]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_time_stamp;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_time_stamp;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (65535 << 14);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = (space / mss) * mss;
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window
238 * See RFC1323 for an explanation of the limit to 14
239 */
240 space = max_t(u32, space, sysctl_tcp_rmem[2]);
241 space = max_t(u32, space, sysctl_rmem_max);
242 space = min_t(u32, space, *window_clamp);
243 while (space > 65535 && (*rcv_wscale) < 14) {
244 space >>= 1;
245 (*rcv_wscale)++;
246 }
247 }
248
249 if (mss > (1 << *rcv_wscale)) {
250 if (!init_rcv_wnd) /* Use default unless specified otherwise */
251 init_rcv_wnd = tcp_default_init_rwnd(mss);
252 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
253 }
254
255 /* Set the clamp no higher than max representable value */
256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
258 EXPORT_SYMBOL(tcp_select_initial_window);
259
260 /* Chose a new window to advertise, update state in tcp_sock for the
261 * socket, and return result with RFC1323 scaling applied. The return
262 * value can be stuffed directly into th->window for an outgoing
263 * frame.
264 */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267 struct tcp_sock *tp = tcp_sk(sk);
268 u32 old_win = tp->rcv_wnd;
269 u32 cur_win = tcp_receive_window(tp);
270 u32 new_win = __tcp_select_window(sk);
271
272 /* Never shrink the offered window */
273 if (new_win < cur_win) {
274 /* Danger Will Robinson!
275 * Don't update rcv_wup/rcv_wnd here or else
276 * we will not be able to advertise a zero
277 * window in time. --DaveM
278 *
279 * Relax Will Robinson.
280 */
281 if (new_win == 0)
282 NET_INC_STATS(sock_net(sk),
283 LINUX_MIB_TCPWANTZEROWINDOWADV);
284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 }
286 tp->rcv_wnd = new_win;
287 tp->rcv_wup = tp->rcv_nxt;
288
289 /* Make sure we do not exceed the maximum possible
290 * scaled window.
291 */
292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 new_win = min(new_win, MAX_TCP_WINDOW);
294 else
295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296
297 /* RFC1323 scaling applied */
298 new_win >>= tp->rx_opt.rcv_wscale;
299
300 /* If we advertise zero window, disable fast path. */
301 if (new_win == 0) {
302 tp->pred_flags = 0;
303 if (old_win)
304 NET_INC_STATS(sock_net(sk),
305 LINUX_MIB_TCPTOZEROWINDOWADV);
306 } else if (old_win == 0) {
307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 }
309
310 return new_win;
311 }
312
313 /* Packet ECN state for a SYN-ACK */
314 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
315 {
316 const struct tcp_sock *tp = tcp_sk(sk);
317
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
319 if (!(tp->ecn_flags & TCP_ECN_OK))
320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
321 else if (tcp_ca_needs_ecn(sk))
322 INET_ECN_xmit(sk);
323 }
324
325 /* Packet ECN state for a SYN. */
326 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
327 {
328 struct tcp_sock *tp = tcp_sk(sk);
329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 tcp_ca_needs_ecn(sk);
331
332 if (!use_ecn) {
333 const struct dst_entry *dst = __sk_dst_get(sk);
334
335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 use_ecn = true;
337 }
338
339 tp->ecn_flags = 0;
340
341 if (use_ecn) {
342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 tp->ecn_flags = TCP_ECN_OK;
344 if (tcp_ca_needs_ecn(sk))
345 INET_ECN_xmit(sk);
346 }
347 }
348
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 /* tp->ecn_flags are cleared at a later point in time when
353 * SYN ACK is ultimatively being received.
354 */
355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 if (inet_rsk(req)->ecn_ok)
362 th->ece = 1;
363 }
364
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366 * be sent.
367 */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 struct tcphdr *th, int tcp_header_len)
370 {
371 struct tcp_sock *tp = tcp_sk(sk);
372
373 if (tp->ecn_flags & TCP_ECN_OK) {
374 /* Not-retransmitted data segment: set ECT and inject CWR. */
375 if (skb->len != tcp_header_len &&
376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 INET_ECN_xmit(sk);
378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 th->cwr = 1;
381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 }
383 } else if (!tcp_ca_needs_ecn(sk)) {
384 /* ACK or retransmitted segment: clear ECT|CE */
385 INET_ECN_dontxmit(sk);
386 }
387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 th->ece = 1;
389 }
390 }
391
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393 * auto increment end seqno.
394 */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 skb->ip_summed = CHECKSUM_PARTIAL;
398 skb->csum = 0;
399
400 TCP_SKB_CB(skb)->tcp_flags = flags;
401 TCP_SKB_CB(skb)->sacked = 0;
402
403 tcp_skb_pcount_set(skb, 1);
404
405 TCP_SKB_CB(skb)->seq = seq;
406 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 seq++;
408 TCP_SKB_CB(skb)->end_seq = seq;
409 }
410
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 return tp->snd_una != tp->snd_up;
414 }
415
416 #define OPTION_SACK_ADVERTISE (1 << 0)
417 #define OPTION_TS (1 << 1)
418 #define OPTION_MD5 (1 << 2)
419 #define OPTION_WSCALE (1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
421
422 struct tcp_out_options {
423 u16 options; /* bit field of OPTION_* */
424 u16 mss; /* 0 to disable */
425 u8 ws; /* window scale, 0 to disable */
426 u8 num_sack_blocks; /* number of SACK blocks to include */
427 u8 hash_size; /* bytes in hash_location */
428 __u8 *hash_location; /* temporary pointer, overloaded */
429 __u32 tsval, tsecr; /* need to include OPTION_TS */
430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
431 };
432
433 /* Write previously computed TCP options to the packet.
434 *
435 * Beware: Something in the Internet is very sensitive to the ordering of
436 * TCP options, we learned this through the hard way, so be careful here.
437 * Luckily we can at least blame others for their non-compliance but from
438 * inter-operability perspective it seems that we're somewhat stuck with
439 * the ordering which we have been using if we want to keep working with
440 * those broken things (not that it currently hurts anybody as there isn't
441 * particular reason why the ordering would need to be changed).
442 *
443 * At least SACK_PERM as the first option is known to lead to a disaster
444 * (but it may well be that other scenarios fail similarly).
445 */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 struct tcp_out_options *opts)
448 {
449 u16 options = opts->options; /* mungable copy */
450
451 if (unlikely(OPTION_MD5 & options)) {
452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 /* overload cookie hash location */
455 opts->hash_location = (__u8 *)ptr;
456 ptr += 4;
457 }
458
459 if (unlikely(opts->mss)) {
460 *ptr++ = htonl((TCPOPT_MSS << 24) |
461 (TCPOLEN_MSS << 16) |
462 opts->mss);
463 }
464
465 if (likely(OPTION_TS & options)) {
466 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 (TCPOLEN_SACK_PERM << 16) |
469 (TCPOPT_TIMESTAMP << 8) |
470 TCPOLEN_TIMESTAMP);
471 options &= ~OPTION_SACK_ADVERTISE;
472 } else {
473 *ptr++ = htonl((TCPOPT_NOP << 24) |
474 (TCPOPT_NOP << 16) |
475 (TCPOPT_TIMESTAMP << 8) |
476 TCPOLEN_TIMESTAMP);
477 }
478 *ptr++ = htonl(opts->tsval);
479 *ptr++ = htonl(opts->tsecr);
480 }
481
482 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 *ptr++ = htonl((TCPOPT_NOP << 24) |
484 (TCPOPT_NOP << 16) |
485 (TCPOPT_SACK_PERM << 8) |
486 TCPOLEN_SACK_PERM);
487 }
488
489 if (unlikely(OPTION_WSCALE & options)) {
490 *ptr++ = htonl((TCPOPT_NOP << 24) |
491 (TCPOPT_WINDOW << 16) |
492 (TCPOLEN_WINDOW << 8) |
493 opts->ws);
494 }
495
496 if (unlikely(opts->num_sack_blocks)) {
497 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 tp->duplicate_sack : tp->selective_acks;
499 int this_sack;
500
501 *ptr++ = htonl((TCPOPT_NOP << 24) |
502 (TCPOPT_NOP << 16) |
503 (TCPOPT_SACK << 8) |
504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 TCPOLEN_SACK_PERBLOCK)));
506
507 for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 ++this_sack) {
509 *ptr++ = htonl(sp[this_sack].start_seq);
510 *ptr++ = htonl(sp[this_sack].end_seq);
511 }
512
513 tp->rx_opt.dsack = 0;
514 }
515
516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 u8 *p = (u8 *)ptr;
519 u32 len; /* Fast Open option length */
520
521 if (foc->exp) {
522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 TCPOPT_FASTOPEN_MAGIC);
525 p += TCPOLEN_EXP_FASTOPEN_BASE;
526 } else {
527 len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 *p++ = TCPOPT_FASTOPEN;
529 *p++ = len;
530 }
531
532 memcpy(p, foc->val, foc->len);
533 if ((len & 3) == 2) {
534 p[foc->len] = TCPOPT_NOP;
535 p[foc->len + 1] = TCPOPT_NOP;
536 }
537 ptr += (len + 3) >> 2;
538 }
539 }
540
541 /* Compute TCP options for SYN packets. This is not the final
542 * network wire format yet.
543 */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 struct tcp_out_options *opts,
546 struct tcp_md5sig_key **md5)
547 {
548 struct tcp_sock *tp = tcp_sk(sk);
549 unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551
552 #ifdef CONFIG_TCP_MD5SIG
553 *md5 = tp->af_specific->md5_lookup(sk, sk);
554 if (*md5) {
555 opts->options |= OPTION_MD5;
556 remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 }
558 #else
559 *md5 = NULL;
560 #endif
561
562 /* We always get an MSS option. The option bytes which will be seen in
563 * normal data packets should timestamps be used, must be in the MSS
564 * advertised. But we subtract them from tp->mss_cache so that
565 * calculations in tcp_sendmsg are simpler etc. So account for this
566 * fact here if necessary. If we don't do this correctly, as a
567 * receiver we won't recognize data packets as being full sized when we
568 * should, and thus we won't abide by the delayed ACK rules correctly.
569 * SACKs don't matter, we never delay an ACK when we have any of those
570 * going out. */
571 opts->mss = tcp_advertise_mss(sk);
572 remaining -= TCPOLEN_MSS_ALIGNED;
573
574 if (likely(sysctl_tcp_timestamps && !*md5)) {
575 opts->options |= OPTION_TS;
576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 opts->tsecr = tp->rx_opt.ts_recent;
578 remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 }
580 if (likely(sysctl_tcp_window_scaling)) {
581 opts->ws = tp->rx_opt.rcv_wscale;
582 opts->options |= OPTION_WSCALE;
583 remaining -= TCPOLEN_WSCALE_ALIGNED;
584 }
585 if (likely(sysctl_tcp_sack)) {
586 opts->options |= OPTION_SACK_ADVERTISE;
587 if (unlikely(!(OPTION_TS & opts->options)))
588 remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 }
590
591 if (fastopen && fastopen->cookie.len >= 0) {
592 u32 need = fastopen->cookie.len;
593
594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 TCPOLEN_FASTOPEN_BASE;
596 need = (need + 3) & ~3U; /* Align to 32 bits */
597 if (remaining >= need) {
598 opts->options |= OPTION_FAST_OPEN_COOKIE;
599 opts->fastopen_cookie = &fastopen->cookie;
600 remaining -= need;
601 tp->syn_fastopen = 1;
602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 }
604 }
605
606 return MAX_TCP_OPTION_SPACE - remaining;
607 }
608
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 unsigned int mss, struct sk_buff *skb,
612 struct tcp_out_options *opts,
613 const struct tcp_md5sig_key *md5,
614 struct tcp_fastopen_cookie *foc)
615 {
616 struct inet_request_sock *ireq = inet_rsk(req);
617 unsigned int remaining = MAX_TCP_OPTION_SPACE;
618
619 #ifdef CONFIG_TCP_MD5SIG
620 if (md5) {
621 opts->options |= OPTION_MD5;
622 remaining -= TCPOLEN_MD5SIG_ALIGNED;
623
624 /* We can't fit any SACK blocks in a packet with MD5 + TS
625 * options. There was discussion about disabling SACK
626 * rather than TS in order to fit in better with old,
627 * buggy kernels, but that was deemed to be unnecessary.
628 */
629 ireq->tstamp_ok &= !ireq->sack_ok;
630 }
631 #endif
632
633 /* We always send an MSS option. */
634 opts->mss = mss;
635 remaining -= TCPOLEN_MSS_ALIGNED;
636
637 if (likely(ireq->wscale_ok)) {
638 opts->ws = ireq->rcv_wscale;
639 opts->options |= OPTION_WSCALE;
640 remaining -= TCPOLEN_WSCALE_ALIGNED;
641 }
642 if (likely(ireq->tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 opts->tsecr = req->ts_recent;
646 remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 }
648 if (likely(ireq->sack_ok)) {
649 opts->options |= OPTION_SACK_ADVERTISE;
650 if (unlikely(!ireq->tstamp_ok))
651 remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 }
653 if (foc != NULL && foc->len >= 0) {
654 u32 need = foc->len;
655
656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 TCPOLEN_FASTOPEN_BASE;
658 need = (need + 3) & ~3U; /* Align to 32 bits */
659 if (remaining >= need) {
660 opts->options |= OPTION_FAST_OPEN_COOKIE;
661 opts->fastopen_cookie = foc;
662 remaining -= need;
663 }
664 }
665
666 return MAX_TCP_OPTION_SPACE - remaining;
667 }
668
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670 * final wire format yet.
