]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
tcp: md5: fix potential overestimation of TCP option space
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45
46 #include <trace/events/tcp.h>
47
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
50
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
57
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62
63 tp->packets_out += tcp_skb_pcount(skb);
64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 tcp_rearm_rto(sk);
66
67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 tcp_skb_pcount(skb));
69 }
70
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72 * window scaling factor due to loss of precision.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
77 */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 const struct tcp_sock *tp = tcp_sk(sk);
81
82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 (tp->rx_opt.wscale_ok &&
84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 return tp->snd_nxt;
86 else
87 return tcp_wnd_end(tp);
88 }
89
90 /* Calculate mss to advertise in SYN segment.
91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92 *
93 * 1. It is independent of path mtu.
94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96 * attached devices, because some buggy hosts are confused by
97 * large MSS.
98 * 4. We do not make 3, we advertise MSS, calculated from first
99 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
100 * This may be overridden via information stored in routing table.
101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102 * probably even Jumbo".
103 */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 struct tcp_sock *tp = tcp_sk(sk);
107 const struct dst_entry *dst = __sk_dst_get(sk);
108 int mss = tp->advmss;
109
110 if (dst) {
111 unsigned int metric = dst_metric_advmss(dst);
112
113 if (metric < mss) {
114 mss = metric;
115 tp->advmss = mss;
116 }
117 }
118
119 return (__u16)mss;
120 }
121
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123 * This is the first part of cwnd validation mechanism.
124 */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 struct tcp_sock *tp = tcp_sk(sk);
128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 u32 cwnd = tp->snd_cwnd;
130
131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132
133 tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 restart_cwnd = min(restart_cwnd, cwnd);
135
136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 cwnd >>= 1;
138 tp->snd_cwnd = max(cwnd, restart_cwnd);
139 tp->snd_cwnd_stamp = tcp_jiffies32;
140 tp->snd_cwnd_used = 0;
141 }
142
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 struct sock *sk)
146 {
147 struct inet_connection_sock *icsk = inet_csk(sk);
148 const u32 now = tcp_jiffies32;
149
150 if (tcp_packets_in_flight(tp) == 0)
151 tcp_ca_event(sk, CA_EVENT_TX_START);
152
153 tp->lsndtime = now;
154
155 /* If it is a reply for ato after last received
156 * packet, enter pingpong mode.
157 */
158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 icsk->icsk_ack.pingpong = 1;
160 }
161
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
164 u32 rcv_nxt)
165 {
166 struct tcp_sock *tp = tcp_sk(sk);
167
168 if (unlikely(rcv_nxt != tp->rcv_nxt))
169 return; /* Special ACK sent by DCTCP to reflect ECN */
170 tcp_dec_quickack_mode(sk, pkts);
171 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
172 }
173
174 /* Determine a window scaling and initial window to offer.
175 * Based on the assumption that the given amount of space
176 * will be offered. Store the results in the tp structure.
177 * NOTE: for smooth operation initial space offering should
178 * be a multiple of mss if possible. We assume here that mss >= 1.
179 * This MUST be enforced by all callers.
180 */
181 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
182 __u32 *rcv_wnd, __u32 *window_clamp,
183 int wscale_ok, __u8 *rcv_wscale,
184 __u32 init_rcv_wnd)
185 {
186 unsigned int space = (__space < 0 ? 0 : __space);
187
188 /* If no clamp set the clamp to the max possible scaled window */
189 if (*window_clamp == 0)
190 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
191 space = min(*window_clamp, space);
192
193 /* Quantize space offering to a multiple of mss if possible. */
194 if (space > mss)
195 space = rounddown(space, mss);
196
197 /* NOTE: offering an initial window larger than 32767
198 * will break some buggy TCP stacks. If the admin tells us
199 * it is likely we could be speaking with such a buggy stack
200 * we will truncate our initial window offering to 32K-1
201 * unless the remote has sent us a window scaling option,
202 * which we interpret as a sign the remote TCP is not
203 * misinterpreting the window field as a signed quantity.
204 */
205 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
206 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
207 else
208 (*rcv_wnd) = min_t(u32, space, U16_MAX);
209
210 if (init_rcv_wnd)
211 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
212
213 (*rcv_wscale) = 0;
214 if (wscale_ok) {
215 /* Set window scaling on max possible window */
216 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
217 space = max_t(u32, space, sysctl_rmem_max);
218 space = min_t(u32, space, *window_clamp);
219 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
220 space >>= 1;
221 (*rcv_wscale)++;
222 }
223 }
224
225 /* Set the clamp no higher than max representable value */
226 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
227 }
228 EXPORT_SYMBOL(tcp_select_initial_window);
229
230 /* Chose a new window to advertise, update state in tcp_sock for the
231 * socket, and return result with RFC1323 scaling applied. The return
232 * value can be stuffed directly into th->window for an outgoing
233 * frame.
234 */
235 static u16 tcp_select_window(struct sock *sk)
236 {
237 struct tcp_sock *tp = tcp_sk(sk);
238 u32 old_win = tp->rcv_wnd;
239 u32 cur_win = tcp_receive_window(tp);
240 u32 new_win = __tcp_select_window(sk);
241
242 /* Never shrink the offered window */
243 if (new_win < cur_win) {
244 /* Danger Will Robinson!
245 * Don't update rcv_wup/rcv_wnd here or else
246 * we will not be able to advertise a zero
247 * window in time. --DaveM
248 *
249 * Relax Will Robinson.
250 */
251 if (new_win == 0)
252 NET_INC_STATS(sock_net(sk),
253 LINUX_MIB_TCPWANTZEROWINDOWADV);
254 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
255 }
256 tp->rcv_wnd = new_win;
257 tp->rcv_wup = tp->rcv_nxt;
258
259 /* Make sure we do not exceed the maximum possible
260 * scaled window.
261 */
262 if (!tp->rx_opt.rcv_wscale &&
263 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
264 new_win = min(new_win, MAX_TCP_WINDOW);
265 else
266 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
267
268 /* RFC1323 scaling applied */
269 new_win >>= tp->rx_opt.rcv_wscale;
270
271 /* If we advertise zero window, disable fast path. */
272 if (new_win == 0) {
273 tp->pred_flags = 0;
274 if (old_win)
275 NET_INC_STATS(sock_net(sk),
276 LINUX_MIB_TCPTOZEROWINDOWADV);
277 } else if (old_win == 0) {
278 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
279 }
280
281 return new_win;
282 }
283
284 /* Packet ECN state for a SYN-ACK */
285 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
286 {
287 const struct tcp_sock *tp = tcp_sk(sk);
288
289 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
290 if (!(tp->ecn_flags & TCP_ECN_OK))
291 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
292 else if (tcp_ca_needs_ecn(sk) ||
293 tcp_bpf_ca_needs_ecn(sk))
294 INET_ECN_xmit(sk);
295 }
296
297 /* Packet ECN state for a SYN. */
298 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
299 {
300 struct tcp_sock *tp = tcp_sk(sk);
301 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
302 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
303 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
304
305 if (!use_ecn) {
306 const struct dst_entry *dst = __sk_dst_get(sk);
307
308 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
309 use_ecn = true;
310 }
311
312 tp->ecn_flags = 0;
313
314 if (use_ecn) {
315 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
316 tp->ecn_flags = TCP_ECN_OK;
317 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
318 INET_ECN_xmit(sk);
319 }
320 }
321
322 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
325 /* tp->ecn_flags are cleared at a later point in time when
326 * SYN ACK is ultimatively being received.
