]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_minisocks.c
019db68bdb9f517d14d839ef4b042d6d5be93d6e
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_minisocks.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34
35 struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .hashinfo = &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 if (seq == s_win)
44 return true;
45 if (after(end_seq, s_win) && before(seq, e_win))
46 return true;
47 return seq == e_win && seq == end_seq;
48 }
49
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 const struct sk_buff *skb, int mib_idx)
53 {
54 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55
56 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 &tcptw->tw_last_oow_ack_time)) {
58 /* Send ACK. Note, we do not put the bucket,
59 * it will be released by caller.
60 */
61 return TCP_TW_ACK;
62 }
63
64 /* We are rate-limiting, so just release the tw sock and drop skb. */
65 inet_twsk_put(tw);
66 return TCP_TW_SUCCESS;
67 }
68
69 /*
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 *
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
90 *
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
96 *
97 * We don't need to initialize tmp_out.sack_ok as we don't use the results
98 */
99 enum tcp_tw_status
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 const struct tcphdr *th)
102 {
103 struct tcp_options_received tmp_opt;
104 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 bool paws_reject = false;
106
107 tmp_opt.saw_tstamp = 0;
108 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 tcp_parse_options(skb, &tmp_opt, 0, NULL);
110
111 if (tmp_opt.saw_tstamp) {
112 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
113 tmp_opt.ts_recent = tcptw->tw_ts_recent;
114 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
115 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 }
117 }
118
119 if (tw->tw_substate == TCP_FIN_WAIT2) {
120 /* Just repeat all the checks of tcp_rcv_state_process() */
121
122 /* Out of window, send ACK */
123 if (paws_reject ||
124 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 tcptw->tw_rcv_nxt,
126 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 return tcp_timewait_check_oow_rate_limit(
128 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129
130 if (th->rst)
131 goto kill;
132
133 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 goto kill_with_rst;
135
136 /* Dup ACK? */
137 if (!th->ack ||
138 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 inet_twsk_put(tw);
141 return TCP_TW_SUCCESS;
142 }
143
144 /* New data or FIN. If new data arrive after half-duplex close,
145 * reset.
146 */
147 if (!th->fin ||
148 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
149 kill_with_rst:
150 inet_twsk_deschedule_put(tw);
151 return TCP_TW_RST;
152 }
153
154 /* FIN arrived, enter true time-wait state. */
155 tw->tw_substate = TCP_TIME_WAIT;
156 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
157 if (tmp_opt.saw_tstamp) {
158 tcptw->tw_ts_recent_stamp = get_seconds();
159 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
160 }
161
162 if (tcp_death_row.sysctl_tw_recycle &&
163 tcptw->tw_ts_recent_stamp &&
164 tcp_tw_remember_stamp(tw))
165 inet_twsk_reschedule(tw, tw->tw_timeout);
166 else
167 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
168 return TCP_TW_ACK;
169 }
170
171 /*
172 * Now real TIME-WAIT state.
173 *
174 * RFC 1122:
175 * "When a connection is [...] on TIME-WAIT state [...]
176 * [a TCP] MAY accept a new SYN from the remote TCP to
177 * reopen the connection directly, if it:
178 *
179 * (1) assigns its initial sequence number for the new
180 * connection to be larger than the largest sequence
181 * number it used on the previous connection incarnation,
182 * and
183 *
184 * (2) returns to TIME-WAIT state if the SYN turns out
185 * to be an old duplicate".
186 */
187
188 if (!paws_reject &&
189 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
190 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
191 /* In window segment, it may be only reset or bare ack. */
192
193 if (th->rst) {
194 /* This is TIME_WAIT assassination, in two flavors.
195 * Oh well... nobody has a sufficient solution to this
196 * protocol bug yet.
197 */
198 if (sysctl_tcp_rfc1337 == 0) {
199 kill:
200 inet_twsk_deschedule_put(tw);
201 return TCP_TW_SUCCESS;
202 }
203 }
204 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
205
206 if (tmp_opt.saw_tstamp) {
207 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
208 tcptw->tw_ts_recent_stamp = get_seconds();
209 }
210
211 inet_twsk_put(tw);
212 return TCP_TW_SUCCESS;
213 }
214
215 /* Out of window segment.
