]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_metrics.c
bcm2835-camera: Correct port_parameter_get return value
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_metrics.c
1 #include <linux/rcupdate.h>
2 #include <linux/spinlock.h>
3 #include <linux/jiffies.h>
4 #include <linux/module.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/init.h>
8 #include <linux/tcp.h>
9 #include <linux/hash.h>
10 #include <linux/tcp_metrics.h>
11 #include <linux/vmalloc.h>
12
13 #include <net/inet_connection_sock.h>
14 #include <net/net_namespace.h>
15 #include <net/request_sock.h>
16 #include <net/inetpeer.h>
17 #include <net/sock.h>
18 #include <net/ipv6.h>
19 #include <net/dst.h>
20 #include <net/tcp.h>
21 #include <net/genetlink.h>
22
23 int sysctl_tcp_nometrics_save __read_mostly;
24
25 static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *saddr,
26 const struct inetpeer_addr *daddr,
27 struct net *net, unsigned int hash);
28
29 struct tcp_fastopen_metrics {
30 u16 mss;
31 u16 syn_loss:10, /* Recurring Fast Open SYN losses */
32 try_exp:2; /* Request w/ exp. option (once) */
33 unsigned long last_syn_loss; /* Last Fast Open SYN loss */
34 struct tcp_fastopen_cookie cookie;
35 };
36
37 /* TCP_METRIC_MAX includes 2 extra fields for userspace compatibility
38 * Kernel only stores RTT and RTTVAR in usec resolution
39 */
40 #define TCP_METRIC_MAX_KERNEL (TCP_METRIC_MAX - 2)
41
42 struct tcp_metrics_block {
43 struct tcp_metrics_block __rcu *tcpm_next;
44 possible_net_t tcpm_net;
45 struct inetpeer_addr tcpm_saddr;
46 struct inetpeer_addr tcpm_daddr;
47 unsigned long tcpm_stamp;
48 u32 tcpm_ts;
49 u32 tcpm_ts_stamp;
50 u32 tcpm_lock;
51 u32 tcpm_vals[TCP_METRIC_MAX_KERNEL + 1];
52 struct tcp_fastopen_metrics tcpm_fastopen;
53
54 struct rcu_head rcu_head;
55 };
56
57 static inline struct net *tm_net(struct tcp_metrics_block *tm)
58 {
59 return read_pnet(&tm->tcpm_net);
60 }
61
62 static bool tcp_metric_locked(struct tcp_metrics_block *tm,
63 enum tcp_metric_index idx)
64 {
65 return tm->tcpm_lock & (1 << idx);
66 }
67
68 static u32 tcp_metric_get(struct tcp_metrics_block *tm,
69 enum tcp_metric_index idx)
70 {
71 return tm->tcpm_vals[idx];
72 }
73
74 static void tcp_metric_set(struct tcp_metrics_block *tm,
75 enum tcp_metric_index idx,
76 u32 val)
77 {
78 tm->tcpm_vals[idx] = val;
79 }
80
81 static bool addr_same(const struct inetpeer_addr *a,
82 const struct inetpeer_addr *b)
83 {
84 return inetpeer_addr_cmp(a, b) == 0;
85 }
86
87 struct tcpm_hash_bucket {
88 struct tcp_metrics_block __rcu *chain;
89 };
90
91 static struct tcpm_hash_bucket *tcp_metrics_hash __read_mostly;
92 static unsigned int tcp_metrics_hash_log __read_mostly;
93
94 static DEFINE_SPINLOCK(tcp_metrics_lock);
95
96 static void tcpm_suck_dst(struct tcp_metrics_block *tm,
97 const struct dst_entry *dst,
98 bool fastopen_clear)
99 {
100 u32 msval;
101 u32 val;
102
103 tm->tcpm_stamp = jiffies;
104
105 val = 0;
106 if (dst_metric_locked(dst, RTAX_RTT))
107 val |= 1 << TCP_METRIC_RTT;
108 if (dst_metric_locked(dst, RTAX_RTTVAR))
109 val |= 1 << TCP_METRIC_RTTVAR;
110 if (dst_metric_locked(dst, RTAX_SSTHRESH))
111 val |= 1 << TCP_METRIC_SSTHRESH;
112 if (dst_metric_locked(dst, RTAX_CWND))
113 val |= 1 << TCP_METRIC_CWND;
114 if (dst_metric_locked(dst, RTAX_REORDERING))
115 val |= 1 << TCP_METRIC_REORDERING;
116 tm->tcpm_lock = val;
117
118 msval = dst_metric_raw(dst, RTAX_RTT);
119 tm->tcpm_vals[TCP_METRIC_RTT] = msval * USEC_PER_MSEC;
120
121 msval = dst_metric_raw(dst, RTAX_RTTVAR);
122 tm->tcpm_vals[TCP_METRIC_RTTVAR] = msval * USEC_PER_MSEC;
123 tm->tcpm_vals[TCP_METRIC_SSTHRESH] = dst_metric_raw(dst, RTAX_SSTHRESH);
124 tm->tcpm_vals[TCP_METRIC_CWND] = dst_metric_raw(dst, RTAX_CWND);
125 tm->tcpm_vals[TCP_METRIC_REORDERING] = dst_metric_raw(dst, RTAX_REORDERING);
126 tm->tcpm_ts = 0;
127 tm->tcpm_ts_stamp = 0;
128 if (fastopen_clear) {
129 tm->tcpm_fastopen.mss = 0;
130 tm->tcpm_fastopen.syn_loss = 0;
131 tm->tcpm_fastopen.try_exp = 0;
132 tm->tcpm_fastopen.cookie.exp = false;
133 tm->tcpm_fastopen.cookie.len = 0;
134 }
135 }
136
137 #define TCP_METRICS_TIMEOUT (60 * 60 * HZ)
138
139 static void tcpm_check_stamp(struct tcp_metrics_block *tm, struct dst_entry *dst)
140 {
141 if (tm && unlikely(time_after(jiffies, tm->tcpm_stamp + TCP_METRICS_TIMEOUT)))
142 tcpm_suck_dst(tm, dst, false);
143 }
144
145 #define TCP_METRICS_RECLAIM_DEPTH 5
146 #define TCP_METRICS_RECLAIM_PTR (struct tcp_metrics_block *) 0x1UL
147
148 #define deref_locked(p) \
149 rcu_dereference_protected(p, lockdep_is_held(&tcp_metrics_lock))
150
151 static struct tcp_metrics_block *tcpm_new(struct dst_entry *dst,
152 struct inetpeer_addr *saddr,
153 struct inetpeer_addr *daddr,
154 unsigned int hash)
155 {
156 struct tcp_metrics_block *tm;
157 struct net *net;
158 bool reclaim = false;
159
160 spin_lock_bh(&tcp_metrics_lock);
161 net = dev_net(dst->dev);
162
163 /* While waiting for the spin-lock the cache might have been populated
164 * with this entry and so we have to check again.
