]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_ipv4.c
Merge branch 'testing' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 dst = inet_csk_update_pmtu(sk, mtu);
285 if (!dst)
286 return;
287
288 /* Something is about to be wrong... Remember soft error
289 * for the case, if this connection will not able to recover.
290 */
291 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 sk->sk_err_soft = EMSGSIZE;
293
294 mtu = dst_mtu(dst);
295
296 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 tcp_sync_mss(sk, mtu);
299
300 /* Resend the TCP packet because it's
301 * clear that the old packet has been
302 * dropped. This is the new "fast" path mtu
303 * discovery.
304 */
305 tcp_simple_retransmit(sk);
306 } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313 if (dst)
314 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition. If err < 0 then the socket should
320 * be closed and the error returned to the user. If err > 0
321 * it's just the icmp type << 8 | icmp code. After adjustment
322 * header points to the first 8 bytes of the tcp header. We need
323 * to find the appropriate port.
324 *
325 * The locking strategy used here is very "optimistic". When
326 * someone else accesses the socket the ICMP is just dropped
327 * and for some paths there is no check at all.
328 * A more general error queue to queue errors for later handling
329 * is probably better.
330 *
331 */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 struct inet_connection_sock *icsk;
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 const int type = icmp_hdr(icmp_skb)->type;
341 const int code = icmp_hdr(icmp_skb)->code;
342 struct sock *sk;
343 struct sk_buff *skb;
344 struct request_sock *req;
345 __u32 seq;
346 __u32 remaining;
347 int err;
348 struct net *net = dev_net(icmp_skb->dev);
349
350 if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354
355 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 iph->saddr, th->source, inet_iif(icmp_skb));
357 if (!sk) {
358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 return;
360 }
361 if (sk->sk_state == TCP_TIME_WAIT) {
362 inet_twsk_put(inet_twsk(sk));
363 return;
364 }
365
366 bh_lock_sock(sk);
367 /* If too many ICMPs get dropped on busy
368 * servers this needs to be solved differently.
369 * We do take care of PMTU discovery (RFC1191) special case :
370 * we can receive locally generated ICMP messages while socket is held.
371 */
372 if (sock_owned_by_user(sk) &&
373 type != ICMP_DEST_UNREACH &&
374 code != ICMP_FRAG_NEEDED)
375 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377 if (sk->sk_state == TCP_CLOSE)
378 goto out;
379
380 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382 goto out;
383 }
384
385 icsk = inet_csk(sk);
386 tp = tcp_sk(sk);
387 req = tp->fastopen_rsk;
388 seq = ntohl(th->seq);
389 if (sk->sk_state != TCP_LISTEN &&
390 !between(seq, tp->snd_una, tp->snd_nxt) &&
391 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392 /* For a Fast Open socket, allow seq to be snt_isn. */
393 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394 goto out;
395 }
396
397 switch (type) {
398 case ICMP_REDIRECT:
399 do_redirect(icmp_skb, sk);
400 goto out;
401 case ICMP_SOURCE_QUENCH:
402 /* Just silently ignore these. */
403 goto out;
404 case ICMP_PARAMETERPROB:
405 err = EPROTO;
406 break;
407 case ICMP_DEST_UNREACH:
408 if (code > NR_ICMP_UNREACH)
409 goto out;
410
411 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412 tp->mtu_info = info;
413 if (!sock_owned_by_user(sk)) {
414 tcp_v4_mtu_reduced(sk);
415 } else {
416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 sock_hold(sk);
418 }
419 goto out;
420 }
421
422 err = icmp_err_convert[code].errno;
423 /* check if icmp_skb allows revert of backoff
424 * (see draft-zimmermann-tcp-lcd) */
425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 break;
427 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
428 !icsk->icsk_backoff)
429 break;
430
431 /* XXX (TFO) - revisit the following logic for TFO */
432
433 if (sock_owned_by_user(sk))
434 break;
435
436 icsk->icsk_backoff--;
437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 tcp_bound_rto(sk);
440
441 skb = tcp_write_queue_head(sk);
442 BUG_ON(!skb);
443
444 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447 if (remaining) {
448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 remaining, TCP_RTO_MAX);
450 } else {
451 /* RTO revert clocked out retransmission.
452 * Will retransmit now */
453 tcp_retransmit_timer(sk);
454 }
455
456 break;
457 case ICMP_TIME_EXCEEDED:
458 err = EHOSTUNREACH;
459 break;
460 default:
461 goto out;
462 }
463
464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 * than following the TCP_SYN_RECV case and closing the socket,
466 * we ignore the ICMP error and keep trying like a fully established
467 * socket. Is this the right thing to do?
468 */
469 if (req && req->sk == NULL)
470 goto out;
471
472 switch (sk->sk_state) {
473 struct request_sock *req, **prev;
474 case TCP_LISTEN:
475 if (sock_owned_by_user(sk))
476 goto out;
477
478 req = inet_csk_search_req(sk, &prev, th->dest,
479 iph->daddr, iph->saddr);
480 if (!req)
481 goto out;
482
483 /* ICMPs are not backlogged, hence we cannot get
484 an established socket here.
485 */
486 WARN_ON(req->sk);
487
488 if (seq != tcp_rsk(req)->snt_isn) {
489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 goto out;
491 }
492
493 /*
494 * Still in SYN_RECV, just remove it silently.
495 * There is no good way to pass the error to the newly
496 * created socket, and POSIX does not want network
497 * errors returned from accept().
498 */
499 inet_csk_reqsk_queue_drop(sk, req, prev);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->saddr,
661 th->source, ip_hdr(skb)->daddr,
662 ntohs(th->source), inet_iif(skb));
663 /* don't send rst if it can't find key */
664 if (!sk1)
665 return;
666 rcu_read_lock();
667 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668 &ip_hdr(skb)->saddr, AF_INET);
669 if (!key)
670 goto release_sk1;
671
672 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 goto release_sk1;
675 } else {
676 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677 &ip_hdr(skb)->saddr,
678 AF_INET) : NULL;
679 }
680
681 if (key) {
682 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683 (TCPOPT_NOP << 16) |
684 (TCPOPT_MD5SIG << 8) |
685 TCPOLEN_MD5SIG);
686 /* Update length and the length the header thinks exists */
687 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688 rep.th.doff = arg.iov[0].iov_len / 4;
689
690 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691 key, ip_hdr(skb)->saddr,
692 ip_hdr(skb)->daddr, &rep.th);
693 }
694 #endif
695 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr, /* XXX */
697 arg.iov[0].iov_len, IPPROTO_TCP, 0);
698 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700 /* When socket is gone, all binding information is lost.
701 * routing might fail in this case. No choice here, if we choose to force
702 * input interface, we will misroute in case of asymmetric route.
703 */
704 if (sk)
705 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707 net = dev_net(skb_dst(skb)->dev);
708 arg.tos = ip_hdr(skb)->tos;
709 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717 if (sk1) {
718 rcu_read_unlock();
719 sock_put(sk1);
720 }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725 outside socket context is ugly, certainly. What can I do?
726 */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729 u32 win, u32 ts, int oif,
730 struct tcp_md5sig_key *key,
731 int reply_flags, u8 tos)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734 struct {
735 struct tcphdr th;
736 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740 ];
741 } rep;
742 struct ip_reply_arg arg;
743 struct net *net = dev_net(skb_dst(skb)->dev);
744
745 memset(&rep.th, 0, sizeof(struct tcphdr));
746 memset(&arg, 0, sizeof(arg));
747
748 arg.iov[0].iov_base = (unsigned char *)&rep;
749 arg.iov[0].iov_len = sizeof(rep.th);
750 if (ts) {
751 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752 (TCPOPT_TIMESTAMP << 8) |
753 TCPOLEN_TIMESTAMP);
754 rep.opt[1] = htonl(tcp_time_stamp);
755 rep.opt[2] = htonl(ts);
756 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757 }
758
759 /* Swap the send and the receive. */
760 rep.th.dest = th->source;
761 rep.th.source = th->dest;
762 rep.th.doff = arg.iov[0].iov_len / 4;
763 rep.th.seq = htonl(seq);
764 rep.th.ack_seq = htonl(ack);
765 rep.th.ack = 1;
766 rep.th.window = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769 if (key) {
770 int offset = (ts) ? 3 : 0;
771
772 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773 (TCPOPT_NOP << 16) |
774 (TCPOPT_MD5SIG << 8) |
775 TCPOLEN_MD5SIG);
776 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777 rep.th.doff = arg.iov[0].iov_len/4;
778
779 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780 key, ip_hdr(skb)->saddr,
781 ip_hdr(skb)->daddr, &rep.th);
782 }
783 #endif
784 arg.flags = reply_flags;
785 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786 ip_hdr(skb)->saddr, /* XXX */
787 arg.iov[0].iov_len, IPPROTO_TCP, 0);
788 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789 if (oif)
790 arg.bound_dev_if = oif;
791 arg.tos = tos;
792 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800 struct inet_timewait_sock *tw = inet_twsk(sk);
801 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805 tcptw->tw_ts_recent,
806 tw->tw_bound_dev_if,
807 tcp_twsk_md5_key(tcptw),
808 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
809 tw->tw_tos
810 );
811
812 inet_twsk_put(tw);
813 }
814
815 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
816 struct request_sock *req)
817 {
818 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
819 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
820 */
821 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
822 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
823 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
824 req->ts_recent,
825 0,
826 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
827 AF_INET),
828 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
829 ip_hdr(skb)->tos);
830 }
831
832 /*
833 * Send a SYN-ACK after having received a SYN.