327 */
328 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
329 }
330
331 static void
332 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
333 {
334 if (inet_rsk(req)->ecn_ok)
335 th->ece = 1;
336 }
337
338 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
339 * be sent.
340 */
341 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
342 struct tcphdr *th, int tcp_header_len)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345
346 if (tp->ecn_flags & TCP_ECN_OK) {
347 /* Not-retransmitted data segment: set ECT and inject CWR. */
348 if (skb->len != tcp_header_len &&
349 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
350 INET_ECN_xmit(sk);
351 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
352 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
353 th->cwr = 1;
354 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
355 }
356 } else if (!tcp_ca_needs_ecn(sk)) {
357 /* ACK or retransmitted segment: clear ECT|CE */
358 INET_ECN_dontxmit(sk);
359 }
360 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
361 th->ece = 1;
362 }
363 }
364
365 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
366 * auto increment end seqno.
367 */
368 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
369 {
370 skb->ip_summed = CHECKSUM_PARTIAL;
371
372 TCP_SKB_CB(skb)->tcp_flags = flags;
373 TCP_SKB_CB(skb)->sacked = 0;
374
375 tcp_skb_pcount_set(skb, 1);
376
377 TCP_SKB_CB(skb)->seq = seq;
378 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
379 seq++;
380 TCP_SKB_CB(skb)->end_seq = seq;
381 }
382
383 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
384 {
385 return tp->snd_una != tp->snd_up;
386 }
387
388 #define OPTION_SACK_ADVERTISE (1 << 0)
389 #define OPTION_TS (1 << 1)
390 #define OPTION_MD5 (1 << 2)
391 #define OPTION_WSCALE (1 << 3)
392 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
393 #define OPTION_SMC (1 << 9)
394
395 static void smc_options_write(__be32 *ptr, u16 *options)
396 {
397 #if IS_ENABLED(CONFIG_SMC)
398 if (static_branch_unlikely(&tcp_have_smc)) {
399 if (unlikely(OPTION_SMC & *options)) {
400 *ptr++ = htonl((TCPOPT_NOP << 24) |
401 (TCPOPT_NOP << 16) |
402 (TCPOPT_EXP << 8) |
403 (TCPOLEN_EXP_SMC_BASE));
404 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
405 }
406 }
407 #endif
408 }
409
410 struct tcp_out_options {
411 u16 options; /* bit field of OPTION_* */
412 u16 mss; /* 0 to disable */
413 u8 ws; /* window scale, 0 to disable */
414 u8 num_sack_blocks; /* number of SACK blocks to include */
415 u8 hash_size; /* bytes in hash_location */
416 __u8 *hash_location; /* temporary pointer, overloaded */
417 __u32 tsval, tsecr; /* need to include OPTION_TS */
418 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
419 };
420
421 /* Write previously computed TCP options to the packet.
422 *
423 * Beware: Something in the Internet is very sensitive to the ordering of
424 * TCP options, we learned this through the hard way, so be careful here.
425 * Luckily we can at least blame others for their non-compliance but from
426 * inter-operability perspective it seems that we're somewhat stuck with
427 * the ordering which we have been using if we want to keep working with
428 * those broken things (not that it currently hurts anybody as there isn't
429 * particular reason why the ordering would need to be changed).
430 *
431 * At least SACK_PERM as the first option is known to lead to a disaster
432 * (but it may well be that other scenarios fail similarly).
433 */
434 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
435 struct tcp_out_options *opts)
436 {
437 u16 options = opts->options; /* mungable copy */
438
439 if (unlikely(OPTION_MD5 & options)) {
440 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
441 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
442 /* overload cookie hash location */
443 opts->hash_location = (__u8 *)ptr;
444 ptr += 4;
445 }
446
447 if (unlikely(opts->mss)) {
448 *ptr++ = htonl((TCPOPT_MSS << 24) |
449 (TCPOLEN_MSS << 16) |
450 opts->mss);
451 }
452
453 if (likely(OPTION_TS & options)) {
454 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
455 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
456 (TCPOLEN_SACK_PERM << 16) |
457 (TCPOPT_TIMESTAMP << 8) |
458 TCPOLEN_TIMESTAMP);
459 options &= ~OPTION_SACK_ADVERTISE;
460 } else {
461 *ptr++ = htonl((TCPOPT_NOP << 24) |
462 (TCPOPT_NOP << 16) |
463 (TCPOPT_TIMESTAMP << 8) |
464 TCPOLEN_TIMESTAMP);
465 }
466 *ptr++ = htonl(opts->tsval);
467 *ptr++ = htonl(opts->tsecr);
468 }
469
470 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_SACK_PERM << 8) |
474 TCPOLEN_SACK_PERM);
475 }
476
477 if (unlikely(OPTION_WSCALE & options)) {
478 *ptr++ = htonl((TCPOPT_NOP << 24) |
479 (TCPOPT_WINDOW << 16) |
480 (TCPOLEN_WINDOW << 8) |
481 opts->ws);
482 }
483
484 if (unlikely(opts->num_sack_blocks)) {
485 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
486 tp->duplicate_sack : tp->selective_acks;
487 int this_sack;
488
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_NOP << 16) |
491 (TCPOPT_SACK << 8) |
492 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
493 TCPOLEN_SACK_PERBLOCK)));
494
495 for (this_sack = 0; this_sack < opts->num_sack_blocks;
496 ++this_sack) {
497 *ptr++ = htonl(sp[this_sack].start_seq);
498 *ptr++ = htonl(sp[this_sack].end_seq);
499 }
500
501 tp->rx_opt.dsack = 0;
502 }
503
504 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
505 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
506 u8 *p = (u8 *)ptr;
507 u32 len; /* Fast Open option length */
508
509 if (foc->exp) {
510 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
511 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
512 TCPOPT_FASTOPEN_MAGIC);
513 p += TCPOLEN_EXP_FASTOPEN_BASE;
514 } else {
515 len = TCPOLEN_FASTOPEN_BASE + foc->len;
516 *p++ = TCPOPT_FASTOPEN;
517 *p++ = len;
518 }
519
520 memcpy(p, foc->val, foc->len);
521 if ((len & 3) == 2) {
522 p[foc->len] = TCPOPT_NOP;
523 p[foc->len + 1] = TCPOPT_NOP;
524 }
525 ptr += (len + 3) >> 2;
526 }
527
528 smc_options_write(ptr, &options);
529 }
530
531 static void smc_set_option(const struct tcp_sock *tp,
532 struct tcp_out_options *opts,
533 unsigned int *remaining)
534 {
535 #if IS_ENABLED(CONFIG_SMC)
536 if (static_branch_unlikely(&tcp_have_smc)) {
537 if (tp->syn_smc) {
538 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
539 opts->options |= OPTION_SMC;
540 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
541 }
542 }
543 }
544 #endif
545 }
546
547 static void smc_set_option_cond(const struct tcp_sock *tp,
548 const struct inet_request_sock *ireq,
549 struct tcp_out_options *opts,
550 unsigned int *remaining)
551 {
552 #if IS_ENABLED(CONFIG_SMC)
553 if (static_branch_unlikely(&tcp_have_smc)) {
554 if (tp->syn_smc && ireq->smc_ok) {
555 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
556 opts->options |= OPTION_SMC;
557 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
558 }
559 }
560 }
561 #endif
562 }
563
564 /* Compute TCP options for SYN packets. This is not the final
565 * network wire format yet.