165 */
166 tm = __tcp_get_metrics(saddr, daddr, net, hash);
167 if (tm == TCP_METRICS_RECLAIM_PTR) {
168 reclaim = true;
169 tm = NULL;
170 }
171 if (tm) {
172 tcpm_check_stamp(tm, dst);
173 goto out_unlock;
174 }
175
176 if (unlikely(reclaim)) {
177 struct tcp_metrics_block *oldest;
178
179 oldest = deref_locked(tcp_metrics_hash[hash].chain);
180 for (tm = deref_locked(oldest->tcpm_next); tm;
181 tm = deref_locked(tm->tcpm_next)) {
182 if (time_before(tm->tcpm_stamp, oldest->tcpm_stamp))
183 oldest = tm;
184 }
185 tm = oldest;
186 } else {
187 tm = kmalloc(sizeof(*tm), GFP_ATOMIC);
188 if (!tm)
189 goto out_unlock;
190 }
191 write_pnet(&tm->tcpm_net, net);
192 tm->tcpm_saddr = *saddr;
193 tm->tcpm_daddr = *daddr;
194
195 tcpm_suck_dst(tm, dst, true);
196
197 if (likely(!reclaim)) {
198 tm->tcpm_next = tcp_metrics_hash[hash].chain;
199 rcu_assign_pointer(tcp_metrics_hash[hash].chain, tm);
200 }
201
202 out_unlock:
203 spin_unlock_bh(&tcp_metrics_lock);
204 return tm;
205 }
206
207 static struct tcp_metrics_block *tcp_get_encode(struct tcp_metrics_block *tm, int depth)
208 {
209 if (tm)
210 return tm;
211 if (depth > TCP_METRICS_RECLAIM_DEPTH)
212 return TCP_METRICS_RECLAIM_PTR;
213 return NULL;
214 }
215
216 static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *saddr,
217 const struct inetpeer_addr *daddr,
218 struct net *net, unsigned int hash)
219 {
220 struct tcp_metrics_block *tm;
221 int depth = 0;
222
223 for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
224 tm = rcu_dereference(tm->tcpm_next)) {
225 if (addr_same(&tm->tcpm_saddr, saddr) &&
226 addr_same(&tm->tcpm_daddr, daddr) &&
227 net_eq(tm_net(tm), net))
228 break;
229 depth++;
230 }
231 return tcp_get_encode(tm, depth);
232 }
233
234 static struct tcp_metrics_block *__tcp_get_metrics_req(struct request_sock *req,
235 struct dst_entry *dst)
236 {
237 struct tcp_metrics_block *tm;
238 struct inetpeer_addr saddr, daddr;
239 unsigned int hash;
240 struct net *net;
241
242 saddr.family = req->rsk_ops->family;
243 daddr.family = req->rsk_ops->family;
244 switch (daddr.family) {
245 case AF_INET:
246 inetpeer_set_addr_v4(&saddr, inet_rsk(req)->ir_loc_addr);
247 inetpeer_set_addr_v4(&daddr, inet_rsk(req)->ir_rmt_addr);
248 hash = ipv4_addr_hash(inet_rsk(req)->ir_rmt_addr);
249 break;
250 #if IS_ENABLED(CONFIG_IPV6)
251 case AF_INET6:
252 inetpeer_set_addr_v6(&saddr, &inet_rsk(req)->ir_v6_loc_addr);
253 inetpeer_set_addr_v6(&daddr, &inet_rsk(req)->ir_v6_rmt_addr);
254 hash = ipv6_addr_hash(&inet_rsk(req)->ir_v6_rmt_addr);
255 break;
256 #endif
257 default:
258 return NULL;
259 }
260
261 net = dev_net(dst->dev);
262 hash ^= net_hash_mix(net);
263 hash = hash_32(hash, tcp_metrics_hash_log);
264
265 for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
266 tm = rcu_dereference(tm->tcpm_next)) {
267 if (addr_same(&tm->tcpm_saddr, &saddr) &&
268 addr_same(&tm->tcpm_daddr, &daddr) &&
269 net_eq(tm_net(tm), net))
270 break;
271 }
272 tcpm_check_stamp(tm, dst);
273 return tm;
274 }
275
276 static struct tcp_metrics_block *__tcp_get_metrics_tw(struct inet_timewait_sock *tw)
277 {
278 struct tcp_metrics_block *tm;
279 struct inetpeer_addr saddr, daddr;
280 unsigned int hash;
281 struct net *net;
282
283 if (tw->tw_family == AF_INET) {
284 inetpeer_set_addr_v4(&saddr, tw->tw_rcv_saddr);
285 inetpeer_set_addr_v4(&daddr, tw->tw_daddr);
286 hash = ipv4_addr_hash(tw->tw_daddr);
287 }
288 #if IS_ENABLED(CONFIG_IPV6)
