]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_minisocks.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_minisocks.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31
32 struct inet_timewait_death_row tcp_death_row = {
33 .sysctl_max_tw_buckets = NR_FILE * 2,
34 .hashinfo = &tcp_hashinfo,
35 };
36 EXPORT_SYMBOL_GPL(tcp_death_row);
37
38 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
39 {
40 if (seq == s_win)
41 return true;
42 if (after(end_seq, s_win) && before(seq, e_win))
43 return true;
44 return seq == e_win && seq == end_seq;
45 }
46
47 static enum tcp_tw_status
48 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
49 const struct sk_buff *skb, int mib_idx)
50 {
51 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
52
53 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
54 &tcptw->tw_last_oow_ack_time)) {
55 /* Send ACK. Note, we do not put the bucket,
56 * it will be released by caller.
57 */
58 return TCP_TW_ACK;
59 }
60
61 /* We are rate-limiting, so just release the tw sock and drop skb. */
62 inet_twsk_put(tw);
63 return TCP_TW_SUCCESS;
64 }
65
66 /*
67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
68 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69 * (and, probably, tail of data) and one or more our ACKs are lost.
70 * * What is TIME-WAIT timeout? It is associated with maximal packet
71 * lifetime in the internet, which results in wrong conclusion, that
72 * it is set to catch "old duplicate segments" wandering out of their path.
73 * It is not quite correct. This timeout is calculated so that it exceeds
74 * maximal retransmission timeout enough to allow to lose one (or more)
75 * segments sent by peer and our ACKs. This time may be calculated from RTO.
76 * * When TIME-WAIT socket receives RST, it means that another end
77 * finally closed and we are allowed to kill TIME-WAIT too.
78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
79 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
80 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81 * * If we invented some more clever way to catch duplicates
82 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83 *
84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86 * from the very beginning.
87 *
88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
89 * is _not_ stateless. It means, that strictly speaking we must
90 * spinlock it. I do not want! Well, probability of misbehaviour
91 * is ridiculously low and, seems, we could use some mb() tricks
92 * to avoid misread sequence numbers, states etc. --ANK
93 *
94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
95 */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 const struct tcphdr *th)
99 {
100 struct tcp_options_received tmp_opt;
101 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 bool paws_reject = false;
103
104 tmp_opt.saw_tstamp = 0;
105 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108 if (tmp_opt.saw_tstamp) {
109 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
110 tmp_opt.ts_recent = tcptw->tw_ts_recent;
111 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
112 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113 }
114 }
115
116 if (tw->tw_substate == TCP_FIN_WAIT2) {
117 /* Just repeat all the checks of tcp_rcv_state_process() */
118
119 /* Out of window, send ACK */
120 if (paws_reject ||
121 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 tcptw->tw_rcv_nxt,
123 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 return tcp_timewait_check_oow_rate_limit(
125 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127 if (th->rst)
128 goto kill;
129
130 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131 return TCP_TW_RST;
132
133 /* Dup ACK? */
134 if (!th->ack ||
135 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137 inet_twsk_put(tw);
138 return TCP_TW_SUCCESS;
139 }
140
141 /* New data or FIN. If new data arrive after half-duplex close,
142 * reset.
143 */
144 if (!th->fin ||
145 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146 return TCP_TW_RST;
147
148 /* FIN arrived, enter true time-wait state. */
149 tw->tw_substate = TCP_TIME_WAIT;
150 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 if (tmp_opt.saw_tstamp) {
152 tcptw->tw_ts_recent_stamp = get_seconds();
153 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
154 }
155
156 if (tcp_death_row.sysctl_tw_recycle &&
157 tcptw->tw_ts_recent_stamp &&
158 tcp_tw_remember_stamp(tw))
159 inet_twsk_reschedule(tw, tw->tw_timeout);
160 else
161 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162 return TCP_TW_ACK;
163 }
164
165 /*
166 * Now real TIME-WAIT state.
167 *
168 * RFC 1122:
169 * "When a connection is [...] on TIME-WAIT state [...]
