]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
mib: add net to NET_INC_STATS
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
47 */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
53 */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61
62 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
63 {
64 struct tcp_sock *tp = tcp_sk(sk);
65 unsigned int prior_packets = tp->packets_out;
66
67 tcp_advance_send_head(sk, skb);
68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
69
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp->frto_counter == 2)
72 tp->frto_counter = 3;
73
74 tp->packets_out += tcp_skb_pcount(skb);
75 if (!prior_packets)
76 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
77 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
78 }
79
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
85 */
86 static inline __u32 tcp_acceptable_seq(struct sock *sk)
87 {
88 struct tcp_sock *tp = tcp_sk(sk);
89
90 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
91 return tp->snd_nxt;
92 else
93 return tcp_wnd_end(tp);
94 }
95
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
98 *
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
103 * large MSS.
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
109 */
110 static __u16 tcp_advertise_mss(struct sock *sk)
111 {
112 struct tcp_sock *tp = tcp_sk(sk);
113 struct dst_entry *dst = __sk_dst_get(sk);
114 int mss = tp->advmss;
115
116 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
117 mss = dst_metric(dst, RTAX_ADVMSS);
118 tp->advmss = mss;
119 }
120
121 return (__u16)mss;
122 }
123
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
126 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
127 {
128 struct tcp_sock *tp = tcp_sk(sk);
129 s32 delta = tcp_time_stamp - tp->lsndtime;
130 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
131 u32 cwnd = tp->snd_cwnd;
132
133 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
134
135 tp->snd_ssthresh = tcp_current_ssthresh(sk);
136 restart_cwnd = min(restart_cwnd, cwnd);
137
138 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
139 cwnd >>= 1;
140 tp->snd_cwnd = max(cwnd, restart_cwnd);
141 tp->snd_cwnd_stamp = tcp_time_stamp;
142 tp->snd_cwnd_used = 0;
143 }
144
145 static void tcp_event_data_sent(struct tcp_sock *tp,
146 struct sk_buff *skb, struct sock *sk)
147 {
148 struct inet_connection_sock *icsk = inet_csk(sk);
149 const u32 now = tcp_time_stamp;
150
151 if (sysctl_tcp_slow_start_after_idle &&
152 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
153 tcp_cwnd_restart(sk, __sk_dst_get(sk));
154
155 tp->lsndtime = now;
156
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
159 */
160 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
161 icsk->icsk_ack.pingpong = 1;
162 }
163
164 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
165 {
166 tcp_dec_quickack_mode(sk, pkts);
167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
168 }
169
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
176 */
177 void tcp_select_initial_window(int __space, __u32 mss,
178 __u32 *rcv_wnd, __u32 *window_clamp,
179 int wscale_ok, __u8 *rcv_wscale)
180 {
181 unsigned int space = (__space < 0 ? 0 : __space);
182
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp == 0)
185 (*window_clamp) = (65535 << 14);
186 space = min(*window_clamp, space);
187
188 /* Quantize space offering to a multiple of mss if possible. */
189 if (space > mss)
190 space = (space / mss) * mss;
191
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
199 */
200 if (sysctl_tcp_workaround_signed_windows)
201 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
202 else
203 (*rcv_wnd) = space;
204
205 (*rcv_wscale) = 0;
206 if (wscale_ok) {
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
209 */
210 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
211 space = min_t(u32, space, *window_clamp);
212 while (space > 65535 && (*rcv_wscale) < 14) {
213 space >>= 1;
214 (*rcv_wscale)++;
215 }
216 }
217
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
221 */
222 if (mss > (1 << *rcv_wscale)) {
223 int init_cwnd = 4;
224 if (mss > 1460 * 3)
225 init_cwnd = 2;
226 else if (mss > 1460)
227 init_cwnd = 3;
228 if (*rcv_wnd > init_cwnd * mss)
229 *rcv_wnd = init_cwnd * mss;
230 }
231
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
234 }
235
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
239 * frame.
240 */
241 static u16 tcp_select_window(struct sock *sk)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 u32 cur_win = tcp_receive_window(tp);
245 u32 new_win = __tcp_select_window(sk);
246
247 /* Never shrink the offered window */
248 if (new_win < cur_win) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
253 *
254 * Relax Will Robinson.
255 */
256 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
257 }
258 tp->rcv_wnd = new_win;
259 tp->rcv_wup = tp->rcv_nxt;
260
261 /* Make sure we do not exceed the maximum possible
262 * scaled window.
263 */
264 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
265 new_win = min(new_win, MAX_TCP_WINDOW);
266 else
267 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
268
269 /* RFC1323 scaling applied */
270 new_win >>= tp->rx_opt.rcv_wscale;
271
272 /* If we advertise zero window, disable fast path. */
273 if (new_win == 0)
274 tp->pred_flags = 0;
275
276 return new_win;
277 }
278
279 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
280 {
281 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
282 if (!(tp->ecn_flags & TCP_ECN_OK))
283 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
284 }
285
286 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 tp->ecn_flags = 0;
291 if (sysctl_tcp_ecn) {
292 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
293 tp->ecn_flags = TCP_ECN_OK;
294 }
295 }
296
297 static __inline__ void
298 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
299 {
300 if (inet_rsk(req)->ecn_ok)
301 th->ece = 1;
302 }
303
304 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
305 int tcp_header_len)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 if (tp->ecn_flags & TCP_ECN_OK) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb->len != tcp_header_len &&
312 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
313 INET_ECN_xmit(sk);
314 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
315 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
316 tcp_hdr(skb)->cwr = 1;
317 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
318 }
319 } else {
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk);
322 }
323 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
324 tcp_hdr(skb)->ece = 1;
325 }
326 }
327
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
330 */
331 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
332 {
333 skb->csum = 0;
334
335 TCP_SKB_CB(skb)->flags = flags;
336 TCP_SKB_CB(skb)->sacked = 0;
337
338 skb_shinfo(skb)->gso_segs = 1;
339 skb_shinfo(skb)->gso_size = 0;
340 skb_shinfo(skb)->gso_type = 0;
341
342 TCP_SKB_CB(skb)->seq = seq;
343 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
344 seq++;
345 TCP_SKB_CB(skb)->end_seq = seq;
346 }
347
348 static void tcp_build_and_update_options(__be32 *ptr, struct tcp_sock *tp,
349 __u32 tstamp, __u8 **md5_hash)
350 {
351 if (tp->rx_opt.tstamp_ok) {
352 *ptr++ = htonl((TCPOPT_NOP << 24) |
353 (TCPOPT_NOP << 16) |
354 (TCPOPT_TIMESTAMP << 8) |
355 TCPOLEN_TIMESTAMP);
356 *ptr++ = htonl(tstamp);
357 *ptr++ = htonl(tp->rx_opt.ts_recent);
358 }
359 if (tp->rx_opt.eff_sacks) {
360 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
361 int this_sack;
362
363 *ptr++ = htonl((TCPOPT_NOP << 24) |
364 (TCPOPT_NOP << 16) |
365 (TCPOPT_SACK << 8) |
366 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks *
367 TCPOLEN_SACK_PERBLOCK)));
368
369 for (this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
370 *ptr++ = htonl(sp[this_sack].start_seq);
371 *ptr++ = htonl(sp[this_sack].end_seq);
372 }
373
374 if (tp->rx_opt.dsack) {
375 tp->rx_opt.dsack = 0;
376 tp->rx_opt.eff_sacks--;
377 }
378 }
379 #ifdef CONFIG_TCP_MD5SIG
380 if (md5_hash) {
381 *ptr++ = htonl((TCPOPT_NOP << 24) |
382 (TCPOPT_NOP << 16) |
383 (TCPOPT_MD5SIG << 8) |
384 TCPOLEN_MD5SIG);
385 *md5_hash = (__u8 *)ptr;
386 }
387 #endif
388 }
389
390 /* Construct a tcp options header for a SYN or SYN_ACK packet.
391 * If this is every changed make sure to change the definition of
392 * MAX_SYN_SIZE to match the new maximum number of options that you
393 * can generate.
394 *
395 * Note - that with the RFC2385 TCP option, we make room for the
396 * 16 byte MD5 hash. This will be filled in later, so the pointer for the
397 * location to be filled is passed back up.
398 */
399 static void tcp_syn_build_options(__be32 *ptr, int mss, int ts, int sack,
400 int offer_wscale, int wscale, __u32 tstamp,
401 __u32 ts_recent, __u8 **md5_hash)
402 {
403 /* We always get an MSS option.
404 * The option bytes which will be seen in normal data
405 * packets should timestamps be used, must be in the MSS
406 * advertised. But we subtract them from tp->mss_cache so
407 * that calculations in tcp_sendmsg are simpler etc.
408 * So account for this fact here if necessary. If we
409 * don't do this correctly, as a receiver we won't
410 * recognize data packets as being full sized when we
411 * should, and thus we won't abide by the delayed ACK
412 * rules correctly.
413 * SACKs don't matter, we never delay an ACK when we
414 * have any of those going out.