566 */
567 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
568 struct tcp_out_options *opts,
569 struct tcp_md5sig_key **md5)
570 {
571 struct tcp_sock *tp = tcp_sk(sk);
572 unsigned int remaining = MAX_TCP_OPTION_SPACE;
573 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
574
575 #ifdef CONFIG_TCP_MD5SIG
576 *md5 = tp->af_specific->md5_lookup(sk, sk);
577 if (*md5) {
578 opts->options |= OPTION_MD5;
579 remaining -= TCPOLEN_MD5SIG_ALIGNED;
580 }
581 #else
582 *md5 = NULL;
583 #endif
584
585 /* We always get an MSS option. The option bytes which will be seen in
586 * normal data packets should timestamps be used, must be in the MSS
587 * advertised. But we subtract them from tp->mss_cache so that
588 * calculations in tcp_sendmsg are simpler etc. So account for this
589 * fact here if necessary. If we don't do this correctly, as a
590 * receiver we won't recognize data packets as being full sized when we
591 * should, and thus we won't abide by the delayed ACK rules correctly.
592 * SACKs don't matter, we never delay an ACK when we have any of those
593 * going out. */
594 opts->mss = tcp_advertise_mss(sk);
595 remaining -= TCPOLEN_MSS_ALIGNED;
596
597 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
598 opts->options |= OPTION_TS;
599 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
600 opts->tsecr = tp->rx_opt.ts_recent;
601 remaining -= TCPOLEN_TSTAMP_ALIGNED;
602 }
603 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
604 opts->ws = tp->rx_opt.rcv_wscale;
605 opts->options |= OPTION_WSCALE;
606 remaining -= TCPOLEN_WSCALE_ALIGNED;
607 }
608 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
609 opts->options |= OPTION_SACK_ADVERTISE;
610 if (unlikely(!(OPTION_TS & opts->options)))
611 remaining -= TCPOLEN_SACKPERM_ALIGNED;
612 }
613
614 if (fastopen && fastopen->cookie.len >= 0) {
615 u32 need = fastopen->cookie.len;
616
617 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
618 TCPOLEN_FASTOPEN_BASE;
619 need = (need + 3) & ~3U; /* Align to 32 bits */
620 if (remaining >= need) {
621 opts->options |= OPTION_FAST_OPEN_COOKIE;
622 opts->fastopen_cookie = &fastopen->cookie;
623 remaining -= need;
624 tp->syn_fastopen = 1;
625 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
626 }
627 }
628
629 smc_set_option(tp, opts, &remaining);
630
631 return MAX_TCP_OPTION_SPACE - remaining;
632 }
633
634 /* Set up TCP options for SYN-ACKs. */
635 static unsigned int tcp_synack_options(const struct sock *sk,
636 struct request_sock *req,
637 unsigned int mss, struct sk_buff *skb,
638 struct tcp_out_options *opts,
639 const struct tcp_md5sig_key *md5,
640 struct tcp_fastopen_cookie *foc)
641 {
642 struct inet_request_sock *ireq = inet_rsk(req);
643 unsigned int remaining = MAX_TCP_OPTION_SPACE;
644
645 #ifdef CONFIG_TCP_MD5SIG
646 if (md5) {
647 opts->options |= OPTION_MD5;
648 remaining -= TCPOLEN_MD5SIG_ALIGNED;
649
650 /* We can't fit any SACK blocks in a packet with MD5 + TS
651 * options. There was discussion about disabling SACK
652 * rather than TS in order to fit in better with old,
653 * buggy kernels, but that was deemed to be unnecessary.
654 */
655 ireq->tstamp_ok &= !ireq->sack_ok;
656 }
657 #endif
658
659 /* We always send an MSS option. */
660 opts->mss = mss;
661 remaining -= TCPOLEN_MSS_ALIGNED;
662
663 if (likely(ireq->wscale_ok)) {
664 opts->ws = ireq->rcv_wscale;
665 opts->options |= OPTION_WSCALE;
666 remaining -= TCPOLEN_WSCALE_ALIGNED;
667 }
668 if (likely(ireq->tstamp_ok)) {
669 opts->options |= OPTION_TS;
670 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
671 opts->tsecr = req->ts_recent;
672 remaining -= TCPOLEN_TSTAMP_ALIGNED;
673 }
674 if (likely(ireq->sack_ok)) {
675 opts->options |= OPTION_SACK_ADVERTISE;
676 if (unlikely(!ireq->tstamp_ok))
677 remaining -= TCPOLEN_SACKPERM_ALIGNED;
678 }
679 if (foc != NULL && foc->len >= 0) {
680 u32 need = foc->len;
681
682 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
683 TCPOLEN_FASTOPEN_BASE;
684 need = (need + 3) & ~3U; /* Align to 32 bits */
685 if (remaining >= need) {
686 opts->options |= OPTION_FAST_OPEN_COOKIE;
687 opts->fastopen_cookie = foc;
688 remaining -= need;
689 }
690 }
691
692 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
693
694 return MAX_TCP_OPTION_SPACE - remaining;
695 }
696
697 /* Compute TCP options for ESTABLISHED sockets. This is not the
698 * final wire format yet.