170 * [a TCP] MAY accept a new SYN from the remote TCP to
171 * reopen the connection directly, if it:
172 *
173 * (1) assigns its initial sequence number for the new
174 * connection to be larger than the largest sequence
175 * number it used on the previous connection incarnation,
176 * and
177 *
178 * (2) returns to TIME-WAIT state if the SYN turns out
179 * to be an old duplicate".
180 */
181
182 if (!paws_reject &&
183 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 /* In window segment, it may be only reset or bare ack. */
186
187 if (th->rst) {
188 /* This is TIME_WAIT assassination, in two flavors.
189 * Oh well... nobody has a sufficient solution to this
190 * protocol bug yet.
191 */
192 if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 inet_twsk_deschedule_put(tw);
195 return TCP_TW_SUCCESS;
196 }
197 }
198 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199
200 if (tmp_opt.saw_tstamp) {
201 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
202 tcptw->tw_ts_recent_stamp = get_seconds();
203 }
204
205 inet_twsk_put(tw);
206 return TCP_TW_SUCCESS;
207 }
208
209 /* Out of window segment.
210
211 All the segments are ACKed immediately.
212
213 The only exception is new SYN. We accept it, if it is
214 not old duplicate and we are not in danger to be killed
215 by delayed old duplicates. RFC check is that it has
216 newer sequence number works at rates <40Mbit/sec.
217 However, if paws works, it is reliable AND even more,
218 we even may relax silly seq space cutoff.
219
220 RED-PEN: we violate main RFC requirement, if this SYN will appear
221 old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 we must return socket to time-wait state. It is not good,
223 but not fatal yet.
224 */
225
226 if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 (tmp_opt.saw_tstamp &&
229 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 if (isn == 0)
232 isn++;
233 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234 return TCP_TW_SYN;
235 }
236
237 if (paws_reject)
238 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240 if (!th->rst) {
241 /* In this case we must reset the TIMEWAIT timer.
242 *
243 * If it is ACKless SYN it may be both old duplicate
244 * and new good SYN with random sequence number <rcv_nxt.
245 * Do not reschedule in the last case.
246 */
247 if (paws_reject || th->ack)
248 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249
250 return tcp_timewait_check_oow_rate_limit(
251 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252 }
253 inet_twsk_put(tw);
254 return TCP_TW_SUCCESS;
255 }
256 EXPORT_SYMBOL(tcp_timewait_state_process);
257
258 /*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261 void tcp_time_wait(struct sock *sk, int state, int timeo)
262 {
263 const struct inet_connection_sock *icsk = inet_csk(sk);
264 const struct tcp_sock *tp = tcp_sk(sk);
265 struct inet_timewait_sock *tw;
266 bool recycle_ok = false;
267
268 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269 recycle_ok = tcp_remember_stamp(sk);
270
271 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272
273 if (tw) {
274 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276 struct inet_sock *inet = inet_sk(sk);
277
278 tw->tw_transparent = inet->transparent;
279 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
280 tcptw->tw_rcv_nxt = tp->rcv_nxt;
281 tcptw->tw_snd_nxt = tp->snd_nxt;
282 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
283 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
284 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285 tcptw->tw_ts_offset = tp->tsoffset;
286 tcptw->tw_last_oow_ack_time = 0;
287
288 #if IS_ENABLED(CONFIG_IPV6)
289 if (tw->tw_family == PF_INET6) {
290 struct ipv6_pinfo *np = inet6_sk(sk);
291
292 tw->tw_v6_daddr = sk->sk_v6_daddr;
293 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294 tw->tw_tclass = np->tclass;
295 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296 tw->tw_ipv6only = sk->sk_ipv6only;
297 }
298 #endif
299
300 #ifdef CONFIG_TCP_MD5SIG
301 /*
302 * The timewait bucket does not have the key DB from the
303 * sock structure. We just make a quick copy of the
304 * md5 key being used (if indeed we are using one)
305 * so the timewait ack generating code has the key.