671 */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 struct tcp_out_options *opts,
674 struct tcp_md5sig_key **md5)
675 {
676 struct tcp_sock *tp = tcp_sk(sk);
677 unsigned int size = 0;
678 unsigned int eff_sacks;
679
680 opts->options = 0;
681
682 #ifdef CONFIG_TCP_MD5SIG
683 *md5 = tp->af_specific->md5_lookup(sk, sk);
684 if (unlikely(*md5)) {
685 opts->options |= OPTION_MD5;
686 size += TCPOLEN_MD5SIG_ALIGNED;
687 }
688 #else
689 *md5 = NULL;
690 #endif
691
692 if (likely(tp->rx_opt.tstamp_ok)) {
693 opts->options |= OPTION_TS;
694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 opts->tsecr = tp->rx_opt.ts_recent;
696 size += TCPOLEN_TSTAMP_ALIGNED;
697 }
698
699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 if (unlikely(eff_sacks)) {
701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 opts->num_sack_blocks =
703 min_t(unsigned int, eff_sacks,
704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 TCPOLEN_SACK_PERBLOCK);
706 size += TCPOLEN_SACK_BASE_ALIGNED +
707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 }
709
710 return size;
711 }
712
713
714 /* TCP SMALL QUEUES (TSQ)
715 *
716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717 * to reduce RTT and bufferbloat.
718 * We do this using a special skb destructor (tcp_wfree).
719 *
720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721 * needs to be reallocated in a driver.
722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723 *
724 * Since transmit from skb destructor is forbidden, we use a tasklet
725 * to process all sockets that eventually need to send more skbs.
726 * We use one tasklet per cpu, with its own queue of sockets.
727 */
728 struct tsq_tasklet {
729 struct tasklet_struct tasklet;
730 struct list_head head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 if ((1 << sk->sk_state) &
737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
739 struct tcp_sock *tp = tcp_sk(sk);
740
741 if (tp->lost_out > tp->retrans_out &&
742 tp->snd_cwnd > tcp_packets_in_flight(tp))
743 tcp_xmit_retransmit_queue(sk);
744
745 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 0, GFP_ATOMIC);
747 }
748 }
749 /*
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
754 */
755 static void tcp_tasklet_func(unsigned long data)
756 {
757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 LIST_HEAD(list);
759 unsigned long flags;
760 struct list_head *q, *n;
761 struct tcp_sock *tp;
762 struct sock *sk;
763
764 local_irq_save(flags);
765 list_splice_init(&tsq->head, &list);
766 local_irq_restore(flags);
767
768 list_for_each_safe(q, n, &list) {
769 tp = list_entry(q, struct tcp_sock, tsq_node);
770 list_del(&tp->tsq_node);
771
772 sk = (struct sock *)tp;
773 smp_mb__before_atomic();
774 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775
776 if (!sk->sk_lock.owned &&
777 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 bh_lock_sock(sk);
779 if (!sock_owned_by_user(sk)) {
780 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 tcp_tsq_handler(sk);
782 }
783 bh_unlock_sock(sk);
784 }
785
786 sk_free(sk);
787 }
788 }
789
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
791 TCPF_WRITE_TIMER_DEFERRED | \
792 TCPF_DELACK_TIMER_DEFERRED | \
793 TCPF_MTU_REDUCED_DEFERRED)
794 /**
795 * tcp_release_cb - tcp release_sock() callback
796 * @sk: socket
797 *
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
800 */
801 void tcp_release_cb(struct sock *sk)
802 {
803 unsigned long flags, nflags;
804
805 /* perform an atomic operation only if at least one flag is set */
806 do {
807 flags = sk->sk_tsq_flags;
808 if (!(flags & TCP_DEFERRED_ALL))
809 return;
810 nflags = flags & ~TCP_DEFERRED_ALL;
811 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812
813 if (flags & TCPF_TSQ_DEFERRED)
814 tcp_tsq_handler(sk);
815
816 /* Here begins the tricky part :
817 * We are called from release_sock() with :
818 * 1) BH disabled
819 * 2) sk_lock.slock spinlock held
820 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 *
822 * But following code is meant to be called from BH handlers,
823 * so we should keep BH disabled, but early release socket ownership
824 */
825 sock_release_ownership(sk);
826
827 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 tcp_write_timer_handler(sk);
829 __sock_put(sk);
830 }
831 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 tcp_delack_timer_handler(sk);
833 __sock_put(sk);
834 }
835 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 __sock_put(sk);
838 }
839 }
840 EXPORT_SYMBOL(tcp_release_cb);
841
842 void __init tcp_tasklet_init(void)
843 {
844 int i;
845
846 for_each_possible_cpu(i) {
847 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848
849 INIT_LIST_HEAD(&tsq->head);
850 tasklet_init(&tsq->tasklet,
851 tcp_tasklet_func,
852 (unsigned long)tsq);
853 }
854 }
855
856 /*
857 * Write buffer destructor automatically called from kfree_skb.
858 * We can't xmit new skbs from this context, as we might already
859 * hold qdisc lock.
860 */
861 void tcp_wfree(struct sk_buff *skb)
862 {
863 struct sock *sk = skb->sk;
864 struct tcp_sock *tp = tcp_sk(sk);
865 unsigned long flags, nval, oval;
866 int wmem;
867
868 /* Keep one reference on sk_wmem_alloc.
869 * Will be released by sk_free() from here or tcp_tasklet_func()
870 */
871 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
872
873 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
874 * Wait until our queues (qdisc + devices) are drained.
875 * This gives :
876 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
877 * - chance for incoming ACK (processed by another cpu maybe)
878 * to migrate this flow (skb->ooo_okay will be eventually set)
879 */
880 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
881 goto out;
882
883 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
884 struct tsq_tasklet *tsq;
885 bool empty;
886
887 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
888 goto out;
889
890 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
891 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
892 if (nval != oval)
893 continue;
894
895 /* queue this socket to tasklet queue */
896 local_irq_save(flags);
897 tsq = this_cpu_ptr(&tsq_tasklet);
898 empty = list_empty(&tsq->head);
899 list_add(&tp->tsq_node, &tsq->head);
900 if (empty)
901 tasklet_schedule(&tsq->tasklet);
902 local_irq_restore(flags);
903 return;
904 }
905 out:
906 sk_free(sk);
907 }
908
909 /* This routine actually transmits TCP packets queued in by
910 * tcp_do_sendmsg(). This is used by both the initial
911 * transmission and possible later retransmissions.
912 * All SKB's seen here are completely headerless. It is our
913 * job to build the TCP header, and pass the packet down to
914 * IP so it can do the same plus pass the packet off to the
915 * device.
916 *
917 * We are working here with either a clone of the original
918 * SKB, or a fresh unique copy made by the retransmit engine.
919 */
920 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
921 gfp_t gfp_mask)
922 {
923 const struct inet_connection_sock *icsk = inet_csk(sk);
924 struct inet_sock *inet;
925 struct tcp_sock *tp;
926 struct tcp_skb_cb *tcb;
927 struct tcp_out_options opts;
928 unsigned int tcp_options_size, tcp_header_size;
929 struct tcp_md5sig_key *md5;
930 struct tcphdr *th;
931 int err;
932
933 BUG_ON(!skb || !tcp_skb_pcount(skb));
934 tp = tcp_sk(sk);
935
936 if (clone_it) {
937 skb_mstamp_get(&skb->skb_mstamp);
938 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
939 - tp->snd_una;
940 tcp_rate_skb_sent(sk, skb);
941
942 if (unlikely(skb_cloned(skb)))
943 skb = pskb_copy(skb, gfp_mask);
944 else
945 skb = skb_clone(skb, gfp_mask);
946 if (unlikely(!skb))
947 return -ENOBUFS;
948 }
949
950 inet = inet_sk(sk);
951 tcb = TCP_SKB_CB(skb);
952 memset(&opts, 0, sizeof(opts));
953
954 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
955 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
956 else
957 tcp_options_size = tcp_established_options(sk, skb, &opts,
958 &md5);
959 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
960
961 /* if no packet is in qdisc/device queue, then allow XPS to select
962 * another queue. We can be called from tcp_tsq_handler()
963 * which holds one reference to sk_wmem_alloc.
964 *
965 * TODO: Ideally, in-flight pure ACK packets should not matter here.
966 * One way to get this would be to set skb->truesize = 2 on them.
967 */
968 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
969
970 /* If we had to use memory reserve to allocate this skb,
971 * this might cause drops if packet is looped back :
972 * Other socket might not have SOCK_MEMALLOC.
973 * Packets not looped back do not care about pfmemalloc.
974 */
975 skb->pfmemalloc = 0;
976
977 skb_push(skb, tcp_header_size);
978 skb_reset_transport_header(skb);
979
980 skb_orphan(skb);
981 skb->sk = sk;
982 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
983 skb_set_hash_from_sk(skb, sk);
984 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
985
986 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
987
988 /* Build TCP header and checksum it. */
989 th = (struct tcphdr *)skb->data;
990 th->source = inet->inet_sport;
991 th->dest = inet->inet_dport;
992 th->seq = htonl(tcb->seq);
993 th->ack_seq = htonl(tp->rcv_nxt);
994 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
995 tcb->tcp_flags);
996
997 th->check = 0;
998 th->urg_ptr = 0;
999
1000 /* The urg_mode check is necessary during a below snd_una win probe */
1001 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1002 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1003 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1004 th->urg = 1;
1005 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1006 th->urg_ptr = htons(0xFFFF);
1007 th->urg = 1;
1008 }
1009 }
1010
1011 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1012 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1013 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1014 th->window = htons(tcp_select_window(sk));
1015 tcp_ecn_send(sk, skb, th, tcp_header_size);
1016 } else {
1017 /* RFC1323: The window in SYN & SYN/ACK segments
1018 * is never scaled.
1019 */
1020 th->window = htons(min(tp->rcv_wnd, 65535U));
1021 }
1022 #ifdef CONFIG_TCP_MD5SIG
1023 /* Calculate the MD5 hash, as we have all we need now */
1024 if (md5) {
1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1026 tp->af_specific->calc_md5_hash(opts.hash_location,
1027 md5, sk, skb);
1028 }
1029 #endif
1030
1031 icsk->icsk_af_ops->send_check(sk, skb);
1032
1033 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1034 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1035
1036 if (skb->len != tcp_header_size) {
1037 tcp_event_data_sent(tp, sk);
1038 tp->data_segs_out += tcp_skb_pcount(skb);
1039 }
1040
1041 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1042 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1043 tcp_skb_pcount(skb));
1044
1045 tp->segs_out += tcp_skb_pcount(skb);
1046 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1047 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1048 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1049
1050 /* Our usage of tstamp should remain private */
1051 skb->tstamp = 0;
1052
1053 /* Cleanup our debris for IP stacks */
1054 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1055 sizeof(struct inet6_skb_parm)));
1056
1057 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1058
1059 if (likely(err <= 0))
1060 return err;
1061
1062 tcp_enter_cwr(sk);
1063
1064 return net_xmit_eval(err);
1065 }
1066
1067 /* This routine just queues the buffer for sending.
1068 *
1069 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1070 * otherwise socket can stall.
1071 */
1072 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1073 {
1074 struct tcp_sock *tp = tcp_sk(sk);
1075
1076 /* Advance write_seq and place onto the write_queue. */
1077 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1078 __skb_header_release(skb);
1079 tcp_add_write_queue_tail(sk, skb);
1080 sk->sk_wmem_queued += skb->truesize;
1081 sk_mem_charge(sk, skb->truesize);
1082 }
1083
1084 /* Initialize TSO segments for a packet. */
1085 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1086 {
1087 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1088 /* Avoid the costly divide in the normal
1089 * non-TSO case.
1090 */
1091 tcp_skb_pcount_set(skb, 1);
1092 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1093 } else {
1094 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1095 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1096 }
1097 }
1098
1099 /* When a modification to fackets out becomes necessary, we need to check
1100 * skb is counted to fackets_out or not.
