]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_ipv4.c
Merge branch 'drm-armada-fixes-4.15' of git://git.armlinux.org.uk/~rmk/linux-arm...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/inetdevice.h>
84
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87
88 #include <trace/events/tcp.h>
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94
95 struct inet_hashinfo tcp_hashinfo;
96 EXPORT_SYMBOL(tcp_hashinfo);
97
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 return secure_tcp_seq(ip_hdr(skb)->daddr,
101 ip_hdr(skb)->saddr,
102 tcp_hdr(skb)->dest,
103 tcp_hdr(skb)->source);
104 }
105
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
123
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
126 */
127 if (tcptw->tw_ts_recent_stamp &&
128 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
137 }
138
139 return 0;
140 }
141 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
142
143 /* This will initiate an outgoing connection. */
144 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
145 {
146 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 __be16 orig_sport, orig_dport;
150 __be32 daddr, nexthop;
151 struct flowi4 *fl4;
152 struct rtable *rt;
153 int err;
154 struct ip_options_rcu *inet_opt;
155 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
156
157 if (addr_len < sizeof(struct sockaddr_in))
158 return -EINVAL;
159
160 if (usin->sin_family != AF_INET)
161 return -EAFNOSUPPORT;
162
163 nexthop = daddr = usin->sin_addr.s_addr;
164 inet_opt = rcu_dereference_protected(inet->inet_opt,
165 lockdep_sock_is_held(sk));
166 if (inet_opt && inet_opt->opt.srr) {
167 if (!daddr)
168 return -EINVAL;
169 nexthop = inet_opt->opt.faddr;
170 }
171
172 orig_sport = inet->inet_sport;
173 orig_dport = usin->sin_port;
174 fl4 = &inet->cork.fl.u.ip4;
175 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
176 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
177 IPPROTO_TCP,
178 orig_sport, orig_dport, sk);
179 if (IS_ERR(rt)) {
180 err = PTR_ERR(rt);
181 if (err == -ENETUNREACH)
182 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
183 return err;
184 }
185
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 ip_rt_put(rt);
188 return -ENETUNREACH;
189 }
190
191 if (!inet_opt || !inet_opt->opt.srr)
192 daddr = fl4->daddr;
193
194 if (!inet->inet_saddr)
195 inet->inet_saddr = fl4->saddr;
196 sk_rcv_saddr_set(sk, inet->inet_saddr);
197
198 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
202 if (likely(!tp->repair))
203 tp->write_seq = 0;
204 }
205
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 sk_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237 rt = NULL;
238
239 if (likely(!tp->repair)) {
240 if (!tp->write_seq)
241 tp->write_seq = secure_tcp_seq(inet->inet_saddr,
242 inet->inet_daddr,
243 inet->inet_sport,
244 usin->sin_port);
245 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
246 inet->inet_saddr,
247 inet->inet_daddr);
248 }
249
250 inet->inet_id = tp->write_seq ^ jiffies;
251
252 if (tcp_fastopen_defer_connect(sk, &err))
253 return err;
254 if (err)
255 goto failure;
256
257 err = tcp_connect(sk);
258
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct inet_sock *inet = inet_sk(sk);
285 struct dst_entry *dst;
286 u32 mtu;
287
288 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
289 return;
290 mtu = tcp_sk(sk)->mtu_info;
291 dst = inet_csk_update_pmtu(sk, mtu);
292 if (!dst)
293 return;
294
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
297 */
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
300
301 mtu = dst_mtu(dst);
302
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 ip_sk_accept_pmtu(sk) &&
305 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
306 tcp_sync_mss(sk, mtu);
307
308 /* Resend the TCP packet because it's
309 * clear that the old packet has been
310 * dropped. This is the new "fast" path mtu
311 * discovery.
312 */
313 tcp_simple_retransmit(sk);
314 } /* else let the usual retransmit timer handle it */
315 }
316 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
317
318 static void do_redirect(struct sk_buff *skb, struct sock *sk)
319 {
320 struct dst_entry *dst = __sk_dst_check(sk, 0);
321
322 if (dst)
323 dst->ops->redirect(dst, sk, skb);
324 }
325
326
327 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
328 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
329 {
330 struct request_sock *req = inet_reqsk(sk);
331 struct net *net = sock_net(sk);
332
333 /* ICMPs are not backlogged, hence we cannot get
334 * an established socket here.
335 */
336 if (seq != tcp_rsk(req)->snt_isn) {
337 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
338 } else if (abort) {
339 /*
340 * Still in SYN_RECV, just remove it silently.
341 * There is no good way to pass the error to the newly
342 * created socket, and POSIX does not want network
343 * errors returned from accept().
344 */
345 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
346 tcp_listendrop(req->rsk_listener);
347 }
348 reqsk_put(req);
349 }
350 EXPORT_SYMBOL(tcp_req_err);
351
352 /*
353 * This routine is called by the ICMP module when it gets some
354 * sort of error condition. If err < 0 then the socket should
355 * be closed and the error returned to the user. If err > 0
356 * it's just the icmp type << 8 | icmp code. After adjustment
357 * header points to the first 8 bytes of the tcp header. We need
358 * to find the appropriate port.
359 *
360 * The locking strategy used here is very "optimistic". When
361 * someone else accesses the socket the ICMP is just dropped
362 * and for some paths there is no check at all.
363 * A more general error queue to queue errors for later handling
364 * is probably better.
365 *
366 */
367
368 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
369 {
370 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
371 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
372 struct inet_connection_sock *icsk;
373 struct tcp_sock *tp;
374 struct inet_sock *inet;
375 const int type = icmp_hdr(icmp_skb)->type;
376 const int code = icmp_hdr(icmp_skb)->code;
377 struct sock *sk;
378 struct sk_buff *skb;
379 struct request_sock *fastopen;
380 u32 seq, snd_una;
381 s32 remaining;
382 u32 delta_us;
383 int err;
384 struct net *net = dev_net(icmp_skb->dev);
385
386 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
387 th->dest, iph->saddr, ntohs(th->source),
388 inet_iif(icmp_skb), 0);
389 if (!sk) {
390 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
391 return;
392 }
393 if (sk->sk_state == TCP_TIME_WAIT) {
394 inet_twsk_put(inet_twsk(sk));
395 return;
396 }
397 seq = ntohl(th->seq);
398 if (sk->sk_state == TCP_NEW_SYN_RECV)
399 return tcp_req_err(sk, seq,
400 type == ICMP_PARAMETERPROB ||
401 type == ICMP_TIME_EXCEEDED ||
402 (type == ICMP_DEST_UNREACH &&
403 (code == ICMP_NET_UNREACH ||
404 code == ICMP_HOST_UNREACH)));
405
406 bh_lock_sock(sk);
407 /* If too many ICMPs get dropped on busy
408 * servers this needs to be solved differently.
409 * We do take care of PMTU discovery (RFC1191) special case :
410 * we can receive locally generated ICMP messages while socket is held.
411 */
412 if (sock_owned_by_user(sk)) {
413 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
414 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
415 }
416 if (sk->sk_state == TCP_CLOSE)
417 goto out;
418
419 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
420 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
421 goto out;
422 }
423
424 icsk = inet_csk(sk);
425 tp = tcp_sk(sk);
426 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
427 fastopen = tp->fastopen_rsk;
428 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
429 if (sk->sk_state != TCP_LISTEN &&
430 !between(seq, snd_una, tp->snd_nxt)) {
431 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
432 goto out;
433 }
434
435 switch (type) {
436 case ICMP_REDIRECT:
437 if (!sock_owned_by_user(sk))
438 do_redirect(icmp_skb, sk);
439 goto out;
440 case ICMP_SOURCE_QUENCH:
441 /* Just silently ignore these. */
442 goto out;
443 case ICMP_PARAMETERPROB:
444 err = EPROTO;
445 break;
446 case ICMP_DEST_UNREACH:
447 if (code > NR_ICMP_UNREACH)
448 goto out;
449
450 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
451 /* We are not interested in TCP_LISTEN and open_requests
452 * (SYN-ACKs send out by Linux are always <576bytes so
453 * they should go through unfragmented).
454 */
455 if (sk->sk_state == TCP_LISTEN)
456 goto out;
457
458 tp->mtu_info = info;
459 if (!sock_owned_by_user(sk)) {
460 tcp_v4_mtu_reduced(sk);
461 } else {
462 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
463 sock_hold(sk);
464 }
465 goto out;
466 }
467
468 err = icmp_err_convert[code].errno;
469 /* check if icmp_skb allows revert of backoff
470 * (see draft-zimmermann-tcp-lcd) */
471 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
472 break;
473 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
474 !icsk->icsk_backoff || fastopen)
475 break;
476
477 if (sock_owned_by_user(sk))
478 break;
479
480 icsk->icsk_backoff--;
481 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
482 TCP_TIMEOUT_INIT;
483 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
484
485 skb = tcp_rtx_queue_head(sk);
486 BUG_ON(!skb);
487
488 tcp_mstamp_refresh(tp);
489 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp);
490 remaining = icsk->icsk_rto -
491 usecs_to_jiffies(delta_us);
492
493 if (remaining > 0) {
494 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
495 remaining, TCP_RTO_MAX);
496 } else {
497 /* RTO revert clocked out retransmission.