306 */
307 do {
308 struct tcp_md5sig_key *key;
309 tcptw->tw_md5_key = NULL;
310 key = tp->af_specific->md5_lookup(sk, sk);
311 if (key) {
312 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314 BUG();
315 }
316 } while (0);
317 #endif
318
319 /* Get the TIME_WAIT timeout firing. */
320 if (timeo < rto)
321 timeo = rto;
322
323 if (recycle_ok) {
324 tw->tw_timeout = rto;
325 } else {
326 tw->tw_timeout = TCP_TIMEWAIT_LEN;
327 if (state == TCP_TIME_WAIT)
328 timeo = TCP_TIMEWAIT_LEN;
329 }
330
331 inet_twsk_schedule(tw, timeo);
332 /* Linkage updates. */
333 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334 inet_twsk_put(tw);
335 } else {
336 /* Sorry, if we're out of memory, just CLOSE this
337 * socket up. We've got bigger problems than
338 * non-graceful socket closings.
339 */
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341 }
342
343 tcp_update_metrics(sk);
344 tcp_done(sk);
345 }
346
347 void tcp_twsk_destructor(struct sock *sk)
348 {
349 #ifdef CONFIG_TCP_MD5SIG
350 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351
352 if (twsk->tw_md5_key)
353 kfree_rcu(twsk->tw_md5_key, rcu);
354 #endif
355 }
356 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358 /* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361 void tcp_openreq_init_rwin(struct request_sock *req,
362 const struct sock *sk_listener,
363 const struct dst_entry *dst)
364 {
365 struct inet_request_sock *ireq = inet_rsk(req);
366 const struct tcp_sock *tp = tcp_sk(sk_listener);
367 u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368 int full_space = tcp_full_space(sk_listener);
369 int mss = dst_metric_advmss(dst);
370 u32 window_clamp;
371 __u8 rcv_wscale;
372
373 if (user_mss && user_mss < mss)
374 mss = user_mss;
375
376 window_clamp = READ_ONCE(tp->window_clamp);
377 /* Set this up on the first call only */
378 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380 /* limit the window selection if the user enforce a smaller rx buffer */
381 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383 req->rsk_window_clamp = full_space;
384
385 /* tcp_full_space because it is guaranteed to be the first packet */
386 tcp_select_initial_window(full_space,
387 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 &req->rsk_rcv_wnd,
389 &req->rsk_window_clamp,
390 ireq->wscale_ok,
391 &rcv_wscale,
392 dst_metric(dst, RTAX_INITRWND));
393 ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 const struct request_sock *req)
399 {
400 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402
403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 struct inet_connection_sock *icsk = inet_csk(sk);
406 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 bool ca_got_dst = false;
408
409 if (ca_key != TCP_CA_UNSPEC) {
410 const struct tcp_congestion_ops *ca;
411
412 rcu_read_lock();
413 ca = tcp_ca_find_key(ca_key);
414 if (likely(ca && try_module_get(ca->owner))) {
415 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 icsk->icsk_ca_ops = ca;
417 ca_got_dst = true;
418 }
419 rcu_read_unlock();
420 }
421
422 /* If no valid choice made yet, assign current system default ca. */
423 if (!ca_got_dst &&
424 (!icsk->icsk_ca_setsockopt ||
425 !try_module_get(icsk->icsk_ca_ops->owner)))
426 tcp_assign_congestion_control(sk);
427
428 tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
432 /* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 struct request_sock *req,
440 struct sk_buff *skb)
441 {
442 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443
444 if (newsk) {
445 const struct inet_request_sock *ireq = inet_rsk(req);
446 struct tcp_request_sock *treq = tcp_rsk(req);
447 struct inet_connection_sock *newicsk = inet_csk(newsk);
448 struct tcp_sock *newtp = tcp_sk(newsk);
449
450 /* Now setup tcp_sock */
451 newtp->pred_flags = 0;
452
453 newtp->rcv_wup = newtp->copied_seq =
454 newtp->rcv_nxt = treq->rcv_isn + 1;
455 newtp->segs_in = 1;
456
457 newtp->snd_sml = newtp->snd_una =
458 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460 tcp_prequeue_init(newtp);
461 INIT_LIST_HEAD(&newtp->tsq_node);
462
463 tcp_init_wl(newtp, treq->rcv_isn);
464
465 newtp->srtt_us = 0;
466 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467 minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