1101 */
1102 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1103 int decr)
1104 {
1105 struct tcp_sock *tp = tcp_sk(sk);
1106
1107 if (!tp->sacked_out || tcp_is_reno(tp))
1108 return;
1109
1110 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1111 tp->fackets_out -= decr;
1112 }
1113
1114 /* Pcount in the middle of the write queue got changed, we need to do various
1115 * tweaks to fix counters
1116 */
1117 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1118 {
1119 struct tcp_sock *tp = tcp_sk(sk);
1120
1121 tp->packets_out -= decr;
1122
1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1124 tp->sacked_out -= decr;
1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1126 tp->retrans_out -= decr;
1127 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1128 tp->lost_out -= decr;
1129
1130 /* Reno case is special. Sigh... */
1131 if (tcp_is_reno(tp) && decr > 0)
1132 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1133
1134 tcp_adjust_fackets_out(sk, skb, decr);
1135
1136 if (tp->lost_skb_hint &&
1137 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1138 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1139 tp->lost_cnt_hint -= decr;
1140
1141 tcp_verify_left_out(tp);
1142 }
1143
1144 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1145 {
1146 return TCP_SKB_CB(skb)->txstamp_ack ||
1147 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1148 }
1149
1150 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1151 {
1152 struct skb_shared_info *shinfo = skb_shinfo(skb);
1153
1154 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1155 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1156 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1157 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1158
1159 shinfo->tx_flags &= ~tsflags;
1160 shinfo2->tx_flags |= tsflags;
1161 swap(shinfo->tskey, shinfo2->tskey);
1162 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1163 TCP_SKB_CB(skb)->txstamp_ack = 0;
1164 }
1165 }
1166
1167 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1168 {
1169 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1170 TCP_SKB_CB(skb)->eor = 0;
1171 }
1172
1173 /* Function to create two new TCP segments. Shrinks the given segment
1174 * to the specified size and appends a new segment with the rest of the
1175 * packet to the list. This won't be called frequently, I hope.
1176 * Remember, these are still headerless SKBs at this point.
1177 */
1178 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1179 unsigned int mss_now, gfp_t gfp)
1180 {
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 struct sk_buff *buff;
1183 int nsize, old_factor;
1184 int nlen;
1185 u8 flags;
1186
1187 if (WARN_ON(len > skb->len))
1188 return -EINVAL;
1189
1190 nsize = skb_headlen(skb) - len;
1191 if (nsize < 0)
1192 nsize = 0;
1193
1194 if (skb_unclone(skb, gfp))
1195 return -ENOMEM;
1196
1197 /* Get a new skb... force flag on. */
1198 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1199 if (!buff)
1200 return -ENOMEM; /* We'll just try again later. */
1201
1202 sk->sk_wmem_queued += buff->truesize;
1203 sk_mem_charge(sk, buff->truesize);
1204 nlen = skb->len - len - nsize;
1205 buff->truesize += nlen;
1206 skb->truesize -= nlen;
1207
1208 /* Correct the sequence numbers. */
1209 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1210 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1211 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1212
1213 /* PSH and FIN should only be set in the second packet. */
1214 flags = TCP_SKB_CB(skb)->tcp_flags;
1215 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1216 TCP_SKB_CB(buff)->tcp_flags = flags;
1217 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1218 tcp_skb_fragment_eor(skb, buff);
1219
1220 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1221 /* Copy and checksum data tail into the new buffer. */
1222 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1223 skb_put(buff, nsize),
1224 nsize, 0);
1225
1226 skb_trim(skb, len);
1227
1228 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1229 } else {
1230 skb->ip_summed = CHECKSUM_PARTIAL;
1231 skb_split(skb, buff, len);
1232 }
1233
1234 buff->ip_summed = skb->ip_summed;
1235
1236 buff->tstamp = skb->tstamp;
1237 tcp_fragment_tstamp(skb, buff);
1238
1239 old_factor = tcp_skb_pcount(skb);
1240
1241 /* Fix up tso_factor for both original and new SKB. */
1242 tcp_set_skb_tso_segs(skb, mss_now);
1243 tcp_set_skb_tso_segs(buff, mss_now);
1244
1245 /* Update delivered info for the new segment */
1246 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1247
1248 /* If this packet has been sent out already, we must
1249 * adjust the various packet counters.
1250 */
1251 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1252 int diff = old_factor - tcp_skb_pcount(skb) -
1253 tcp_skb_pcount(buff);
1254
1255 if (diff)
1256 tcp_adjust_pcount(sk, skb, diff);
1257 }
1258
1259 /* Link BUFF into the send queue. */
1260 __skb_header_release(buff);
1261 tcp_insert_write_queue_after(skb, buff, sk);
1262
1263 return 0;
1264 }
1265
1266 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1267 * eventually). The difference is that pulled data not copied, but
1268 * immediately discarded.
1269 */
1270 static void __pskb_trim_head(struct sk_buff *skb, int len)
1271 {
1272 struct skb_shared_info *shinfo;
1273 int i, k, eat;
1274
1275 eat = min_t(int, len, skb_headlen(skb));
1276 if (eat) {
1277 __skb_pull(skb, eat);
1278 len -= eat;
1279 if (!len)
1280 return;
1281 }
1282 eat = len;
1283 k = 0;
1284 shinfo = skb_shinfo(skb);
1285 for (i = 0; i < shinfo->nr_frags; i++) {
1286 int size = skb_frag_size(&shinfo->frags[i]);
1287
1288 if (size <= eat) {
1289 skb_frag_unref(skb, i);
1290 eat -= size;
1291 } else {
1292 shinfo->frags[k] = shinfo->frags[i];
1293 if (eat) {
1294 shinfo->frags[k].page_offset += eat;
1295 skb_frag_size_sub(&shinfo->frags[k], eat);
1296 eat = 0;
1297 }
1298 k++;
1299 }
1300 }
1301 shinfo->nr_frags = k;
1302
1303 skb_reset_tail_pointer(skb);
1304 skb->data_len -= len;
1305 skb->len = skb->data_len;
1306 }
1307
1308 /* Remove acked data from a packet in the transmit queue. */
1309 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1310 {
1311 if (skb_unclone(skb, GFP_ATOMIC))
1312 return -ENOMEM;
1313
1314 __pskb_trim_head(skb, len);
1315
1316 TCP_SKB_CB(skb)->seq += len;
1317 skb->ip_summed = CHECKSUM_PARTIAL;
1318
1319 skb->truesize -= len;
1320 sk->sk_wmem_queued -= len;
1321 sk_mem_uncharge(sk, len);
1322 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1323
1324 /* Any change of skb->len requires recalculation of tso factor. */
1325 if (tcp_skb_pcount(skb) > 1)
1326 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1327
1328 return 0;
1329 }
1330
1331 /* Calculate MSS not accounting any TCP options. */
1332 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1333 {
1334 const struct tcp_sock *tp = tcp_sk(sk);
1335 const struct inet_connection_sock *icsk = inet_csk(sk);
1336 int mss_now;
1337
1338 /* Calculate base mss without TCP options:
1339 It is MMS_S - sizeof(tcphdr) of rfc1122
1340 */
1341 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1342
1343 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1344 if (icsk->icsk_af_ops->net_frag_header_len) {
1345 const struct dst_entry *dst = __sk_dst_get(sk);
1346
1347 if (dst && dst_allfrag(dst))
1348 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1349 }
1350
1351 /* Clamp it (mss_clamp does not include tcp options) */
1352 if (mss_now > tp->rx_opt.mss_clamp)
1353 mss_now = tp->rx_opt.mss_clamp;
1354
1355 /* Now subtract optional transport overhead */
1356 mss_now -= icsk->icsk_ext_hdr_len;
1357
1358 /* Then reserve room for full set of TCP options and 8 bytes of data */
1359 if (mss_now < 48)
1360 mss_now = 48;
1361 return mss_now;
1362 }
1363
1364 /* Calculate MSS. Not accounting for SACKs here. */
1365 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1366 {
1367 /* Subtract TCP options size, not including SACKs */
1368 return __tcp_mtu_to_mss(sk, pmtu) -
1369 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1370 }
1371
1372 /* Inverse of above */
1373 int tcp_mss_to_mtu(struct sock *sk, int mss)
1374 {
1375 const struct tcp_sock *tp = tcp_sk(sk);
1376 const struct inet_connection_sock *icsk = inet_csk(sk);
1377 int mtu;
1378
1379 mtu = mss +
1380 tp->tcp_header_len +
1381 icsk->icsk_ext_hdr_len +
1382 icsk->icsk_af_ops->net_header_len;
1383
1384 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1385 if (icsk->icsk_af_ops->net_frag_header_len) {
1386 const struct dst_entry *dst = __sk_dst_get(sk);
1387
1388 if (dst && dst_allfrag(dst))
1389 mtu += icsk->icsk_af_ops->net_frag_header_len;
1390 }
1391 return mtu;
1392 }
1393 EXPORT_SYMBOL(tcp_mss_to_mtu);
1394
1395 /* MTU probing init per socket */
1396 void tcp_mtup_init(struct sock *sk)
1397 {
1398 struct tcp_sock *tp = tcp_sk(sk);
1399 struct inet_connection_sock *icsk = inet_csk(sk);
1400 struct net *net = sock_net(sk);
1401
1402 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1403 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1404 icsk->icsk_af_ops->net_header_len;
1405 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1406 icsk->icsk_mtup.probe_size = 0;
1407 if (icsk->icsk_mtup.enabled)
1408 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1409 }
1410 EXPORT_SYMBOL(tcp_mtup_init);
1411
1412 /* This function synchronize snd mss to current pmtu/exthdr set.
1413
1414 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1415 for TCP options, but includes only bare TCP header.
1416
1417 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1418 It is minimum of user_mss and mss received with SYN.
1419 It also does not include TCP options.
1420
1421 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1422
1423 tp->mss_cache is current effective sending mss, including
1424 all tcp options except for SACKs. It is evaluated,
1425 taking into account current pmtu, but never exceeds
1426 tp->rx_opt.mss_clamp.
1427
1428 NOTE1. rfc1122 clearly states that advertised MSS
1429 DOES NOT include either tcp or ip options.
1430
1431 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1432 are READ ONLY outside this function. --ANK (980731)
1433 */
1434 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1435 {
1436 struct tcp_sock *tp = tcp_sk(sk);
1437 struct inet_connection_sock *icsk = inet_csk(sk);
1438 int mss_now;
1439
1440 if (icsk->icsk_mtup.search_high > pmtu)
1441 icsk->icsk_mtup.search_high = pmtu;
1442
1443 mss_now = tcp_mtu_to_mss(sk, pmtu);
1444 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1445
1446 /* And store cached results */
1447 icsk->icsk_pmtu_cookie = pmtu;
1448 if (icsk->icsk_mtup.enabled)
1449 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1450 tp->mss_cache = mss_now;
1451
1452 return mss_now;
1453 }
1454 EXPORT_SYMBOL(tcp_sync_mss);
1455
1456 /* Compute the current effective MSS, taking SACKs and IP options,
1457 * and even PMTU discovery events into account.
1458 */
1459 unsigned int tcp_current_mss(struct sock *sk)
1460 {
1461 const struct tcp_sock *tp = tcp_sk(sk);
1462 const struct dst_entry *dst = __sk_dst_get(sk);
1463 u32 mss_now;
1464 unsigned int header_len;
1465 struct tcp_out_options opts;
1466 struct tcp_md5sig_key *md5;
1467
1468 mss_now = tp->mss_cache;
1469
1470 if (dst) {
1471 u32 mtu = dst_mtu(dst);
1472 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1473 mss_now = tcp_sync_mss(sk, mtu);
1474 }
1475
1476 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1477 sizeof(struct tcphdr);
1478 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1479 * some common options. If this is an odd packet (because we have SACK
1480 * blocks etc) then our calculated header_len will be different, and
1481 * we have to adjust mss_now correspondingly */
1482 if (header_len != tp->tcp_header_len) {
1483 int delta = (int) header_len - tp->tcp_header_len;
1484 mss_now -= delta;
1485 }
1486
1487 return mss_now;
1488 }
1489
1490 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1491 * As additional protections, we do not touch cwnd in retransmission phases,
1492 * and if application hit its sndbuf limit recently.
1493 */
1494 static void tcp_cwnd_application_limited(struct sock *sk)
1495 {
1496 struct tcp_sock *tp = tcp_sk(sk);
1497
1498 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1499 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1500 /* Limited by application or receiver window. */
1501 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1502 u32 win_used = max(tp->snd_cwnd_used, init_win);
1503 if (win_used < tp->snd_cwnd) {
1504 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1505 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1506 }
1507 tp->snd_cwnd_used = 0;
1508 }
1509 tp->snd_cwnd_stamp = tcp_time_stamp;
1510 }
1511
1512 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1513 {
1514 struct tcp_sock *tp = tcp_sk(sk);
1515
1516 /* Track the maximum number of outstanding packets in each
1517 * window, and remember whether we were cwnd-limited then.