216
217 All the segments are ACKed immediately.
218
219 The only exception is new SYN. We accept it, if it is
220 not old duplicate and we are not in danger to be killed
221 by delayed old duplicates. RFC check is that it has
222 newer sequence number works at rates <40Mbit/sec.
223 However, if paws works, it is reliable AND even more,
224 we even may relax silly seq space cutoff.
225
226 RED-PEN: we violate main RFC requirement, if this SYN will appear
227 old duplicate (i.e. we receive RST in reply to SYN-ACK),
228 we must return socket to time-wait state. It is not good,
229 but not fatal yet.
230 */
231
232 if (th->syn && !th->rst && !th->ack && !paws_reject &&
233 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
234 (tmp_opt.saw_tstamp &&
235 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
236 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
237 if (isn == 0)
238 isn++;
239 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
240 return TCP_TW_SYN;
241 }
242
243 if (paws_reject)
244 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
245
246 if (!th->rst) {
247 /* In this case we must reset the TIMEWAIT timer.
248 *
249 * If it is ACKless SYN it may be both old duplicate
250 * and new good SYN with random sequence number <rcv_nxt.
251 * Do not reschedule in the last case.
252 */
253 if (paws_reject || th->ack)
254 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
255
256 return tcp_timewait_check_oow_rate_limit(
257 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
258 }
259 inet_twsk_put(tw);
260 return TCP_TW_SUCCESS;
261 }
262 EXPORT_SYMBOL(tcp_timewait_state_process);
263
264 /*
265 * Move a socket to time-wait or dead fin-wait-2 state.
266 */
267 void tcp_time_wait(struct sock *sk, int state, int timeo)
268 {
269 const struct inet_connection_sock *icsk = inet_csk(sk);
270 const struct tcp_sock *tp = tcp_sk(sk);
271 struct inet_timewait_sock *tw;
272 bool recycle_ok = false;
273
274 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
275 recycle_ok = tcp_remember_stamp(sk);
276
277 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
278
279 if (tw) {
280 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 struct inet_sock *inet = inet_sk(sk);
283
284 tw->tw_transparent = inet->transparent;
285 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
286 tcptw->tw_rcv_nxt = tp->rcv_nxt;
287 tcptw->tw_snd_nxt = tp->snd_nxt;
288 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
289 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
290 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 tcptw->tw_ts_offset = tp->tsoffset;
292 tcptw->tw_last_oow_ack_time = 0;
293
294 #if IS_ENABLED(CONFIG_IPV6)
295 if (tw->tw_family == PF_INET6) {
296 struct ipv6_pinfo *np = inet6_sk(sk);
297
298 tw->tw_v6_daddr = sk->sk_v6_daddr;
299 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
300 tw->tw_tclass = np->tclass;
301 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
302 tw->tw_ipv6only = sk->sk_ipv6only;
303 }
304 #endif
305
306 #ifdef CONFIG_TCP_MD5SIG
307 /*
308 * The timewait bucket does not have the key DB from the
309 * sock structure. We just make a quick copy of the
310 * md5 key being used (if indeed we are using one)
311 * so the timewait ack generating code has the key.
312 */
313 do {
314 struct tcp_md5sig_key *key;
315 tcptw->tw_md5_key = NULL;
316 key = tp->af_specific->md5_lookup(sk, sk);
317 if (key) {
318 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
320 BUG();
321 }
322 } while (0);
323 #endif
324
325 /* Get the TIME_WAIT timeout firing. */
326 if (timeo < rto)
327 timeo = rto;
328
329 if (recycle_ok) {
330 tw->tw_timeout = rto;
331 } else {
332 tw->tw_timeout = TCP_TIMEWAIT_LEN;
333 if (state == TCP_TIME_WAIT)
334 timeo = TCP_TIMEWAIT_LEN;
335 }
336
337 inet_twsk_schedule(tw, timeo);
338 /* Linkage updates. */
339 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
340 inet_twsk_put(tw);
341 } else {
342 /* Sorry, if we're out of memory, just CLOSE this
343 * socket up. We've got bigger problems than
344 * non-graceful socket closings.
