]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_output.c
58587b0e2b5d09083c9c171ce449e49e2f5a018d
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window */
238 space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 space = max_t(u32, space, sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309 }
310
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk) ||
320 tcp_bpf_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331
332 if (!use_ecn) {
333 const struct dst_entry *dst = __sk_dst_get(sk);
334
335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 use_ecn = true;
337 }
338
339 tp->ecn_flags = 0;
340
341 if (use_ecn) {
342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 tp->ecn_flags = TCP_ECN_OK;
344 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
345 INET_ECN_xmit(sk);
346 }
347 }
348
349 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350 {
351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 /* tp->ecn_flags are cleared at a later point in time when
353 * SYN ACK is ultimatively being received.
354 */
355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 }
357
358 static void
359 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360 {
361 if (inet_rsk(req)->ecn_ok)
362 th->ece = 1;
363 }
364
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366 * be sent.
367 */
368 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 struct tcphdr *th, int tcp_header_len)
370 {
371 struct tcp_sock *tp = tcp_sk(sk);
372
373 if (tp->ecn_flags & TCP_ECN_OK) {
374 /* Not-retransmitted data segment: set ECT and inject CWR. */
375 if (skb->len != tcp_header_len &&
376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 INET_ECN_xmit(sk);
378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 th->cwr = 1;
381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 }
383 } else if (!tcp_ca_needs_ecn(sk)) {
384 /* ACK or retransmitted segment: clear ECT|CE */
385 INET_ECN_dontxmit(sk);
386 }
387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 th->ece = 1;
389 }
390 }
391
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393 * auto increment end seqno.
394 */
395 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396 {
397 skb->ip_summed = CHECKSUM_PARTIAL;
398 skb->csum = 0;
399
400 TCP_SKB_CB(skb)->tcp_flags = flags;
401 TCP_SKB_CB(skb)->sacked = 0;
402
403 tcp_skb_pcount_set(skb, 1);
404
405 TCP_SKB_CB(skb)->seq = seq;
406 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 seq++;
408 TCP_SKB_CB(skb)->end_seq = seq;
409 }
410
411 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412 {
413 return tp->snd_una != tp->snd_up;
414 }
415
416 #define OPTION_SACK_ADVERTISE (1 << 0)
417 #define OPTION_TS (1 << 1)
418 #define OPTION_MD5 (1 << 2)
419 #define OPTION_WSCALE (1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
421
422 struct tcp_out_options {
423 u16 options; /* bit field of OPTION_* */
424 u16 mss; /* 0 to disable */
425 u8 ws; /* window scale, 0 to disable */
426 u8 num_sack_blocks; /* number of SACK blocks to include */
427 u8 hash_size; /* bytes in hash_location */
428 __u8 *hash_location; /* temporary pointer, overloaded */
429 __u32 tsval, tsecr; /* need to include OPTION_TS */
430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
431 };
432
433 /* Write previously computed TCP options to the packet.
434 *
435 * Beware: Something in the Internet is very sensitive to the ordering of
436 * TCP options, we learned this through the hard way, so be careful here.
437 * Luckily we can at least blame others for their non-compliance but from
438 * inter-operability perspective it seems that we're somewhat stuck with
439 * the ordering which we have been using if we want to keep working with
440 * those broken things (not that it currently hurts anybody as there isn't
441 * particular reason why the ordering would need to be changed).
442 *
443 * At least SACK_PERM as the first option is known to lead to a disaster
444 * (but it may well be that other scenarios fail similarly).
445 */
446 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 struct tcp_out_options *opts)
448 {
449 u16 options = opts->options; /* mungable copy */
450
451 if (unlikely(OPTION_MD5 & options)) {
452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 /* overload cookie hash location */
455 opts->hash_location = (__u8 *)ptr;
456 ptr += 4;
457 }
458
459 if (unlikely(opts->mss)) {
460 *ptr++ = htonl((TCPOPT_MSS << 24) |
461 (TCPOLEN_MSS << 16) |
462 opts->mss);
463 }
464
465 if (likely(OPTION_TS & options)) {
466 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 (TCPOLEN_SACK_PERM << 16) |
469 (TCPOPT_TIMESTAMP << 8) |
470 TCPOLEN_TIMESTAMP);
471 options &= ~OPTION_SACK_ADVERTISE;
472 } else {
473 *ptr++ = htonl((TCPOPT_NOP << 24) |
474 (TCPOPT_NOP << 16) |
475 (TCPOPT_TIMESTAMP << 8) |
476 TCPOLEN_TIMESTAMP);
477 }
478 *ptr++ = htonl(opts->tsval);
479 *ptr++ = htonl(opts->tsecr);
480 }
481
482 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 *ptr++ = htonl((TCPOPT_NOP << 24) |
484 (TCPOPT_NOP << 16) |
485 (TCPOPT_SACK_PERM << 8) |
486 TCPOLEN_SACK_PERM);
487 }
488
489 if (unlikely(OPTION_WSCALE & options)) {
490 *ptr++ = htonl((TCPOPT_NOP << 24) |
491 (TCPOPT_WINDOW << 16) |
492 (TCPOLEN_WINDOW << 8) |
493 opts->ws);
494 }
495
496 if (unlikely(opts->num_sack_blocks)) {
497 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 tp->duplicate_sack : tp->selective_acks;
499 int this_sack;
500
501 *ptr++ = htonl((TCPOPT_NOP << 24) |
502 (TCPOPT_NOP << 16) |
503 (TCPOPT_SACK << 8) |
504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 TCPOLEN_SACK_PERBLOCK)));
506
507 for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 ++this_sack) {
509 *ptr++ = htonl(sp[this_sack].start_seq);
510 *ptr++ = htonl(sp[this_sack].end_seq);
511 }
512
513 tp->rx_opt.dsack = 0;
514 }
515
516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 u8 *p = (u8 *)ptr;
519 u32 len; /* Fast Open option length */
520
521 if (foc->exp) {
522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 TCPOPT_FASTOPEN_MAGIC);
525 p += TCPOLEN_EXP_FASTOPEN_BASE;
526 } else {
527 len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 *p++ = TCPOPT_FASTOPEN;
529 *p++ = len;
530 }
531
532 memcpy(p, foc->val, foc->len);
533 if ((len & 3) == 2) {
534 p[foc->len] = TCPOPT_NOP;
535 p[foc->len + 1] = TCPOPT_NOP;
536 }
537 ptr += (len + 3) >> 2;
538 }
539 }
540
541 /* Compute TCP options for SYN packets. This is not the final
542 * network wire format yet.
543 */
544 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 struct tcp_out_options *opts,
546 struct tcp_md5sig_key **md5)
547 {
548 struct tcp_sock *tp = tcp_sk(sk);
549 unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551
552 #ifdef CONFIG_TCP_MD5SIG
553 *md5 = tp->af_specific->md5_lookup(sk, sk);
554 if (*md5) {
555 opts->options |= OPTION_MD5;
556 remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 }
558 #else
559 *md5 = NULL;
560 #endif
561
562 /* We always get an MSS option. The option bytes which will be seen in
563 * normal data packets should timestamps be used, must be in the MSS
564 * advertised. But we subtract them from tp->mss_cache so that
565 * calculations in tcp_sendmsg are simpler etc. So account for this
566 * fact here if necessary. If we don't do this correctly, as a
567 * receiver we won't recognize data packets as being full sized when we
568 * should, and thus we won't abide by the delayed ACK rules correctly.
569 * SACKs don't matter, we never delay an ACK when we have any of those
570 * going out. */
571 opts->mss = tcp_advertise_mss(sk);
572 remaining -= TCPOLEN_MSS_ALIGNED;
573
574 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
575 opts->options |= OPTION_TS;
576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 opts->tsecr = tp->rx_opt.ts_recent;
578 remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 }
580 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
581 opts->ws = tp->rx_opt.rcv_wscale;
582 opts->options |= OPTION_WSCALE;
583 remaining -= TCPOLEN_WSCALE_ALIGNED;
584 }
585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
586 opts->options |= OPTION_SACK_ADVERTISE;
587 if (unlikely(!(OPTION_TS & opts->options)))
588 remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 }
590
591 if (fastopen && fastopen->cookie.len >= 0) {
592 u32 need = fastopen->cookie.len;
593
594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 TCPOLEN_FASTOPEN_BASE;
596 need = (need + 3) & ~3U; /* Align to 32 bits */
597 if (remaining >= need) {
598 opts->options |= OPTION_FAST_OPEN_COOKIE;
599 opts->fastopen_cookie = &fastopen->cookie;
600 remaining -= need;
601 tp->syn_fastopen = 1;
602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 }
604 }
605
606 return MAX_TCP_OPTION_SPACE - remaining;
607 }
608
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock *req,
611 unsigned int mss, struct sk_buff *skb,
612 struct tcp_out_options *opts,
613 const struct tcp_md5sig_key *md5,
614 struct tcp_fastopen_cookie *foc)
615 {
616 struct inet_request_sock *ireq = inet_rsk(req);
617 unsigned int remaining = MAX_TCP_OPTION_SPACE;
618
619 #ifdef CONFIG_TCP_MD5SIG
620 if (md5) {
621 opts->options |= OPTION_MD5;
622 remaining -= TCPOLEN_MD5SIG_ALIGNED;
623
624 /* We can't fit any SACK blocks in a packet with MD5 + TS
625 * options. There was discussion about disabling SACK
626 * rather than TS in order to fit in better with old,
627 * buggy kernels, but that was deemed to be unnecessary.
628 */
629 ireq->tstamp_ok &= !ireq->sack_ok;
630 }
631 #endif
632
633 /* We always send an MSS option. */
634 opts->mss = mss;
635 remaining -= TCPOLEN_MSS_ALIGNED;
636
637 if (likely(ireq->wscale_ok)) {
638 opts->ws = ireq->rcv_wscale;
639 opts->options |= OPTION_WSCALE;
640 remaining -= TCPOLEN_WSCALE_ALIGNED;
641 }
642 if (likely(ireq->tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 opts->tsecr = req->ts_recent;
646 remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 }
648 if (likely(ireq->sack_ok)) {
649 opts->options |= OPTION_SACK_ADVERTISE;
650 if (unlikely(!ireq->tstamp_ok))
651 remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 }
653 if (foc != NULL && foc->len >= 0) {
654 u32 need = foc->len;
655
656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 TCPOLEN_FASTOPEN_BASE;
658 need = (need + 3) & ~3U; /* Align to 32 bits */
659 if (remaining >= need) {
660 opts->options |= OPTION_FAST_OPEN_COOKIE;
661 opts->fastopen_cookie = foc;
662 remaining -= need;
663 }
664 }
665
666 return MAX_TCP_OPTION_SPACE - remaining;
667 }
668
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670 * final wire format yet.
671 */
672 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 struct tcp_out_options *opts,
674 struct tcp_md5sig_key **md5)
675 {
676 struct tcp_sock *tp = tcp_sk(sk);
677 unsigned int size = 0;
678 unsigned int eff_sacks;
679
680 opts->options = 0;
681
682 #ifdef CONFIG_TCP_MD5SIG
683 *md5 = tp->af_specific->md5_lookup(sk, sk);
684 if (unlikely(*md5)) {
685 opts->options |= OPTION_MD5;
686 size += TCPOLEN_MD5SIG_ALIGNED;
687 }
688 #else
689 *md5 = NULL;
690 #endif
691
692 if (likely(tp->rx_opt.tstamp_ok)) {
693 opts->options |= OPTION_TS;
694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 opts->tsecr = tp->rx_opt.ts_recent;
696 size += TCPOLEN_TSTAMP_ALIGNED;
697 }
698
699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 if (unlikely(eff_sacks)) {
701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 opts->num_sack_blocks =
703 min_t(unsigned int, eff_sacks,
704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 TCPOLEN_SACK_PERBLOCK);
706 size += TCPOLEN_SACK_BASE_ALIGNED +
707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 }
709
710 return size;
711 }
712
713
714 /* TCP SMALL QUEUES (TSQ)
715 *
716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717 * to reduce RTT and bufferbloat.
718 * We do this using a special skb destructor (tcp_wfree).
719 *
720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721 * needs to be reallocated in a driver.
722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723 *
724 * Since transmit from skb destructor is forbidden, we use a tasklet
725 * to process all sockets that eventually need to send more skbs.
726 * We use one tasklet per cpu, with its own queue of sockets.
