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
727 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
728 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
730 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
731 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
734 tcp_twsk_md5_key(tcptw
),
735 tw
->tw_transparent
? IP_REPLY_ARG_NOSRCCHECK
: 0
741 static void tcp_v4_reqsk_send_ack(struct sock
*sk
, struct sk_buff
*skb
,
742 struct request_sock
*req
)
744 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1,
745 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
748 tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
),
749 inet_rsk(req
)->no_srccheck
? IP_REPLY_ARG_NOSRCCHECK
: 0);
753 * Send a SYN-ACK after having received a SYN.
754 * This still operates on a request_sock only, not on a big
757 static int tcp_v4_send_synack(struct sock
*sk
, struct dst_entry
*dst
,
758 struct request_sock
*req
,
759 struct request_values
*rvp
)
761 const struct inet_request_sock
*ireq
= inet_rsk(req
);
763 struct sk_buff
* skb
;
765 /* First, grab a route. */
766 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
769 skb
= tcp_make_synack(sk
, dst
, req
, rvp
);
772 __tcp_v4_send_check(skb
, ireq
->loc_addr
, ireq
->rmt_addr
);
774 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
777 err
= net_xmit_eval(err
);
784 static int tcp_v4_rtx_synack(struct sock
*sk
, struct request_sock
*req
,
785 struct request_values
*rvp
)
787 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
788 return tcp_v4_send_synack(sk
, NULL
, req
, rvp
);
792 * IPv4 request_sock destructor.
794 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
796 kfree(inet_rsk(req
)->opt
);
799 static void syn_flood_warning(const struct sk_buff
*skb
)
803 #ifdef CONFIG_SYN_COOKIES
804 if (sysctl_tcp_syncookies
)
805 msg
= "Sending cookies";
808 msg
= "Dropping request";
810 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
811 ntohs(tcp_hdr(skb
)->dest
), msg
);
815 * Save and compile IPv4 options into the request_sock if needed.
817 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
820 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
821 struct ip_options
*dopt
= NULL
;
823 if (opt
&& opt
->optlen
) {
824 int opt_size
= optlength(opt
);
825 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
827 if (ip_options_echo(dopt
, skb
)) {
836 #ifdef CONFIG_TCP_MD5SIG
838 * RFC2385 MD5 checksumming requires a mapping of
839 * IP address->MD5 Key.
840 * We need to maintain these in the sk structure.
843 /* Find the Key structure for an address. */
844 static struct tcp_md5sig_key
*
845 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
847 struct tcp_sock
*tp
= tcp_sk(sk
);
850 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
852 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
853 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
854 return &tp
->md5sig_info
->keys4
[i
].base
;
859 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
860 struct sock
*addr_sk
)
862 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->inet_daddr
);
864 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
866 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
867 struct request_sock
*req
)
869 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
874 u8
*newkey
, u8 newkeylen
)
876 /* Add Key to the list */
877 struct tcp_md5sig_key
*key
;
878 struct tcp_sock
*tp
= tcp_sk(sk
);
879 struct tcp4_md5sig_key
*keys
;
881 key
= tcp_v4_md5_do_lookup(sk
, addr
);
883 /* Pre-existing entry - just update that one. */
886 key
->keylen
= newkeylen
;
888 struct tcp_md5sig_info
*md5sig
;
890 if (!tp
->md5sig_info
) {
891 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
893 if (!tp
->md5sig_info
) {
897 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
899 if (tcp_alloc_md5sig_pool(sk
) == NULL
) {
903 md5sig
= tp
->md5sig_info
;
905 if (md5sig
->alloced4
== md5sig
->entries4
) {
906 keys
= kmalloc((sizeof(*keys
) *
907 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
910 tcp_free_md5sig_pool();
914 if (md5sig
->entries4
)
915 memcpy(keys
, md5sig
->keys4
,
916 sizeof(*keys
) * md5sig
->entries4
);
918 /* Free old key list, and reference new one */
919 kfree(md5sig
->keys4
);
920 md5sig
->keys4
= keys
;
924 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
925 md5sig
->keys4
[md5sig
->entries4
- 1].base
.key
= newkey
;
926 md5sig
->keys4
[md5sig
->entries4
- 1].base
.keylen
= newkeylen
;
930 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
932 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
933 u8
*newkey
, u8 newkeylen
)
935 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->inet_daddr
,
939 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
941 struct tcp_sock
*tp
= tcp_sk(sk
);
944 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
945 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
947 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
948 tp
->md5sig_info
->entries4
--;
950 if (tp
->md5sig_info
->entries4
== 0) {
951 kfree(tp
->md5sig_info
->keys4
);
952 tp
->md5sig_info
->keys4
= NULL
;
953 tp
->md5sig_info
->alloced4
= 0;
954 } else if (tp
->md5sig_info
->entries4
!= i
) {
955 /* Need to do some manipulation */
956 memmove(&tp
->md5sig_info
->keys4
[i
],
957 &tp
->md5sig_info
->keys4
[i
+1],
958 (tp
->md5sig_info
->entries4
- i
) *
959 sizeof(struct tcp4_md5sig_key
));
961 tcp_free_md5sig_pool();
967 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
969 static void tcp_v4_clear_md5_list(struct sock
*sk
)
971 struct tcp_sock
*tp
= tcp_sk(sk
);
973 /* Free each key, then the set of key keys,
974 * the crypto element, and then decrement our
975 * hold on the last resort crypto.