1518 */
1519 if (!before(tp->snd_una, tp->max_packets_seq) ||
1520 tp->packets_out > tp->max_packets_out) {
1521 tp->max_packets_out = tp->packets_out;
1522 tp->max_packets_seq = tp->snd_nxt;
1523 tp->is_cwnd_limited = is_cwnd_limited;
1524 }
1525
1526 if (tcp_is_cwnd_limited(sk)) {
1527 /* Network is feed fully. */
1528 tp->snd_cwnd_used = 0;
1529 tp->snd_cwnd_stamp = tcp_time_stamp;
1530 } else {
1531 /* Network starves. */
1532 if (tp->packets_out > tp->snd_cwnd_used)
1533 tp->snd_cwnd_used = tp->packets_out;
1534
1535 if (sysctl_tcp_slow_start_after_idle &&
1536 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1537 tcp_cwnd_application_limited(sk);
1538
1539 /* The following conditions together indicate the starvation
1540 * is caused by insufficient sender buffer:
1541 * 1) just sent some data (see tcp_write_xmit)
1542 * 2) not cwnd limited (this else condition)
1543 * 3) no more data to send (null tcp_send_head )
1544 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1545 */
1546 if (!tcp_send_head(sk) && sk->sk_socket &&
1547 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1548 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1549 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1550 }
1551 }
1552
1553 /* Minshall's variant of the Nagle send check. */
1554 static bool tcp_minshall_check(const struct tcp_sock *tp)
1555 {
1556 return after(tp->snd_sml, tp->snd_una) &&
1557 !after(tp->snd_sml, tp->snd_nxt);
1558 }
1559
1560 /* Update snd_sml if this skb is under mss
1561 * Note that a TSO packet might end with a sub-mss segment
1562 * The test is really :
1563 * if ((skb->len % mss) != 0)
1564 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1565 * But we can avoid doing the divide again given we already have
1566 * skb_pcount = skb->len / mss_now
1567 */
1568 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1569 const struct sk_buff *skb)
1570 {
1571 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1572 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1573 }
1574
1575 /* Return false, if packet can be sent now without violation Nagle's rules:
1576 * 1. It is full sized. (provided by caller in %partial bool)
1577 * 2. Or it contains FIN. (already checked by caller)
1578 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1579 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1580 * With Minshall's modification: all sent small packets are ACKed.
1581 */
1582 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1583 int nonagle)
1584 {
1585 return partial &&
1586 ((nonagle & TCP_NAGLE_CORK) ||
1587 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1588 }
1589
1590 /* Return how many segs we'd like on a TSO packet,
1591 * to send one TSO packet per ms
1592 */
1593 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1594 int min_tso_segs)
1595 {
1596 u32 bytes, segs;
1597
1598 bytes = min(sk->sk_pacing_rate >> 10,
1599 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1600
1601 /* Goal is to send at least one packet per ms,
1602 * not one big TSO packet every 100 ms.
1603 * This preserves ACK clocking and is consistent
1604 * with tcp_tso_should_defer() heuristic.
1605 */
1606 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1607
1608 return min_t(u32, segs, sk->sk_gso_max_segs);
1609 }
1610 EXPORT_SYMBOL(tcp_tso_autosize);
1611
1612 /* Return the number of segments we want in the skb we are transmitting.
1613 * See if congestion control module wants to decide; otherwise, autosize.
1614 */
1615 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1616 {
1617 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1618 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1619
1620 return tso_segs ? :
1621 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1622 }
1623
1624 /* Returns the portion of skb which can be sent right away */
1625 static unsigned int tcp_mss_split_point(const struct sock *sk,
1626 const struct sk_buff *skb,
1627 unsigned int mss_now,
1628 unsigned int max_segs,
1629 int nonagle)
1630 {
1631 const struct tcp_sock *tp = tcp_sk(sk);
1632 u32 partial, needed, window, max_len;
1633
1634 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1635 max_len = mss_now * max_segs;
1636
1637 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1638 return max_len;
1639
1640 needed = min(skb->len, window);
1641
1642 if (max_len <= needed)
1643 return max_len;
1644
1645 partial = needed % mss_now;
1646 /* If last segment is not a full MSS, check if Nagle rules allow us
1647 * to include this last segment in this skb.
1648 * Otherwise, we'll split the skb at last MSS boundary
1649 */
1650 if (tcp_nagle_check(partial != 0, tp, nonagle))
1651 return needed - partial;
1652
1653 return needed;
1654 }
1655
1656 /* Can at least one segment of SKB be sent right now, according to the
1657 * congestion window rules? If so, return how many segments are allowed.
1658 */
1659 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1660 const struct sk_buff *skb)
1661 {
1662 u32 in_flight, cwnd, halfcwnd;
1663
1664 /* Don't be strict about the congestion window for the final FIN. */
1665 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1666 tcp_skb_pcount(skb) == 1)
1667 return 1;
1668
1669 in_flight = tcp_packets_in_flight(tp);
1670 cwnd = tp->snd_cwnd;
1671 if (in_flight >= cwnd)
1672 return 0;
1673
1674 /* For better scheduling, ensure we have at least
1675 * 2 GSO packets in flight.
1676 */
1677 halfcwnd = max(cwnd >> 1, 1U);
1678 return min(halfcwnd, cwnd - in_flight);
1679 }
1680
1681 /* Initialize TSO state of a skb.
1682 * This must be invoked the first time we consider transmitting
1683 * SKB onto the wire.
1684 */
1685 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1686 {
1687 int tso_segs = tcp_skb_pcount(skb);
1688
1689 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1690 tcp_set_skb_tso_segs(skb, mss_now);
1691 tso_segs = tcp_skb_pcount(skb);
1692 }
1693 return tso_segs;
1694 }
1695
1696
1697 /* Return true if the Nagle test allows this packet to be
1698 * sent now.
1699 */
1700 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1701 unsigned int cur_mss, int nonagle)
1702 {
1703 /* Nagle rule does not apply to frames, which sit in the middle of the
1704 * write_queue (they have no chances to get new data).
1705 *
1706 * This is implemented in the callers, where they modify the 'nonagle'
1707 * argument based upon the location of SKB in the send queue.
1708 */
1709 if (nonagle & TCP_NAGLE_PUSH)
1710 return true;
1711
1712 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1713 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1714 return true;
1715
1716 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1717 return true;
1718
1719 return false;
1720 }
1721
1722 /* Does at least the first segment of SKB fit into the send window? */
1723 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1724 const struct sk_buff *skb,
1725 unsigned int cur_mss)
1726 {
1727 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1728
1729 if (skb->len > cur_mss)
1730 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1731
1732 return !after(end_seq, tcp_wnd_end(tp));
1733 }
1734
1735 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1736 * should be put on the wire right now. If so, it returns the number of
1737 * packets allowed by the congestion window.
1738 */
1739 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1740 unsigned int cur_mss, int nonagle)
1741 {
1742 const struct tcp_sock *tp = tcp_sk(sk);
1743 unsigned int cwnd_quota;
1744
1745 tcp_init_tso_segs(skb, cur_mss);
1746
1747 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1748 return 0;
1749
1750 cwnd_quota = tcp_cwnd_test(tp, skb);
1751 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1752 cwnd_quota = 0;
1753
1754 return cwnd_quota;
1755 }
1756
1757 /* Test if sending is allowed right now. */
1758 bool tcp_may_send_now(struct sock *sk)
1759 {
1760 const struct tcp_sock *tp = tcp_sk(sk);
1761 struct sk_buff *skb = tcp_send_head(sk);
1762
1763 return skb &&
1764 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1765 (tcp_skb_is_last(sk, skb) ?
1766 tp->nonagle : TCP_NAGLE_PUSH));
1767 }
1768
1769 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1770 * which is put after SKB on the list. It is very much like
1771 * tcp_fragment() except that it may make several kinds of assumptions
1772 * in order to speed up the splitting operation. In particular, we
1773 * know that all the data is in scatter-gather pages, and that the
1774 * packet has never been sent out before (and thus is not cloned).
1775 */
1776 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1777 unsigned int mss_now, gfp_t gfp)
1778 {
1779 struct sk_buff *buff;
1780 int nlen = skb->len - len;
1781 u8 flags;
1782
1783 /* All of a TSO frame must be composed of paged data. */
1784 if (skb->len != skb->data_len)
1785 return tcp_fragment(sk, skb, len, mss_now, gfp);
1786
1787 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1788 if (unlikely(!buff))
1789 return -ENOMEM;
1790
1791 sk->sk_wmem_queued += buff->truesize;
1792 sk_mem_charge(sk, buff->truesize);
1793 buff->truesize += nlen;
1794 skb->truesize -= nlen;
1795
1796 /* Correct the sequence numbers. */
1797 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1798 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1799 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1800
1801 /* PSH and FIN should only be set in the second packet. */
1802 flags = TCP_SKB_CB(skb)->tcp_flags;
1803 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1804 TCP_SKB_CB(buff)->tcp_flags = flags;
1805
1806 /* This packet was never sent out yet, so no SACK bits. */
1807 TCP_SKB_CB(buff)->sacked = 0;
1808
1809 tcp_skb_fragment_eor(skb, buff);
1810
1811 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1812 skb_split(skb, buff, len);
1813 tcp_fragment_tstamp(skb, buff);
1814
1815 /* Fix up tso_factor for both original and new SKB. */
1816 tcp_set_skb_tso_segs(skb, mss_now);
1817 tcp_set_skb_tso_segs(buff, mss_now);
1818
1819 /* Link BUFF into the send queue. */
1820 __skb_header_release(buff);
1821 tcp_insert_write_queue_after(skb, buff, sk);
1822
1823 return 0;
1824 }
1825
1826 /* Try to defer sending, if possible, in order to minimize the amount
1827 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1828 *
1829 * This algorithm is from John Heffner.
1830 */
1831 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1832 bool *is_cwnd_limited, u32 max_segs)
1833 {
1834 const struct inet_connection_sock *icsk = inet_csk(sk);
1835 u32 age, send_win, cong_win, limit, in_flight;
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 struct skb_mstamp now;
1838 struct sk_buff *head;
1839 int win_divisor;
1840
1841 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1842 goto send_now;
1843
1844 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1845 goto send_now;
1846
1847 /* Avoid bursty behavior by allowing defer
1848 * only if the last write was recent.
1849 */
1850 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1851 goto send_now;
1852
1853 in_flight = tcp_packets_in_flight(tp);
1854
1855 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1856
1857 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1858
1859 /* From in_flight test above, we know that cwnd > in_flight. */
1860 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1861
1862 limit = min(send_win, cong_win);
1863
1864 /* If a full-sized TSO skb can be sent, do it. */
1865 if (limit >= max_segs * tp->mss_cache)
1866 goto send_now;
1867
1868 /* Middle in queue won't get any more data, full sendable already? */
1869 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1870 goto send_now;
1871
1872 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1873 if (win_divisor) {
1874 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1875
1876 /* If at least some fraction of a window is available,
1877 * just use it.
1878 */
1879 chunk /= win_divisor;
1880 if (limit >= chunk)
1881 goto send_now;
1882 } else {
1883 /* Different approach, try not to defer past a single
1884 * ACK. Receiver should ACK every other full sized
1885 * frame, so if we have space for more than 3 frames
1886 * then send now.
1887 */
1888 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1889 goto send_now;
1890 }
1891
1892 head = tcp_write_queue_head(sk);
1893 skb_mstamp_get(&now);
1894 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1895 /* If next ACK is likely to come too late (half srtt), do not defer */
1896 if (age < (tp->srtt_us >> 4))
1897 goto send_now;
1898
1899 /* Ok, it looks like it is advisable to defer. */
1900
1901 if (cong_win < send_win && cong_win <= skb->len)
1902 *is_cwnd_limited = true;
1903
1904 return true;
1905
1906 send_now:
1907 return false;
1908 }
1909
1910 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1911 {
1912 struct inet_connection_sock *icsk = inet_csk(sk);
1913 struct tcp_sock *tp = tcp_sk(sk);
1914 struct net *net = sock_net(sk);
1915 u32 interval;
1916 s32 delta;
1917
1918 interval = net->ipv4.sysctl_tcp_probe_interval;
1919 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1920 if (unlikely(delta >= interval * HZ)) {
1921 int mss = tcp_current_mss(sk);
1922
1923 /* Update current search range */
1924 icsk->icsk_mtup.probe_size = 0;
1925 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1926 sizeof(struct tcphdr) +
1927 icsk->icsk_af_ops->net_header_len;
1928 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1929
1930 /* Update probe time stamp */
1931 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1932 }
1933 }
1934
1935 /* Create a new MTU probe if we are ready.
1936 * MTU probe is regularly attempting to increase the path MTU by
1937 * deliberately sending larger packets. This discovers routing
1938 * changes resulting in larger path MTUs.
1939 *
1940 * Returns 0 if we should wait to probe (no cwnd available),
1941 * 1 if a probe was sent,
1942 * -1 otherwise
1943 */
1944 static int tcp_mtu_probe(struct sock *sk)
1945 {
1946 struct inet_connection_sock *icsk = inet_csk(sk);
1947 struct tcp_sock *tp = tcp_sk(sk);
1948 struct sk_buff *skb, *nskb, *next;
1949 struct net *net = sock_net(sk);
1950 int probe_size;
1951 int size_needed;
1952 int copy, len;
1953 int mss_now;
1954 int interval;
1955
1956 /* Not currently probing/verifying,
1957 * not in recovery,
1958 * have enough cwnd, and
1959 * not SACKing (the variable headers throw things off)
1960 */
1961 if (likely(!icsk->icsk_mtup.enabled ||
1962 icsk->icsk_mtup.probe_size ||
1963 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1964 tp->snd_cwnd < 11 ||
1965 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1966 return -1;
1967
1968 /* Use binary search for probe_size between tcp_mss_base,
1969 * and current mss_clamp. if (search_high - search_low)
1970 * smaller than a threshold, backoff from probing.