699 */
700 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
701 struct tcp_out_options *opts,
702 struct tcp_md5sig_key **md5)
703 {
704 struct tcp_sock *tp = tcp_sk(sk);
705 unsigned int size = 0;
706 unsigned int eff_sacks;
707
708 opts->options = 0;
709
710 #ifdef CONFIG_TCP_MD5SIG
711 *md5 = tp->af_specific->md5_lookup(sk, sk);
712 if (unlikely(*md5)) {
713 opts->options |= OPTION_MD5;
714 size += TCPOLEN_MD5SIG_ALIGNED;
715 }
716 #else
717 *md5 = NULL;
718 #endif
719
720 if (likely(tp->rx_opt.tstamp_ok)) {
721 opts->options |= OPTION_TS;
722 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
723 opts->tsecr = tp->rx_opt.ts_recent;
724 size += TCPOLEN_TSTAMP_ALIGNED;
725 }
726
727 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
728 if (unlikely(eff_sacks)) {
729 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
730 opts->num_sack_blocks =
731 min_t(unsigned int, eff_sacks,
732 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
733 TCPOLEN_SACK_PERBLOCK);
734 if (likely(opts->num_sack_blocks))
735 size += TCPOLEN_SACK_BASE_ALIGNED +
736 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
737 }
738
739 return size;
740 }
741
742
743 /* TCP SMALL QUEUES (TSQ)
744 *
745 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
746 * to reduce RTT and bufferbloat.
747 * We do this using a special skb destructor (tcp_wfree).
748 *
749 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
750 * needs to be reallocated in a driver.
751 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
752 *
753 * Since transmit from skb destructor is forbidden, we use a tasklet
754 * to process all sockets that eventually need to send more skbs.
755 * We use one tasklet per cpu, with its own queue of sockets.
756 */
757 struct tsq_tasklet {
758 struct tasklet_struct tasklet;
759 struct list_head head; /* queue of tcp sockets */
760 };
761 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
762
763 static void tcp_tsq_handler(struct sock *sk)
764 {
765 if ((1 << sk->sk_state) &
766 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
767 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
768 struct tcp_sock *tp = tcp_sk(sk);
769
770 if (tp->lost_out > tp->retrans_out &&
771 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
772 tcp_mstamp_refresh(tp);
773 tcp_xmit_retransmit_queue(sk);
774 }
775
776 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
777 0, GFP_ATOMIC);
778 }
779 }
780 /*
781 * One tasklet per cpu tries to send more skbs.
782 * We run in tasklet context but need to disable irqs when
783 * transferring tsq->head because tcp_wfree() might
784 * interrupt us (non NAPI drivers)
785 */
786 static void tcp_tasklet_func(unsigned long data)
787 {
788 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
789 LIST_HEAD(list);
790 unsigned long flags;
791 struct list_head *q, *n;
792 struct tcp_sock *tp;
793 struct sock *sk;
794
795 local_irq_save(flags);
796 list_splice_init(&tsq->head, &list);
797 local_irq_restore(flags);
798
799 list_for_each_safe(q, n, &list) {
800 tp = list_entry(q, struct tcp_sock, tsq_node);
801 list_del(&tp->tsq_node);
802
803 sk = (struct sock *)tp;
804 smp_mb__before_atomic();
805 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
806
807 if (!sk->sk_lock.owned &&
808 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
809 bh_lock_sock(sk);
810 if (!sock_owned_by_user(sk)) {
811 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
812 tcp_tsq_handler(sk);
813 }
814 bh_unlock_sock(sk);
815 }
816
817 sk_free(sk);
818 }
819 }
820
821 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
822 TCPF_WRITE_TIMER_DEFERRED | \
823 TCPF_DELACK_TIMER_DEFERRED | \
824 TCPF_MTU_REDUCED_DEFERRED)
825 /**
826 * tcp_release_cb - tcp release_sock() callback
827 * @sk: socket
828 *
829 * called from release_sock() to perform protocol dependent
830 * actions before socket release.
831 */
832 void tcp_release_cb(struct sock *sk)
833 {
834 unsigned long flags, nflags;
835
836 /* perform an atomic operation only if at least one flag is set */
837 do {
838 flags = sk->sk_tsq_flags;
839 if (!(flags & TCP_DEFERRED_ALL))
840 return;
841 nflags = flags & ~TCP_DEFERRED_ALL;
842 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
843
844 if (flags & TCPF_TSQ_DEFERRED)
845 tcp_tsq_handler(sk);
846
847 /* Here begins the tricky part :
848 * We are called from release_sock() with :
849 * 1) BH disabled
850 * 2) sk_lock.slock spinlock held
851 * 3) socket owned by us (sk->sk_lock.owned == 1)
852 *
853 * But following code is meant to be called from BH handlers,
854 * so we should keep BH disabled, but early release socket ownership
855 */
856 sock_release_ownership(sk);
857
858 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
859 tcp_write_timer_handler(sk);
860 __sock_put(sk);
861 }
862 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
863 tcp_delack_timer_handler(sk);
864 __sock_put(sk);
865 }
866 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
867 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
868 __sock_put(sk);
869 }
870 }
871 EXPORT_SYMBOL(tcp_release_cb);
872
873 void __init tcp_tasklet_init(void)
874 {
875 int i;
876
877 for_each_possible_cpu(i) {
878 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
879
880 INIT_LIST_HEAD(&tsq->head);
881 tasklet_init(&tsq->tasklet,
882 tcp_tasklet_func,
883 (unsigned long)tsq);
884 }
885 }
886
887 /*
888 * Write buffer destructor automatically called from kfree_skb.
889 * We can't xmit new skbs from this context, as we might already
890 * hold qdisc lock.
891 */
892 void tcp_wfree(struct sk_buff *skb)
893 {
894 struct sock *sk = skb->sk;
895 struct tcp_sock *tp = tcp_sk(sk);
896 unsigned long flags, nval, oval;
897
898 /* Keep one reference on sk_wmem_alloc.
899 * Will be released by sk_free() from here or tcp_tasklet_func()
900 */
901 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
902
903 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
904 * Wait until our queues (qdisc + devices) are drained.
905 * This gives :
906 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
907 * - chance for incoming ACK (processed by another cpu maybe)
908 * to migrate this flow (skb->ooo_okay will be eventually set)
909 */
910 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
911 goto out;
912
913 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
914 struct tsq_tasklet *tsq;
915 bool empty;
916
917 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
918 goto out;
919
920 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
921 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
922 if (nval != oval)
923 continue;
924
925 /* queue this socket to tasklet queue */
926 local_irq_save(flags);
927 tsq = this_cpu_ptr(&tsq_tasklet);
928 empty = list_empty(&tsq->head);
929 list_add(&tp->tsq_node, &tsq->head);
930 if (empty)
931 tasklet_schedule(&tsq->tasklet);
932 local_irq_restore(flags);
933 return;
934 }
935 out:
936 sk_free(sk);
937 }
938
939 /* Note: Called under hard irq.
