]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
tcp: uses jiffies_32 to feed tp->chrono_start
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window */
238 space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 space = max_t(u32, space, sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309 }
310
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
321 }
322
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
329
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
332
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
335 }
336
337 tp->ecn_flags = 0;
338
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
352 */
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
361 }
362
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
365 */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 th->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 }
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
384 }
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 th->ece = 1;
387 }
388 }
389
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
392 */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
397
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
400
401 tcp_skb_pcount_set(skb, 1);
402
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
407 }
408
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 return tp->snd_una != tp->snd_up;
412 }
413
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429 };
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537 }
538
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
541 */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
545 {
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 }
556 #else
557 *md5 = NULL;
558 #endif
559
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
571
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 }
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
582 }
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 }
588
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
591
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 }
602 }
603
604 return MAX_TCP_OPTION_SPACE - remaining;
605 }
606
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
613 {
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
616
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
621
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
626 */
627 ireq->tstamp_ok &= !ireq->sack_ok;
628 }
629 #endif
630
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
634
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
639 }
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 }
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 }
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
653
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
661 }
662 }
663
664 return MAX_TCP_OPTION_SPACE - remaining;
665 }
666
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
669 */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
673 {
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
677
678 opts->options = 0;
679
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
685 }
686 #else
687 *md5 = NULL;
688 #endif
689
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 }
707
708 return size;
709 }
710
711
712 /* TCP SMALL QUEUES (TSQ)
713 *
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
717 *
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721 *
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
725 */
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
737 struct tcp_sock *tp = tcp_sk(sk);
738
739 if (tp->lost_out > tp->retrans_out &&
740 tp->snd_cwnd > tcp_packets_in_flight(tp))
741 tcp_xmit_retransmit_queue(sk);
742
743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 0, GFP_ATOMIC);
745 }
746 }
747 /*
748 * One tasklet per cpu tries to send more skbs.
749 * We run in tasklet context but need to disable irqs when
750 * transferring tsq->head because tcp_wfree() might
751 * interrupt us (non NAPI drivers)
752 */
753 static void tcp_tasklet_func(unsigned long data)
754 {
755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 LIST_HEAD(list);
757 unsigned long flags;
758 struct list_head *q, *n;
759 struct tcp_sock *tp;
760 struct sock *sk;
761
762 local_irq_save(flags);
763 list_splice_init(&tsq->head, &list);
764 local_irq_restore(flags);
765
766 list_for_each_safe(q, n, &list) {
767 tp = list_entry(q, struct tcp_sock, tsq_node);
768 list_del(&tp->tsq_node);
769
770 sk = (struct sock *)tp;
771 smp_mb__before_atomic();
772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773
774 if (!sk->sk_lock.owned &&
775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 bh_lock_sock(sk);
777 if (!sock_owned_by_user(sk)) {
778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 tcp_tsq_handler(sk);
780 }
781 bh_unlock_sock(sk);
782 }
783
784 sk_free(sk);
785 }
786 }
787
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
789 TCPF_WRITE_TIMER_DEFERRED | \
790 TCPF_DELACK_TIMER_DEFERRED | \
791 TCPF_MTU_REDUCED_DEFERRED)
792 /**
793 * tcp_release_cb - tcp release_sock() callback
794 * @sk: socket
795 *
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
798 */
799 void tcp_release_cb(struct sock *sk)
800 {
801 unsigned long flags, nflags;
802
803 /* perform an atomic operation only if at least one flag is set */
804 do {
805 flags = sk->sk_tsq_flags;
806 if (!(flags & TCP_DEFERRED_ALL))
807 return;
808 nflags = flags & ~TCP_DEFERRED_ALL;
809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810
811 if (flags & TCPF_TSQ_DEFERRED)
812 tcp_tsq_handler(sk);
813
814 /* Here begins the tricky part :
815 * We are called from release_sock() with :
816 * 1) BH disabled
817 * 2) sk_lock.slock spinlock held
818 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 *
820 * But following code is meant to be called from BH handlers,
821 * so we should keep BH disabled, but early release socket ownership
822 */
823 sock_release_ownership(sk);
824
825 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 tcp_write_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 tcp_delack_timer_handler(sk);
831 __sock_put(sk);
832 }
833 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 __sock_put(sk);
836 }
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839
840 void __init tcp_tasklet_init(void)
841 {
842 int i;
843
844 for_each_possible_cpu(i) {
845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846
847 INIT_LIST_HEAD(&tsq->head);
848 tasklet_init(&tsq->tasklet,
849 tcp_tasklet_func,
850 (unsigned long)tsq);
851 }
852 }
853
854 /*
855 * Write buffer destructor automatically called from kfree_skb.
856 * We can't xmit new skbs from this context, as we might already
857 * hold qdisc lock.
858 */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 struct sock *sk = skb->sk;
862 struct tcp_sock *tp = tcp_sk(sk);
863 unsigned long flags, nval, oval;
864 int wmem;
865
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
868 */
869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
873 * This gives :
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
877 */
878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 goto out;
880
881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 struct tsq_tasklet *tsq;
883 bool empty;
884
885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 goto out;
887
888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 if (nval != oval)
891 continue;
892
893 /* queue this socket to tasklet queue */
894 local_irq_save(flags);
895 tsq = this_cpu_ptr(&tsq_tasklet);
896 empty = list_empty(&tsq->head);
897 list_add(&tp->tsq_node, &tsq->head);
898 if (empty)
899 tasklet_schedule(&tsq->tasklet);
900 local_irq_restore(flags);
901 return;
902 }
903 out:
904 sk_free(sk);
905 }
906
907 /* Note: Called under hard irq.
908 * We can not call TCP stack right away.
909 */
910 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
911 {
912 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
913 struct sock *sk = (struct sock *)tp;
914 unsigned long nval, oval;
915
916 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
917 struct tsq_tasklet *tsq;
918 bool empty;
919
920 if (oval & TSQF_QUEUED)
921 break;
922
923 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
924 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
925 if (nval != oval)
926 continue;
927
928 if (!atomic_inc_not_zero(&sk->sk_wmem_alloc))
929 break;
930 /* queue this socket to tasklet queue */
931 tsq = this_cpu_ptr(&tsq_tasklet);
932 empty = list_empty(&tsq->head);
933 list_add(&tp->tsq_node, &tsq->head);
934 if (empty)
935 tasklet_schedule(&tsq->tasklet);
936 break;
937 }
938 return HRTIMER_NORESTART;
939 }
940
941 /* BBR congestion control needs pacing.
942 * Same remark for SO_MAX_PACING_RATE.
943 * sch_fq packet scheduler is efficiently handling pacing,
944 * but is not always installed/used.
945 * Return true if TCP stack should pace packets itself.
946 */
947 static bool tcp_needs_internal_pacing(const struct sock *sk)
948 {
949 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
950 }
951
952 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
953 {
954 u64 len_ns;
955 u32 rate;
956
957 if (!tcp_needs_internal_pacing(sk))
958 return;
959 rate = sk->sk_pacing_rate;
960 if (!rate || rate == ~0U)
961 return;
962
963 /* Should account for header sizes as sch_fq does,
964 * but lets make things simple.
965 */
966 len_ns = (u64)skb->len * NSEC_PER_SEC;
967 do_div(len_ns, rate);
968 hrtimer_start(&tcp_sk(sk)->pacing_timer,
969 ktime_add_ns(ktime_get(), len_ns),
970 HRTIMER_MODE_ABS_PINNED);
971 }
972
973 /* This routine actually transmits TCP packets queued in by
974 * tcp_do_sendmsg(). This is used by both the initial
975 * transmission and possible later retransmissions.
976 * All SKB's seen here are completely headerless. It is our
977 * job to build the TCP header, and pass the packet down to
978 * IP so it can do the same plus pass the packet off to the
979 * device.
980 *
981 * We are working here with either a clone of the original
982 * SKB, or a fresh unique copy made by the retransmit engine.
983 */
984 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
985 gfp_t gfp_mask)
986 {
987 const struct inet_connection_sock *icsk = inet_csk(sk);
988 struct inet_sock *inet;
989 struct tcp_sock *tp;
990 struct tcp_skb_cb *tcb;
991 struct tcp_out_options opts;
992 unsigned int tcp_options_size, tcp_header_size;
993 struct tcp_md5sig_key *md5;
994 struct tcphdr *th;
995 int err;
996
997 BUG_ON(!skb || !tcp_skb_pcount(skb));
998 tp = tcp_sk(sk);
999
1000 skb->skb_mstamp = tp->tcp_mstamp;
1001 if (clone_it) {
1002 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1003 - tp->snd_una;
1004 tcp_rate_skb_sent(sk, skb);
1005
1006 if (unlikely(skb_cloned(skb)))
1007 skb = pskb_copy(skb, gfp_mask);
1008 else
1009 skb = skb_clone(skb, gfp_mask);
1010 if (unlikely(!skb))
1011 return -ENOBUFS;
1012 }
1013
1014 inet = inet_sk(sk);
1015 tcb = TCP_SKB_CB(skb);
1016 memset(&opts, 0, sizeof(opts));
1017
1018 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1019 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1020 else
1021 tcp_options_size = tcp_established_options(sk, skb, &opts,
1022 &md5);
1023 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1024
1025 /* if no packet is in qdisc/device queue, then allow XPS to select
1026 * another queue. We can be called from tcp_tsq_handler()
1027 * which holds one reference to sk_wmem_alloc.
1028 *
1029 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1030 * One way to get this would be to set skb->truesize = 2 on them.
1031 */
1032 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1033
1034 /* If we had to use memory reserve to allocate this skb,
1035 * this might cause drops if packet is looped back :
1036 * Other socket might not have SOCK_MEMALLOC.
1037 * Packets not looped back do not care about pfmemalloc.
1038 */
1039 skb->pfmemalloc = 0;
1040
1041 skb_push(skb, tcp_header_size);
1042 skb_reset_transport_header(skb);
1043
1044 skb_orphan(skb);
1045 skb->sk = sk;
1046 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1047 skb_set_hash_from_sk(skb, sk);
1048 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1049
1050 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1051
1052 /* Build TCP header and checksum it. */
1053 th = (struct tcphdr *)skb->data;
1054 th->source = inet->inet_sport;
1055 th->dest = inet->inet_dport;
1056 th->seq = htonl(tcb->seq);
1057 th->ack_seq = htonl(tp->rcv_nxt);
1058 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1059 tcb->tcp_flags);
1060
1061 th->check = 0;
1062 th->urg_ptr = 0;
1063
1064 /* The urg_mode check is necessary during a below snd_una win probe */
1065 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1066 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1067 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1068 th->urg = 1;
1069 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1070 th->urg_ptr = htons(0xFFFF);
1071 th->urg = 1;
1072 }
1073 }
1074
1075 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1076 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1077 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1078 th->window = htons(tcp_select_window(sk));
1079 tcp_ecn_send(sk, skb, th, tcp_header_size);
1080 } else {
1081 /* RFC1323: The window in SYN & SYN/ACK segments
1082 * is never scaled.