1971 */
1972 mss_now = tcp_current_mss(sk);
1973 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1974 icsk->icsk_mtup.search_low) >> 1);
1975 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1976 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1977 /* When misfortune happens, we are reprobing actively,
1978 * and then reprobe timer has expired. We stick with current
1979 * probing process by not resetting search range to its orignal.
1980 */
1981 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1982 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1983 /* Check whether enough time has elaplased for
1984 * another round of probing.
1985 */
1986 tcp_mtu_check_reprobe(sk);
1987 return -1;
1988 }
1989
1990 /* Have enough data in the send queue to probe? */
1991 if (tp->write_seq - tp->snd_nxt < size_needed)
1992 return -1;
1993
1994 if (tp->snd_wnd < size_needed)
1995 return -1;
1996 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1997 return 0;
1998
1999 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2000 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2001 if (!tcp_packets_in_flight(tp))
2002 return -1;
2003 else
2004 return 0;
2005 }
2006
2007 /* We're allowed to probe. Build it now. */
2008 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2009 if (!nskb)
2010 return -1;
2011 sk->sk_wmem_queued += nskb->truesize;
2012 sk_mem_charge(sk, nskb->truesize);
2013
2014 skb = tcp_send_head(sk);
2015
2016 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2017 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2018 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2019 TCP_SKB_CB(nskb)->sacked = 0;
2020 nskb->csum = 0;
2021 nskb->ip_summed = skb->ip_summed;
2022
2023 tcp_insert_write_queue_before(nskb, skb, sk);
2024
2025 len = 0;
2026 tcp_for_write_queue_from_safe(skb, next, sk) {
2027 copy = min_t(int, skb->len, probe_size - len);
2028 if (nskb->ip_summed) {
2029 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2030 } else {
2031 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2032 skb_put(nskb, copy),
2033 copy, 0);
2034 nskb->csum = csum_block_add(nskb->csum, csum, len);
2035 }
2036
2037 if (skb->len <= copy) {
2038 /* We've eaten all the data from this skb.
2039 * Throw it away. */
2040 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2041 tcp_unlink_write_queue(skb, sk);
2042 sk_wmem_free_skb(sk, skb);
2043 } else {
2044 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2045 ~(TCPHDR_FIN|TCPHDR_PSH);
2046 if (!skb_shinfo(skb)->nr_frags) {
2047 skb_pull(skb, copy);
2048 if (skb->ip_summed != CHECKSUM_PARTIAL)
2049 skb->csum = csum_partial(skb->data,
2050 skb->len, 0);
2051 } else {
2052 __pskb_trim_head(skb, copy);
2053 tcp_set_skb_tso_segs(skb, mss_now);
2054 }
2055 TCP_SKB_CB(skb)->seq += copy;
2056 }
2057
2058 len += copy;
2059
2060 if (len >= probe_size)
2061 break;
2062 }
2063 tcp_init_tso_segs(nskb, nskb->len);
2064
2065 /* We're ready to send. If this fails, the probe will
2066 * be resegmented into mss-sized pieces by tcp_write_xmit().
2067 */
2068 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2069 /* Decrement cwnd here because we are sending
2070 * effectively two packets. */
2071 tp->snd_cwnd--;
2072 tcp_event_new_data_sent(sk, nskb);
2073
2074 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2075 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2076 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2077
2078 return 1;
2079 }
2080
2081 return -1;
2082 }
2083
2084 /* TCP Small Queues :
2085 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2086 * (These limits are doubled for retransmits)
2087 * This allows for :
2088 * - better RTT estimation and ACK scheduling
2089 * - faster recovery
2090 * - high rates
2091 * Alas, some drivers / subsystems require a fair amount
2092 * of queued bytes to ensure line rate.
2093 * One example is wifi aggregation (802.11 AMPDU)
2094 */
2095 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2096 unsigned int factor)
2097 {
2098 unsigned int limit;
2099
2100 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2101 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2102 limit <<= factor;
2103
2104 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105 /* Always send the 1st or 2nd skb in write queue.
2106 * No need to wait for TX completion to call us back,
2107 * after softirq/tasklet schedule.
2108 * This helps when TX completions are delayed too much.
2109 */
2110 if (skb == sk->sk_write_queue.next ||
2111 skb->prev == sk->sk_write_queue.next)
2112 return false;
2113
2114 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2115 /* It is possible TX completion already happened
2116 * before we set TSQ_THROTTLED, so we must
2117 * test again the condition.
2118 */
2119 smp_mb__after_atomic();
2120 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2121 return true;
2122 }
2123 return false;
2124 }
2125
2126 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2127 {
2128 const u32 now = tcp_time_stamp;
2129
2130 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2131 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2132 tp->chrono_start = now;
2133 tp->chrono_type = new;
2134 }
2135
2136 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2137 {
2138 struct tcp_sock *tp = tcp_sk(sk);
2139
2140 /* If there are multiple conditions worthy of tracking in a
2141 * chronograph then the highest priority enum takes precedence
2142 * over the other conditions. So that if something "more interesting"
2143 * starts happening, stop the previous chrono and start a new one.
2144 */
2145 if (type > tp->chrono_type)
2146 tcp_chrono_set(tp, type);
2147 }
2148
2149 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2150 {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152
2153
2154 /* There are multiple conditions worthy of tracking in a
2155 * chronograph, so that the highest priority enum takes
2156 * precedence over the other conditions (see tcp_chrono_start).
2157 * If a condition stops, we only stop chrono tracking if
2158 * it's the "most interesting" or current chrono we are
2159 * tracking and starts busy chrono if we have pending data.
2160 */
2161 if (tcp_write_queue_empty(sk))
2162 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2163 else if (type == tp->chrono_type)
2164 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2165 }
2166
2167 /* This routine writes packets to the network. It advances the
2168 * send_head. This happens as incoming acks open up the remote
2169 * window for us.
2170 *
2171 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2172 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2173 * account rare use of URG, this is not a big flaw.
2174 *
2175 * Send at most one packet when push_one > 0. Temporarily ignore
2176 * cwnd limit to force at most one packet out when push_one == 2.
2177
2178 * Returns true, if no segments are in flight and we have queued segments,
2179 * but cannot send anything now because of SWS or another problem.
2180 */
2181 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2182 int push_one, gfp_t gfp)
2183 {
2184 struct tcp_sock *tp = tcp_sk(sk);
2185 struct sk_buff *skb;
2186 unsigned int tso_segs, sent_pkts;
2187 int cwnd_quota;
2188 int result;
2189 bool is_cwnd_limited = false, is_rwnd_limited = false;
2190 u32 max_segs;
2191
2192 sent_pkts = 0;
2193
2194 if (!push_one) {
2195 /* Do MTU probing. */
2196 result = tcp_mtu_probe(sk);
2197 if (!result) {
2198 return false;
2199 } else if (result > 0) {
2200 sent_pkts = 1;
2201 }
2202 }
2203
2204 max_segs = tcp_tso_segs(sk, mss_now);
2205 while ((skb = tcp_send_head(sk))) {
2206 unsigned int limit;
2207
2208 tso_segs = tcp_init_tso_segs(skb, mss_now);
2209 BUG_ON(!tso_segs);
2210
2211 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2212 /* "skb_mstamp" is used as a start point for the retransmit timer */
2213 skb_mstamp_get(&skb->skb_mstamp);
2214 goto repair; /* Skip network transmission */
2215 }
2216
2217 cwnd_quota = tcp_cwnd_test(tp, skb);
2218 if (!cwnd_quota) {
2219 if (push_one == 2)
2220 /* Force out a loss probe pkt. */
2221 cwnd_quota = 1;
2222 else
2223 break;
2224 }
2225
2226 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2227 is_rwnd_limited = true;
2228 break;
2229 }
2230
2231 if (tso_segs == 1) {
2232 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2233 (tcp_skb_is_last(sk, skb) ?
2234 nonagle : TCP_NAGLE_PUSH))))
2235 break;
2236 } else {
2237 if (!push_one &&
2238 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2239 max_segs))
2240 break;
2241 }
2242
2243 limit = mss_now;
2244 if (tso_segs > 1 && !tcp_urg_mode(tp))
2245 limit = tcp_mss_split_point(sk, skb, mss_now,
2246 min_t(unsigned int,
2247 cwnd_quota,
2248 max_segs),
2249 nonagle);
2250
2251 if (skb->len > limit &&
2252 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2253 break;
2254
2255 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2256 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2257 if (tcp_small_queue_check(sk, skb, 0))
2258 break;
2259
2260 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2261 break;
2262
2263 repair:
2264 /* Advance the send_head. This one is sent out.
2265 * This call will increment packets_out.
2266 */
2267 tcp_event_new_data_sent(sk, skb);
2268
2269 tcp_minshall_update(tp, mss_now, skb);
2270 sent_pkts += tcp_skb_pcount(skb);
2271
2272 if (push_one)
2273 break;
2274 }
2275
2276 if (is_rwnd_limited)
2277 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2278 else
2279 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2280
2281 if (likely(sent_pkts)) {
2282 if (tcp_in_cwnd_reduction(sk))
2283 tp->prr_out += sent_pkts;
2284
2285 /* Send one loss probe per tail loss episode. */
2286 if (push_one != 2)
2287 tcp_schedule_loss_probe(sk);
2288 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2289 tcp_cwnd_validate(sk, is_cwnd_limited);
2290 return false;
2291 }
2292 return !tp->packets_out && tcp_send_head(sk);
2293 }
2294
2295 bool tcp_schedule_loss_probe(struct sock *sk)
2296 {
2297 struct inet_connection_sock *icsk = inet_csk(sk);
2298 struct tcp_sock *tp = tcp_sk(sk);
2299 u32 timeout, tlp_time_stamp, rto_time_stamp;
2300 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2301
2302 /* No consecutive loss probes. */
2303 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2304 tcp_rearm_rto(sk);
2305 return false;
2306 }
2307 /* Don't do any loss probe on a Fast Open connection before 3WHS
2308 * finishes.
2309 */
2310 if (tp->fastopen_rsk)
2311 return false;
2312
2313 /* TLP is only scheduled when next timer event is RTO. */
2314 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2315 return false;
2316
2317 /* Schedule a loss probe in 2*RTT for SACK capable connections
2318 * in Open state, that are either limited by cwnd or application.
2319 */
2320 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2321 !tp->packets_out || !tcp_is_sack(tp) ||
2322 icsk->icsk_ca_state != TCP_CA_Open)
2323 return false;
2324
2325 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2326 tcp_send_head(sk))
2327 return false;
2328
2329 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2330 * for delayed ack when there's one outstanding packet. If no RTT
2331 * sample is available then probe after TCP_TIMEOUT_INIT.
2332 */
2333 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2334 if (tp->packets_out == 1)
2335 timeout = max_t(u32, timeout,
2336 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2337 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2338
2339 /* If RTO is shorter, just schedule TLP in its place. */
2340 tlp_time_stamp = tcp_time_stamp + timeout;
2341 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2342 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2343 s32 delta = rto_time_stamp - tcp_time_stamp;
2344 if (delta > 0)
2345 timeout = delta;
2346 }
2347
2348 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2349 TCP_RTO_MAX);
2350 return true;
2351 }
2352
2353 /* Thanks to skb fast clones, we can detect if a prior transmit of
2354 * a packet is still in a qdisc or driver queue.
2355 * In this case, there is very little point doing a retransmit !
2356 */
2357 static bool skb_still_in_host_queue(const struct sock *sk,
2358 const struct sk_buff *skb)
2359 {
2360 if (unlikely(skb_fclone_busy(sk, skb))) {
2361 NET_INC_STATS(sock_net(sk),
2362 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2363 return true;
2364 }
2365 return false;
2366 }
2367
2368 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2369 * retransmit the last segment.