834 * This still operates on a request_sock only, not on a big
835 * socket.
836 */
837 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
838 struct request_sock *req,
839 struct request_values *rvp,
840 u16 queue_mapping,
841 bool nocache)
842 {
843 const struct inet_request_sock *ireq = inet_rsk(req);
844 struct flowi4 fl4;
845 int err = -1;
846 struct sk_buff * skb;
847
848 /* First, grab a route. */
849 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
850 return -1;
851
852 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
853
854 if (skb) {
855 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
856
857 skb_set_queue_mapping(skb, queue_mapping);
858 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
859 ireq->rmt_addr,
860 ireq->opt);
861 err = net_xmit_eval(err);
862 if (!tcp_rsk(req)->snt_synack && !err)
863 tcp_rsk(req)->snt_synack = tcp_time_stamp;
864 }
865
866 return err;
867 }
868
869 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
870 struct request_values *rvp)
871 {
872 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
873
874 if (!res)
875 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876 return res;
877 }
878
879 /*
880 * IPv4 request_sock destructor.
881 */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884 kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888 * Return true if a syncookie should be sent
889 */
890 bool tcp_syn_flood_action(struct sock *sk,
891 const struct sk_buff *skb,
892 const char *proto)
893 {
894 const char *msg = "Dropping request";
895 bool want_cookie = false;
896 struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901 if (sysctl_tcp_syncookies) {
902 msg = "Sending cookies";
903 want_cookie = true;
904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905 } else
906 #endif
907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910 if (!lopt->synflood_warned) {
911 lopt->synflood_warned = 1;
912 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
913 proto, ntohs(tcp_hdr(skb)->dest), msg);
914 }
915 return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920 * Save and compile IPv4 options into the request_sock if needed.
921 */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924 const struct ip_options *opt = &(IPCB(skb)->opt);
925 struct ip_options_rcu *dopt = NULL;
926
927 if (opt && opt->optlen) {
928 int opt_size = sizeof(*dopt) + opt->optlen;
929
930 dopt = kmalloc(opt_size, GFP_ATOMIC);
931 if (dopt) {
932 if (ip_options_echo(&dopt->opt, skb)) {
933 kfree(dopt);
934 dopt = NULL;
935 }
936 }
937 }
938 return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943 * RFC2385 MD5 checksumming requires a mapping of
944 * IP address->MD5 Key.
945 * We need to maintain these in the sk structure.
946 */
947
948 /* Find the Key structure for an address. */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950 const union tcp_md5_addr *addr,
951 int family)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 struct tcp_md5sig_key *key;
955 struct hlist_node *pos;
956 unsigned int size = sizeof(struct in_addr);
957 struct tcp_md5sig_info *md5sig;
958
959 /* caller either holds rcu_read_lock() or socket lock */
960 md5sig = rcu_dereference_check(tp->md5sig_info,
961 sock_owned_by_user(sk) ||
962 lockdep_is_held(&sk->sk_lock.slock));
963 if (!md5sig)
964 return NULL;
965 #if IS_ENABLED(CONFIG_IPV6)
966 if (family == AF_INET6)
967 size = sizeof(struct in6_addr);
968 #endif
969 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
970 if (key->family != family)
971 continue;
972 if (!memcmp(&key->addr, addr, size))
973 return key;
974 }
975 return NULL;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_lookup);
978
979 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
980 struct sock *addr_sk)
981 {
982 union tcp_md5_addr *addr;
983
984 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
985 return tcp_md5_do_lookup(sk, addr, AF_INET);
986 }
987 EXPORT_SYMBOL(tcp_v4_md5_lookup);
988
989 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
990 struct request_sock *req)
991 {
992 union tcp_md5_addr *addr;
993
994 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
995 return tcp_md5_do_lookup(sk, addr, AF_INET);
996 }
997
998 /* This can be called on a newly created socket, from other files */
999 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1000 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1001 {
1002 /* Add Key to the list */
1003 struct tcp_md5sig_key *key;
1004 struct tcp_sock *tp = tcp_sk(sk);
1005 struct tcp_md5sig_info *md5sig;
1006
1007 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1008 if (key) {
1009 /* Pre-existing entry - just update that one. */
1010 memcpy(key->key, newkey, newkeylen);
1011 key->keylen = newkeylen;
1012 return 0;
1013 }
1014
1015 md5sig = rcu_dereference_protected(tp->md5sig_info,
1016 sock_owned_by_user(sk));
1017 if (!md5sig) {
1018 md5sig = kmalloc(sizeof(*md5sig), gfp);
1019 if (!md5sig)
1020 return -ENOMEM;
1021
1022 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1023 INIT_HLIST_HEAD(&md5sig->head);
1024 rcu_assign_pointer(tp->md5sig_info, md5sig);
1025 }
1026
1027 key = sock_kmalloc(sk, sizeof(*key), gfp);
1028 if (!key)
1029 return -ENOMEM;
1030 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1031 sock_kfree_s(sk, key, sizeof(*key));
1032 return -ENOMEM;
1033 }
1034
1035 memcpy(key->key, newkey, newkeylen);
1036 key->keylen = newkeylen;
1037 key->family = family;
1038 memcpy(&key->addr, addr,
1039 (family == AF_INET6) ? sizeof(struct in6_addr) :
1040 sizeof(struct in_addr));
1041 hlist_add_head_rcu(&key->node, &md5sig->head);
1042 return 0;
1043 }
1044 EXPORT_SYMBOL(tcp_md5_do_add);
1045
1046 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1047 {
1048 struct tcp_sock *tp = tcp_sk(sk);
1049 struct tcp_md5sig_key *key;
1050 struct tcp_md5sig_info *md5sig;
1051
1052 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1053 if (!key)
1054 return -ENOENT;
1055 hlist_del_rcu(&key->node);
1056 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1057 kfree_rcu(key, rcu);
1058 md5sig = rcu_dereference_protected(tp->md5sig_info,
1059 sock_owned_by_user(sk));
1060 if (hlist_empty(&md5sig->head))
1061 tcp_free_md5sig_pool();
1062 return 0;
1063 }
1064 EXPORT_SYMBOL(tcp_md5_do_del);
1065
1066 static void tcp_clear_md5_list(struct sock *sk)
1067 {
1068 struct tcp_sock *tp = tcp_sk(sk);
1069 struct tcp_md5sig_key *key;
1070 struct hlist_node *pos, *n;
1071 struct tcp_md5sig_info *md5sig;
1072
1073 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1074
1075 if (!hlist_empty(&md5sig->head))
1076 tcp_free_md5sig_pool();
1077 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1078 hlist_del_rcu(&key->node);
1079 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1080 kfree_rcu(key, rcu);
1081 }
1082 }
1083
1084 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1085 int optlen)
1086 {
1087 struct tcp_md5sig cmd;
1088 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1089
1090 if (optlen < sizeof(cmd))
1091 return -EINVAL;
1092
1093 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1094 return -EFAULT;
1095
1096 if (sin->sin_family != AF_INET)
1097 return -EINVAL;
1098
1099 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1100 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1101 AF_INET);
1102
1103 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1104 return -EINVAL;
1105
1106 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1107 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1108 GFP_KERNEL);
1109 }
1110
1111 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1112 __be32 daddr, __be32 saddr, int nbytes)
1113 {
1114 struct tcp4_pseudohdr *bp;
1115 struct scatterlist sg;
1116
1117 bp = &hp->md5_blk.ip4;
1118
1119 /*
1120 * 1. the TCP pseudo-header (in the order: source IP address,
1121 * destination IP address, zero-padded protocol number, and
1122 * segment length)
1123 */
1124 bp->saddr = saddr;
1125 bp->daddr = daddr;
1126 bp->pad = 0;
1127 bp->protocol = IPPROTO_TCP;
1128 bp->len = cpu_to_be16(nbytes);
1129
1130 sg_init_one(&sg, bp, sizeof(*bp));
1131 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1132 }
1133
1134 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1135 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1136 {
1137 struct tcp_md5sig_pool *hp;
1138 struct hash_desc *desc;
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1148 goto clear_hash;
1149 if (tcp_md5_hash_header(hp, th))
1150 goto clear_hash;
1151 if (tcp_md5_hash_key(hp, key))
1152 goto clear_hash;
1153 if (crypto_hash_final(desc, md5_hash))
1154 goto clear_hash;
1155
1156 tcp_put_md5sig_pool();
1157 return 0;
1158
1159 clear_hash:
1160 tcp_put_md5sig_pool();
1161 clear_hash_noput:
1162 memset(md5_hash, 0, 16);
1163 return 1;
1164 }
1165
1166 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1167 const struct sock *sk, const struct request_sock *req,
1168 const struct sk_buff *skb)
1169 {
1170 struct tcp_md5sig_pool *hp;
1171 struct hash_desc *desc;
1172 const struct tcphdr *th = tcp_hdr(skb);
1173 __be32 saddr, daddr;
1174
1175 if (sk) {
1176 saddr = inet_sk(sk)->inet_saddr;
1177 daddr = inet_sk(sk)->inet_daddr;
1178 } else if (req) {
1179 saddr = inet_rsk(req)->loc_addr;
1180 daddr = inet_rsk(req)->rmt_addr;
1181 } else {
1182 const struct iphdr *iph = ip_hdr(skb);
1183 saddr = iph->saddr;
1184 daddr = iph->daddr;
1185 }
1186
1187 hp = tcp_get_md5sig_pool();
1188 if (!hp)
1189 goto clear_hash_noput;
1190 desc = &hp->md5_desc;
1191
1192 if (crypto_hash_init(desc))
1193 goto clear_hash;
1194
1195 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1196 goto clear_hash;
1197 if (tcp_md5_hash_header(hp, th))
1198 goto clear_hash;
1199 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1200 goto clear_hash;
1201 if (tcp_md5_hash_key(hp, key))
1202 goto clear_hash;
1203 if (crypto_hash_final(desc, md5_hash))
1204 goto clear_hash;
1205
1206 tcp_put_md5sig_pool();
1207 return 0;
1208
1209 clear_hash:
1210 tcp_put_md5sig_pool();
1211 clear_hash_noput:
1212 memset(md5_hash, 0, 16);
1213 return 1;
1214 }
1215 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1216
1217 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1218 {
1219 /*
1220 * This gets called for each TCP segment that arrives
1221 * so we want to be efficient.