1083 */
1084 th->window = htons(min(tp->rcv_wnd, 65535U));
1085 }
1086 #ifdef CONFIG_TCP_MD5SIG
1087 /* Calculate the MD5 hash, as we have all we need now */
1088 if (md5) {
1089 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1090 tp->af_specific->calc_md5_hash(opts.hash_location,
1091 md5, sk, skb);
1092 }
1093 #endif
1094
1095 icsk->icsk_af_ops->send_check(sk, skb);
1096
1097 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1098 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1099
1100 if (skb->len != tcp_header_size) {
1101 tcp_event_data_sent(tp, sk);
1102 tp->data_segs_out += tcp_skb_pcount(skb);
1103 tcp_internal_pacing(sk, skb);
1104 }
1105
1106 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1107 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1108 tcp_skb_pcount(skb));
1109
1110 tp->segs_out += tcp_skb_pcount(skb);
1111 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1112 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1113 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1114
1115 /* Our usage of tstamp should remain private */
1116 skb->tstamp = 0;
1117
1118 /* Cleanup our debris for IP stacks */
1119 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1120 sizeof(struct inet6_skb_parm)));
1121
1122 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1123
1124 if (likely(err <= 0))
1125 return err;
1126
1127 tcp_enter_cwr(sk);
1128
1129 return net_xmit_eval(err);
1130 }
1131
1132 /* This routine just queues the buffer for sending.
1133 *
1134 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1135 * otherwise socket can stall.
1136 */
1137 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1138 {
1139 struct tcp_sock *tp = tcp_sk(sk);
1140
1141 /* Advance write_seq and place onto the write_queue. */
1142 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1143 __skb_header_release(skb);
1144 tcp_add_write_queue_tail(sk, skb);
1145 sk->sk_wmem_queued += skb->truesize;
1146 sk_mem_charge(sk, skb->truesize);
1147 }
1148
1149 /* Initialize TSO segments for a packet. */
1150 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1151 {
1152 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1153 /* Avoid the costly divide in the normal
1154 * non-TSO case.
1155 */
1156 tcp_skb_pcount_set(skb, 1);
1157 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1158 } else {
1159 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1160 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1161 }
1162 }
1163
1164 /* When a modification to fackets out becomes necessary, we need to check
1165 * skb is counted to fackets_out or not.
1166 */
1167 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1168 int decr)
1169 {
1170 struct tcp_sock *tp = tcp_sk(sk);
1171
1172 if (!tp->sacked_out || tcp_is_reno(tp))
1173 return;
1174
1175 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1176 tp->fackets_out -= decr;
1177 }
1178
1179 /* Pcount in the middle of the write queue got changed, we need to do various
1180 * tweaks to fix counters
1181 */
1182 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1183 {
1184 struct tcp_sock *tp = tcp_sk(sk);
1185
1186 tp->packets_out -= decr;
1187
1188 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1189 tp->sacked_out -= decr;
1190 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1191 tp->retrans_out -= decr;
1192 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1193 tp->lost_out -= decr;
1194
1195 /* Reno case is special. Sigh... */
1196 if (tcp_is_reno(tp) && decr > 0)
1197 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1198
1199 tcp_adjust_fackets_out(sk, skb, decr);
1200
1201 if (tp->lost_skb_hint &&
1202 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1203 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1204 tp->lost_cnt_hint -= decr;
1205
1206 tcp_verify_left_out(tp);
1207 }
1208
1209 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1210 {
1211 return TCP_SKB_CB(skb)->txstamp_ack ||
1212 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1213 }
1214
1215 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1216 {
1217 struct skb_shared_info *shinfo = skb_shinfo(skb);
1218
1219 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1220 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1221 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1222 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1223
1224 shinfo->tx_flags &= ~tsflags;
1225 shinfo2->tx_flags |= tsflags;
1226 swap(shinfo->tskey, shinfo2->tskey);
1227 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1228 TCP_SKB_CB(skb)->txstamp_ack = 0;
1229 }
1230 }
1231
1232 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1233 {
1234 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1235 TCP_SKB_CB(skb)->eor = 0;
1236 }
1237
1238 /* Function to create two new TCP segments. Shrinks the given segment
1239 * to the specified size and appends a new segment with the rest of the
1240 * packet to the list. This won't be called frequently, I hope.
1241 * Remember, these are still headerless SKBs at this point.
1242 */
1243 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1244 unsigned int mss_now, gfp_t gfp)
1245 {
1246 struct tcp_sock *tp = tcp_sk(sk);
1247 struct sk_buff *buff;
1248 int nsize, old_factor;
1249 int nlen;
1250 u8 flags;
1251
1252 if (WARN_ON(len > skb->len))
1253 return -EINVAL;
1254
1255 nsize = skb_headlen(skb) - len;
1256 if (nsize < 0)
1257 nsize = 0;
1258
1259 if (skb_unclone(skb, gfp))
1260 return -ENOMEM;
1261
1262 /* Get a new skb... force flag on. */
1263 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1264 if (!buff)
1265 return -ENOMEM; /* We'll just try again later. */
1266
1267 sk->sk_wmem_queued += buff->truesize;
1268 sk_mem_charge(sk, buff->truesize);
1269 nlen = skb->len - len - nsize;
1270 buff->truesize += nlen;
1271 skb->truesize -= nlen;
1272
1273 /* Correct the sequence numbers. */
1274 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1275 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1276 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1277
1278 /* PSH and FIN should only be set in the second packet. */
1279 flags = TCP_SKB_CB(skb)->tcp_flags;
1280 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1281 TCP_SKB_CB(buff)->tcp_flags = flags;
1282 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1283 tcp_skb_fragment_eor(skb, buff);
1284
1285 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1286 /* Copy and checksum data tail into the new buffer. */
1287 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1288 skb_put(buff, nsize),
1289 nsize, 0);
1290
1291 skb_trim(skb, len);
1292
1293 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1294 } else {
1295 skb->ip_summed = CHECKSUM_PARTIAL;
1296 skb_split(skb, buff, len);
1297 }
1298
1299 buff->ip_summed = skb->ip_summed;
1300
1301 buff->tstamp = skb->tstamp;
1302 tcp_fragment_tstamp(skb, buff);
1303
1304 old_factor = tcp_skb_pcount(skb);
1305
1306 /* Fix up tso_factor for both original and new SKB. */
1307 tcp_set_skb_tso_segs(skb, mss_now);
1308 tcp_set_skb_tso_segs(buff, mss_now);
1309
1310 /* Update delivered info for the new segment */
1311 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1312
1313 /* If this packet has been sent out already, we must
1314 * adjust the various packet counters.
1315 */
1316 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1317 int diff = old_factor - tcp_skb_pcount(skb) -
1318 tcp_skb_pcount(buff);
1319
1320 if (diff)
1321 tcp_adjust_pcount(sk, skb, diff);
1322 }
1323
1324 /* Link BUFF into the send queue. */
1325 __skb_header_release(buff);
1326 tcp_insert_write_queue_after(skb, buff, sk);
1327
1328 return 0;
1329 }
1330
1331 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1332 * eventually). The difference is that pulled data not copied, but
1333 * immediately discarded.
1334 */
1335 static int __pskb_trim_head(struct sk_buff *skb, int len)
1336 {
1337 struct skb_shared_info *shinfo;
1338 int i, k, eat;
1339
1340 eat = min_t(int, len, skb_headlen(skb));
1341 if (eat) {
1342 __skb_pull(skb, eat);
1343 len -= eat;
1344 if (!len)
1345 return 0;
1346 }
1347 eat = len;
1348 k = 0;
1349 shinfo = skb_shinfo(skb);
1350 for (i = 0; i < shinfo->nr_frags; i++) {
1351 int size = skb_frag_size(&shinfo->frags[i]);
1352
1353 if (size <= eat) {
1354 skb_frag_unref(skb, i);
1355 eat -= size;
1356 } else {
1357 shinfo->frags[k] = shinfo->frags[i];
1358 if (eat) {
1359 shinfo->frags[k].page_offset += eat;
1360 skb_frag_size_sub(&shinfo->frags[k], eat);
1361 eat = 0;
1362 }
1363 k++;
1364 }
1365 }
1366 shinfo->nr_frags = k;
1367
1368 skb_reset_tail_pointer(skb);
1369 skb->data_len -= len;
1370 skb->len = skb->data_len;
1371 return len;
1372 }
1373
1374 /* Remove acked data from a packet in the transmit queue. */
1375 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1376 {
1377 u32 delta_truesize;
1378
1379 if (skb_unclone(skb, GFP_ATOMIC))
1380 return -ENOMEM;
1381
1382 delta_truesize = __pskb_trim_head(skb, len);
1383
1384 TCP_SKB_CB(skb)->seq += len;
1385 skb->ip_summed = CHECKSUM_PARTIAL;
1386
1387 if (delta_truesize) {
1388 skb->truesize -= delta_truesize;
1389 sk->sk_wmem_queued -= delta_truesize;
1390 sk_mem_uncharge(sk, delta_truesize);
1391 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1392 }
1393
1394 /* Any change of skb->len requires recalculation of tso factor. */
1395 if (tcp_skb_pcount(skb) > 1)
1396 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1397
1398 return 0;
1399 }
1400
1401 /* Calculate MSS not accounting any TCP options. */
1402 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1403 {
1404 const struct tcp_sock *tp = tcp_sk(sk);
1405 const struct inet_connection_sock *icsk = inet_csk(sk);
1406 int mss_now;
1407
1408 /* Calculate base mss without TCP options:
1409 It is MMS_S - sizeof(tcphdr) of rfc1122
1410 */
1411 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1412
1413 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1414 if (icsk->icsk_af_ops->net_frag_header_len) {
1415 const struct dst_entry *dst = __sk_dst_get(sk);
1416
1417 if (dst && dst_allfrag(dst))
1418 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1419 }
1420
1421 /* Clamp it (mss_clamp does not include tcp options) */
1422 if (mss_now > tp->rx_opt.mss_clamp)
1423 mss_now = tp->rx_opt.mss_clamp;
1424
1425 /* Now subtract optional transport overhead */
1426 mss_now -= icsk->icsk_ext_hdr_len;
1427
1428 /* Then reserve room for full set of TCP options and 8 bytes of data */
1429 if (mss_now < 48)
1430 mss_now = 48;
1431 return mss_now;
1432 }
1433
1434 /* Calculate MSS. Not accounting for SACKs here. */
1435 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1436 {
1437 /* Subtract TCP options size, not including SACKs */
1438 return __tcp_mtu_to_mss(sk, pmtu) -
1439 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1440 }
1441
1442 /* Inverse of above */
1443 int tcp_mss_to_mtu(struct sock *sk, int mss)
1444 {
1445 const struct tcp_sock *tp = tcp_sk(sk);
1446 const struct inet_connection_sock *icsk = inet_csk(sk);
1447 int mtu;
1448
1449 mtu = mss +
1450 tp->tcp_header_len +
1451 icsk->icsk_ext_hdr_len +
1452 icsk->icsk_af_ops->net_header_len;
1453
1454 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1455 if (icsk->icsk_af_ops->net_frag_header_len) {
1456 const struct dst_entry *dst = __sk_dst_get(sk);
1457
1458 if (dst && dst_allfrag(dst))
1459 mtu += icsk->icsk_af_ops->net_frag_header_len;
1460 }
1461 return mtu;
1462 }
1463 EXPORT_SYMBOL(tcp_mss_to_mtu);
1464
1465 /* MTU probing init per socket */
1466 void tcp_mtup_init(struct sock *sk)
1467 {
1468 struct tcp_sock *tp = tcp_sk(sk);
1469 struct inet_connection_sock *icsk = inet_csk(sk);
1470 struct net *net = sock_net(sk);
1471
1472 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1473 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1474 icsk->icsk_af_ops->net_header_len;
1475 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1476 icsk->icsk_mtup.probe_size = 0;
1477 if (icsk->icsk_mtup.enabled)
1478 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1479 }
1480 EXPORT_SYMBOL(tcp_mtup_init);
1481
1482 /* This function synchronize snd mss to current pmtu/exthdr set.
1483
1484 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1485 for TCP options, but includes only bare TCP header.
1486
1487 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1488 It is minimum of user_mss and mss received with SYN.