2370 */
2371 void tcp_send_loss_probe(struct sock *sk)
2372 {
2373 struct tcp_sock *tp = tcp_sk(sk);
2374 struct sk_buff *skb;
2375 int pcount;
2376 int mss = tcp_current_mss(sk);
2377
2378 skb = tcp_send_head(sk);
2379 if (skb) {
2380 if (tcp_snd_wnd_test(tp, skb, mss)) {
2381 pcount = tp->packets_out;
2382 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2383 if (tp->packets_out > pcount)
2384 goto probe_sent;
2385 goto rearm_timer;
2386 }
2387 skb = tcp_write_queue_prev(sk, skb);
2388 } else {
2389 skb = tcp_write_queue_tail(sk);
2390 }
2391
2392 /* At most one outstanding TLP retransmission. */
2393 if (tp->tlp_high_seq)
2394 goto rearm_timer;
2395
2396 /* Retransmit last segment. */
2397 if (WARN_ON(!skb))
2398 goto rearm_timer;
2399
2400 if (skb_still_in_host_queue(sk, skb))
2401 goto rearm_timer;
2402
2403 pcount = tcp_skb_pcount(skb);
2404 if (WARN_ON(!pcount))
2405 goto rearm_timer;
2406
2407 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2408 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2409 GFP_ATOMIC)))
2410 goto rearm_timer;
2411 skb = tcp_write_queue_next(sk, skb);
2412 }
2413
2414 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2415 goto rearm_timer;
2416
2417 if (__tcp_retransmit_skb(sk, skb, 1))
2418 goto rearm_timer;
2419
2420 /* Record snd_nxt for loss detection. */
2421 tp->tlp_high_seq = tp->snd_nxt;
2422
2423 probe_sent:
2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2425 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2426 inet_csk(sk)->icsk_pending = 0;
2427 rearm_timer:
2428 tcp_rearm_rto(sk);
2429 }
2430
2431 /* Push out any pending frames which were held back due to
2432 * TCP_CORK or attempt at coalescing tiny packets.
2433 * The socket must be locked by the caller.
2434 */
2435 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2436 int nonagle)
2437 {
2438 /* If we are closed, the bytes will have to remain here.
2439 * In time closedown will finish, we empty the write queue and
2440 * all will be happy.
2441 */
2442 if (unlikely(sk->sk_state == TCP_CLOSE))
2443 return;
2444
2445 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2446 sk_gfp_mask(sk, GFP_ATOMIC)))
2447 tcp_check_probe_timer(sk);
2448 }
2449
2450 /* Send _single_ skb sitting at the send head. This function requires
2451 * true push pending frames to setup probe timer etc.
2452 */
2453 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2454 {
2455 struct sk_buff *skb = tcp_send_head(sk);
2456
2457 BUG_ON(!skb || skb->len < mss_now);
2458
2459 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2460 }
2461
2462 /* This function returns the amount that we can raise the
2463 * usable window based on the following constraints
2464 *
2465 * 1. The window can never be shrunk once it is offered (RFC 793)
2466 * 2. We limit memory per socket
2467 *
2468 * RFC 1122:
2469 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2470 * RECV.NEXT + RCV.WIN fixed until:
2471 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2472 *
2473 * i.e. don't raise the right edge of the window until you can raise
2474 * it at least MSS bytes.
2475 *
2476 * Unfortunately, the recommended algorithm breaks header prediction,
2477 * since header prediction assumes th->window stays fixed.
2478 *
2479 * Strictly speaking, keeping th->window fixed violates the receiver
2480 * side SWS prevention criteria. The problem is that under this rule
2481 * a stream of single byte packets will cause the right side of the
2482 * window to always advance by a single byte.
2483 *
2484 * Of course, if the sender implements sender side SWS prevention
2485 * then this will not be a problem.
2486 *
2487 * BSD seems to make the following compromise:
2488 *
2489 * If the free space is less than the 1/4 of the maximum
2490 * space available and the free space is less than 1/2 mss,
2491 * then set the window to 0.
2492 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2493 * Otherwise, just prevent the window from shrinking
2494 * and from being larger than the largest representable value.
2495 *
2496 * This prevents incremental opening of the window in the regime
2497 * where TCP is limited by the speed of the reader side taking
2498 * data out of the TCP receive queue. It does nothing about
2499 * those cases where the window is constrained on the sender side
2500 * because the pipeline is full.
2501 *
2502 * BSD also seems to "accidentally" limit itself to windows that are a
2503 * multiple of MSS, at least until the free space gets quite small.
2504 * This would appear to be a side effect of the mbuf implementation.
2505 * Combining these two algorithms results in the observed behavior
2506 * of having a fixed window size at almost all times.
2507 *
2508 * Below we obtain similar behavior by forcing the offered window to
2509 * a multiple of the mss when it is feasible to do so.
2510 *
2511 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2512 * Regular options like TIMESTAMP are taken into account.
2513 */
2514 u32 __tcp_select_window(struct sock *sk)
2515 {
2516 struct inet_connection_sock *icsk = inet_csk(sk);
2517 struct tcp_sock *tp = tcp_sk(sk);
2518 /* MSS for the peer's data. Previous versions used mss_clamp
2519 * here. I don't know if the value based on our guesses
2520 * of peer's MSS is better for the performance. It's more correct
2521 * but may be worse for the performance because of rcv_mss
2522 * fluctuations. --SAW 1998/11/1
2523 */
2524 int mss = icsk->icsk_ack.rcv_mss;
2525 int free_space = tcp_space(sk);
2526 int allowed_space = tcp_full_space(sk);
2527 int full_space = min_t(int, tp->window_clamp, allowed_space);
2528 int window;
2529
2530 if (unlikely(mss > full_space)) {
2531 mss = full_space;
2532 if (mss <= 0)
2533 return 0;
2534 }
2535 if (free_space < (full_space >> 1)) {
2536 icsk->icsk_ack.quick = 0;
2537
2538 if (tcp_under_memory_pressure(sk))
2539 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2540 4U * tp->advmss);
2541
2542 /* free_space might become our new window, make sure we don't
2543 * increase it due to wscale.
2544 */
2545 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2546
2547 /* if free space is less than mss estimate, or is below 1/16th
2548 * of the maximum allowed, try to move to zero-window, else
2549 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2550 * new incoming data is dropped due to memory limits.
2551 * With large window, mss test triggers way too late in order
2552 * to announce zero window in time before rmem limit kicks in.
2553 */
2554 if (free_space < (allowed_space >> 4) || free_space < mss)
2555 return 0;
2556 }
2557
2558 if (free_space > tp->rcv_ssthresh)
2559 free_space = tp->rcv_ssthresh;
2560
2561 /* Don't do rounding if we are using window scaling, since the
2562 * scaled window will not line up with the MSS boundary anyway.
2563 */
2564 window = tp->rcv_wnd;
2565 if (tp->rx_opt.rcv_wscale) {
2566 window = free_space;
2567
2568 /* Advertise enough space so that it won't get scaled away.
2569 * Import case: prevent zero window announcement if
2570 * 1<<rcv_wscale > mss.
2571 */
2572 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2573 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2574 << tp->rx_opt.rcv_wscale);
2575 } else {
2576 /* Get the largest window that is a nice multiple of mss.
2577 * Window clamp already applied above.
2578 * If our current window offering is within 1 mss of the
2579 * free space we just keep it. This prevents the divide
2580 * and multiply from happening most of the time.
2581 * We also don't do any window rounding when the free space
2582 * is too small.
2583 */
2584 if (window <= free_space - mss || window > free_space)
2585 window = (free_space / mss) * mss;
2586 else if (mss == full_space &&
2587 free_space > window + (full_space >> 1))
2588 window = free_space;
2589 }
2590
2591 return window;
2592 }
2593
2594 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2595 const struct sk_buff *next_skb)
2596 {
2597 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2598 const struct skb_shared_info *next_shinfo =
2599 skb_shinfo(next_skb);
2600 struct skb_shared_info *shinfo = skb_shinfo(skb);
2601
2602 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2603 shinfo->tskey = next_shinfo->tskey;
2604 TCP_SKB_CB(skb)->txstamp_ack |=
2605 TCP_SKB_CB(next_skb)->txstamp_ack;
2606 }
2607 }
2608
2609 /* Collapses two adjacent SKB's during retransmission. */
2610 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2611 {
2612 struct tcp_sock *tp = tcp_sk(sk);
2613 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2614 int skb_size, next_skb_size;
2615
2616 skb_size = skb->len;
2617 next_skb_size = next_skb->len;
2618
2619 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2620
2621 if (next_skb_size) {
2622 if (next_skb_size <= skb_availroom(skb))
2623 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2624 next_skb_size);
2625 else if (!skb_shift(skb, next_skb, next_skb_size))
2626 return false;
2627 }
2628 tcp_highest_sack_combine(sk, next_skb, skb);
2629
2630 tcp_unlink_write_queue(next_skb, sk);
2631
2632 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2633 skb->ip_summed = CHECKSUM_PARTIAL;
2634
2635 if (skb->ip_summed != CHECKSUM_PARTIAL)
2636 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2637
2638 /* Update sequence range on original skb. */
2639 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2640
2641 /* Merge over control information. This moves PSH/FIN etc. over */
2642 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2643
2644 /* All done, get rid of second SKB and account for it so
2645 * packet counting does not break.
2646 */
2647 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2648 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2649
2650 /* changed transmit queue under us so clear hints */
2651 tcp_clear_retrans_hints_partial(tp);
2652 if (next_skb == tp->retransmit_skb_hint)
2653 tp->retransmit_skb_hint = skb;
2654
2655 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2656
2657 tcp_skb_collapse_tstamp(skb, next_skb);
2658
2659 sk_wmem_free_skb(sk, next_skb);
2660 return true;
2661 }
2662
2663 /* Check if coalescing SKBs is legal. */
2664 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2665 {
2666 if (tcp_skb_pcount(skb) > 1)
2667 return false;
2668 if (skb_cloned(skb))
2669 return false;
2670 if (skb == tcp_send_head(sk))
2671 return false;
2672 /* Some heuristics for collapsing over SACK'd could be invented */
2673 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2674 return false;
2675
2676 return true;
2677 }
2678
2679 /* Collapse packets in the retransmit queue to make to create
2680 * less packets on the wire. This is only done on retransmission.
2681 */
2682 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2683 int space)
2684 {
2685 struct tcp_sock *tp = tcp_sk(sk);
2686 struct sk_buff *skb = to, *tmp;
2687 bool first = true;
2688
2689 if (!sysctl_tcp_retrans_collapse)
2690 return;
2691 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2692 return;
2693
2694 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2695 if (!tcp_can_collapse(sk, skb))
2696 break;
2697
2698 if (!tcp_skb_can_collapse_to(to))
2699 break;
2700
2701 space -= skb->len;
2702
2703 if (first) {
2704 first = false;
2705 continue;
2706 }
2707
2708 if (space < 0)
2709 break;
2710
2711 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2712 break;
2713
2714 if (!tcp_collapse_retrans(sk, to))
2715 break;
2716 }
2717 }
2718
2719 /* This retransmits one SKB. Policy decisions and retransmit queue
2720 * state updates are done by the caller. Returns non-zero if an
2721 * error occurred which prevented the send.
2722 */
2723 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2724 {
2725 struct inet_connection_sock *icsk = inet_csk(sk);
2726 struct tcp_sock *tp = tcp_sk(sk);
2727 unsigned int cur_mss;
2728 int diff, len, err;
2729
2730
2731 /* Inconclusive MTU probe */
2732 if (icsk->icsk_mtup.probe_size)
2733 icsk->icsk_mtup.probe_size = 0;
2734
2735 /* Do not sent more than we queued. 1/4 is reserved for possible
2736 * copying overhead: fragmentation, tunneling, mangling etc.
2737 */
2738 if (atomic_read(&sk->sk_wmem_alloc) >
2739 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2740 sk->sk_sndbuf))
2741 return -EAGAIN;
2742
2743 if (skb_still_in_host_queue(sk, skb))
2744 return -EBUSY;
2745
2746 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2747 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2748 BUG();
2749 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2750 return -ENOMEM;
2751 }
2752
2753 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2754 return -EHOSTUNREACH; /* Routing failure or similar. */
2755
2756 cur_mss = tcp_current_mss(sk);
2757
2758 /* If receiver has shrunk his window, and skb is out of
2759 * new window, do not retransmit it. The exception is the
2760 * case, when window is shrunk to zero. In this case
2761 * our retransmit serves as a zero window probe.
2762 */
2763 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2764 TCP_SKB_CB(skb)->seq != tp->snd_una)
2765 return -EAGAIN;
2766
2767 len = cur_mss * segs;
2768 if (skb->len > len) {
2769 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2770 return -ENOMEM; /* We'll try again later. */
2771 } else {
2772 if (skb_unclone(skb, GFP_ATOMIC))
2773 return -ENOMEM;
2774
2775 diff = tcp_skb_pcount(skb);
2776 tcp_set_skb_tso_segs(skb, cur_mss);
2777 diff -= tcp_skb_pcount(skb);
2778 if (diff)
2779 tcp_adjust_pcount(sk, skb, diff);
2780 if (skb->len < cur_mss)
2781 tcp_retrans_try_collapse(sk, skb, cur_mss);
2782 }
2783
2784 /* RFC3168, section 6.1.1.1. ECN fallback */
2785 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2786 tcp_ecn_clear_syn(sk, skb);
2787
2788 /* Update global and local TCP statistics. */
2789 segs = tcp_skb_pcount(skb);
2790 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2791 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2792 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2793 tp->total_retrans += segs;
2794
2795 /* make sure skb->data is aligned on arches that require it
2796 * and check if ack-trimming & collapsing extended the headroom
2797 * beyond what csum_start can cover.