345 */
346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 }
348
349 tcp_update_metrics(sk);
350 tcp_done(sk);
351 }
352
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358 if (twsk->tw_md5_key)
359 kfree_rcu(twsk->tw_md5_key, rcu);
360 #endif
361 }
362 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
363
364 /* Warning : This function is called without sk_listener being locked.
365 * Be sure to read socket fields once, as their value could change under us.
366 */
367 void tcp_openreq_init_rwin(struct request_sock *req,
368 const struct sock *sk_listener,
369 const struct dst_entry *dst)
370 {
371 struct inet_request_sock *ireq = inet_rsk(req);
372 const struct tcp_sock *tp = tcp_sk(sk_listener);
373 u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
374 int full_space = tcp_full_space(sk_listener);
375 int mss = dst_metric_advmss(dst);
376 u32 window_clamp;
377 __u8 rcv_wscale;
378
379 if (user_mss && user_mss < mss)
380 mss = user_mss;
381
382 window_clamp = READ_ONCE(tp->window_clamp);
383 /* Set this up on the first call only */
384 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
385
386 /* limit the window selection if the user enforce a smaller rx buffer */
387 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
388 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
389 req->rsk_window_clamp = full_space;
390
391 /* tcp_full_space because it is guaranteed to be the first packet */
392 tcp_select_initial_window(full_space,
393 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
394 &req->rsk_rcv_wnd,
395 &req->rsk_window_clamp,
396 ireq->wscale_ok,
397 &rcv_wscale,
398 dst_metric(dst, RTAX_INITRWND));
399 ireq->rcv_wscale = rcv_wscale;
400 }
401 EXPORT_SYMBOL(tcp_openreq_init_rwin);
402
403 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
404 const struct request_sock *req)
405 {
406 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
407 }
408
409 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
413 bool ca_got_dst = false;
414
415 if (ca_key != TCP_CA_UNSPEC) {
416 const struct tcp_congestion_ops *ca;
417
418 rcu_read_lock();
419 ca = tcp_ca_find_key(ca_key);
420 if (likely(ca && try_module_get(ca->owner))) {
421 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
422 icsk->icsk_ca_ops = ca;
423 ca_got_dst = true;
424 }
425 rcu_read_unlock();
426 }
427
428 /* If no valid choice made yet, assign current system default ca. */
429 if (!ca_got_dst &&
430 (!icsk->icsk_ca_setsockopt ||
431 !try_module_get(icsk->icsk_ca_ops->owner)))
432 tcp_assign_congestion_control(sk);
433
434 tcp_set_ca_state(sk, TCP_CA_Open);
435 }
436 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
437
438 /* This is not only more efficient than what we used to do, it eliminates
439 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
440 *
441 * Actually, we could lots of memory writes here. tp of listening
442 * socket contains all necessary default parameters.