977 if (tp
->md5sig_info
->entries4
) {
979 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
980 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
981 tp
->md5sig_info
->entries4
= 0;
982 tcp_free_md5sig_pool();
984 if (tp
->md5sig_info
->keys4
) {
985 kfree(tp
->md5sig_info
->keys4
);
986 tp
->md5sig_info
->keys4
= NULL
;
987 tp
->md5sig_info
->alloced4
= 0;
991 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
994 struct tcp_md5sig cmd
;
995 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
998 if (optlen
< sizeof(cmd
))
1001 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
1004 if (sin
->sin_family
!= AF_INET
)
1007 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
1008 if (!tcp_sk(sk
)->md5sig_info
)
1010 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
1013 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
1016 if (!tcp_sk(sk
)->md5sig_info
) {
1017 struct tcp_sock
*tp
= tcp_sk(sk
);
1018 struct tcp_md5sig_info
*p
;
1020 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
1024 tp
->md5sig_info
= p
;
1025 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1028 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, sk
->sk_allocation
);
1031 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1032 newkey
, cmd
.tcpm_keylen
);
1035 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool
*hp
,
1036 __be32 daddr
, __be32 saddr
, int nbytes
)
1038 struct tcp4_pseudohdr
*bp
;
1039 struct scatterlist sg
;
1041 bp
= &hp
->md5_blk
.ip4
;
1044 * 1. the TCP pseudo-header (in the order: source IP address,
1045 * destination IP address, zero-padded protocol number, and
1051 bp
->protocol
= IPPROTO_TCP
;
1052 bp
->len
= cpu_to_be16(nbytes
);
1054 sg_init_one(&sg
, bp
, sizeof(*bp
));
1055 return crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(*bp
));
1058 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
1059 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
)
1061 struct tcp_md5sig_pool
*hp
;
1062 struct hash_desc
*desc
;
1064 hp
= tcp_get_md5sig_pool();
1066 goto clear_hash_noput
;
1067 desc
= &hp
->md5_desc
;
1069 if (crypto_hash_init(desc
))
1071 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, th
->doff
<< 2))
1073 if (tcp_md5_hash_header(hp
, th
))
1075 if (tcp_md5_hash_key(hp
, key
))
1077 if (crypto_hash_final(desc
, md5_hash
))
1080 tcp_put_md5sig_pool();
1084 tcp_put_md5sig_pool();
1086 memset(md5_hash
, 0, 16);
1090 int tcp_v4_md5_hash_skb(char *md5_hash
, struct tcp_md5sig_key
*key
,
1091 struct sock
*sk
, struct request_sock
*req
,
1092 struct sk_buff
*skb
)
1094 struct tcp_md5sig_pool
*hp
;
1095 struct hash_desc
*desc
;
1096 struct tcphdr
*th
= tcp_hdr(skb
);
1097 __be32 saddr
, daddr
;
1100 saddr
= inet_sk(sk
)->inet_saddr
;
1101 daddr
= inet_sk(sk
)->inet_daddr
;
1103 saddr
= inet_rsk(req
)->loc_addr
;
1104 daddr
= inet_rsk(req
)->rmt_addr
;
1106 const struct iphdr
*iph
= ip_hdr(skb
);
1111 hp
= tcp_get_md5sig_pool();
1113 goto clear_hash_noput
;
1114 desc
= &hp
->md5_desc
;
1116 if (crypto_hash_init(desc
))
1119 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, skb
->len
))
1121 if (tcp_md5_hash_header(hp
, th
))
1123 if (tcp_md5_hash_skb_data(hp
, skb
, th
->doff
<< 2))
1125 if (tcp_md5_hash_key(hp
, key
))
1127 if (crypto_hash_final(desc
, md5_hash
))
1130 tcp_put_md5sig_pool();
1134 tcp_put_md5sig_pool();
1136 memset(md5_hash
, 0, 16);
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb
);
1141 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1144 * This gets called for each TCP segment that arrives
1145 * so we want to be efficient.
1146 * We have 3 drop cases:
1147 * o No MD5 hash and one expected.
1148 * o MD5 hash and we're not expecting one.
1149 * o MD5 hash and its wrong.
1151 __u8
*hash_location
= NULL
;
1152 struct tcp_md5sig_key
*hash_expected
;
1153 const struct iphdr
*iph
= ip_hdr(skb
);
1154 struct tcphdr
*th
= tcp_hdr(skb
);
1156 unsigned char newhash
[16];
1158 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1159 hash_location
= tcp_parse_md5sig_option(th
);
1161 /* We've parsed the options - do we have a hash? */
1162 if (!hash_expected
&& !hash_location
)
1165 if (hash_expected
&& !hash_location
) {
1166 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
1170 if (!hash_expected
&& hash_location
) {
1171 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
1175 /* Okay, so this is hash_expected and hash_location -
1176 * so we need to calculate the checksum.
1178 genhash
= tcp_v4_md5_hash_skb(newhash
,
1182 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1183 if (net_ratelimit()) {
1184 printk(KERN_INFO
"MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185 &iph
->saddr
, ntohs(th
->source
),
1186 &iph
->daddr
, ntohs(th
->dest
),
1187 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1198 .obj_size
= sizeof(struct tcp_request_sock
),
1199 .rtx_syn_ack
= tcp_v4_rtx_synack
,
1200 .send_ack
= tcp_v4_reqsk_send_ack
,
1201 .destructor
= tcp_v4_reqsk_destructor
,
1202 .send_reset
= tcp_v4_send_reset
,
1203 .syn_ack_timeout
= tcp_syn_ack_timeout
,
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1208 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1209 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1213 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1215 struct tcp_extend_values tmp_ext
;
1216 struct tcp_options_received tmp_opt
;
1218 struct request_sock
*req
;
1219 struct inet_request_sock
*ireq
;
1220 struct tcp_sock
*tp
= tcp_sk(sk
);
1221 struct dst_entry
*dst
= NULL
;
1222 __be32 saddr
= ip_hdr(skb
)->saddr
;
1223 __be32 daddr
= ip_hdr(skb
)->daddr
;
1224 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1225 #ifdef CONFIG_SYN_COOKIES
1226 int want_cookie
= 0;
1228 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1231 /* Never answer to SYNs send to broadcast or multicast */
1232 if (skb_rtable(skb
)->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
))
1235 /* TW buckets are converted to open requests without
1236 * limitations, they conserve resources and peer is
1237 * evidently real one.