727 */
728 struct tsq_tasklet {
729 struct tasklet_struct tasklet;
730 struct list_head head; /* queue of tcp sockets */
731 };
732 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733
734 static void tcp_tsq_handler(struct sock *sk)
735 {
736 if ((1 << sk->sk_state) &
737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
739 struct tcp_sock *tp = tcp_sk(sk);
740
741 if (tp->lost_out > tp->retrans_out &&
742 tp->snd_cwnd > tcp_packets_in_flight(tp))
743 tcp_xmit_retransmit_queue(sk);
744
745 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 0, GFP_ATOMIC);
747 }
748 }
749 /*
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
754 */
755 static void tcp_tasklet_func(unsigned long data)
756 {
757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 LIST_HEAD(list);
759 unsigned long flags;
760 struct list_head *q, *n;
761 struct tcp_sock *tp;
762 struct sock *sk;
763
764 local_irq_save(flags);
765 list_splice_init(&tsq->head, &list);
766 local_irq_restore(flags);
767
768 list_for_each_safe(q, n, &list) {
769 tp = list_entry(q, struct tcp_sock, tsq_node);
770 list_del(&tp->tsq_node);
771
772 sk = (struct sock *)tp;
773 smp_mb__before_atomic();
774 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775
776 if (!sk->sk_lock.owned &&
777 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 bh_lock_sock(sk);
779 if (!sock_owned_by_user(sk)) {
780 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 tcp_tsq_handler(sk);
782 }
783 bh_unlock_sock(sk);
784 }
785
786 sk_free(sk);
787 }
788 }
789
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
791 TCPF_WRITE_TIMER_DEFERRED | \
792 TCPF_DELACK_TIMER_DEFERRED | \
793 TCPF_MTU_REDUCED_DEFERRED)
794 /**
795 * tcp_release_cb - tcp release_sock() callback
796 * @sk: socket
797 *
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
800 */
801 void tcp_release_cb(struct sock *sk)
802 {
803 unsigned long flags, nflags;
804
805 /* perform an atomic operation only if at least one flag is set */
806 do {
807 flags = sk->sk_tsq_flags;
808 if (!(flags & TCP_DEFERRED_ALL))
809 return;
810 nflags = flags & ~TCP_DEFERRED_ALL;
811 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812
813 if (flags & TCPF_TSQ_DEFERRED)
814 tcp_tsq_handler(sk);
815
816 /* Here begins the tricky part :
817 * We are called from release_sock() with :
818 * 1) BH disabled
819 * 2) sk_lock.slock spinlock held
820 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 *
822 * But following code is meant to be called from BH handlers,
823 * so we should keep BH disabled, but early release socket ownership
824 */
825 sock_release_ownership(sk);
826
827 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 tcp_write_timer_handler(sk);
829 __sock_put(sk);
830 }
831 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 tcp_delack_timer_handler(sk);
833 __sock_put(sk);
834 }
835 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 __sock_put(sk);
838 }
839 }
840 EXPORT_SYMBOL(tcp_release_cb);
841
842 void __init tcp_tasklet_init(void)
843 {
844 int i;
845
846 for_each_possible_cpu(i) {
847 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848
849 INIT_LIST_HEAD(&tsq->head);
850 tasklet_init(&tsq->tasklet,
851 tcp_tasklet_func,
852 (unsigned long)tsq);
853 }
854 }
855
856 /*
857 * Write buffer destructor automatically called from kfree_skb.
858 * We can't xmit new skbs from this context, as we might already
859 * hold qdisc lock.
860 */
861 void tcp_wfree(struct sk_buff *skb)
862 {
863 struct sock *sk = skb->sk;
864 struct tcp_sock *tp = tcp_sk(sk);
865 unsigned long flags, nval, oval;
866
867 /* Keep one reference on sk_wmem_alloc.
868 * Will be released by sk_free() from here or tcp_tasklet_func()
869 */
870 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
871
872 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 * Wait until our queues (qdisc + devices) are drained.
874 * This gives :
875 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 * - chance for incoming ACK (processed by another cpu maybe)
877 * to migrate this flow (skb->ooo_okay will be eventually set)
878 */
879 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 goto out;
881
882 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 struct tsq_tasklet *tsq;
884 bool empty;
885
886 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 goto out;
888
889 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 if (nval != oval)
892 continue;
893
894 /* queue this socket to tasklet queue */
895 local_irq_save(flags);
896 tsq = this_cpu_ptr(&tsq_tasklet);
897 empty = list_empty(&tsq->head);
898 list_add(&tp->tsq_node, &tsq->head);
899 if (empty)
900 tasklet_schedule(&tsq->tasklet);
901 local_irq_restore(flags);
902 return;
903 }
904 out:
905 sk_free(sk);
906 }
907
908 /* Note: Called under hard irq.
909 * We can not call TCP stack right away.
910 */
911 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
912 {
913 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
914 struct sock *sk = (struct sock *)tp;
915 unsigned long nval, oval;
916
917 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
918 struct tsq_tasklet *tsq;
919 bool empty;
920
921 if (oval & TSQF_QUEUED)
922 break;
923
924 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
925 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
926 if (nval != oval)
927 continue;
928
929 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
930 break;
931 /* queue this socket to tasklet queue */
932 tsq = this_cpu_ptr(&tsq_tasklet);
933 empty = list_empty(&tsq->head);
934 list_add(&tp->tsq_node, &tsq->head);
935 if (empty)
936 tasklet_schedule(&tsq->tasklet);
937 break;
938 }
939 return HRTIMER_NORESTART;
940 }
941
942 /* BBR congestion control needs pacing.
943 * Same remark for SO_MAX_PACING_RATE.
944 * sch_fq packet scheduler is efficiently handling pacing,
945 * but is not always installed/used.
946 * Return true if TCP stack should pace packets itself.
947 */
948 static bool tcp_needs_internal_pacing(const struct sock *sk)
949 {
950 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
951 }
952
953 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
954 {
955 u64 len_ns;
956 u32 rate;
957
958 if (!tcp_needs_internal_pacing(sk))
959 return;
960 rate = sk->sk_pacing_rate;
961 if (!rate || rate == ~0U)
962 return;
963
964 /* Should account for header sizes as sch_fq does,
965 * but lets make things simple.
966 */
967 len_ns = (u64)skb->len * NSEC_PER_SEC;
968 do_div(len_ns, rate);
969 hrtimer_start(&tcp_sk(sk)->pacing_timer,
970 ktime_add_ns(ktime_get(), len_ns),
971 HRTIMER_MODE_ABS_PINNED);
972 }
973
974 /* This routine actually transmits TCP packets queued in by
975 * tcp_do_sendmsg(). This is used by both the initial
976 * transmission and possible later retransmissions.
977 * All SKB's seen here are completely headerless. It is our
978 * job to build the TCP header, and pass the packet down to
979 * IP so it can do the same plus pass the packet off to the
980 * device.
981 *
982 * We are working here with either a clone of the original
983 * SKB, or a fresh unique copy made by the retransmit engine.
984 */
985 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
986 gfp_t gfp_mask)
987 {
988 const struct inet_connection_sock *icsk = inet_csk(sk);
989 struct inet_sock *inet;
990 struct tcp_sock *tp;
991 struct tcp_skb_cb *tcb;
992 struct tcp_out_options opts;
993 unsigned int tcp_options_size, tcp_header_size;
994 struct sk_buff *oskb = NULL;
995 struct tcp_md5sig_key *md5;
996 struct tcphdr *th;
997 int err;
998
999 BUG_ON(!skb || !tcp_skb_pcount(skb));
1000 tp = tcp_sk(sk);
1001
1002 if (clone_it) {
1003 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1004 - tp->snd_una;
1005 oskb = skb;
1006 if (unlikely(skb_cloned(skb)))
1007 skb = pskb_copy(skb, gfp_mask);
1008 else
1009 skb = skb_clone(skb, gfp_mask);
1010 if (unlikely(!skb))
1011 return -ENOBUFS;
1012 }
1013 skb->skb_mstamp = tp->tcp_mstamp;
1014
1015 inet = inet_sk(sk);
1016 tcb = TCP_SKB_CB(skb);
1017 memset(&opts, 0, sizeof(opts));
1018
1019 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1020 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1021 else
1022 tcp_options_size = tcp_established_options(sk, skb, &opts,
1023 &md5);
1024 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1025
1026 /* if no packet is in qdisc/device queue, then allow XPS to select
1027 * another queue. We can be called from tcp_tsq_handler()
1028 * which holds one reference to sk_wmem_alloc.
1029 *
1030 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1031 * One way to get this would be to set skb->truesize = 2 on them.
1032 */
1033 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1034
1035 /* If we had to use memory reserve to allocate this skb,
1036 * this might cause drops if packet is looped back :
1037 * Other socket might not have SOCK_MEMALLOC.
1038 * Packets not looped back do not care about pfmemalloc.
1039 */
1040 skb->pfmemalloc = 0;
1041
1042 skb_push(skb, tcp_header_size);
1043 skb_reset_transport_header(skb);
1044
1045 skb_orphan(skb);
1046 skb->sk = sk;
1047 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1048 skb_set_hash_from_sk(skb, sk);
1049 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1050
1051 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1052
1053 /* Build TCP header and checksum it. */
1054 th = (struct tcphdr *)skb->data;
1055 th->source = inet->inet_sport;
1056 th->dest = inet->inet_dport;
1057 th->seq = htonl(tcb->seq);
1058 th->ack_seq = htonl(tp->rcv_nxt);
1059 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1060 tcb->tcp_flags);
1061
1062 th->check = 0;
1063 th->urg_ptr = 0;
1064
1065 /* The urg_mode check is necessary during a below snd_una win probe */
1066 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1067 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1068 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1069 th->urg = 1;
1070 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1071 th->urg_ptr = htons(0xFFFF);
1072 th->urg = 1;
1073 }
1074 }
1075
1076 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1077 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1078 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1079 th->window = htons(tcp_select_window(sk));
1080 tcp_ecn_send(sk, skb, th, tcp_header_size);
1081 } else {
1082 /* RFC1323: The window in SYN & SYN/ACK segments
1083 * is never scaled.
1084 */
1085 th->window = htons(min(tp->rcv_wnd, 65535U));
1086 }
1087 #ifdef CONFIG_TCP_MD5SIG
1088 /* Calculate the MD5 hash, as we have all we need now */
1089 if (md5) {
1090 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1091 tp->af_specific->calc_md5_hash(opts.hash_location,
1092 md5, sk, skb);
1093 }
1094 #endif
1095
1096 icsk->icsk_af_ops->send_check(sk, skb);
1097
1098 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1099 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1100
1101 if (skb->len != tcp_header_size) {
1102 tcp_event_data_sent(tp, sk);
1103 tp->data_segs_out += tcp_skb_pcount(skb);
1104 tcp_internal_pacing(sk, skb);
1105 }
1106
1107 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1108 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1109 tcp_skb_pcount(skb));
1110
1111 tp->segs_out += tcp_skb_pcount(skb);
1112 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1113 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1114 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1115
1116 /* Our usage of tstamp should remain private */
1117 skb->tstamp = 0;
1118
1119 /* Cleanup our debris for IP stacks */
1120 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1121 sizeof(struct inet6_skb_parm)));
1122
1123 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1124
1125 if (unlikely(err > 0)) {
1126 tcp_enter_cwr(sk);
1127 err = net_xmit_eval(err);
1128 }
1129 if (!err && oskb) {
1130 oskb->skb_mstamp = tp->tcp_mstamp;
1131 tcp_rate_skb_sent(sk, oskb);
1132 }
1133 return err;
1134 }
1135
1136 /* This routine just queues the buffer for sending.
1137 *
1138 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1139 * otherwise socket can stall.
1140 */
1141 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1142 {
1143 struct tcp_sock *tp = tcp_sk(sk);
1144
1145 /* Advance write_seq and place onto the write_queue. */
1146 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1147 __skb_header_release(skb);
1148 tcp_add_write_queue_tail(sk, skb);
1149 sk->sk_wmem_queued += skb->truesize;
1150 sk_mem_charge(sk, skb->truesize);
1151 }
1152
1153 /* Initialize TSO segments for a packet. */
1154 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1155 {
1156 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1157 /* Avoid the costly divide in the normal
1158 * non-TSO case.
1159 */
1160 tcp_skb_pcount_set(skb, 1);
1161 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1162 } else {
1163 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1164 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1165 }
1166 }
1167
1168 /* When a modification to fackets out becomes necessary, we need to check
1169 * skb is counted to fackets_out or not.
1170 */
1171 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1172 int decr)
1173 {
1174 struct tcp_sock *tp = tcp_sk(sk);
1175
1176 if (!tp->sacked_out || tcp_is_reno(tp))
1177 return;
1178
1179 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1180 tp->fackets_out -= decr;
1181 }
1182
1183 /* Pcount in the middle of the write queue got changed, we need to do various
1184 * tweaks to fix counters
1185 */
1186 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1187 {
1188 struct tcp_sock *tp = tcp_sk(sk);
1189
1190 tp->packets_out -= decr;
1191
1192 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1193 tp->sacked_out -= decr;
1194 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1195 tp->retrans_out -= decr;
1196 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1197 tp->lost_out -= decr;
1198
1199 /* Reno case is special. Sigh... */
1200 if (tcp_is_reno(tp) && decr > 0)
1201 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1202
1203 tcp_adjust_fackets_out(sk, skb, decr);
1204
1205 if (tp->lost_skb_hint &&
1206 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1207 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1208 tp->lost_cnt_hint -= decr;
1209
1210 tcp_verify_left_out(tp);
1211 }
1212
1213 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1214 {
1215 return TCP_SKB_CB(skb)->txstamp_ack ||
1216 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1217 }
1218
1219 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1220 {
1221 struct skb_shared_info *shinfo = skb_shinfo(skb);
1222
1223 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1224 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1225 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1226 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1227
1228 shinfo->tx_flags &= ~tsflags;
1229 shinfo2->tx_flags |= tsflags;
1230 swap(shinfo->tskey, shinfo2->tskey);
1231 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1232 TCP_SKB_CB(skb)->txstamp_ack = 0;
1233 }
1234 }
1235
1236 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1237 {
1238 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1239 TCP_SKB_CB(skb)->eor = 0;
1240 }
1241
1242 /* Function to create two new TCP segments. Shrinks the given segment
1243 * to the specified size and appends a new segment with the rest of the
1244 * packet to the list. This won't be called frequently, I hope.