289 else if (tw->tw_family == AF_INET6) {
290 if (ipv6_addr_v4mapped(&tw->tw_v6_daddr)) {
291 inetpeer_set_addr_v4(&saddr, tw->tw_rcv_saddr);
292 inetpeer_set_addr_v4(&daddr, tw->tw_daddr);
293 hash = ipv4_addr_hash(tw->tw_daddr);
294 } else {
295 inetpeer_set_addr_v6(&saddr, &tw->tw_v6_rcv_saddr);
296 inetpeer_set_addr_v6(&daddr, &tw->tw_v6_daddr);
297 hash = ipv6_addr_hash(&tw->tw_v6_daddr);
298 }
299 }
300 #endif
301 else
302 return NULL;
303
304 net = twsk_net(tw);
305 hash ^= net_hash_mix(net);
306 hash = hash_32(hash, tcp_metrics_hash_log);
307
308 for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
309 tm = rcu_dereference(tm->tcpm_next)) {
310 if (addr_same(&tm->tcpm_saddr, &saddr) &&
311 addr_same(&tm->tcpm_daddr, &daddr) &&
312 net_eq(tm_net(tm), net))
313 break;
314 }
315 return tm;
316 }
317
318 static struct tcp_metrics_block *tcp_get_metrics(struct sock *sk,
319 struct dst_entry *dst,
320 bool create)
321 {
322 struct tcp_metrics_block *tm;
323 struct inetpeer_addr saddr, daddr;
324 unsigned int hash;
325 struct net *net;
326
327 if (sk->sk_family == AF_INET) {
328 inetpeer_set_addr_v4(&saddr, inet_sk(sk)->inet_saddr);
329 inetpeer_set_addr_v4(&daddr, inet_sk(sk)->inet_daddr);
330 hash = ipv4_addr_hash(inet_sk(sk)->inet_daddr);
331 }
332 #if IS_ENABLED(CONFIG_IPV6)
333 else if (sk->sk_family == AF_INET6) {
334 if (ipv6_addr_v4mapped(&sk->sk_v6_daddr)) {
335 inetpeer_set_addr_v4(&saddr, inet_sk(sk)->inet_saddr);
336 inetpeer_set_addr_v4(&daddr, inet_sk(sk)->inet_daddr);
337 hash = ipv4_addr_hash(inet_sk(sk)->inet_daddr);
338 } else {
339 inetpeer_set_addr_v6(&saddr, &sk->sk_v6_rcv_saddr);
340 inetpeer_set_addr_v6(&daddr, &sk->sk_v6_daddr);
341 hash = ipv6_addr_hash(&sk->sk_v6_daddr);
342 }
343 }
344 #endif
345 else
346 return NULL;
347
348 net = dev_net(dst->dev);
349 hash ^= net_hash_mix(net);
350 hash = hash_32(hash, tcp_metrics_hash_log);
351
352 tm = __tcp_get_metrics(&saddr, &daddr, net, hash);
353 if (tm == TCP_METRICS_RECLAIM_PTR)
354 tm = NULL;
355 if (!tm && create)
356 tm = tcpm_new(dst, &saddr, &daddr, hash);
357 else
358 tcpm_check_stamp(tm, dst);
359
360 return tm;
361 }
362
363 /* Save metrics learned by this TCP session. This function is called
364 * only, when TCP finishes successfully i.e. when it enters TIME-WAIT
365 * or goes from LAST-ACK to CLOSE.
366 */
367 void tcp_update_metrics(struct sock *sk)
368 {
369 const struct inet_connection_sock *icsk = inet_csk(sk);
370 struct dst_entry *dst = __sk_dst_get(sk);
371 struct tcp_sock *tp = tcp_sk(sk);
372 struct net *net = sock_net(sk);
373 struct tcp_metrics_block *tm;
374 unsigned long rtt;
375 u32 val;
376 int m;
377
378 sk_dst_confirm(sk);
379 if (sysctl_tcp_nometrics_save || !dst)
380 return;
381
382 rcu_read_lock();
383 if (icsk->icsk_backoff || !tp->srtt_us) {
384 /* This session failed to estimate rtt. Why?
385 * Probably, no packets returned in time. Reset our
386 * results.
387 */
388 tm = tcp_get_metrics(sk, dst, false);
389 if (tm && !tcp_metric_locked(tm, TCP_METRIC_RTT))
390 tcp_metric_set(tm, TCP_METRIC_RTT, 0);
391 goto out_unlock;
392 } else
393 tm = tcp_get_metrics(sk, dst, true);
394
395 if (!tm)
396 goto out_unlock;
397
398 rtt = tcp_metric_get(tm, TCP_METRIC_RTT);
399 m = rtt - tp->srtt_us;
400
401 /* If newly calculated rtt larger than stored one, store new
402 * one. Otherwise, use EWMA. Remember, rtt overestimation is
403 * always better than underestimation.