1239 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1240 if (net_ratelimit())
1241 syn_flood_warning(skb
);
1242 #ifdef CONFIG_SYN_COOKIES
1243 if (sysctl_tcp_syncookies
) {
1250 /* Accept backlog is full. If we have already queued enough
1251 * of warm entries in syn queue, drop request. It is better than
1252 * clogging syn queue with openreqs with exponentially increasing
1255 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1258 req
= inet_reqsk_alloc(&tcp_request_sock_ops
);
1262 #ifdef CONFIG_TCP_MD5SIG
1263 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1266 tcp_clear_options(&tmp_opt
);
1267 tmp_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
1268 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
1269 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
1271 if (tmp_opt
.cookie_plus
> 0 &&
1272 tmp_opt
.saw_tstamp
&&
1273 !tp
->rx_opt
.cookie_out_never
&&
1274 (sysctl_tcp_cookie_size
> 0 ||
1275 (tp
->cookie_values
!= NULL
&&
1276 tp
->cookie_values
->cookie_desired
> 0))) {
1278 u32
*mess
= &tmp_ext
.cookie_bakery
[COOKIE_DIGEST_WORDS
];
1279 int l
= tmp_opt
.cookie_plus
- TCPOLEN_COOKIE_BASE
;
1281 if (tcp_cookie_generator(&tmp_ext
.cookie_bakery
[0]) != 0)
1282 goto drop_and_release
;
1284 /* Secret recipe starts with IP addresses */
1285 *mess
++ ^= (__force u32
)daddr
;
1286 *mess
++ ^= (__force u32
)saddr
;
1288 /* plus variable length Initiator Cookie */
1291 *c
++ ^= *hash_location
++;
1293 #ifdef CONFIG_SYN_COOKIES
1294 want_cookie
= 0; /* not our kind of cookie */
1296 tmp_ext
.cookie_out_never
= 0; /* false */
1297 tmp_ext
.cookie_plus
= tmp_opt
.cookie_plus
;
1298 } else if (!tp
->rx_opt
.cookie_in_always
) {
1299 /* redundant indications, but ensure initialization. */
1300 tmp_ext
.cookie_out_never
= 1; /* true */
1301 tmp_ext
.cookie_plus
= 0;
1303 goto drop_and_release
;
1305 tmp_ext
.cookie_in_always
= tp
->rx_opt
.cookie_in_always
;
1307 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
1308 tcp_clear_options(&tmp_opt
);
1310 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1311 tcp_openreq_init(req
, &tmp_opt
, skb
);
1313 ireq
= inet_rsk(req
);
1314 ireq
->loc_addr
= daddr
;
1315 ireq
->rmt_addr
= saddr
;
1316 ireq
->no_srccheck
= inet_sk(sk
)->transparent
;
1317 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1319 if (security_inet_conn_request(sk
, skb
, req
))
1322 if (!want_cookie
|| tmp_opt
.tstamp_ok
)
1323 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1326 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1327 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
1329 struct inet_peer
*peer
= NULL
;
1331 /* VJ's idea. We save last timestamp seen
1332 * from the destination in peer table, when entering
1333 * state TIME-WAIT, and check against it before
1334 * accepting new connection request.
1336 * If "isn" is not zero, this request hit alive
1337 * timewait bucket, so that all the necessary checks
1338 * are made in the function processing timewait state.
1340 if (tmp_opt
.saw_tstamp
&&
1341 tcp_death_row
.sysctl_tw_recycle
&&
1342 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
1343 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
1344 peer
->daddr
.a4
== saddr
) {
1345 inet_peer_refcheck(peer
);
1346 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
< TCP_PAWS_MSL
&&
1347 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1349 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
1350 goto drop_and_release
;
1353 /* Kill the following clause, if you dislike this way. */
1354 else if (!sysctl_tcp_syncookies
&&
1355 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1356 (sysctl_max_syn_backlog
>> 2)) &&
1357 (!peer
|| !peer
->tcp_ts_stamp
) &&
1358 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1359 /* Without syncookies last quarter of
1360 * backlog is filled with destinations,
1361 * proven to be alive.
1362 * It means that we continue to communicate
1363 * to destinations, already remembered
1364 * to the moment of synflood.
1366 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open request from %pI4/%u\n",
1367 &saddr
, ntohs(tcp_hdr(skb
)->source
));
1368 goto drop_and_release
;
1371 isn
= tcp_v4_init_sequence(skb
);
1373 tcp_rsk(req
)->snt_isn
= isn
;
1375 if (tcp_v4_send_synack(sk
, dst
, req
,
1376 (struct request_values
*)&tmp_ext
) ||
1380 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1390 EXPORT_SYMBOL(tcp_v4_conn_request
);
1394 * The three way handshake has completed - we got a valid synack -
1395 * now create the new socket.