1222 * We have 3 drop cases:
1223 * o No MD5 hash and one expected.
1224 * o MD5 hash and we're not expecting one.
1225 * o MD5 hash and its wrong.
1226 */
1227 const __u8 *hash_location = NULL;
1228 struct tcp_md5sig_key *hash_expected;
1229 const struct iphdr *iph = ip_hdr(skb);
1230 const struct tcphdr *th = tcp_hdr(skb);
1231 int genhash;
1232 unsigned char newhash[16];
1233
1234 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1235 AF_INET);
1236 hash_location = tcp_parse_md5sig_option(th);
1237
1238 /* We've parsed the options - do we have a hash? */
1239 if (!hash_expected && !hash_location)
1240 return false;
1241
1242 if (hash_expected && !hash_location) {
1243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1244 return true;
1245 }
1246
1247 if (!hash_expected && hash_location) {
1248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1249 return true;
1250 }
1251
1252 /* Okay, so this is hash_expected and hash_location -
1253 * so we need to calculate the checksum.
1254 */
1255 genhash = tcp_v4_md5_hash_skb(newhash,
1256 hash_expected,
1257 NULL, NULL, skb);
1258
1259 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1260 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1261 &iph->saddr, ntohs(th->source),
1262 &iph->daddr, ntohs(th->dest),
1263 genhash ? " tcp_v4_calc_md5_hash failed"
1264 : "");
1265 return true;
1266 }
1267 return false;
1268 }
1269
1270 #endif
1271
1272 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1273 .family = PF_INET,
1274 .obj_size = sizeof(struct tcp_request_sock),
1275 .rtx_syn_ack = tcp_v4_rtx_synack,
1276 .send_ack = tcp_v4_reqsk_send_ack,
1277 .destructor = tcp_v4_reqsk_destructor,
1278 .send_reset = tcp_v4_send_reset,
1279 .syn_ack_timeout = tcp_syn_ack_timeout,
1280 };
1281
1282 #ifdef CONFIG_TCP_MD5SIG
1283 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1284 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1285 .calc_md5_hash = tcp_v4_md5_hash_skb,
1286 };
1287 #endif
1288
1289 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1290 struct request_sock *req,
1291 struct tcp_fastopen_cookie *foc,
1292 struct tcp_fastopen_cookie *valid_foc)
1293 {
1294 bool skip_cookie = false;
1295 struct fastopen_queue *fastopenq;
1296
1297 if (likely(!fastopen_cookie_present(foc))) {
1298 /* See include/net/tcp.h for the meaning of these knobs */
1299 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1300 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1301 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1302 skip_cookie = true; /* no cookie to validate */
1303 else
1304 return false;
1305 }
1306 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1307 /* A FO option is present; bump the counter. */
1308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1309
1310 /* Make sure the listener has enabled fastopen, and we don't
1311 * exceed the max # of pending TFO requests allowed before trying
1312 * to validating the cookie in order to avoid burning CPU cycles
1313 * unnecessarily.
1314 *
1315 * XXX (TFO) - The implication of checking the max_qlen before
1316 * processing a cookie request is that clients can't differentiate
1317 * between qlen overflow causing Fast Open to be disabled
1318 * temporarily vs a server not supporting Fast Open at all.
1319 */
1320 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1321 fastopenq == NULL || fastopenq->max_qlen == 0)
1322 return false;
1323
1324 if (fastopenq->qlen >= fastopenq->max_qlen) {
1325 struct request_sock *req1;
1326 spin_lock(&fastopenq->lock);
1327 req1 = fastopenq->rskq_rst_head;
1328 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1329 spin_unlock(&fastopenq->lock);
1330 NET_INC_STATS_BH(sock_net(sk),
1331 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1332 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1333 foc->len = -1;
1334 return false;
1335 }
1336 fastopenq->rskq_rst_head = req1->dl_next;
1337 fastopenq->qlen--;
1338 spin_unlock(&fastopenq->lock);
1339 reqsk_free(req1);
1340 }
1341 if (skip_cookie) {
1342 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1343 return true;
1344 }
1345 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1346 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1347 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1348 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1349 memcmp(&foc->val[0], &valid_foc->val[0],
1350 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1351 return false;
1352 valid_foc->len = -1;
1353 }
1354 /* Acknowledge the data received from the peer. */
1355 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1356 return true;
1357 } else if (foc->len == 0) { /* Client requesting a cookie */
1358 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1359 NET_INC_STATS_BH(sock_net(sk),
1360 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1361 } else {
1362 /* Client sent a cookie with wrong size. Treat it
1363 * the same as invalid and return a valid one.
1364 */
1365 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366 }
1367 return false;
1368 }
1369
1370 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1371 struct sk_buff *skb,
1372 struct sk_buff *skb_synack,
1373 struct request_sock *req,
1374 struct request_values *rvp)
1375 {
1376 struct tcp_sock *tp = tcp_sk(sk);
1377 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1378 const struct inet_request_sock *ireq = inet_rsk(req);
1379 struct sock *child;
1380 int err;
1381
1382 req->num_retrans = 0;
1383 req->num_timeout = 0;
1384 req->sk = NULL;
1385
1386 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1387 if (child == NULL) {
1388 NET_INC_STATS_BH(sock_net(sk),
1389 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1390 kfree_skb(skb_synack);
1391 return -1;
1392 }
1393 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1394 ireq->rmt_addr, ireq->opt);
1395 err = net_xmit_eval(err);
1396 if (!err)
1397 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1398 /* XXX (TFO) - is it ok to ignore error and continue? */
1399
1400 spin_lock(&queue->fastopenq->lock);
1401 queue->fastopenq->qlen++;
1402 spin_unlock(&queue->fastopenq->lock);
1403
1404 /* Initialize the child socket. Have to fix some values to take
1405 * into account the child is a Fast Open socket and is created
1406 * only out of the bits carried in the SYN packet.
1407 */
1408 tp = tcp_sk(child);
1409
1410 tp->fastopen_rsk = req;
1411 /* Do a hold on the listner sk so that if the listener is being
1412 * closed, the child that has been accepted can live on and still
1413 * access listen_lock.
1414 */
1415 sock_hold(sk);
1416 tcp_rsk(req)->listener = sk;
1417
1418 /* RFC1323: The window in SYN & SYN/ACK segments is never
1419 * scaled. So correct it appropriately.
1420 */
1421 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1422
1423 /* Activate the retrans timer so that SYNACK can be retransmitted.
1424 * The request socket is not added to the SYN table of the parent
1425 * because it's been added to the accept queue directly.
1426 */
1427 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1428 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1429
1430 /* Add the child socket directly into the accept queue */
1431 inet_csk_reqsk_queue_add(sk, req, child);
1432
1433 /* Now finish processing the fastopen child socket. */
1434 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1435 tcp_init_congestion_control(child);
1436 tcp_mtup_init(child);
1437 tcp_init_buffer_space(child);
1438 tcp_init_metrics(child);
1439
1440 /* Queue the data carried in the SYN packet. We need to first
1441 * bump skb's refcnt because the caller will attempt to free it.
1442 *
1443 * XXX (TFO) - we honor a zero-payload TFO request for now.
1444 * (Any reason not to?)
1445 */
1446 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1447 /* Don't queue the skb if there is no payload in SYN.
1448 * XXX (TFO) - How about SYN+FIN?