1245 * Remember, these are still headerless SKBs at this point.
1246 */
1247 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1248 unsigned int mss_now, gfp_t gfp)
1249 {
1250 struct tcp_sock *tp = tcp_sk(sk);
1251 struct sk_buff *buff;
1252 int nsize, old_factor;
1253 int nlen;
1254 u8 flags;
1255
1256 if (WARN_ON(len > skb->len))
1257 return -EINVAL;
1258
1259 nsize = skb_headlen(skb) - len;
1260 if (nsize < 0)
1261 nsize = 0;
1262
1263 if (skb_unclone(skb, gfp))
1264 return -ENOMEM;
1265
1266 /* Get a new skb... force flag on. */
1267 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1268 if (!buff)
1269 return -ENOMEM; /* We'll just try again later. */
1270
1271 sk->sk_wmem_queued += buff->truesize;
1272 sk_mem_charge(sk, buff->truesize);
1273 nlen = skb->len - len - nsize;
1274 buff->truesize += nlen;
1275 skb->truesize -= nlen;
1276
1277 /* Correct the sequence numbers. */
1278 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1279 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1280 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1281
1282 /* PSH and FIN should only be set in the second packet. */
1283 flags = TCP_SKB_CB(skb)->tcp_flags;
1284 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1285 TCP_SKB_CB(buff)->tcp_flags = flags;
1286 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1287 tcp_skb_fragment_eor(skb, buff);
1288
1289 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1290 /* Copy and checksum data tail into the new buffer. */
1291 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1292 skb_put(buff, nsize),
1293 nsize, 0);
1294
1295 skb_trim(skb, len);
1296
1297 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1298 } else {
1299 skb->ip_summed = CHECKSUM_PARTIAL;
1300 skb_split(skb, buff, len);
1301 }
1302
1303 buff->ip_summed = skb->ip_summed;
1304
1305 buff->tstamp = skb->tstamp;
1306 tcp_fragment_tstamp(skb, buff);
1307
1308 old_factor = tcp_skb_pcount(skb);
1309
1310 /* Fix up tso_factor for both original and new SKB. */
1311 tcp_set_skb_tso_segs(skb, mss_now);
1312 tcp_set_skb_tso_segs(buff, mss_now);
1313
1314 /* Update delivered info for the new segment */
1315 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1316
1317 /* If this packet has been sent out already, we must
1318 * adjust the various packet counters.
1319 */
1320 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1321 int diff = old_factor - tcp_skb_pcount(skb) -
1322 tcp_skb_pcount(buff);
1323
1324 if (diff)
1325 tcp_adjust_pcount(sk, skb, diff);
1326 }
1327
1328 /* Link BUFF into the send queue. */
1329 __skb_header_release(buff);
1330 tcp_insert_write_queue_after(skb, buff, sk);
1331
1332 return 0;
1333 }
1334
1335 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1336 * data is not copied, but immediately discarded.
1337 */
1338 static int __pskb_trim_head(struct sk_buff *skb, int len)
1339 {
1340 struct skb_shared_info *shinfo;
1341 int i, k, eat;
1342
1343 eat = min_t(int, len, skb_headlen(skb));
1344 if (eat) {
1345 __skb_pull(skb, eat);
1346 len -= eat;
1347 if (!len)
1348 return 0;
1349 }
1350 eat = len;
1351 k = 0;
1352 shinfo = skb_shinfo(skb);
1353 for (i = 0; i < shinfo->nr_frags; i++) {
1354 int size = skb_frag_size(&shinfo->frags[i]);
1355
1356 if (size <= eat) {
1357 skb_frag_unref(skb, i);
1358 eat -= size;
1359 } else {
1360 shinfo->frags[k] = shinfo->frags[i];
1361 if (eat) {
1362 shinfo->frags[k].page_offset += eat;
1363 skb_frag_size_sub(&shinfo->frags[k], eat);
1364 eat = 0;
1365 }
1366 k++;
1367 }
1368 }
1369 shinfo->nr_frags = k;
1370
1371 skb->data_len -= len;
1372 skb->len = skb->data_len;
1373 return len;
1374 }
1375
1376 /* Remove acked data from a packet in the transmit queue. */
1377 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1378 {
1379 u32 delta_truesize;
1380
1381 if (skb_unclone(skb, GFP_ATOMIC))
1382 return -ENOMEM;
1383
1384 delta_truesize = __pskb_trim_head(skb, len);
1385
1386 TCP_SKB_CB(skb)->seq += len;
1387 skb->ip_summed = CHECKSUM_PARTIAL;
1388
1389 if (delta_truesize) {
1390 skb->truesize -= delta_truesize;
1391 sk->sk_wmem_queued -= delta_truesize;
1392 sk_mem_uncharge(sk, delta_truesize);
1393 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1394 }
1395
1396 /* Any change of skb->len requires recalculation of tso factor. */
1397 if (tcp_skb_pcount(skb) > 1)
1398 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1399
1400 return 0;
1401 }
1402
1403 /* Calculate MSS not accounting any TCP options. */
1404 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1405 {
1406 const struct tcp_sock *tp = tcp_sk(sk);
1407 const struct inet_connection_sock *icsk = inet_csk(sk);
1408 int mss_now;
1409
1410 /* Calculate base mss without TCP options:
1411 It is MMS_S - sizeof(tcphdr) of rfc1122
1412 */
1413 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1414
1415 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1416 if (icsk->icsk_af_ops->net_frag_header_len) {
1417 const struct dst_entry *dst = __sk_dst_get(sk);
1418
1419 if (dst && dst_allfrag(dst))
1420 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1421 }
1422
1423 /* Clamp it (mss_clamp does not include tcp options) */
1424 if (mss_now > tp->rx_opt.mss_clamp)
1425 mss_now = tp->rx_opt.mss_clamp;
1426
1427 /* Now subtract optional transport overhead */
1428 mss_now -= icsk->icsk_ext_hdr_len;
1429
1430 /* Then reserve room for full set of TCP options and 8 bytes of data */
1431 if (mss_now < 48)
1432 mss_now = 48;
1433 return mss_now;
1434 }
1435
1436 /* Calculate MSS. Not accounting for SACKs here. */
1437 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1438 {
1439 /* Subtract TCP options size, not including SACKs */
1440 return __tcp_mtu_to_mss(sk, pmtu) -
1441 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1442 }
1443
1444 /* Inverse of above */
1445 int tcp_mss_to_mtu(struct sock *sk, int mss)
1446 {
1447 const struct tcp_sock *tp = tcp_sk(sk);
1448 const struct inet_connection_sock *icsk = inet_csk(sk);
1449 int mtu;
1450
1451 mtu = mss +
1452 tp->tcp_header_len +
1453 icsk->icsk_ext_hdr_len +
1454 icsk->icsk_af_ops->net_header_len;
1455
1456 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1457 if (icsk->icsk_af_ops->net_frag_header_len) {
1458 const struct dst_entry *dst = __sk_dst_get(sk);
1459
1460 if (dst && dst_allfrag(dst))
1461 mtu += icsk->icsk_af_ops->net_frag_header_len;
1462 }
1463 return mtu;
1464 }
1465 EXPORT_SYMBOL(tcp_mss_to_mtu);
1466
1467 /* MTU probing init per socket */
1468 void tcp_mtup_init(struct sock *sk)
1469 {
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 struct inet_connection_sock *icsk = inet_csk(sk);
1472 struct net *net = sock_net(sk);
1473
1474 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1475 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1476 icsk->icsk_af_ops->net_header_len;
1477 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1478 icsk->icsk_mtup.probe_size = 0;
1479 if (icsk->icsk_mtup.enabled)
1480 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1481 }
1482 EXPORT_SYMBOL(tcp_mtup_init);
1483
1484 /* This function synchronize snd mss to current pmtu/exthdr set.
1485
1486 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1487 for TCP options, but includes only bare TCP header.
1488
1489 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1490 It is minimum of user_mss and mss received with SYN.
1491 It also does not include TCP options.
1492
1493 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1494
1495 tp->mss_cache is current effective sending mss, including
1496 all tcp options except for SACKs. It is evaluated,
1497 taking into account current pmtu, but never exceeds
1498 tp->rx_opt.mss_clamp.
1499
1500 NOTE1. rfc1122 clearly states that advertised MSS
1501 DOES NOT include either tcp or ip options.
1502
1503 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1504 are READ ONLY outside this function. --ANK (980731)
1505 */
1506 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1507 {
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct inet_connection_sock *icsk = inet_csk(sk);
1510 int mss_now;
1511
1512 if (icsk->icsk_mtup.search_high > pmtu)
1513 icsk->icsk_mtup.search_high = pmtu;
1514
1515 mss_now = tcp_mtu_to_mss(sk, pmtu);
1516 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1517
1518 /* And store cached results */
1519 icsk->icsk_pmtu_cookie = pmtu;
1520 if (icsk->icsk_mtup.enabled)
1521 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1522 tp->mss_cache = mss_now;
1523
1524 return mss_now;
1525 }
1526 EXPORT_SYMBOL(tcp_sync_mss);
1527
1528 /* Compute the current effective MSS, taking SACKs and IP options,
1529 * and even PMTU discovery events into account.
1530 */
1531 unsigned int tcp_current_mss(struct sock *sk)
1532 {
1533 const struct tcp_sock *tp = tcp_sk(sk);
1534 const struct dst_entry *dst = __sk_dst_get(sk);
1535 u32 mss_now;
1536 unsigned int header_len;
1537 struct tcp_out_options opts;
1538 struct tcp_md5sig_key *md5;
1539
1540 mss_now = tp->mss_cache;
1541
1542 if (dst) {
1543 u32 mtu = dst_mtu(dst);
1544 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1545 mss_now = tcp_sync_mss(sk, mtu);
1546 }
1547
1548 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1549 sizeof(struct tcphdr);
1550 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1551 * some common options. If this is an odd packet (because we have SACK
1552 * blocks etc) then our calculated header_len will be different, and
1553 * we have to adjust mss_now correspondingly */
1554 if (header_len != tp->tcp_header_len) {
1555 int delta = (int) header_len - tp->tcp_header_len;
1556 mss_now -= delta;
1557 }
1558
1559 return mss_now;
1560 }
1561
1562 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1563 * As additional protections, we do not touch cwnd in retransmission phases,
1564 * and if application hit its sndbuf limit recently.
1565 */
1566 static void tcp_cwnd_application_limited(struct sock *sk)
1567 {
1568 struct tcp_sock *tp = tcp_sk(sk);
1569
1570 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1571 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1572 /* Limited by application or receiver window. */
1573 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1574 u32 win_used = max(tp->snd_cwnd_used, init_win);
1575 if (win_used < tp->snd_cwnd) {
1576 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1577 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1578 }
1579 tp->snd_cwnd_used = 0;
1580 }
1581 tp->snd_cwnd_stamp = tcp_jiffies32;
1582 }
1583
1584 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1585 {
1586 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1587 struct tcp_sock *tp = tcp_sk(sk);
1588
1589 /* Track the maximum number of outstanding packets in each
1590 * window, and remember whether we were cwnd-limited then.
1591 */
1592 if (!before(tp->snd_una, tp->max_packets_seq) ||
1593 tp->packets_out > tp->max_packets_out) {
1594 tp->max_packets_out = tp->packets_out;
1595 tp->max_packets_seq = tp->snd_nxt;
1596 tp->is_cwnd_limited = is_cwnd_limited;
1597 }
1598
1599 if (tcp_is_cwnd_limited(sk)) {
1600 /* Network is feed fully. */
1601 tp->snd_cwnd_used = 0;
1602 tp->snd_cwnd_stamp = tcp_jiffies32;
1603 } else {
1604 /* Network starves. */
1605 if (tp->packets_out > tp->snd_cwnd_used)
1606 tp->snd_cwnd_used = tp->packets_out;
1607
1608 if (sysctl_tcp_slow_start_after_idle &&
1609 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1610 !ca_ops->cong_control)
1611 tcp_cwnd_application_limited(sk);
1612
1613 /* The following conditions together indicate the starvation
1614 * is caused by insufficient sender buffer:
1615 * 1) just sent some data (see tcp_write_xmit)
1616 * 2) not cwnd limited (this else condition)
1617 * 3) no more data to send (null tcp_send_head )
1618 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1619 */
1620 if (!tcp_send_head(sk) && sk->sk_socket &&
1621 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1622 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1623 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1624 }
1625 }
1626
1627 /* Minshall's variant of the Nagle send check. */
1628 static bool tcp_minshall_check(const struct tcp_sock *tp)
1629 {
1630 return after(tp->snd_sml, tp->snd_una) &&
1631 !after(tp->snd_sml, tp->snd_nxt);
1632 }
1633
1634 /* Update snd_sml if this skb is under mss
1635 * Note that a TSO packet might end with a sub-mss segment
1636 * The test is really :
1637 * if ((skb->len % mss) != 0)
1638 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1639 * But we can avoid doing the divide again given we already have
1640 * skb_pcount = skb->len / mss_now
1641 */
1642 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1643 const struct sk_buff *skb)
1644 {
1645 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1646 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1647 }
1648
1649 /* Return false, if packet can be sent now without violation Nagle's rules:
1650 * 1. It is full sized. (provided by caller in %partial bool)
1651 * 2. Or it contains FIN. (already checked by caller)
1652 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1653 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1654 * With Minshall's modification: all sent small packets are ACKed.