415 */
416 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
417 if (ts) {
418 if (sack)
419 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
420 (TCPOLEN_SACK_PERM << 16) |
421 (TCPOPT_TIMESTAMP << 8) |
422 TCPOLEN_TIMESTAMP);
423 else
424 *ptr++ = htonl((TCPOPT_NOP << 24) |
425 (TCPOPT_NOP << 16) |
426 (TCPOPT_TIMESTAMP << 8) |
427 TCPOLEN_TIMESTAMP);
428 *ptr++ = htonl(tstamp); /* TSVAL */
429 *ptr++ = htonl(ts_recent); /* TSECR */
430 } else if (sack)
431 *ptr++ = htonl((TCPOPT_NOP << 24) |
432 (TCPOPT_NOP << 16) |
433 (TCPOPT_SACK_PERM << 8) |
434 TCPOLEN_SACK_PERM);
435 if (offer_wscale)
436 *ptr++ = htonl((TCPOPT_NOP << 24) |
437 (TCPOPT_WINDOW << 16) |
438 (TCPOLEN_WINDOW << 8) |
439 (wscale));
440 #ifdef CONFIG_TCP_MD5SIG
441 /*
442 * If MD5 is enabled, then we set the option, and include the size
443 * (always 18). The actual MD5 hash is added just before the
444 * packet is sent.
445 */
446 if (md5_hash) {
447 *ptr++ = htonl((TCPOPT_NOP << 24) |
448 (TCPOPT_NOP << 16) |
449 (TCPOPT_MD5SIG << 8) |
450 TCPOLEN_MD5SIG);
451 *md5_hash = (__u8 *)ptr;
452 }
453 #endif
454 }
455
456 /* This routine actually transmits TCP packets queued in by
457 * tcp_do_sendmsg(). This is used by both the initial
458 * transmission and possible later retransmissions.
459 * All SKB's seen here are completely headerless. It is our
460 * job to build the TCP header, and pass the packet down to
461 * IP so it can do the same plus pass the packet off to the
462 * device.
463 *
464 * We are working here with either a clone of the original
465 * SKB, or a fresh unique copy made by the retransmit engine.
466 */
467 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
468 gfp_t gfp_mask)
469 {
470 const struct inet_connection_sock *icsk = inet_csk(sk);
471 struct inet_sock *inet;
472 struct tcp_sock *tp;
473 struct tcp_skb_cb *tcb;
474 int tcp_header_size;
475 #ifdef CONFIG_TCP_MD5SIG
476 struct tcp_md5sig_key *md5;
477 __u8 *md5_hash_location;
478 #endif
479 struct tcphdr *th;
480 int sysctl_flags;
481 int err;
482
483 BUG_ON(!skb || !tcp_skb_pcount(skb));
484
485 /* If congestion control is doing timestamping, we must
486 * take such a timestamp before we potentially clone/copy.
487 */
488 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
489 __net_timestamp(skb);
490
491 if (likely(clone_it)) {
492 if (unlikely(skb_cloned(skb)))
493 skb = pskb_copy(skb, gfp_mask);
494 else
495 skb = skb_clone(skb, gfp_mask);
496 if (unlikely(!skb))
497 return -ENOBUFS;
498 }
499
500 inet = inet_sk(sk);
501 tp = tcp_sk(sk);
502 tcb = TCP_SKB_CB(skb);
503 tcp_header_size = tp->tcp_header_len;
504
505 #define SYSCTL_FLAG_TSTAMPS 0x1
506 #define SYSCTL_FLAG_WSCALE 0x2
507 #define SYSCTL_FLAG_SACK 0x4
508
509 sysctl_flags = 0;
510 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
511 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
512 if (sysctl_tcp_timestamps) {
513 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
514 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
515 }
516 if (sysctl_tcp_window_scaling) {
517 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
518 sysctl_flags |= SYSCTL_FLAG_WSCALE;
519 }
520 if (sysctl_tcp_sack) {
521 sysctl_flags |= SYSCTL_FLAG_SACK;
522 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
523 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
524 }
525 } else if (unlikely(tp->rx_opt.eff_sacks)) {
526 /* A SACK is 2 pad bytes, a 2 byte header, plus
527 * 2 32-bit sequence numbers for each SACK block.
528 */
529 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
530 (tp->rx_opt.eff_sacks *
531 TCPOLEN_SACK_PERBLOCK));
532 }
533
534 if (tcp_packets_in_flight(tp) == 0)
535 tcp_ca_event(sk, CA_EVENT_TX_START);
536
537 #ifdef CONFIG_TCP_MD5SIG
538 /*
539 * Are we doing MD5 on this segment? If so - make
540 * room for it.
541 */
542 md5 = tp->af_specific->md5_lookup(sk, sk);
543 if (md5)
544 tcp_header_size += TCPOLEN_MD5SIG_ALIGNED;
545 #endif
546
547 skb_push(skb, tcp_header_size);
548 skb_reset_transport_header(skb);
549 skb_set_owner_w(skb, sk);
550
551 /* Build TCP header and checksum it. */
552 th = tcp_hdr(skb);
553 th->source = inet->sport;
554 th->dest = inet->dport;
555 th->seq = htonl(tcb->seq);
556 th->ack_seq = htonl(tp->rcv_nxt);
557 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
558 tcb->flags);
559
560 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
561 /* RFC1323: The window in SYN & SYN/ACK segments
562 * is never scaled.
563 */
564 th->window = htons(min(tp->rcv_wnd, 65535U));
565 } else {
566 th->window = htons(tcp_select_window(sk));
567 }
568 th->check = 0;
569 th->urg_ptr = 0;
570
571 if (unlikely(tp->urg_mode &&
572 between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) {
573 th->urg_ptr = htons(tp->snd_up - tcb->seq);
574 th->urg = 1;
575 }
576
577 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
578 tcp_syn_build_options((__be32 *)(th + 1),
579 tcp_advertise_mss(sk),
580 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
581 (sysctl_flags & SYSCTL_FLAG_SACK),
582 (sysctl_flags & SYSCTL_FLAG_WSCALE),
583 tp->rx_opt.rcv_wscale,
584 tcb->when,
585 tp->rx_opt.ts_recent,
586
587 #ifdef CONFIG_TCP_MD5SIG
588 md5 ? &md5_hash_location :
589 #endif
590 NULL);
591 } else {
592 tcp_build_and_update_options((__be32 *)(th + 1),
593 tp, tcb->when,
594 #ifdef CONFIG_TCP_MD5SIG
595 md5 ? &md5_hash_location :
596 #endif
597 NULL);
598 TCP_ECN_send(sk, skb, tcp_header_size);
599 }
600
601 #ifdef CONFIG_TCP_MD5SIG
602 /* Calculate the MD5 hash, as we have all we need now */
603 if (md5) {
604 tp->af_specific->calc_md5_hash(md5_hash_location,
605 md5,
606 sk, NULL, NULL,
607 tcp_hdr(skb),
608 skb->len);
609 }
610 #endif
611
612 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
613
614 if (likely(tcb->flags & TCPCB_FLAG_ACK))
615 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
616
617 if (skb->len != tcp_header_size)
618 tcp_event_data_sent(tp, skb, sk);
619
620 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
621 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
622
623 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
624 if (likely(err <= 0))
625 return err;
626
627 tcp_enter_cwr(sk, 1);
628
629 return net_xmit_eval(err);
630
631 #undef SYSCTL_FLAG_TSTAMPS
632 #undef SYSCTL_FLAG_WSCALE
633 #undef SYSCTL_FLAG_SACK
634 }
635
636 /* This routine just queue's the buffer
637 *
638 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
639 * otherwise socket can stall.
640 */
641 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
642 {
643 struct tcp_sock *tp = tcp_sk(sk);
644
645 /* Advance write_seq and place onto the write_queue. */
646 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
647 skb_header_release(skb);
648 tcp_add_write_queue_tail(sk, skb);
649 sk->sk_wmem_queued += skb->truesize;
650 sk_mem_charge(sk, skb->truesize);
651 }
652
653 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
654 unsigned int mss_now)
655 {
656 if (skb->len <= mss_now || !sk_can_gso(sk)) {
657 /* Avoid the costly divide in the normal
658 * non-TSO case.
659 */
660 skb_shinfo(skb)->gso_segs = 1;
661 skb_shinfo(skb)->gso_size = 0;
662 skb_shinfo(skb)->gso_type = 0;
663 } else {
664 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
665 skb_shinfo(skb)->gso_size = mss_now;
666 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
667 }
668 }
669
670 /* When a modification to fackets out becomes necessary, we need to check
671 * skb is counted to fackets_out or not.
672 */
673 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
674 int decr)
675 {
676 struct tcp_sock *tp = tcp_sk(sk);
677
678 if (!tp->sacked_out || tcp_is_reno(tp))
679 return;
680
681 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
682 tp->fackets_out -= decr;
683 }
684
685 /* Function to create two new TCP segments. Shrinks the given segment
686 * to the specified size and appends a new segment with the rest of the
687 * packet to the list. This won't be called frequently, I hope.
688 * Remember, these are still headerless SKBs at this point.
689 */
690 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
691 unsigned int mss_now)
692 {
693 struct tcp_sock *tp = tcp_sk(sk);
694 struct sk_buff *buff;
695 int nsize, old_factor;
696 int nlen;
697 u16 flags;
698
699 BUG_ON(len > skb->len);
700
701 tcp_clear_retrans_hints_partial(tp);
702 nsize = skb_headlen(skb) - len;
703 if (nsize < 0)
704 nsize = 0;
705
706 if (skb_cloned(skb) &&
707 skb_is_nonlinear(skb) &&
708 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
709 return -ENOMEM;
710
711 /* Get a new skb... force flag on. */
712 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
713 if (buff == NULL)
714 return -ENOMEM; /* We'll just try again later. */
715
716 sk->sk_wmem_queued += buff->truesize;
717 sk_mem_charge(sk, buff->truesize);
718 nlen = skb->len - len - nsize;
719 buff->truesize += nlen;
720 skb->truesize -= nlen;
721
722 /* Correct the sequence numbers. */
723 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
724 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
725 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
726
727 /* PSH and FIN should only be set in the second packet. */
728 flags = TCP_SKB_CB(skb)->flags;
729 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
730 TCP_SKB_CB(buff)->flags = flags;
731 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
732
733 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
734 /* Copy and checksum data tail into the new buffer. */
735 buff->csum = csum_partial_copy_nocheck(skb->data + len,
736 skb_put(buff, nsize),
737 nsize, 0);
738
739 skb_trim(skb, len);
740
741 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
742 } else {
743 skb->ip_summed = CHECKSUM_PARTIAL;
744 skb_split(skb, buff, len);
745 }
746
747 buff->ip_summed = skb->ip_summed;
748
749 /* Looks stupid, but our code really uses when of
750 * skbs, which it never sent before. --ANK
751 */
752 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
753 buff->tstamp = skb->tstamp;
754
755 old_factor = tcp_skb_pcount(skb);
756
757 /* Fix up tso_factor for both original and new SKB. */
758 tcp_set_skb_tso_segs(sk, skb, mss_now);
759 tcp_set_skb_tso_segs(sk, buff, mss_now);
760
761 /* If this packet has been sent out already, we must
762 * adjust the various packet counters.