1449 */
1450 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1451 } else {
1452 skb = skb_get(skb);
1453 skb_dst_drop(skb);
1454 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1455 skb_set_owner_r(skb, child);
1456 __skb_queue_tail(&child->sk_receive_queue, skb);
1457 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1458 tp->syn_data_acked = 1;
1459 }
1460 sk->sk_data_ready(sk, 0);
1461 bh_unlock_sock(child);
1462 sock_put(child);
1463 WARN_ON(req->sk == NULL);
1464 return 0;
1465 }
1466
1467 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1468 {
1469 struct tcp_extend_values tmp_ext;
1470 struct tcp_options_received tmp_opt;
1471 const u8 *hash_location;
1472 struct request_sock *req;
1473 struct inet_request_sock *ireq;
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct dst_entry *dst = NULL;
1476 __be32 saddr = ip_hdr(skb)->saddr;
1477 __be32 daddr = ip_hdr(skb)->daddr;
1478 __u32 isn = TCP_SKB_CB(skb)->when;
1479 bool want_cookie = false;
1480 struct flowi4 fl4;
1481 struct tcp_fastopen_cookie foc = { .len = -1 };
1482 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1483 struct sk_buff *skb_synack;
1484 int do_fastopen;
1485
1486 /* Never answer to SYNs send to broadcast or multicast */
1487 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1488 goto drop;
1489
1490 /* TW buckets are converted to open requests without
1491 * limitations, they conserve resources and peer is
1492 * evidently real one.
1493 */
1494 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1495 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1496 if (!want_cookie)
1497 goto drop;
1498 }
1499
1500 /* Accept backlog is full. If we have already queued enough
1501 * of warm entries in syn queue, drop request. It is better than
1502 * clogging syn queue with openreqs with exponentially increasing
1503 * timeout.
1504 */
1505 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1506 goto drop;
1507
1508 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1509 if (!req)
1510 goto drop;
1511
1512 #ifdef CONFIG_TCP_MD5SIG
1513 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1514 #endif
1515
1516 tcp_clear_options(&tmp_opt);
1517 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1518 tmp_opt.user_mss = tp->rx_opt.user_mss;
1519 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1520 want_cookie ? NULL : &foc);
1521
1522 if (tmp_opt.cookie_plus > 0 &&
1523 tmp_opt.saw_tstamp &&
1524 !tp->rx_opt.cookie_out_never &&
1525 (sysctl_tcp_cookie_size > 0 ||
1526 (tp->cookie_values != NULL &&
1527 tp->cookie_values->cookie_desired > 0))) {
1528 u8 *c;
1529 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1530 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1531
1532 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1533 goto drop_and_release;
1534
1535 /* Secret recipe starts with IP addresses */
1536 *mess++ ^= (__force u32)daddr;
1537 *mess++ ^= (__force u32)saddr;
1538
1539 /* plus variable length Initiator Cookie */
1540 c = (u8 *)mess;
1541 while (l-- > 0)
1542 *c++ ^= *hash_location++;
1543
1544 want_cookie = false; /* not our kind of cookie */
1545 tmp_ext.cookie_out_never = 0; /* false */
1546 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1547 } else if (!tp->rx_opt.cookie_in_always) {
1548 /* redundant indications, but ensure initialization. */
1549 tmp_ext.cookie_out_never = 1; /* true */
1550 tmp_ext.cookie_plus = 0;
1551 } else {
1552 goto drop_and_release;
1553 }
1554 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1555
1556 if (want_cookie && !tmp_opt.saw_tstamp)
1557 tcp_clear_options(&tmp_opt);
1558
1559 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1560 tcp_openreq_init(req, &tmp_opt, skb);
1561
1562 ireq = inet_rsk(req);
1563 ireq->loc_addr = daddr;
1564 ireq->rmt_addr = saddr;
1565 ireq->no_srccheck = inet_sk(sk)->transparent;
1566 ireq->opt = tcp_v4_save_options(skb);
1567
1568 if (security_inet_conn_request(sk, skb, req))
1569 goto drop_and_free;
1570
1571 if (!want_cookie || tmp_opt.tstamp_ok)
1572 TCP_ECN_create_request(req, skb, sock_net(sk));
1573
1574 if (want_cookie) {
1575 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1576 req->cookie_ts = tmp_opt.tstamp_ok;
1577 } else if (!isn) {
1578 /* VJ's idea. We save last timestamp seen
1579 * from the destination in peer table, when entering
1580 * state TIME-WAIT, and check against it before
1581 * accepting new connection request.
1582 *
1583 * If "isn" is not zero, this request hit alive
1584 * timewait bucket, so that all the necessary checks
1585 * are made in the function processing timewait state.
1586 */
1587 if (tmp_opt.saw_tstamp &&
1588 tcp_death_row.sysctl_tw_recycle &&
1589 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1590 fl4.daddr == saddr) {
1591 if (!tcp_peer_is_proven(req, dst, true)) {
1592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1593 goto drop_and_release;
1594 }
1595 }
1596 /* Kill the following clause, if you dislike this way. */
1597 else if (!sysctl_tcp_syncookies &&
1598 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1599 (sysctl_max_syn_backlog >> 2)) &&
1600 !tcp_peer_is_proven(req, dst, false)) {
1601 /* Without syncookies last quarter of
1602 * backlog is filled with destinations,
1603 * proven to be alive.
1604 * It means that we continue to communicate
1605 * to destinations, already remembered
1606 * to the moment of synflood.
1607 */
1608 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1609 &saddr, ntohs(tcp_hdr(skb)->source));
1610 goto drop_and_release;
1611 }
1612
1613 isn = tcp_v4_init_sequence(skb);
1614 }
1615 tcp_rsk(req)->snt_isn = isn;
1616
1617 if (dst == NULL) {
1618 dst = inet_csk_route_req(sk, &fl4, req);
1619 if (dst == NULL)
1620 goto drop_and_free;
1621 }
1622 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1623
1624 /* We don't call tcp_v4_send_synack() directly because we need
1625 * to make sure a child socket can be created successfully before
1626 * sending back synack!
1627 *
1628 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1629 * (or better yet, call tcp_send_synack() in the child context
1630 * directly, but will have to fix bunch of other code first)
1631 * after syn_recv_sock() except one will need to first fix the
1632 * latter to remove its dependency on the current implementation
1633 * of tcp_v4_send_synack()->tcp_select_initial_window().
1634 */
1635 skb_synack = tcp_make_synack(sk, dst, req,
1636 (struct request_values *)&tmp_ext,
1637 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1638
1639 if (skb_synack) {
1640 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1641 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1642 } else
1643 goto drop_and_free;
1644
1645 if (likely(!do_fastopen)) {
1646 int err;
1647 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1648 ireq->rmt_addr, ireq->opt);
1649 err = net_xmit_eval(err);
1650 if (err || want_cookie)
1651 goto drop_and_free;
1652
1653 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1654 tcp_rsk(req)->listener = NULL;
1655 /* Add the request_sock to the SYN table */
1656 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1657 if (fastopen_cookie_present(&foc) && foc.len != 0)
1658 NET_INC_STATS_BH(sock_net(sk),
1659 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1660 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1661 (struct request_values *)&tmp_ext))
1662 goto drop_and_free;
1663
1664 return 0;
1665
1666 drop_and_release:
1667 dst_release(dst);
1668 drop_and_free:
1669 reqsk_free(req);
1670 drop:
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(tcp_v4_conn_request);
1674
1675
1676 /*
1677 * The three way handshake has completed - we got a valid synack -
1678 * now create the new socket.
1679 */
1680 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1681 struct request_sock *req,
1682 struct dst_entry *dst)
1683 {
1684 struct inet_request_sock *ireq;
1685 struct inet_sock *newinet;
1686 struct tcp_sock *newtp;
1687 struct sock *newsk;
1688 #ifdef CONFIG_TCP_MD5SIG
1689 struct tcp_md5sig_key *key;
1690 #endif
1691 struct ip_options_rcu *inet_opt;
1692
1693 if (sk_acceptq_is_full(sk))
1694 goto exit_overflow;
1695
1696 newsk = tcp_create_openreq_child(sk, req, skb);
1697 if (!newsk)
1698 goto exit_nonewsk;
1699
1700 newsk->sk_gso_type = SKB_GSO_TCPV4;
1701 inet_sk_rx_dst_set(newsk, skb);
1702
1703 newtp = tcp_sk(newsk);
1704 newinet = inet_sk(newsk);
1705 ireq = inet_rsk(req);
1706 newinet->inet_daddr = ireq->rmt_addr;
1707 newinet->inet_rcv_saddr = ireq->loc_addr;
1708 newinet->inet_saddr = ireq->loc_addr;
1709 inet_opt = ireq->opt;
1710 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1711 ireq->opt = NULL;
1712 newinet->mc_index = inet_iif(skb);
1713 newinet->mc_ttl = ip_hdr(skb)->ttl;
1714 newinet->rcv_tos = ip_hdr(skb)->tos;
1715 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1716 if (inet_opt)
1717 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1718 newinet->inet_id = newtp->write_seq ^ jiffies;
1719
1720 if (!dst) {
1721 dst = inet_csk_route_child_sock(sk, newsk, req);
1722 if (!dst)
1723 goto put_and_exit;
1724 } else {
1725 /* syncookie case : see end of cookie_v4_check() */
1726 }
1727 sk_setup_caps(newsk, dst);
1728
1729 tcp_mtup_init(newsk);
1730 tcp_sync_mss(newsk, dst_mtu(dst));
1731 newtp->advmss = dst_metric_advmss(dst);
1732 if (tcp_sk(sk)->rx_opt.user_mss &&
1733 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1734 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1735
1736 tcp_initialize_rcv_mss(newsk);
1737 tcp_synack_rtt_meas(newsk, req);
1738 newtp->total_retrans = req->num_retrans;
1739
1740 #ifdef CONFIG_TCP_MD5SIG
1741 /* Copy over the MD5 key from the original socket */
1742 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1743 AF_INET);
1744 if (key != NULL) {
1745 /*
1746 * We're using one, so create a matching key
1747 * on the newsk structure. If we fail to get
1748 * memory, then we end up not copying the key
1749 * across. Shucks.