2798 */
2799 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2800 skb_headroom(skb) >= 0xFFFF)) {
2801 struct sk_buff *nskb;
2802
2803 skb_mstamp_get(&skb->skb_mstamp);
2804 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2805 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2806 -ENOBUFS;
2807 } else {
2808 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2809 }
2810
2811 if (likely(!err)) {
2812 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2813 } else if (err != -EBUSY) {
2814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2815 }
2816 return err;
2817 }
2818
2819 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2820 {
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 int err = __tcp_retransmit_skb(sk, skb, segs);
2823
2824 if (err == 0) {
2825 #if FASTRETRANS_DEBUG > 0
2826 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2827 net_dbg_ratelimited("retrans_out leaked\n");
2828 }
2829 #endif
2830 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2831 tp->retrans_out += tcp_skb_pcount(skb);
2832
2833 /* Save stamp of the first retransmit. */
2834 if (!tp->retrans_stamp)
2835 tp->retrans_stamp = tcp_skb_timestamp(skb);
2836
2837 }
2838
2839 if (tp->undo_retrans < 0)
2840 tp->undo_retrans = 0;
2841 tp->undo_retrans += tcp_skb_pcount(skb);
2842 return err;
2843 }
2844
2845 /* This gets called after a retransmit timeout, and the initially
2846 * retransmitted data is acknowledged. It tries to continue
2847 * resending the rest of the retransmit queue, until either
2848 * we've sent it all or the congestion window limit is reached.
2849 * If doing SACK, the first ACK which comes back for a timeout
2850 * based retransmit packet might feed us FACK information again.
2851 * If so, we use it to avoid unnecessarily retransmissions.
2852 */
2853 void tcp_xmit_retransmit_queue(struct sock *sk)
2854 {
2855 const struct inet_connection_sock *icsk = inet_csk(sk);
2856 struct tcp_sock *tp = tcp_sk(sk);
2857 struct sk_buff *skb;
2858 struct sk_buff *hole = NULL;
2859 u32 max_segs;
2860 int mib_idx;
2861
2862 if (!tp->packets_out)
2863 return;
2864
2865 if (tp->retransmit_skb_hint) {
2866 skb = tp->retransmit_skb_hint;
2867 } else {
2868 skb = tcp_write_queue_head(sk);
2869 }
2870
2871 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2872 tcp_for_write_queue_from(skb, sk) {
2873 __u8 sacked;
2874 int segs;
2875
2876 if (skb == tcp_send_head(sk))
2877 break;
2878 /* we could do better than to assign each time */
2879 if (!hole)
2880 tp->retransmit_skb_hint = skb;
2881
2882 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2883 if (segs <= 0)
2884 return;
2885 sacked = TCP_SKB_CB(skb)->sacked;
2886 /* In case tcp_shift_skb_data() have aggregated large skbs,
2887 * we need to make sure not sending too bigs TSO packets
2888 */
2889 segs = min_t(int, segs, max_segs);
2890
2891 if (tp->retrans_out >= tp->lost_out) {
2892 break;
2893 } else if (!(sacked & TCPCB_LOST)) {
2894 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2895 hole = skb;
2896 continue;
2897
2898 } else {
2899 if (icsk->icsk_ca_state != TCP_CA_Loss)
2900 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2901 else
2902 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2903 }
2904
2905 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2906 continue;
2907
2908 if (tcp_small_queue_check(sk, skb, 1))
2909 return;
2910
2911 if (tcp_retransmit_skb(sk, skb, segs))
2912 return;
2913
2914 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2915
2916 if (tcp_in_cwnd_reduction(sk))
2917 tp->prr_out += tcp_skb_pcount(skb);
2918
2919 if (skb == tcp_write_queue_head(sk) &&
2920 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2921 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2922 inet_csk(sk)->icsk_rto,
2923 TCP_RTO_MAX);
2924 }
2925 }
2926
2927 /* We allow to exceed memory limits for FIN packets to expedite
2928 * connection tear down and (memory) recovery.
2929 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2930 * or even be forced to close flow without any FIN.
2931 * In general, we want to allow one skb per socket to avoid hangs
2932 * with edge trigger epoll()
2933 */
2934 void sk_forced_mem_schedule(struct sock *sk, int size)
2935 {
2936 int amt;
2937
2938 if (size <= sk->sk_forward_alloc)
2939 return;
2940 amt = sk_mem_pages(size);
2941 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2942 sk_memory_allocated_add(sk, amt);
2943
2944 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2945 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2946 }
2947
2948 /* Send a FIN. The caller locks the socket for us.
2949 * We should try to send a FIN packet really hard, but eventually give up.
2950 */
2951 void tcp_send_fin(struct sock *sk)
2952 {
2953 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2954 struct tcp_sock *tp = tcp_sk(sk);
2955
2956 /* Optimization, tack on the FIN if we have one skb in write queue and
2957 * this skb was not yet sent, or we are under memory pressure.
2958 * Note: in the latter case, FIN packet will be sent after a timeout,
2959 * as TCP stack thinks it has already been transmitted.
2960 */
2961 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2962 coalesce:
2963 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2964 TCP_SKB_CB(tskb)->end_seq++;
2965 tp->write_seq++;
2966 if (!tcp_send_head(sk)) {
2967 /* This means tskb was already sent.
2968 * Pretend we included the FIN on previous transmit.
2969 * We need to set tp->snd_nxt to the value it would have
2970 * if FIN had been sent. This is because retransmit path
2971 * does not change tp->snd_nxt.
2972 */
2973 tp->snd_nxt++;
2974 return;
2975 }
2976 } else {
2977 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2978 if (unlikely(!skb)) {
2979 if (tskb)
2980 goto coalesce;
2981 return;
2982 }
2983 skb_reserve(skb, MAX_TCP_HEADER);
2984 sk_forced_mem_schedule(sk, skb->truesize);
2985 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2986 tcp_init_nondata_skb(skb, tp->write_seq,
2987 TCPHDR_ACK | TCPHDR_FIN);
2988 tcp_queue_skb(sk, skb);
2989 }
2990 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2991 }
2992
2993 /* We get here when a process closes a file descriptor (either due to
2994 * an explicit close() or as a byproduct of exit()'ing) and there
2995 * was unread data in the receive queue. This behavior is recommended
2996 * by RFC 2525, section 2.17. -DaveM
2997 */
2998 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2999 {
3000 struct sk_buff *skb;
3001
3002 /* NOTE: No TCP options attached and we never retransmit this. */
3003 skb = alloc_skb(MAX_TCP_HEADER, priority);
3004 if (!skb) {
3005 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3006 return;
3007 }
3008
3009 /* Reserve space for headers and prepare control bits. */
3010 skb_reserve(skb, MAX_TCP_HEADER);
3011 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3012 TCPHDR_ACK | TCPHDR_RST);
3013 skb_mstamp_get(&skb->skb_mstamp);
3014 /* Send it off. */
3015 if (tcp_transmit_skb(sk, skb, 0, priority))
3016 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3017
3018 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3019 }
3020
3021 /* Send a crossed SYN-ACK during socket establishment.
3022 * WARNING: This routine must only be called when we have already sent
3023 * a SYN packet that crossed the incoming SYN that caused this routine
3024 * to get called. If this assumption fails then the initial rcv_wnd
3025 * and rcv_wscale values will not be correct.
3026 */
3027 int tcp_send_synack(struct sock *sk)
3028 {
3029 struct sk_buff *skb;
3030
3031 skb = tcp_write_queue_head(sk);
3032 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3033 pr_debug("%s: wrong queue state\n", __func__);
3034 return -EFAULT;
3035 }
3036 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3037 if (skb_cloned(skb)) {
3038 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3039 if (!nskb)
3040 return -ENOMEM;
3041 tcp_unlink_write_queue(skb, sk);
3042 __skb_header_release(nskb);
3043 __tcp_add_write_queue_head(sk, nskb);
3044 sk_wmem_free_skb(sk, skb);
3045 sk->sk_wmem_queued += nskb->truesize;
3046 sk_mem_charge(sk, nskb->truesize);
3047 skb = nskb;
3048 }
3049
3050 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3051 tcp_ecn_send_synack(sk, skb);
3052 }
3053 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3054 }
3055
3056 /**
3057 * tcp_make_synack - Prepare a SYN-ACK.
3058 * sk: listener socket
3059 * dst: dst entry attached to the SYNACK
3060 * req: request_sock pointer
3061 *
3062 * Allocate one skb and build a SYNACK packet.
3063 * @dst is consumed : Caller should not use it again.
3064 */
3065 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3066 struct request_sock *req,
3067 struct tcp_fastopen_cookie *foc,
3068 enum tcp_synack_type synack_type)
3069 {
3070 struct inet_request_sock *ireq = inet_rsk(req);
3071 const struct tcp_sock *tp = tcp_sk(sk);
3072 struct tcp_md5sig_key *md5 = NULL;
3073 struct tcp_out_options opts;
3074 struct sk_buff *skb;
3075 int tcp_header_size;
3076 struct tcphdr *th;
3077 int mss;
3078
3079 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3080 if (unlikely(!skb)) {
3081 dst_release(dst);
3082 return NULL;
3083 }
3084 /* Reserve space for headers. */
3085 skb_reserve(skb, MAX_TCP_HEADER);
3086
3087 switch (synack_type) {
3088 case TCP_SYNACK_NORMAL:
3089 skb_set_owner_w(skb, req_to_sk(req));
3090 break;
3091 case TCP_SYNACK_COOKIE:
3092 /* Under synflood, we do not attach skb to a socket,
3093 * to avoid false sharing.
3094 */
3095 break;
3096 case TCP_SYNACK_FASTOPEN:
3097 /* sk is a const pointer, because we want to express multiple
3098 * cpu might call us concurrently.
3099 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3100 */
3101 skb_set_owner_w(skb, (struct sock *)sk);
3102 break;
3103 }
3104 skb_dst_set(skb, dst);
3105
3106 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3107
3108 memset(&opts, 0, sizeof(opts));
3109 #ifdef CONFIG_SYN_COOKIES
3110 if (unlikely(req->cookie_ts))
3111 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3112 else
3113 #endif
3114 skb_mstamp_get(&skb->skb_mstamp);
3115
3116 #ifdef CONFIG_TCP_MD5SIG
3117 rcu_read_lock();
3118 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3119 #endif
3120 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3121 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3122 sizeof(*th);
3123
3124 skb_push(skb, tcp_header_size);
3125 skb_reset_transport_header(skb);
3126
3127 th = (struct tcphdr *)skb->data;
3128 memset(th, 0, sizeof(struct tcphdr));
3129 th->syn = 1;
3130 th->ack = 1;
3131 tcp_ecn_make_synack(req, th);
3132 th->source = htons(ireq->ir_num);
3133 th->dest = ireq->ir_rmt_port;
3134 /* Setting of flags are superfluous here for callers (and ECE is
3135 * not even correctly set)
3136 */
3137 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3138 TCPHDR_SYN | TCPHDR_ACK);
3139
3140 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3141 /* XXX data is queued and acked as is. No buffer/window check */
3142 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3143
3144 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3145 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3146 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3147 th->doff = (tcp_header_size >> 2);
3148 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3149
3150 #ifdef CONFIG_TCP_MD5SIG
3151 /* Okay, we have all we need - do the md5 hash if needed */
3152 if (md5)
3153 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3154 md5, req_to_sk(req), skb);
3155 rcu_read_unlock();
3156 #endif
3157
3158 /* Do not fool tcpdump (if any), clean our debris */
3159 skb->tstamp = 0;
3160 return skb;
3161 }
3162 EXPORT_SYMBOL(tcp_make_synack);
3163
3164 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3165 {
3166 struct inet_connection_sock *icsk = inet_csk(sk);
3167 const struct tcp_congestion_ops *ca;
3168 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3169
3170 if (ca_key == TCP_CA_UNSPEC)
3171 return;
3172
3173 rcu_read_lock();
3174 ca = tcp_ca_find_key(ca_key);
3175 if (likely(ca && try_module_get(ca->owner))) {
3176 module_put(icsk->icsk_ca_ops->owner);
3177 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3178 icsk->icsk_ca_ops = ca;
3179 }
3180 rcu_read_unlock();
3181 }
3182
3183 /* Do all connect socket setups that can be done AF independent. */
3184 static void tcp_connect_init(struct sock *sk)
3185 {
3186 const struct dst_entry *dst = __sk_dst_get(sk);
3187 struct tcp_sock *tp = tcp_sk(sk);
3188 __u8 rcv_wscale;
3189
3190 /* We'll fix this up when we get a response from the other end.