404 */
405 if (!tcp_metric_locked(tm, TCP_METRIC_RTT)) {
406 if (m <= 0)
407 rtt = tp->srtt_us;
408 else
409 rtt -= (m >> 3);
410 tcp_metric_set(tm, TCP_METRIC_RTT, rtt);
411 }
412
413 if (!tcp_metric_locked(tm, TCP_METRIC_RTTVAR)) {
414 unsigned long var;
415
416 if (m < 0)
417 m = -m;
418
419 /* Scale deviation to rttvar fixed point */
420 m >>= 1;
421 if (m < tp->mdev_us)
422 m = tp->mdev_us;
423
424 var = tcp_metric_get(tm, TCP_METRIC_RTTVAR);
425 if (m >= var)
426 var = m;
427 else
428 var -= (var - m) >> 2;
429
430 tcp_metric_set(tm, TCP_METRIC_RTTVAR, var);
431 }
432
433 if (tcp_in_initial_slowstart(tp)) {
434 /* Slow start still did not finish. */
435 if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
436 val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
437 if (val && (tp->snd_cwnd >> 1) > val)
438 tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
439 tp->snd_cwnd >> 1);
440 }
441 if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
442 val = tcp_metric_get(tm, TCP_METRIC_CWND);
443 if (tp->snd_cwnd > val)
444 tcp_metric_set(tm, TCP_METRIC_CWND,
445 tp->snd_cwnd);
446 }
447 } else if (!tcp_in_slow_start(tp) &&
448 icsk->icsk_ca_state == TCP_CA_Open) {
449 /* Cong. avoidance phase, cwnd is reliable. */
450 if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH))
451 tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
452 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
453 if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
454 val = tcp_metric_get(tm, TCP_METRIC_CWND);
455 tcp_metric_set(tm, TCP_METRIC_CWND, (val + tp->snd_cwnd) >> 1);
456 }
457 } else {
458 /* Else slow start did not finish, cwnd is non-sense,
459 * ssthresh may be also invalid.
460 */
461 if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
462 val = tcp_metric_get(tm, TCP_METRIC_CWND);
463 tcp_metric_set(tm, TCP_METRIC_CWND,
464 (val + tp->snd_ssthresh) >> 1);
465 }
466 if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
467 val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
468 if (val && tp->snd_ssthresh > val)
469 tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
470 tp->snd_ssthresh);
471 }
472 if (!tcp_metric_locked(tm, TCP_METRIC_REORDERING)) {
473 val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
474 if (val < tp->reordering &&
475 tp->reordering != net->ipv4.sysctl_tcp_reordering)
476 tcp_metric_set(tm, TCP_METRIC_REORDERING,
477 tp->reordering);
478 }
479 }
480 tm->tcpm_stamp = jiffies;
481 out_unlock:
482 rcu_read_unlock();
483 }
484
485 /* Initialize metrics on socket. */
486
487 void tcp_init_metrics(struct sock *sk)
488 {
489 struct dst_entry *dst = __sk_dst_get(sk);
490 struct tcp_sock *tp = tcp_sk(sk);
491 struct tcp_metrics_block *tm;
492 u32 val, crtt = 0; /* cached RTT scaled by 8 */
493
494 sk_dst_confirm(sk);
495 if (!dst)
496 goto reset;
497
498 rcu_read_lock();
499 tm = tcp_get_metrics(sk, dst, true);
500 if (!tm) {
501 rcu_read_unlock();
502 goto reset;
503 }
504
505 if (tcp_metric_locked(tm, TCP_METRIC_CWND))
506 tp->snd_cwnd_clamp = tcp_metric_get(tm, TCP_METRIC_CWND);
507
508 val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
509 if (val) {
510 tp->snd_ssthresh = val;
511 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
512 tp->snd_ssthresh = tp->snd_cwnd_clamp;
513 } else {
514 /* ssthresh may have been reduced unnecessarily during.
515 * 3WHS. Restore it back to its initial default.
516 */
517 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
518 }
519 val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
520 if (val && tp->reordering != val) {
521 tcp_disable_fack(tp);
522 tcp_disable_early_retrans(tp);
523 tp->reordering = val;
524 }
525
526 crtt = tcp_metric_get(tm, TCP_METRIC_RTT);
527 rcu_read_unlock();
528 reset:
529 /* The initial RTT measurement from the SYN/SYN-ACK is not ideal
530 * to seed the RTO for later data packets because SYN packets are
531 * small. Use the per-dst cached values to seed the RTO but keep
532 * the RTT estimator variables intact (e.g., srtt, mdev, rttvar).
533 * Later the RTO will be updated immediately upon obtaining the first
534 * data RTT sample (tcp_rtt_estimator()). Hence the cached RTT only
535 * influences the first RTO but not later RTT estimation.
536 *
537 * But if RTT is not available from the SYN (due to retransmits or
538 * syn cookies) or the cache, force a conservative 3secs timeout.
539 *
540 * A bit of theory. RTT is time passed after "normal" sized packet
541 * is sent until it is ACKed. In normal circumstances sending small
542 * packets force peer to delay ACKs and calculation is correct too.
543 * The algorithm is adaptive and, provided we follow specs, it
544 * NEVER underestimate RTT. BUT! If peer tries to make some clever
545 * tricks sort of "quick acks" for time long enough to decrease RTT
546 * to low value, and then abruptly stops to do it and starts to delay
547 * ACKs, wait for troubles.
548 */
549 if (crtt > tp->srtt_us) {
550 /* Set RTO like tcp_rtt_estimator(), but from cached RTT. */
551 crtt /= 8 * USEC_PER_SEC / HZ;
552 inet_csk(sk)->icsk_rto = crtt + max(2 * crtt, tcp_rto_min(sk));
553 } else if (tp->srtt_us == 0) {
554 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
555 * 3WHS. This is most likely due to retransmission,
556 * including spurious one. Reset the RTO back to 3secs
557 * from the more aggressive 1sec to avoid more spurious
558 * retransmission.