1489 It also does not include TCP options.
1490
1491 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1492
1493 tp->mss_cache is current effective sending mss, including
1494 all tcp options except for SACKs. It is evaluated,
1495 taking into account current pmtu, but never exceeds
1496 tp->rx_opt.mss_clamp.
1497
1498 NOTE1. rfc1122 clearly states that advertised MSS
1499 DOES NOT include either tcp or ip options.
1500
1501 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1502 are READ ONLY outside this function. --ANK (980731)
1503 */
1504 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1505 {
1506 struct tcp_sock *tp = tcp_sk(sk);
1507 struct inet_connection_sock *icsk = inet_csk(sk);
1508 int mss_now;
1509
1510 if (icsk->icsk_mtup.search_high > pmtu)
1511 icsk->icsk_mtup.search_high = pmtu;
1512
1513 mss_now = tcp_mtu_to_mss(sk, pmtu);
1514 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1515
1516 /* And store cached results */
1517 icsk->icsk_pmtu_cookie = pmtu;
1518 if (icsk->icsk_mtup.enabled)
1519 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1520 tp->mss_cache = mss_now;
1521
1522 return mss_now;
1523 }
1524 EXPORT_SYMBOL(tcp_sync_mss);
1525
1526 /* Compute the current effective MSS, taking SACKs and IP options,
1527 * and even PMTU discovery events into account.
1528 */
1529 unsigned int tcp_current_mss(struct sock *sk)
1530 {
1531 const struct tcp_sock *tp = tcp_sk(sk);
1532 const struct dst_entry *dst = __sk_dst_get(sk);
1533 u32 mss_now;
1534 unsigned int header_len;
1535 struct tcp_out_options opts;
1536 struct tcp_md5sig_key *md5;
1537
1538 mss_now = tp->mss_cache;
1539
1540 if (dst) {
1541 u32 mtu = dst_mtu(dst);
1542 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1543 mss_now = tcp_sync_mss(sk, mtu);
1544 }
1545
1546 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1547 sizeof(struct tcphdr);
1548 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1549 * some common options. If this is an odd packet (because we have SACK
1550 * blocks etc) then our calculated header_len will be different, and
1551 * we have to adjust mss_now correspondingly */
1552 if (header_len != tp->tcp_header_len) {
1553 int delta = (int) header_len - tp->tcp_header_len;
1554 mss_now -= delta;
1555 }
1556
1557 return mss_now;
1558 }
1559
1560 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1561 * As additional protections, we do not touch cwnd in retransmission phases,
1562 * and if application hit its sndbuf limit recently.
1563 */
1564 static void tcp_cwnd_application_limited(struct sock *sk)
1565 {
1566 struct tcp_sock *tp = tcp_sk(sk);
1567
1568 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1569 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1570 /* Limited by application or receiver window. */
1571 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1572 u32 win_used = max(tp->snd_cwnd_used, init_win);
1573 if (win_used < tp->snd_cwnd) {
1574 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1575 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1576 }
1577 tp->snd_cwnd_used = 0;
1578 }
1579 tp->snd_cwnd_stamp = tcp_jiffies32;
1580 }
1581
1582 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1583 {
1584 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1585 struct tcp_sock *tp = tcp_sk(sk);
1586
1587 /* Track the maximum number of outstanding packets in each
1588 * window, and remember whether we were cwnd-limited then.
1589 */
1590 if (!before(tp->snd_una, tp->max_packets_seq) ||
1591 tp->packets_out > tp->max_packets_out) {
1592 tp->max_packets_out = tp->packets_out;
1593 tp->max_packets_seq = tp->snd_nxt;
1594 tp->is_cwnd_limited = is_cwnd_limited;
1595 }
1596
1597 if (tcp_is_cwnd_limited(sk)) {
1598 /* Network is feed fully. */
1599 tp->snd_cwnd_used = 0;
1600 tp->snd_cwnd_stamp = tcp_jiffies32;
1601 } else {
1602 /* Network starves. */
1603 if (tp->packets_out > tp->snd_cwnd_used)
1604 tp->snd_cwnd_used = tp->packets_out;
1605
1606 if (sysctl_tcp_slow_start_after_idle &&
1607 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1608 !ca_ops->cong_control)
1609 tcp_cwnd_application_limited(sk);
1610
1611 /* The following conditions together indicate the starvation
1612 * is caused by insufficient sender buffer:
1613 * 1) just sent some data (see tcp_write_xmit)
1614 * 2) not cwnd limited (this else condition)
1615 * 3) no more data to send (null tcp_send_head )
1616 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1617 */
1618 if (!tcp_send_head(sk) && sk->sk_socket &&
1619 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1620 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1621 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1622 }
1623 }
1624
1625 /* Minshall's variant of the Nagle send check. */
1626 static bool tcp_minshall_check(const struct tcp_sock *tp)
1627 {
1628 return after(tp->snd_sml, tp->snd_una) &&
1629 !after(tp->snd_sml, tp->snd_nxt);
1630 }
1631
1632 /* Update snd_sml if this skb is under mss
1633 * Note that a TSO packet might end with a sub-mss segment
1634 * The test is really :
1635 * if ((skb->len % mss) != 0)
1636 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1637 * But we can avoid doing the divide again given we already have
1638 * skb_pcount = skb->len / mss_now
1639 */
1640 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1641 const struct sk_buff *skb)
1642 {
1643 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1644 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1645 }
1646
1647 /* Return false, if packet can be sent now without violation Nagle's rules:
1648 * 1. It is full sized. (provided by caller in %partial bool)
1649 * 2. Or it contains FIN. (already checked by caller)
1650 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1651 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1652 * With Minshall's modification: all sent small packets are ACKed.
1653 */
1654 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1655 int nonagle)
1656 {
1657 return partial &&
1658 ((nonagle & TCP_NAGLE_CORK) ||
1659 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1660 }
1661
1662 /* Return how many segs we'd like on a TSO packet,
1663 * to send one TSO packet per ms
1664 */
1665 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1666 int min_tso_segs)
1667 {
1668 u32 bytes, segs;
1669
1670 bytes = min(sk->sk_pacing_rate >> 10,
1671 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1672
1673 /* Goal is to send at least one packet per ms,
1674 * not one big TSO packet every 100 ms.
1675 * This preserves ACK clocking and is consistent
1676 * with tcp_tso_should_defer() heuristic.
1677 */
1678 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1679
1680 return min_t(u32, segs, sk->sk_gso_max_segs);
1681 }
1682 EXPORT_SYMBOL(tcp_tso_autosize);
1683
1684 /* Return the number of segments we want in the skb we are transmitting.
1685 * See if congestion control module wants to decide; otherwise, autosize.
1686 */
1687 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1688 {
1689 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1690 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1691
1692 return tso_segs ? :
1693 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1694 }
1695
1696 /* Returns the portion of skb which can be sent right away */
1697 static unsigned int tcp_mss_split_point(const struct sock *sk,
1698 const struct sk_buff *skb,
1699 unsigned int mss_now,
1700 unsigned int max_segs,
1701 int nonagle)
1702 {
1703 const struct tcp_sock *tp = tcp_sk(sk);
1704 u32 partial, needed, window, max_len;
1705
1706 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1707 max_len = mss_now * max_segs;
1708
1709 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1710 return max_len;
1711
1712 needed = min(skb->len, window);
1713
1714 if (max_len <= needed)
1715 return max_len;
1716
1717 partial = needed % mss_now;
1718 /* If last segment is not a full MSS, check if Nagle rules allow us
1719 * to include this last segment in this skb.
1720 * Otherwise, we'll split the skb at last MSS boundary
1721 */
1722 if (tcp_nagle_check(partial != 0, tp, nonagle))
1723 return needed - partial;
1724
1725 return needed;
1726 }
1727
1728 /* Can at least one segment of SKB be sent right now, according to the
1729 * congestion window rules? If so, return how many segments are allowed.
1730 */
1731 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1732 const struct sk_buff *skb)
1733 {
1734 u32 in_flight, cwnd, halfcwnd;
1735
1736 /* Don't be strict about the congestion window for the final FIN. */
1737 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1738 tcp_skb_pcount(skb) == 1)
1739 return 1;
1740
1741 in_flight = tcp_packets_in_flight(tp);
1742 cwnd = tp->snd_cwnd;
1743 if (in_flight >= cwnd)
1744 return 0;
1745
1746 /* For better scheduling, ensure we have at least
1747 * 2 GSO packets in flight.
1748 */
1749 halfcwnd = max(cwnd >> 1, 1U);
1750 return min(halfcwnd, cwnd - in_flight);
1751 }
1752
1753 /* Initialize TSO state of a skb.
1754 * This must be invoked the first time we consider transmitting
1755 * SKB onto the wire.
1756 */
1757 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1758 {
1759 int tso_segs = tcp_skb_pcount(skb);
1760
1761 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1762 tcp_set_skb_tso_segs(skb, mss_now);
1763 tso_segs = tcp_skb_pcount(skb);
1764 }
1765 return tso_segs;
1766 }
1767
1768
1769 /* Return true if the Nagle test allows this packet to be
1770 * sent now.
1771 */
1772 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1773 unsigned int cur_mss, int nonagle)
1774 {
1775 /* Nagle rule does not apply to frames, which sit in the middle of the
1776 * write_queue (they have no chances to get new data).
1777 *
1778 * This is implemented in the callers, where they modify the 'nonagle'
1779 * argument based upon the location of SKB in the send queue.
1780 */
1781 if (nonagle & TCP_NAGLE_PUSH)
1782 return true;
1783
1784 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1785 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1786 return true;
1787
1788 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1789 return true;
1790
1791 return false;
1792 }
1793
1794 /* Does at least the first segment of SKB fit into the send window? */
1795 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1796 const struct sk_buff *skb,
1797 unsigned int cur_mss)
1798 {
1799 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1800
1801 if (skb->len > cur_mss)
1802 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1803
1804 return !after(end_seq, tcp_wnd_end(tp));
1805 }
1806
1807 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1808 * should be put on the wire right now. If so, it returns the number of
1809 * packets allowed by the congestion window.
1810 */
1811 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1812 unsigned int cur_mss, int nonagle)
1813 {
1814 const struct tcp_sock *tp = tcp_sk(sk);
1815 unsigned int cwnd_quota;
1816
1817 tcp_init_tso_segs(skb, cur_mss);
1818
1819 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1820 return 0;
1821
1822 cwnd_quota = tcp_cwnd_test(tp, skb);
1823 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1824 cwnd_quota = 0;
1825
1826 return cwnd_quota;
1827 }
1828
1829 /* Test if sending is allowed right now. */
1830 bool tcp_may_send_now(struct sock *sk)
1831 {
1832 const struct tcp_sock *tp = tcp_sk(sk);
1833 struct sk_buff *skb = tcp_send_head(sk);
1834
1835 return skb &&
1836 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1837 (tcp_skb_is_last(sk, skb) ?
1838 tp->nonagle : TCP_NAGLE_PUSH));
1839 }
1840
1841 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1842 * which is put after SKB on the list. It is very much like
1843 * tcp_fragment() except that it may make several kinds of assumptions
1844 * in order to speed up the splitting operation. In particular, we
1845 * know that all the data is in scatter-gather pages, and that the
1846 * packet has never been sent out before (and thus is not cloned).