498 * Will retransmit now */
499 tcp_retransmit_timer(sk);
500 }
501
502 break;
503 case ICMP_TIME_EXCEEDED:
504 err = EHOSTUNREACH;
505 break;
506 default:
507 goto out;
508 }
509
510 switch (sk->sk_state) {
511 case TCP_SYN_SENT:
512 case TCP_SYN_RECV:
513 /* Only in fast or simultaneous open. If a fast open socket is
514 * is already accepted it is treated as a connected one below.
515 */
516 if (fastopen && !fastopen->sk)
517 break;
518
519 if (!sock_owned_by_user(sk)) {
520 sk->sk_err = err;
521
522 sk->sk_error_report(sk);
523
524 tcp_done(sk);
525 } else {
526 sk->sk_err_soft = err;
527 }
528 goto out;
529 }
530
531 /* If we've already connected we will keep trying
532 * until we time out, or the user gives up.
533 *
534 * rfc1122 4.2.3.9 allows to consider as hard errors
535 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
536 * but it is obsoleted by pmtu discovery).
537 *
538 * Note, that in modern internet, where routing is unreliable
539 * and in each dark corner broken firewalls sit, sending random
540 * errors ordered by their masters even this two messages finally lose
541 * their original sense (even Linux sends invalid PORT_UNREACHs)
542 *
543 * Now we are in compliance with RFCs.
544 * --ANK (980905)
545 */
546
547 inet = inet_sk(sk);
548 if (!sock_owned_by_user(sk) && inet->recverr) {
549 sk->sk_err = err;
550 sk->sk_error_report(sk);
551 } else { /* Only an error on timeout */
552 sk->sk_err_soft = err;
553 }
554
555 out:
556 bh_unlock_sock(sk);
557 sock_put(sk);
558 }
559
560 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
561 {
562 struct tcphdr *th = tcp_hdr(skb);
563
564 if (skb->ip_summed == CHECKSUM_PARTIAL) {
565 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
566 skb->csum_start = skb_transport_header(skb) - skb->head;
567 skb->csum_offset = offsetof(struct tcphdr, check);
568 } else {
569 th->check = tcp_v4_check(skb->len, saddr, daddr,
570 csum_partial(th,
571 th->doff << 2,
572 skb->csum));
573 }
574 }
575
576 /* This routine computes an IPv4 TCP checksum. */
577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
578 {
579 const struct inet_sock *inet = inet_sk(sk);
580
581 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
582 }
583 EXPORT_SYMBOL(tcp_v4_send_check);
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key = NULL;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 /* If sk not NULL, it means we did a successful lookup and incoming
622 * route had to be correct. prequeue might have dropped our dst.
623 */
624 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
625 return;
626
627 /* Swap the send and the receive. */
628 memset(&rep, 0, sizeof(rep));
629 rep.th.dest = th->source;
630 rep.th.source = th->dest;
631 rep.th.doff = sizeof(struct tcphdr) / 4;
632 rep.th.rst = 1;
633
634 if (th->ack) {
635 rep.th.seq = th->ack_seq;
636 } else {
637 rep.th.ack = 1;
638 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
639 skb->len - (th->doff << 2));
640 }
641
642 memset(&arg, 0, sizeof(arg));
643 arg.iov[0].iov_base = (unsigned char *)&rep;
644 arg.iov[0].iov_len = sizeof(rep.th);
645
646 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
647 #ifdef CONFIG_TCP_MD5SIG
648 rcu_read_lock();
649 hash_location = tcp_parse_md5sig_option(th);
650 if (sk && sk_fullsock(sk)) {
651 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 } else if (hash_location) {
654 /*
655 * active side is lost. Try to find listening socket through
656 * source port, and then find md5 key through listening socket.
657 * we are not loose security here:
658 * Incoming packet is checked with md5 hash with finding key,
659 * no RST generated if md5 hash doesn't match.
660 */
661 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
662 ip_hdr(skb)->saddr,
663 th->source, ip_hdr(skb)->daddr,
664 ntohs(th->source), inet_iif(skb),
665 tcp_v4_sdif(skb));
666 /* don't send rst if it can't find key */
667 if (!sk1)
668 goto out;
669
670 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
671 &ip_hdr(skb)->saddr, AF_INET);
672 if (!key)
673 goto out;
674
675
676 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
677 if (genhash || memcmp(hash_location, newhash, 16) != 0)
678 goto out;
679
680 }
681
682 if (key) {
683 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
684 (TCPOPT_NOP << 16) |
685 (TCPOPT_MD5SIG << 8) |
686 TCPOLEN_MD5SIG);
687 /* Update length and the length the header thinks exists */
688 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
689 rep.th.doff = arg.iov[0].iov_len / 4;
690
691 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
692 key, ip_hdr(skb)->saddr,
693 ip_hdr(skb)->daddr, &rep.th);
694 }
695 #endif
696 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
697 ip_hdr(skb)->saddr, /* XXX */
698 arg.iov[0].iov_len, IPPROTO_TCP, 0);
699 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
700 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
701
702 /* When socket is gone, all binding information is lost.
703 * routing might fail in this case. No choice here, if we choose to force
704 * input interface, we will misroute in case of asymmetric route.
705 */
706 if (sk) {
707 arg.bound_dev_if = sk->sk_bound_dev_if;
708 trace_tcp_send_reset(sk, skb);
709 }
710
711 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
712 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
713
714 arg.tos = ip_hdr(skb)->tos;
715 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
716 local_bh_disable();
717 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
718 skb, &TCP_SKB_CB(skb)->header.h4.opt,
719 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
720 &arg, arg.iov[0].iov_len);
721
722 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
723 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
724 local_bh_enable();
725
726 #ifdef CONFIG_TCP_MD5SIG
727 out:
728 rcu_read_unlock();
729 #endif
730 }
731
732 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
733 outside socket context is ugly, certainly. What can I do?
734 */
735
736 static void tcp_v4_send_ack(const struct sock *sk,
737 struct sk_buff *skb, u32 seq, u32 ack,
738 u32 win, u32 tsval, u32 tsecr, int oif,
739 struct tcp_md5sig_key *key,
740 int reply_flags, u8 tos)
741 {
742 const struct tcphdr *th = tcp_hdr(skb);
743 struct {
744 struct tcphdr th;
745 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
746 #ifdef CONFIG_TCP_MD5SIG
747 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
748 #endif
749 ];
750 } rep;
751 struct net *net = sock_net(sk);
752 struct ip_reply_arg arg;
753
754 memset(&rep.th, 0, sizeof(struct tcphdr));
755 memset(&arg, 0, sizeof(arg));
756
757 arg.iov[0].iov_base = (unsigned char *)&rep;
758 arg.iov[0].iov_len = sizeof(rep.th);
759 if (tsecr) {
760 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
761 (TCPOPT_TIMESTAMP << 8) |
762 TCPOLEN_TIMESTAMP);
763 rep.opt[1] = htonl(tsval);
764 rep.opt[2] = htonl(tsecr);
765 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
766 }
767
768 /* Swap the send and the receive. */
769 rep.th.dest = th->source;
770 rep.th.source = th->dest;
771 rep.th.doff = arg.iov[0].iov_len / 4;
772 rep.th.seq = htonl(seq);
773 rep.th.ack_seq = htonl(ack);
774 rep.th.ack = 1;
775 rep.th.window = htons(win);
776
777 #ifdef CONFIG_TCP_MD5SIG
778 if (key) {
779 int offset = (tsecr) ? 3 : 0;
780
781 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
782 (TCPOPT_NOP << 16) |
783 (TCPOPT_MD5SIG << 8) |
784 TCPOLEN_MD5SIG);
785 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
786 rep.th.doff = arg.iov[0].iov_len/4;
787
788 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
789 key, ip_hdr(skb)->saddr,
790 ip_hdr(skb)->daddr, &rep.th);
791 }
792 #endif
793 arg.flags = reply_flags;
794 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
795 ip_hdr(skb)->saddr, /* XXX */
796 arg.iov[0].iov_len, IPPROTO_TCP, 0);
797 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
798 if (oif)
799 arg.bound_dev_if = oif;
800 arg.tos = tos;
801 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
802 local_bh_disable();
803 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
804 skb, &TCP_SKB_CB(skb)->header.h4.opt,
805 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
806 &arg, arg.iov[0].iov_len);
807
808 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
809 local_bh_enable();
810 }
811
812 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
813 {
814 struct inet_timewait_sock *tw = inet_twsk(sk);
815 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
816
817 tcp_v4_send_ack(sk, skb,
818 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
819 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
820 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
821 tcptw->tw_ts_recent,
822 tw->tw_bound_dev_if,
823 tcp_twsk_md5_key(tcptw),
824 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
825 tw->tw_tos
826 );
827
828 inet_twsk_put(tw);
829 }
830
831 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
832 struct request_sock *req)
833 {
834 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
835 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
836 */
837 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
838 tcp_sk(sk)->snd_nxt;
839
840 /* RFC 7323 2.3
841 * The window field (SEG.WND) of every outgoing segment, with the
842 * exception of <SYN> segments, MUST be right-shifted by
843 * Rcv.Wind.Shift bits:
844 */
845 tcp_v4_send_ack(sk, skb, seq,
846 tcp_rsk(req)->rcv_nxt,
847 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
848 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
849 req->ts_recent,
850 0,
851 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
852 AF_INET),
853 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
854 ip_hdr(skb)->tos);
855 }
856
857 /*
858 * Send a SYN-ACK after having received a SYN.