1397 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1398 struct request_sock
*req
,
1399 struct dst_entry
*dst
)
1401 struct inet_request_sock
*ireq
;
1402 struct inet_sock
*newinet
;
1403 struct tcp_sock
*newtp
;
1405 #ifdef CONFIG_TCP_MD5SIG
1406 struct tcp_md5sig_key
*key
;
1409 if (sk_acceptq_is_full(sk
))
1412 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
1415 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1419 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1420 sk_setup_caps(newsk
, dst
);
1422 newtp
= tcp_sk(newsk
);
1423 newinet
= inet_sk(newsk
);
1424 ireq
= inet_rsk(req
);
1425 newinet
->inet_daddr
= ireq
->rmt_addr
;
1426 newinet
->inet_rcv_saddr
= ireq
->loc_addr
;
1427 newinet
->inet_saddr
= ireq
->loc_addr
;
1428 newinet
->opt
= ireq
->opt
;
1430 newinet
->mc_index
= inet_iif(skb
);
1431 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1432 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1434 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
1435 newinet
->inet_id
= newtp
->write_seq
^ jiffies
;
1437 tcp_mtup_init(newsk
);
1438 tcp_sync_mss(newsk
, dst_mtu(dst
));
1439 newtp
->advmss
= dst_metric_advmss(dst
);
1440 if (tcp_sk(sk
)->rx_opt
.user_mss
&&
1441 tcp_sk(sk
)->rx_opt
.user_mss
< newtp
->advmss
)
1442 newtp
->advmss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1444 tcp_initialize_rcv_mss(newsk
);
1446 #ifdef CONFIG_TCP_MD5SIG
1447 /* Copy over the MD5 key from the original socket */
1448 key
= tcp_v4_md5_do_lookup(sk
, newinet
->inet_daddr
);
1451 * We're using one, so create a matching key
1452 * on the newsk structure. If we fail to get
1453 * memory, then we end up not copying the key
1456 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1458 tcp_v4_md5_do_add(newsk
, newinet
->inet_daddr
,
1459 newkey
, key
->keylen
);
1460 sk_nocaps_add(newsk
, NETIF_F_GSO_MASK
);
1464 if (__inet_inherit_port(sk
, newsk
) < 0) {
1468 __inet_hash_nolisten(newsk
, NULL
);
1473 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
1477 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
1480 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1482 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1484 struct tcphdr
*th
= tcp_hdr(skb
);
1485 const struct iphdr
*iph
= ip_hdr(skb
);
1487 struct request_sock
**prev
;
1488 /* Find possible connection requests. */
1489 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1490 iph
->saddr
, iph
->daddr
);
1492 return tcp_check_req(sk
, skb
, req
, prev
);
1494 nsk
= inet_lookup_established(sock_net(sk
), &tcp_hashinfo
, iph
->saddr
,
1495 th
->source
, iph
->daddr
, th
->dest
, inet_iif(skb
));
1498 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1502 inet_twsk_put(inet_twsk(nsk
));
1506 #ifdef CONFIG_SYN_COOKIES
1508 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1513 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1515 const struct iphdr
*iph
= ip_hdr(skb
);
1517 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1518 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1519 iph
->daddr
, skb
->csum
)) {
1520 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1525 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1526 skb
->len
, IPPROTO_TCP
, 0);
1528 if (skb
->len
<= 76) {
1529 return __skb_checksum_complete(skb
);
1535 /* The socket must have it's spinlock held when we get
1538 * We have a potential double-lock case here, so even when
1539 * doing backlog processing we use the BH locking scheme.
1540 * This is because we cannot sleep with the original spinlock
1543 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1546 #ifdef CONFIG_TCP_MD5SIG
1548 * We really want to reject the packet as early as possible
1550 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1551 * o There is an MD5 option and we're not expecting one
1553 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1557 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1558 sock_rps_save_rxhash(sk
, skb
->rxhash
);
1559 TCP_CHECK_TIMER(sk
);
1560 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1564 TCP_CHECK_TIMER(sk
);
1568 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1571 if (sk
->sk_state
== TCP_LISTEN
) {
1572 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1577 if (tcp_child_process(sk
, nsk
, skb
)) {
1584 sock_rps_save_rxhash(sk
, skb
->rxhash
);
1587 TCP_CHECK_TIMER(sk
);
1588 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1592 TCP_CHECK_TIMER(sk
);
1596 tcp_v4_send_reset(rsk
, skb
);
1599 /* Be careful here. If this function gets more complicated and
1600 * gcc suffers from register pressure on the x86, sk (in %ebx)
1601 * might be destroyed here. This current version compiles correctly,
1602 * but you have been warned.
1607 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
1610 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1616 int tcp_v4_rcv(struct sk_buff
*skb
)
1618 const struct iphdr
*iph
;
1622 struct net
*net
= dev_net(skb
->dev
);
1624 if (skb
->pkt_type
!= PACKET_HOST
)
1627 /* Count it even if it's bad */
1628 TCP_INC_STATS_BH(net
, TCP_MIB_INSEGS
);
1630 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1635 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1637 if (!pskb_may_pull(skb
, th
->doff
* 4))
1640 /* An explanation is required here, I think.
1641 * Packet length and doff are validated by header prediction,
1642 * provided case of th->doff==0 is eliminated.
1643 * So, we defer the checks. */
1644 if (!skb_csum_unnecessary(skb
) && tcp_v4_checksum_init(skb
))
1649 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1650 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1651 skb
->len
- th
->doff
* 4);
1652 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1653 TCP_SKB_CB(skb
)->when
= 0;
1654 TCP_SKB_CB(skb
)->flags
= iph
->tos
;
1655 TCP_SKB_CB(skb
)->sacked
= 0;
1657 sk
= __inet_lookup_skb(&tcp_hashinfo
, skb
, th
->source
, th
->dest
);
1662 if (sk
->sk_state
== TCP_TIME_WAIT
)
1665 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
1666 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
1667 goto discard_and_relse
;
1670 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1671 goto discard_and_relse