1847 */
1848 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1849 unsigned int mss_now, gfp_t gfp)
1850 {
1851 struct sk_buff *buff;
1852 int nlen = skb->len - len;
1853 u8 flags;
1854
1855 /* All of a TSO frame must be composed of paged data. */
1856 if (skb->len != skb->data_len)
1857 return tcp_fragment(sk, skb, len, mss_now, gfp);
1858
1859 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1860 if (unlikely(!buff))
1861 return -ENOMEM;
1862
1863 sk->sk_wmem_queued += buff->truesize;
1864 sk_mem_charge(sk, buff->truesize);
1865 buff->truesize += nlen;
1866 skb->truesize -= nlen;
1867
1868 /* Correct the sequence numbers. */
1869 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1870 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1871 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1872
1873 /* PSH and FIN should only be set in the second packet. */
1874 flags = TCP_SKB_CB(skb)->tcp_flags;
1875 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1876 TCP_SKB_CB(buff)->tcp_flags = flags;
1877
1878 /* This packet was never sent out yet, so no SACK bits. */
1879 TCP_SKB_CB(buff)->sacked = 0;
1880
1881 tcp_skb_fragment_eor(skb, buff);
1882
1883 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1884 skb_split(skb, buff, len);
1885 tcp_fragment_tstamp(skb, buff);
1886
1887 /* Fix up tso_factor for both original and new SKB. */
1888 tcp_set_skb_tso_segs(skb, mss_now);
1889 tcp_set_skb_tso_segs(buff, mss_now);
1890
1891 /* Link BUFF into the send queue. */
1892 __skb_header_release(buff);
1893 tcp_insert_write_queue_after(skb, buff, sk);
1894
1895 return 0;
1896 }
1897
1898 /* Try to defer sending, if possible, in order to minimize the amount
1899 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1900 *
1901 * This algorithm is from John Heffner.
1902 */
1903 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1904 bool *is_cwnd_limited, u32 max_segs)
1905 {
1906 const struct inet_connection_sock *icsk = inet_csk(sk);
1907 u32 age, send_win, cong_win, limit, in_flight;
1908 struct tcp_sock *tp = tcp_sk(sk);
1909 struct sk_buff *head;
1910 int win_divisor;
1911
1912 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1913 goto send_now;
1914
1915 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1916 goto send_now;
1917
1918 /* Avoid bursty behavior by allowing defer
1919 * only if the last write was recent.
1920 */
1921 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1922 goto send_now;
1923
1924 in_flight = tcp_packets_in_flight(tp);
1925
1926 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1927
1928 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1929
1930 /* From in_flight test above, we know that cwnd > in_flight. */
1931 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1932
1933 limit = min(send_win, cong_win);
1934
1935 /* If a full-sized TSO skb can be sent, do it. */
1936 if (limit >= max_segs * tp->mss_cache)
1937 goto send_now;
1938
1939 /* Middle in queue won't get any more data, full sendable already? */
1940 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1941 goto send_now;
1942
1943 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1944 if (win_divisor) {
1945 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1946
1947 /* If at least some fraction of a window is available,
1948 * just use it.
1949 */
1950 chunk /= win_divisor;
1951 if (limit >= chunk)
1952 goto send_now;
1953 } else {
1954 /* Different approach, try not to defer past a single
1955 * ACK. Receiver should ACK every other full sized
1956 * frame, so if we have space for more than 3 frames
1957 * then send now.
1958 */
1959 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1960 goto send_now;
1961 }
1962
1963 head = tcp_write_queue_head(sk);
1964
1965 age = skb_mstamp_us_delta(&tp->tcp_mstamp, &head->skb_mstamp);
1966 /* If next ACK is likely to come too late (half srtt), do not defer */
1967 if (age < (tp->srtt_us >> 4))
1968 goto send_now;
1969
1970 /* Ok, it looks like it is advisable to defer. */
1971
1972 if (cong_win < send_win && cong_win <= skb->len)
1973 *is_cwnd_limited = true;
1974
1975 return true;
1976
1977 send_now:
1978 return false;
1979 }
1980
1981 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1982 {
1983 struct inet_connection_sock *icsk = inet_csk(sk);
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct net *net = sock_net(sk);
1986 u32 interval;
1987 s32 delta;
1988
1989 interval = net->ipv4.sysctl_tcp_probe_interval;
1990 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1991 if (unlikely(delta >= interval * HZ)) {
1992 int mss = tcp_current_mss(sk);
1993
1994 /* Update current search range */
1995 icsk->icsk_mtup.probe_size = 0;
1996 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1997 sizeof(struct tcphdr) +
1998 icsk->icsk_af_ops->net_header_len;
1999 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2000
2001 /* Update probe time stamp */
2002 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2003 }
2004 }
2005
2006 /* Create a new MTU probe if we are ready.
2007 * MTU probe is regularly attempting to increase the path MTU by
2008 * deliberately sending larger packets. This discovers routing
2009 * changes resulting in larger path MTUs.
2010 *
2011 * Returns 0 if we should wait to probe (no cwnd available),
2012 * 1 if a probe was sent,
2013 * -1 otherwise
2014 */
2015 static int tcp_mtu_probe(struct sock *sk)
2016 {
2017 struct inet_connection_sock *icsk = inet_csk(sk);
2018 struct tcp_sock *tp = tcp_sk(sk);
2019 struct sk_buff *skb, *nskb, *next;
2020 struct net *net = sock_net(sk);
2021 int probe_size;
2022 int size_needed;
2023 int copy, len;
2024 int mss_now;
2025 int interval;
2026
2027 /* Not currently probing/verifying,
2028 * not in recovery,
2029 * have enough cwnd, and
2030 * not SACKing (the variable headers throw things off)
2031 */
2032 if (likely(!icsk->icsk_mtup.enabled ||
2033 icsk->icsk_mtup.probe_size ||
2034 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2035 tp->snd_cwnd < 11 ||
2036 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2037 return -1;
2038
2039 /* Use binary search for probe_size between tcp_mss_base,
2040 * and current mss_clamp. if (search_high - search_low)
2041 * smaller than a threshold, backoff from probing.
2042 */
2043 mss_now = tcp_current_mss(sk);
2044 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2045 icsk->icsk_mtup.search_low) >> 1);
2046 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2047 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2048 /* When misfortune happens, we are reprobing actively,
2049 * and then reprobe timer has expired. We stick with current
2050 * probing process by not resetting search range to its orignal.
2051 */
2052 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2053 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2054 /* Check whether enough time has elaplased for
2055 * another round of probing.
2056 */
2057 tcp_mtu_check_reprobe(sk);
2058 return -1;
2059 }
2060
2061 /* Have enough data in the send queue to probe? */
2062 if (tp->write_seq - tp->snd_nxt < size_needed)
2063 return -1;
2064
2065 if (tp->snd_wnd < size_needed)
2066 return -1;
2067 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2068 return 0;
2069
2070 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2071 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2072 if (!tcp_packets_in_flight(tp))
2073 return -1;
2074 else
2075 return 0;
2076 }
2077
2078 /* We're allowed to probe. Build it now. */
2079 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2080 if (!nskb)
2081 return -1;
2082 sk->sk_wmem_queued += nskb->truesize;
2083 sk_mem_charge(sk, nskb->truesize);
2084
2085 skb = tcp_send_head(sk);
2086
2087 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2088 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2089 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2090 TCP_SKB_CB(nskb)->sacked = 0;
2091 nskb->csum = 0;
2092 nskb->ip_summed = skb->ip_summed;
2093
2094 tcp_insert_write_queue_before(nskb, skb, sk);
2095
2096 len = 0;
2097 tcp_for_write_queue_from_safe(skb, next, sk) {
2098 copy = min_t(int, skb->len, probe_size - len);
2099 if (nskb->ip_summed) {
2100 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2101 } else {
2102 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2103 skb_put(nskb, copy),
2104 copy, 0);
2105 nskb->csum = csum_block_add(nskb->csum, csum, len);
2106 }
2107
2108 if (skb->len <= copy) {
2109 /* We've eaten all the data from this skb.
2110 * Throw it away. */
2111 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2112 tcp_unlink_write_queue(skb, sk);
2113 sk_wmem_free_skb(sk, skb);
2114 } else {
2115 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2116 ~(TCPHDR_FIN|TCPHDR_PSH);
2117 if (!skb_shinfo(skb)->nr_frags) {
2118 skb_pull(skb, copy);
2119 if (skb->ip_summed != CHECKSUM_PARTIAL)
2120 skb->csum = csum_partial(skb->data,
2121 skb->len, 0);
2122 } else {
2123 __pskb_trim_head(skb, copy);
2124 tcp_set_skb_tso_segs(skb, mss_now);
2125 }
2126 TCP_SKB_CB(skb)->seq += copy;
2127 }
2128
2129 len += copy;
2130
2131 if (len >= probe_size)
2132 break;
2133 }
2134 tcp_init_tso_segs(nskb, nskb->len);
2135
2136 /* We're ready to send. If this fails, the probe will
2137 * be resegmented into mss-sized pieces by tcp_write_xmit().
2138 */
2139 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2140 /* Decrement cwnd here because we are sending
2141 * effectively two packets. */
2142 tp->snd_cwnd--;
2143 tcp_event_new_data_sent(sk, nskb);
2144
2145 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2146 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2147 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2148
2149 return 1;
2150 }
2151
2152 return -1;
2153 }
2154
2155 static bool tcp_pacing_check(const struct sock *sk)
2156 {
2157 return tcp_needs_internal_pacing(sk) &&
2158 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2159 }
2160
2161 /* TCP Small Queues :
2162 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2163 * (These limits are doubled for retransmits)
2164 * This allows for :
2165 * - better RTT estimation and ACK scheduling
2166 * - faster recovery
2167 * - high rates
2168 * Alas, some drivers / subsystems require a fair amount
2169 * of queued bytes to ensure line rate.
2170 * One example is wifi aggregation (802.11 AMPDU)
2171 */
2172 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2173 unsigned int factor)
2174 {
2175 unsigned int limit;
2176
2177 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2178 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2179 limit <<= factor;
2180
2181 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2182 /* Always send the 1st or 2nd skb in write queue.
2183 * No need to wait for TX completion to call us back,
2184 * after softirq/tasklet schedule.
2185 * This helps when TX completions are delayed too much.
2186 */
2187 if (skb == sk->sk_write_queue.next ||
2188 skb->prev == sk->sk_write_queue.next)
2189 return false;
2190
2191 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2192 /* It is possible TX completion already happened
2193 * before we set TSQ_THROTTLED, so we must
2194 * test again the condition.
2195 */
2196 smp_mb__after_atomic();
2197 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2198 return true;
2199 }
2200 return false;
2201 }
2202
2203 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2204 {
2205 const u32 now = tcp_jiffies32;
2206
2207 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2208 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2209 tp->chrono_start = now;
2210 tp->chrono_type = new;
2211 }
2212
2213 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2214 {
2215 struct tcp_sock *tp = tcp_sk(sk);
2216
2217 /* If there are multiple conditions worthy of tracking in a
2218 * chronograph then the highest priority enum takes precedence
2219 * over the other conditions. So that if something "more interesting"
2220 * starts happening, stop the previous chrono and start a new one.
2221 */
2222 if (type > tp->chrono_type)
2223 tcp_chrono_set(tp, type);
2224 }
2225
2226 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2227 {
2228 struct tcp_sock *tp = tcp_sk(sk);
2229
2230
2231 /* There are multiple conditions worthy of tracking in a
2232 * chronograph, so that the highest priority enum takes
2233 * precedence over the other conditions (see tcp_chrono_start).
2234 * If a condition stops, we only stop chrono tracking if
2235 * it's the "most interesting" or current chrono we are
2236 * tracking and starts busy chrono if we have pending data.
2237 */
2238 if (tcp_write_queue_empty(sk))
2239 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2240 else if (type == tp->chrono_type)
2241 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2242 }
2243
2244 /* This routine writes packets to the network. It advances the
2245 * send_head. This happens as incoming acks open up the remote
2246 * window for us.