559 */
560 tp->rttvar_us = jiffies_to_usecs(TCP_TIMEOUT_FALLBACK);
561 tp->mdev_us = tp->mdev_max_us = tp->rttvar_us;
562
563 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
564 }
565 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
566 * retransmitted. In light of RFC6298 more aggressive 1sec
567 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
568 * retransmission has occurred.
569 */
570 if (tp->total_retrans > 1)
571 tp->snd_cwnd = 1;
572 else
573 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
574 tp->snd_cwnd_stamp = tcp_time_stamp;
575 }
576
577 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
578 bool paws_check, bool timestamps)
579 {
580 struct tcp_metrics_block *tm;
581 bool ret;
582
583 if (!dst)
584 return false;
585
586 rcu_read_lock();
587 tm = __tcp_get_metrics_req(req, dst);
588 if (paws_check) {
589 if (tm &&
590 (u32)get_seconds() - tm->tcpm_ts_stamp < TCP_PAWS_MSL &&
591 ((s32)(tm->tcpm_ts - req->ts_recent) > TCP_PAWS_WINDOW ||
592 !timestamps))
593 ret = false;
594 else
595 ret = true;
596 } else {
597 if (tm && tcp_metric_get(tm, TCP_METRIC_RTT) && tm->tcpm_ts_stamp)
598 ret = true;
599 else
600 ret = false;
601 }
602 rcu_read_unlock();
603
604 return ret;
605 }
606
607 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst)
608 {
609 struct tcp_metrics_block *tm;
610
611 rcu_read_lock();
612 tm = tcp_get_metrics(sk, dst, true);
613 if (tm) {
614 struct tcp_sock *tp = tcp_sk(sk);
615
616 if ((u32)get_seconds() - tm->tcpm_ts_stamp <= TCP_PAWS_MSL) {
617 tp->rx_opt.ts_recent_stamp = tm->tcpm_ts_stamp;
618 tp->rx_opt.ts_recent = tm->tcpm_ts;
619 }
620 }
621 rcu_read_unlock();
622 }
623 EXPORT_SYMBOL_GPL(tcp_fetch_timewait_stamp);
624
625 /* VJ's idea. Save last timestamp seen from this destination and hold
626 * it at least for normal timewait interval to use for duplicate
627 * segment detection in subsequent connections, before they enter
628 * synchronized state.
629 */
630 bool tcp_remember_stamp(struct sock *sk)
631 {
632 struct dst_entry *dst = __sk_dst_get(sk);
633 bool ret = false;
634
635 if (dst) {
636 struct tcp_metrics_block *tm;
637
638 rcu_read_lock();
639 tm = tcp_get_metrics(sk, dst, true);
640 if (tm) {
641 struct tcp_sock *tp = tcp_sk(sk);
642
643 if ((s32)(tm->tcpm_ts - tp->rx_opt.ts_recent) <= 0 ||
644 ((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
645 tm->tcpm_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
646 tm->tcpm_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
647 tm->tcpm_ts = tp->rx_opt.ts_recent;
648 }
649 ret = true;
650 }
651 rcu_read_unlock();
652 }
653 return ret;
654 }
655
656 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
657 {
658 struct tcp_metrics_block *tm;
659 bool ret = false;
660
661 rcu_read_lock();
662 tm = __tcp_get_metrics_tw(tw);
663 if (tm) {
664 const struct tcp_timewait_sock *tcptw;
665 struct sock *sk = (struct sock *) tw;
666
667 tcptw = tcp_twsk(sk);
668 if ((s32)(tm->tcpm_ts - tcptw->tw_ts_recent) <= 0 ||
669 ((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
670 tm->tcpm_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
671 tm->tcpm_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
672 tm->tcpm_ts = tcptw->tw_ts_recent;
673 }
674 ret = true;
675 }
676 rcu_read_unlock();
677
678 return ret;
679 }
680
681 static DEFINE_SEQLOCK(fastopen_seqlock);
682
683 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
684 struct tcp_fastopen_cookie *cookie,
685 int *syn_loss, unsigned long *last_syn_loss)
686 {
687 struct tcp_metrics_block *tm;
688
689 rcu_read_lock();
690 tm = tcp_get_metrics(sk, __sk_dst_get(sk), false);
691 if (tm) {
692 struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
693 unsigned int seq;
694
695 do {
696 seq = read_seqbegin(&fastopen_seqlock);
697 if (tfom->mss)
698 *mss = tfom->mss;
699 *cookie = tfom->cookie;
700 if (cookie->len <= 0 && tfom->try_exp == 1)
701 cookie->exp = true;
702 *syn_loss = tfom->syn_loss;
703 *last_syn_loss = *syn_loss ? tfom->last_syn_loss : 0;
704 } while (read_seqretry(&fastopen_seqlock, seq));
705 }
706 rcu_read_unlock();
707 }
708
709 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
710 struct tcp_fastopen_cookie *cookie, bool syn_lost,
711 u16 try_exp)
712 {