763 */
764 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
765 int diff = old_factor - tcp_skb_pcount(skb) -
766 tcp_skb_pcount(buff);
767
768 tp->packets_out -= diff;
769
770 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
771 tp->sacked_out -= diff;
772 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
773 tp->retrans_out -= diff;
774
775 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
776 tp->lost_out -= diff;
777
778 /* Adjust Reno SACK estimate. */
779 if (tcp_is_reno(tp) && diff > 0) {
780 tcp_dec_pcount_approx_int(&tp->sacked_out, diff);
781 tcp_verify_left_out(tp);
782 }
783 tcp_adjust_fackets_out(sk, skb, diff);
784 }
785
786 /* Link BUFF into the send queue. */
787 skb_header_release(buff);
788 tcp_insert_write_queue_after(skb, buff, sk);
789
790 return 0;
791 }
792
793 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
794 * eventually). The difference is that pulled data not copied, but
795 * immediately discarded.
796 */
797 static void __pskb_trim_head(struct sk_buff *skb, int len)
798 {
799 int i, k, eat;
800
801 eat = len;
802 k = 0;
803 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
804 if (skb_shinfo(skb)->frags[i].size <= eat) {
805 put_page(skb_shinfo(skb)->frags[i].page);
806 eat -= skb_shinfo(skb)->frags[i].size;
807 } else {
808 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
809 if (eat) {
810 skb_shinfo(skb)->frags[k].page_offset += eat;
811 skb_shinfo(skb)->frags[k].size -= eat;
812 eat = 0;
813 }
814 k++;
815 }
816 }
817 skb_shinfo(skb)->nr_frags = k;
818
819 skb_reset_tail_pointer(skb);
820 skb->data_len -= len;
821 skb->len = skb->data_len;
822 }
823
824 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
825 {
826 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
827 return -ENOMEM;
828
829 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
830 if (unlikely(len < skb_headlen(skb)))
831 __skb_pull(skb, len);
832 else
833 __pskb_trim_head(skb, len - skb_headlen(skb));
834
835 TCP_SKB_CB(skb)->seq += len;
836 skb->ip_summed = CHECKSUM_PARTIAL;
837
838 skb->truesize -= len;
839 sk->sk_wmem_queued -= len;
840 sk_mem_uncharge(sk, len);
841 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
842
843 /* Any change of skb->len requires recalculation of tso
844 * factor and mss.
845 */
846 if (tcp_skb_pcount(skb) > 1)
847 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
848
849 return 0;
850 }
851
852 /* Not accounting for SACKs here. */
853 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
854 {
855 struct tcp_sock *tp = tcp_sk(sk);
856 struct inet_connection_sock *icsk = inet_csk(sk);
857 int mss_now;
858
859 /* Calculate base mss without TCP options:
860 It is MMS_S - sizeof(tcphdr) of rfc1122
861 */
862 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
863
864 /* Clamp it (mss_clamp does not include tcp options) */
865 if (mss_now > tp->rx_opt.mss_clamp)
866 mss_now = tp->rx_opt.mss_clamp;
867
868 /* Now subtract optional transport overhead */
869 mss_now -= icsk->icsk_ext_hdr_len;
870
871 /* Then reserve room for full set of TCP options and 8 bytes of data */
872 if (mss_now < 48)
873 mss_now = 48;
874
875 /* Now subtract TCP options size, not including SACKs */
876 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
877
878 return mss_now;
879 }
880
881 /* Inverse of above */
882 int tcp_mss_to_mtu(struct sock *sk, int mss)
883 {
884 struct tcp_sock *tp = tcp_sk(sk);
885 struct inet_connection_sock *icsk = inet_csk(sk);
886 int mtu;
887
888 mtu = mss +
889 tp->tcp_header_len +
890 icsk->icsk_ext_hdr_len +
891 icsk->icsk_af_ops->net_header_len;
892
893 return mtu;
894 }
895
896 void tcp_mtup_init(struct sock *sk)
897 {
898 struct tcp_sock *tp = tcp_sk(sk);
899 struct inet_connection_sock *icsk = inet_csk(sk);
900
901 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
902 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
903 icsk->icsk_af_ops->net_header_len;
904 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
905 icsk->icsk_mtup.probe_size = 0;
906 }
907
908 /* Bound MSS / TSO packet size with the half of the window */
909 static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
910 {
911 if (tp->max_window && pktsize > (tp->max_window >> 1))
912 return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
913 else
914 return pktsize;
915 }
916
917 /* This function synchronize snd mss to current pmtu/exthdr set.
918
919 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
920 for TCP options, but includes only bare TCP header.
921
922 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
923 It is minimum of user_mss and mss received with SYN.
924 It also does not include TCP options.
925
926 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
927
928 tp->mss_cache is current effective sending mss, including
929 all tcp options except for SACKs. It is evaluated,
930 taking into account current pmtu, but never exceeds
931 tp->rx_opt.mss_clamp.
932
933 NOTE1. rfc1122 clearly states that advertised MSS
934 DOES NOT include either tcp or ip options.
935
936 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
937 are READ ONLY outside this function. --ANK (980731)
938 */
939 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
940 {
941 struct tcp_sock *tp = tcp_sk(sk);
942 struct inet_connection_sock *icsk = inet_csk(sk);
943 int mss_now;
944
945 if (icsk->icsk_mtup.search_high > pmtu)
946 icsk->icsk_mtup.search_high = pmtu;
947
948 mss_now = tcp_mtu_to_mss(sk, pmtu);
949 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
950
951 /* And store cached results */
952 icsk->icsk_pmtu_cookie = pmtu;
953 if (icsk->icsk_mtup.enabled)
954 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
955 tp->mss_cache = mss_now;
956
957 return mss_now;
958 }
959
960 /* Compute the current effective MSS, taking SACKs and IP options,
961 * and even PMTU discovery events into account.
962 *
963 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
964 * cannot be large. However, taking into account rare use of URG, this
965 * is not a big flaw.
966 */
967 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
968 {
969 struct tcp_sock *tp = tcp_sk(sk);
970 struct dst_entry *dst = __sk_dst_get(sk);
971 u32 mss_now;
972 u16 xmit_size_goal;
973 int doing_tso = 0;
974
975 mss_now = tp->mss_cache;
976
977 if (large_allowed && sk_can_gso(sk) && !tp->urg_mode)
978 doing_tso = 1;
979
980 if (dst) {
981 u32 mtu = dst_mtu(dst);
982 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
983 mss_now = tcp_sync_mss(sk, mtu);
984 }
985
986 if (tp->rx_opt.eff_sacks)
987 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
988 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
989
990 #ifdef CONFIG_TCP_MD5SIG
991 if (tp->af_specific->md5_lookup(sk, sk))
992 mss_now -= TCPOLEN_MD5SIG_ALIGNED;
993 #endif
994
995 xmit_size_goal = mss_now;
996
997 if (doing_tso) {
998 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
999 inet_csk(sk)->icsk_af_ops->net_header_len -
1000 inet_csk(sk)->icsk_ext_hdr_len -
1001 tp->tcp_header_len);
1002
1003 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
1004 xmit_size_goal -= (xmit_size_goal % mss_now);
1005 }
1006 tp->xmit_size_goal = xmit_size_goal;
1007
1008 return mss_now;
1009 }
1010
1011 /* Congestion window validation. (RFC2861) */
1012 static void tcp_cwnd_validate(struct sock *sk)
1013 {
1014 struct tcp_sock *tp = tcp_sk(sk);
1015
1016 if (tp->packets_out >= tp->snd_cwnd) {
1017 /* Network is feed fully. */
1018 tp->snd_cwnd_used = 0;
1019 tp->snd_cwnd_stamp = tcp_time_stamp;
1020 } else {
1021 /* Network starves. */
1022 if (tp->packets_out > tp->snd_cwnd_used)
1023 tp->snd_cwnd_used = tp->packets_out;
1024
1025 if (sysctl_tcp_slow_start_after_idle &&
1026 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1027 tcp_cwnd_application_limited(sk);
1028 }
1029 }
1030
1031 /* Returns the portion of skb which can be sent right away without
1032 * introducing MSS oddities to segment boundaries. In rare cases where
1033 * mss_now != mss_cache, we will request caller to create a small skb
1034 * per input skb which could be mostly avoided here (if desired).
1035 *
1036 * We explicitly want to create a request for splitting write queue tail
1037 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1038 * thus all the complexity (cwnd_len is always MSS multiple which we
1039 * return whenever allowed by the other factors). Basically we need the
1040 * modulo only when the receiver window alone is the limiting factor or
1041 * when we would be allowed to send the split-due-to-Nagle skb fully.