940 * We can not call TCP stack right away.
941 */
942 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
943 {
944 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
945 struct sock *sk = (struct sock *)tp;
946 unsigned long nval, oval;
947
948 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
949 struct tsq_tasklet *tsq;
950 bool empty;
951
952 if (oval & TSQF_QUEUED)
953 break;
954
955 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
956 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
957 if (nval != oval)
958 continue;
959
960 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
961 break;
962 /* queue this socket to tasklet queue */
963 tsq = this_cpu_ptr(&tsq_tasklet);
964 empty = list_empty(&tsq->head);
965 list_add(&tp->tsq_node, &tsq->head);
966 if (empty)
967 tasklet_schedule(&tsq->tasklet);
968 break;
969 }
970 return HRTIMER_NORESTART;
971 }
972
973 /* BBR congestion control needs pacing.
974 * Same remark for SO_MAX_PACING_RATE.
975 * sch_fq packet scheduler is efficiently handling pacing,
976 * but is not always installed/used.
977 * Return true if TCP stack should pace packets itself.
978 */
979 static bool tcp_needs_internal_pacing(const struct sock *sk)
980 {
981 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
982 }
983
984 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
985 {
986 u64 len_ns;
987 u32 rate;
988
989 if (!tcp_needs_internal_pacing(sk))
990 return;
991 rate = sk->sk_pacing_rate;
992 if (!rate || rate == ~0U)
993 return;
994
995 /* Should account for header sizes as sch_fq does,
996 * but lets make things simple.
997 */
998 len_ns = (u64)skb->len * NSEC_PER_SEC;
999 do_div(len_ns, rate);
1000 hrtimer_start(&tcp_sk(sk)->pacing_timer,
1001 ktime_add_ns(ktime_get(), len_ns),
1002 HRTIMER_MODE_ABS_PINNED);
1003 }
1004
1005 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007 skb->skb_mstamp = tp->tcp_mstamp;
1008 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1009 }
1010
1011 /* This routine actually transmits TCP packets queued in by
1012 * tcp_do_sendmsg(). This is used by both the initial
1013 * transmission and possible later retransmissions.
1014 * All SKB's seen here are completely headerless. It is our
1015 * job to build the TCP header, and pass the packet down to
1016 * IP so it can do the same plus pass the packet off to the
1017 * device.
1018 *
1019 * We are working here with either a clone of the original
1020 * SKB, or a fresh unique copy made by the retransmit engine.
1021 */
1022 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1023 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1024 {
1025 const struct inet_connection_sock *icsk = inet_csk(sk);
1026 struct inet_sock *inet;
1027 struct tcp_sock *tp;
1028 struct tcp_skb_cb *tcb;
1029 struct tcp_out_options opts;
1030 unsigned int tcp_options_size, tcp_header_size;
1031 struct sk_buff *oskb = NULL;
1032 struct tcp_md5sig_key *md5;
1033 struct tcphdr *th;
1034 int err;
1035
1036 BUG_ON(!skb || !tcp_skb_pcount(skb));
1037 tp = tcp_sk(sk);
1038
1039 if (clone_it) {
1040 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1041 - tp->snd_una;
1042 oskb = skb;
1043
1044 tcp_skb_tsorted_save(oskb) {
1045 if (unlikely(skb_cloned(oskb)))
1046 skb = pskb_copy(oskb, gfp_mask);
1047 else
1048 skb = skb_clone(oskb, gfp_mask);
1049 } tcp_skb_tsorted_restore(oskb);
1050
1051 if (unlikely(!skb))
1052 return -ENOBUFS;
1053 }
1054 skb->skb_mstamp = tp->tcp_mstamp;
1055
1056 inet = inet_sk(sk);
1057 tcb = TCP_SKB_CB(skb);
1058 memset(&opts, 0, sizeof(opts));
1059
1060 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1061 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1062 else
1063 tcp_options_size = tcp_established_options(sk, skb, &opts,
1064 &md5);
1065 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1066
1067 /* if no packet is in qdisc/device queue, then allow XPS to select
1068 * another queue. We can be called from tcp_tsq_handler()
1069 * which holds one reference to sk_wmem_alloc.
1070 *
1071 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1072 * One way to get this would be to set skb->truesize = 2 on them.
1073 */
1074 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1075
1076 /* If we had to use memory reserve to allocate this skb,
1077 * this might cause drops if packet is looped back :
1078 * Other socket might not have SOCK_MEMALLOC.
1079 * Packets not looped back do not care about pfmemalloc.
1080 */
1081 skb->pfmemalloc = 0;
1082
1083 skb_push(skb, tcp_header_size);
1084 skb_reset_transport_header(skb);
1085
1086 skb_orphan(skb);
1087 skb->sk = sk;
1088 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1089 skb_set_hash_from_sk(skb, sk);
1090 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1091
1092 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1093
1094 /* Build TCP header and checksum it. */
1095 th = (struct tcphdr *)skb->data;
1096 th->source = inet->inet_sport;
1097 th->dest = inet->inet_dport;
1098 th->seq = htonl(tcb->seq);
1099 th->ack_seq = htonl(rcv_nxt);
1100 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1101 tcb->tcp_flags);
1102
1103 th->check = 0;
1104 th->urg_ptr = 0;
1105
1106 /* The urg_mode check is necessary during a below snd_una win probe */
1107 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1108 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1109 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1110 th->urg = 1;
1111 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1112 th->urg_ptr = htons(0xFFFF);
1113 th->urg = 1;
1114 }
1115 }
1116
1117 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1118 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1119 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1120 th->window = htons(tcp_select_window(sk));
1121 tcp_ecn_send(sk, skb, th, tcp_header_size);
1122 } else {
1123 /* RFC1323: The window in SYN & SYN/ACK segments
1124 * is never scaled.
1125 */
1126 th->window = htons(min(tp->rcv_wnd, 65535U));
1127 }
1128 #ifdef CONFIG_TCP_MD5SIG
1129 /* Calculate the MD5 hash, as we have all we need now */
1130 if (md5) {
1131 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1132 tp->af_specific->calc_md5_hash(opts.hash_location,
1133 md5, sk, skb);
1134 }
1135 #endif
1136
1137 icsk->icsk_af_ops->send_check(sk, skb);
1138
1139 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1140 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1141
1142 if (skb->len != tcp_header_size) {
1143 tcp_event_data_sent(tp, sk);
1144 tp->data_segs_out += tcp_skb_pcount(skb);
1145 tcp_internal_pacing(sk, skb);
1146 }
1147
1148 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1149 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1150 tcp_skb_pcount(skb));
1151
1152 tp->segs_out += tcp_skb_pcount(skb);
1153 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1154 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1155 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1156
1157 /* Our usage of tstamp should remain private */
1158 skb->tstamp = 0;
1159
1160 /* Cleanup our debris for IP stacks */
1161 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1162 sizeof(struct inet6_skb_parm)));
1163
1164 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1165
1166 if (unlikely(err > 0)) {
1167 tcp_enter_cwr(sk);
1168 err = net_xmit_eval(err);
1169 }
1170 if (!err && oskb) {
1171 tcp_update_skb_after_send(tp, oskb);
1172 tcp_rate_skb_sent(sk, oskb);
1173 }
1174 return err;
1175 }
1176
1177 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1178 gfp_t gfp_mask)
1179 {
1180 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1181 tcp_sk(sk)->rcv_nxt);
1182 }
1183
1184 /* This routine just queues the buffer for sending.