468 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469 newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
470
471 newtp->packets_out = 0;
472 newtp->retrans_out = 0;
473 newtp->sacked_out = 0;
474 newtp->fackets_out = 0;
475 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
476 tcp_enable_early_retrans(newtp);
477 newtp->tlp_high_seq = 0;
478 newtp->lsndtime = treq->snt_synack.stamp_jiffies;
479 newsk->sk_txhash = treq->txhash;
480 newtp->last_oow_ack_time = 0;
481 newtp->total_retrans = req->num_retrans;
482
483 /* So many TCP implementations out there (incorrectly) count the
484 * initial SYN frame in their delayed-ACK and congestion control
485 * algorithms that we must have the following bandaid to talk
486 * efficiently to them. -DaveM
487 */
488 newtp->snd_cwnd = TCP_INIT_CWND;
489 newtp->snd_cwnd_cnt = 0;
490
491 /* There's a bubble in the pipe until at least the first ACK. */
492 newtp->app_limited = ~0U;
493
494 tcp_init_xmit_timers(newsk);
495 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
496
497 newtp->rx_opt.saw_tstamp = 0;
498
499 newtp->rx_opt.dsack = 0;
500 newtp->rx_opt.num_sacks = 0;
501
502 newtp->urg_data = 0;
503
504 if (sock_flag(newsk, SOCK_KEEPOPEN))
505 inet_csk_reset_keepalive_timer(newsk,
506 keepalive_time_when(newtp));
507
508 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
509 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
510 if (sysctl_tcp_fack)
511 tcp_enable_fack(newtp);
512 }
513 newtp->window_clamp = req->rsk_window_clamp;
514 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
515 newtp->rcv_wnd = req->rsk_rcv_wnd;
516 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
517 if (newtp->rx_opt.wscale_ok) {
518 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
519 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
520 } else {
521 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
522 newtp->window_clamp = min(newtp->window_clamp, 65535U);
523 }
524 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
525 newtp->rx_opt.snd_wscale);
526 newtp->max_window = newtp->snd_wnd;
527
528 if (newtp->rx_opt.tstamp_ok) {
529 newtp->rx_opt.ts_recent = req->ts_recent;
530 newtp->rx_opt.ts_recent_stamp = get_seconds();
531 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
532 } else {
533 newtp->rx_opt.ts_recent_stamp = 0;
534 newtp->tcp_header_len = sizeof(struct tcphdr);
535 }
536 newtp->tsoffset = treq->ts_off;
537 #ifdef CONFIG_TCP_MD5SIG
538 newtp->md5sig_info = NULL; /*XXX*/
539 if (newtp->af_specific->md5_lookup(sk, newsk))
540 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
541 #endif
542 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
543 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
544 newtp->rx_opt.mss_clamp = req->mss;
545 tcp_ecn_openreq_child(newtp, req);
546 newtp->fastopen_req = NULL;
547 newtp->fastopen_rsk = NULL;
548 newtp->syn_data_acked = 0;
549 newtp->rack.mstamp.v64 = 0;
550 newtp->rack.advanced = 0;
551
552 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
553 }
554 return newsk;
555 }
556 EXPORT_SYMBOL(tcp_create_openreq_child);
557
558 /*
559 * Process an incoming packet for SYN_RECV sockets represented as a
560 * request_sock. Normally sk is the listener socket but for TFO it
561 * points to the child socket.
562 *
563 * XXX (TFO) - The current impl contains a special check for ack
564 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
565 *
566 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
567 */
568
569 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570 struct request_sock *req,
571 bool fastopen)
572 {
573 struct tcp_options_received tmp_opt;
574 struct sock *child;
575 const struct tcphdr *th = tcp_hdr(skb);
576 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
577 bool paws_reject = false;
578 bool own_req;
579
580 tmp_opt.saw_tstamp = 0;
581 if (th->doff > (sizeof(struct tcphdr)>>2)) {
582 tcp_parse_options(skb, &tmp_opt, 0, NULL);
583
584 if (tmp_opt.saw_tstamp) {
585 tmp_opt.ts_recent = req->ts_recent;
586 if (tmp_opt.rcv_tsecr)
587 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
588 /* We do not store true stamp, but it is not required,
589 * it can be estimated (approximately)
590 * from another data.