;
1674 if (sk_filter(sk
, skb
))
1675 goto discard_and_relse
;
1679 bh_lock_sock_nested(sk
);
1681 if (!sock_owned_by_user(sk
)) {
1682 #ifdef CONFIG_NET_DMA
1683 struct tcp_sock
*tp
= tcp_sk(sk
);
1684 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1685 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1686 if (tp
->ucopy
.dma_chan
)
1687 ret
= tcp_v4_do_rcv(sk
, skb
);
1691 if (!tcp_prequeue(sk
, skb
))
1692 ret
= tcp_v4_do_rcv(sk
, skb
);
1694 } else if (unlikely(sk_add_backlog(sk
, skb
))) {
1696 NET_INC_STATS_BH(net
, LINUX_MIB_TCPBACKLOGDROP
);
1697 goto discard_and_relse
;
1706 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1709 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1711 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1713 tcp_v4_send_reset(NULL
, skb
);
1717 /* Discard frame. */
1726 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1727 inet_twsk_put(inet_twsk(sk
));
1731 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1732 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1733 inet_twsk_put(inet_twsk(sk
));
1736 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1738 struct sock
*sk2
= inet_lookup_listener(dev_net(skb
->dev
),
1740 iph
->daddr
, th
->dest
,
1743 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1744 inet_twsk_put(inet_twsk(sk
));
1748 /* Fall through to ACK */
1751 tcp_v4_timewait_ack(sk
, skb
);
1755 case TCP_TW_SUCCESS
:;
1760 struct inet_peer
*tcp_v4_get_peer(struct sock
*sk
, bool *release_it
)
1762 struct rtable
*rt
= (struct rtable
*) __sk_dst_get(sk
);
1763 struct inet_sock
*inet
= inet_sk(sk
);
1764 struct inet_peer
*peer
;
1766 if (!rt
|| rt
->rt_dst
!= inet
->inet_daddr
) {
1767 peer
= inet_getpeer_v4(inet
->inet_daddr
, 1);
1771 rt_bind_peer(rt
, 1);
1773 *release_it
= false;
1778 EXPORT_SYMBOL(tcp_v4_get_peer
);
1780 void *tcp_v4_tw_get_peer(struct sock
*sk
)
1782 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
1784 return inet_getpeer_v4(tw
->tw_daddr
, 1);
1786 EXPORT_SYMBOL(tcp_v4_tw_get_peer
);
1788 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1789 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1790 .twsk_unique
= tcp_twsk_unique
,
1791 .twsk_destructor
= tcp_twsk_destructor
,
1792 .twsk_getpeer
= tcp_v4_tw_get_peer
,
1795 const struct inet_connection_sock_af_ops ipv4_specific
= {
1796 .queue_xmit
= ip_queue_xmit
,
1797 .send_check
= tcp_v4_send_check
,
1798 .rebuild_header
= inet_sk_rebuild_header
,
1799 .conn_request
= tcp_v4_conn_request
,
1800 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1801 .get_peer
= tcp_v4_get_peer
,
1802 .net_header_len
= sizeof(struct iphdr
),
1803 .setsockopt
= ip_setsockopt
,
1804 .getsockopt
= ip_getsockopt
,
1805 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1806 .sockaddr_len
= sizeof(struct sockaddr_in
),
1807 .bind_conflict
= inet_csk_bind_conflict
,
1808 #ifdef CONFIG_COMPAT
1809 .compat_setsockopt
= compat_ip_setsockopt
,
1810 .compat_getsockopt
= compat_ip_getsockopt
,
1813 EXPORT_SYMBOL(ipv4_specific
);
1815 #ifdef CONFIG_TCP_MD5SIG
1816 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1817 .md5_lookup
= tcp_v4_md5_lookup
,
1818 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1819 .md5_add
= tcp_v4_md5_add_func
,
1820 .md5_parse
= tcp_v4_parse_md5_keys
,
1824 /* NOTE: A lot of things set to zero explicitly by call to
1825 * sk_alloc() so need not be done here.
1827 static int tcp_v4_init_sock(struct sock
*sk
)
1829 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1830 struct tcp_sock
*tp
= tcp_sk(sk
);
1832 skb_queue_head_init(&tp
->out_of_order_queue
);
1833 tcp_init_xmit_timers(sk
);
1834 tcp_prequeue_init(tp
);
1836 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1837 tp
->mdev
= TCP_TIMEOUT_INIT
;
1839 /* So many TCP implementations out there (incorrectly) count the
1840 * initial SYN frame in their delayed-ACK and congestion control
1841 * algorithms that we must have the following bandaid to talk
1842 * efficiently to them. -DaveM
1846 /* See draft-stevens-tcpca-spec-01 for discussion of the
1847 * initialization of these values.
1849 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
1850 tp
->snd_cwnd_clamp
= ~0;
1851 tp
->mss_cache
= TCP_MSS_DEFAULT
;
1853 tp
->reordering
= sysctl_tcp_reordering
;
1854 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1856 sk
->sk_state
= TCP_CLOSE
;
1858 sk
->sk_write_space
= sk_stream_write_space
;
1859 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1861 icsk
->icsk_af_ops
= &ipv4_specific
;
1862 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1863 #ifdef CONFIG_TCP_MD5SIG
1864 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1867 /* TCP Cookie Transactions */
1868 if (sysctl_tcp_cookie_size
> 0) {
1869 /* Default, cookies without s_data_payload. */
1871 kzalloc(sizeof(*tp
->cookie_values
),
1873 if (tp
->cookie_values
!= NULL
)
1874 kref_init(&tp
->cookie_values
->kref
);
1876 /* Presumed zeroed, in order of appearance:
1877 * cookie_in_always, cookie_out_never,
1878 * s_data_constant, s_data_in, s_data_out
1880 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1881 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1884 percpu_counter_inc(&tcp_sockets_allocated
);
1890 void tcp_v4_destroy_sock(struct sock
*sk
)
1892 struct tcp_sock
*tp
= tcp_sk(sk
);
1894 tcp_clear_xmit_timers(sk
);
1896 tcp_cleanup_congestion_control(sk
);
1898 /* Cleanup up the write buffer. */
1899 tcp_write_queue_purge(sk
);
1901 /* Cleans up our, hopefully empty, out_of_order_queue. */
1902 __skb_queue_purge(&tp
->out_of_order_queue
);
1904 #ifdef CONFIG_TCP_MD5SIG
1905 /* Clean up the MD5 key list, if any */
1906 if (tp
->md5sig_info
) {
1907 tcp_v4_clear_md5_list(sk
);
1908 kfree(tp
->md5sig_info
);
1909 tp
->md5sig_info
= NULL
;
1913 #ifdef CONFIG_NET_DMA
1914 /* Cleans up our sk_async_wait_queue */
1915 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1918 /* Clean prequeue, it must be empty really */
1919 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1921 /* Clean up a referenced TCP bind bucket. */
1922 if (inet_csk(sk
)->icsk_bind_hash
)
1926 * If sendmsg cached page exists, toss it.