2247 *
2248 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2249 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2250 * account rare use of URG, this is not a big flaw.
2251 *
2252 * Send at most one packet when push_one > 0. Temporarily ignore
2253 * cwnd limit to force at most one packet out when push_one == 2.
2254
2255 * Returns true, if no segments are in flight and we have queued segments,
2256 * but cannot send anything now because of SWS or another problem.
2257 */
2258 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2259 int push_one, gfp_t gfp)
2260 {
2261 struct tcp_sock *tp = tcp_sk(sk);
2262 struct sk_buff *skb;
2263 unsigned int tso_segs, sent_pkts;
2264 int cwnd_quota;
2265 int result;
2266 bool is_cwnd_limited = false, is_rwnd_limited = false;
2267 u32 max_segs;
2268
2269 sent_pkts = 0;
2270
2271 if (!push_one) {
2272 /* Do MTU probing. */
2273 result = tcp_mtu_probe(sk);
2274 if (!result) {
2275 return false;
2276 } else if (result > 0) {
2277 sent_pkts = 1;
2278 }
2279 }
2280
2281 max_segs = tcp_tso_segs(sk, mss_now);
2282 skb_mstamp_get(&tp->tcp_mstamp);
2283 while ((skb = tcp_send_head(sk))) {
2284 unsigned int limit;
2285
2286 if (tcp_pacing_check(sk))
2287 break;
2288
2289 tso_segs = tcp_init_tso_segs(skb, mss_now);
2290 BUG_ON(!tso_segs);
2291
2292 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2293 /* "skb_mstamp" is used as a start point for the retransmit timer */
2294 skb->skb_mstamp = tp->tcp_mstamp;
2295 goto repair; /* Skip network transmission */
2296 }
2297
2298 cwnd_quota = tcp_cwnd_test(tp, skb);
2299 if (!cwnd_quota) {
2300 if (push_one == 2)
2301 /* Force out a loss probe pkt. */
2302 cwnd_quota = 1;
2303 else
2304 break;
2305 }
2306
2307 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2308 is_rwnd_limited = true;
2309 break;
2310 }
2311
2312 if (tso_segs == 1) {
2313 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2314 (tcp_skb_is_last(sk, skb) ?
2315 nonagle : TCP_NAGLE_PUSH))))
2316 break;
2317 } else {
2318 if (!push_one &&
2319 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2320 max_segs))
2321 break;
2322 }
2323
2324 limit = mss_now;
2325 if (tso_segs > 1 && !tcp_urg_mode(tp))
2326 limit = tcp_mss_split_point(sk, skb, mss_now,
2327 min_t(unsigned int,
2328 cwnd_quota,
2329 max_segs),
2330 nonagle);
2331
2332 if (skb->len > limit &&
2333 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2334 break;
2335
2336 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2337 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2338 if (tcp_small_queue_check(sk, skb, 0))
2339 break;
2340
2341 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2342 break;
2343
2344 repair:
2345 /* Advance the send_head. This one is sent out.
2346 * This call will increment packets_out.
2347 */
2348 tcp_event_new_data_sent(sk, skb);
2349
2350 tcp_minshall_update(tp, mss_now, skb);
2351 sent_pkts += tcp_skb_pcount(skb);
2352
2353 if (push_one)
2354 break;
2355 }
2356
2357 if (is_rwnd_limited)
2358 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2359 else
2360 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2361
2362 if (likely(sent_pkts)) {
2363 if (tcp_in_cwnd_reduction(sk))
2364 tp->prr_out += sent_pkts;
2365
2366 /* Send one loss probe per tail loss episode. */
2367 if (push_one != 2)
2368 tcp_schedule_loss_probe(sk);
2369 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2370 tcp_cwnd_validate(sk, is_cwnd_limited);
2371 return false;
2372 }
2373 return !tp->packets_out && tcp_send_head(sk);
2374 }
2375
2376 bool tcp_schedule_loss_probe(struct sock *sk)
2377 {
2378 struct inet_connection_sock *icsk = inet_csk(sk);
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 u32 timeout, tlp_time_stamp, rto_time_stamp;
2381 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2382
2383 /* No consecutive loss probes. */
2384 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2385 tcp_rearm_rto(sk);
2386 return false;
2387 }
2388 /* Don't do any loss probe on a Fast Open connection before 3WHS
2389 * finishes.
2390 */
2391 if (tp->fastopen_rsk)
2392 return false;
2393
2394 /* TLP is only scheduled when next timer event is RTO. */
2395 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2396 return false;
2397
2398 /* Schedule a loss probe in 2*RTT for SACK capable connections
2399 * in Open state, that are either limited by cwnd or application.
2400 */
2401 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2402 !tp->packets_out || !tcp_is_sack(tp) ||
2403 icsk->icsk_ca_state != TCP_CA_Open)
2404 return false;
2405
2406 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2407 tcp_send_head(sk))
2408 return false;
2409
2410 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2411 * for delayed ack when there's one outstanding packet. If no RTT
2412 * sample is available then probe after TCP_TIMEOUT_INIT.
2413 */
2414 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2415 if (tp->packets_out == 1)
2416 timeout = max_t(u32, timeout,
2417 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2418 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2419
2420 /* If RTO is shorter, just schedule TLP in its place. */
2421 tlp_time_stamp = tcp_time_stamp + timeout;
2422 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2423 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2424 s32 delta = rto_time_stamp - tcp_time_stamp;
2425 if (delta > 0)
2426 timeout = delta;
2427 }
2428
2429 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2430 TCP_RTO_MAX);
2431 return true;
2432 }
2433
2434 /* Thanks to skb fast clones, we can detect if a prior transmit of
2435 * a packet is still in a qdisc or driver queue.
2436 * In this case, there is very little point doing a retransmit !
2437 */
2438 static bool skb_still_in_host_queue(const struct sock *sk,
2439 const struct sk_buff *skb)
2440 {
2441 if (unlikely(skb_fclone_busy(sk, skb))) {
2442 NET_INC_STATS(sock_net(sk),
2443 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2444 return true;
2445 }
2446 return false;
2447 }
2448
2449 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2450 * retransmit the last segment.
2451 */
2452 void tcp_send_loss_probe(struct sock *sk)
2453 {
2454 struct tcp_sock *tp = tcp_sk(sk);
2455 struct sk_buff *skb;
2456 int pcount;
2457 int mss = tcp_current_mss(sk);
2458
2459 skb = tcp_send_head(sk);
2460 if (skb) {
2461 if (tcp_snd_wnd_test(tp, skb, mss)) {
2462 pcount = tp->packets_out;
2463 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2464 if (tp->packets_out > pcount)
2465 goto probe_sent;
2466 goto rearm_timer;
2467 }
2468 skb = tcp_write_queue_prev(sk, skb);
2469 } else {
2470 skb = tcp_write_queue_tail(sk);
2471 }
2472
2473 /* At most one outstanding TLP retransmission. */
2474 if (tp->tlp_high_seq)
2475 goto rearm_timer;
2476
2477 /* Retransmit last segment. */
2478 if (WARN_ON(!skb))
2479 goto rearm_timer;
2480
2481 if (skb_still_in_host_queue(sk, skb))
2482 goto rearm_timer;
2483
2484 pcount = tcp_skb_pcount(skb);
2485 if (WARN_ON(!pcount))
2486 goto rearm_timer;
2487
2488 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2489 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2490 GFP_ATOMIC)))
2491 goto rearm_timer;
2492 skb = tcp_write_queue_next(sk, skb);
2493 }
2494
2495 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2496 goto rearm_timer;
2497
2498 if (__tcp_retransmit_skb(sk, skb, 1))
2499 goto rearm_timer;
2500
2501 /* Record snd_nxt for loss detection. */
2502 tp->tlp_high_seq = tp->snd_nxt;
2503
2504 probe_sent:
2505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2506 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2507 inet_csk(sk)->icsk_pending = 0;
2508 rearm_timer:
2509 tcp_rearm_rto(sk);
2510 }
2511
2512 /* Push out any pending frames which were held back due to
2513 * TCP_CORK or attempt at coalescing tiny packets.
2514 * The socket must be locked by the caller.
2515 */
2516 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2517 int nonagle)
2518 {
2519 /* If we are closed, the bytes will have to remain here.
2520 * In time closedown will finish, we empty the write queue and
2521 * all will be happy.
2522 */
2523 if (unlikely(sk->sk_state == TCP_CLOSE))
2524 return;
2525
2526 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2527 sk_gfp_mask(sk, GFP_ATOMIC)))
2528 tcp_check_probe_timer(sk);
2529 }
2530
2531 /* Send _single_ skb sitting at the send head. This function requires
2532 * true push pending frames to setup probe timer etc.
2533 */
2534 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2535 {
2536 struct sk_buff *skb = tcp_send_head(sk);
2537
2538 BUG_ON(!skb || skb->len < mss_now);
2539
2540 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2541 }
2542
2543 /* This function returns the amount that we can raise the
2544 * usable window based on the following constraints
2545 *
2546 * 1. The window can never be shrunk once it is offered (RFC 793)
2547 * 2. We limit memory per socket
2548 *
2549 * RFC 1122:
2550 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2551 * RECV.NEXT + RCV.WIN fixed until:
2552 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2553 *
2554 * i.e. don't raise the right edge of the window until you can raise
2555 * it at least MSS bytes.
2556 *
2557 * Unfortunately, the recommended algorithm breaks header prediction,
2558 * since header prediction assumes th->window stays fixed.
2559 *
2560 * Strictly speaking, keeping th->window fixed violates the receiver
2561 * side SWS prevention criteria. The problem is that under this rule
2562 * a stream of single byte packets will cause the right side of the
2563 * window to always advance by a single byte.
2564 *
2565 * Of course, if the sender implements sender side SWS prevention
2566 * then this will not be a problem.
2567 *
2568 * BSD seems to make the following compromise:
2569 *
2570 * If the free space is less than the 1/4 of the maximum
2571 * space available and the free space is less than 1/2 mss,
2572 * then set the window to 0.
2573 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2574 * Otherwise, just prevent the window from shrinking
2575 * and from being larger than the largest representable value.
2576 *
2577 * This prevents incremental opening of the window in the regime
2578 * where TCP is limited by the speed of the reader side taking
2579 * data out of the TCP receive queue. It does nothing about
2580 * those cases where the window is constrained on the sender side
2581 * because the pipeline is full.
2582 *
2583 * BSD also seems to "accidentally" limit itself to windows that are a
2584 * multiple of MSS, at least until the free space gets quite small.
2585 * This would appear to be a side effect of the mbuf implementation.
2586 * Combining these two algorithms results in the observed behavior
2587 * of having a fixed window size at almost all times.
2588 *
2589 * Below we obtain similar behavior by forcing the offered window to
2590 * a multiple of the mss when it is feasible to do so.
2591 *
2592 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2593 * Regular options like TIMESTAMP are taken into account.
2594 */
2595 u32 __tcp_select_window(struct sock *sk)
2596 {
2597 struct inet_connection_sock *icsk = inet_csk(sk);
2598 struct tcp_sock *tp = tcp_sk(sk);
2599 /* MSS for the peer's data. Previous versions used mss_clamp
2600 * here. I don't know if the value based on our guesses
2601 * of peer's MSS is better for the performance. It's more correct
2602 * but may be worse for the performance because of rcv_mss
2603 * fluctuations. --SAW 1998/11/1
2604 */
2605 int mss = icsk->icsk_ack.rcv_mss;
2606 int free_space = tcp_space(sk);
2607 int allowed_space = tcp_full_space(sk);
2608 int full_space = min_t(int, tp->window_clamp, allowed_space);
2609 int window;
2610
2611 if (unlikely(mss > full_space)) {
2612 mss = full_space;
2613 if (mss <= 0)
2614 return 0;
2615 }
2616 if (free_space < (full_space >> 1)) {
2617 icsk->icsk_ack.quick = 0;
2618
2619 if (tcp_under_memory_pressure(sk))
2620 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2621 4U * tp->advmss);
2622
2623 /* free_space might become our new window, make sure we don't
2624 * increase it due to wscale.