1042 */
1043 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1044 unsigned int mss_now, unsigned int cwnd)
1045 {
1046 struct tcp_sock *tp = tcp_sk(sk);
1047 u32 needed, window, cwnd_len;
1048
1049 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1050 cwnd_len = mss_now * cwnd;
1051
1052 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1053 return cwnd_len;
1054
1055 needed = min(skb->len, window);
1056
1057 if (cwnd_len <= needed)
1058 return cwnd_len;
1059
1060 return needed - needed % mss_now;
1061 }
1062
1063 /* Can at least one segment of SKB be sent right now, according to the
1064 * congestion window rules? If so, return how many segments are allowed.
1065 */
1066 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1067 struct sk_buff *skb)
1068 {
1069 u32 in_flight, cwnd;
1070
1071 /* Don't be strict about the congestion window for the final FIN. */
1072 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1073 tcp_skb_pcount(skb) == 1)
1074 return 1;
1075
1076 in_flight = tcp_packets_in_flight(tp);
1077 cwnd = tp->snd_cwnd;
1078 if (in_flight < cwnd)
1079 return (cwnd - in_flight);
1080
1081 return 0;
1082 }
1083
1084 /* This must be invoked the first time we consider transmitting
1085 * SKB onto the wire.
1086 */
1087 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1088 unsigned int mss_now)
1089 {
1090 int tso_segs = tcp_skb_pcount(skb);
1091
1092 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1093 tcp_set_skb_tso_segs(sk, skb, mss_now);
1094 tso_segs = tcp_skb_pcount(skb);
1095 }
1096 return tso_segs;
1097 }
1098
1099 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1100 {
1101 return after(tp->snd_sml,tp->snd_una) &&
1102 !after(tp->snd_sml, tp->snd_nxt);
1103 }
1104
1105 /* Return 0, if packet can be sent now without violation Nagle's rules:
1106 * 1. It is full sized.
1107 * 2. Or it contains FIN. (already checked by caller)
1108 * 3. Or TCP_NODELAY was set.
1109 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1110 * With Minshall's modification: all sent small packets are ACKed.
1111 */
1112 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1113 const struct sk_buff *skb,
1114 unsigned mss_now, int nonagle)
1115 {
1116 return (skb->len < mss_now &&
1117 ((nonagle & TCP_NAGLE_CORK) ||
1118 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1119 }
1120
1121 /* Return non-zero if the Nagle test allows this packet to be
1122 * sent now.
1123 */
1124 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1125 unsigned int cur_mss, int nonagle)
1126 {
1127 /* Nagle rule does not apply to frames, which sit in the middle of the
1128 * write_queue (they have no chances to get new data).
1129 *
1130 * This is implemented in the callers, where they modify the 'nonagle'
1131 * argument based upon the location of SKB in the send queue.
1132 */
1133 if (nonagle & TCP_NAGLE_PUSH)
1134 return 1;
1135
1136 /* Don't use the nagle rule for urgent data (or for the final FIN).
1137 * Nagle can be ignored during F-RTO too (see RFC4138).
1138 */
1139 if (tp->urg_mode || (tp->frto_counter == 2) ||
1140 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1141 return 1;
1142
1143 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1144 return 1;
1145
1146 return 0;
1147 }
1148
1149 /* Does at least the first segment of SKB fit into the send window? */
1150 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1151 unsigned int cur_mss)
1152 {
1153 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1154
1155 if (skb->len > cur_mss)
1156 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1157
1158 return !after(end_seq, tcp_wnd_end(tp));
1159 }
1160
1161 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1162 * should be put on the wire right now. If so, it returns the number of
1163 * packets allowed by the congestion window.
1164 */
1165 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1166 unsigned int cur_mss, int nonagle)
1167 {
1168 struct tcp_sock *tp = tcp_sk(sk);
1169 unsigned int cwnd_quota;
1170
1171 tcp_init_tso_segs(sk, skb, cur_mss);
1172
1173 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1174 return 0;
1175
1176 cwnd_quota = tcp_cwnd_test(tp, skb);
1177 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1178 cwnd_quota = 0;
1179
1180 return cwnd_quota;
1181 }
1182
1183 int tcp_may_send_now(struct sock *sk)
1184 {
1185 struct tcp_sock *tp = tcp_sk(sk);
1186 struct sk_buff *skb = tcp_send_head(sk);
1187
1188 return (skb &&
1189 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1190 (tcp_skb_is_last(sk, skb) ?
1191 tp->nonagle : TCP_NAGLE_PUSH)));
1192 }
1193
1194 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1195 * which is put after SKB on the list. It is very much like
1196 * tcp_fragment() except that it may make several kinds of assumptions
1197 * in order to speed up the splitting operation. In particular, we
1198 * know that all the data is in scatter-gather pages, and that the
1199 * packet has never been sent out before (and thus is not cloned).
1200 */
1201 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1202 unsigned int mss_now)
1203 {
1204 struct sk_buff *buff;
1205 int nlen = skb->len - len;
1206 u16 flags;
1207
1208 /* All of a TSO frame must be composed of paged data. */
1209 if (skb->len != skb->data_len)
1210 return tcp_fragment(sk, skb, len, mss_now);
1211
1212 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1213 if (unlikely(buff == NULL))
1214 return -ENOMEM;
1215
1216 sk->sk_wmem_queued += buff->truesize;
1217 sk_mem_charge(sk, buff->truesize);
1218 buff->truesize += nlen;
1219 skb->truesize -= nlen;
1220
1221 /* Correct the sequence numbers. */
1222 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1223 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1224 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1225
1226 /* PSH and FIN should only be set in the second packet. */
1227 flags = TCP_SKB_CB(skb)->flags;
1228 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1229 TCP_SKB_CB(buff)->flags = flags;
1230
1231 /* This packet was never sent out yet, so no SACK bits. */
1232 TCP_SKB_CB(buff)->sacked = 0;
1233
1234 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1235 skb_split(skb, buff, len);
1236
1237 /* Fix up tso_factor for both original and new SKB. */
1238 tcp_set_skb_tso_segs(sk, skb, mss_now);
1239 tcp_set_skb_tso_segs(sk, buff, mss_now);
1240
1241 /* Link BUFF into the send queue. */
1242 skb_header_release(buff);
1243 tcp_insert_write_queue_after(skb, buff, sk);
1244
1245 return 0;
1246 }
1247
1248 /* Try to defer sending, if possible, in order to minimize the amount
1249 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1250 *
1251 * This algorithm is from John Heffner.
1252 */
1253 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1254 {
1255 struct tcp_sock *tp = tcp_sk(sk);
1256 const struct inet_connection_sock *icsk = inet_csk(sk);
1257 u32 send_win, cong_win, limit, in_flight;
1258
1259 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1260 goto send_now;
1261
1262 if (icsk->icsk_ca_state != TCP_CA_Open)
1263 goto send_now;
1264
1265 /* Defer for less than two clock ticks. */
1266 if (tp->tso_deferred &&
1267 ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1268 goto send_now;
1269
1270 in_flight = tcp_packets_in_flight(tp);
1271
1272 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1273
1274 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1275
1276 /* From in_flight test above, we know that cwnd > in_flight. */
1277 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1278
1279 limit = min(send_win, cong_win);
1280
1281 /* If a full-sized TSO skb can be sent, do it. */
1282 if (limit >= sk->sk_gso_max_size)
1283 goto send_now;
1284
1285 if (sysctl_tcp_tso_win_divisor) {
1286 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1287
1288 /* If at least some fraction of a window is available,
1289 * just use it.
1290 */
1291 chunk /= sysctl_tcp_tso_win_divisor;
1292 if (limit >= chunk)
1293 goto send_now;
1294 } else {
1295 /* Different approach, try not to defer past a single
1296 * ACK. Receiver should ACK every other full sized
1297 * frame, so if we have space for more than 3 frames
1298 * then send now.
1299 */
1300 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1301 goto send_now;
1302 }
1303
1304 /* Ok, it looks like it is advisable to defer. */
1305 tp->tso_deferred = 1 | (jiffies << 1);
1306
1307 return 1;
1308
1309 send_now:
1310 tp->tso_deferred = 0;
1311 return 0;
1312 }
1313
1314 /* Create a new MTU probe if we are ready.
1315 * Returns 0 if we should wait to probe (no cwnd available),
1316 * 1 if a probe was sent,
1317 * -1 otherwise
1318 */
1319 static int tcp_mtu_probe(struct sock *sk)
1320 {
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 struct inet_connection_sock *icsk = inet_csk(sk);
1323 struct sk_buff *skb, *nskb, *next;
1324 int len;
1325 int probe_size;
1326 int size_needed;
1327 int copy;
1328 int mss_now;
1329
1330 /* Not currently probing/verifying,
1331 * not in recovery,
1332 * have enough cwnd, and
1333 * not SACKing (the variable headers throw things off) */
1334 if (!icsk->icsk_mtup.enabled ||
1335 icsk->icsk_mtup.probe_size ||
1336 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1337 tp->snd_cwnd < 11 ||
1338 tp->rx_opt.eff_sacks)
1339 return -1;
1340
1341 /* Very simple search strategy: just double the MSS. */
1342 mss_now = tcp_current_mss(sk, 0);
1343 probe_size = 2 * tp->mss_cache;
1344 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1345 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1346 /* TODO: set timer for probe_converge_event */
1347 return -1;
1348 }
1349
1350 /* Have enough data in the send queue to probe? */
1351 if (tp->write_seq - tp->snd_nxt < size_needed)
1352 return -1;
1353
1354 if (tp->snd_wnd < size_needed)
1355 return -1;
1356 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1357 return 0;
1358
1359 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1360 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1361 if (!tcp_packets_in_flight(tp))
1362 return -1;
1363 else
1364 return 0;
1365 }
1366
1367 /* We're allowed to probe. Build it now. */
1368 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1369 return -1;
1370 sk->sk_wmem_queued += nskb->truesize;
1371 sk_mem_charge(sk, nskb->truesize);
1372
1373 skb = tcp_send_head(sk);
1374
1375 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1376 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1377 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1378 TCP_SKB_CB(nskb)->sacked = 0;
1379 nskb->csum = 0;
1380 nskb->ip_summed = skb->ip_summed;
1381
1382 tcp_insert_write_queue_before(nskb, skb, sk);
1383
1384 len = 0;
1385 tcp_for_write_queue_from_safe(skb, next, sk) {
1386 copy = min_t(int, skb->len, probe_size - len);
1387 if (nskb->ip_summed)
1388 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1389 else
1390 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1391 skb_put(nskb, copy),
1392 copy, nskb->csum);
1393
1394 if (skb->len <= copy) {
1395 /* We've eaten all the data from this skb.