591 */
592 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
593 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
594 }
595 }
596
597 /* Check for pure retransmitted SYN. */
598 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
599 flg == TCP_FLAG_SYN &&
600 !paws_reject) {
601 /*
602 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
603 * this case on figure 6 and figure 8, but formal
604 * protocol description says NOTHING.
605 * To be more exact, it says that we should send ACK,
606 * because this segment (at least, if it has no data)
607 * is out of window.
608 *
609 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
610 * describe SYN-RECV state. All the description
611 * is wrong, we cannot believe to it and should
612 * rely only on common sense and implementation
613 * experience.
614 *
615 * Enforce "SYN-ACK" according to figure 8, figure 6
616 * of RFC793, fixed by RFC1122.
617 *
618 * Note that even if there is new data in the SYN packet
619 * they will be thrown away too.
620 *
621 * Reset timer after retransmitting SYNACK, similar to
622 * the idea of fast retransmit in recovery.
623 */
624 if (!tcp_oow_rate_limited(sock_net(sk), skb,
625 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
626 &tcp_rsk(req)->last_oow_ack_time) &&
627
628 !inet_rtx_syn_ack(sk, req)) {
629 unsigned long expires = jiffies;
630
631 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
632 TCP_RTO_MAX);
633 if (!fastopen)
634 mod_timer_pending(&req->rsk_timer, expires);
635 else
636 req->rsk_timer.expires = expires;
637 }
638 return NULL;
639 }
640
641 /* Further reproduces section "SEGMENT ARRIVES"
642 for state SYN-RECEIVED of RFC793.
643 It is broken, however, it does not work only
644 when SYNs are crossed.
645
646 You would think that SYN crossing is impossible here, since
647 we should have a SYN_SENT socket (from connect()) on our end,
648 but this is not true if the crossed SYNs were sent to both
649 ends by a malicious third party. We must defend against this,
650 and to do that we first verify the ACK (as per RFC793, page
651 36) and reset if it is invalid. Is this a true full defense?
652 To convince ourselves, let us consider a way in which the ACK
653 test can still pass in this 'malicious crossed SYNs' case.
654 Malicious sender sends identical SYNs (and thus identical sequence
655 numbers) to both A and B:
656
657 A: gets SYN, seq=7
658 B: gets SYN, seq=7
659
660 By our good fortune, both A and B select the same initial
661 send sequence number of seven :-)
662
663 A: sends SYN|ACK, seq=7, ack_seq=8
664 B: sends SYN|ACK, seq=7, ack_seq=8
665
666 So we are now A eating this SYN|ACK, ACK test passes. So
667 does sequence test, SYN is truncated, and thus we consider
668 it a bare ACK.
669
670 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
671 bare ACK. Otherwise, we create an established connection. Both
672 ends (listening sockets) accept the new incoming connection and try
673 to talk to each other. 8-)
674
675 Note: This case is both harmless, and rare. Possibility is about the
676 same as us discovering intelligent life on another plant tomorrow.
677
678 But generally, we should (RFC lies!) to accept ACK
679 from SYNACK both here and in tcp_rcv_state_process().
680 tcp_rcv_state_process() does not, hence, we do not too.
681
682 Note that the case is absolutely generic:
683 we cannot optimize anything here without
684 violating protocol. All the checks must be made
685 before attempt to create socket.
686 */
687
688 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
689 * and the incoming segment acknowledges something not yet
690 * sent (the segment carries an unacceptable ACK) ...
691 * a reset is sent."
692 *
693 * Invalid ACK: reset will be sent by listening socket.
694 * Note that the ACK validity check for a Fast Open socket is done
695 * elsewhere and is checked directly against the child socket rather
696 * than req because user data may have been sent out.
697 */
698 if ((flg & TCP_FLAG_ACK) && !fastopen &&
699 (TCP_SKB_CB(skb)->ack_seq !=
700 tcp_rsk(req)->snt_isn + 1))
701 return sk;
702
703 /* Also, it would be not so bad idea to check rcv_tsecr, which
704 * is essentially ACK extension and too early or too late values
705 * should cause reset in unsynchronized states.