2625 */
2626 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2627
2628 /* if free space is less than mss estimate, or is below 1/16th
2629 * of the maximum allowed, try to move to zero-window, else
2630 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2631 * new incoming data is dropped due to memory limits.
2632 * With large window, mss test triggers way too late in order
2633 * to announce zero window in time before rmem limit kicks in.
2634 */
2635 if (free_space < (allowed_space >> 4) || free_space < mss)
2636 return 0;
2637 }
2638
2639 if (free_space > tp->rcv_ssthresh)
2640 free_space = tp->rcv_ssthresh;
2641
2642 /* Don't do rounding if we are using window scaling, since the
2643 * scaled window will not line up with the MSS boundary anyway.
2644 */
2645 if (tp->rx_opt.rcv_wscale) {
2646 window = free_space;
2647
2648 /* Advertise enough space so that it won't get scaled away.
2649 * Import case: prevent zero window announcement if
2650 * 1<<rcv_wscale > mss.
2651 */
2652 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2653 } else {
2654 window = tp->rcv_wnd;
2655 /* Get the largest window that is a nice multiple of mss.
2656 * Window clamp already applied above.
2657 * If our current window offering is within 1 mss of the
2658 * free space we just keep it. This prevents the divide
2659 * and multiply from happening most of the time.
2660 * We also don't do any window rounding when the free space
2661 * is too small.
2662 */
2663 if (window <= free_space - mss || window > free_space)
2664 window = rounddown(free_space, mss);
2665 else if (mss == full_space &&
2666 free_space > window + (full_space >> 1))
2667 window = free_space;
2668 }
2669
2670 return window;
2671 }
2672
2673 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2674 const struct sk_buff *next_skb)
2675 {
2676 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2677 const struct skb_shared_info *next_shinfo =
2678 skb_shinfo(next_skb);
2679 struct skb_shared_info *shinfo = skb_shinfo(skb);
2680
2681 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2682 shinfo->tskey = next_shinfo->tskey;
2683 TCP_SKB_CB(skb)->txstamp_ack |=
2684 TCP_SKB_CB(next_skb)->txstamp_ack;
2685 }
2686 }
2687
2688 /* Collapses two adjacent SKB's during retransmission. */
2689 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2690 {
2691 struct tcp_sock *tp = tcp_sk(sk);
2692 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2693 int skb_size, next_skb_size;
2694
2695 skb_size = skb->len;
2696 next_skb_size = next_skb->len;
2697
2698 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2699
2700 if (next_skb_size) {
2701 if (next_skb_size <= skb_availroom(skb))
2702 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2703 next_skb_size);
2704 else if (!skb_shift(skb, next_skb, next_skb_size))
2705 return false;
2706 }
2707 tcp_highest_sack_combine(sk, next_skb, skb);
2708
2709 tcp_unlink_write_queue(next_skb, sk);
2710
2711 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2712 skb->ip_summed = CHECKSUM_PARTIAL;
2713
2714 if (skb->ip_summed != CHECKSUM_PARTIAL)
2715 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2716
2717 /* Update sequence range on original skb. */
2718 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2719
2720 /* Merge over control information. This moves PSH/FIN etc. over */
2721 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2722
2723 /* All done, get rid of second SKB and account for it so
2724 * packet counting does not break.
2725 */
2726 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2727 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2728
2729 /* changed transmit queue under us so clear hints */
2730 tcp_clear_retrans_hints_partial(tp);
2731 if (next_skb == tp->retransmit_skb_hint)
2732 tp->retransmit_skb_hint = skb;
2733
2734 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2735
2736 tcp_skb_collapse_tstamp(skb, next_skb);
2737
2738 sk_wmem_free_skb(sk, next_skb);
2739 return true;
2740 }
2741
2742 /* Check if coalescing SKBs is legal. */
2743 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2744 {
2745 if (tcp_skb_pcount(skb) > 1)
2746 return false;
2747 if (skb_cloned(skb))
2748 return false;
2749 if (skb == tcp_send_head(sk))
2750 return false;
2751 /* Some heuristics for collapsing over SACK'd could be invented */
2752 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2753 return false;
2754
2755 return true;
2756 }
2757
2758 /* Collapse packets in the retransmit queue to make to create
2759 * less packets on the wire. This is only done on retransmission.
2760 */
2761 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2762 int space)
2763 {
2764 struct tcp_sock *tp = tcp_sk(sk);
2765 struct sk_buff *skb = to, *tmp;
2766 bool first = true;
2767
2768 if (!sysctl_tcp_retrans_collapse)
2769 return;
2770 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2771 return;
2772
2773 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2774 if (!tcp_can_collapse(sk, skb))
2775 break;
2776
2777 if (!tcp_skb_can_collapse_to(to))
2778 break;
2779
2780 space -= skb->len;
2781
2782 if (first) {
2783 first = false;
2784 continue;
2785 }
2786
2787 if (space < 0)
2788 break;
2789
2790 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2791 break;
2792
2793 if (!tcp_collapse_retrans(sk, to))
2794 break;
2795 }
2796 }
2797
2798 /* This retransmits one SKB. Policy decisions and retransmit queue
2799 * state updates are done by the caller. Returns non-zero if an
2800 * error occurred which prevented the send.
2801 */
2802 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2803 {
2804 struct inet_connection_sock *icsk = inet_csk(sk);
2805 struct tcp_sock *tp = tcp_sk(sk);
2806 unsigned int cur_mss;
2807 int diff, len, err;
2808
2809
2810 /* Inconclusive MTU probe */
2811 if (icsk->icsk_mtup.probe_size)
2812 icsk->icsk_mtup.probe_size = 0;
2813
2814 /* Do not sent more than we queued. 1/4 is reserved for possible
2815 * copying overhead: fragmentation, tunneling, mangling etc.
2816 */
2817 if (atomic_read(&sk->sk_wmem_alloc) >
2818 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2819 sk->sk_sndbuf))
2820 return -EAGAIN;
2821
2822 if (skb_still_in_host_queue(sk, skb))
2823 return -EBUSY;
2824
2825 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2826 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2827 BUG();
2828 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2829 return -ENOMEM;
2830 }
2831
2832 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2833 return -EHOSTUNREACH; /* Routing failure or similar. */
2834
2835 cur_mss = tcp_current_mss(sk);
2836
2837 /* If receiver has shrunk his window, and skb is out of
2838 * new window, do not retransmit it. The exception is the
2839 * case, when window is shrunk to zero. In this case
2840 * our retransmit serves as a zero window probe.
2841 */
2842 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2843 TCP_SKB_CB(skb)->seq != tp->snd_una)
2844 return -EAGAIN;
2845
2846 len = cur_mss * segs;
2847 if (skb->len > len) {
2848 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2849 return -ENOMEM; /* We'll try again later. */
2850 } else {
2851 if (skb_unclone(skb, GFP_ATOMIC))
2852 return -ENOMEM;
2853
2854 diff = tcp_skb_pcount(skb);
2855 tcp_set_skb_tso_segs(skb, cur_mss);
2856 diff -= tcp_skb_pcount(skb);
2857 if (diff)
2858 tcp_adjust_pcount(sk, skb, diff);
2859 if (skb->len < cur_mss)
2860 tcp_retrans_try_collapse(sk, skb, cur_mss);
2861 }
2862
2863 /* RFC3168, section 6.1.1.1. ECN fallback */
2864 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2865 tcp_ecn_clear_syn(sk, skb);
2866
2867 /* Update global and local TCP statistics. */
2868 segs = tcp_skb_pcount(skb);
2869 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2870 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2871 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2872 tp->total_retrans += segs;
2873
2874 /* make sure skb->data is aligned on arches that require it
2875 * and check if ack-trimming & collapsing extended the headroom
2876 * beyond what csum_start can cover.
2877 */
2878 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2879 skb_headroom(skb) >= 0xFFFF)) {
2880 struct sk_buff *nskb;
2881
2882 skb->skb_mstamp = tp->tcp_mstamp;
2883 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2884 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2885 -ENOBUFS;
2886 } else {
2887 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2888 }
2889
2890 if (likely(!err)) {
2891 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2892 } else if (err != -EBUSY) {
2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2894 }
2895 return err;
2896 }
2897
2898 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2899 {
2900 struct tcp_sock *tp = tcp_sk(sk);
2901 int err = __tcp_retransmit_skb(sk, skb, segs);
2902
2903 if (err == 0) {
2904 #if FASTRETRANS_DEBUG > 0
2905 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906 net_dbg_ratelimited("retrans_out leaked\n");
2907 }
2908 #endif
2909 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2910 tp->retrans_out += tcp_skb_pcount(skb);
2911
2912 /* Save stamp of the first retransmit. */
2913 if (!tp->retrans_stamp)
2914 tp->retrans_stamp = tcp_skb_timestamp(skb);
2915
2916 }
2917
2918 if (tp->undo_retrans < 0)
2919 tp->undo_retrans = 0;
2920 tp->undo_retrans += tcp_skb_pcount(skb);
2921 return err;
2922 }
2923
2924 /* This gets called after a retransmit timeout, and the initially
2925 * retransmitted data is acknowledged. It tries to continue
2926 * resending the rest of the retransmit queue, until either
2927 * we've sent it all or the congestion window limit is reached.
2928 * If doing SACK, the first ACK which comes back for a timeout
2929 * based retransmit packet might feed us FACK information again.
2930 * If so, we use it to avoid unnecessarily retransmissions.
2931 */
2932 void tcp_xmit_retransmit_queue(struct sock *sk)
2933 {
2934 const struct inet_connection_sock *icsk = inet_csk(sk);
2935 struct tcp_sock *tp = tcp_sk(sk);
2936 struct sk_buff *skb;
2937 struct sk_buff *hole = NULL;
2938 u32 max_segs;
2939 int mib_idx;
2940
2941 if (!tp->packets_out)
2942 return;
2943
2944 if (tp->retransmit_skb_hint) {
2945 skb = tp->retransmit_skb_hint;
2946 } else {
2947 skb = tcp_write_queue_head(sk);
2948 }
2949
2950 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2951 tcp_for_write_queue_from(skb, sk) {
2952 __u8 sacked;
2953 int segs;
2954
2955 if (skb == tcp_send_head(sk))
2956 break;
2957
2958 if (tcp_pacing_check(sk))
2959 break;
2960
2961 /* we could do better than to assign each time */
2962 if (!hole)
2963 tp->retransmit_skb_hint = skb;
2964
2965 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2966 if (segs <= 0)
2967 return;
2968 sacked = TCP_SKB_CB(skb)->sacked;
2969 /* In case tcp_shift_skb_data() have aggregated large skbs,
2970 * we need to make sure not sending too bigs TSO packets
2971 */
2972 segs = min_t(int, segs, max_segs);
2973
2974 if (tp->retrans_out >= tp->lost_out) {
2975 break;
2976 } else if (!(sacked & TCPCB_LOST)) {
2977 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2978 hole = skb;
2979 continue;
2980
2981 } else {
2982 if (icsk->icsk_ca_state != TCP_CA_Loss)
2983 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2984 else
2985 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2986 }
2987
2988 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2989 continue;
2990
2991 if (tcp_small_queue_check(sk, skb, 1))
2992 return;
2993
2994 if (tcp_retransmit_skb(sk, skb, segs))
2995 return;
2996
2997 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2998
2999 if (tcp_in_cwnd_reduction(sk))
3000 tp->prr_out += tcp_skb_pcount(skb);
3001
3002 if (skb == tcp_write_queue_head(sk) &&
3003 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3004 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3005 inet_csk(sk)->icsk_rto,
3006 TCP_RTO_MAX);
3007 }
3008 }
3009
3010 /* We allow to exceed memory limits for FIN packets to expedite
3011 * connection tear down and (memory) recovery.