1655 */
1656 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1657 int nonagle)
1658 {
1659 return partial &&
1660 ((nonagle & TCP_NAGLE_CORK) ||
1661 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1662 }
1663
1664 /* Return how many segs we'd like on a TSO packet,
1665 * to send one TSO packet per ms
1666 */
1667 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1668 int min_tso_segs)
1669 {
1670 u32 bytes, segs;
1671
1672 bytes = min(sk->sk_pacing_rate >> 10,
1673 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1674
1675 /* Goal is to send at least one packet per ms,
1676 * not one big TSO packet every 100 ms.
1677 * This preserves ACK clocking and is consistent
1678 * with tcp_tso_should_defer() heuristic.
1679 */
1680 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1681
1682 return min_t(u32, segs, sk->sk_gso_max_segs);
1683 }
1684 EXPORT_SYMBOL(tcp_tso_autosize);
1685
1686 /* Return the number of segments we want in the skb we are transmitting.
1687 * See if congestion control module wants to decide; otherwise, autosize.
1688 */
1689 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1690 {
1691 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1692 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1693
1694 return tso_segs ? :
1695 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1696 }
1697
1698 /* Returns the portion of skb which can be sent right away */
1699 static unsigned int tcp_mss_split_point(const struct sock *sk,
1700 const struct sk_buff *skb,
1701 unsigned int mss_now,
1702 unsigned int max_segs,
1703 int nonagle)
1704 {
1705 const struct tcp_sock *tp = tcp_sk(sk);
1706 u32 partial, needed, window, max_len;
1707
1708 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1709 max_len = mss_now * max_segs;
1710
1711 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1712 return max_len;
1713
1714 needed = min(skb->len, window);
1715
1716 if (max_len <= needed)
1717 return max_len;
1718
1719 partial = needed % mss_now;
1720 /* If last segment is not a full MSS, check if Nagle rules allow us
1721 * to include this last segment in this skb.
1722 * Otherwise, we'll split the skb at last MSS boundary
1723 */
1724 if (tcp_nagle_check(partial != 0, tp, nonagle))
1725 return needed - partial;
1726
1727 return needed;
1728 }
1729
1730 /* Can at least one segment of SKB be sent right now, according to the
1731 * congestion window rules? If so, return how many segments are allowed.
1732 */
1733 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1734 const struct sk_buff *skb)
1735 {
1736 u32 in_flight, cwnd, halfcwnd;
1737
1738 /* Don't be strict about the congestion window for the final FIN. */
1739 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1740 tcp_skb_pcount(skb) == 1)
1741 return 1;
1742
1743 in_flight = tcp_packets_in_flight(tp);
1744 cwnd = tp->snd_cwnd;
1745 if (in_flight >= cwnd)
1746 return 0;
1747
1748 /* For better scheduling, ensure we have at least
1749 * 2 GSO packets in flight.
1750 */
1751 halfcwnd = max(cwnd >> 1, 1U);
1752 return min(halfcwnd, cwnd - in_flight);
1753 }
1754
1755 /* Initialize TSO state of a skb.
1756 * This must be invoked the first time we consider transmitting
1757 * SKB onto the wire.
1758 */
1759 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1760 {
1761 int tso_segs = tcp_skb_pcount(skb);
1762
1763 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1764 tcp_set_skb_tso_segs(skb, mss_now);
1765 tso_segs = tcp_skb_pcount(skb);
1766 }
1767 return tso_segs;
1768 }
1769
1770
1771 /* Return true if the Nagle test allows this packet to be
1772 * sent now.
1773 */
1774 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1775 unsigned int cur_mss, int nonagle)
1776 {
1777 /* Nagle rule does not apply to frames, which sit in the middle of the
1778 * write_queue (they have no chances to get new data).
1779 *
1780 * This is implemented in the callers, where they modify the 'nonagle'
1781 * argument based upon the location of SKB in the send queue.
1782 */
1783 if (nonagle & TCP_NAGLE_PUSH)
1784 return true;
1785
1786 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1787 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1788 return true;
1789
1790 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1791 return true;
1792
1793 return false;
1794 }
1795
1796 /* Does at least the first segment of SKB fit into the send window? */
1797 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1798 const struct sk_buff *skb,
1799 unsigned int cur_mss)
1800 {
1801 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1802
1803 if (skb->len > cur_mss)
1804 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1805
1806 return !after(end_seq, tcp_wnd_end(tp));
1807 }
1808
1809 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1810 * should be put on the wire right now. If so, it returns the number of
1811 * packets allowed by the congestion window.
1812 */
1813 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1814 unsigned int cur_mss, int nonagle)
1815 {
1816 const struct tcp_sock *tp = tcp_sk(sk);
1817 unsigned int cwnd_quota;
1818
1819 tcp_init_tso_segs(skb, cur_mss);
1820
1821 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1822 return 0;
1823
1824 cwnd_quota = tcp_cwnd_test(tp, skb);
1825 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1826 cwnd_quota = 0;
1827
1828 return cwnd_quota;
1829 }
1830
1831 /* Test if sending is allowed right now. */
1832 bool tcp_may_send_now(struct sock *sk)
1833 {
1834 const struct tcp_sock *tp = tcp_sk(sk);
1835 struct sk_buff *skb = tcp_send_head(sk);
1836
1837 return skb &&
1838 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1839 (tcp_skb_is_last(sk, skb) ?
1840 tp->nonagle : TCP_NAGLE_PUSH));
1841 }
1842
1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1844 * which is put after SKB on the list. It is very much like
1845 * tcp_fragment() except that it may make several kinds of assumptions
1846 * in order to speed up the splitting operation. In particular, we
1847 * know that all the data is in scatter-gather pages, and that the
1848 * packet has never been sent out before (and thus is not cloned).
1849 */
1850 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1851 unsigned int mss_now, gfp_t gfp)
1852 {
1853 struct sk_buff *buff;
1854 int nlen = skb->len - len;
1855 u8 flags;
1856
1857 /* All of a TSO frame must be composed of paged data. */
1858 if (skb->len != skb->data_len)
1859 return tcp_fragment(sk, skb, len, mss_now, gfp);
1860
1861 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1862 if (unlikely(!buff))
1863 return -ENOMEM;
1864
1865 sk->sk_wmem_queued += buff->truesize;
1866 sk_mem_charge(sk, buff->truesize);
1867 buff->truesize += nlen;
1868 skb->truesize -= nlen;
1869
1870 /* Correct the sequence numbers. */
1871 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1872 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1873 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1874
1875 /* PSH and FIN should only be set in the second packet. */
1876 flags = TCP_SKB_CB(skb)->tcp_flags;
1877 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1878 TCP_SKB_CB(buff)->tcp_flags = flags;
1879
1880 /* This packet was never sent out yet, so no SACK bits. */
1881 TCP_SKB_CB(buff)->sacked = 0;
1882
1883 tcp_skb_fragment_eor(skb, buff);
1884
1885 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1886 skb_split(skb, buff, len);
1887 tcp_fragment_tstamp(skb, buff);
1888
1889 /* Fix up tso_factor for both original and new SKB. */
1890 tcp_set_skb_tso_segs(skb, mss_now);
1891 tcp_set_skb_tso_segs(buff, mss_now);
1892
1893 /* Link BUFF into the send queue. */
1894 __skb_header_release(buff);
1895 tcp_insert_write_queue_after(skb, buff, sk);
1896
1897 return 0;
1898 }
1899
1900 /* Try to defer sending, if possible, in order to minimize the amount
1901 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1902 *
1903 * This algorithm is from John Heffner.
1904 */
1905 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1906 bool *is_cwnd_limited, u32 max_segs)
1907 {
1908 const struct inet_connection_sock *icsk = inet_csk(sk);
1909 u32 age, send_win, cong_win, limit, in_flight;
1910 struct tcp_sock *tp = tcp_sk(sk);
1911 struct sk_buff *head;
1912 int win_divisor;
1913
1914 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1915 goto send_now;
1916
1917 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1918 goto send_now;
1919
1920 /* Avoid bursty behavior by allowing defer
1921 * only if the last write was recent.
1922 */
1923 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1924 goto send_now;
1925
1926 in_flight = tcp_packets_in_flight(tp);
1927
1928 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1929
1930 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1931
1932 /* From in_flight test above, we know that cwnd > in_flight. */
1933 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1934
1935 limit = min(send_win, cong_win);
1936
1937 /* If a full-sized TSO skb can be sent, do it. */
1938 if (limit >= max_segs * tp->mss_cache)
1939 goto send_now;
1940
1941 /* Middle in queue won't get any more data, full sendable already? */
1942 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1943 goto send_now;
1944
1945 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1946 if (win_divisor) {
1947 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1948
1949 /* If at least some fraction of a window is available,
1950 * just use it.
1951 */
1952 chunk /= win_divisor;
1953 if (limit >= chunk)
1954 goto send_now;
1955 } else {
1956 /* Different approach, try not to defer past a single
1957 * ACK. Receiver should ACK every other full sized
1958 * frame, so if we have space for more than 3 frames
1959 * then send now.
1960 */
1961 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1962 goto send_now;
1963 }
1964
1965 head = tcp_write_queue_head(sk);
1966
1967 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1968 /* If next ACK is likely to come too late (half srtt), do not defer */
1969 if (age < (tp->srtt_us >> 4))
1970 goto send_now;
1971
1972 /* Ok, it looks like it is advisable to defer. */
1973
1974 if (cong_win < send_win && cong_win <= skb->len)
1975 *is_cwnd_limited = true;
1976
1977 return true;
1978
1979 send_now:
1980 return false;
1981 }
1982
1983 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1984 {
1985 struct inet_connection_sock *icsk = inet_csk(sk);
1986 struct tcp_sock *tp = tcp_sk(sk);
1987 struct net *net = sock_net(sk);
1988 u32 interval;
1989 s32 delta;
1990
1991 interval = net->ipv4.sysctl_tcp_probe_interval;
1992 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1993 if (unlikely(delta >= interval * HZ)) {
1994 int mss = tcp_current_mss(sk);
1995
1996 /* Update current search range */
1997 icsk->icsk_mtup.probe_size = 0;
1998 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1999 sizeof(struct tcphdr) +
2000 icsk->icsk_af_ops->net_header_len;
2001 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2002
2003 /* Update probe time stamp */
2004 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2005 }
2006 }
2007
2008 /* Create a new MTU probe if we are ready.
2009 * MTU probe is regularly attempting to increase the path MTU by
2010 * deliberately sending larger packets. This discovers routing
2011 * changes resulting in larger path MTUs.
2012 *
2013 * Returns 0 if we should wait to probe (no cwnd available),
2014 * 1 if a probe was sent,
2015 * -1 otherwise
2016 */
2017 static int tcp_mtu_probe(struct sock *sk)
2018 {
2019 struct inet_connection_sock *icsk = inet_csk(sk);
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 struct sk_buff *skb, *nskb, *next;
2022 struct net *net = sock_net(sk);
2023 int probe_size;
2024 int size_needed;
2025 int copy, len;
2026 int mss_now;
2027 int interval;
2028
2029 /* Not currently probing/verifying,
2030 * not in recovery,
2031 * have enough cwnd, and
2032 * not SACKing (the variable headers throw things off)
2033 */
2034 if (likely(!icsk->icsk_mtup.enabled ||
2035 icsk->icsk_mtup.probe_size ||
2036 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2037 tp->snd_cwnd < 11 ||
2038 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2039 return -1;
2040
2041 /* Use binary search for probe_size between tcp_mss_base,
2042 * and current mss_clamp. if (search_high - search_low)
2043 * smaller than a threshold, backoff from probing.
2044 */
2045 mss_now = tcp_current_mss(sk);
2046 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2047 icsk->icsk_mtup.search_low) >> 1);
2048 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2049 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2050 /* When misfortune happens, we are reprobing actively,
2051 * and then reprobe timer has expired. We stick with current
2052 * probing process by not resetting search range to its orignal.
2053 */
2054 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2055 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2056 /* Check whether enough time has elaplased for
2057 * another round of probing.