3191 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3192 */
3193 tp->tcp_header_len = sizeof(struct tcphdr) +
3194 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3195
3196 #ifdef CONFIG_TCP_MD5SIG
3197 if (tp->af_specific->md5_lookup(sk, sk))
3198 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3199 #endif
3200
3201 /* If user gave his TCP_MAXSEG, record it to clamp */
3202 if (tp->rx_opt.user_mss)
3203 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3204 tp->max_window = 0;
3205 tcp_mtup_init(sk);
3206 tcp_sync_mss(sk, dst_mtu(dst));
3207
3208 tcp_ca_dst_init(sk, dst);
3209
3210 if (!tp->window_clamp)
3211 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3212 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3213
3214 tcp_initialize_rcv_mss(sk);
3215
3216 /* limit the window selection if the user enforce a smaller rx buffer */
3217 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3218 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3219 tp->window_clamp = tcp_full_space(sk);
3220
3221 tcp_select_initial_window(tcp_full_space(sk),
3222 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3223 &tp->rcv_wnd,
3224 &tp->window_clamp,
3225 sysctl_tcp_window_scaling,
3226 &rcv_wscale,
3227 dst_metric(dst, RTAX_INITRWND));
3228
3229 tp->rx_opt.rcv_wscale = rcv_wscale;
3230 tp->rcv_ssthresh = tp->rcv_wnd;
3231
3232 sk->sk_err = 0;
3233 sock_reset_flag(sk, SOCK_DONE);
3234 tp->snd_wnd = 0;
3235 tcp_init_wl(tp, 0);
3236 tp->snd_una = tp->write_seq;
3237 tp->snd_sml = tp->write_seq;
3238 tp->snd_up = tp->write_seq;
3239 tp->snd_nxt = tp->write_seq;
3240
3241 if (likely(!tp->repair))
3242 tp->rcv_nxt = 0;
3243 else
3244 tp->rcv_tstamp = tcp_time_stamp;
3245 tp->rcv_wup = tp->rcv_nxt;
3246 tp->copied_seq = tp->rcv_nxt;
3247
3248 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3249 inet_csk(sk)->icsk_retransmits = 0;
3250 tcp_clear_retrans(tp);
3251 }
3252
3253 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3254 {
3255 struct tcp_sock *tp = tcp_sk(sk);
3256 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3257
3258 tcb->end_seq += skb->len;
3259 __skb_header_release(skb);
3260 __tcp_add_write_queue_tail(sk, skb);
3261 sk->sk_wmem_queued += skb->truesize;
3262 sk_mem_charge(sk, skb->truesize);
3263 tp->write_seq = tcb->end_seq;
3264 tp->packets_out += tcp_skb_pcount(skb);
3265 }
3266
3267 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3268 * queue a data-only packet after the regular SYN, such that regular SYNs
3269 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3270 * only the SYN sequence, the data are retransmitted in the first ACK.
3271 * If cookie is not cached or other error occurs, falls back to send a
3272 * regular SYN with Fast Open cookie request option.
3273 */
3274 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3275 {
3276 struct tcp_sock *tp = tcp_sk(sk);
3277 struct tcp_fastopen_request *fo = tp->fastopen_req;
3278 int space, err = 0;
3279 struct sk_buff *syn_data;
3280
3281 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3282 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3283 goto fallback;
3284
3285 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3286 * user-MSS. Reserve maximum option space for middleboxes that add
3287 * private TCP options. The cost is reduced data space in SYN :(
3288 */
3289 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3290
3291 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3292 MAX_TCP_OPTION_SPACE;
3293
3294 space = min_t(size_t, space, fo->size);
3295
3296 /* limit to order-0 allocations */
3297 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3298
3299 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3300 if (!syn_data)
3301 goto fallback;
3302 syn_data->ip_summed = CHECKSUM_PARTIAL;
3303 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3304 if (space) {
3305 int copied = copy_from_iter(skb_put(syn_data, space), space,
3306 &fo->data->msg_iter);
3307 if (unlikely(!copied)) {
3308 kfree_skb(syn_data);
3309 goto fallback;
3310 }
3311 if (copied != space) {
3312 skb_trim(syn_data, copied);
3313 space = copied;
3314 }
3315 }
3316 /* No more data pending in inet_wait_for_connect() */
3317 if (space == fo->size)
3318 fo->data = NULL;
3319 fo->copied = space;
3320
3321 tcp_connect_queue_skb(sk, syn_data);
3322 if (syn_data->len)
3323 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3324
3325 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3326
3327 syn->skb_mstamp = syn_data->skb_mstamp;
3328
3329 /* Now full SYN+DATA was cloned and sent (or not),
3330 * remove the SYN from the original skb (syn_data)
3331 * we keep in write queue in case of a retransmit, as we
3332 * also have the SYN packet (with no data) in the same queue.
3333 */
3334 TCP_SKB_CB(syn_data)->seq++;
3335 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3336 if (!err) {
3337 tp->syn_data = (fo->copied > 0);
3338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3339 goto done;
3340 }
3341
3342 fallback:
3343 /* Send a regular SYN with Fast Open cookie request option */
3344 if (fo->cookie.len > 0)
3345 fo->cookie.len = 0;
3346 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3347 if (err)
3348 tp->syn_fastopen = 0;
3349 done:
3350 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3351 return err;
3352 }
3353
3354 /* Build a SYN and send it off. */
3355 int tcp_connect(struct sock *sk)
3356 {
3357 struct tcp_sock *tp = tcp_sk(sk);
3358 struct sk_buff *buff;
3359 int err;
3360
3361 tcp_connect_init(sk);
3362
3363 if (unlikely(tp->repair)) {
3364 tcp_finish_connect(sk, NULL);
3365 return 0;
3366 }
3367
3368 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3369 if (unlikely(!buff))
3370 return -ENOBUFS;
3371
3372 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3373 tp->retrans_stamp = tcp_time_stamp;
3374 tcp_connect_queue_skb(sk, buff);
3375 tcp_ecn_send_syn(sk, buff);
3376
3377 /* Send off SYN; include data in Fast Open. */
3378 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3379 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3380 if (err == -ECONNREFUSED)
3381 return err;
3382
3383 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3384 * in order to make this packet get counted in tcpOutSegs.
3385 */
3386 tp->snd_nxt = tp->write_seq;
3387 tp->pushed_seq = tp->write_seq;
3388 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3389
3390 /* Timer for repeating the SYN until an answer. */
3391 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3392 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3393 return 0;
3394 }
3395 EXPORT_SYMBOL(tcp_connect);
3396
3397 /* Send out a delayed ack, the caller does the policy checking
3398 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3399 * for details.
3400 */
3401 void tcp_send_delayed_ack(struct sock *sk)
3402 {
3403 struct inet_connection_sock *icsk = inet_csk(sk);
3404 int ato = icsk->icsk_ack.ato;
3405 unsigned long timeout;
3406
3407 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3408
3409 if (ato > TCP_DELACK_MIN) {
3410 const struct tcp_sock *tp = tcp_sk(sk);
3411 int max_ato = HZ / 2;
3412
3413 if (icsk->icsk_ack.pingpong ||
3414 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3415 max_ato = TCP_DELACK_MAX;
3416
3417 /* Slow path, intersegment interval is "high". */
3418
3419 /* If some rtt estimate is known, use it to bound delayed ack.
3420 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3421 * directly.
3422 */
3423 if (tp->srtt_us) {
3424 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3425 TCP_DELACK_MIN);
3426
3427 if (rtt < max_ato)
3428 max_ato = rtt;
3429 }
3430
3431 ato = min(ato, max_ato);
3432 }
3433
3434 /* Stay within the limit we were given */
3435 timeout = jiffies + ato;
3436
3437 /* Use new timeout only if there wasn't a older one earlier. */
3438 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3439 /* If delack timer was blocked or is about to expire,
3440 * send ACK now.
3441 */
3442 if (icsk->icsk_ack.blocked ||
3443 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3444 tcp_send_ack(sk);
3445 return;
3446 }
3447
3448 if (!time_before(timeout, icsk->icsk_ack.timeout))
3449 timeout = icsk->icsk_ack.timeout;
3450 }
3451 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3452 icsk->icsk_ack.timeout = timeout;
3453 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3454 }
3455
3456 /* This routine sends an ack and also updates the window. */
3457 void tcp_send_ack(struct sock *sk)
3458 {
3459 struct sk_buff *buff;
3460
3461 /* If we have been reset, we may not send again. */
3462 if (sk->sk_state == TCP_CLOSE)
3463 return;
3464
3465 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3466
3467 /* We are not putting this on the write queue, so
3468 * tcp_transmit_skb() will set the ownership to this
3469 * sock.
3470 */
3471 buff = alloc_skb(MAX_TCP_HEADER,
3472 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3473 if (unlikely(!buff)) {
3474 inet_csk_schedule_ack(sk);
3475 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3476 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3477 TCP_DELACK_MAX, TCP_RTO_MAX);
3478 return;
3479 }
3480
3481 /* Reserve space for headers and prepare control bits. */
3482 skb_reserve(buff, MAX_TCP_HEADER);
3483 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3484
3485 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3486 * too much.
3487 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3488 */
3489 skb_set_tcp_pure_ack(buff);
3490
3491 /* Send it off, this clears delayed acks for us. */
3492 skb_mstamp_get(&buff->skb_mstamp);
3493 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3494 }
3495 EXPORT_SYMBOL_GPL(tcp_send_ack);
3496
3497 /* This routine sends a packet with an out of date sequence
3498 * number. It assumes the other end will try to ack it.
3499 *
3500 * Question: what should we make while urgent mode?
3501 * 4.4BSD forces sending single byte of data. We cannot send
3502 * out of window data, because we have SND.NXT==SND.MAX...
3503 *
3504 * Current solution: to send TWO zero-length segments in urgent mode:
3505 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3506 * out-of-date with SND.UNA-1 to probe window.
3507 */
3508 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3509 {
3510 struct tcp_sock *tp = tcp_sk(sk);
3511 struct sk_buff *skb;
3512
3513 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3514 skb = alloc_skb(MAX_TCP_HEADER,
3515 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3516 if (!skb)
3517 return -1;
3518
3519 /* Reserve space for headers and set control bits. */
3520 skb_reserve(skb, MAX_TCP_HEADER);
3521 /* Use a previous sequence. This should cause the other
3522 * end to send an ack. Don't queue or clone SKB, just
3523 * send it.
3524 */
3525 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3526 skb_mstamp_get(&skb->skb_mstamp);
3527 NET_INC_STATS(sock_net(sk), mib);
3528 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3529 }
3530
3531 void tcp_send_window_probe(struct sock *sk)
3532 {
3533 if (sk->sk_state == TCP_ESTABLISHED) {
3534 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3535 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3536 }
3537 }
3538
3539 /* Initiate keepalive or window probe from timer. */
3540 int tcp_write_wakeup(struct sock *sk, int mib)
3541 {
3542 struct tcp_sock *tp = tcp_sk(sk);
3543 struct sk_buff *skb;
3544
3545 if (sk->sk_state == TCP_CLOSE)
3546 return -1;
3547
3548 skb = tcp_send_head(sk);
3549 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3550 int err;
3551 unsigned int mss = tcp_current_mss(sk);
3552 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3553
3554 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3555 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3556
3557 /* We are probing the opening of a window
3558 * but the window size is != 0
3559 * must have been a result SWS avoidance ( sender )
3560 */
3561 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3562 skb->len > mss) {
3563 seg_size = min(seg_size, mss);
3564 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3565 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3566 return -1;
3567 } else if (!tcp_skb_pcount(skb))
3568 tcp_set_skb_tso_segs(skb, mss);
3569
3570 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3571 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3572 if (!err)
3573 tcp_event_new_data_sent(sk, skb);
3574 return err;
3575 } else {
3576 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3577 tcp_xmit_probe_skb(sk, 1, mib);
3578 return tcp_xmit_probe_skb(sk, 0, mib);
3579 }
3580 }
3581
3582 /* A window probe timeout has occurred. If window is not closed send
3583 * a partial packet else a zero probe.
3584 */
3585 void tcp_send_probe0(struct sock *sk)
3586 {
3587 struct inet_connection_sock *icsk = inet_csk(sk);
3588 struct tcp_sock *tp = tcp_sk(sk);
3589 struct net *net = sock_net(sk);
3590 unsigned long probe_max;
3591 int err;
3592
3593 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3594
3595 if (tp->packets_out || !tcp_send_head(sk)) {
3596 /* Cancel probe timer, if it is not required. */
3597 icsk->icsk_probes_out = 0;
3598 icsk->icsk_backoff = 0;
3599 return;
3600 }
3601
3602 if (err <= 0) {
3603 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3604 icsk->icsk_backoff++;
3605 icsk->icsk_probes_out++;
3606 probe_max = TCP_RTO_MAX;
3607 } else {
3608 /* If packet was not sent due to local congestion,
3609 * do not backoff and do not remember icsk_probes_out.
3610 * Let local senders to fight for local resources.
3611 *
3612 * Use accumulated backoff yet.
3613 */
3614 if (!icsk->icsk_probes_out)
3615 icsk->icsk_probes_out = 1;
3616 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3617 }
3618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3619 tcp_probe0_when(sk, probe_max),
3620 TCP_RTO_MAX);
3621 }
3622
3623 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3624 {
3625 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3626 struct flowi fl;
3627 int res;
3628
3629 tcp_rsk(req)->txhash = net_tx_rndhash();
3630 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3631 if (!res) {
3632 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3633 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3634 if (unlikely(tcp_passive_fastopen(sk)))
3635 tcp_sk(sk)->total_retrans++;
3636 }
3637 return res;
3638 }
3639 EXPORT_SYMBOL(tcp_rtx_synack);