1928 if (sk
->sk_sndmsg_page
) {
1929 __free_page(sk
->sk_sndmsg_page
);
1930 sk
->sk_sndmsg_page
= NULL
;
1933 /* TCP Cookie Transactions */
1934 if (tp
->cookie_values
!= NULL
) {
1935 kref_put(&tp
->cookie_values
->kref
,
1936 tcp_cookie_values_release
);
1937 tp
->cookie_values
= NULL
;
1940 percpu_counter_dec(&tcp_sockets_allocated
);
1942 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1944 #ifdef CONFIG_PROC_FS
1945 /* Proc filesystem TCP sock list dumping. */
1947 static inline struct inet_timewait_sock
*tw_head(struct hlist_nulls_head
*head
)
1949 return hlist_nulls_empty(head
) ? NULL
:
1950 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1953 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1955 return !is_a_nulls(tw
->tw_node
.next
) ?
1956 hlist_nulls_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1960 * Get next listener socket follow cur. If cur is NULL, get first socket
1961 * starting from bucket given in st->bucket; when st->bucket is zero the
1962 * very first socket in the hash table is returned.
1964 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1966 struct inet_connection_sock
*icsk
;
1967 struct hlist_nulls_node
*node
;
1968 struct sock
*sk
= cur
;
1969 struct inet_listen_hashbucket
*ilb
;
1970 struct tcp_iter_state
*st
= seq
->private;
1971 struct net
*net
= seq_file_net(seq
);
1974 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
1975 spin_lock_bh(&ilb
->lock
);
1976 sk
= sk_nulls_head(&ilb
->head
);
1980 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
1984 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1985 struct request_sock
*req
= cur
;
1987 icsk
= inet_csk(st
->syn_wait_sk
);
1991 if (req
->rsk_ops
->family
== st
->family
) {
1997 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
2000 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
2002 sk
= sk_nulls_next(st
->syn_wait_sk
);
2003 st
->state
= TCP_SEQ_STATE_LISTENING
;
2004 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2006 icsk
= inet_csk(sk
);
2007 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2008 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
2010 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2011 sk
= sk_nulls_next(sk
);
2014 sk_nulls_for_each_from(sk
, node
) {
2015 if (!net_eq(sock_net(sk
), net
))
2017 if (sk
->sk_family
== st
->family
) {
2021 icsk
= inet_csk(sk
);
2022 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2023 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2025 st
->uid
= sock_i_uid(sk
);
2026 st
->syn_wait_sk
= sk
;
2027 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2031 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2033 spin_unlock_bh(&ilb
->lock
);
2035 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2036 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2037 spin_lock_bh(&ilb
->lock
);
2038 sk
= sk_nulls_head(&ilb
->head
);
2046 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2048 struct tcp_iter_state
*st
= seq
->private;
2053 rc
= listening_get_next(seq
, NULL
);
2055 while (rc
&& *pos
) {
2056 rc
= listening_get_next(seq
, rc
);
2062 static inline int empty_bucket(struct tcp_iter_state
*st
)
2064 return hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].chain
) &&
2065 hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2069 * Get first established socket starting from bucket given in st->bucket.
2070 * If st->bucket is zero, the very first socket in the hash is returned.
2072 static void *established_get_first(struct seq_file
*seq
)
2074 struct tcp_iter_state
*st
= seq
->private;
2075 struct net
*net
= seq_file_net(seq
);
2079 for (; st
->bucket
<= tcp_hashinfo
.ehash_mask
; ++st
->bucket
) {
2081 struct hlist_nulls_node
*node
;
2082 struct inet_timewait_sock
*tw
;
2083 spinlock_t
*lock
= inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
);
2085 /* Lockless fast path for the common case of empty buckets */
2086 if (empty_bucket(st
))
2090 sk_nulls_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2091 if (sk
->sk_family
!= st
->family
||
2092 !net_eq(sock_net(sk
), net
)) {
2098 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2099 inet_twsk_for_each(tw
, node
,
2100 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2101 if (tw
->tw_family
!= st
->family
||
2102 !net_eq(twsk_net(tw
), net
)) {
2108 spin_unlock_bh(lock
);
2109 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2115 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2117 struct sock
*sk
= cur
;
2118 struct inet_timewait_sock
*tw
;
2119 struct hlist_nulls_node
*node
;
2120 struct tcp_iter_state
*st
= seq
->private;
2121 struct net
*net
= seq_file_net(seq
);
2126 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2130 while (tw
&& (tw
->tw_family
!= st
->family
|| !net_eq(twsk_net(tw
), net
))) {
2137 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2138 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2140 /* Look for next non empty bucket */
2142 while (++st
->bucket
<= tcp_hashinfo
.ehash_mask
&&
2145 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2148 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2149 sk
= sk_nulls_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2151 sk
= sk_nulls_next(sk
);
2153 sk_nulls_for_each_from(sk
, node
) {
2154 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
))