1185 *
1186 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1187 * otherwise socket can stall.
1188 */
1189 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1190 {
1191 struct tcp_sock *tp = tcp_sk(sk);
1192
1193 /* Advance write_seq and place onto the write_queue. */
1194 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1195 __skb_header_release(skb);
1196 tcp_add_write_queue_tail(sk, skb);
1197 sk->sk_wmem_queued += skb->truesize;
1198 sk_mem_charge(sk, skb->truesize);
1199 }
1200
1201 /* Initialize TSO segments for a packet. */
1202 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1203 {
1204 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1205 /* Avoid the costly divide in the normal
1206 * non-TSO case.
1207 */
1208 tcp_skb_pcount_set(skb, 1);
1209 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1210 } else {
1211 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1212 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1213 }
1214 }
1215
1216 /* Pcount in the middle of the write queue got changed, we need to do various
1217 * tweaks to fix counters
1218 */
1219 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1220 {
1221 struct tcp_sock *tp = tcp_sk(sk);
1222
1223 tp->packets_out -= decr;
1224
1225 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1226 tp->sacked_out -= decr;
1227 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1228 tp->retrans_out -= decr;
1229 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1230 tp->lost_out -= decr;
1231
1232 /* Reno case is special. Sigh... */
1233 if (tcp_is_reno(tp) && decr > 0)
1234 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1235
1236 if (tp->lost_skb_hint &&
1237 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1238 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1239 tp->lost_cnt_hint -= decr;
1240
1241 tcp_verify_left_out(tp);
1242 }
1243
1244 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1245 {
1246 return TCP_SKB_CB(skb)->txstamp_ack ||
1247 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1248 }
1249
1250 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1251 {
1252 struct skb_shared_info *shinfo = skb_shinfo(skb);
1253
1254 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1255 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1256 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1257 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1258
1259 shinfo->tx_flags &= ~tsflags;
1260 shinfo2->tx_flags |= tsflags;
1261 swap(shinfo->tskey, shinfo2->tskey);
1262 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1263 TCP_SKB_CB(skb)->txstamp_ack = 0;
1264 }
1265 }
1266
1267 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1268 {
1269 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1270 TCP_SKB_CB(skb)->eor = 0;
1271 }
1272
1273 /* Insert buff after skb on the write or rtx queue of sk. */
1274 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1275 struct sk_buff *buff,
1276 struct sock *sk,
1277 enum tcp_queue tcp_queue)
1278 {
1279 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1280 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1281 else
1282 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1283 }
1284
1285 /* Function to create two new TCP segments. Shrinks the given segment
1286 * to the specified size and appends a new segment with the rest of the
1287 * packet to the list. This won't be called frequently, I hope.
1288 * Remember, these are still headerless SKBs at this point.
1289 */
1290 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1291 struct sk_buff *skb, u32 len,
1292 unsigned int mss_now, gfp_t gfp)
1293 {
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 struct sk_buff *buff;
1296 int nsize, old_factor;
1297 long limit;
1298 int nlen;
1299 u8 flags;
1300
1301 if (WARN_ON(len > skb->len))
1302 return -EINVAL;
1303
1304 nsize = skb_headlen(skb) - len;
1305 if (nsize < 0)
1306 nsize = 0;
1307
1308 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1309 * We need some allowance to not penalize applications setting small
1310 * SO_SNDBUF values.
1311 * Also allow first and last skb in retransmit queue to be split.
1312 */
1313 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1314 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1315 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1316 skb != tcp_rtx_queue_head(sk) &&
1317 skb != tcp_rtx_queue_tail(sk))) {
1318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1319 return -ENOMEM;
1320 }
1321
1322 if (skb_unclone(skb, gfp))
1323 return -ENOMEM;
1324
1325 /* Get a new skb... force flag on. */
1326 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1327 if (!buff)
1328 return -ENOMEM; /* We'll just try again later. */
1329
1330 sk->sk_wmem_queued += buff->truesize;
1331 sk_mem_charge(sk, buff->truesize);
1332 nlen = skb->len - len - nsize;
1333 buff->truesize += nlen;
1334 skb->truesize -= nlen;
1335
1336 /* Correct the sequence numbers. */
1337 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1338 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1339 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1340
1341 /* PSH and FIN should only be set in the second packet. */
1342 flags = TCP_SKB_CB(skb)->tcp_flags;
1343 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1344 TCP_SKB_CB(buff)->tcp_flags = flags;
1345 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1346 tcp_skb_fragment_eor(skb, buff);
1347
1348 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1349 /* Copy and checksum data tail into the new buffer. */
1350 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1351 skb_put(buff, nsize),
1352 nsize, 0);
1353
1354 skb_trim(skb, len);
1355
1356 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1357 } else {
1358 skb->ip_summed = CHECKSUM_PARTIAL;
1359 skb_split(skb, buff, len);
1360 }
1361
1362 buff->ip_summed = skb->ip_summed;
1363
1364 buff->tstamp = skb->tstamp;
1365 tcp_fragment_tstamp(skb, buff);
1366
1367 old_factor = tcp_skb_pcount(skb);
1368
1369 /* Fix up tso_factor for both original and new SKB. */
1370 tcp_set_skb_tso_segs(skb, mss_now);
1371 tcp_set_skb_tso_segs(buff, mss_now);
1372
1373 /* Update delivered info for the new segment */
1374 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1375
1376 /* If this packet has been sent out already, we must
1377 * adjust the various packet counters.
1378 */
1379 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1380 int diff = old_factor - tcp_skb_pcount(skb) -
1381 tcp_skb_pcount(buff);
1382
1383 if (diff)
1384 tcp_adjust_pcount(sk, skb, diff);
1385 }
1386
1387 /* Link BUFF into the send queue. */
1388 __skb_header_release(buff);
1389 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1390 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1391 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1392
1393 return 0;
1394 }
1395
1396 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1397 * data is not copied, but immediately discarded.