859 * This still operates on a request_sock only, not on a big
860 * socket.
861 */
862 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
863 struct flowi *fl,
864 struct request_sock *req,
865 struct tcp_fastopen_cookie *foc,
866 enum tcp_synack_type synack_type)
867 {
868 const struct inet_request_sock *ireq = inet_rsk(req);
869 struct flowi4 fl4;
870 int err = -1;
871 struct sk_buff *skb;
872
873 /* First, grab a route. */
874 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
875 return -1;
876
877 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
878
879 if (skb) {
880 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
881
882 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
883 ireq->ir_rmt_addr,
884 ireq_opt_deref(ireq));
885 err = net_xmit_eval(err);
886 }
887
888 return err;
889 }
890
891 /*
892 * IPv4 request_sock destructor.
893 */
894 static void tcp_v4_reqsk_destructor(struct request_sock *req)
895 {
896 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
897 }
898
899 #ifdef CONFIG_TCP_MD5SIG
900 /*
901 * RFC2385 MD5 checksumming requires a mapping of
902 * IP address->MD5 Key.
903 * We need to maintain these in the sk structure.
904 */
905
906 /* Find the Key structure for an address. */
907 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
908 const union tcp_md5_addr *addr,
909 int family)
910 {
911 const struct tcp_sock *tp = tcp_sk(sk);
912 struct tcp_md5sig_key *key;
913 const struct tcp_md5sig_info *md5sig;
914 __be32 mask;
915 struct tcp_md5sig_key *best_match = NULL;
916 bool match;
917
918 /* caller either holds rcu_read_lock() or socket lock */
919 md5sig = rcu_dereference_check(tp->md5sig_info,
920 lockdep_sock_is_held(sk));
921 if (!md5sig)
922 return NULL;
923
924 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
925 if (key->family != family)
926 continue;
927
928 if (family == AF_INET) {
929 mask = inet_make_mask(key->prefixlen);
930 match = (key->addr.a4.s_addr & mask) ==
931 (addr->a4.s_addr & mask);
932 #if IS_ENABLED(CONFIG_IPV6)
933 } else if (family == AF_INET6) {
934 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
935 key->prefixlen);
936 #endif
937 } else {
938 match = false;
939 }
940
941 if (match && (!best_match ||
942 key->prefixlen > best_match->prefixlen))
943 best_match = key;
944 }
945 return best_match;
946 }
947 EXPORT_SYMBOL(tcp_md5_do_lookup);
948
949 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
950 const union tcp_md5_addr *addr,
951 int family, u8 prefixlen)
952 {
953 const struct tcp_sock *tp = tcp_sk(sk);
954 struct tcp_md5sig_key *key;
955 unsigned int size = sizeof(struct in_addr);
956 const struct tcp_md5sig_info *md5sig;
957
958 /* caller either holds rcu_read_lock() or socket lock */
959 md5sig = rcu_dereference_check(tp->md5sig_info,
960 lockdep_sock_is_held(sk));
961 if (!md5sig)
962 return NULL;
963 #if IS_ENABLED(CONFIG_IPV6)
964 if (family == AF_INET6)
965 size = sizeof(struct in6_addr);
966 #endif
967 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
968 if (key->family != family)
969 continue;
970 if (!memcmp(&key->addr, addr, size) &&
971 key->prefixlen == prefixlen)
972 return key;
973 }
974 return NULL;
975 }
976
977 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
978 const struct sock *addr_sk)
979 {
980 const union tcp_md5_addr *addr;
981
982 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
983 return tcp_md5_do_lookup(sk, addr, AF_INET);
984 }
985 EXPORT_SYMBOL(tcp_v4_md5_lookup);
986
987 /* This can be called on a newly created socket, from other files */
988 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
989 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
990 gfp_t gfp)
991 {
992 /* Add Key to the list */
993 struct tcp_md5sig_key *key;
994 struct tcp_sock *tp = tcp_sk(sk);
995 struct tcp_md5sig_info *md5sig;
996
997 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
998 if (key) {
999 /* Pre-existing entry - just update that one. */
1000 memcpy(key->key, newkey, newkeylen);
1001 key->keylen = newkeylen;
1002 return 0;
1003 }
1004
1005 md5sig = rcu_dereference_protected(tp->md5sig_info,
1006 lockdep_sock_is_held(sk));
1007 if (!md5sig) {
1008 md5sig = kmalloc(sizeof(*md5sig), gfp);
1009 if (!md5sig)
1010 return -ENOMEM;
1011
1012 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1013 INIT_HLIST_HEAD(&md5sig->head);
1014 rcu_assign_pointer(tp->md5sig_info, md5sig);
1015 }
1016
1017 key = sock_kmalloc(sk, sizeof(*key), gfp);
1018 if (!key)
1019 return -ENOMEM;
1020 if (!tcp_alloc_md5sig_pool()) {
1021 sock_kfree_s(sk, key, sizeof(*key));
1022 return -ENOMEM;
1023 }
1024
1025 memcpy(key->key, newkey, newkeylen);
1026 key->keylen = newkeylen;
1027 key->family = family;
1028 key->prefixlen = prefixlen;
1029 memcpy(&key->addr, addr,
1030 (family == AF_INET6) ? sizeof(struct in6_addr) :
1031 sizeof(struct in_addr));
1032 hlist_add_head_rcu(&key->node, &md5sig->head);
1033 return 0;
1034 }
1035 EXPORT_SYMBOL(tcp_md5_do_add);
1036
1037 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1038 u8 prefixlen)
1039 {
1040 struct tcp_md5sig_key *key;
1041
1042 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1043 if (!key)
1044 return -ENOENT;
1045 hlist_del_rcu(&key->node);
1046 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1047 kfree_rcu(key, rcu);
1048 return 0;
1049 }
1050 EXPORT_SYMBOL(tcp_md5_do_del);
1051
1052 static void tcp_clear_md5_list(struct sock *sk)
1053 {
1054 struct tcp_sock *tp = tcp_sk(sk);
1055 struct tcp_md5sig_key *key;
1056 struct hlist_node *n;
1057 struct tcp_md5sig_info *md5sig;
1058
1059 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1060
1061 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1069 char __user *optval, int optlen)
1070 {
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073 u8 prefixlen = 32;
1074
1075 if (optlen < sizeof(cmd))
1076 return -EINVAL;
1077
1078 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1079 return -EFAULT;
1080
1081 if (sin->sin_family != AF_INET)
1082 return -EINVAL;
1083
1084 if (optname == TCP_MD5SIG_EXT &&
1085 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1086 prefixlen = cmd.tcpm_prefixlen;
1087 if (prefixlen > 32)
1088 return -EINVAL;
1089 }
1090
1091 if (!cmd.tcpm_keylen)
1092 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1093 AF_INET, prefixlen);
1094
1095 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1096 return -EINVAL;
1097
1098 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1099 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1100 GFP_KERNEL);
1101 }
1102
1103 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1104 __be32 daddr, __be32 saddr,
1105 const struct tcphdr *th, int nbytes)
1106 {
1107 struct tcp4_pseudohdr *bp;
1108 struct scatterlist sg;
1109 struct tcphdr *_th;
1110
1111 bp = hp->scratch;
1112 bp->saddr = saddr;
1113 bp->daddr = daddr;
1114 bp->pad = 0;
1115 bp->protocol = IPPROTO_TCP;
1116 bp->len = cpu_to_be16(nbytes);
1117
1118 _th = (struct tcphdr *)(bp + 1);
1119 memcpy(_th, th, sizeof(*th));
1120 _th->check = 0;
1121
1122 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1123 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1124 sizeof(*bp) + sizeof(*th));
1125 return crypto_ahash_update(hp->md5_req);
1126 }
1127
1128 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1129 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1130 {
1131 struct tcp_md5sig_pool *hp;
1132 struct ahash_request *req;
1133
1134 hp = tcp_get_md5sig_pool();
1135 if (!hp)
1136 goto clear_hash_noput;
1137 req = hp->md5_req;
1138
1139 if (crypto_ahash_init(req))
1140 goto clear_hash;
1141 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1142 goto clear_hash;
1143 if (tcp_md5_hash_key(hp, key))
1144 goto clear_hash;
1145 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1146 if (crypto_ahash_final(req))
1147 goto clear_hash;
1148
1149 tcp_put_md5sig_pool();
1150 return 0;
1151
1152 clear_hash:
1153 tcp_put_md5sig_pool();
1154 clear_hash_noput:
1155 memset(md5_hash, 0, 16);
1156 return 1;
1157 }
1158
1159 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1160 const struct sock *sk,
1161 const struct sk_buff *skb)
1162 {
1163 struct tcp_md5sig_pool *hp;
1164 struct ahash_request *req;
1165 const struct tcphdr *th = tcp_hdr(skb);
1166 __be32 saddr, daddr;
1167
1168 if (sk) { /* valid for establish/request sockets */
1169 saddr = sk->sk_rcv_saddr;
1170 daddr = sk->sk_daddr;
1171 } else {
1172 const struct iphdr *iph = ip_hdr(skb);
1173 saddr = iph->saddr;
1174 daddr = iph->daddr;
1175 }
1176
1177 hp = tcp_get_md5sig_pool();
1178 if (!hp)
1179 goto clear_hash_noput;
1180 req = hp->md5_req;
1181
1182 if (crypto_ahash_init(req))
1183 goto clear_hash;
1184
1185 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1186 goto clear_hash;
1187 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1188 goto clear_hash;
1189 if (tcp_md5_hash_key(hp, key))
1190 goto clear_hash;
1191 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1192 if (crypto_ahash_final(req))
1193 goto clear_hash;
1194
1195 tcp_put_md5sig_pool();
1196 return 0;
1197
1198 clear_hash:
1199 tcp_put_md5sig_pool();
1200 clear_hash_noput:
1201 memset(md5_hash, 0, 16);
1202 return 1;
1203 }
1204 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1205
1206 #endif
1207
1208 /* Called with rcu_read_lock() */
1209 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1210 const struct sk_buff *skb)
1211 {
1212 #ifdef CONFIG_TCP_MD5SIG
1213 /*
1214 * This gets called for each TCP segment that arrives
1215 * so we want to be efficient.