443 */
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 struct request_sock *req,
446 struct sk_buff *skb)
447 {
448 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
449
450 if (newsk) {
451 const struct inet_request_sock *ireq = inet_rsk(req);
452 struct tcp_request_sock *treq = tcp_rsk(req);
453 struct inet_connection_sock *newicsk = inet_csk(newsk);
454 struct tcp_sock *newtp = tcp_sk(newsk);
455
456 /* Now setup tcp_sock */
457 newtp->pred_flags = 0;
458
459 newtp->rcv_wup = newtp->copied_seq =
460 newtp->rcv_nxt = treq->rcv_isn + 1;
461 newtp->segs_in = 1;
462
463 newtp->snd_sml = newtp->snd_una =
464 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
465
466 tcp_prequeue_init(newtp);
467 INIT_LIST_HEAD(&newtp->tsq_node);
468
469 tcp_init_wl(newtp, treq->rcv_isn);
470
471 newtp->srtt_us = 0;
472 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
473 newtp->rtt_min[0].rtt = ~0U;
474 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
475 newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
476
477 newtp->packets_out = 0;
478 newtp->retrans_out = 0;
479 newtp->sacked_out = 0;
480 newtp->fackets_out = 0;
481 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
482 tcp_enable_early_retrans(newtp);
483 newtp->tlp_high_seq = 0;
484 newtp->lsndtime = treq->snt_synack.stamp_jiffies;
485 newsk->sk_txhash = treq->txhash;
486 newtp->last_oow_ack_time = 0;
487 newtp->total_retrans = req->num_retrans;
488
489 /* So many TCP implementations out there (incorrectly) count the
490 * initial SYN frame in their delayed-ACK and congestion control
491 * algorithms that we must have the following bandaid to talk
492 * efficiently to them. -DaveM
493 */
494 newtp->snd_cwnd = TCP_INIT_CWND;
495 newtp->snd_cwnd_cnt = 0;
496
497 tcp_init_xmit_timers(newsk);
498 __skb_queue_head_init(&newtp->out_of_order_queue);
499 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
500
501 newtp->rx_opt.saw_tstamp = 0;
502
503 newtp->rx_opt.dsack = 0;
504 newtp->rx_opt.num_sacks = 0;
505
506 newtp->urg_data = 0;
507
508 if (sock_flag(newsk, SOCK_KEEPOPEN))
509 inet_csk_reset_keepalive_timer(newsk,
510 keepalive_time_when(newtp));
511
512 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
513 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
514 if (sysctl_tcp_fack)
515 tcp_enable_fack(newtp);
516 }
517 newtp->window_clamp = req->rsk_window_clamp;
518 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
519 newtp->rcv_wnd = req->rsk_rcv_wnd;
520 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
521 if (newtp->rx_opt.wscale_ok) {
522 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
523 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
524 } else {
525 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
526 newtp->window_clamp = min(newtp->window_clamp, 65535U);
527 }
528 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
529 newtp->rx_opt.snd_wscale);
530 newtp->max_window = newtp->snd_wnd;
531
532 if (newtp->rx_opt.tstamp_ok) {
533 newtp->rx_opt.ts_recent = req->ts_recent;
534 newtp->rx_opt.ts_recent_stamp = get_seconds();
535 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
536 } else {
537 newtp->rx_opt.ts_recent_stamp = 0;
538 newtp->tcp_header_len = sizeof(struct tcphdr);
539 }
540 newtp->tsoffset = 0;
541 #ifdef CONFIG_TCP_MD5SIG
542 newtp->md5sig_info = NULL; /*XXX*/
543 if (newtp->af_specific->md5_lookup(sk, newsk))
544 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
545 #endif
546 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
547 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
548 newtp->rx_opt.mss_clamp = req->mss;
549 tcp_ecn_openreq_child(newtp, req);
550 newtp->fastopen_rsk = NULL;
551 newtp->syn_data_acked = 0;
552 newtp->rack.mstamp.v64 = 0;
553 newtp->rack.advanced = 0;
554
555 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
556 }
557 return newsk;
558 }
559 EXPORT_SYMBOL(tcp_create_openreq_child);
560
561 /*
562 * Process an incoming packet for SYN_RECV sockets represented as a
563 * request_sock. Normally sk is the listener socket but for TFO it
564 * points to the child socket.
565 *
566 * XXX (TFO) - The current impl contains a special check for ack
567 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
568 *
569 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
570 */
571
572 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
573 struct request_sock *req,
574 bool fastopen)
575 {
576 struct tcp_options_received tmp_opt;
577 struct sock *child;
578 const struct tcphdr *th = tcp_hdr(skb);
579 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
580 bool paws_reject = false;
581 bool own_req;
582
583 tmp_opt.saw_tstamp = 0;
584 if (th->doff > (sizeof(struct tcphdr)>>2)) {
585 tcp_parse_options(skb, &tmp_opt, 0, NULL);
586
587 if (tmp_opt.saw_tstamp) {
588 tmp_opt.ts_recent = req->ts_recent;
589 /* We do not store true stamp, but it is not required,
590 * it can be estimated (approximately)
591 * from another data.