3012 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3013 * or even be forced to close flow without any FIN.
3014 * In general, we want to allow one skb per socket to avoid hangs
3015 * with edge trigger epoll()
3016 */
3017 void sk_forced_mem_schedule(struct sock *sk, int size)
3018 {
3019 int amt;
3020
3021 if (size <= sk->sk_forward_alloc)
3022 return;
3023 amt = sk_mem_pages(size);
3024 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3025 sk_memory_allocated_add(sk, amt);
3026
3027 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3028 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3029 }
3030
3031 /* Send a FIN. The caller locks the socket for us.
3032 * We should try to send a FIN packet really hard, but eventually give up.
3033 */
3034 void tcp_send_fin(struct sock *sk)
3035 {
3036 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3037 struct tcp_sock *tp = tcp_sk(sk);
3038
3039 /* Optimization, tack on the FIN if we have one skb in write queue and
3040 * this skb was not yet sent, or we are under memory pressure.
3041 * Note: in the latter case, FIN packet will be sent after a timeout,
3042 * as TCP stack thinks it has already been transmitted.
3043 */
3044 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3045 coalesce:
3046 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3047 TCP_SKB_CB(tskb)->end_seq++;
3048 tp->write_seq++;
3049 if (!tcp_send_head(sk)) {
3050 /* This means tskb was already sent.
3051 * Pretend we included the FIN on previous transmit.
3052 * We need to set tp->snd_nxt to the value it would have
3053 * if FIN had been sent. This is because retransmit path
3054 * does not change tp->snd_nxt.
3055 */
3056 tp->snd_nxt++;
3057 return;
3058 }
3059 } else {
3060 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3061 if (unlikely(!skb)) {
3062 if (tskb)
3063 goto coalesce;
3064 return;
3065 }
3066 skb_reserve(skb, MAX_TCP_HEADER);
3067 sk_forced_mem_schedule(sk, skb->truesize);
3068 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3069 tcp_init_nondata_skb(skb, tp->write_seq,
3070 TCPHDR_ACK | TCPHDR_FIN);
3071 tcp_queue_skb(sk, skb);
3072 }
3073 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3074 }
3075
3076 /* We get here when a process closes a file descriptor (either due to
3077 * an explicit close() or as a byproduct of exit()'ing) and there
3078 * was unread data in the receive queue. This behavior is recommended
3079 * by RFC 2525, section 2.17. -DaveM
3080 */
3081 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3082 {
3083 struct sk_buff *skb;
3084
3085 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3086
3087 /* NOTE: No TCP options attached and we never retransmit this. */
3088 skb = alloc_skb(MAX_TCP_HEADER, priority);
3089 if (!skb) {
3090 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3091 return;
3092 }
3093
3094 /* Reserve space for headers and prepare control bits. */
3095 skb_reserve(skb, MAX_TCP_HEADER);
3096 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3097 TCPHDR_ACK | TCPHDR_RST);
3098 skb_mstamp_get(&tcp_sk(sk)->tcp_mstamp);
3099 /* Send it off. */
3100 if (tcp_transmit_skb(sk, skb, 0, priority))
3101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3102 }
3103
3104 /* Send a crossed SYN-ACK during socket establishment.
3105 * WARNING: This routine must only be called when we have already sent
3106 * a SYN packet that crossed the incoming SYN that caused this routine
3107 * to get called. If this assumption fails then the initial rcv_wnd
3108 * and rcv_wscale values will not be correct.
3109 */
3110 int tcp_send_synack(struct sock *sk)
3111 {
3112 struct sk_buff *skb;
3113
3114 skb = tcp_write_queue_head(sk);
3115 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3116 pr_debug("%s: wrong queue state\n", __func__);
3117 return -EFAULT;
3118 }
3119 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3120 if (skb_cloned(skb)) {
3121 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3122 if (!nskb)
3123 return -ENOMEM;
3124 tcp_unlink_write_queue(skb, sk);
3125 __skb_header_release(nskb);
3126 __tcp_add_write_queue_head(sk, nskb);
3127 sk_wmem_free_skb(sk, skb);
3128 sk->sk_wmem_queued += nskb->truesize;
3129 sk_mem_charge(sk, nskb->truesize);
3130 skb = nskb;
3131 }
3132
3133 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3134 tcp_ecn_send_synack(sk, skb);
3135 }
3136 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3137 }
3138
3139 /**
3140 * tcp_make_synack - Prepare a SYN-ACK.
3141 * sk: listener socket
3142 * dst: dst entry attached to the SYNACK
3143 * req: request_sock pointer
3144 *
3145 * Allocate one skb and build a SYNACK packet.
3146 * @dst is consumed : Caller should not use it again.
3147 */
3148 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3149 struct request_sock *req,
3150 struct tcp_fastopen_cookie *foc,
3151 enum tcp_synack_type synack_type)
3152 {
3153 struct inet_request_sock *ireq = inet_rsk(req);
3154 const struct tcp_sock *tp = tcp_sk(sk);
3155 struct tcp_md5sig_key *md5 = NULL;
3156 struct tcp_out_options opts;
3157 struct sk_buff *skb;
3158 int tcp_header_size;
3159 struct tcphdr *th;
3160 int mss;
3161
3162 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3163 if (unlikely(!skb)) {
3164 dst_release(dst);
3165 return NULL;
3166 }
3167 /* Reserve space for headers. */
3168 skb_reserve(skb, MAX_TCP_HEADER);
3169
3170 switch (synack_type) {
3171 case TCP_SYNACK_NORMAL:
3172 skb_set_owner_w(skb, req_to_sk(req));
3173 break;
3174 case TCP_SYNACK_COOKIE:
3175 /* Under synflood, we do not attach skb to a socket,
3176 * to avoid false sharing.
3177 */
3178 break;
3179 case TCP_SYNACK_FASTOPEN:
3180 /* sk is a const pointer, because we want to express multiple
3181 * cpu might call us concurrently.
3182 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3183 */
3184 skb_set_owner_w(skb, (struct sock *)sk);
3185 break;
3186 }
3187 skb_dst_set(skb, dst);
3188
3189 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3190
3191 memset(&opts, 0, sizeof(opts));
3192 #ifdef CONFIG_SYN_COOKIES
3193 if (unlikely(req->cookie_ts))
3194 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3195 else
3196 #endif
3197 skb_mstamp_get(&skb->skb_mstamp);
3198
3199 #ifdef CONFIG_TCP_MD5SIG
3200 rcu_read_lock();
3201 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3202 #endif
3203 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3204 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3205 sizeof(*th);
3206
3207 skb_push(skb, tcp_header_size);
3208 skb_reset_transport_header(skb);
3209
3210 th = (struct tcphdr *)skb->data;
3211 memset(th, 0, sizeof(struct tcphdr));
3212 th->syn = 1;
3213 th->ack = 1;
3214 tcp_ecn_make_synack(req, th);
3215 th->source = htons(ireq->ir_num);
3216 th->dest = ireq->ir_rmt_port;
3217 /* Setting of flags are superfluous here for callers (and ECE is
3218 * not even correctly set)
3219 */
3220 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3221 TCPHDR_SYN | TCPHDR_ACK);
3222
3223 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3224 /* XXX data is queued and acked as is. No buffer/window check */
3225 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3226
3227 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3228 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3229 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3230 th->doff = (tcp_header_size >> 2);
3231 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3232
3233 #ifdef CONFIG_TCP_MD5SIG
3234 /* Okay, we have all we need - do the md5 hash if needed */
3235 if (md5)
3236 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3237 md5, req_to_sk(req), skb);
3238 rcu_read_unlock();
3239 #endif
3240
3241 /* Do not fool tcpdump (if any), clean our debris */
3242 skb->tstamp = 0;
3243 return skb;
3244 }
3245 EXPORT_SYMBOL(tcp_make_synack);
3246
3247 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3248 {
3249 struct inet_connection_sock *icsk = inet_csk(sk);
3250 const struct tcp_congestion_ops *ca;
3251 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3252
3253 if (ca_key == TCP_CA_UNSPEC)
3254 return;
3255
3256 rcu_read_lock();
3257 ca = tcp_ca_find_key(ca_key);
3258 if (likely(ca && try_module_get(ca->owner))) {
3259 module_put(icsk->icsk_ca_ops->owner);
3260 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3261 icsk->icsk_ca_ops = ca;
3262 }
3263 rcu_read_unlock();
3264 }
3265
3266 /* Do all connect socket setups that can be done AF independent. */
3267 static void tcp_connect_init(struct sock *sk)
3268 {
3269 const struct dst_entry *dst = __sk_dst_get(sk);
3270 struct tcp_sock *tp = tcp_sk(sk);
3271 __u8 rcv_wscale;
3272
3273 /* We'll fix this up when we get a response from the other end.
3274 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3275 */
3276 tp->tcp_header_len = sizeof(struct tcphdr) +
3277 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3278
3279 #ifdef CONFIG_TCP_MD5SIG
3280 if (tp->af_specific->md5_lookup(sk, sk))
3281 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3282 #endif
3283
3284 /* If user gave his TCP_MAXSEG, record it to clamp */
3285 if (tp->rx_opt.user_mss)
3286 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3287 tp->max_window = 0;
3288 tcp_mtup_init(sk);
3289 tcp_sync_mss(sk, dst_mtu(dst));
3290
3291 tcp_ca_dst_init(sk, dst);
3292
3293 if (!tp->window_clamp)
3294 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3295 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3296
3297 tcp_initialize_rcv_mss(sk);
3298
3299 /* limit the window selection if the user enforce a smaller rx buffer */
3300 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3301 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3302 tp->window_clamp = tcp_full_space(sk);
3303
3304 tcp_select_initial_window(tcp_full_space(sk),
3305 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3306 &tp->rcv_wnd,
3307 &tp->window_clamp,
3308 sysctl_tcp_window_scaling,
3309 &rcv_wscale,
3310 dst_metric(dst, RTAX_INITRWND));
3311
3312 tp->rx_opt.rcv_wscale = rcv_wscale;
3313 tp->rcv_ssthresh = tp->rcv_wnd;
3314
3315 sk->sk_err = 0;
3316 sock_reset_flag(sk, SOCK_DONE);
3317 tp->snd_wnd = 0;
3318 tcp_init_wl(tp, 0);
3319 tp->snd_una = tp->write_seq;
3320 tp->snd_sml = tp->write_seq;
3321 tp->snd_up = tp->write_seq;
3322 tp->snd_nxt = tp->write_seq;
3323
3324 if (likely(!tp->repair))
3325 tp->rcv_nxt = 0;
3326 else
3327 tp->rcv_tstamp = tcp_jiffies32;
3328 tp->rcv_wup = tp->rcv_nxt;
3329 tp->copied_seq = tp->rcv_nxt;
3330
3331 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3332 inet_csk(sk)->icsk_retransmits = 0;
3333 tcp_clear_retrans(tp);
3334 }
3335
3336 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3337 {
3338 struct tcp_sock *tp = tcp_sk(sk);
3339 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3340
3341 tcb->end_seq += skb->len;
3342 __skb_header_release(skb);
3343 __tcp_add_write_queue_tail(sk, skb);
3344 sk->sk_wmem_queued += skb->truesize;
3345 sk_mem_charge(sk, skb->truesize);
3346 tp->write_seq = tcb->end_seq;
3347 tp->packets_out += tcp_skb_pcount(skb);
3348 }
3349
3350 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3351 * queue a data-only packet after the regular SYN, such that regular SYNs
3352 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3353 * only the SYN sequence, the data are retransmitted in the first ACK.