2058 */
2059 tcp_mtu_check_reprobe(sk);
2060 return -1;
2061 }
2062
2063 /* Have enough data in the send queue to probe? */
2064 if (tp->write_seq - tp->snd_nxt < size_needed)
2065 return -1;
2066
2067 if (tp->snd_wnd < size_needed)
2068 return -1;
2069 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2070 return 0;
2071
2072 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2073 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2074 if (!tcp_packets_in_flight(tp))
2075 return -1;
2076 else
2077 return 0;
2078 }
2079
2080 /* We're allowed to probe. Build it now. */
2081 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2082 if (!nskb)
2083 return -1;
2084 sk->sk_wmem_queued += nskb->truesize;
2085 sk_mem_charge(sk, nskb->truesize);
2086
2087 skb = tcp_send_head(sk);
2088
2089 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2090 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2091 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2092 TCP_SKB_CB(nskb)->sacked = 0;
2093 nskb->csum = 0;
2094 nskb->ip_summed = skb->ip_summed;
2095
2096 tcp_insert_write_queue_before(nskb, skb, sk);
2097 tcp_highest_sack_replace(sk, skb, nskb);
2098
2099 len = 0;
2100 tcp_for_write_queue_from_safe(skb, next, sk) {
2101 copy = min_t(int, skb->len, probe_size - len);
2102 if (nskb->ip_summed) {
2103 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2104 } else {
2105 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2106 skb_put(nskb, copy),
2107 copy, 0);
2108 nskb->csum = csum_block_add(nskb->csum, csum, len);
2109 }
2110
2111 if (skb->len <= copy) {
2112 /* We've eaten all the data from this skb.
2113 * Throw it away. */
2114 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2115 tcp_unlink_write_queue(skb, sk);
2116 sk_wmem_free_skb(sk, skb);
2117 } else {
2118 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2119 ~(TCPHDR_FIN|TCPHDR_PSH);
2120 if (!skb_shinfo(skb)->nr_frags) {
2121 skb_pull(skb, copy);
2122 if (skb->ip_summed != CHECKSUM_PARTIAL)
2123 skb->csum = csum_partial(skb->data,
2124 skb->len, 0);
2125 } else {
2126 __pskb_trim_head(skb, copy);
2127 tcp_set_skb_tso_segs(skb, mss_now);
2128 }
2129 TCP_SKB_CB(skb)->seq += copy;
2130 }
2131
2132 len += copy;
2133
2134 if (len >= probe_size)
2135 break;
2136 }
2137 tcp_init_tso_segs(nskb, nskb->len);
2138
2139 /* We're ready to send. If this fails, the probe will
2140 * be resegmented into mss-sized pieces by tcp_write_xmit().
2141 */
2142 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2143 /* Decrement cwnd here because we are sending
2144 * effectively two packets. */
2145 tp->snd_cwnd--;
2146 tcp_event_new_data_sent(sk, nskb);
2147
2148 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2149 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2150 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2151
2152 return 1;
2153 }
2154
2155 return -1;
2156 }
2157
2158 static bool tcp_pacing_check(const struct sock *sk)
2159 {
2160 return tcp_needs_internal_pacing(sk) &&
2161 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2162 }
2163
2164 /* TCP Small Queues :
2165 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2166 * (These limits are doubled for retransmits)
2167 * This allows for :
2168 * - better RTT estimation and ACK scheduling
2169 * - faster recovery
2170 * - high rates
2171 * Alas, some drivers / subsystems require a fair amount
2172 * of queued bytes to ensure line rate.
2173 * One example is wifi aggregation (802.11 AMPDU)
2174 */
2175 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2176 unsigned int factor)
2177 {
2178 unsigned int limit;
2179
2180 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2181 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2182 limit <<= factor;
2183
2184 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2185 /* Always send the 1st or 2nd skb in write queue.
2186 * No need to wait for TX completion to call us back,
2187 * after softirq/tasklet schedule.
2188 * This helps when TX completions are delayed too much.
2189 */
2190 if (skb == sk->sk_write_queue.next ||
2191 skb->prev == sk->sk_write_queue.next)
2192 return false;
2193
2194 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2195 /* It is possible TX completion already happened
2196 * before we set TSQ_THROTTLED, so we must
2197 * test again the condition.
2198 */
2199 smp_mb__after_atomic();
2200 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2201 return true;
2202 }
2203 return false;
2204 }
2205
2206 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2207 {
2208 const u32 now = tcp_jiffies32;
2209 enum tcp_chrono old = tp->chrono_type;
2210
2211 if (old > TCP_CHRONO_UNSPEC)
2212 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2213 tp->chrono_start = now;
2214 tp->chrono_type = new;
2215 }
2216
2217 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2218 {
2219 struct tcp_sock *tp = tcp_sk(sk);
2220
2221 /* If there are multiple conditions worthy of tracking in a
2222 * chronograph then the highest priority enum takes precedence
2223 * over the other conditions. So that if something "more interesting"
2224 * starts happening, stop the previous chrono and start a new one.
2225 */
2226 if (type > tp->chrono_type)
2227 tcp_chrono_set(tp, type);
2228 }
2229
2230 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2231 {
2232 struct tcp_sock *tp = tcp_sk(sk);
2233
2234
2235 /* There are multiple conditions worthy of tracking in a
2236 * chronograph, so that the highest priority enum takes
2237 * precedence over the other conditions (see tcp_chrono_start).
2238 * If a condition stops, we only stop chrono tracking if
2239 * it's the "most interesting" or current chrono we are
2240 * tracking and starts busy chrono if we have pending data.
2241 */
2242 if (tcp_write_queue_empty(sk))
2243 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2244 else if (type == tp->chrono_type)
2245 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2246 }
2247
2248 /* This routine writes packets to the network. It advances the
2249 * send_head. This happens as incoming acks open up the remote
2250 * window for us.
2251 *
2252 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2253 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2254 * account rare use of URG, this is not a big flaw.
2255 *
2256 * Send at most one packet when push_one > 0. Temporarily ignore
2257 * cwnd limit to force at most one packet out when push_one == 2.
2258
2259 * Returns true, if no segments are in flight and we have queued segments,
2260 * but cannot send anything now because of SWS or another problem.
2261 */
2262 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2263 int push_one, gfp_t gfp)
2264 {
2265 struct tcp_sock *tp = tcp_sk(sk);
2266 struct sk_buff *skb;
2267 unsigned int tso_segs, sent_pkts;
2268 int cwnd_quota;
2269 int result;
2270 bool is_cwnd_limited = false, is_rwnd_limited = false;
2271 u32 max_segs;
2272
2273 sent_pkts = 0;
2274
2275 tcp_mstamp_refresh(tp);
2276 if (!push_one) {
2277 /* Do MTU probing. */
2278 result = tcp_mtu_probe(sk);
2279 if (!result) {
2280 return false;
2281 } else if (result > 0) {
2282 sent_pkts = 1;
2283 }
2284 }
2285
2286 max_segs = tcp_tso_segs(sk, mss_now);
2287 while ((skb = tcp_send_head(sk))) {
2288 unsigned int limit;
2289
2290 if (tcp_pacing_check(sk))
2291 break;
2292
2293 tso_segs = tcp_init_tso_segs(skb, mss_now);
2294 BUG_ON(!tso_segs);
2295
2296 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2297 /* "skb_mstamp" is used as a start point for the retransmit timer */
2298 skb->skb_mstamp = tp->tcp_mstamp;
2299 goto repair; /* Skip network transmission */
2300 }
2301
2302 cwnd_quota = tcp_cwnd_test(tp, skb);
2303 if (!cwnd_quota) {
2304 if (push_one == 2)
2305 /* Force out a loss probe pkt. */
2306 cwnd_quota = 1;
2307 else
2308 break;
2309 }
2310
2311 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2312 is_rwnd_limited = true;
2313 break;
2314 }
2315
2316 if (tso_segs == 1) {
2317 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2318 (tcp_skb_is_last(sk, skb) ?
2319 nonagle : TCP_NAGLE_PUSH))))
2320 break;
2321 } else {
2322 if (!push_one &&
2323 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2324 max_segs))
2325 break;
2326 }
2327
2328 limit = mss_now;
2329 if (tso_segs > 1 && !tcp_urg_mode(tp))
2330 limit = tcp_mss_split_point(sk, skb, mss_now,
2331 min_t(unsigned int,
2332 cwnd_quota,
2333 max_segs),
2334 nonagle);
2335
2336 if (skb->len > limit &&
2337 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2338 break;
2339
2340 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2341 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2342 if (tcp_small_queue_check(sk, skb, 0))
2343 break;
2344
2345 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2346 break;
2347
2348 repair:
2349 /* Advance the send_head. This one is sent out.
2350 * This call will increment packets_out.
2351 */
2352 tcp_event_new_data_sent(sk, skb);
2353
2354 tcp_minshall_update(tp, mss_now, skb);
2355 sent_pkts += tcp_skb_pcount(skb);
2356
2357 if (push_one)
2358 break;
2359 }
2360
2361 if (is_rwnd_limited)
2362 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2363 else
2364 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2365
2366 if (likely(sent_pkts)) {
2367 if (tcp_in_cwnd_reduction(sk))
2368 tp->prr_out += sent_pkts;
2369
2370 /* Send one loss probe per tail loss episode. */
2371 if (push_one != 2)
2372 tcp_schedule_loss_probe(sk);
2373 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2374 tcp_cwnd_validate(sk, is_cwnd_limited);
2375 return false;
2376 }
2377 return !tp->packets_out && tcp_send_head(sk);
2378 }
2379
2380 bool tcp_schedule_loss_probe(struct sock *sk)
2381 {
2382 struct inet_connection_sock *icsk = inet_csk(sk);
2383 struct tcp_sock *tp = tcp_sk(sk);
2384 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2385 u32 timeout, rto_delta_us;
2386
2387 /* Don't do any loss probe on a Fast Open connection before 3WHS
2388 * finishes.
2389 */
2390 if (tp->fastopen_rsk)
2391 return false;
2392
2393 /* Schedule a loss probe in 2*RTT for SACK capable connections
2394 * in Open state, that are either limited by cwnd or application.
2395 */
2396 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2397 !tp->packets_out || !tcp_is_sack(tp) ||
2398 icsk->icsk_ca_state != TCP_CA_Open)
2399 return false;
2400
2401 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2402 tcp_send_head(sk))
2403 return false;
2404
2405 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2406 * for delayed ack when there's one outstanding packet. If no RTT
2407 * sample is available then probe after TCP_TIMEOUT_INIT.
2408 */
2409 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2410 if (tp->packets_out == 1)
2411 timeout = max_t(u32, timeout,
2412 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2413 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2414
2415 /* If the RTO formula yields an earlier time, then use that time. */
2416 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */
2417 if (rto_delta_us > 0)
2418 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2419
2420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2421 TCP_RTO_MAX);
2422 return true;
2423 }
2424
2425 /* Thanks to skb fast clones, we can detect if a prior transmit of
2426 * a packet is still in a qdisc or driver queue.
2427 * In this case, there is very little point doing a retransmit !
2428 */
2429 static bool skb_still_in_host_queue(const struct sock *sk,
2430 const struct sk_buff *skb)
2431 {
2432 if (unlikely(skb_fclone_busy(sk, skb))) {
2433 NET_INC_STATS(sock_net(sk),
2434 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2435 return true;
2436 }
2437 return false;
2438 }
2439
2440 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2441 * retransmit the last segment.
2442 */
2443 void tcp_send_loss_probe(struct sock *sk)
2444 {
2445 struct tcp_sock *tp = tcp_sk(sk);
2446 struct sk_buff *skb;
2447 int pcount;
2448 int mss = tcp_current_mss(sk);
2449
2450 skb = tcp_send_head(sk);
2451 if (skb) {
2452 if (tcp_snd_wnd_test(tp, skb, mss)) {
2453 pcount = tp->packets_out;
2454 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2455 if (tp->packets_out > pcount)
2456 goto probe_sent;
2457 goto rearm_timer;
2458 }
2459 skb = tcp_write_queue_prev(sk, skb);
2460 } else {
2461 skb = tcp_write_queue_tail(sk);
2462 }
2463
2464 /* At most one outstanding TLP retransmission. */
2465 if (tp->tlp_high_seq)
2466 goto rearm_timer;
2467
2468 /* Retransmit last segment. */
2469 if (WARN_ON(!skb))
2470 goto rearm_timer;
2471
2472 if (skb_still_in_host_queue(sk, skb))
2473 goto rearm_timer;
2474
2475 pcount = tcp_skb_pcount(skb);
2476 if (WARN_ON(!pcount))
2477 goto rearm_timer;
2478
2479 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2480 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2481 GFP_ATOMIC)))
2482 goto rearm_timer;
2483 skb = tcp_write_queue_next(sk, skb);
2484 }
2485
2486 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2487 goto rearm_timer;
2488
2489 if (__tcp_retransmit_skb(sk, skb, 1))
2490 goto rearm_timer;
2491
2492 /* Record snd_nxt for loss detection. */
2493 tp->tlp_high_seq = tp->snd_nxt;
2494
2495 probe_sent:
2496 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2497 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2498 inet_csk(sk)->icsk_pending = 0;
2499 rearm_timer:
2500 tcp_rearm_rto(sk);
2501 }
2502
2503 /* Push out any pending frames which were held back due to
2504 * TCP_CORK or attempt at coalescing tiny packets.