2158 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2159 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2167 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2169 struct tcp_iter_state
*st
= seq
->private;
2173 rc
= established_get_first(seq
);
2176 rc
= established_get_next(seq
, rc
);
2182 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2185 struct tcp_iter_state
*st
= seq
->private;
2187 st
->state
= TCP_SEQ_STATE_LISTENING
;
2188 rc
= listening_get_idx(seq
, &pos
);
2191 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2192 rc
= established_get_idx(seq
, pos
);
2198 static void *tcp_seek_last_pos(struct seq_file
*seq
)
2200 struct tcp_iter_state
*st
= seq
->private;
2201 int offset
= st
->offset
;
2202 int orig_num
= st
->num
;
2205 switch (st
->state
) {
2206 case TCP_SEQ_STATE_OPENREQ
:
2207 case TCP_SEQ_STATE_LISTENING
:
2208 if (st
->bucket
>= INET_LHTABLE_SIZE
)
2210 st
->state
= TCP_SEQ_STATE_LISTENING
;
2211 rc
= listening_get_next(seq
, NULL
);
2212 while (offset
-- && rc
)
2213 rc
= listening_get_next(seq
, rc
);
2218 case TCP_SEQ_STATE_ESTABLISHED
:
2219 case TCP_SEQ_STATE_TIME_WAIT
:
2220 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2221 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2223 rc
= established_get_first(seq
);
2224 while (offset
-- && rc
)
2225 rc
= established_get_next(seq
, rc
);
2233 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2235 struct tcp_iter_state
*st
= seq
->private;
2238 if (*pos
&& *pos
== st
->last_pos
) {
2239 rc
= tcp_seek_last_pos(seq
);
2244 st
->state
= TCP_SEQ_STATE_LISTENING
;
2248 rc
= *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2251 st
->last_pos
= *pos
;
2255 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2257 struct tcp_iter_state
*st
= seq
->private;
2260 if (v
== SEQ_START_TOKEN
) {
2261 rc
= tcp_get_idx(seq
, 0);
2265 switch (st
->state
) {
2266 case TCP_SEQ_STATE_OPENREQ
:
2267 case TCP_SEQ_STATE_LISTENING
:
2268 rc
= listening_get_next(seq
, v
);
2270 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2273 rc
= established_get_first(seq
);
2276 case TCP_SEQ_STATE_ESTABLISHED
:
2277 case TCP_SEQ_STATE_TIME_WAIT
:
2278 rc
= established_get_next(seq
, v
);
2283 st
->last_pos
= *pos
;
2287 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2289 struct tcp_iter_state
*st
= seq
->private;
2291 switch (st
->state
) {
2292 case TCP_SEQ_STATE_OPENREQ
:
2294 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2295 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2297 case TCP_SEQ_STATE_LISTENING
:
2298 if (v
!= SEQ_START_TOKEN
)
2299 spin_unlock_bh(&tcp_hashinfo
.listening_hash
[st
->bucket
].lock
);
2301 case TCP_SEQ_STATE_TIME_WAIT
:
2302 case TCP_SEQ_STATE_ESTABLISHED
:
2304 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2309 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2311 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2312 struct tcp_iter_state
*s
;
2315 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2316 sizeof(struct tcp_iter_state
));
2320 s
= ((struct seq_file
*)file
->private_data
)->private;
2321 s
->family
= afinfo
->family
;
2326 int tcp_proc_register(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2329 struct proc_dir_entry
*p
;
2331 afinfo
->seq_fops
.open
= tcp_seq_open
;
2332 afinfo
->seq_fops
.read
= seq_read
;
2333 afinfo
->seq_fops
.llseek
= seq_lseek
;
2334 afinfo
->seq_fops
.release
= seq_release_net
;
2336 afinfo
->seq_ops
.start
= tcp_seq_start
;
2337 afinfo
->seq_ops
.next
= tcp_seq_next
;
2338 afinfo
->seq_ops
.stop
= tcp_seq_stop
;
2340 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2341 &afinfo
->seq_fops
, afinfo
);
2346 EXPORT_SYMBOL(tcp_proc_register
);
2348 void tcp_proc_unregister(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2350 proc_net_remove(net
, afinfo
->name
);
2352 EXPORT_SYMBOL(tcp_proc_unregister
);
2354 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
2355 struct seq_file
*f
, int i
, int uid
, int *len
)
2357 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2358 int ttd
= req
->expires
- jiffies
;
2360 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2361 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2364 ntohs(inet_sk(sk
)->inet_sport
),
2366 ntohs(ireq
->rmt_port
),
2368 0, 0, /* could print option size, but that is af dependent. */
2369 1, /* timers active (only the expire timer) */
2370 jiffies_to_clock_t(ttd
),
2373 0, /* non standard timer */
2374 0, /* open_requests have no inode */
2375 atomic_read(&sk
->sk_refcnt
),
2380 static void get_tcp4_sock(struct sock
*sk
, struct seq_file
*f
, int i
, int *len
)
2383 unsigned long timer_expires
;
2384 struct tcp_sock
*tp
= tcp_sk(sk
);
2385 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2386 struct inet_sock
*inet
= inet_sk(sk
);
2387 __be32 dest
= inet
->inet_daddr
;
2388 __be32 src
= inet
->inet_rcv_saddr
;
2389 __u16 destp
= ntohs(inet
->inet_dport
);
2390 __u16 srcp
= ntohs(inet
->inet_sport
);
2393 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2395 timer_expires
= icsk
->icsk_timeout
;
2396 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2398 timer_expires
= icsk
->icsk_timeout
;
2399 } else if (timer_pending(&sk
->sk_timer
)) {
2401 timer_expires
= sk
->sk_timer
.expires
;
2404 timer_expires
= jiffies
;
2407 if (sk
->sk_state
== TCP_LISTEN
)
2408 rx_queue
= sk
->sk_ack_backlog
;
2411 * because we dont lock socket, we might find a transient negative value