1216 * We have 3 drop cases:
1217 * o No MD5 hash and one expected.
1218 * o MD5 hash and we're not expecting one.
1219 * o MD5 hash and its wrong.
1220 */
1221 const __u8 *hash_location = NULL;
1222 struct tcp_md5sig_key *hash_expected;
1223 const struct iphdr *iph = ip_hdr(skb);
1224 const struct tcphdr *th = tcp_hdr(skb);
1225 int genhash;
1226 unsigned char newhash[16];
1227
1228 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1229 AF_INET);
1230 hash_location = tcp_parse_md5sig_option(th);
1231
1232 /* We've parsed the options - do we have a hash? */
1233 if (!hash_expected && !hash_location)
1234 return false;
1235
1236 if (hash_expected && !hash_location) {
1237 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1238 return true;
1239 }
1240
1241 if (!hash_expected && hash_location) {
1242 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1243 return true;
1244 }
1245
1246 /* Okay, so this is hash_expected and hash_location -
1247 * so we need to calculate the checksum.
1248 */
1249 genhash = tcp_v4_md5_hash_skb(newhash,
1250 hash_expected,
1251 NULL, skb);
1252
1253 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1254 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1255 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1256 &iph->saddr, ntohs(th->source),
1257 &iph->daddr, ntohs(th->dest),
1258 genhash ? " tcp_v4_calc_md5_hash failed"
1259 : "");
1260 return true;
1261 }
1262 return false;
1263 #endif
1264 return false;
1265 }
1266
1267 static void tcp_v4_init_req(struct request_sock *req,
1268 const struct sock *sk_listener,
1269 struct sk_buff *skb)
1270 {
1271 struct inet_request_sock *ireq = inet_rsk(req);
1272 struct net *net = sock_net(sk_listener);
1273
1274 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1275 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1276 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1277 }
1278
1279 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1280 struct flowi *fl,
1281 const struct request_sock *req)
1282 {
1283 return inet_csk_route_req(sk, &fl->u.ip4, req);
1284 }
1285
1286 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1287 .family = PF_INET,
1288 .obj_size = sizeof(struct tcp_request_sock),
1289 .rtx_syn_ack = tcp_rtx_synack,
1290 .send_ack = tcp_v4_reqsk_send_ack,
1291 .destructor = tcp_v4_reqsk_destructor,
1292 .send_reset = tcp_v4_send_reset,
1293 .syn_ack_timeout = tcp_syn_ack_timeout,
1294 };
1295
1296 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1297 .mss_clamp = TCP_MSS_DEFAULT,
1298 #ifdef CONFIG_TCP_MD5SIG
1299 .req_md5_lookup = tcp_v4_md5_lookup,
1300 .calc_md5_hash = tcp_v4_md5_hash_skb,
1301 #endif
1302 .init_req = tcp_v4_init_req,
1303 #ifdef CONFIG_SYN_COOKIES
1304 .cookie_init_seq = cookie_v4_init_sequence,
1305 #endif
1306 .route_req = tcp_v4_route_req,
1307 .init_seq = tcp_v4_init_seq,
1308 .init_ts_off = tcp_v4_init_ts_off,
1309 .send_synack = tcp_v4_send_synack,
1310 };
1311
1312 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1313 {
1314 /* Never answer to SYNs send to broadcast or multicast */
1315 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1316 goto drop;
1317
1318 return tcp_conn_request(&tcp_request_sock_ops,
1319 &tcp_request_sock_ipv4_ops, sk, skb);
1320
1321 drop:
1322 tcp_listendrop(sk);
1323 return 0;
1324 }
1325 EXPORT_SYMBOL(tcp_v4_conn_request);
1326
1327
1328 /*
1329 * The three way handshake has completed - we got a valid synack -
1330 * now create the new socket.
1331 */
1332 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1333 struct request_sock *req,
1334 struct dst_entry *dst,
1335 struct request_sock *req_unhash,
1336 bool *own_req)
1337 {
1338 struct inet_request_sock *ireq;
1339 struct inet_sock *newinet;
1340 struct tcp_sock *newtp;
1341 struct sock *newsk;
1342 #ifdef CONFIG_TCP_MD5SIG
1343 struct tcp_md5sig_key *key;
1344 #endif
1345 struct ip_options_rcu *inet_opt;
1346
1347 if (sk_acceptq_is_full(sk))
1348 goto exit_overflow;
1349
1350 newsk = tcp_create_openreq_child(sk, req, skb);
1351 if (!newsk)
1352 goto exit_nonewsk;
1353
1354 newsk->sk_gso_type = SKB_GSO_TCPV4;
1355 inet_sk_rx_dst_set(newsk, skb);
1356
1357 newtp = tcp_sk(newsk);
1358 newinet = inet_sk(newsk);
1359 ireq = inet_rsk(req);
1360 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1361 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1362 newsk->sk_bound_dev_if = ireq->ir_iif;
1363 newinet->inet_saddr = ireq->ir_loc_addr;
1364 inet_opt = rcu_dereference(ireq->ireq_opt);
1365 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1366 newinet->mc_index = inet_iif(skb);
1367 newinet->mc_ttl = ip_hdr(skb)->ttl;
1368 newinet->rcv_tos = ip_hdr(skb)->tos;
1369 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1370 if (inet_opt)
1371 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1372 newinet->inet_id = newtp->write_seq ^ jiffies;
1373
1374 if (!dst) {
1375 dst = inet_csk_route_child_sock(sk, newsk, req);
1376 if (!dst)
1377 goto put_and_exit;
1378 } else {
1379 /* syncookie case : see end of cookie_v4_check() */
1380 }
1381 sk_setup_caps(newsk, dst);
1382
1383 tcp_ca_openreq_child(newsk, dst);
1384
1385 tcp_sync_mss(newsk, dst_mtu(dst));
1386 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1387
1388 tcp_initialize_rcv_mss(newsk);
1389
1390 #ifdef CONFIG_TCP_MD5SIG
1391 /* Copy over the MD5 key from the original socket */
1392 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1393 AF_INET);
1394 if (key) {
1395 /*
1396 * We're using one, so create a matching key
1397 * on the newsk structure. If we fail to get
1398 * memory, then we end up not copying the key
1399 * across. Shucks.
1400 */
1401 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1402 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1403 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1404 }
1405 #endif
1406
1407 if (__inet_inherit_port(sk, newsk) < 0)
1408 goto put_and_exit;
1409 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1410 if (likely(*own_req)) {
1411 tcp_move_syn(newtp, req);
1412 ireq->ireq_opt = NULL;
1413 } else {
1414 newinet->inet_opt = NULL;
1415 }
1416 return newsk;
1417
1418 exit_overflow:
1419 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1420 exit_nonewsk:
1421 dst_release(dst);
1422 exit:
1423 tcp_listendrop(sk);
1424 return NULL;
1425 put_and_exit:
1426 newinet->inet_opt = NULL;
1427 inet_csk_prepare_forced_close(newsk);
1428 tcp_done(newsk);
1429 goto exit;
1430 }
1431 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1432
1433 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1434 {
1435 #ifdef CONFIG_SYN_COOKIES
1436 const struct tcphdr *th = tcp_hdr(skb);
1437
1438 if (!th->syn)
1439 sk = cookie_v4_check(sk, skb);
1440 #endif
1441 return sk;
1442 }
1443
1444 /* The socket must have it's spinlock held when we get
1445 * here, unless it is a TCP_LISTEN socket.