2505 * The socket must be locked by the caller.
2506 */
2507 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2508 int nonagle)
2509 {
2510 /* If we are closed, the bytes will have to remain here.
2511 * In time closedown will finish, we empty the write queue and
2512 * all will be happy.
2513 */
2514 if (unlikely(sk->sk_state == TCP_CLOSE))
2515 return;
2516
2517 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2518 sk_gfp_mask(sk, GFP_ATOMIC)))
2519 tcp_check_probe_timer(sk);
2520 }
2521
2522 /* Send _single_ skb sitting at the send head. This function requires
2523 * true push pending frames to setup probe timer etc.
2524 */
2525 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2526 {
2527 struct sk_buff *skb = tcp_send_head(sk);
2528
2529 BUG_ON(!skb || skb->len < mss_now);
2530
2531 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2532 }
2533
2534 /* This function returns the amount that we can raise the
2535 * usable window based on the following constraints
2536 *
2537 * 1. The window can never be shrunk once it is offered (RFC 793)
2538 * 2. We limit memory per socket
2539 *
2540 * RFC 1122:
2541 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2542 * RECV.NEXT + RCV.WIN fixed until:
2543 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2544 *
2545 * i.e. don't raise the right edge of the window until you can raise
2546 * it at least MSS bytes.
2547 *
2548 * Unfortunately, the recommended algorithm breaks header prediction,
2549 * since header prediction assumes th->window stays fixed.
2550 *
2551 * Strictly speaking, keeping th->window fixed violates the receiver
2552 * side SWS prevention criteria. The problem is that under this rule
2553 * a stream of single byte packets will cause the right side of the
2554 * window to always advance by a single byte.
2555 *
2556 * Of course, if the sender implements sender side SWS prevention
2557 * then this will not be a problem.
2558 *
2559 * BSD seems to make the following compromise:
2560 *
2561 * If the free space is less than the 1/4 of the maximum
2562 * space available and the free space is less than 1/2 mss,
2563 * then set the window to 0.
2564 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2565 * Otherwise, just prevent the window from shrinking
2566 * and from being larger than the largest representable value.
2567 *
2568 * This prevents incremental opening of the window in the regime
2569 * where TCP is limited by the speed of the reader side taking
2570 * data out of the TCP receive queue. It does nothing about
2571 * those cases where the window is constrained on the sender side
2572 * because the pipeline is full.
2573 *
2574 * BSD also seems to "accidentally" limit itself to windows that are a
2575 * multiple of MSS, at least until the free space gets quite small.
2576 * This would appear to be a side effect of the mbuf implementation.
2577 * Combining these two algorithms results in the observed behavior
2578 * of having a fixed window size at almost all times.
2579 *
2580 * Below we obtain similar behavior by forcing the offered window to
2581 * a multiple of the mss when it is feasible to do so.
2582 *
2583 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2584 * Regular options like TIMESTAMP are taken into account.
2585 */
2586 u32 __tcp_select_window(struct sock *sk)
2587 {
2588 struct inet_connection_sock *icsk = inet_csk(sk);
2589 struct tcp_sock *tp = tcp_sk(sk);
2590 /* MSS for the peer's data. Previous versions used mss_clamp
2591 * here. I don't know if the value based on our guesses
2592 * of peer's MSS is better for the performance. It's more correct
2593 * but may be worse for the performance because of rcv_mss
2594 * fluctuations. --SAW 1998/11/1
2595 */
2596 int mss = icsk->icsk_ack.rcv_mss;
2597 int free_space = tcp_space(sk);
2598 int allowed_space = tcp_full_space(sk);
2599 int full_space = min_t(int, tp->window_clamp, allowed_space);
2600 int window;
2601
2602 if (unlikely(mss > full_space)) {
2603 mss = full_space;
2604 if (mss <= 0)
2605 return 0;
2606 }
2607 if (free_space < (full_space >> 1)) {
2608 icsk->icsk_ack.quick = 0;
2609
2610 if (tcp_under_memory_pressure(sk))
2611 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2612 4U * tp->advmss);
2613
2614 /* free_space might become our new window, make sure we don't
2615 * increase it due to wscale.
2616 */
2617 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2618
2619 /* if free space is less than mss estimate, or is below 1/16th
2620 * of the maximum allowed, try to move to zero-window, else
2621 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2622 * new incoming data is dropped due to memory limits.
2623 * With large window, mss test triggers way too late in order
2624 * to announce zero window in time before rmem limit kicks in.
2625 */
2626 if (free_space < (allowed_space >> 4) || free_space < mss)
2627 return 0;
2628 }
2629
2630 if (free_space > tp->rcv_ssthresh)
2631 free_space = tp->rcv_ssthresh;
2632
2633 /* Don't do rounding if we are using window scaling, since the
2634 * scaled window will not line up with the MSS boundary anyway.
2635 */
2636 if (tp->rx_opt.rcv_wscale) {
2637 window = free_space;
2638
2639 /* Advertise enough space so that it won't get scaled away.
2640 * Import case: prevent zero window announcement if
2641 * 1<<rcv_wscale > mss.
2642 */
2643 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2644 } else {
2645 window = tp->rcv_wnd;
2646 /* Get the largest window that is a nice multiple of mss.
2647 * Window clamp already applied above.
2648 * If our current window offering is within 1 mss of the
2649 * free space we just keep it. This prevents the divide
2650 * and multiply from happening most of the time.
2651 * We also don't do any window rounding when the free space
2652 * is too small.
2653 */
2654 if (window <= free_space - mss || window > free_space)
2655 window = rounddown(free_space, mss);
2656 else if (mss == full_space &&
2657 free_space > window + (full_space >> 1))
2658 window = free_space;
2659 }
2660
2661 return window;
2662 }
2663
2664 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2665 const struct sk_buff *next_skb)
2666 {
2667 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2668 const struct skb_shared_info *next_shinfo =
2669 skb_shinfo(next_skb);
2670 struct skb_shared_info *shinfo = skb_shinfo(skb);
2671
2672 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2673 shinfo->tskey = next_shinfo->tskey;
2674 TCP_SKB_CB(skb)->txstamp_ack |=
2675 TCP_SKB_CB(next_skb)->txstamp_ack;
2676 }
2677 }
2678
2679 /* Collapses two adjacent SKB's during retransmission. */
2680 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2681 {
2682 struct tcp_sock *tp = tcp_sk(sk);
2683 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2684 int skb_size, next_skb_size;
2685
2686 skb_size = skb->len;
2687 next_skb_size = next_skb->len;
2688
2689 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2690
2691 if (next_skb_size) {
2692 if (next_skb_size <= skb_availroom(skb))
2693 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2694 next_skb_size);
2695 else if (!skb_shift(skb, next_skb, next_skb_size))
2696 return false;
2697 }
2698 tcp_highest_sack_replace(sk, next_skb, skb);
2699
2700 tcp_unlink_write_queue(next_skb, sk);
2701
2702 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2703 skb->ip_summed = CHECKSUM_PARTIAL;
2704
2705 if (skb->ip_summed != CHECKSUM_PARTIAL)
2706 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2707
2708 /* Update sequence range on original skb. */
2709 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2710
2711 /* Merge over control information. This moves PSH/FIN etc. over */
2712 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2713
2714 /* All done, get rid of second SKB and account for it so
2715 * packet counting does not break.
2716 */
2717 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2718 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2719
2720 /* changed transmit queue under us so clear hints */
2721 tcp_clear_retrans_hints_partial(tp);
2722 if (next_skb == tp->retransmit_skb_hint)
2723 tp->retransmit_skb_hint = skb;
2724
2725 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2726
2727 tcp_skb_collapse_tstamp(skb, next_skb);
2728
2729 sk_wmem_free_skb(sk, next_skb);
2730 return true;
2731 }
2732
2733 /* Check if coalescing SKBs is legal. */
2734 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2735 {
2736 if (tcp_skb_pcount(skb) > 1)
2737 return false;
2738 if (skb_cloned(skb))
2739 return false;
2740 if (skb == tcp_send_head(sk))
2741 return false;
2742 /* Some heuristics for collapsing over SACK'd could be invented */
2743 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2744 return false;
2745
2746 return true;
2747 }
2748
2749 /* Collapse packets in the retransmit queue to make to create
2750 * less packets on the wire. This is only done on retransmission.
2751 */
2752 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2753 int space)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 struct sk_buff *skb = to, *tmp;
2757 bool first = true;
2758
2759 if (!sysctl_tcp_retrans_collapse)
2760 return;
2761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2762 return;
2763
2764 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2765 if (!tcp_can_collapse(sk, skb))
2766 break;
2767
2768 if (!tcp_skb_can_collapse_to(to))
2769 break;
2770
2771 space -= skb->len;
2772
2773 if (first) {
2774 first = false;
2775 continue;
2776 }
2777
2778 if (space < 0)
2779 break;
2780
2781 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2782 break;
2783
2784 if (!tcp_collapse_retrans(sk, to))
2785 break;
2786 }
2787 }
2788
2789 /* This retransmits one SKB. Policy decisions and retransmit queue
2790 * state updates are done by the caller. Returns non-zero if an
2791 * error occurred which prevented the send.
2792 */
2793 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2794 {
2795 struct inet_connection_sock *icsk = inet_csk(sk);
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 unsigned int cur_mss;
2798 int diff, len, err;
2799
2800
2801 /* Inconclusive MTU probe */
2802 if (icsk->icsk_mtup.probe_size)
2803 icsk->icsk_mtup.probe_size = 0;
2804
2805 /* Do not sent more than we queued. 1/4 is reserved for possible
2806 * copying overhead: fragmentation, tunneling, mangling etc.
2807 */
2808 if (refcount_read(&sk->sk_wmem_alloc) >
2809 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2810 sk->sk_sndbuf))
2811 return -EAGAIN;
2812
2813 if (skb_still_in_host_queue(sk, skb))
2814 return -EBUSY;
2815
2816 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2817 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2818 BUG();
2819 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2820 return -ENOMEM;
2821 }
2822
2823 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2824 return -EHOSTUNREACH; /* Routing failure or similar. */
2825
2826 cur_mss = tcp_current_mss(sk);
2827
2828 /* If receiver has shrunk his window, and skb is out of
2829 * new window, do not retransmit it. The exception is the
2830 * case, when window is shrunk to zero. In this case
2831 * our retransmit serves as a zero window probe.
2832 */
2833 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2834 TCP_SKB_CB(skb)->seq != tp->snd_una)
2835 return -EAGAIN;
2836
2837 len = cur_mss * segs;
2838 if (skb->len > len) {
2839 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2840 return -ENOMEM; /* We'll try again later. */
2841 } else {
2842 if (skb_unclone(skb, GFP_ATOMIC))
2843 return -ENOMEM;
2844
2845 diff = tcp_skb_pcount(skb);
2846 tcp_set_skb_tso_segs(skb, cur_mss);
2847 diff -= tcp_skb_pcount(skb);
2848 if (diff)
2849 tcp_adjust_pcount(sk, skb, diff);
2850 if (skb->len < cur_mss)
2851 tcp_retrans_try_collapse(sk, skb, cur_mss);
2852 }
2853
2854 /* RFC3168, section 6.1.1.1. ECN fallback */
2855 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2856 tcp_ecn_clear_syn(sk, skb);
2857
2858 /* Update global and local TCP statistics. */
2859 segs = tcp_skb_pcount(skb);
2860 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2861 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2862 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2863 tp->total_retrans += segs;
2864
2865 /* make sure skb->data is aligned on arches that require it
2866 * and check if ack-trimming & collapsing extended the headroom
2867 * beyond what csum_start can cover.
2868 */
2869 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2870 skb_headroom(skb) >= 0xFFFF)) {
2871 struct sk_buff *nskb;
2872
2873 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2874 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2875 -ENOBUFS;
2876 if (!err)
2877 skb->skb_mstamp = tp->tcp_mstamp;
2878 } else {
2879 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2880 }
2881
2882 if (likely(!err)) {
2883 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2884 } else if (err != -EBUSY) {
2885 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2886 }
2887 return err;
2888 }
2889
2890 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2891 {
2892 struct tcp_sock *tp = tcp_sk(sk);
2893 int err = __tcp_retransmit_skb(sk, skb, segs);
2894
2895 if (err == 0) {
2896 #if FASTRETRANS_DEBUG > 0
2897 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2898 net_dbg_ratelimited("retrans_out leaked\n");
2899 }
2900 #endif
2901 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2902 tp->retrans_out += tcp_skb_pcount(skb);
2903
2904 /* Save stamp of the first retransmit. */
2905 if (!tp->retrans_stamp)
2906 tp->retrans_stamp = tcp_skb_timestamp(skb);
2907
2908 }
2909
2910 if (tp->undo_retrans < 0)
2911 tp->undo_retrans = 0;
2912 tp->undo_retrans += tcp_skb_pcount(skb);
2913 return err;
2914 }
2915
2916 /* This gets called after a retransmit timeout, and the initially
2917 * retransmitted data is acknowledged. It tries to continue
2918 * resending the rest of the retransmit queue, until either
2919 * we've sent it all or the congestion window limit is reached.