2413 rx_queue
= max_t(int, tp
->rcv_nxt
- tp
->copied_seq
, 0);
2415 seq_printf(f
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2416 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2417 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2418 tp
->write_seq
- tp
->snd_una
,
2421 jiffies_to_clock_t(timer_expires
- jiffies
),
2422 icsk
->icsk_retransmits
,
2424 icsk
->icsk_probes_out
,
2426 atomic_read(&sk
->sk_refcnt
), sk
,
2427 jiffies_to_clock_t(icsk
->icsk_rto
),
2428 jiffies_to_clock_t(icsk
->icsk_ack
.ato
),
2429 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2431 tcp_in_initial_slowstart(tp
) ? -1 : tp
->snd_ssthresh
,
2435 static void get_timewait4_sock(struct inet_timewait_sock
*tw
,
2436 struct seq_file
*f
, int i
, int *len
)
2440 int ttd
= tw
->tw_ttd
- jiffies
;
2445 dest
= tw
->tw_daddr
;
2446 src
= tw
->tw_rcv_saddr
;
2447 destp
= ntohs(tw
->tw_dport
);
2448 srcp
= ntohs(tw
->tw_sport
);
2450 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2451 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2452 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2453 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2454 atomic_read(&tw
->tw_refcnt
), tw
, len
);
2459 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2461 struct tcp_iter_state
*st
;
2464 if (v
== SEQ_START_TOKEN
) {
2465 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2466 " sl local_address rem_address st tx_queue "
2467 "rx_queue tr tm->when retrnsmt uid timeout "
2473 switch (st
->state
) {
2474 case TCP_SEQ_STATE_LISTENING
:
2475 case TCP_SEQ_STATE_ESTABLISHED
:
2476 get_tcp4_sock(v
, seq
, st
->num
, &len
);
2478 case TCP_SEQ_STATE_OPENREQ
:
2479 get_openreq4(st
->syn_wait_sk
, v
, seq
, st
->num
, st
->uid
, &len
);
2481 case TCP_SEQ_STATE_TIME_WAIT
:
2482 get_timewait4_sock(v
, seq
, st
->num
, &len
);
2485 seq_printf(seq
, "%*s\n", TMPSZ
- 1 - len
, "");
2490 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2494 .owner
= THIS_MODULE
,
2497 .show
= tcp4_seq_show
,
2501 static int __net_init
tcp4_proc_init_net(struct net
*net
)
2503 return tcp_proc_register(net
, &tcp4_seq_afinfo
);
2506 static void __net_exit
tcp4_proc_exit_net(struct net
*net
)
2508 tcp_proc_unregister(net
, &tcp4_seq_afinfo
);
2511 static struct pernet_operations tcp4_net_ops
= {
2512 .init
= tcp4_proc_init_net
,
2513 .exit
= tcp4_proc_exit_net
,
2516 int __init
tcp4_proc_init(void)
2518 return register_pernet_subsys(&tcp4_net_ops
);
2521 void tcp4_proc_exit(void)
2523 unregister_pernet_subsys(&tcp4_net_ops
);
2525 #endif /* CONFIG_PROC_FS */
2527 struct sk_buff
**tcp4_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2529 struct iphdr
*iph
= skb_gro_network_header(skb
);
2531 switch (skb
->ip_summed
) {
2532 case CHECKSUM_COMPLETE
:
2533 if (!tcp_v4_check(skb_gro_len(skb
), iph
->saddr
, iph
->daddr
,
2535 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2541 NAPI_GRO_CB(skb
)->flush
= 1;
2545 return tcp_gro_receive(head
, skb
);
2548 int tcp4_gro_complete(struct sk_buff
*skb
)
2550 struct iphdr
*iph
= ip_hdr(skb
);
2551 struct tcphdr
*th
= tcp_hdr(skb
);
2553 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
2554 iph
->saddr
, iph
->daddr
, 0);
2555 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
2557 return tcp_gro_complete(skb
);
2560 struct proto tcp_prot
= {
2562 .owner
= THIS_MODULE
,
2564 .connect
= tcp_v4_connect
,
2565 .disconnect
= tcp_disconnect
,
2566 .accept
= inet_csk_accept
,
2568 .init
= tcp_v4_init_sock
,
2569 .destroy
= tcp_v4_destroy_sock
,
2570 .shutdown
= tcp_shutdown
,
2571 .setsockopt
= tcp_setsockopt
,
2572 .getsockopt
= tcp_getsockopt
,
2573 .recvmsg
= tcp_recvmsg
,
2574 .sendmsg
= tcp_sendmsg
,
2575 .sendpage
= tcp_sendpage
,
2576 .backlog_rcv
= tcp_v4_do_rcv
,
2578 .unhash
= inet_unhash
,
2579 .get_port
= inet_csk_get_port
,
2580 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2581 .sockets_allocated
= &tcp_sockets_allocated
,
2582 .orphan_count
= &tcp_orphan_count
,
2583 .memory_allocated
= &tcp_memory_allocated
,
2584 .memory_pressure
= &tcp_memory_pressure
,
2585 .sysctl_mem
= sysctl_tcp_mem
,
2586 .sysctl_wmem
= sysctl_tcp_wmem
,
2587 .sysctl_rmem
= sysctl_tcp_rmem
,
2588 .max_header
= MAX_TCP_HEADER
,
2589 .obj_size
= sizeof(struct tcp_sock
),
2590 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2591 .twsk_prot
= &tcp_timewait_sock_ops
,
2592 .rsk_prot
= &tcp_request_sock_ops
,
2593 .h
.hashinfo
= &tcp_hashinfo
,
2594 .no_autobind
= true,
2595 #ifdef CONFIG_COMPAT
2596 .compat_setsockopt
= compat_tcp_setsockopt
,
2597 .compat_getsockopt
= compat_tcp_getsockopt
,
2600 EXPORT_SYMBOL(tcp_prot
);
2603 static int __net_init
tcp_sk_init(struct net
*net
)
2605 return inet_ctl_sock_create(&net
->ipv4
.tcp_sock
,
2606 PF_INET
, SOCK_RAW
, IPPROTO_TCP
, net
);
2609 static void __net_exit
tcp_sk_exit(struct net
*net
)
2611 inet_ctl_sock_destroy(net
->ipv4
.tcp_sock
);
2614 static void __net_exit
tcp_sk_exit_batch(struct list_head
*net_exit_list
)
2616 inet_twsk_purge(&tcp_hashinfo
, &tcp_death_row
, AF_INET
);
2619 static struct pernet_operations __net_initdata tcp_sk_ops
= {
2620 .init
= tcp_sk_init
,
2621 .exit
= tcp_sk_exit
,
2622 .exit_batch
= tcp_sk_exit_batch
,
2625 void __init
tcp_v4_init(void)
2627 inet_hashinfo_init(&tcp_hashinfo
);
2628 if (register_pernet_subsys(&tcp_sk_ops
))
2629 panic("Failed to create the TCP control socket.\n");