592 */
593 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
594 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
595 }
596 }
597
598 /* Check for pure retransmitted SYN. */
599 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
600 flg == TCP_FLAG_SYN &&
601 !paws_reject) {
602 /*
603 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
604 * this case on figure 6 and figure 8, but formal
605 * protocol description says NOTHING.
606 * To be more exact, it says that we should send ACK,
607 * because this segment (at least, if it has no data)
608 * is out of window.
609 *
610 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
611 * describe SYN-RECV state. All the description
612 * is wrong, we cannot believe to it and should
613 * rely only on common sense and implementation
614 * experience.
615 *
616 * Enforce "SYN-ACK" according to figure 8, figure 6
617 * of RFC793, fixed by RFC1122.
618 *
619 * Note that even if there is new data in the SYN packet
620 * they will be thrown away too.
621 *
622 * Reset timer after retransmitting SYNACK, similar to
623 * the idea of fast retransmit in recovery.
624 */
625 if (!tcp_oow_rate_limited(sock_net(sk), skb,
626 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
627 &tcp_rsk(req)->last_oow_ack_time) &&
628
629 !inet_rtx_syn_ack(sk, req)) {
630 unsigned long expires = jiffies;
631
632 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
633 TCP_RTO_MAX);
634 if (!fastopen)
635 mod_timer_pending(&req->rsk_timer, expires);
636 else
637 req->rsk_timer.expires = expires;
638 }
639 return NULL;
640 }
641
642 /* Further reproduces section "SEGMENT ARRIVES"
643 for state SYN-RECEIVED of RFC793.
644 It is broken, however, it does not work only
645 when SYNs are crossed.
646
647 You would think that SYN crossing is impossible here, since
648 we should have a SYN_SENT socket (from connect()) on our end,
649 but this is not true if the crossed SYNs were sent to both
650 ends by a malicious third party. We must defend against this,
651 and to do that we first verify the ACK (as per RFC793, page
652 36) and reset if it is invalid. Is this a true full defense?
653 To convince ourselves, let us consider a way in which the ACK
654 test can still pass in this 'malicious crossed SYNs' case.
655 Malicious sender sends identical SYNs (and thus identical sequence
656 numbers) to both A and B:
657
658 A: gets SYN, seq=7
659 B: gets SYN, seq=7
660
661 By our good fortune, both A and B select the same initial
662 send sequence number of seven :-)
663
664 A: sends SYN|ACK, seq=7, ack_seq=8
665 B: sends SYN|ACK, seq=7, ack_seq=8
666
667 So we are now A eating this SYN|ACK, ACK test passes. So
668 does sequence test, SYN is truncated, and thus we consider
669 it a bare ACK.
670
671 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
672 bare ACK. Otherwise, we create an established connection. Both
673 ends (listening sockets) accept the new incoming connection and try
674 to talk to each other. 8-)
675
676 Note: This case is both harmless, and rare. Possibility is about the
677 same as us discovering intelligent life on another plant tomorrow.
678
679 But generally, we should (RFC lies!) to accept ACK
680 from SYNACK both here and in tcp_rcv_state_process().
681 tcp_rcv_state_process() does not, hence, we do not too.
682
683 Note that the case is absolutely generic:
684 we cannot optimize anything here without
685 violating protocol. All the checks must be made
686 before attempt to create socket.
687 */
688
689 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
690 * and the incoming segment acknowledges something not yet
691 * sent (the segment carries an unacceptable ACK) ...
692 * a reset is sent."
693 *
694 * Invalid ACK: reset will be sent by listening socket.
695 * Note that the ACK validity check for a Fast Open socket is done
696 * elsewhere and is checked directly against the child socket rather
697 * than req because user data may have been sent out.
698 */
699 if ((flg & TCP_FLAG_ACK) && !fastopen &&
700 (TCP_SKB_CB(skb)->ack_seq !=
701 tcp_rsk(req)->snt_isn + 1))
702 return sk;
703
704 /* Also, it would be not so bad idea to check rcv_tsecr, which
705 * is essentially ACK extension and too early or too late values
706 * should cause reset in unsynchronized states.