2920 * If doing SACK, the first ACK which comes back for a timeout
2921 * based retransmit packet might feed us FACK information again.
2922 * If so, we use it to avoid unnecessarily retransmissions.
2923 */
2924 void tcp_xmit_retransmit_queue(struct sock *sk)
2925 {
2926 const struct inet_connection_sock *icsk = inet_csk(sk);
2927 struct tcp_sock *tp = tcp_sk(sk);
2928 struct sk_buff *skb;
2929 struct sk_buff *hole = NULL;
2930 u32 max_segs;
2931 int mib_idx;
2932
2933 if (!tp->packets_out)
2934 return;
2935
2936 if (tp->retransmit_skb_hint) {
2937 skb = tp->retransmit_skb_hint;
2938 } else {
2939 skb = tcp_write_queue_head(sk);
2940 }
2941
2942 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2943 tcp_for_write_queue_from(skb, sk) {
2944 __u8 sacked;
2945 int segs;
2946
2947 if (skb == tcp_send_head(sk))
2948 break;
2949
2950 if (tcp_pacing_check(sk))
2951 break;
2952
2953 /* we could do better than to assign each time */
2954 if (!hole)
2955 tp->retransmit_skb_hint = skb;
2956
2957 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2958 if (segs <= 0)
2959 return;
2960 sacked = TCP_SKB_CB(skb)->sacked;
2961 /* In case tcp_shift_skb_data() have aggregated large skbs,
2962 * we need to make sure not sending too bigs TSO packets
2963 */
2964 segs = min_t(int, segs, max_segs);
2965
2966 if (tp->retrans_out >= tp->lost_out) {
2967 break;
2968 } else if (!(sacked & TCPCB_LOST)) {
2969 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2970 hole = skb;
2971 continue;
2972
2973 } else {
2974 if (icsk->icsk_ca_state != TCP_CA_Loss)
2975 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2976 else
2977 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2978 }
2979
2980 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2981 continue;
2982
2983 if (tcp_small_queue_check(sk, skb, 1))
2984 return;
2985
2986 if (tcp_retransmit_skb(sk, skb, segs))
2987 return;
2988
2989 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2990
2991 if (tcp_in_cwnd_reduction(sk))
2992 tp->prr_out += tcp_skb_pcount(skb);
2993
2994 if (skb == tcp_write_queue_head(sk) &&
2995 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2996 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2997 inet_csk(sk)->icsk_rto,
2998 TCP_RTO_MAX);
2999 }
3000 }
3001
3002 /* We allow to exceed memory limits for FIN packets to expedite
3003 * connection tear down and (memory) recovery.
3004 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3005 * or even be forced to close flow without any FIN.
3006 * In general, we want to allow one skb per socket to avoid hangs
3007 * with edge trigger epoll()
3008 */
3009 void sk_forced_mem_schedule(struct sock *sk, int size)
3010 {
3011 int amt;
3012
3013 if (size <= sk->sk_forward_alloc)
3014 return;
3015 amt = sk_mem_pages(size);
3016 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3017 sk_memory_allocated_add(sk, amt);
3018
3019 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3020 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3021 }
3022
3023 /* Send a FIN. The caller locks the socket for us.
3024 * We should try to send a FIN packet really hard, but eventually give up.
3025 */
3026 void tcp_send_fin(struct sock *sk)
3027 {
3028 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3029 struct tcp_sock *tp = tcp_sk(sk);
3030
3031 /* Optimization, tack on the FIN if we have one skb in write queue and
3032 * this skb was not yet sent, or we are under memory pressure.
3033 * Note: in the latter case, FIN packet will be sent after a timeout,
3034 * as TCP stack thinks it has already been transmitted.
3035 */
3036 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3037 coalesce:
3038 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3039 TCP_SKB_CB(tskb)->end_seq++;
3040 tp->write_seq++;
3041 if (!tcp_send_head(sk)) {
3042 /* This means tskb was already sent.
3043 * Pretend we included the FIN on previous transmit.
3044 * We need to set tp->snd_nxt to the value it would have
3045 * if FIN had been sent. This is because retransmit path
3046 * does not change tp->snd_nxt.
3047 */
3048 tp->snd_nxt++;
3049 return;
3050 }
3051 } else {
3052 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3053 if (unlikely(!skb)) {
3054 if (tskb)
3055 goto coalesce;
3056 return;
3057 }
3058 skb_reserve(skb, MAX_TCP_HEADER);
3059 sk_forced_mem_schedule(sk, skb->truesize);
3060 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3061 tcp_init_nondata_skb(skb, tp->write_seq,
3062 TCPHDR_ACK | TCPHDR_FIN);
3063 tcp_queue_skb(sk, skb);
3064 }
3065 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3066 }
3067
3068 /* We get here when a process closes a file descriptor (either due to
3069 * an explicit close() or as a byproduct of exit()'ing) and there
3070 * was unread data in the receive queue. This behavior is recommended
3071 * by RFC 2525, section 2.17. -DaveM
3072 */
3073 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3074 {
3075 struct sk_buff *skb;
3076
3077 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3078
3079 /* NOTE: No TCP options attached and we never retransmit this. */
3080 skb = alloc_skb(MAX_TCP_HEADER, priority);
3081 if (!skb) {
3082 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3083 return;
3084 }
3085
3086 /* Reserve space for headers and prepare control bits. */
3087 skb_reserve(skb, MAX_TCP_HEADER);
3088 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3089 TCPHDR_ACK | TCPHDR_RST);
3090 tcp_mstamp_refresh(tcp_sk(sk));
3091 /* Send it off. */
3092 if (tcp_transmit_skb(sk, skb, 0, priority))
3093 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3094 }
3095
3096 /* Send a crossed SYN-ACK during socket establishment.
3097 * WARNING: This routine must only be called when we have already sent
3098 * a SYN packet that crossed the incoming SYN that caused this routine
3099 * to get called. If this assumption fails then the initial rcv_wnd
3100 * and rcv_wscale values will not be correct.
3101 */
3102 int tcp_send_synack(struct sock *sk)
3103 {
3104 struct sk_buff *skb;
3105
3106 skb = tcp_write_queue_head(sk);
3107 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3108 pr_debug("%s: wrong queue state\n", __func__);
3109 return -EFAULT;
3110 }
3111 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3112 if (skb_cloned(skb)) {
3113 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3114 if (!nskb)
3115 return -ENOMEM;
3116 tcp_unlink_write_queue(skb, sk);
3117 __skb_header_release(nskb);
3118 __tcp_add_write_queue_head(sk, nskb);
3119 sk_wmem_free_skb(sk, skb);
3120 sk->sk_wmem_queued += nskb->truesize;
3121 sk_mem_charge(sk, nskb->truesize);
3122 skb = nskb;
3123 }
3124
3125 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3126 tcp_ecn_send_synack(sk, skb);
3127 }
3128 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3129 }
3130
3131 /**
3132 * tcp_make_synack - Prepare a SYN-ACK.
3133 * sk: listener socket
3134 * dst: dst entry attached to the SYNACK
3135 * req: request_sock pointer
3136 *
3137 * Allocate one skb and build a SYNACK packet.
3138 * @dst is consumed : Caller should not use it again.
3139 */
3140 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3141 struct request_sock *req,
3142 struct tcp_fastopen_cookie *foc,
3143 enum tcp_synack_type synack_type)
3144 {
3145 struct inet_request_sock *ireq = inet_rsk(req);
3146 const struct tcp_sock *tp = tcp_sk(sk);
3147 struct tcp_md5sig_key *md5 = NULL;
3148 struct tcp_out_options opts;
3149 struct sk_buff *skb;
3150 int tcp_header_size;
3151 struct tcphdr *th;
3152 int mss;
3153
3154 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3155 if (unlikely(!skb)) {
3156 dst_release(dst);
3157 return NULL;
3158 }
3159 /* Reserve space for headers. */
3160 skb_reserve(skb, MAX_TCP_HEADER);
3161
3162 switch (synack_type) {
3163 case TCP_SYNACK_NORMAL:
3164 skb_set_owner_w(skb, req_to_sk(req));
3165 break;
3166 case TCP_SYNACK_COOKIE:
3167 /* Under synflood, we do not attach skb to a socket,
3168 * to avoid false sharing.
3169 */
3170 break;
3171 case TCP_SYNACK_FASTOPEN:
3172 /* sk is a const pointer, because we want to express multiple
3173 * cpu might call us concurrently.
3174 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3175 */
3176 skb_set_owner_w(skb, (struct sock *)sk);
3177 break;
3178 }
3179 skb_dst_set(skb, dst);
3180
3181 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3182
3183 memset(&opts, 0, sizeof(opts));
3184 #ifdef CONFIG_SYN_COOKIES
3185 if (unlikely(req->cookie_ts))
3186 skb->skb_mstamp = cookie_init_timestamp(req);
3187 else
3188 #endif
3189 skb->skb_mstamp = tcp_clock_us();
3190
3191 #ifdef CONFIG_TCP_MD5SIG
3192 rcu_read_lock();
3193 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3194 #endif
3195 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3196 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3197 sizeof(*th);
3198
3199 skb_push(skb, tcp_header_size);
3200 skb_reset_transport_header(skb);
3201
3202 th = (struct tcphdr *)skb->data;
3203 memset(th, 0, sizeof(struct tcphdr));
3204 th->syn = 1;
3205 th->ack = 1;
3206 tcp_ecn_make_synack(req, th);
3207 th->source = htons(ireq->ir_num);
3208 th->dest = ireq->ir_rmt_port;
3209 skb->mark = ireq->ir_mark;
3210 /* Setting of flags are superfluous here for callers (and ECE is
3211 * not even correctly set)
3212 */
3213 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3214 TCPHDR_SYN | TCPHDR_ACK);
3215
3216 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3217 /* XXX data is queued and acked as is. No buffer/window check */
3218 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3219
3220 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3221 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3222 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3223 th->doff = (tcp_header_size >> 2);
3224 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3225
3226 #ifdef CONFIG_TCP_MD5SIG
3227 /* Okay, we have all we need - do the md5 hash if needed */
3228 if (md5)
3229 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3230 md5, req_to_sk(req), skb);
3231 rcu_read_unlock();
3232 #endif
3233
3234 /* Do not fool tcpdump (if any), clean our debris */
3235 skb->tstamp = 0;
3236 return skb;
3237 }
3238 EXPORT_SYMBOL(tcp_make_synack);
3239
3240 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3241 {
3242 struct inet_connection_sock *icsk = inet_csk(sk);
3243 const struct tcp_congestion_ops *ca;
3244 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3245
3246 if (ca_key == TCP_CA_UNSPEC)
3247 return;
3248
3249 rcu_read_lock();
3250 ca = tcp_ca_find_key(ca_key);
3251 if (likely(ca && try_module_get(ca->owner))) {
3252 module_put(icsk->icsk_ca_ops->owner);
3253 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3254 icsk->icsk_ca_ops = ca;
3255 }
3256 rcu_read_unlock();
3257 }
3258
3259 /* Do all connect socket setups that can be done AF independent. */
3260 static void tcp_connect_init(struct sock *sk)
3261 {
3262 const struct dst_entry *dst = __sk_dst_get(sk);
3263 struct tcp_sock *tp = tcp_sk(sk);
3264 __u8 rcv_wscale;
3265 u32 rcv_wnd;
3266
3267 /* We'll fix this up when we get a response from the other end.