1750 */
1751 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1752 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1753 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1754 }
1755 #endif
1756
1757 if (__inet_inherit_port(sk, newsk) < 0)
1758 goto put_and_exit;
1759 __inet_hash_nolisten(newsk, NULL);
1760
1761 return newsk;
1762
1763 exit_overflow:
1764 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1765 exit_nonewsk:
1766 dst_release(dst);
1767 exit:
1768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1769 return NULL;
1770 put_and_exit:
1771 inet_csk_prepare_forced_close(newsk);
1772 tcp_done(newsk);
1773 goto exit;
1774 }
1775 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1776
1777 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1778 {
1779 struct tcphdr *th = tcp_hdr(skb);
1780 const struct iphdr *iph = ip_hdr(skb);
1781 struct sock *nsk;
1782 struct request_sock **prev;
1783 /* Find possible connection requests. */
1784 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1785 iph->saddr, iph->daddr);
1786 if (req)
1787 return tcp_check_req(sk, skb, req, prev, false);
1788
1789 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1790 th->source, iph->daddr, th->dest, inet_iif(skb));
1791
1792 if (nsk) {
1793 if (nsk->sk_state != TCP_TIME_WAIT) {
1794 bh_lock_sock(nsk);
1795 return nsk;
1796 }
1797 inet_twsk_put(inet_twsk(nsk));
1798 return NULL;
1799 }
1800
1801 #ifdef CONFIG_SYN_COOKIES
1802 if (!th->syn)
1803 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1804 #endif
1805 return sk;
1806 }
1807
1808 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1809 {
1810 const struct iphdr *iph = ip_hdr(skb);
1811
1812 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1813 if (!tcp_v4_check(skb->len, iph->saddr,
1814 iph->daddr, skb->csum)) {
1815 skb->ip_summed = CHECKSUM_UNNECESSARY;
1816 return 0;
1817 }
1818 }
1819
1820 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1821 skb->len, IPPROTO_TCP, 0);
1822
1823 if (skb->len <= 76) {
1824 return __skb_checksum_complete(skb);
1825 }
1826 return 0;
1827 }
1828
1829
1830 /* The socket must have it's spinlock held when we get
1831 * here.
1832 *
1833 * We have a potential double-lock case here, so even when
1834 * doing backlog processing we use the BH locking scheme.
1835 * This is because we cannot sleep with the original spinlock
1836 * held.
1837 */
1838 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1839 {
1840 struct sock *rsk;
1841 #ifdef CONFIG_TCP_MD5SIG
1842 /*
1843 * We really want to reject the packet as early as possible
1844 * if:
1845 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1846 * o There is an MD5 option and we're not expecting one
1847 */
1848 if (tcp_v4_inbound_md5_hash(sk, skb))
1849 goto discard;
1850 #endif
1851
1852 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1853 struct dst_entry *dst = sk->sk_rx_dst;
1854
1855 sock_rps_save_rxhash(sk, skb);
1856 if (dst) {
1857 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1858 dst->ops->check(dst, 0) == NULL) {
1859 dst_release(dst);
1860 sk->sk_rx_dst = NULL;
1861 }
1862 }
1863 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1864 rsk = sk;
1865 goto reset;
1866 }
1867 return 0;
1868 }
1869
1870 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1871 goto csum_err;
1872
1873 if (sk->sk_state == TCP_LISTEN) {
1874 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1875 if (!nsk)
1876 goto discard;
1877
1878 if (nsk != sk) {
1879 sock_rps_save_rxhash(nsk, skb);
1880 if (tcp_child_process(sk, nsk, skb)) {
1881 rsk = nsk;
1882 goto reset;
1883 }
1884 return 0;
1885 }
1886 } else
1887 sock_rps_save_rxhash(sk, skb);
1888
1889 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1890 rsk = sk;
1891 goto reset;
1892 }
1893 return 0;
1894
1895 reset:
1896 tcp_v4_send_reset(rsk, skb);
1897 discard:
1898 kfree_skb(skb);
1899 /* Be careful here. If this function gets more complicated and
1900 * gcc suffers from register pressure on the x86, sk (in %ebx)
1901 * might be destroyed here. This current version compiles correctly,
1902 * but you have been warned.
1903 */
1904 return 0;
1905
1906 csum_err:
1907 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1908 goto discard;
1909 }
1910 EXPORT_SYMBOL(tcp_v4_do_rcv);
1911
1912 void tcp_v4_early_demux(struct sk_buff *skb)
1913 {
1914 const struct iphdr *iph;
1915 const struct tcphdr *th;
1916 struct sock *sk;
1917
1918 if (skb->pkt_type != PACKET_HOST)
1919 return;
1920
1921 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1922 return;
1923
1924 iph = ip_hdr(skb);
1925 th = tcp_hdr(skb);
1926
1927 if (th->doff < sizeof(struct tcphdr) / 4)
1928 return;
1929
1930 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1931 iph->saddr, th->source,
1932 iph->daddr, ntohs(th->dest),
1933 skb->skb_iif);
1934 if (sk) {
1935 skb->sk = sk;
1936 skb->destructor = sock_edemux;
1937 if (sk->sk_state != TCP_TIME_WAIT) {
1938 struct dst_entry *dst = sk->sk_rx_dst;
1939
1940 if (dst)
1941 dst = dst_check(dst, 0);
1942 if (dst &&
1943 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1944 skb_dst_set_noref(skb, dst);
1945 }
1946 }
1947 }
1948
1949 /*
1950 * From tcp_input.c
1951 */
1952
1953 int tcp_v4_rcv(struct sk_buff *skb)
1954 {
1955 const struct iphdr *iph;
1956 const struct tcphdr *th;
1957 struct sock *sk;
1958 int ret;
1959 struct net *net = dev_net(skb->dev);
1960
1961 if (skb->pkt_type != PACKET_HOST)
1962 goto discard_it;
1963
1964 /* Count it even if it's bad */
1965 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1966
1967 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1968 goto discard_it;
1969
1970 th = tcp_hdr(skb);
1971
1972 if (th->doff < sizeof(struct tcphdr) / 4)
1973 goto bad_packet;
1974 if (!pskb_may_pull(skb, th->doff * 4))
1975 goto discard_it;
1976
1977 /* An explanation is required here, I think.
1978 * Packet length and doff are validated by header prediction,
1979 * provided case of th->doff==0 is eliminated.