1398 */
1399 static int __pskb_trim_head(struct sk_buff *skb, int len)
1400 {
1401 struct skb_shared_info *shinfo;
1402 int i, k, eat;
1403
1404 eat = min_t(int, len, skb_headlen(skb));
1405 if (eat) {
1406 __skb_pull(skb, eat);
1407 len -= eat;
1408 if (!len)
1409 return 0;
1410 }
1411 eat = len;
1412 k = 0;
1413 shinfo = skb_shinfo(skb);
1414 for (i = 0; i < shinfo->nr_frags; i++) {
1415 int size = skb_frag_size(&shinfo->frags[i]);
1416
1417 if (size <= eat) {
1418 skb_frag_unref(skb, i);
1419 eat -= size;
1420 } else {
1421 shinfo->frags[k] = shinfo->frags[i];
1422 if (eat) {
1423 shinfo->frags[k].page_offset += eat;
1424 skb_frag_size_sub(&shinfo->frags[k], eat);
1425 eat = 0;
1426 }
1427 k++;
1428 }
1429 }
1430 shinfo->nr_frags = k;
1431
1432 skb->data_len -= len;
1433 skb->len = skb->data_len;
1434 return len;
1435 }
1436
1437 /* Remove acked data from a packet in the transmit queue. */
1438 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1439 {
1440 u32 delta_truesize;
1441
1442 if (skb_unclone(skb, GFP_ATOMIC))
1443 return -ENOMEM;
1444
1445 delta_truesize = __pskb_trim_head(skb, len);
1446
1447 TCP_SKB_CB(skb)->seq += len;
1448 skb->ip_summed = CHECKSUM_PARTIAL;
1449
1450 if (delta_truesize) {
1451 skb->truesize -= delta_truesize;
1452 sk->sk_wmem_queued -= delta_truesize;
1453 sk_mem_uncharge(sk, delta_truesize);
1454 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1455 }
1456
1457 /* Any change of skb->len requires recalculation of tso factor. */
1458 if (tcp_skb_pcount(skb) > 1)
1459 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1460
1461 return 0;
1462 }
1463
1464 /* Calculate MSS not accounting any TCP options. */
1465 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1466 {
1467 const struct tcp_sock *tp = tcp_sk(sk);
1468 const struct inet_connection_sock *icsk = inet_csk(sk);
1469 int mss_now;
1470
1471 /* Calculate base mss without TCP options:
1472 It is MMS_S - sizeof(tcphdr) of rfc1122
1473 */
1474 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1475
1476 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1477 if (icsk->icsk_af_ops->net_frag_header_len) {
1478 const struct dst_entry *dst = __sk_dst_get(sk);
1479
1480 if (dst && dst_allfrag(dst))
1481 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1482 }
1483
1484 /* Clamp it (mss_clamp does not include tcp options) */
1485 if (mss_now > tp->rx_opt.mss_clamp)
1486 mss_now = tp->rx_opt.mss_clamp;
1487
1488 /* Now subtract optional transport overhead */
1489 mss_now -= icsk->icsk_ext_hdr_len;
1490
1491 /* Then reserve room for full set of TCP options and 8 bytes of data */
1492 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1493 return mss_now;
1494 }
1495
1496 /* Calculate MSS. Not accounting for SACKs here. */
1497 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1498 {
1499 /* Subtract TCP options size, not including SACKs */
1500 return __tcp_mtu_to_mss(sk, pmtu) -
1501 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1502 }
1503
1504 /* Inverse of above */
1505 int tcp_mss_to_mtu(struct sock *sk, int mss)
1506 {
1507 const struct tcp_sock *tp = tcp_sk(sk);
1508 const struct inet_connection_sock *icsk = inet_csk(sk);
1509 int mtu;
1510
1511 mtu = mss +
1512 tp->tcp_header_len +
1513 icsk->icsk_ext_hdr_len +
1514 icsk->icsk_af_ops->net_header_len;
1515
1516 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1517 if (icsk->icsk_af_ops->net_frag_header_len) {
1518 const struct dst_entry *dst = __sk_dst_get(sk);
1519
1520 if (dst && dst_allfrag(dst))
1521 mtu += icsk->icsk_af_ops->net_frag_header_len;
1522 }
1523 return mtu;
1524 }
1525 EXPORT_SYMBOL(tcp_mss_to_mtu);
1526
1527 /* MTU probing init per socket */
1528 void tcp_mtup_init(struct sock *sk)
1529 {
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 struct inet_connection_sock *icsk = inet_csk(sk);
1532 struct net *net = sock_net(sk);
1533
1534 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1535 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1536 icsk->icsk_af_ops->net_header_len;
1537 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1538 icsk->icsk_mtup.probe_size = 0;
1539 if (icsk->icsk_mtup.enabled)
1540 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1541 }
1542 EXPORT_SYMBOL(tcp_mtup_init);
1543
1544 /* This function synchronize snd mss to current pmtu/exthdr set.
1545
1546 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1547 for TCP options, but includes only bare TCP header.
1548
1549 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1550 It is minimum of user_mss and mss received with SYN.
1551 It also does not include TCP options.
1552
1553 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1554
1555 tp->mss_cache is current effective sending mss, including
1556 all tcp options except for SACKs. It is evaluated,
1557 taking into account current pmtu, but never exceeds
1558 tp->rx_opt.mss_clamp.
1559
1560 NOTE1. rfc1122 clearly states that advertised MSS
1561 DOES NOT include either tcp or ip options.
1562
1563 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1564 are READ ONLY outside this function. --ANK (980731)
1565 */
1566 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1567 {
1568 struct tcp_sock *tp = tcp_sk(sk);
1569 struct inet_connection_sock *icsk = inet_csk(sk);
1570 int mss_now;
1571
1572 if (icsk->icsk_mtup.search_high > pmtu)
1573 icsk->icsk_mtup.search_high = pmtu;
1574
1575 mss_now = tcp_mtu_to_mss(sk, pmtu);
1576 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1577
1578 /* And store cached results */
1579 icsk->icsk_pmtu_cookie = pmtu;
1580 if (icsk->icsk_mtup.enabled)
1581 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1582 tp->mss_cache = mss_now;
1583
1584 return mss_now;
1585 }
1586 EXPORT_SYMBOL(tcp_sync_mss);
1587
1588 /* Compute the current effective MSS, taking SACKs and IP options,
1589 * and even PMTU discovery events into account.