707 */
708
709 /* RFC793: "first check sequence number". */
710
711 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
712 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
713 /* Out of window: send ACK and drop. */
714 if (!(flg & TCP_FLAG_RST))
715 req->rsk_ops->send_ack(sk, skb, req);
716 if (paws_reject)
717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
718 return NULL;
719 }
720
721 /* In sequence, PAWS is OK. */
722
723 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
724 req->ts_recent = tmp_opt.rcv_tsval;
725
726 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
727 /* Truncate SYN, it is out of window starting
728 at tcp_rsk(req)->rcv_isn + 1. */
729 flg &= ~TCP_FLAG_SYN;
730 }
731
732 /* RFC793: "second check the RST bit" and
733 * "fourth, check the SYN bit"
734 */
735 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
736 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
737 goto embryonic_reset;
738 }
739
740 /* ACK sequence verified above, just make sure ACK is
741 * set. If ACK not set, just silently drop the packet.
742 *
743 * XXX (TFO) - if we ever allow "data after SYN", the
744 * following check needs to be removed.
745 */
746 if (!(flg & TCP_FLAG_ACK))
747 return NULL;
748
749 /* For Fast Open no more processing is needed (sk is the
750 * child socket).
751 */
752 if (fastopen)
753 return sk;
754
755 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
756 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
757 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
758 inet_rsk(req)->acked = 1;
759 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
760 return NULL;
761 }
762
763 /* OK, ACK is valid, create big socket and
764 * feed this segment to it. It will repeat all
765 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
766 * ESTABLISHED STATE. If it will be dropped after
767 * socket is created, wait for troubles.
768 */
769 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
770 req, &own_req);
771 if (!child)
772 goto listen_overflow;
773
774 sock_rps_save_rxhash(child, skb);
775 tcp_synack_rtt_meas(child, req);
776 return inet_csk_complete_hashdance(sk, child, req, own_req);
777
778 listen_overflow:
779 if (!sysctl_tcp_abort_on_overflow) {
780 inet_rsk(req)->acked = 1;
781 return NULL;
782 }
783
784 embryonic_reset:
785 if (!(flg & TCP_FLAG_RST)) {
786 /* Received a bad SYN pkt - for TFO We try not to reset
787 * the local connection unless it's really necessary to
788 * avoid becoming vulnerable to outside attack aiming at
789 * resetting legit local connections.
790 */
791 req->rsk_ops->send_reset(sk, skb);
792 } else if (fastopen) { /* received a valid RST pkt */
793 reqsk_fastopen_remove(sk, req, true);
794 tcp_reset(sk);
795 }
796 if (!fastopen) {
797 inet_csk_reqsk_queue_drop(sk, req);
798 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
799 }
800 return NULL;
801 }
802 EXPORT_SYMBOL(tcp_check_req);
803
804 /*
805 * Queue segment on the new socket if the new socket is active,
806 * otherwise we just shortcircuit this and continue with
807 * the new socket.
808 *
809 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
810 * when entering. But other states are possible due to a race condition
811 * where after __inet_lookup_established() fails but before the listener
812 * locked is obtained, other packets cause the same connection to
813 * be created.
814 */
815
816 int tcp_child_process(struct sock *parent, struct sock *child,
817 struct sk_buff *skb)
818 {
819 int ret = 0;
820 int state = child->sk_state;
821
822 tcp_sk(child)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
823 if (!sock_owned_by_user(child)) {
824 ret = tcp_rcv_state_process(child, skb);
825 /* Wakeup parent, send SIGIO */
826 if (state == TCP_SYN_RECV && child->sk_state != state)
827 parent->sk_data_ready(parent);
828 } else {
829 /* Alas, it is possible again, because we do lookup
830 * in main socket hash table and lock on listening
831 * socket does not protect us more.
832 */
833 __sk_add_backlog(child, skb);
834 }
835
836 bh_unlock_sock(child);
837 sock_put(child);
838 return ret;
839 }
840 EXPORT_SYMBOL(tcp_child_process);