1980 * So, we defer the checks. */
1981 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1982 goto bad_packet;
1983
1984 th = tcp_hdr(skb);
1985 iph = ip_hdr(skb);
1986 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1987 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1988 skb->len - th->doff * 4);
1989 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1990 TCP_SKB_CB(skb)->when = 0;
1991 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1992 TCP_SKB_CB(skb)->sacked = 0;
1993
1994 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1995 if (!sk)
1996 goto no_tcp_socket;
1997
1998 process:
1999 if (sk->sk_state == TCP_TIME_WAIT)
2000 goto do_time_wait;
2001
2002 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2003 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2004 goto discard_and_relse;
2005 }
2006
2007 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2008 goto discard_and_relse;
2009 nf_reset(skb);
2010
2011 if (sk_filter(sk, skb))
2012 goto discard_and_relse;
2013
2014 skb->dev = NULL;
2015
2016 bh_lock_sock_nested(sk);
2017 ret = 0;
2018 if (!sock_owned_by_user(sk)) {
2019 #ifdef CONFIG_NET_DMA
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2022 tp->ucopy.dma_chan = net_dma_find_channel();
2023 if (tp->ucopy.dma_chan)
2024 ret = tcp_v4_do_rcv(sk, skb);
2025 else
2026 #endif
2027 {
2028 if (!tcp_prequeue(sk, skb))
2029 ret = tcp_v4_do_rcv(sk, skb);
2030 }
2031 } else if (unlikely(sk_add_backlog(sk, skb,
2032 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2033 bh_unlock_sock(sk);
2034 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2035 goto discard_and_relse;
2036 }
2037 bh_unlock_sock(sk);
2038
2039 sock_put(sk);
2040
2041 return ret;
2042
2043 no_tcp_socket:
2044 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2045 goto discard_it;
2046
2047 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2048 bad_packet:
2049 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2050 } else {
2051 tcp_v4_send_reset(NULL, skb);
2052 }
2053
2054 discard_it:
2055 /* Discard frame. */
2056 kfree_skb(skb);
2057 return 0;
2058
2059 discard_and_relse:
2060 sock_put(sk);
2061 goto discard_it;
2062
2063 do_time_wait:
2064 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2065 inet_twsk_put(inet_twsk(sk));
2066 goto discard_it;
2067 }
2068
2069 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2070 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2071 inet_twsk_put(inet_twsk(sk));
2072 goto discard_it;
2073 }
2074 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2075 case TCP_TW_SYN: {
2076 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2077 &tcp_hashinfo,
2078 iph->saddr, th->source,
2079 iph->daddr, th->dest,
2080 inet_iif(skb));
2081 if (sk2) {
2082 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2083 inet_twsk_put(inet_twsk(sk));
2084 sk = sk2;
2085 goto process;
2086 }
2087 /* Fall through to ACK */
2088 }
2089 case TCP_TW_ACK:
2090 tcp_v4_timewait_ack(sk, skb);
2091 break;
2092 case TCP_TW_RST:
2093 goto no_tcp_socket;
2094 case TCP_TW_SUCCESS:;
2095 }
2096 goto discard_it;
2097 }
2098
2099 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2100 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2101 .twsk_unique = tcp_twsk_unique,
2102 .twsk_destructor= tcp_twsk_destructor,
2103 };
2104
2105 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2106 {
2107 struct dst_entry *dst = skb_dst(skb);
2108
2109 dst_hold(dst);
2110 sk->sk_rx_dst = dst;
2111 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2112 }
2113 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2114
2115 const struct inet_connection_sock_af_ops ipv4_specific = {
2116 .queue_xmit = ip_queue_xmit,
2117 .send_check = tcp_v4_send_check,
2118 .rebuild_header = inet_sk_rebuild_header,
2119 .sk_rx_dst_set = inet_sk_rx_dst_set,
2120 .conn_request = tcp_v4_conn_request,
2121 .syn_recv_sock = tcp_v4_syn_recv_sock,
2122 .net_header_len = sizeof(struct iphdr),
2123 .setsockopt = ip_setsockopt,
2124 .getsockopt = ip_getsockopt,
2125 .addr2sockaddr = inet_csk_addr2sockaddr,
2126 .sockaddr_len = sizeof(struct sockaddr_in),
2127 .bind_conflict = inet_csk_bind_conflict,
2128 #ifdef CONFIG_COMPAT
2129 .compat_setsockopt = compat_ip_setsockopt,
2130 .compat_getsockopt = compat_ip_getsockopt,
2131 #endif
2132 };
2133 EXPORT_SYMBOL(ipv4_specific);
2134
2135 #ifdef CONFIG_TCP_MD5SIG
2136 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2137 .md5_lookup = tcp_v4_md5_lookup,
2138 .calc_md5_hash = tcp_v4_md5_hash_skb,
2139 .md5_parse = tcp_v4_parse_md5_keys,
2140 };
2141 #endif
2142
2143 /* NOTE: A lot of things set to zero explicitly by call to
2144 * sk_alloc() so need not be done here.
2145 */
2146 static int tcp_v4_init_sock(struct sock *sk)
2147 {
2148 struct inet_connection_sock *icsk = inet_csk(sk);
2149
2150 tcp_init_sock(sk);
2151
2152 icsk->icsk_af_ops = &ipv4_specific;
2153
2154 #ifdef CONFIG_TCP_MD5SIG
2155 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2156 #endif
2157
2158 return 0;
2159 }
2160
2161 void tcp_v4_destroy_sock(struct sock *sk)
2162 {
2163 struct tcp_sock *tp = tcp_sk(sk);
2164
2165 tcp_clear_xmit_timers(sk);
2166
2167 tcp_cleanup_congestion_control(sk);
2168
2169 /* Cleanup up the write buffer. */
2170 tcp_write_queue_purge(sk);
2171
2172 /* Cleans up our, hopefully empty, out_of_order_queue. */
2173 __skb_queue_purge(&tp->out_of_order_queue);
2174
2175 #ifdef CONFIG_TCP_MD5SIG
2176 /* Clean up the MD5 key list, if any */
2177 if (tp->md5sig_info) {
2178 tcp_clear_md5_list(sk);
2179 kfree_rcu(tp->md5sig_info, rcu);
2180 tp->md5sig_info = NULL;
2181 }
2182 #endif
2183
2184 #ifdef CONFIG_NET_DMA
2185 /* Cleans up our sk_async_wait_queue */
2186 __skb_queue_purge(&sk->sk_async_wait_queue);
2187 #endif
2188
2189 /* Clean prequeue, it must be empty really */
2190 __skb_queue_purge(&tp->ucopy.prequeue);
2191
2192 /* Clean up a referenced TCP bind bucket. */
2193 if (inet_csk(sk)->icsk_bind_hash)
2194 inet_put_port(sk);
2195
2196 /* TCP Cookie Transactions */
2197 if (tp->cookie_values != NULL) {
2198 kref_put(&tp->cookie_values->kref,
2199 tcp_cookie_values_release);
2200 tp->cookie_values = NULL;
2201 }
2202 BUG_ON(tp->fastopen_rsk != NULL);
2203
2204 /* If socket is aborted during connect operation */
2205 tcp_free_fastopen_req(tp);
2206
2207 sk_sockets_allocated_dec(sk);
2208 sock_release_memcg(sk);
2209 }
2210 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2211
2212 #ifdef CONFIG_PROC_FS
2213 /* Proc filesystem TCP sock list dumping. */
2214
2215 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2216 {
2217 return hlist_nulls_empty(head) ? NULL :
2218 list_entry(head->first, struct inet_timewait_sock, tw_node);
2219 }
2220
2221 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2222 {
2223 return !is_a_nulls(tw->tw_node.next) ?
2224 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2225 }
2226
2227 /*
2228 * Get next listener socket follow cur. If cur is NULL, get first socket
2229 * starting from bucket given in st->bucket; when st->bucket is zero the
2230 * very first socket in the hash table is returned.
2231 */
2232 static void *listening_get_next(struct seq_file *seq, void *cur)
2233 {
2234 struct inet_connection_sock *icsk;
2235 struct hlist_nulls_node *node;
2236 struct sock *sk = cur;
2237 struct inet_listen_hashbucket *ilb;
2238 struct tcp_iter_state *st = seq->private;
2239 struct net *net = seq_file_net(seq);
2240
2241 if (!sk) {
2242 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2243 spin_lock_bh(&ilb->lock);
2244 sk = sk_nulls_head(&ilb->head);
2245 st->offset = 0;
2246 goto get_sk;
2247 }
2248 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249 ++st->num;
2250 ++st->offset;
2251
2252 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2253 struct request_sock *req = cur;
2254
2255 icsk = inet_csk(st->syn_wait_sk);
2256 req = req->dl_next;
2257 while (1) {
2258 while (req) {
2259 if (req->rsk_ops->family == st->family) {
2260 cur = req;
2261 goto out;
2262 }
2263 req = req->dl_next;
2264 }
2265 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2266 break;
2267 get_req:
2268 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2269 }
2270 sk = sk_nulls_next(st->syn_wait_sk);
2271 st->state = TCP_SEQ_STATE_LISTENING;
2272 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273 } else {
2274 icsk = inet_csk(sk);
2275 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2277 goto start_req;
2278 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279 sk = sk_nulls_next(sk);
2280 }
2281 get_sk:
2282 sk_nulls_for_each_from(sk, node) {
2283 if (!net_eq(sock_net(sk), net))
2284 continue;
2285 if (sk->sk_family == st->family) {
2286 cur = sk;
2287 goto out;
2288 }
2289 icsk = inet_csk(sk);
2290 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2292 start_req:
2293 st->uid = sock_i_uid(sk);
2294 st->syn_wait_sk = sk;
2295 st->state = TCP_SEQ_STATE_OPENREQ;
2296 st->sbucket = 0;
2297 goto get_req;
2298 }
2299 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2300 }
2301 spin_unlock_bh(&ilb->lock);
2302 st->offset = 0;
2303 if (++st->bucket < INET_LHTABLE_SIZE) {
2304 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2305 spin_lock_bh(&ilb->lock);
2306 sk = sk_nulls_head(&ilb->head);
2307 goto get_sk;
2308 }
2309 cur = NULL;
2310 out:
2311 return cur;
2312 }
2313
2314 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2315 {
2316 struct tcp_iter_state *st = seq->private;
2317 void *rc;
2318
2319 st->bucket = 0;
2320 st->offset = 0;
2321 rc = listening_get_next(seq, NULL);
2322
2323 while (rc && *pos) {
2324 rc = listening_get_next(seq, rc);
2325 --*pos;
2326 }
2327 return rc;
2328 }
2329
2330 static inline bool empty_bucket(struct tcp_iter_state *st)
2331 {
2332 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2333 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2334 }
2335
2336 /*
2337 * Get first established socket starting from bucket given in st->bucket.
2338 * If st->bucket is zero, the very first socket in the hash is returned.