1396 * Throw it away. */
1397 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1398 tcp_unlink_write_queue(skb, sk);
1399 sk_wmem_free_skb(sk, skb);
1400 } else {
1401 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1402 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1403 if (!skb_shinfo(skb)->nr_frags) {
1404 skb_pull(skb, copy);
1405 if (skb->ip_summed != CHECKSUM_PARTIAL)
1406 skb->csum = csum_partial(skb->data,
1407 skb->len, 0);
1408 } else {
1409 __pskb_trim_head(skb, copy);
1410 tcp_set_skb_tso_segs(sk, skb, mss_now);
1411 }
1412 TCP_SKB_CB(skb)->seq += copy;
1413 }
1414
1415 len += copy;
1416
1417 if (len >= probe_size)
1418 break;
1419 }
1420 tcp_init_tso_segs(sk, nskb, nskb->len);
1421
1422 /* We're ready to send. If this fails, the probe will
1423 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1424 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1425 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1426 /* Decrement cwnd here because we are sending
1427 * effectively two packets. */
1428 tp->snd_cwnd--;
1429 tcp_event_new_data_sent(sk, nskb);
1430
1431 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1432 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1433 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1434
1435 return 1;
1436 }
1437
1438 return -1;
1439 }
1440
1441 /* This routine writes packets to the network. It advances the
1442 * send_head. This happens as incoming acks open up the remote
1443 * window for us.
1444 *
1445 * Returns 1, if no segments are in flight and we have queued segments, but
1446 * cannot send anything now because of SWS or another problem.
1447 */
1448 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1449 {
1450 struct tcp_sock *tp = tcp_sk(sk);
1451 struct sk_buff *skb;
1452 unsigned int tso_segs, sent_pkts;
1453 int cwnd_quota;
1454 int result;
1455
1456 /* If we are closed, the bytes will have to remain here.
1457 * In time closedown will finish, we empty the write queue and all
1458 * will be happy.
1459 */
1460 if (unlikely(sk->sk_state == TCP_CLOSE))
1461 return 0;
1462
1463 sent_pkts = 0;
1464
1465 /* Do MTU probing. */
1466 if ((result = tcp_mtu_probe(sk)) == 0) {
1467 return 0;
1468 } else if (result > 0) {
1469 sent_pkts = 1;
1470 }
1471
1472 while ((skb = tcp_send_head(sk))) {
1473 unsigned int limit;
1474
1475 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1476 BUG_ON(!tso_segs);
1477
1478 cwnd_quota = tcp_cwnd_test(tp, skb);
1479 if (!cwnd_quota)
1480 break;
1481
1482 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1483 break;
1484
1485 if (tso_segs == 1) {
1486 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1487 (tcp_skb_is_last(sk, skb) ?
1488 nonagle : TCP_NAGLE_PUSH))))
1489 break;
1490 } else {
1491 if (tcp_tso_should_defer(sk, skb))
1492 break;
1493 }
1494
1495 limit = mss_now;
1496 if (tso_segs > 1)
1497 limit = tcp_mss_split_point(sk, skb, mss_now,
1498 cwnd_quota);
1499
1500 if (skb->len > limit &&
1501 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1502 break;
1503
1504 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1505
1506 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1507 break;
1508
1509 /* Advance the send_head. This one is sent out.
1510 * This call will increment packets_out.
1511 */
1512 tcp_event_new_data_sent(sk, skb);
1513
1514 tcp_minshall_update(tp, mss_now, skb);
1515 sent_pkts++;
1516 }
1517
1518 if (likely(sent_pkts)) {
1519 tcp_cwnd_validate(sk);
1520 return 0;
1521 }
1522 return !tp->packets_out && tcp_send_head(sk);
1523 }
1524
1525 /* Push out any pending frames which were held back due to
1526 * TCP_CORK or attempt at coalescing tiny packets.
1527 * The socket must be locked by the caller.
1528 */
1529 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1530 int nonagle)
1531 {
1532 struct sk_buff *skb = tcp_send_head(sk);
1533
1534 if (skb) {
1535 if (tcp_write_xmit(sk, cur_mss, nonagle))
1536 tcp_check_probe_timer(sk);
1537 }
1538 }
1539
1540 /* Send _single_ skb sitting at the send head. This function requires
1541 * true push pending frames to setup probe timer etc.
1542 */
1543 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1544 {
1545 struct sk_buff *skb = tcp_send_head(sk);
1546 unsigned int tso_segs, cwnd_quota;
1547
1548 BUG_ON(!skb || skb->len < mss_now);
1549
1550 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1551 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1552
1553 if (likely(cwnd_quota)) {
1554 unsigned int limit;
1555
1556 BUG_ON(!tso_segs);
1557
1558 limit = mss_now;
1559 if (tso_segs > 1)
1560 limit = tcp_mss_split_point(sk, skb, mss_now,
1561 cwnd_quota);
1562
1563 if (skb->len > limit &&
1564 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1565 return;
1566
1567 /* Send it out now. */
1568 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1569
1570 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1571 tcp_event_new_data_sent(sk, skb);
1572 tcp_cwnd_validate(sk);
1573 return;
1574 }
1575 }
1576 }
1577
1578 /* This function returns the amount that we can raise the
1579 * usable window based on the following constraints
1580 *
1581 * 1. The window can never be shrunk once it is offered (RFC 793)
1582 * 2. We limit memory per socket
1583 *
1584 * RFC 1122:
1585 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1586 * RECV.NEXT + RCV.WIN fixed until:
1587 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1588 *
1589 * i.e. don't raise the right edge of the window until you can raise
1590 * it at least MSS bytes.
1591 *
1592 * Unfortunately, the recommended algorithm breaks header prediction,
1593 * since header prediction assumes th->window stays fixed.
1594 *
1595 * Strictly speaking, keeping th->window fixed violates the receiver
1596 * side SWS prevention criteria. The problem is that under this rule
1597 * a stream of single byte packets will cause the right side of the
1598 * window to always advance by a single byte.
1599 *
1600 * Of course, if the sender implements sender side SWS prevention
1601 * then this will not be a problem.
1602 *
1603 * BSD seems to make the following compromise:
1604 *
1605 * If the free space is less than the 1/4 of the maximum
1606 * space available and the free space is less than 1/2 mss,
1607 * then set the window to 0.
1608 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1609 * Otherwise, just prevent the window from shrinking
1610 * and from being larger than the largest representable value.
1611 *
1612 * This prevents incremental opening of the window in the regime
1613 * where TCP is limited by the speed of the reader side taking
1614 * data out of the TCP receive queue. It does nothing about
1615 * those cases where the window is constrained on the sender side
1616 * because the pipeline is full.
1617 *
1618 * BSD also seems to "accidentally" limit itself to windows that are a
1619 * multiple of MSS, at least until the free space gets quite small.
1620 * This would appear to be a side effect of the mbuf implementation.
1621 * Combining these two algorithms results in the observed behavior
1622 * of having a fixed window size at almost all times.
1623 *
1624 * Below we obtain similar behavior by forcing the offered window to
1625 * a multiple of the mss when it is feasible to do so.
1626 *
1627 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1628 * Regular options like TIMESTAMP are taken into account.
1629 */
1630 u32 __tcp_select_window(struct sock *sk)
1631 {
1632 struct inet_connection_sock *icsk = inet_csk(sk);
1633 struct tcp_sock *tp = tcp_sk(sk);
1634 /* MSS for the peer's data. Previous versions used mss_clamp
1635 * here. I don't know if the value based on our guesses
1636 * of peer's MSS is better for the performance. It's more correct
1637 * but may be worse for the performance because of rcv_mss
1638 * fluctuations. --SAW 1998/11/1
1639 */
1640 int mss = icsk->icsk_ack.rcv_mss;
1641 int free_space = tcp_space(sk);
1642 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1643 int window;
1644
1645 if (mss > full_space)
1646 mss = full_space;
1647
1648 if (free_space < (full_space >> 1)) {
1649 icsk->icsk_ack.quick = 0;
1650
1651 if (tcp_memory_pressure)
1652 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1653 4U * tp->advmss);
1654
1655 if (free_space < mss)
1656 return 0;
1657 }
1658
1659 if (free_space > tp->rcv_ssthresh)
1660 free_space = tp->rcv_ssthresh;
1661
1662 /* Don't do rounding if we are using window scaling, since the
1663 * scaled window will not line up with the MSS boundary anyway.
1664 */
1665 window = tp->rcv_wnd;
1666 if (tp->rx_opt.rcv_wscale) {
1667 window = free_space;
1668
1669 /* Advertise enough space so that it won't get scaled away.