713 struct dst_entry *dst = __sk_dst_get(sk);
714 struct tcp_metrics_block *tm;
715
716 if (!dst)
717 return;
718 rcu_read_lock();
719 tm = tcp_get_metrics(sk, dst, true);
720 if (tm) {
721 struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
722
723 write_seqlock_bh(&fastopen_seqlock);
724 if (mss)
725 tfom->mss = mss;
726 if (cookie && cookie->len > 0)
727 tfom->cookie = *cookie;
728 else if (try_exp > tfom->try_exp &&
729 tfom->cookie.len <= 0 && !tfom->cookie.exp)
730 tfom->try_exp = try_exp;
731 if (syn_lost) {
732 ++tfom->syn_loss;
733 tfom->last_syn_loss = jiffies;
734 } else
735 tfom->syn_loss = 0;
736 write_sequnlock_bh(&fastopen_seqlock);
737 }
738 rcu_read_unlock();
739 }
740
741 static struct genl_family tcp_metrics_nl_family;
742
743 static const struct nla_policy tcp_metrics_nl_policy[TCP_METRICS_ATTR_MAX + 1] = {
744 [TCP_METRICS_ATTR_ADDR_IPV4] = { .type = NLA_U32, },
745 [TCP_METRICS_ATTR_ADDR_IPV6] = { .type = NLA_BINARY,
746 .len = sizeof(struct in6_addr), },
747 /* Following attributes are not received for GET/DEL,
748 * we keep them for reference
749 */
750 #if 0
751 [TCP_METRICS_ATTR_AGE] = { .type = NLA_MSECS, },
752 [TCP_METRICS_ATTR_TW_TSVAL] = { .type = NLA_U32, },
753 [TCP_METRICS_ATTR_TW_TS_STAMP] = { .type = NLA_S32, },
754 [TCP_METRICS_ATTR_VALS] = { .type = NLA_NESTED, },
755 [TCP_METRICS_ATTR_FOPEN_MSS] = { .type = NLA_U16, },
756 [TCP_METRICS_ATTR_FOPEN_SYN_DROPS] = { .type = NLA_U16, },
757 [TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS] = { .type = NLA_MSECS, },
758 [TCP_METRICS_ATTR_FOPEN_COOKIE] = { .type = NLA_BINARY,
759 .len = TCP_FASTOPEN_COOKIE_MAX, },
760 #endif
761 };
762
763 /* Add attributes, caller cancels its header on failure */
764 static int tcp_metrics_fill_info(struct sk_buff *msg,
765 struct tcp_metrics_block *tm)
766 {
767 struct nlattr *nest;
768 int i;
769
770 switch (tm->tcpm_daddr.family) {
771 case AF_INET:
772 if (nla_put_in_addr(msg, TCP_METRICS_ATTR_ADDR_IPV4,
773 inetpeer_get_addr_v4(&tm->tcpm_daddr)) < 0)
774 goto nla_put_failure;
775 if (nla_put_in_addr(msg, TCP_METRICS_ATTR_SADDR_IPV4,
776 inetpeer_get_addr_v4(&tm->tcpm_saddr)) < 0)
777 goto nla_put_failure;
778 break;
779 case AF_INET6:
780 if (nla_put_in6_addr(msg, TCP_METRICS_ATTR_ADDR_IPV6,
781 inetpeer_get_addr_v6(&tm->tcpm_daddr)) < 0)
782 goto nla_put_failure;
783 if (nla_put_in6_addr(msg, TCP_METRICS_ATTR_SADDR_IPV6,
784 inetpeer_get_addr_v6(&tm->tcpm_saddr)) < 0)
785 goto nla_put_failure;
786 break;
787 default:
788 return -EAFNOSUPPORT;
789 }
790
791 if (nla_put_msecs(msg, TCP_METRICS_ATTR_AGE,
792 jiffies - tm->tcpm_stamp,
793 TCP_METRICS_ATTR_PAD) < 0)
794 goto nla_put_failure;
795 if (tm->tcpm_ts_stamp) {
796 if (nla_put_s32(msg, TCP_METRICS_ATTR_TW_TS_STAMP,
797 (s32) (get_seconds() - tm->tcpm_ts_stamp)) < 0)
798 goto nla_put_failure;
799 if (nla_put_u32(msg, TCP_METRICS_ATTR_TW_TSVAL,
800 tm->tcpm_ts) < 0)
801 goto nla_put_failure;
802 }
803
804 {
805 int n = 0;
806
807 nest = nla_nest_start(msg, TCP_METRICS_ATTR_VALS);
808 if (!nest)
809 goto nla_put_failure;
810 for (i = 0; i < TCP_METRIC_MAX_KERNEL + 1; i++) {
811 u32 val = tm->tcpm_vals[i];
812
813 if (!val)
814 continue;
815 if (i == TCP_METRIC_RTT) {
816 if (nla_put_u32(msg, TCP_METRIC_RTT_US + 1,
817 val) < 0)
818 goto nla_put_failure;
819 n++;
820 val = max(val / 1000, 1U);
821 }
822 if (i == TCP_METRIC_RTTVAR) {
823 if (nla_put_u32(msg, TCP_METRIC_RTTVAR_US + 1,
824 val) < 0)
825 goto nla_put_failure;
826 n++;
827 val = max(val / 1000, 1U);
828 }
829 if (nla_put_u32(msg, i + 1, val) < 0)
830 goto nla_put_failure;
831 n++;
832 }
833 if (n)
834 nla_nest_end(msg, nest);
835 else
836 nla_nest_cancel(msg, nest);
837 }
838
839 {
840 struct tcp_fastopen_metrics tfom_copy[1], *tfom;
841 unsigned int seq;
842
843 do {
844 seq = read_seqbegin(&fastopen_seqlock);
845 tfom_copy[0] = tm->tcpm_fastopen;
846 } while (read_seqretry(&fastopen_seqlock, seq));
847
848 tfom = tfom_copy;
849 if (tfom->mss &&
850 nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_MSS,
851 tfom->mss) < 0)
852 goto nla_put_failure;
853 if (tfom->syn_loss &&
854 (nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROPS,
855 tfom->syn_loss) < 0 ||
856 nla_put_msecs(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS,