2339 */
2340 static void *established_get_first(struct seq_file *seq)
2341 {
2342 struct tcp_iter_state *st = seq->private;
2343 struct net *net = seq_file_net(seq);
2344 void *rc = NULL;
2345
2346 st->offset = 0;
2347 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2348 struct sock *sk;
2349 struct hlist_nulls_node *node;
2350 struct inet_timewait_sock *tw;
2351 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2352
2353 /* Lockless fast path for the common case of empty buckets */
2354 if (empty_bucket(st))
2355 continue;
2356
2357 spin_lock_bh(lock);
2358 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2359 if (sk->sk_family != st->family ||
2360 !net_eq(sock_net(sk), net)) {
2361 continue;
2362 }
2363 rc = sk;
2364 goto out;
2365 }
2366 st->state = TCP_SEQ_STATE_TIME_WAIT;
2367 inet_twsk_for_each(tw, node,
2368 &tcp_hashinfo.ehash[st->bucket].twchain) {
2369 if (tw->tw_family != st->family ||
2370 !net_eq(twsk_net(tw), net)) {
2371 continue;
2372 }
2373 rc = tw;
2374 goto out;
2375 }
2376 spin_unlock_bh(lock);
2377 st->state = TCP_SEQ_STATE_ESTABLISHED;
2378 }
2379 out:
2380 return rc;
2381 }
2382
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385 struct sock *sk = cur;
2386 struct inet_timewait_sock *tw;
2387 struct hlist_nulls_node *node;
2388 struct tcp_iter_state *st = seq->private;
2389 struct net *net = seq_file_net(seq);
2390
2391 ++st->num;
2392 ++st->offset;
2393
2394 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2395 tw = cur;
2396 tw = tw_next(tw);
2397 get_tw:
2398 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2399 tw = tw_next(tw);
2400 }
2401 if (tw) {
2402 cur = tw;
2403 goto out;
2404 }
2405 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2406 st->state = TCP_SEQ_STATE_ESTABLISHED;
2407
2408 /* Look for next non empty bucket */
2409 st->offset = 0;
2410 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2411 empty_bucket(st))
2412 ;
2413 if (st->bucket > tcp_hashinfo.ehash_mask)
2414 return NULL;
2415
2416 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2417 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2418 } else
2419 sk = sk_nulls_next(sk);
2420
2421 sk_nulls_for_each_from(sk, node) {
2422 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2423 goto found;
2424 }
2425
2426 st->state = TCP_SEQ_STATE_TIME_WAIT;
2427 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2428 goto get_tw;
2429 found:
2430 cur = sk;
2431 out:
2432 return cur;
2433 }
2434
2435 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2436 {
2437 struct tcp_iter_state *st = seq->private;
2438 void *rc;
2439
2440 st->bucket = 0;
2441 rc = established_get_first(seq);
2442
2443 while (rc && pos) {
2444 rc = established_get_next(seq, rc);
2445 --pos;
2446 }
2447 return rc;
2448 }
2449
2450 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452 void *rc;
2453 struct tcp_iter_state *st = seq->private;
2454
2455 st->state = TCP_SEQ_STATE_LISTENING;
2456 rc = listening_get_idx(seq, &pos);
2457
2458 if (!rc) {
2459 st->state = TCP_SEQ_STATE_ESTABLISHED;
2460 rc = established_get_idx(seq, pos);
2461 }
2462
2463 return rc;
2464 }
2465
2466 static void *tcp_seek_last_pos(struct seq_file *seq)
2467 {
2468 struct tcp_iter_state *st = seq->private;
2469 int offset = st->offset;
2470 int orig_num = st->num;
2471 void *rc = NULL;
2472
2473 switch (st->state) {
2474 case TCP_SEQ_STATE_OPENREQ:
2475 case TCP_SEQ_STATE_LISTENING:
2476 if (st->bucket >= INET_LHTABLE_SIZE)
2477 break;
2478 st->state = TCP_SEQ_STATE_LISTENING;
2479 rc = listening_get_next(seq, NULL);
2480 while (offset-- && rc)
2481 rc = listening_get_next(seq, rc);
2482 if (rc)
2483 break;
2484 st->bucket = 0;
2485 /* Fallthrough */
2486 case TCP_SEQ_STATE_ESTABLISHED:
2487 case TCP_SEQ_STATE_TIME_WAIT:
2488 st->state = TCP_SEQ_STATE_ESTABLISHED;
2489 if (st->bucket > tcp_hashinfo.ehash_mask)
2490 break;
2491 rc = established_get_first(seq);
2492 while (offset-- && rc)
2493 rc = established_get_next(seq, rc);
2494 }
2495
2496 st->num = orig_num;
2497
2498 return rc;
2499 }
2500
2501 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2502 {
2503 struct tcp_iter_state *st = seq->private;
2504 void *rc;
2505
2506 if (*pos && *pos == st->last_pos) {
2507 rc = tcp_seek_last_pos(seq);
2508 if (rc)
2509 goto out;
2510 }
2511
2512 st->state = TCP_SEQ_STATE_LISTENING;
2513 st->num = 0;
2514 st->bucket = 0;
2515 st->offset = 0;
2516 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2517
2518 out:
2519 st->last_pos = *pos;
2520 return rc;
2521 }
2522
2523 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2524 {
2525 struct tcp_iter_state *st = seq->private;
2526 void *rc = NULL;
2527
2528 if (v == SEQ_START_TOKEN) {
2529 rc = tcp_get_idx(seq, 0);
2530 goto out;
2531 }
2532
2533 switch (st->state) {
2534 case TCP_SEQ_STATE_OPENREQ:
2535 case TCP_SEQ_STATE_LISTENING:
2536 rc = listening_get_next(seq, v);
2537 if (!rc) {
2538 st->state = TCP_SEQ_STATE_ESTABLISHED;
2539 st->bucket = 0;
2540 st->offset = 0;
2541 rc = established_get_first(seq);
2542 }
2543 break;
2544 case TCP_SEQ_STATE_ESTABLISHED:
2545 case TCP_SEQ_STATE_TIME_WAIT:
2546 rc = established_get_next(seq, v);
2547 break;
2548 }
2549 out:
2550 ++*pos;
2551 st->last_pos = *pos;
2552 return rc;
2553 }
2554
2555 static void tcp_seq_stop(struct seq_file *seq, void *v)
2556 {
2557 struct tcp_iter_state *st = seq->private;
2558
2559 switch (st->state) {
2560 case TCP_SEQ_STATE_OPENREQ:
2561 if (v) {
2562 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2563 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2564 }
2565 case TCP_SEQ_STATE_LISTENING:
2566 if (v != SEQ_START_TOKEN)
2567 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2568 break;
2569 case TCP_SEQ_STATE_TIME_WAIT:
2570 case TCP_SEQ_STATE_ESTABLISHED:
2571 if (v)
2572 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2573 break;
2574 }
2575 }
2576
2577 int tcp_seq_open(struct inode *inode, struct file *file)
2578 {
2579 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2580 struct tcp_iter_state *s;
2581 int err;
2582
2583 err = seq_open_net(inode, file, &afinfo->seq_ops,
2584 sizeof(struct tcp_iter_state));
2585 if (err < 0)
2586 return err;
2587
2588 s = ((struct seq_file *)file->private_data)->private;
2589 s->family = afinfo->family;
2590 s->last_pos = 0;
2591 return 0;
2592 }
2593 EXPORT_SYMBOL(tcp_seq_open);
2594
2595 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597 int rc = 0;
2598 struct proc_dir_entry *p;
2599
2600 afinfo->seq_ops.start = tcp_seq_start;
2601 afinfo->seq_ops.next = tcp_seq_next;
2602 afinfo->seq_ops.stop = tcp_seq_stop;
2603
2604 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2605 afinfo->seq_fops, afinfo);
2606 if (!p)
2607 rc = -ENOMEM;
2608 return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_proc_register);
2611
2612 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2613 {
2614 proc_net_remove(net, afinfo->name);
2615 }
2616 EXPORT_SYMBOL(tcp_proc_unregister);
2617
2618 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2619 struct seq_file *f, int i, kuid_t uid, int *len)
2620 {
2621 const struct inet_request_sock *ireq = inet_rsk(req);
2622 long delta = req->expires - jiffies;
2623
2624 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2626 i,
2627 ireq->loc_addr,
2628 ntohs(inet_sk(sk)->inet_sport),
2629 ireq->rmt_addr,
2630 ntohs(ireq->rmt_port),
2631 TCP_SYN_RECV,
2632 0, 0, /* could print option size, but that is af dependent. */
2633 1, /* timers active (only the expire timer) */
2634 jiffies_delta_to_clock_t(delta),
2635 req->num_timeout,
2636 from_kuid_munged(seq_user_ns(f), uid),
2637 0, /* non standard timer */
2638 0, /* open_requests have no inode */
2639 atomic_read(&sk->sk_refcnt),
2640 req,
2641 len);
2642 }
2643
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2645 {
2646 int timer_active;
2647 unsigned long timer_expires;
2648 const struct tcp_sock *tp = tcp_sk(sk);
2649 const struct inet_connection_sock *icsk = inet_csk(sk);
2650 const struct inet_sock *inet = inet_sk(sk);
2651 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2652 __be32 dest = inet->inet_daddr;
2653 __be32 src = inet->inet_rcv_saddr;
2654 __u16 destp = ntohs(inet->inet_dport);
2655 __u16 srcp = ntohs(inet->inet_sport);
2656 int rx_queue;
2657
2658 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2659 timer_active = 1;
2660 timer_expires = icsk->icsk_timeout;
2661 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2662 timer_active = 4;
2663 timer_expires = icsk->icsk_timeout;
2664 } else if (timer_pending(&sk->sk_timer)) {
2665 timer_active = 2;
2666 timer_expires = sk->sk_timer.expires;
2667 } else {
2668 timer_active = 0;
2669 timer_expires = jiffies;
2670 }
2671
2672 if (sk->sk_state == TCP_LISTEN)
2673 rx_queue = sk->sk_ack_backlog;
2674 else
2675 /*
2676 * because we dont lock socket, we might find a transient negative value
2677 */
2678 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2679
2680 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2681 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2682 i, src, srcp, dest, destp, sk->sk_state,
2683 tp->write_seq - tp->snd_una,
2684 rx_queue,
2685 timer_active,
2686 jiffies_delta_to_clock_t(timer_expires - jiffies),
2687 icsk->icsk_retransmits,
2688 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2689 icsk->icsk_probes_out,
2690 sock_i_ino(sk),
2691 atomic_read(&sk->sk_refcnt), sk,
2692 jiffies_to_clock_t(icsk->icsk_rto),
2693 jiffies_to_clock_t(icsk->icsk_ack.ato),
2694 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2695 tp->snd_cwnd,
2696 sk->sk_state == TCP_LISTEN ?