1670 * Import case: prevent zero window announcement if
1671 * 1<<rcv_wscale > mss.
1672 */
1673 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1674 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1675 << tp->rx_opt.rcv_wscale);
1676 } else {
1677 /* Get the largest window that is a nice multiple of mss.
1678 * Window clamp already applied above.
1679 * If our current window offering is within 1 mss of the
1680 * free space we just keep it. This prevents the divide
1681 * and multiply from happening most of the time.
1682 * We also don't do any window rounding when the free space
1683 * is too small.
1684 */
1685 if (window <= free_space - mss || window > free_space)
1686 window = (free_space / mss) * mss;
1687 else if (mss == full_space &&
1688 free_space > window + (full_space >> 1))
1689 window = free_space;
1690 }
1691
1692 return window;
1693 }
1694
1695 /* Attempt to collapse two adjacent SKB's during retransmission. */
1696 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb,
1697 int mss_now)
1698 {
1699 struct tcp_sock *tp = tcp_sk(sk);
1700 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1701 int skb_size, next_skb_size;
1702 u16 flags;
1703
1704 /* The first test we must make is that neither of these two
1705 * SKB's are still referenced by someone else.
1706 */
1707 if (skb_cloned(skb) || skb_cloned(next_skb))
1708 return;
1709
1710 skb_size = skb->len;
1711 next_skb_size = next_skb->len;
1712 flags = TCP_SKB_CB(skb)->flags;
1713
1714 /* Also punt if next skb has been SACK'd. */
1715 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1716 return;
1717
1718 /* Next skb is out of window. */
1719 if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp)))
1720 return;
1721
1722 /* Punt if not enough space exists in the first SKB for
1723 * the data in the second, or the total combined payload
1724 * would exceed the MSS.
1725 */
1726 if ((next_skb_size > skb_tailroom(skb)) ||
1727 ((skb_size + next_skb_size) > mss_now))
1728 return;
1729
1730 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1731
1732 tcp_highest_sack_combine(sk, next_skb, skb);
1733
1734 /* Ok. We will be able to collapse the packet. */
1735 tcp_unlink_write_queue(next_skb, sk);
1736
1737 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1738 next_skb_size);
1739
1740 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1741 skb->ip_summed = CHECKSUM_PARTIAL;
1742
1743 if (skb->ip_summed != CHECKSUM_PARTIAL)
1744 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1745
1746 /* Update sequence range on original skb. */
1747 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1748
1749 /* Merge over control information. */
1750 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1751 TCP_SKB_CB(skb)->flags = flags;
1752
1753 /* All done, get rid of second SKB and account for it so
1754 * packet counting does not break.
1755 */
1756 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1757 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS)
1758 tp->retrans_out -= tcp_skb_pcount(next_skb);
1759 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST)
1760 tp->lost_out -= tcp_skb_pcount(next_skb);
1761 /* Reno case is special. Sigh... */
1762 if (tcp_is_reno(tp) && tp->sacked_out)
1763 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1764
1765 tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb));
1766 tp->packets_out -= tcp_skb_pcount(next_skb);
1767
1768 /* changed transmit queue under us so clear hints */
1769 tcp_clear_retrans_hints_partial(tp);
1770
1771 sk_wmem_free_skb(sk, next_skb);
1772 }
1773
1774 /* Do a simple retransmit without using the backoff mechanisms in
1775 * tcp_timer. This is used for path mtu discovery.
1776 * The socket is already locked here.
1777 */
1778 void tcp_simple_retransmit(struct sock *sk)
1779 {
1780 const struct inet_connection_sock *icsk = inet_csk(sk);
1781 struct tcp_sock *tp = tcp_sk(sk);
1782 struct sk_buff *skb;
1783 unsigned int mss = tcp_current_mss(sk, 0);
1784 int lost = 0;
1785
1786 tcp_for_write_queue(skb, sk) {
1787 if (skb == tcp_send_head(sk))
1788 break;
1789 if (skb->len > mss &&
1790 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1791 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1792 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1793 tp->retrans_out -= tcp_skb_pcount(skb);
1794 }
1795 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) {
1796 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1797 tp->lost_out += tcp_skb_pcount(skb);
1798 lost = 1;
1799 }
1800 }
1801 }
1802
1803 tcp_clear_all_retrans_hints(tp);
1804
1805 if (!lost)
1806 return;
1807
1808 if (tcp_is_reno(tp))
1809 tcp_limit_reno_sacked(tp);
1810
1811 tcp_verify_left_out(tp);
1812
1813 /* Don't muck with the congestion window here.
1814 * Reason is that we do not increase amount of _data_
1815 * in network, but units changed and effective
1816 * cwnd/ssthresh really reduced now.
1817 */
1818 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1819 tp->high_seq = tp->snd_nxt;
1820 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1821 tp->prior_ssthresh = 0;
1822 tp->undo_marker = 0;
1823 tcp_set_ca_state(sk, TCP_CA_Loss);
1824 }
1825 tcp_xmit_retransmit_queue(sk);
1826 }
1827
1828 /* This retransmits one SKB. Policy decisions and retransmit queue
1829 * state updates are done by the caller. Returns non-zero if an
1830 * error occurred which prevented the send.
1831 */
1832 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1833 {
1834 struct tcp_sock *tp = tcp_sk(sk);
1835 struct inet_connection_sock *icsk = inet_csk(sk);
1836 unsigned int cur_mss;
1837 int err;
1838
1839 /* Inconslusive MTU probe */
1840 if (icsk->icsk_mtup.probe_size) {
1841 icsk->icsk_mtup.probe_size = 0;
1842 }
1843
1844 /* Do not sent more than we queued. 1/4 is reserved for possible
1845 * copying overhead: fragmentation, tunneling, mangling etc.
1846 */
1847 if (atomic_read(&sk->sk_wmem_alloc) >
1848 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1849 return -EAGAIN;
1850
1851 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1852 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1853 BUG();
1854 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1855 return -ENOMEM;
1856 }
1857
1858 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1859 return -EHOSTUNREACH; /* Routing failure or similar. */
1860
1861 cur_mss = tcp_current_mss(sk, 0);
1862
1863 /* If receiver has shrunk his window, and skb is out of
1864 * new window, do not retransmit it. The exception is the
1865 * case, when window is shrunk to zero. In this case
1866 * our retransmit serves as a zero window probe.
1867 */
1868 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
1869 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1870 return -EAGAIN;
1871
1872 if (skb->len > cur_mss) {
1873 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1874 return -ENOMEM; /* We'll try again later. */
1875 }
1876
1877 /* Collapse two adjacent packets if worthwhile and we can. */
1878 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1879 (skb->len < (cur_mss >> 1)) &&
1880 (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) &&
1881 (!tcp_skb_is_last(sk, skb)) &&
1882 (skb_shinfo(skb)->nr_frags == 0 &&
1883 skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) &&
1884 (tcp_skb_pcount(skb) == 1 &&
1885 tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) &&
1886 (sysctl_tcp_retrans_collapse != 0))
1887 tcp_retrans_try_collapse(sk, skb, cur_mss);
1888
1889 /* Some Solaris stacks overoptimize and ignore the FIN on a
1890 * retransmit when old data is attached. So strip it off
1891 * since it is cheap to do so and saves bytes on the network.
1892 */
1893 if (skb->len > 0 &&
1894 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1895 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1896 if (!pskb_trim(skb, 0)) {
1897 /* Reuse, even though it does some unnecessary work */
1898 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
1899 TCP_SKB_CB(skb)->flags);
1900 skb->ip_summed = CHECKSUM_NONE;
1901 }
1902 }
1903
1904 /* Make a copy, if the first transmission SKB clone we made
1905 * is still in somebody's hands, else make a clone.
1906 */
1907 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1908
1909 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1910
1911 if (err == 0) {
1912 /* Update global TCP statistics. */
1913 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
1914
1915 tp->total_retrans++;
1916
1917 #if FASTRETRANS_DEBUG > 0
1918 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1919 if (net_ratelimit())
1920 printk(KERN_DEBUG "retrans_out leaked.\n");
1921 }
1922 #endif
1923 if (!tp->retrans_out)
1924 tp->lost_retrans_low = tp->snd_nxt;
1925 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1926 tp->retrans_out += tcp_skb_pcount(skb);
1927
1928 /* Save stamp of the first retransmit. */
1929 if (!tp->retrans_stamp)
1930 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1931
1932 tp->undo_retrans++;
1933
1934 /* snd_nxt is stored to detect loss of retransmitted segment,
1935 * see tcp_input.c tcp_sacktag_write_queue().
1936 */
1937 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1938 }
1939 return err;
1940 }
1941
1942 /* This gets called after a retransmit timeout, and the initially
1943 * retransmitted data is acknowledged. It tries to continue
1944 * resending the rest of the retransmit queue, until either
1945 * we've sent it all or the congestion window limit is reached.
1946 * If doing SACK, the first ACK which comes back for a timeout
1947 * based retransmit packet might feed us FACK information again.
1948 * If so, we use it to avoid unnecessarily retransmissions.