1446 *
1447 * We have a potential double-lock case here, so even when
1448 * doing backlog processing we use the BH locking scheme.
1449 * This is because we cannot sleep with the original spinlock
1450 * held.
1451 */
1452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1453 {
1454 struct sock *rsk;
1455
1456 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1457 struct dst_entry *dst = sk->sk_rx_dst;
1458
1459 sock_rps_save_rxhash(sk, skb);
1460 sk_mark_napi_id(sk, skb);
1461 if (dst) {
1462 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1463 !dst->ops->check(dst, 0)) {
1464 dst_release(dst);
1465 sk->sk_rx_dst = NULL;
1466 }
1467 }
1468 tcp_rcv_established(sk, skb, tcp_hdr(skb));
1469 return 0;
1470 }
1471
1472 if (tcp_checksum_complete(skb))
1473 goto csum_err;
1474
1475 if (sk->sk_state == TCP_LISTEN) {
1476 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1477
1478 if (!nsk)
1479 goto discard;
1480 if (nsk != sk) {
1481 if (tcp_child_process(sk, nsk, skb)) {
1482 rsk = nsk;
1483 goto reset;
1484 }
1485 return 0;
1486 }
1487 } else
1488 sock_rps_save_rxhash(sk, skb);
1489
1490 if (tcp_rcv_state_process(sk, skb)) {
1491 rsk = sk;
1492 goto reset;
1493 }
1494 return 0;
1495
1496 reset:
1497 tcp_v4_send_reset(rsk, skb);
1498 discard:
1499 kfree_skb(skb);
1500 /* Be careful here. If this function gets more complicated and
1501 * gcc suffers from register pressure on the x86, sk (in %ebx)
1502 * might be destroyed here. This current version compiles correctly,
1503 * but you have been warned.
1504 */
1505 return 0;
1506
1507 csum_err:
1508 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1509 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1510 goto discard;
1511 }
1512 EXPORT_SYMBOL(tcp_v4_do_rcv);
1513
1514 int tcp_v4_early_demux(struct sk_buff *skb)
1515 {
1516 const struct iphdr *iph;
1517 const struct tcphdr *th;
1518 struct sock *sk;
1519
1520 if (skb->pkt_type != PACKET_HOST)
1521 return 0;
1522
1523 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1524 return 0;
1525
1526 iph = ip_hdr(skb);
1527 th = tcp_hdr(skb);
1528
1529 if (th->doff < sizeof(struct tcphdr) / 4)
1530 return 0;
1531
1532 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1533 iph->saddr, th->source,
1534 iph->daddr, ntohs(th->dest),
1535 skb->skb_iif, inet_sdif(skb));
1536 if (sk) {
1537 skb->sk = sk;
1538 skb->destructor = sock_edemux;
1539 if (sk_fullsock(sk)) {
1540 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1541
1542 if (dst)
1543 dst = dst_check(dst, 0);
1544 if (dst &&
1545 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1546 skb_dst_set_noref(skb, dst);
1547 }
1548 }
1549 return 0;
1550 }
1551
1552 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1553 {
1554 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1555
1556 /* Only socket owner can try to collapse/prune rx queues
1557 * to reduce memory overhead, so add a little headroom here.
1558 * Few sockets backlog are possibly concurrently non empty.
1559 */
1560 limit += 64*1024;
1561
1562 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1563 * we can fix skb->truesize to its real value to avoid future drops.
1564 * This is valid because skb is not yet charged to the socket.
1565 * It has been noticed pure SACK packets were sometimes dropped
1566 * (if cooked by drivers without copybreak feature).
1567 */
1568 skb_condense(skb);
1569
1570 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1571 bh_unlock_sock(sk);
1572 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1573 return true;
1574 }
1575 return false;
1576 }
1577 EXPORT_SYMBOL(tcp_add_backlog);
1578
1579 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1580 {
1581 struct tcphdr *th = (struct tcphdr *)skb->data;
1582 unsigned int eaten = skb->len;
1583 int err;
1584
1585 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1586 if (!err) {
1587 eaten -= skb->len;
1588 TCP_SKB_CB(skb)->end_seq -= eaten;
1589 }
1590 return err;
1591 }
1592 EXPORT_SYMBOL(tcp_filter);
1593
1594 static void tcp_v4_restore_cb(struct sk_buff *skb)
1595 {
1596 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1597 sizeof(struct inet_skb_parm));
1598 }
1599
1600 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1601 const struct tcphdr *th)
1602 {
1603 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1604 * barrier() makes sure compiler wont play fool^Waliasing games.
1605 */
1606 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1607 sizeof(struct inet_skb_parm));
1608 barrier();
1609
1610 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1611 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1612 skb->len - th->doff * 4);
1613 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1614 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1615 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1616 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1617 TCP_SKB_CB(skb)->sacked = 0;
1618 TCP_SKB_CB(skb)->has_rxtstamp =
1619 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1620 }
1621
1622 /*
1623 * From tcp_input.c
1624 */
1625
1626 int tcp_v4_rcv(struct sk_buff *skb)
1627 {
1628 struct net *net = dev_net(skb->dev);
1629 int sdif = inet_sdif(skb);
1630 const struct iphdr *iph;
1631 const struct tcphdr *th;
1632 bool refcounted;
1633 struct sock *sk;
1634 int ret;
1635
1636 if (skb->pkt_type != PACKET_HOST)
1637 goto discard_it;
1638
1639 /* Count it even if it's bad */
1640 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1641
1642 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1643 goto discard_it;
1644
1645 th = (const struct tcphdr *)skb->data;
1646
1647 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1648 goto bad_packet;
1649 if (!pskb_may_pull(skb, th->doff * 4))
1650 goto discard_it;
1651
1652 /* An explanation is required here, I think.
1653 * Packet length and doff are validated by header prediction,
1654 * provided case of th->doff==0 is eliminated.
1655 * So, we defer the checks. */
1656
1657 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1658 goto csum_error;
1659
1660 th = (const struct tcphdr *)skb->data;
1661 iph = ip_hdr(skb);
1662 lookup:
1663 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1664 th->dest, sdif, &refcounted);
1665 if (!sk)
1666 goto no_tcp_socket;
1667
1668 process:
1669 if (sk->sk_state == TCP_TIME_WAIT)
1670 goto do_time_wait;
1671
1672 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1673 struct request_sock *req = inet_reqsk(sk);
1674 struct sock *nsk;
1675
1676 sk = req->rsk_listener;
1677 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1678 sk_drops_add(sk, skb);
1679 reqsk_put(req);
1680 goto discard_it;
1681 }
1682 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1683 inet_csk_reqsk_queue_drop_and_put(sk, req);
1684 goto lookup;
1685 }
1686 /* We own a reference on the listener, increase it again
1687 * as we might lose it too soon.