857 jiffies - tfom->last_syn_loss,
858 TCP_METRICS_ATTR_PAD) < 0))
859 goto nla_put_failure;
860 if (tfom->cookie.len > 0 &&
861 nla_put(msg, TCP_METRICS_ATTR_FOPEN_COOKIE,
862 tfom->cookie.len, tfom->cookie.val) < 0)
863 goto nla_put_failure;
864 }
865
866 return 0;
867
868 nla_put_failure:
869 return -EMSGSIZE;
870 }
871
872 static int tcp_metrics_dump_info(struct sk_buff *skb,
873 struct netlink_callback *cb,
874 struct tcp_metrics_block *tm)
875 {
876 void *hdr;
877
878 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
879 &tcp_metrics_nl_family, NLM_F_MULTI,
880 TCP_METRICS_CMD_GET);
881 if (!hdr)
882 return -EMSGSIZE;
883
884 if (tcp_metrics_fill_info(skb, tm) < 0)
885 goto nla_put_failure;
886
887 genlmsg_end(skb, hdr);
888 return 0;
889
890 nla_put_failure:
891 genlmsg_cancel(skb, hdr);
892 return -EMSGSIZE;
893 }
894
895 static int tcp_metrics_nl_dump(struct sk_buff *skb,
896 struct netlink_callback *cb)
897 {
898 struct net *net = sock_net(skb->sk);
899 unsigned int max_rows = 1U << tcp_metrics_hash_log;
900 unsigned int row, s_row = cb->args[0];
901 int s_col = cb->args[1], col = s_col;
902
903 for (row = s_row; row < max_rows; row++, s_col = 0) {
904 struct tcp_metrics_block *tm;
905 struct tcpm_hash_bucket *hb = tcp_metrics_hash + row;
906
907 rcu_read_lock();
908 for (col = 0, tm = rcu_dereference(hb->chain); tm;
909 tm = rcu_dereference(tm->tcpm_next), col++) {
910 if (!net_eq(tm_net(tm), net))
911 continue;
912 if (col < s_col)
913 continue;
914 if (tcp_metrics_dump_info(skb, cb, tm) < 0) {
915 rcu_read_unlock();
916 goto done;
917 }
918 }
919 rcu_read_unlock();
920 }
921
922 done:
923 cb->args[0] = row;
924 cb->args[1] = col;
925 return skb->len;
926 }
927
928 static int __parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
929 unsigned int *hash, int optional, int v4, int v6)
930 {
931 struct nlattr *a;
932
933 a = info->attrs[v4];
934 if (a) {
935 inetpeer_set_addr_v4(addr, nla_get_in_addr(a));
936 if (hash)
937 *hash = ipv4_addr_hash(inetpeer_get_addr_v4(addr));
938 return 0;
939 }
940 a = info->attrs[v6];
941 if (a) {
942 struct in6_addr in6;
943
944 if (nla_len(a) != sizeof(struct in6_addr))
945 return -EINVAL;
946 in6 = nla_get_in6_addr(a);
947 inetpeer_set_addr_v6(addr, &in6);
948 if (hash)
949 *hash = ipv6_addr_hash(inetpeer_get_addr_v6(addr));
950 return 0;
951 }
952 return optional ? 1 : -EAFNOSUPPORT;
953 }
954
955 static int parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
956 unsigned int *hash, int optional)
957 {
958 return __parse_nl_addr(info, addr, hash, optional,
959 TCP_METRICS_ATTR_ADDR_IPV4,
960 TCP_METRICS_ATTR_ADDR_IPV6);
961 }
962
963 static int parse_nl_saddr(struct genl_info *info, struct inetpeer_addr *addr)
964 {
965 return __parse_nl_addr(info, addr, NULL, 0,
966 TCP_METRICS_ATTR_SADDR_IPV4,
967 TCP_METRICS_ATTR_SADDR_IPV6);
968 }
969
970 static int tcp_metrics_nl_cmd_get(struct sk_buff *skb, struct genl_info *info)
971 {
972 struct tcp_metrics_block *tm;
973 struct inetpeer_addr saddr, daddr;
974 unsigned int hash;
975 struct sk_buff *msg;
976 struct net *net = genl_info_net(info);
977 void *reply;
978 int ret;
979 bool src = true;
980
981 ret = parse_nl_addr(info, &daddr, &hash, 0);
982 if (ret < 0)
983 return ret;
984
985 ret = parse_nl_saddr(info, &saddr);
986 if (ret < 0)
987 src = false;
988
989 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
990 if (!msg)
991 return -ENOMEM;
992
993 reply = genlmsg_put_reply(msg, info, &tcp_metrics_nl_family, 0,
994 info->genlhdr->cmd);
995 if (!reply)
996 goto nla_put_failure;
997
998 hash ^= net_hash_mix(net);
999 hash = hash_32(hash, tcp_metrics_hash_log);
1000 ret = -ESRCH;
1001 rcu_read_lock();
1002 for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
1003 tm = rcu_dereference(tm->tcpm_next)) {
1004 if (addr_same(&tm->tcpm_daddr, &daddr) &&
1005 (!src || addr_same(&tm->tcpm_saddr, &saddr)) &&
1006 net_eq(tm_net(tm), net)) {
1007 ret = tcp_metrics_fill_info(msg, tm);
1008 break;
1009 }
1010 }
1011 rcu_read_unlock();
1012 if (ret < 0)
1013 goto out_free;
1014
1015 genlmsg_end(msg, reply);
1016 return genlmsg_reply(msg, info);
1017
1018 nla_put_failure:
1019 ret = -EMSGSIZE;
1020
1021 out_free:
1022 nlmsg_free(msg);
1023 return ret;
1024 }
1025