1949 */
1950 void tcp_xmit_retransmit_queue(struct sock *sk)
1951 {
1952 const struct inet_connection_sock *icsk = inet_csk(sk);
1953 struct tcp_sock *tp = tcp_sk(sk);
1954 struct sk_buff *skb;
1955 int packet_cnt;
1956
1957 if (tp->retransmit_skb_hint) {
1958 skb = tp->retransmit_skb_hint;
1959 packet_cnt = tp->retransmit_cnt_hint;
1960 } else {
1961 skb = tcp_write_queue_head(sk);
1962 packet_cnt = 0;
1963 }
1964
1965 /* First pass: retransmit lost packets. */
1966 if (tp->lost_out) {
1967 tcp_for_write_queue_from(skb, sk) {
1968 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1969
1970 if (skb == tcp_send_head(sk))
1971 break;
1972 /* we could do better than to assign each time */
1973 tp->retransmit_skb_hint = skb;
1974 tp->retransmit_cnt_hint = packet_cnt;
1975
1976 /* Assume this retransmit will generate
1977 * only one packet for congestion window
1978 * calculation purposes. This works because
1979 * tcp_retransmit_skb() will chop up the
1980 * packet to be MSS sized and all the
1981 * packet counting works out.
1982 */
1983 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1984 return;
1985
1986 if (sacked & TCPCB_LOST) {
1987 if (!(sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1988 int mib_idx;
1989
1990 if (tcp_retransmit_skb(sk, skb)) {
1991 tp->retransmit_skb_hint = NULL;
1992 return;
1993 }
1994 if (icsk->icsk_ca_state != TCP_CA_Loss)
1995 mib_idx = LINUX_MIB_TCPFASTRETRANS;
1996 else
1997 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
1998 NET_INC_STATS_BH(mib_idx);
1999
2000 if (skb == tcp_write_queue_head(sk))
2001 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2002 inet_csk(sk)->icsk_rto,
2003 TCP_RTO_MAX);
2004 }
2005
2006 packet_cnt += tcp_skb_pcount(skb);
2007 if (packet_cnt >= tp->lost_out)
2008 break;
2009 }
2010 }
2011 }
2012
2013 /* OK, demanded retransmission is finished. */
2014
2015 /* Forward retransmissions are possible only during Recovery. */
2016 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2017 return;
2018
2019 /* No forward retransmissions in Reno are possible. */
2020 if (tcp_is_reno(tp))
2021 return;
2022
2023 /* Yeah, we have to make difficult choice between forward transmission
2024 * and retransmission... Both ways have their merits...
2025 *
2026 * For now we do not retransmit anything, while we have some new
2027 * segments to send. In the other cases, follow rule 3 for
2028 * NextSeg() specified in RFC3517.
2029 */
2030
2031 if (tcp_may_send_now(sk))
2032 return;
2033
2034 /* If nothing is SACKed, highest_sack in the loop won't be valid */
2035 if (!tp->sacked_out)
2036 return;
2037
2038 if (tp->forward_skb_hint)
2039 skb = tp->forward_skb_hint;
2040 else
2041 skb = tcp_write_queue_head(sk);
2042
2043 tcp_for_write_queue_from(skb, sk) {
2044 if (skb == tcp_send_head(sk))
2045 break;
2046 tp->forward_skb_hint = skb;
2047
2048 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2049 break;
2050
2051 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2052 break;
2053
2054 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
2055 continue;
2056
2057 /* Ok, retransmit it. */
2058 if (tcp_retransmit_skb(sk, skb)) {
2059 tp->forward_skb_hint = NULL;
2060 break;
2061 }
2062
2063 if (skb == tcp_write_queue_head(sk))
2064 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2065 inet_csk(sk)->icsk_rto,
2066 TCP_RTO_MAX);
2067
2068 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
2069 }
2070 }
2071
2072 /* Send a fin. The caller locks the socket for us. This cannot be
2073 * allowed to fail queueing a FIN frame under any circumstances.
2074 */
2075 void tcp_send_fin(struct sock *sk)
2076 {
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 struct sk_buff *skb = tcp_write_queue_tail(sk);
2079 int mss_now;
2080
2081 /* Optimization, tack on the FIN if we have a queue of
2082 * unsent frames. But be careful about outgoing SACKS
2083 * and IP options.
2084 */
2085 mss_now = tcp_current_mss(sk, 1);
2086
2087 if (tcp_send_head(sk) != NULL) {
2088 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2089 TCP_SKB_CB(skb)->end_seq++;
2090 tp->write_seq++;
2091 } else {
2092 /* Socket is locked, keep trying until memory is available. */
2093 for (;;) {
2094 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
2095 if (skb)
2096 break;
2097 yield();
2098 }
2099
2100 /* Reserve space for headers and prepare control bits. */
2101 skb_reserve(skb, MAX_TCP_HEADER);
2102 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2103 tcp_init_nondata_skb(skb, tp->write_seq,
2104 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2105 tcp_queue_skb(sk, skb);
2106 }
2107 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2108 }
2109
2110 /* We get here when a process closes a file descriptor (either due to
2111 * an explicit close() or as a byproduct of exit()'ing) and there
2112 * was unread data in the receive queue. This behavior is recommended
2113 * by RFC 2525, section 2.17. -DaveM
2114 */
2115 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2116 {
2117 struct sk_buff *skb;
2118
2119 /* NOTE: No TCP options attached and we never retransmit this. */
2120 skb = alloc_skb(MAX_TCP_HEADER, priority);
2121 if (!skb) {
2122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2123 return;
2124 }
2125
2126 /* Reserve space for headers and prepare control bits. */
2127 skb_reserve(skb, MAX_TCP_HEADER);
2128 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2129 TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2130 /* Send it off. */
2131 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2132 if (tcp_transmit_skb(sk, skb, 0, priority))
2133 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2134
2135 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2136 }
2137
2138 /* WARNING: This routine must only be called when we have already sent
2139 * a SYN packet that crossed the incoming SYN that caused this routine
2140 * to get called. If this assumption fails then the initial rcv_wnd
2141 * and rcv_wscale values will not be correct.
2142 */
2143 int tcp_send_synack(struct sock *sk)
2144 {
2145 struct sk_buff *skb;
2146
2147 skb = tcp_write_queue_head(sk);
2148 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2149 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2150 return -EFAULT;
2151 }
2152 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2153 if (skb_cloned(skb)) {
2154 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2155 if (nskb == NULL)
2156 return -ENOMEM;
2157 tcp_unlink_write_queue(skb, sk);
2158 skb_header_release(nskb);
2159 __tcp_add_write_queue_head(sk, nskb);
2160 sk_wmem_free_skb(sk, skb);
2161 sk->sk_wmem_queued += nskb->truesize;
2162 sk_mem_charge(sk, nskb->truesize);
2163 skb = nskb;
2164 }
2165
2166 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2167 TCP_ECN_send_synack(tcp_sk(sk), skb);
2168 }
2169 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2170 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2171 }
2172
2173 /*
2174 * Prepare a SYN-ACK.
2175 */
2176 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2177 struct request_sock *req)
2178 {
2179 struct inet_request_sock *ireq = inet_rsk(req);
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct tcphdr *th;
2182 int tcp_header_size;
2183 struct sk_buff *skb;
2184 #ifdef CONFIG_TCP_MD5SIG
2185 struct tcp_md5sig_key *md5;
2186 __u8 *md5_hash_location;
2187 #endif
2188
2189 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2190 if (skb == NULL)
2191 return NULL;
2192
2193 /* Reserve space for headers. */
2194 skb_reserve(skb, MAX_TCP_HEADER);
2195
2196 skb->dst = dst_clone(dst);
2197
2198 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2199 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
2200 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
2201 /* SACK_PERM is in the place of NOP NOP of TS */
2202 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
2203
2204 #ifdef CONFIG_TCP_MD5SIG
2205 /* Are we doing MD5 on this segment? If so - make room for it */
2206 md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
2207 if (md5)
2208 tcp_header_size += TCPOLEN_MD5SIG_ALIGNED;
2209 #endif
2210 skb_push(skb, tcp_header_size);
2211 skb_reset_transport_header(skb);
2212
2213 th = tcp_hdr(skb);
2214 memset(th, 0, sizeof(struct tcphdr));
2215 th->syn = 1;
2216 th->ack = 1;
2217 TCP_ECN_make_synack(req, th);
2218 th->source = inet_sk(sk)->sport;
2219 th->dest = ireq->rmt_port;
2220 /* Setting of flags are superfluous here for callers (and ECE is
2221 * not even correctly set)
2222 */
2223 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2224 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2225 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2226 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2227 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2228 __u8 rcv_wscale;
2229 /* Set this up on the first call only */
2230 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2231 /* tcp_full_space because it is guaranteed to be the first packet */
2232 tcp_select_initial_window(tcp_full_space(sk),
2233 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2234 &req->rcv_wnd,
2235 &req->window_clamp,
2236 ireq->wscale_ok,
2237 &rcv_wscale);
2238 ireq->rcv_wscale = rcv_wscale;
2239 }
2240
2241 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2242 th->window = htons(min(req->rcv_wnd, 65535U));
2243 #ifdef CONFIG_SYN_COOKIES
2244 if (unlikely(req->cookie_ts))
2245 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2246 else
2247 #endif
2248 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2249 tcp_syn_build_options((__be32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
2250 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
2251 TCP_SKB_CB(skb)->when,
2252 req->ts_recent,
2253 (
2254 #ifdef CONFIG_TCP_MD5SIG
2255 md5 ? &md5_hash_location :
2256 #endif
2257 NULL)
2258 );
2259
2260 th->doff = (tcp_header_size >> 2);
2261 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2262
2263 #ifdef CONFIG_TCP_MD5SIG
2264 /* Okay, we have all we need - do the md5 hash if needed */
2265 if (md5) {
2266 tp->af_specific->calc_md5_hash(md5_hash_location,
2267 md5,
2268 NULL, dst, req,
2269 tcp_hdr(skb),
2270 skb->len);
2271 }
2272 #endif
2273
2274 return skb;
2275 }
2276
2277 /*
2278 * Do all connect socket setups that can be done AF independent.