706 */
707
708 /* RFC793: "first check sequence number". */
709
710 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
711 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
712 /* Out of window: send ACK and drop. */
713 if (!(flg & TCP_FLAG_RST) &&
714 !tcp_oow_rate_limited(sock_net(sk), skb,
715 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
716 &tcp_rsk(req)->last_oow_ack_time))
717 req->rsk_ops->send_ack(sk, skb, req);
718 if (paws_reject)
719 __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
720 return NULL;
721 }
722
723 /* In sequence, PAWS is OK. */
724
725 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
726 req->ts_recent = tmp_opt.rcv_tsval;
727
728 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
729 /* Truncate SYN, it is out of window starting
730 at tcp_rsk(req)->rcv_isn + 1. */
731 flg &= ~TCP_FLAG_SYN;
732 }
733
734 /* RFC793: "second check the RST bit" and
735 * "fourth, check the SYN bit"
736 */
737 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
738 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
739 goto embryonic_reset;
740 }
741
742 /* ACK sequence verified above, just make sure ACK is
743 * set. If ACK not set, just silently drop the packet.
744 *
745 * XXX (TFO) - if we ever allow "data after SYN", the
746 * following check needs to be removed.
747 */
748 if (!(flg & TCP_FLAG_ACK))
749 return NULL;
750
751 /* For Fast Open no more processing is needed (sk is the
752 * child socket).
753 */
754 if (fastopen)
755 return sk;
756
757 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
758 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
759 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
760 inet_rsk(req)->acked = 1;
761 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
762 return NULL;
763 }
764
765 /* OK, ACK is valid, create big socket and
766 * feed this segment to it. It will repeat all
767 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
768 * ESTABLISHED STATE. If it will be dropped after
769 * socket is created, wait for troubles.
770 */
771 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
772 req, &own_req);
773 if (!child)
774 goto listen_overflow;
775
776 sock_rps_save_rxhash(child, skb);
777 tcp_synack_rtt_meas(child, req);
778 return inet_csk_complete_hashdance(sk, child, req, own_req);
779
780 listen_overflow:
781 if (!sysctl_tcp_abort_on_overflow) {
782 inet_rsk(req)->acked = 1;
783 return NULL;
784 }
785
786 embryonic_reset:
787 if (!(flg & TCP_FLAG_RST)) {
788 /* Received a bad SYN pkt - for TFO We try not to reset
789 * the local connection unless it's really necessary to
790 * avoid becoming vulnerable to outside attack aiming at
791 * resetting legit local connections.
792 */
793 req->rsk_ops->send_reset(sk, skb);
794 } else if (fastopen) { /* received a valid RST pkt */
795 reqsk_fastopen_remove(sk, req, true);
796 tcp_reset(sk);
797 }
798 if (!fastopen) {
799 inet_csk_reqsk_queue_drop(sk, req);
800 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
801 }
802 return NULL;
803 }
804 EXPORT_SYMBOL(tcp_check_req);
805
806 /*
807 * Queue segment on the new socket if the new socket is active,
808 * otherwise we just shortcircuit this and continue with
809 * the new socket.
810 *
811 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
812 * when entering. But other states are possible due to a race condition
813 * where after __inet_lookup_established() fails but before the listener
814 * locked is obtained, other packets cause the same connection to
815 * be created.
816 */
817
818 int tcp_child_process(struct sock *parent, struct sock *child,
819 struct sk_buff *skb)
820 {
821 int ret = 0;
822 int state = child->sk_state;
823
824 tcp_segs_in(tcp_sk(child), skb);
825 if (!sock_owned_by_user(child)) {
826 ret = tcp_rcv_state_process(child, skb);
827 /* Wakeup parent, send SIGIO */
828 if (state == TCP_SYN_RECV && child->sk_state != state)
829 parent->sk_data_ready(parent);
830 } else {
831 /* Alas, it is possible again, because we do lookup
832 * in main socket hash table and lock on listening
833 * socket does not protect us more.
834 */
835 __sk_add_backlog(child, skb);
836 }
837
838 bh_unlock_sock(child);
839 sock_put(child);
840 return ret;
841 }
842 EXPORT_SYMBOL(tcp_child_process);