1688 */
1689 sock_hold(sk);
1690 refcounted = true;
1691 nsk = NULL;
1692 if (!tcp_filter(sk, skb)) {
1693 th = (const struct tcphdr *)skb->data;
1694 iph = ip_hdr(skb);
1695 tcp_v4_fill_cb(skb, iph, th);
1696 nsk = tcp_check_req(sk, skb, req, false);
1697 }
1698 if (!nsk) {
1699 reqsk_put(req);
1700 goto discard_and_relse;
1701 }
1702 if (nsk == sk) {
1703 reqsk_put(req);
1704 tcp_v4_restore_cb(skb);
1705 } else if (tcp_child_process(sk, nsk, skb)) {
1706 tcp_v4_send_reset(nsk, skb);
1707 goto discard_and_relse;
1708 } else {
1709 sock_put(sk);
1710 return 0;
1711 }
1712 }
1713 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1714 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1715 goto discard_and_relse;
1716 }
1717
1718 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1719 goto discard_and_relse;
1720
1721 if (tcp_v4_inbound_md5_hash(sk, skb))
1722 goto discard_and_relse;
1723
1724 nf_reset(skb);
1725
1726 if (tcp_filter(sk, skb))
1727 goto discard_and_relse;
1728 th = (const struct tcphdr *)skb->data;
1729 iph = ip_hdr(skb);
1730 tcp_v4_fill_cb(skb, iph, th);
1731
1732 skb->dev = NULL;
1733
1734 if (sk->sk_state == TCP_LISTEN) {
1735 ret = tcp_v4_do_rcv(sk, skb);
1736 goto put_and_return;
1737 }
1738
1739 sk_incoming_cpu_update(sk);
1740
1741 bh_lock_sock_nested(sk);
1742 tcp_segs_in(tcp_sk(sk), skb);
1743 ret = 0;
1744 if (!sock_owned_by_user(sk)) {
1745 ret = tcp_v4_do_rcv(sk, skb);
1746 } else if (tcp_add_backlog(sk, skb)) {
1747 goto discard_and_relse;
1748 }
1749 bh_unlock_sock(sk);
1750
1751 put_and_return:
1752 if (refcounted)
1753 sock_put(sk);
1754
1755 return ret;
1756
1757 no_tcp_socket:
1758 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1759 goto discard_it;
1760
1761 tcp_v4_fill_cb(skb, iph, th);
1762
1763 if (tcp_checksum_complete(skb)) {
1764 csum_error:
1765 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1766 bad_packet:
1767 __TCP_INC_STATS(net, TCP_MIB_INERRS);
1768 } else {
1769 tcp_v4_send_reset(NULL, skb);
1770 }
1771
1772 discard_it:
1773 /* Discard frame. */
1774 kfree_skb(skb);
1775 return 0;
1776
1777 discard_and_relse:
1778 sk_drops_add(sk, skb);
1779 if (refcounted)
1780 sock_put(sk);
1781 goto discard_it;
1782
1783 do_time_wait:
1784 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1785 inet_twsk_put(inet_twsk(sk));
1786 goto discard_it;
1787 }
1788
1789 tcp_v4_fill_cb(skb, iph, th);
1790
1791 if (tcp_checksum_complete(skb)) {
1792 inet_twsk_put(inet_twsk(sk));
1793 goto csum_error;
1794 }
1795 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1796 case TCP_TW_SYN: {
1797 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1798 &tcp_hashinfo, skb,
1799 __tcp_hdrlen(th),
1800 iph->saddr, th->source,
1801 iph->daddr, th->dest,
1802 inet_iif(skb),
1803 sdif);
1804 if (sk2) {
1805 inet_twsk_deschedule_put(inet_twsk(sk));
1806 sk = sk2;
1807 tcp_v4_restore_cb(skb);
1808 refcounted = false;
1809 goto process;
1810 }
1811 }
1812 /* to ACK */
1813 /* fall through */
1814 case TCP_TW_ACK:
1815 tcp_v4_timewait_ack(sk, skb);
1816 break;
1817 case TCP_TW_RST:
1818 tcp_v4_send_reset(sk, skb);
1819 inet_twsk_deschedule_put(inet_twsk(sk));
1820 goto discard_it;
1821 case TCP_TW_SUCCESS:;
1822 }
1823 goto discard_it;
1824 }
1825
1826 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1827 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1828 .twsk_unique = tcp_twsk_unique,
1829 .twsk_destructor= tcp_twsk_destructor,
1830 };
1831
1832 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1833 {
1834 struct dst_entry *dst = skb_dst(skb);
1835
1836 if (dst && dst_hold_safe(dst)) {
1837 sk->sk_rx_dst = dst;
1838 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1839 }
1840 }
1841 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1842
1843 const struct inet_connection_sock_af_ops ipv4_specific = {
1844 .queue_xmit = ip_queue_xmit,
1845 .send_check = tcp_v4_send_check,
1846 .rebuild_header = inet_sk_rebuild_header,
1847 .sk_rx_dst_set = inet_sk_rx_dst_set,
1848 .conn_request = tcp_v4_conn_request,
1849 .syn_recv_sock = tcp_v4_syn_recv_sock,
1850 .net_header_len = sizeof(struct iphdr),
1851 .setsockopt = ip_setsockopt,
1852 .getsockopt = ip_getsockopt,
1853 .addr2sockaddr = inet_csk_addr2sockaddr,
1854 .sockaddr_len = sizeof(struct sockaddr_in),
1855 #ifdef CONFIG_COMPAT
1856 .compat_setsockopt = compat_ip_setsockopt,
1857 .compat_getsockopt = compat_ip_getsockopt,
1858 #endif
1859 .mtu_reduced = tcp_v4_mtu_reduced,
1860 };
1861 EXPORT_SYMBOL(ipv4_specific);
1862
1863 #ifdef CONFIG_TCP_MD5SIG
1864 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1865 .md5_lookup = tcp_v4_md5_lookup,
1866 .calc_md5_hash = tcp_v4_md5_hash_skb,
1867 .md5_parse = tcp_v4_parse_md5_keys,
1868 };
1869 #endif
1870
1871 /* NOTE: A lot of things set to zero explicitly by call to
1872 * sk_alloc() so need not be done here.
1873 */
1874 static int tcp_v4_init_sock(struct sock *sk)
1875 {
1876 struct inet_connection_sock *icsk = inet_csk(sk);
1877
1878 tcp_init_sock(sk);
1879
1880 icsk->icsk_af_ops = &ipv4_specific;
1881
1882 #ifdef CONFIG_TCP_MD5SIG
1883 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1884 #endif
1885
1886 return 0;
1887 }
1888
1889 void tcp_v4_destroy_sock(struct sock *sk)
1890 {
1891 struct tcp_sock *tp = tcp_sk(sk);
1892
1893 trace_tcp_destroy_sock(sk);
1894
1895 tcp_clear_xmit_timers(sk);
1896
1897 tcp_cleanup_congestion_control(sk);
1898
1899 tcp_cleanup_ulp(sk);
1900
1901 /* Cleanup up the write buffer. */
1902 tcp_write_queue_purge(sk);
1903
1904 /* Check if we want to disable active TFO */
1905 tcp_fastopen_active_disable_ofo_check(sk);
1906
1907 /* Cleans up our, hopefully empty, out_of_order_queue. */
1908 skb_rbtree_purge(&tp->out_of_order_queue);
1909
1910 #ifdef CONFIG_TCP_MD5SIG
1911 /* Clean up the MD5 key list, if any */
1912 if (tp->md5sig_info) {
1913 tcp_clear_md5_list(sk);
1914 kfree_rcu(tp->md5sig_info, rcu);
1915 tp->md5sig_info = NULL;
1916 }
1917 #endif
1918
1919 /* Clean up a referenced TCP bind bucket. */
1920 if (inet_csk(sk)->icsk_bind_hash)
1921 inet_put_port(sk);
1922
1923 BUG_ON(tp->fastopen_rsk);
1924
1925 /* If socket is aborted during connect operation */
1926 tcp_free_fastopen_req(tp);
1927 tcp_fastopen_destroy_cipher(sk);
1928 tcp_saved_syn_free(tp);
1929
1930 sk_sockets_allocated_dec(sk);
1931 }
1932 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1933
1934 #ifdef CONFIG_PROC_FS
1935 /* Proc filesystem TCP sock list dumping. */
1936
1937 /*
1938 * Get next listener socket follow cur. If cur is NULL, get first socket
1939 * starting from bucket given in st->bucket; when st->bucket is zero the
1940 * very first socket in the hash table is returned.
1941 */
1942 static void *listening_get_next(struct seq_file *seq, void *cur)
1943 {
1944 struct tcp_iter_state *st = seq->private;
1945 struct net *net = seq_file_net(seq);
1946 struct inet_listen_hashbucket *ilb;
1947 struct sock *sk = cur;
1948
1949 if (!sk) {
1950 get_head:
1951 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1952 spin_lock(&ilb->lock);
1953 sk = sk_head(&ilb->head);
1954 st->offset = 0;
1955 goto get_sk;
1956 }
1957 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1958 ++st->num;
1959 ++st->offset;
1960
1961 sk = sk_next(sk);
1962 get_sk:
1963 sk_for_each_from(sk) {
1964 if (!net_eq(sock_net(sk), net))
1965 continue;
1966 if (sk->sk_family == st->family)
1967 return sk;
1968 }
1969 spin_unlock(&ilb->lock);
1970 st->offset = 0;
1971 if (++st->bucket < INET_LHTABLE_SIZE)
1972 goto get_head;
1973 return NULL;
1974 }
1975
1976 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1977 {
1978 struct tcp_iter_state *st = seq->private;
1979 void *rc;
1980
1981 st->bucket = 0;
1982 st->offset = 0;
1983 rc = listening_get_next(seq, NULL);
1984
1985 while (rc && *pos) {
1986 rc = listening_get_next(seq, rc);
1987 --*pos;
1988 }
1989 return rc;
1990 }
1991
1992 static inline bool empty_bucket(const struct tcp_iter_state *st)
1993 {
1994 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1995 }
1996
1997 /*
1998 * Get first established socket starting from bucket given in st->bucket.
1999 * If st->bucket is zero, the very first socket in the hash is returned.