2279 */
2280 static void tcp_connect_init(struct sock *sk)
2281 {
2282 struct dst_entry *dst = __sk_dst_get(sk);
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 __u8 rcv_wscale;
2285
2286 /* We'll fix this up when we get a response from the other end.
2287 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2288 */
2289 tp->tcp_header_len = sizeof(struct tcphdr) +
2290 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2291
2292 #ifdef CONFIG_TCP_MD5SIG
2293 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2294 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2295 #endif
2296
2297 /* If user gave his TCP_MAXSEG, record it to clamp */
2298 if (tp->rx_opt.user_mss)
2299 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2300 tp->max_window = 0;
2301 tcp_mtup_init(sk);
2302 tcp_sync_mss(sk, dst_mtu(dst));
2303
2304 if (!tp->window_clamp)
2305 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2306 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2307 tcp_initialize_rcv_mss(sk);
2308
2309 tcp_select_initial_window(tcp_full_space(sk),
2310 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2311 &tp->rcv_wnd,
2312 &tp->window_clamp,
2313 sysctl_tcp_window_scaling,
2314 &rcv_wscale);
2315
2316 tp->rx_opt.rcv_wscale = rcv_wscale;
2317 tp->rcv_ssthresh = tp->rcv_wnd;
2318
2319 sk->sk_err = 0;
2320 sock_reset_flag(sk, SOCK_DONE);
2321 tp->snd_wnd = 0;
2322 tcp_init_wl(tp, tp->write_seq, 0);
2323 tp->snd_una = tp->write_seq;
2324 tp->snd_sml = tp->write_seq;
2325 tp->rcv_nxt = 0;
2326 tp->rcv_wup = 0;
2327 tp->copied_seq = 0;
2328
2329 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2330 inet_csk(sk)->icsk_retransmits = 0;
2331 tcp_clear_retrans(tp);
2332 }
2333
2334 /*
2335 * Build a SYN and send it off.
2336 */
2337 int tcp_connect(struct sock *sk)
2338 {
2339 struct tcp_sock *tp = tcp_sk(sk);
2340 struct sk_buff *buff;
2341
2342 tcp_connect_init(sk);
2343
2344 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2345 if (unlikely(buff == NULL))
2346 return -ENOBUFS;
2347
2348 /* Reserve space for headers. */
2349 skb_reserve(buff, MAX_TCP_HEADER);
2350
2351 tp->snd_nxt = tp->write_seq;
2352 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2353 TCP_ECN_send_syn(sk, buff);
2354
2355 /* Send it off. */
2356 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2357 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2358 skb_header_release(buff);
2359 __tcp_add_write_queue_tail(sk, buff);
2360 sk->sk_wmem_queued += buff->truesize;
2361 sk_mem_charge(sk, buff->truesize);
2362 tp->packets_out += tcp_skb_pcount(buff);
2363 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2364
2365 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2366 * in order to make this packet get counted in tcpOutSegs.
2367 */
2368 tp->snd_nxt = tp->write_seq;
2369 tp->pushed_seq = tp->write_seq;
2370 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2371
2372 /* Timer for repeating the SYN until an answer. */
2373 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2374 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2375 return 0;
2376 }
2377
2378 /* Send out a delayed ack, the caller does the policy checking
2379 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2380 * for details.
2381 */
2382 void tcp_send_delayed_ack(struct sock *sk)
2383 {
2384 struct inet_connection_sock *icsk = inet_csk(sk);
2385 int ato = icsk->icsk_ack.ato;
2386 unsigned long timeout;
2387
2388 if (ato > TCP_DELACK_MIN) {
2389 const struct tcp_sock *tp = tcp_sk(sk);
2390 int max_ato = HZ / 2;
2391
2392 if (icsk->icsk_ack.pingpong ||
2393 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2394 max_ato = TCP_DELACK_MAX;
2395
2396 /* Slow path, intersegment interval is "high". */
2397
2398 /* If some rtt estimate is known, use it to bound delayed ack.
2399 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2400 * directly.
2401 */
2402 if (tp->srtt) {
2403 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2404
2405 if (rtt < max_ato)
2406 max_ato = rtt;
2407 }
2408
2409 ato = min(ato, max_ato);
2410 }
2411
2412 /* Stay within the limit we were given */
2413 timeout = jiffies + ato;
2414
2415 /* Use new timeout only if there wasn't a older one earlier. */
2416 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2417 /* If delack timer was blocked or is about to expire,
2418 * send ACK now.
2419 */
2420 if (icsk->icsk_ack.blocked ||
2421 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2422 tcp_send_ack(sk);
2423 return;
2424 }
2425
2426 if (!time_before(timeout, icsk->icsk_ack.timeout))
2427 timeout = icsk->icsk_ack.timeout;
2428 }
2429 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2430 icsk->icsk_ack.timeout = timeout;
2431 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2432 }
2433
2434 /* This routine sends an ack and also updates the window. */
2435 void tcp_send_ack(struct sock *sk)
2436 {
2437 struct sk_buff *buff;
2438
2439 /* If we have been reset, we may not send again. */
2440 if (sk->sk_state == TCP_CLOSE)
2441 return;
2442
2443 /* We are not putting this on the write queue, so
2444 * tcp_transmit_skb() will set the ownership to this
2445 * sock.
2446 */
2447 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2448 if (buff == NULL) {
2449 inet_csk_schedule_ack(sk);
2450 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2452 TCP_DELACK_MAX, TCP_RTO_MAX);
2453 return;
2454 }
2455
2456 /* Reserve space for headers and prepare control bits. */
2457 skb_reserve(buff, MAX_TCP_HEADER);
2458 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2459
2460 /* Send it off, this clears delayed acks for us. */
2461 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2462 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2463 }
2464
2465 /* This routine sends a packet with an out of date sequence
2466 * number. It assumes the other end will try to ack it.
2467 *
2468 * Question: what should we make while urgent mode?
2469 * 4.4BSD forces sending single byte of data. We cannot send
2470 * out of window data, because we have SND.NXT==SND.MAX...
2471 *
2472 * Current solution: to send TWO zero-length segments in urgent mode:
2473 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2474 * out-of-date with SND.UNA-1 to probe window.
2475 */
2476 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct sk_buff *skb;
2480
2481 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2482 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2483 if (skb == NULL)
2484 return -1;
2485
2486 /* Reserve space for headers and set control bits. */
2487 skb_reserve(skb, MAX_TCP_HEADER);
2488 /* Use a previous sequence. This should cause the other
2489 * end to send an ack. Don't queue or clone SKB, just
2490 * send it.
2491 */
2492 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2493 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2494 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2495 }
2496
2497 int tcp_write_wakeup(struct sock *sk)
2498 {
2499 struct tcp_sock *tp = tcp_sk(sk);
2500 struct sk_buff *skb;
2501
2502 if (sk->sk_state == TCP_CLOSE)
2503 return -1;
2504
2505 if ((skb = tcp_send_head(sk)) != NULL &&
2506 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2507 int err;
2508 unsigned int mss = tcp_current_mss(sk, 0);
2509 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2510
2511 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2512 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2513
2514 /* We are probing the opening of a window
2515 * but the window size is != 0
2516 * must have been a result SWS avoidance ( sender )
2517 */
2518 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2519 skb->len > mss) {
2520 seg_size = min(seg_size, mss);
2521 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2522 if (tcp_fragment(sk, skb, seg_size, mss))
2523 return -1;
2524 } else if (!tcp_skb_pcount(skb))
2525 tcp_set_skb_tso_segs(sk, skb, mss);
2526
2527 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2528 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2529 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2530 if (!err)
2531 tcp_event_new_data_sent(sk, skb);
2532 return err;
2533 } else {
2534 if (tp->urg_mode &&
2535 between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2536 tcp_xmit_probe_skb(sk, 1);
2537 return tcp_xmit_probe_skb(sk, 0);
2538 }
2539 }
2540
2541 /* A window probe timeout has occurred. If window is not closed send
2542 * a partial packet else a zero probe.
2543 */
2544 void tcp_send_probe0(struct sock *sk)
2545 {
2546 struct inet_connection_sock *icsk = inet_csk(sk);
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 int err;
2549
2550 err = tcp_write_wakeup(sk);
2551
2552 if (tp->packets_out || !tcp_send_head(sk)) {
2553 /* Cancel probe timer, if it is not required. */
2554 icsk->icsk_probes_out = 0;
2555 icsk->icsk_backoff = 0;
2556 return;
2557 }
2558
2559 if (err <= 0) {
2560 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2561 icsk->icsk_backoff++;
2562 icsk->icsk_probes_out++;
2563 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2564 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2565 TCP_RTO_MAX);
2566 } else {
2567 /* If packet was not sent due to local congestion,
2568 * do not backoff and do not remember icsk_probes_out.
2569 * Let local senders to fight for local resources.
2570 *
2571 * Use accumulated backoff yet.
2572 */
2573 if (!icsk->icsk_probes_out)
2574 icsk->icsk_probes_out = 1;
2575 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2576 min(icsk->icsk_rto << icsk->icsk_backoff,
2577 TCP_RESOURCE_PROBE_INTERVAL),
2578 TCP_RTO_MAX);
2579 }
2580 }
2581
2582 EXPORT_SYMBOL(tcp_select_initial_window);
2583 EXPORT_SYMBOL(tcp_connect);
2584 EXPORT_SYMBOL(tcp_make_synack);
2585 EXPORT_SYMBOL(tcp_simple_retransmit);
2586 EXPORT_SYMBOL(tcp_sync_mss);
2587 EXPORT_SYMBOL(tcp_mtup_init);