3354 * If cookie is not cached or other error occurs, falls back to send a
3355 * regular SYN with Fast Open cookie request option.
3356 */
3357 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3358 {
3359 struct tcp_sock *tp = tcp_sk(sk);
3360 struct tcp_fastopen_request *fo = tp->fastopen_req;
3361 int space, err = 0;
3362 struct sk_buff *syn_data;
3363
3364 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3365 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3366 goto fallback;
3367
3368 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3369 * user-MSS. Reserve maximum option space for middleboxes that add
3370 * private TCP options. The cost is reduced data space in SYN :(
3371 */
3372 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3373
3374 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3375 MAX_TCP_OPTION_SPACE;
3376
3377 space = min_t(size_t, space, fo->size);
3378
3379 /* limit to order-0 allocations */
3380 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3381
3382 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3383 if (!syn_data)
3384 goto fallback;
3385 syn_data->ip_summed = CHECKSUM_PARTIAL;
3386 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3387 if (space) {
3388 int copied = copy_from_iter(skb_put(syn_data, space), space,
3389 &fo->data->msg_iter);
3390 if (unlikely(!copied)) {
3391 kfree_skb(syn_data);
3392 goto fallback;
3393 }
3394 if (copied != space) {
3395 skb_trim(syn_data, copied);
3396 space = copied;
3397 }
3398 }
3399 /* No more data pending in inet_wait_for_connect() */
3400 if (space == fo->size)
3401 fo->data = NULL;
3402 fo->copied = space;
3403
3404 tcp_connect_queue_skb(sk, syn_data);
3405 if (syn_data->len)
3406 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3407
3408 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3409
3410 syn->skb_mstamp = syn_data->skb_mstamp;
3411
3412 /* Now full SYN+DATA was cloned and sent (or not),
3413 * remove the SYN from the original skb (syn_data)
3414 * we keep in write queue in case of a retransmit, as we
3415 * also have the SYN packet (with no data) in the same queue.
3416 */
3417 TCP_SKB_CB(syn_data)->seq++;
3418 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3419 if (!err) {
3420 tp->syn_data = (fo->copied > 0);
3421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3422 goto done;
3423 }
3424
3425 fallback:
3426 /* Send a regular SYN with Fast Open cookie request option */
3427 if (fo->cookie.len > 0)
3428 fo->cookie.len = 0;
3429 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3430 if (err)
3431 tp->syn_fastopen = 0;
3432 done:
3433 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3434 return err;
3435 }
3436
3437 /* Build a SYN and send it off. */
3438 int tcp_connect(struct sock *sk)
3439 {
3440 struct tcp_sock *tp = tcp_sk(sk);
3441 struct sk_buff *buff;
3442 int err;
3443
3444 tcp_connect_init(sk);
3445
3446 if (unlikely(tp->repair)) {
3447 tcp_finish_connect(sk, NULL);
3448 return 0;
3449 }
3450
3451 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3452 if (unlikely(!buff))
3453 return -ENOBUFS;
3454
3455 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3456 skb_mstamp_get(&tp->tcp_mstamp);
3457 tp->retrans_stamp = tp->tcp_mstamp.stamp_jiffies;
3458 tcp_connect_queue_skb(sk, buff);
3459 tcp_ecn_send_syn(sk, buff);
3460
3461 /* Send off SYN; include data in Fast Open. */
3462 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3463 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3464 if (err == -ECONNREFUSED)
3465 return err;
3466
3467 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3468 * in order to make this packet get counted in tcpOutSegs.
3469 */
3470 tp->snd_nxt = tp->write_seq;
3471 tp->pushed_seq = tp->write_seq;
3472 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3473
3474 /* Timer for repeating the SYN until an answer. */
3475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3476 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3477 return 0;
3478 }
3479 EXPORT_SYMBOL(tcp_connect);
3480
3481 /* Send out a delayed ack, the caller does the policy checking
3482 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3483 * for details.
3484 */
3485 void tcp_send_delayed_ack(struct sock *sk)
3486 {
3487 struct inet_connection_sock *icsk = inet_csk(sk);
3488 int ato = icsk->icsk_ack.ato;
3489 unsigned long timeout;
3490
3491 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3492
3493 if (ato > TCP_DELACK_MIN) {
3494 const struct tcp_sock *tp = tcp_sk(sk);
3495 int max_ato = HZ / 2;
3496
3497 if (icsk->icsk_ack.pingpong ||
3498 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3499 max_ato = TCP_DELACK_MAX;
3500
3501 /* Slow path, intersegment interval is "high". */
3502
3503 /* If some rtt estimate is known, use it to bound delayed ack.
3504 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3505 * directly.
3506 */
3507 if (tp->srtt_us) {
3508 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3509 TCP_DELACK_MIN);
3510
3511 if (rtt < max_ato)
3512 max_ato = rtt;
3513 }
3514
3515 ato = min(ato, max_ato);
3516 }
3517
3518 /* Stay within the limit we were given */
3519 timeout = jiffies + ato;
3520
3521 /* Use new timeout only if there wasn't a older one earlier. */
3522 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3523 /* If delack timer was blocked or is about to expire,
3524 * send ACK now.
3525 */
3526 if (icsk->icsk_ack.blocked ||
3527 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3528 tcp_send_ack(sk);
3529 return;
3530 }
3531
3532 if (!time_before(timeout, icsk->icsk_ack.timeout))
3533 timeout = icsk->icsk_ack.timeout;
3534 }
3535 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3536 icsk->icsk_ack.timeout = timeout;
3537 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3538 }
3539
3540 /* This routine sends an ack and also updates the window. */
3541 void tcp_send_ack(struct sock *sk)
3542 {
3543 struct sk_buff *buff;
3544
3545 /* If we have been reset, we may not send again. */
3546 if (sk->sk_state == TCP_CLOSE)
3547 return;
3548
3549 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3550
3551 /* We are not putting this on the write queue, so
3552 * tcp_transmit_skb() will set the ownership to this
3553 * sock.
3554 */
3555 buff = alloc_skb(MAX_TCP_HEADER,
3556 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3557 if (unlikely(!buff)) {
3558 inet_csk_schedule_ack(sk);
3559 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3560 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3561 TCP_DELACK_MAX, TCP_RTO_MAX);
3562 return;
3563 }
3564
3565 /* Reserve space for headers and prepare control bits. */
3566 skb_reserve(buff, MAX_TCP_HEADER);
3567 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3568
3569 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3570 * too much.
3571 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3572 */
3573 skb_set_tcp_pure_ack(buff);
3574
3575 /* Send it off, this clears delayed acks for us. */
3576 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3577 }
3578 EXPORT_SYMBOL_GPL(tcp_send_ack);
3579
3580 /* This routine sends a packet with an out of date sequence
3581 * number. It assumes the other end will try to ack it.
3582 *
3583 * Question: what should we make while urgent mode?
3584 * 4.4BSD forces sending single byte of data. We cannot send
3585 * out of window data, because we have SND.NXT==SND.MAX...
3586 *
3587 * Current solution: to send TWO zero-length segments in urgent mode:
3588 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3589 * out-of-date with SND.UNA-1 to probe window.
3590 */
3591 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3592 {
3593 struct tcp_sock *tp = tcp_sk(sk);
3594 struct sk_buff *skb;
3595
3596 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3597 skb = alloc_skb(MAX_TCP_HEADER,
3598 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3599 if (!skb)
3600 return -1;
3601
3602 /* Reserve space for headers and set control bits. */
3603 skb_reserve(skb, MAX_TCP_HEADER);
3604 /* Use a previous sequence. This should cause the other
3605 * end to send an ack. Don't queue or clone SKB, just
3606 * send it.
3607 */
3608 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3609 NET_INC_STATS(sock_net(sk), mib);
3610 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3611 }
3612
3613 /* Called from setsockopt( ... TCP_REPAIR ) */
3614 void tcp_send_window_probe(struct sock *sk)
3615 {
3616 if (sk->sk_state == TCP_ESTABLISHED) {
3617 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3618 skb_mstamp_get(&tcp_sk(sk)->tcp_mstamp);
3619 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3620 }
3621 }
3622
3623 /* Initiate keepalive or window probe from timer. */
3624 int tcp_write_wakeup(struct sock *sk, int mib)
3625 {
3626 struct tcp_sock *tp = tcp_sk(sk);
3627 struct sk_buff *skb;
3628
3629 if (sk->sk_state == TCP_CLOSE)
3630 return -1;
3631
3632 skb = tcp_send_head(sk);
3633 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3634 int err;
3635 unsigned int mss = tcp_current_mss(sk);
3636 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3637
3638 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3639 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3640
3641 /* We are probing the opening of a window
3642 * but the window size is != 0
3643 * must have been a result SWS avoidance ( sender )
3644 */
3645 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3646 skb->len > mss) {
3647 seg_size = min(seg_size, mss);
3648 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3649 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3650 return -1;
3651 } else if (!tcp_skb_pcount(skb))
3652 tcp_set_skb_tso_segs(skb, mss);
3653
3654 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3655 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3656 if (!err)
3657 tcp_event_new_data_sent(sk, skb);
3658 return err;
3659 } else {
3660 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3661 tcp_xmit_probe_skb(sk, 1, mib);
3662 return tcp_xmit_probe_skb(sk, 0, mib);
3663 }
3664 }
3665
3666 /* A window probe timeout has occurred. If window is not closed send
3667 * a partial packet else a zero probe.
3668 */
3669 void tcp_send_probe0(struct sock *sk)
3670 {
3671 struct inet_connection_sock *icsk = inet_csk(sk);
3672 struct tcp_sock *tp = tcp_sk(sk);
3673 struct net *net = sock_net(sk);
3674 unsigned long probe_max;
3675 int err;
3676
3677 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3678
3679 if (tp->packets_out || !tcp_send_head(sk)) {
3680 /* Cancel probe timer, if it is not required. */
3681 icsk->icsk_probes_out = 0;
3682 icsk->icsk_backoff = 0;
3683 return;
3684 }
3685
3686 if (err <= 0) {
3687 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3688 icsk->icsk_backoff++;
3689 icsk->icsk_probes_out++;
3690 probe_max = TCP_RTO_MAX;
3691 } else {
3692 /* If packet was not sent due to local congestion,
3693 * do not backoff and do not remember icsk_probes_out.
3694 * Let local senders to fight for local resources.
3695 *
3696 * Use accumulated backoff yet.
3697 */
3698 if (!icsk->icsk_probes_out)
3699 icsk->icsk_probes_out = 1;
3700 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3701 }
3702 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3703 tcp_probe0_when(sk, probe_max),
3704 TCP_RTO_MAX);
3705 }
3706
3707 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3708 {
3709 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3710 struct flowi fl;
3711 int res;
3712
3713 tcp_rsk(req)->txhash = net_tx_rndhash();
3714 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3715 if (!res) {
3716 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3717 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3718 if (unlikely(tcp_passive_fastopen(sk)))
3719 tcp_sk(sk)->total_retrans++;
3720 }
3721 return res;
3722 }
3723 EXPORT_SYMBOL(tcp_rtx_synack);