2000 */
2001 static void *established_get_first(struct seq_file *seq)
2002 {
2003 struct tcp_iter_state *st = seq->private;
2004 struct net *net = seq_file_net(seq);
2005 void *rc = NULL;
2006
2007 st->offset = 0;
2008 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2009 struct sock *sk;
2010 struct hlist_nulls_node *node;
2011 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2012
2013 /* Lockless fast path for the common case of empty buckets */
2014 if (empty_bucket(st))
2015 continue;
2016
2017 spin_lock_bh(lock);
2018 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2019 if (sk->sk_family != st->family ||
2020 !net_eq(sock_net(sk), net)) {
2021 continue;
2022 }
2023 rc = sk;
2024 goto out;
2025 }
2026 spin_unlock_bh(lock);
2027 }
2028 out:
2029 return rc;
2030 }
2031
2032 static void *established_get_next(struct seq_file *seq, void *cur)
2033 {
2034 struct sock *sk = cur;
2035 struct hlist_nulls_node *node;
2036 struct tcp_iter_state *st = seq->private;
2037 struct net *net = seq_file_net(seq);
2038
2039 ++st->num;
2040 ++st->offset;
2041
2042 sk = sk_nulls_next(sk);
2043
2044 sk_nulls_for_each_from(sk, node) {
2045 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2046 return sk;
2047 }
2048
2049 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2050 ++st->bucket;
2051 return established_get_first(seq);
2052 }
2053
2054 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2055 {
2056 struct tcp_iter_state *st = seq->private;
2057 void *rc;
2058
2059 st->bucket = 0;
2060 rc = established_get_first(seq);
2061
2062 while (rc && pos) {
2063 rc = established_get_next(seq, rc);
2064 --pos;
2065 }
2066 return rc;
2067 }
2068
2069 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2070 {
2071 void *rc;
2072 struct tcp_iter_state *st = seq->private;
2073
2074 st->state = TCP_SEQ_STATE_LISTENING;
2075 rc = listening_get_idx(seq, &pos);
2076
2077 if (!rc) {
2078 st->state = TCP_SEQ_STATE_ESTABLISHED;
2079 rc = established_get_idx(seq, pos);
2080 }
2081
2082 return rc;
2083 }
2084
2085 static void *tcp_seek_last_pos(struct seq_file *seq)
2086 {
2087 struct tcp_iter_state *st = seq->private;
2088 int offset = st->offset;
2089 int orig_num = st->num;
2090 void *rc = NULL;
2091
2092 switch (st->state) {
2093 case TCP_SEQ_STATE_LISTENING:
2094 if (st->bucket >= INET_LHTABLE_SIZE)
2095 break;
2096 st->state = TCP_SEQ_STATE_LISTENING;
2097 rc = listening_get_next(seq, NULL);
2098 while (offset-- && rc)
2099 rc = listening_get_next(seq, rc);
2100 if (rc)
2101 break;
2102 st->bucket = 0;
2103 st->state = TCP_SEQ_STATE_ESTABLISHED;
2104 /* Fallthrough */
2105 case TCP_SEQ_STATE_ESTABLISHED:
2106 if (st->bucket > tcp_hashinfo.ehash_mask)
2107 break;
2108 rc = established_get_first(seq);
2109 while (offset-- && rc)
2110 rc = established_get_next(seq, rc);
2111 }
2112
2113 st->num = orig_num;
2114
2115 return rc;
2116 }
2117
2118 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2119 {
2120 struct tcp_iter_state *st = seq->private;
2121 void *rc;
2122
2123 if (*pos && *pos == st->last_pos) {
2124 rc = tcp_seek_last_pos(seq);
2125 if (rc)
2126 goto out;
2127 }
2128
2129 st->state = TCP_SEQ_STATE_LISTENING;
2130 st->num = 0;
2131 st->bucket = 0;
2132 st->offset = 0;
2133 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2134
2135 out:
2136 st->last_pos = *pos;
2137 return rc;
2138 }
2139
2140 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2141 {
2142 struct tcp_iter_state *st = seq->private;
2143 void *rc = NULL;
2144
2145 if (v == SEQ_START_TOKEN) {
2146 rc = tcp_get_idx(seq, 0);
2147 goto out;
2148 }
2149
2150 switch (st->state) {
2151 case TCP_SEQ_STATE_LISTENING:
2152 rc = listening_get_next(seq, v);
2153 if (!rc) {
2154 st->state = TCP_SEQ_STATE_ESTABLISHED;
2155 st->bucket = 0;
2156 st->offset = 0;
2157 rc = established_get_first(seq);
2158 }
2159 break;
2160 case TCP_SEQ_STATE_ESTABLISHED:
2161 rc = established_get_next(seq, v);
2162 break;
2163 }
2164 out:
2165 ++*pos;
2166 st->last_pos = *pos;
2167 return rc;
2168 }
2169
2170 static void tcp_seq_stop(struct seq_file *seq, void *v)
2171 {
2172 struct tcp_iter_state *st = seq->private;
2173
2174 switch (st->state) {
2175 case TCP_SEQ_STATE_LISTENING:
2176 if (v != SEQ_START_TOKEN)
2177 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2178 break;
2179 case TCP_SEQ_STATE_ESTABLISHED:
2180 if (v)
2181 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2182 break;
2183 }
2184 }
2185
2186 int tcp_seq_open(struct inode *inode, struct file *file)
2187 {
2188 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2189 struct tcp_iter_state *s;
2190 int err;
2191
2192 err = seq_open_net(inode, file, &afinfo->seq_ops,
2193 sizeof(struct tcp_iter_state));
2194 if (err < 0)
2195 return err;
2196
2197 s = ((struct seq_file *)file->private_data)->private;
2198 s->family = afinfo->family;
2199 s->last_pos = 0;
2200 return 0;
2201 }
2202 EXPORT_SYMBOL(tcp_seq_open);
2203
2204 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2205 {
2206 int rc = 0;
2207 struct proc_dir_entry *p;
2208
2209 afinfo->seq_ops.start = tcp_seq_start;
2210 afinfo->seq_ops.next = tcp_seq_next;
2211 afinfo->seq_ops.stop = tcp_seq_stop;
2212
2213 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2214 afinfo->seq_fops, afinfo);
2215 if (!p)
2216 rc = -ENOMEM;
2217 return rc;
2218 }
2219 EXPORT_SYMBOL(tcp_proc_register);
2220
2221 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2222 {
2223 remove_proc_entry(afinfo->name, net->proc_net);
2224 }
2225 EXPORT_SYMBOL(tcp_proc_unregister);
2226
2227 static void get_openreq4(const struct request_sock *req,
2228 struct seq_file *f, int i)
2229 {
2230 const struct inet_request_sock *ireq = inet_rsk(req);
2231 long delta = req->rsk_timer.expires - jiffies;
2232
2233 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2234 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2235 i,
2236 ireq->ir_loc_addr,
2237 ireq->ir_num,
2238 ireq->ir_rmt_addr,
2239 ntohs(ireq->ir_rmt_port),
2240 TCP_SYN_RECV,
2241 0, 0, /* could print option size, but that is af dependent. */
2242 1, /* timers active (only the expire timer) */
2243 jiffies_delta_to_clock_t(delta),
2244 req->num_timeout,
2245 from_kuid_munged(seq_user_ns(f),
2246 sock_i_uid(req->rsk_listener)),
2247 0, /* non standard timer */
2248 0, /* open_requests have no inode */
2249 0,
2250 req);
2251 }
2252
2253 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2254 {
2255 int timer_active;
2256 unsigned long timer_expires;
2257 const struct tcp_sock *tp = tcp_sk(sk);
2258 const struct inet_connection_sock *icsk = inet_csk(sk);
2259 const struct inet_sock *inet = inet_sk(sk);
2260 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2261 __be32 dest = inet->inet_daddr;
2262 __be32 src = inet->inet_rcv_saddr;
2263 __u16 destp = ntohs(inet->inet_dport);
2264 __u16 srcp = ntohs(inet->inet_sport);
2265 int rx_queue;
2266 int state;
2267
2268 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2269 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2270 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2271 timer_active = 1;
2272 timer_expires = icsk->icsk_timeout;
2273 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2274 timer_active = 4;
2275 timer_expires = icsk->icsk_timeout;
2276 } else if (timer_pending(&sk->sk_timer)) {
2277 timer_active = 2;
2278 timer_expires = sk->sk_timer.expires;
2279 } else {
2280 timer_active = 0;
2281 timer_expires = jiffies;
2282 }
2283
2284 state = sk_state_load(sk);
2285 if (state == TCP_LISTEN)
2286 rx_queue = sk->sk_ack_backlog;
2287 else
2288 /* Because we don't lock the socket,
2289 * we might find a transient negative value.
2290 */
2291 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2292
2293 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2294 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2295 i, src, srcp, dest, destp, state,
2296 tp->write_seq - tp->snd_una,
2297 rx_queue,
2298 timer_active,
2299 jiffies_delta_to_clock_t(timer_expires - jiffies),
2300 icsk->icsk_retransmits,
2301 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2302 icsk->icsk_probes_out,
2303 sock_i_ino(sk),
2304 refcount_read(&sk->sk_refcnt), sk,
2305 jiffies_to_clock_t(icsk->icsk_rto),
2306 jiffies_to_clock_t(icsk->icsk_ack.ato),
2307 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2308 tp->snd_cwnd,
2309 state == TCP_LISTEN ?