1026 static void tcp_metrics_flush_all(struct net *net)
1027 {
1028 unsigned int max_rows = 1U << tcp_metrics_hash_log;
1029 struct tcpm_hash_bucket *hb = tcp_metrics_hash;
1030 struct tcp_metrics_block *tm;
1031 unsigned int row;
1032
1033 for (row = 0; row < max_rows; row++, hb++) {
1034 struct tcp_metrics_block __rcu **pp;
1035 spin_lock_bh(&tcp_metrics_lock);
1036 pp = &hb->chain;
1037 for (tm = deref_locked(*pp); tm; tm = deref_locked(*pp)) {
1038 if (net_eq(tm_net(tm), net)) {
1039 *pp = tm->tcpm_next;
1040 kfree_rcu(tm, rcu_head);
1041 } else {
1042 pp = &tm->tcpm_next;
1043 }
1044 }
1045 spin_unlock_bh(&tcp_metrics_lock);
1046 }
1047 }
1048
1049 static int tcp_metrics_nl_cmd_del(struct sk_buff *skb, struct genl_info *info)
1050 {
1051 struct tcpm_hash_bucket *hb;
1052 struct tcp_metrics_block *tm;
1053 struct tcp_metrics_block __rcu **pp;
1054 struct inetpeer_addr saddr, daddr;
1055 unsigned int hash;
1056 struct net *net = genl_info_net(info);
1057 int ret;
1058 bool src = true, found = false;
1059
1060 ret = parse_nl_addr(info, &daddr, &hash, 1);
1061 if (ret < 0)
1062 return ret;
1063 if (ret > 0) {
1064 tcp_metrics_flush_all(net);
1065 return 0;
1066 }
1067 ret = parse_nl_saddr(info, &saddr);
1068 if (ret < 0)
1069 src = false;
1070
1071 hash ^= net_hash_mix(net);
1072 hash = hash_32(hash, tcp_metrics_hash_log);
1073 hb = tcp_metrics_hash + hash;
1074 pp = &hb->chain;
1075 spin_lock_bh(&tcp_metrics_lock);
1076 for (tm = deref_locked(*pp); tm; tm = deref_locked(*pp)) {
1077 if (addr_same(&tm->tcpm_daddr, &daddr) &&
1078 (!src || addr_same(&tm->tcpm_saddr, &saddr)) &&
1079 net_eq(tm_net(tm), net)) {
1080 *pp = tm->tcpm_next;
1081 kfree_rcu(tm, rcu_head);
1082 found = true;
1083 } else {
1084 pp = &tm->tcpm_next;
1085 }
1086 }
1087 spin_unlock_bh(&tcp_metrics_lock);
1088 if (!found)
1089 return -ESRCH;
1090 return 0;
1091 }
1092
1093 static const struct genl_ops tcp_metrics_nl_ops[] = {
1094 {
1095 .cmd = TCP_METRICS_CMD_GET,
1096 .doit = tcp_metrics_nl_cmd_get,
1097 .dumpit = tcp_metrics_nl_dump,
1098 .policy = tcp_metrics_nl_policy,
1099 },
1100 {
1101 .cmd = TCP_METRICS_CMD_DEL,
1102 .doit = tcp_metrics_nl_cmd_del,
1103 .policy = tcp_metrics_nl_policy,
1104 .flags = GENL_ADMIN_PERM,
1105 },
1106 };
1107
1108 static struct genl_family tcp_metrics_nl_family __ro_after_init = {
1109 .hdrsize = 0,
1110 .name = TCP_METRICS_GENL_NAME,
1111 .version = TCP_METRICS_GENL_VERSION,
1112 .maxattr = TCP_METRICS_ATTR_MAX,
1113 .netnsok = true,
1114 .module = THIS_MODULE,
1115 .ops = tcp_metrics_nl_ops,
1116 .n_ops = ARRAY_SIZE(tcp_metrics_nl_ops),
1117 };
1118
1119 static unsigned int tcpmhash_entries;
1120 static int __init set_tcpmhash_entries(char *str)
1121 {
1122 ssize_t ret;
1123
1124 if (!str)
1125 return 0;
1126
1127 ret = kstrtouint(str, 0, &tcpmhash_entries);
1128 if (ret)
1129 return 0;
1130
1131 return 1;
1132 }
1133 __setup("tcpmhash_entries=", set_tcpmhash_entries);
1134
1135 static int __net_init tcp_net_metrics_init(struct net *net)
1136 {
1137 size_t size;
1138 unsigned int slots;
1139
1140 if (!net_eq(net, &init_net))
1141 return 0;
1142
1143 slots = tcpmhash_entries;
1144 if (!slots) {
1145 if (totalram_pages >= 128 * 1024)
1146 slots = 16 * 1024;
1147 else
1148 slots = 8 * 1024;
1149 }
1150
1151 tcp_metrics_hash_log = order_base_2(slots);
1152 size = sizeof(struct tcpm_hash_bucket) << tcp_metrics_hash_log;
1153
1154 tcp_metrics_hash = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1155 if (!tcp_metrics_hash)
1156 tcp_metrics_hash = vzalloc(size);
1157
1158 if (!tcp_metrics_hash)
1159 return -ENOMEM;
1160
1161 return 0;
1162 }
1163
1164 static void __net_exit tcp_net_metrics_exit(struct net *net)
1165 {
1166 tcp_metrics_flush_all(net);
1167 }
1168
1169 static __net_initdata struct pernet_operations tcp_net_metrics_ops = {
1170 .init = tcp_net_metrics_init,
1171 .exit = tcp_net_metrics_exit,
1172 };
1173
1174 void __init tcp_metrics_init(void)
1175 {
1176 int ret;
1177
1178 ret = register_pernet_subsys(&tcp_net_metrics_ops);
1179 if (ret < 0)
1180 panic("Could not allocate the tcp_metrics hash table\n");
1181
1182 ret = genl_register_family(&tcp_metrics_nl_family);
1183 if (ret < 0)
1184 panic("Could not register tcp_metrics generic netlink\n");
1185 }