3268 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3269 */
3270 tp->tcp_header_len = sizeof(struct tcphdr);
3271 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3272 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3273
3274 #ifdef CONFIG_TCP_MD5SIG
3275 if (tp->af_specific->md5_lookup(sk, sk))
3276 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3277 #endif
3278
3279 /* If user gave his TCP_MAXSEG, record it to clamp */
3280 if (tp->rx_opt.user_mss)
3281 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3282 tp->max_window = 0;
3283 tcp_mtup_init(sk);
3284 tcp_sync_mss(sk, dst_mtu(dst));
3285
3286 tcp_ca_dst_init(sk, dst);
3287
3288 if (!tp->window_clamp)
3289 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3290 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3291
3292 tcp_initialize_rcv_mss(sk);
3293
3294 /* limit the window selection if the user enforce a smaller rx buffer */
3295 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3296 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3297 tp->window_clamp = tcp_full_space(sk);
3298
3299 rcv_wnd = tcp_rwnd_init_bpf(sk);
3300 if (rcv_wnd == 0)
3301 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3302
3303 tcp_select_initial_window(tcp_full_space(sk),
3304 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3305 &tp->rcv_wnd,
3306 &tp->window_clamp,
3307 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3308 &rcv_wscale,
3309 rcv_wnd);
3310
3311 tp->rx_opt.rcv_wscale = rcv_wscale;
3312 tp->rcv_ssthresh = tp->rcv_wnd;
3313
3314 sk->sk_err = 0;
3315 sock_reset_flag(sk, SOCK_DONE);
3316 tp->snd_wnd = 0;
3317 tcp_init_wl(tp, 0);
3318 tp->snd_una = tp->write_seq;
3319 tp->snd_sml = tp->write_seq;
3320 tp->snd_up = tp->write_seq;
3321 tp->snd_nxt = tp->write_seq;
3322
3323 if (likely(!tp->repair))
3324 tp->rcv_nxt = 0;
3325 else
3326 tp->rcv_tstamp = tcp_jiffies32;
3327 tp->rcv_wup = tp->rcv_nxt;
3328 tp->copied_seq = tp->rcv_nxt;
3329
3330 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3331 inet_csk(sk)->icsk_retransmits = 0;
3332 tcp_clear_retrans(tp);
3333 }
3334
3335 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3336 {
3337 struct tcp_sock *tp = tcp_sk(sk);
3338 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3339
3340 tcb->end_seq += skb->len;
3341 __skb_header_release(skb);
3342 __tcp_add_write_queue_tail(sk, skb);
3343 sk->sk_wmem_queued += skb->truesize;
3344 sk_mem_charge(sk, skb->truesize);
3345 tp->write_seq = tcb->end_seq;
3346 tp->packets_out += tcp_skb_pcount(skb);
3347 }
3348
3349 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3350 * queue a data-only packet after the regular SYN, such that regular SYNs
3351 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3352 * only the SYN sequence, the data are retransmitted in the first ACK.
3353 * If cookie is not cached or other error occurs, falls back to send a
3354 * regular SYN with Fast Open cookie request option.
3355 */
3356 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3357 {
3358 struct tcp_sock *tp = tcp_sk(sk);
3359 struct tcp_fastopen_request *fo = tp->fastopen_req;
3360 int space, err = 0;
3361 struct sk_buff *syn_data;
3362
3363 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3364 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3365 goto fallback;
3366
3367 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3368 * user-MSS. Reserve maximum option space for middleboxes that add
3369 * private TCP options. The cost is reduced data space in SYN :(
3370 */
3371 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3372
3373 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3374 MAX_TCP_OPTION_SPACE;
3375
3376 space = min_t(size_t, space, fo->size);
3377
3378 /* limit to order-0 allocations */
3379 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3380
3381 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3382 if (!syn_data)
3383 goto fallback;
3384 syn_data->ip_summed = CHECKSUM_PARTIAL;
3385 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3386 if (space) {
3387 int copied = copy_from_iter(skb_put(syn_data, space), space,
3388 &fo->data->msg_iter);
3389 if (unlikely(!copied)) {
3390 kfree_skb(syn_data);
3391 goto fallback;
3392 }
3393 if (copied != space) {
3394 skb_trim(syn_data, copied);
3395 space = copied;
3396 }
3397 }
3398 /* No more data pending in inet_wait_for_connect() */
3399 if (space == fo->size)
3400 fo->data = NULL;
3401 fo->copied = space;
3402
3403 tcp_connect_queue_skb(sk, syn_data);
3404 if (syn_data->len)
3405 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3406
3407 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3408
3409 syn->skb_mstamp = syn_data->skb_mstamp;
3410
3411 /* Now full SYN+DATA was cloned and sent (or not),
3412 * remove the SYN from the original skb (syn_data)
3413 * we keep in write queue in case of a retransmit, as we
3414 * also have the SYN packet (with no data) in the same queue.
3415 */
3416 TCP_SKB_CB(syn_data)->seq++;
3417 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3418 if (!err) {
3419 tp->syn_data = (fo->copied > 0);
3420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3421 goto done;
3422 }
3423
3424 /* data was not sent, this is our new send_head */
3425 sk->sk_send_head = syn_data;
3426 tp->packets_out -= tcp_skb_pcount(syn_data);
3427
3428 fallback:
3429 /* Send a regular SYN with Fast Open cookie request option */
3430 if (fo->cookie.len > 0)
3431 fo->cookie.len = 0;
3432 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3433 if (err)
3434 tp->syn_fastopen = 0;
3435 done:
3436 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3437 return err;
3438 }
3439
3440 /* Build a SYN and send it off. */
3441 int tcp_connect(struct sock *sk)
3442 {
3443 struct tcp_sock *tp = tcp_sk(sk);
3444 struct sk_buff *buff;
3445 int err;
3446
3447 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3448
3449 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3450 return -EHOSTUNREACH; /* Routing failure or similar. */
3451
3452 tcp_connect_init(sk);
3453
3454 if (unlikely(tp->repair)) {
3455 tcp_finish_connect(sk, NULL);
3456 return 0;
3457 }
3458
3459 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3460 if (unlikely(!buff))
3461 return -ENOBUFS;
3462
3463 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3464 tcp_mstamp_refresh(tp);
3465 tp->retrans_stamp = tcp_time_stamp(tp);
3466 tcp_connect_queue_skb(sk, buff);
3467 tcp_ecn_send_syn(sk, buff);
3468
3469 /* Send off SYN; include data in Fast Open. */
3470 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3471 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3472 if (err == -ECONNREFUSED)
3473 return err;
3474
3475 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3476 * in order to make this packet get counted in tcpOutSegs.
3477 */
3478 tp->snd_nxt = tp->write_seq;
3479 tp->pushed_seq = tp->write_seq;
3480 buff = tcp_send_head(sk);
3481 if (unlikely(buff)) {
3482 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3483 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3484 }
3485 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3486
3487 /* Timer for repeating the SYN until an answer. */
3488 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3489 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3490 return 0;
3491 }
3492 EXPORT_SYMBOL(tcp_connect);
3493
3494 /* Send out a delayed ack, the caller does the policy checking
3495 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3496 * for details.
3497 */
3498 void tcp_send_delayed_ack(struct sock *sk)
3499 {
3500 struct inet_connection_sock *icsk = inet_csk(sk);
3501 int ato = icsk->icsk_ack.ato;
3502 unsigned long timeout;
3503
3504 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3505
3506 if (ato > TCP_DELACK_MIN) {
3507 const struct tcp_sock *tp = tcp_sk(sk);
3508 int max_ato = HZ / 2;
3509
3510 if (icsk->icsk_ack.pingpong ||
3511 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3512 max_ato = TCP_DELACK_MAX;
3513
3514 /* Slow path, intersegment interval is "high". */
3515
3516 /* If some rtt estimate is known, use it to bound delayed ack.
3517 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3518 * directly.
3519 */
3520 if (tp->srtt_us) {
3521 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3522 TCP_DELACK_MIN);
3523
3524 if (rtt < max_ato)
3525 max_ato = rtt;
3526 }
3527
3528 ato = min(ato, max_ato);
3529 }
3530
3531 /* Stay within the limit we were given */
3532 timeout = jiffies + ato;
3533
3534 /* Use new timeout only if there wasn't a older one earlier. */
3535 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3536 /* If delack timer was blocked or is about to expire,
3537 * send ACK now.
3538 */
3539 if (icsk->icsk_ack.blocked ||
3540 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3541 tcp_send_ack(sk);
3542 return;
3543 }
3544
3545 if (!time_before(timeout, icsk->icsk_ack.timeout))
3546 timeout = icsk->icsk_ack.timeout;
3547 }
3548 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3549 icsk->icsk_ack.timeout = timeout;
3550 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3551 }
3552
3553 /* This routine sends an ack and also updates the window. */
3554 void tcp_send_ack(struct sock *sk)
3555 {
3556 struct sk_buff *buff;
3557
3558 /* If we have been reset, we may not send again. */
3559 if (sk->sk_state == TCP_CLOSE)
3560 return;
3561
3562 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3563
3564 /* We are not putting this on the write queue, so
3565 * tcp_transmit_skb() will set the ownership to this
3566 * sock.
3567 */
3568 buff = alloc_skb(MAX_TCP_HEADER,
3569 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3570 if (unlikely(!buff)) {
3571 inet_csk_schedule_ack(sk);
3572 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3573 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3574 TCP_DELACK_MAX, TCP_RTO_MAX);
3575 return;
3576 }
3577
3578 /* Reserve space for headers and prepare control bits. */
3579 skb_reserve(buff, MAX_TCP_HEADER);
3580 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3581
3582 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3583 * too much.
3584 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3585 */
3586 skb_set_tcp_pure_ack(buff);
3587
3588 /* Send it off, this clears delayed acks for us. */
3589 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3590 }
3591 EXPORT_SYMBOL_GPL(tcp_send_ack);
3592
3593 /* This routine sends a packet with an out of date sequence
3594 * number. It assumes the other end will try to ack it.
3595 *
3596 * Question: what should we make while urgent mode?
3597 * 4.4BSD forces sending single byte of data. We cannot send
3598 * out of window data, because we have SND.NXT==SND.MAX...
3599 *
3600 * Current solution: to send TWO zero-length segments in urgent mode:
3601 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3602 * out-of-date with SND.UNA-1 to probe window.
3603 */
3604 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3605 {
3606 struct tcp_sock *tp = tcp_sk(sk);
3607 struct sk_buff *skb;
3608
3609 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3610 skb = alloc_skb(MAX_TCP_HEADER,
3611 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3612 if (!skb)
3613 return -1;
3614
3615 /* Reserve space for headers and set control bits. */
3616 skb_reserve(skb, MAX_TCP_HEADER);
3617 /* Use a previous sequence. This should cause the other
3618 * end to send an ack. Don't queue or clone SKB, just
3619 * send it.
3620 */
3621 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3622 NET_INC_STATS(sock_net(sk), mib);
3623 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3624 }
3625
3626 /* Called from setsockopt( ... TCP_REPAIR ) */
3627 void tcp_send_window_probe(struct sock *sk)
3628 {
3629 if (sk->sk_state == TCP_ESTABLISHED) {
3630 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3631 tcp_mstamp_refresh(tcp_sk(sk));
3632 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3633 }
3634 }
3635
3636 /* Initiate keepalive or window probe from timer. */
3637 int tcp_write_wakeup(struct sock *sk, int mib)
3638 {
3639 struct tcp_sock *tp = tcp_sk(sk);
3640 struct sk_buff *skb;
3641
3642 if (sk->sk_state == TCP_CLOSE)
3643 return -1;
3644
3645 skb = tcp_send_head(sk);
3646 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3647 int err;
3648 unsigned int mss = tcp_current_mss(sk);
3649 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3650
3651 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3652 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3653
3654 /* We are probing the opening of a window
3655 * but the window size is != 0
3656 * must have been a result SWS avoidance ( sender )
3657 */
3658 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3659 skb->len > mss) {
3660 seg_size = min(seg_size, mss);
3661 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3662 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3663 return -1;
3664 } else if (!tcp_skb_pcount(skb))
3665 tcp_set_skb_tso_segs(skb, mss);
3666
3667 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3668 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3669 if (!err)
3670 tcp_event_new_data_sent(sk, skb);
3671 return err;
3672 } else {
3673 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3674 tcp_xmit_probe_skb(sk, 1, mib);
3675 return tcp_xmit_probe_skb(sk, 0, mib);
3676 }
3677 }
3678
3679 /* A window probe timeout has occurred. If window is not closed send
3680 * a partial packet else a zero probe.
3681 */
3682 void tcp_send_probe0(struct sock *sk)
3683 {
3684 struct inet_connection_sock *icsk = inet_csk(sk);
3685 struct tcp_sock *tp = tcp_sk(sk);
3686 struct net *net = sock_net(sk);
3687 unsigned long probe_max;
3688 int err;
3689
3690 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3691
3692 if (tp->packets_out || !tcp_send_head(sk)) {
3693 /* Cancel probe timer, if it is not required. */
3694 icsk->icsk_probes_out = 0;
3695 icsk->icsk_backoff = 0;
3696 return;
3697 }
3698
3699 if (err <= 0) {
3700 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3701 icsk->icsk_backoff++;
3702 icsk->icsk_probes_out++;
3703 probe_max = TCP_RTO_MAX;
3704 } else {
3705 /* If packet was not sent due to local congestion,
3706 * do not backoff and do not remember icsk_probes_out.
3707 * Let local senders to fight for local resources.
3708 *
3709 * Use accumulated backoff yet.
3710 */
3711 if (!icsk->icsk_probes_out)
3712 icsk->icsk_probes_out = 1;
3713 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3714 }
3715 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3716 tcp_probe0_when(sk, probe_max),
3717 TCP_RTO_MAX);
3718 }
3719
3720 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3721 {
3722 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3723 struct flowi fl;
3724 int res;
3725
3726 tcp_rsk(req)->txhash = net_tx_rndhash();
3727 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3728 if (!res) {
3729 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3730 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3731 if (unlikely(tcp_passive_fastopen(sk)))
3732 tcp_sk(sk)->total_retrans++;
3733 }
3734 return res;
3735 }
3736 EXPORT_SYMBOL(tcp_rtx_synack);