2310 fastopenq->max_qlen :
2311 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2312 }
2313
2314 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2315 struct seq_file *f, int i)
2316 {
2317 long delta = tw->tw_timer.expires - jiffies;
2318 __be32 dest, src;
2319 __u16 destp, srcp;
2320
2321 dest = tw->tw_daddr;
2322 src = tw->tw_rcv_saddr;
2323 destp = ntohs(tw->tw_dport);
2324 srcp = ntohs(tw->tw_sport);
2325
2326 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2327 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2328 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2329 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2330 refcount_read(&tw->tw_refcnt), tw);
2331 }
2332
2333 #define TMPSZ 150
2334
2335 static int tcp4_seq_show(struct seq_file *seq, void *v)
2336 {
2337 struct tcp_iter_state *st;
2338 struct sock *sk = v;
2339
2340 seq_setwidth(seq, TMPSZ - 1);
2341 if (v == SEQ_START_TOKEN) {
2342 seq_puts(seq, " sl local_address rem_address st tx_queue "
2343 "rx_queue tr tm->when retrnsmt uid timeout "
2344 "inode");
2345 goto out;
2346 }
2347 st = seq->private;
2348
2349 if (sk->sk_state == TCP_TIME_WAIT)
2350 get_timewait4_sock(v, seq, st->num);
2351 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2352 get_openreq4(v, seq, st->num);
2353 else
2354 get_tcp4_sock(v, seq, st->num);
2355 out:
2356 seq_pad(seq, '\n');
2357 return 0;
2358 }
2359
2360 static const struct file_operations tcp_afinfo_seq_fops = {
2361 .owner = THIS_MODULE,
2362 .open = tcp_seq_open,
2363 .read = seq_read,
2364 .llseek = seq_lseek,
2365 .release = seq_release_net
2366 };
2367
2368 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2369 .name = "tcp",
2370 .family = AF_INET,
2371 .seq_fops = &tcp_afinfo_seq_fops,
2372 .seq_ops = {
2373 .show = tcp4_seq_show,
2374 },
2375 };
2376
2377 static int __net_init tcp4_proc_init_net(struct net *net)
2378 {
2379 return tcp_proc_register(net, &tcp4_seq_afinfo);
2380 }
2381
2382 static void __net_exit tcp4_proc_exit_net(struct net *net)
2383 {
2384 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2385 }
2386
2387 static struct pernet_operations tcp4_net_ops = {
2388 .init = tcp4_proc_init_net,
2389 .exit = tcp4_proc_exit_net,
2390 };
2391
2392 int __init tcp4_proc_init(void)
2393 {
2394 return register_pernet_subsys(&tcp4_net_ops);
2395 }
2396
2397 void tcp4_proc_exit(void)
2398 {
2399 unregister_pernet_subsys(&tcp4_net_ops);
2400 }
2401 #endif /* CONFIG_PROC_FS */
2402
2403 struct proto tcp_prot = {
2404 .name = "TCP",
2405 .owner = THIS_MODULE,
2406 .close = tcp_close,
2407 .connect = tcp_v4_connect,
2408 .disconnect = tcp_disconnect,
2409 .accept = inet_csk_accept,
2410 .ioctl = tcp_ioctl,
2411 .init = tcp_v4_init_sock,
2412 .destroy = tcp_v4_destroy_sock,
2413 .shutdown = tcp_shutdown,
2414 .setsockopt = tcp_setsockopt,
2415 .getsockopt = tcp_getsockopt,
2416 .keepalive = tcp_set_keepalive,
2417 .recvmsg = tcp_recvmsg,
2418 .sendmsg = tcp_sendmsg,
2419 .sendpage = tcp_sendpage,
2420 .backlog_rcv = tcp_v4_do_rcv,
2421 .release_cb = tcp_release_cb,
2422 .hash = inet_hash,
2423 .unhash = inet_unhash,
2424 .get_port = inet_csk_get_port,
2425 .enter_memory_pressure = tcp_enter_memory_pressure,
2426 .leave_memory_pressure = tcp_leave_memory_pressure,
2427 .stream_memory_free = tcp_stream_memory_free,
2428 .sockets_allocated = &tcp_sockets_allocated,
2429 .orphan_count = &tcp_orphan_count,
2430 .memory_allocated = &tcp_memory_allocated,
2431 .memory_pressure = &tcp_memory_pressure,
2432 .sysctl_mem = sysctl_tcp_mem,
2433 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2434 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2435 .max_header = MAX_TCP_HEADER,
2436 .obj_size = sizeof(struct tcp_sock),
2437 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2438 .twsk_prot = &tcp_timewait_sock_ops,
2439 .rsk_prot = &tcp_request_sock_ops,
2440 .h.hashinfo = &tcp_hashinfo,
2441 .no_autobind = true,
2442 #ifdef CONFIG_COMPAT
2443 .compat_setsockopt = compat_tcp_setsockopt,
2444 .compat_getsockopt = compat_tcp_getsockopt,
2445 #endif
2446 .diag_destroy = tcp_abort,
2447 };
2448 EXPORT_SYMBOL(tcp_prot);
2449
2450 static void __net_exit tcp_sk_exit(struct net *net)
2451 {
2452 int cpu;
2453
2454 module_put(net->ipv4.tcp_congestion_control->owner);
2455
2456 for_each_possible_cpu(cpu)
2457 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2458 free_percpu(net->ipv4.tcp_sk);
2459 }
2460
2461 static int __net_init tcp_sk_init(struct net *net)
2462 {
2463 int res, cpu, cnt;
2464
2465 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2466 if (!net->ipv4.tcp_sk)
2467 return -ENOMEM;
2468
2469 for_each_possible_cpu(cpu) {
2470 struct sock *sk;
2471
2472 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2473 IPPROTO_TCP, net);
2474 if (res)
2475 goto fail;
2476 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2477 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2478 }
2479
2480 net->ipv4.sysctl_tcp_ecn = 2;
2481 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2482
2483 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2484 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2485 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2486
2487 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2488 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2489 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2490
2491 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2492 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2493 net->ipv4.sysctl_tcp_syncookies = 1;
2494 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2495 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2496 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2497 net->ipv4.sysctl_tcp_orphan_retries = 0;
2498 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2499 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2500 net->ipv4.sysctl_tcp_tw_reuse = 0;
2501
2502 cnt = tcp_hashinfo.ehash_mask + 1;
2503 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2504 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2505
2506 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2507 net->ipv4.sysctl_tcp_sack = 1;
2508 net->ipv4.sysctl_tcp_window_scaling = 1;
2509 net->ipv4.sysctl_tcp_timestamps = 1;
2510 net->ipv4.sysctl_tcp_early_retrans = 3;
2511 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2512 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2513 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2514 net->ipv4.sysctl_tcp_max_reordering = 300;
2515 net->ipv4.sysctl_tcp_dsack = 1;
2516 net->ipv4.sysctl_tcp_app_win = 31;
2517 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2518 net->ipv4.sysctl_tcp_frto = 2;
2519 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2520 /* This limits the percentage of the congestion window which we
2521 * will allow a single TSO frame to consume. Building TSO frames
2522 * which are too large can cause TCP streams to be bursty.
2523 */
2524 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2525 /* Default TSQ limit of four TSO segments */
2526 net->ipv4.sysctl_tcp_limit_output_bytes = 262144;
2527 /* rfc5961 challenge ack rate limiting */
2528 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2529 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2530 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2531 net->ipv4.sysctl_tcp_autocorking = 1;
2532 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2533 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2534 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2535 if (net != &init_net) {
2536 memcpy(net->ipv4.sysctl_tcp_rmem,
2537 init_net.ipv4.sysctl_tcp_rmem,
2538 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2539 memcpy(net->ipv4.sysctl_tcp_wmem,
2540 init_net.ipv4.sysctl_tcp_wmem,
2541 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2542 }
2543 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2544 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2545 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2546 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2547
2548 /* Reno is always built in */
2549 if (!net_eq(net, &init_net) &&
2550 try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2551 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2552 else
2553 net->ipv4.tcp_congestion_control = &tcp_reno;
2554
2555 return 0;
2556 fail:
2557 tcp_sk_exit(net);
2558
2559 return res;
2560 }
2561
2562 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2563 {
2564 struct net *net;
2565
2566 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2567
2568 list_for_each_entry(net, net_exit_list, exit_list)
2569 tcp_fastopen_ctx_destroy(net);
2570 }
2571
2572 static struct pernet_operations __net_initdata tcp_sk_ops = {
2573 .init = tcp_sk_init,
2574 .exit = tcp_sk_exit,
2575 .exit_batch = tcp_sk_exit_batch,
2576 };
2577
2578 void __init tcp_v4_init(void)
2579 {
2580 if (register_pernet_subsys(&tcp_sk_ops))
2581 panic("Failed to create the TCP control socket.\n");
2582 }