2697 (fastopenq ? fastopenq->max_qlen : 0) :
2698 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2699 len);
2700 }
2701
2702 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2703 struct seq_file *f, int i, int *len)
2704 {
2705 __be32 dest, src;
2706 __u16 destp, srcp;
2707 long delta = tw->tw_ttd - jiffies;
2708
2709 dest = tw->tw_daddr;
2710 src = tw->tw_rcv_saddr;
2711 destp = ntohs(tw->tw_dport);
2712 srcp = ntohs(tw->tw_sport);
2713
2714 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2715 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2716 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2717 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2718 atomic_read(&tw->tw_refcnt), tw, len);
2719 }
2720
2721 #define TMPSZ 150
2722
2723 static int tcp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725 struct tcp_iter_state *st;
2726 int len;
2727
2728 if (v == SEQ_START_TOKEN) {
2729 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2730 " sl local_address rem_address st tx_queue "
2731 "rx_queue tr tm->when retrnsmt uid timeout "
2732 "inode");
2733 goto out;
2734 }
2735 st = seq->private;
2736
2737 switch (st->state) {
2738 case TCP_SEQ_STATE_LISTENING:
2739 case TCP_SEQ_STATE_ESTABLISHED:
2740 get_tcp4_sock(v, seq, st->num, &len);
2741 break;
2742 case TCP_SEQ_STATE_OPENREQ:
2743 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2744 break;
2745 case TCP_SEQ_STATE_TIME_WAIT:
2746 get_timewait4_sock(v, seq, st->num, &len);
2747 break;
2748 }
2749 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2750 out:
2751 return 0;
2752 }
2753
2754 static const struct file_operations tcp_afinfo_seq_fops = {
2755 .owner = THIS_MODULE,
2756 .open = tcp_seq_open,
2757 .read = seq_read,
2758 .llseek = seq_lseek,
2759 .release = seq_release_net
2760 };
2761
2762 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2763 .name = "tcp",
2764 .family = AF_INET,
2765 .seq_fops = &tcp_afinfo_seq_fops,
2766 .seq_ops = {
2767 .show = tcp4_seq_show,
2768 },
2769 };
2770
2771 static int __net_init tcp4_proc_init_net(struct net *net)
2772 {
2773 return tcp_proc_register(net, &tcp4_seq_afinfo);
2774 }
2775
2776 static void __net_exit tcp4_proc_exit_net(struct net *net)
2777 {
2778 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2779 }
2780
2781 static struct pernet_operations tcp4_net_ops = {
2782 .init = tcp4_proc_init_net,
2783 .exit = tcp4_proc_exit_net,
2784 };
2785
2786 int __init tcp4_proc_init(void)
2787 {
2788 return register_pernet_subsys(&tcp4_net_ops);
2789 }
2790
2791 void tcp4_proc_exit(void)
2792 {
2793 unregister_pernet_subsys(&tcp4_net_ops);
2794 }
2795 #endif /* CONFIG_PROC_FS */
2796
2797 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2798 {
2799 const struct iphdr *iph = skb_gro_network_header(skb);
2800 __wsum wsum;
2801 __sum16 sum;
2802
2803 switch (skb->ip_summed) {
2804 case CHECKSUM_COMPLETE:
2805 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2806 skb->csum)) {
2807 skb->ip_summed = CHECKSUM_UNNECESSARY;
2808 break;
2809 }
2810 flush:
2811 NAPI_GRO_CB(skb)->flush = 1;
2812 return NULL;
2813
2814 case CHECKSUM_NONE:
2815 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2816 skb_gro_len(skb), IPPROTO_TCP, 0);
2817 sum = csum_fold(skb_checksum(skb,
2818 skb_gro_offset(skb),
2819 skb_gro_len(skb),
2820 wsum));
2821 if (sum)
2822 goto flush;
2823
2824 skb->ip_summed = CHECKSUM_UNNECESSARY;
2825 break;
2826 }
2827
2828 return tcp_gro_receive(head, skb);
2829 }
2830
2831 int tcp4_gro_complete(struct sk_buff *skb)
2832 {
2833 const struct iphdr *iph = ip_hdr(skb);
2834 struct tcphdr *th = tcp_hdr(skb);
2835
2836 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2837 iph->saddr, iph->daddr, 0);
2838 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2839
2840 return tcp_gro_complete(skb);
2841 }
2842
2843 struct proto tcp_prot = {
2844 .name = "TCP",
2845 .owner = THIS_MODULE,
2846 .close = tcp_close,
2847 .connect = tcp_v4_connect,
2848 .disconnect = tcp_disconnect,
2849 .accept = inet_csk_accept,
2850 .ioctl = tcp_ioctl,
2851 .init = tcp_v4_init_sock,
2852 .destroy = tcp_v4_destroy_sock,
2853 .shutdown = tcp_shutdown,
2854 .setsockopt = tcp_setsockopt,
2855 .getsockopt = tcp_getsockopt,
2856 .recvmsg = tcp_recvmsg,
2857 .sendmsg = tcp_sendmsg,
2858 .sendpage = tcp_sendpage,
2859 .backlog_rcv = tcp_v4_do_rcv,
2860 .release_cb = tcp_release_cb,
2861 .mtu_reduced = tcp_v4_mtu_reduced,
2862 .hash = inet_hash,
2863 .unhash = inet_unhash,
2864 .get_port = inet_csk_get_port,
2865 .enter_memory_pressure = tcp_enter_memory_pressure,
2866 .sockets_allocated = &tcp_sockets_allocated,
2867 .orphan_count = &tcp_orphan_count,
2868 .memory_allocated = &tcp_memory_allocated,
2869 .memory_pressure = &tcp_memory_pressure,
2870 .sysctl_wmem = sysctl_tcp_wmem,
2871 .sysctl_rmem = sysctl_tcp_rmem,
2872 .max_header = MAX_TCP_HEADER,
2873 .obj_size = sizeof(struct tcp_sock),
2874 .slab_flags = SLAB_DESTROY_BY_RCU,
2875 .twsk_prot = &tcp_timewait_sock_ops,
2876 .rsk_prot = &tcp_request_sock_ops,
2877 .h.hashinfo = &tcp_hashinfo,
2878 .no_autobind = true,
2879 #ifdef CONFIG_COMPAT
2880 .compat_setsockopt = compat_tcp_setsockopt,
2881 .compat_getsockopt = compat_tcp_getsockopt,
2882 #endif
2883 #ifdef CONFIG_MEMCG_KMEM
2884 .init_cgroup = tcp_init_cgroup,
2885 .destroy_cgroup = tcp_destroy_cgroup,
2886 .proto_cgroup = tcp_proto_cgroup,
2887 #endif
2888 };
2889 EXPORT_SYMBOL(tcp_prot);
2890
2891 static int __net_init tcp_sk_init(struct net *net)
2892 {
2893 net->ipv4.sysctl_tcp_ecn = 2;
2894 return 0;
2895 }
2896
2897 static void __net_exit tcp_sk_exit(struct net *net)
2898 {
2899 }
2900
2901 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2902 {
2903 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2904 }
2905
2906 static struct pernet_operations __net_initdata tcp_sk_ops = {
2907 .init = tcp_sk_init,
2908 .exit = tcp_sk_exit,
2909 .exit_batch = tcp_sk_exit_batch,
2910 };
2911
2912 void __init tcp_v4_init(void)
2913 {
2914 inet_hashinfo_init(&tcp_hashinfo);
2915 if (register_pernet_subsys(&tcp_sk_ops))
2916 panic("Failed to create the TCP control socket.\n");
2917 }