1590 */
1591 unsigned int tcp_current_mss(struct sock *sk)
1592 {
1593 const struct tcp_sock *tp = tcp_sk(sk);
1594 const struct dst_entry *dst = __sk_dst_get(sk);
1595 u32 mss_now;
1596 unsigned int header_len;
1597 struct tcp_out_options opts;
1598 struct tcp_md5sig_key *md5;
1599
1600 mss_now = tp->mss_cache;
1601
1602 if (dst) {
1603 u32 mtu = dst_mtu(dst);
1604 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1605 mss_now = tcp_sync_mss(sk, mtu);
1606 }
1607
1608 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1609 sizeof(struct tcphdr);
1610 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1611 * some common options. If this is an odd packet (because we have SACK
1612 * blocks etc) then our calculated header_len will be different, and
1613 * we have to adjust mss_now correspondingly */
1614 if (header_len != tp->tcp_header_len) {
1615 int delta = (int) header_len - tp->tcp_header_len;
1616 mss_now -= delta;
1617 }
1618
1619 return mss_now;
1620 }
1621
1622 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1623 * As additional protections, we do not touch cwnd in retransmission phases,
1624 * and if application hit its sndbuf limit recently.
1625 */
1626 static void tcp_cwnd_application_limited(struct sock *sk)
1627 {
1628 struct tcp_sock *tp = tcp_sk(sk);
1629
1630 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1631 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1632 /* Limited by application or receiver window. */
1633 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1634 u32 win_used = max(tp->snd_cwnd_used, init_win);
1635 if (win_used < tp->snd_cwnd) {
1636 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1637 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1638 }
1639 tp->snd_cwnd_used = 0;
1640 }
1641 tp->snd_cwnd_stamp = tcp_jiffies32;
1642 }
1643
1644 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1645 {
1646 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1647 struct tcp_sock *tp = tcp_sk(sk);
1648
1649 /* Track the maximum number of outstanding packets in each
1650 * window, and remember whether we were cwnd-limited then.
1651 */
1652 if (!before(tp->snd_una, tp->max_packets_seq) ||
1653 tp->packets_out > tp->max_packets_out) {
1654 tp->max_packets_out = tp->packets_out;
1655 tp->max_packets_seq = tp->snd_nxt;
1656 tp->is_cwnd_limited = is_cwnd_limited;
1657 }
1658
1659 if (tcp_is_cwnd_limited(sk)) {
1660 /* Network is feed fully. */
1661 tp->snd_cwnd_used = 0;
1662 tp->snd_cwnd_stamp = tcp_jiffies32;
1663 } else {
1664 /* Network starves. */
1665 if (tp->packets_out > tp->snd_cwnd_used)
1666 tp->snd_cwnd_used = tp->packets_out;
1667
1668 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1669 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1670 !ca_ops->cong_control)
1671 tcp_cwnd_application_limited(sk);
1672
1673 /* The following conditions together indicate the starvation
1674 * is caused by insufficient sender buffer:
1675 * 1) just sent some data (see tcp_write_xmit)
1676 * 2) not cwnd limited (this else condition)
1677 * 3) no more data to send (tcp_write_queue_empty())
1678 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1679 */
1680 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1681 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1682 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1683 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1684 }
1685 }
1686
1687 /* Minshall's variant of the Nagle send check. */
1688 static bool tcp_minshall_check(const struct tcp_sock *tp)
1689 {
1690 return after(tp->snd_sml, tp->snd_una) &&
1691 !after(tp->snd_sml, tp->snd_nxt);
1692 }
1693
1694 /* Update snd_sml if this skb is under mss
1695 * Note that a TSO packet might end with a sub-mss segment
1696 * The test is really :
1697 * if ((skb->len % mss) != 0)
1698 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1699 * But we can avoid doing the divide again given we already have
1700 * skb_pcount = skb->len / mss_now
1701 */
1702 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1703 const struct sk_buff *skb)
1704 {
1705 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1706 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1707 }
1708
1709 /* Return false, if packet can be sent now without violation Nagle's rules:
1710 * 1. It is full sized. (provided by caller in %partial bool)
1711 * 2. Or it contains FIN. (already checked by caller)
1712 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1713 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1714 * With Minshall's modification: all sent small packets are ACKed.
1715 */
1716 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1717 int nonagle)
1718 {
1719 return partial &&
1720 ((nonagle & TCP_NAGLE_CORK) ||
1721 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1722 }
1723
1724 /* Return how many segs we'd like on a TSO packet,
1725 * to send one TSO packet per ms
1726 */
1727 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1728 int min_tso_segs)
1729 {
1730 u32 bytes, segs;
1731
1732 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1733 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1734
1735 /* Goal is to send at least one packet per ms,
1736 * not one big TSO packet every 100 ms.
1737 * This preserves ACK clocking and is consistent
1738 * with tcp_tso_should_defer() heuristic.
1739 */
1740 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1741
1742 return segs;
1743 }
1744 EXPORT_SYMBOL(tcp_tso_autosize);
1745
1746 /* Return the number of segments we want in the skb we are transmitting.
1747 * See if congestion control module wants to decide; otherwise, autosize.
1748 */
1749 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1750 {
1751 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1752 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1753
1754 if (!tso_segs)
1755 tso_segs = tcp_tso_autosize(sk, mss_now,
1756 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1757 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1758 }
1759
1760 /* Returns the portion of skb which can be sent right away */
1761 static unsigned int tcp_mss_split_point(const struct sock *sk,
1762 const struct sk_buff *skb,
1763 unsigned int mss_now,
1764 unsigned int max_segs,
1765 int nonagle)
1766 {
1767 const struct tcp_sock *tp = tcp_sk(sk);
1768 u32 partial, needed, window, max_len;
1769
1770 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1771 max_len = mss_now * max_segs;
1772
1773 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1774 return max_len;
1775
1776 needed = min(skb->len, window);
1777
1778 if (max_len <= needed)
1779 return max_len;
1780
1781 partial = needed % mss_now;
1782 /* If last segment is not a full MSS, check if Nagle rules allow us
1783 * to include this last segment in this skb.
1784 * Otherwise, we'll split the skb at last MSS boundary
1785 */
1786 if (tcp_nagle_check(partial != 0, tp, nonagle))
1787 return needed - partial;
1788
1789 return needed;
1790 }
1791
1792 /* Can at least one segment of SKB be sent right now, according to the
1793 * congestion window rules? If so, return how many segments are allowed.
1794 */
1795 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1796 const struct sk_buff *skb)
1797 {
1798 u32 in_flight, cwnd, halfcwnd;
1799
1800 /* Don't be strict about the congestion window for the final FIN. */
1801 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1802 tcp_skb_pcount(skb) == 1)
1803 return 1;
1804
1805 in_flight = tcp_packets_in_flight(tp);
1806 cwnd = tp->snd_cwnd;
1807 if (in_flight >= cwnd)
1808 return 0;
1809
1810 /* For better scheduling, ensure we have at least
1811 * 2 GSO packets in flight.
1812 */
1813 halfcwnd = max(cwnd >> 1, 1U);
1814 return min(halfcwnd, cwnd - in_flight);
1815 }
1816
1817 /* Initialize TSO state of a skb.
1818 * This must be invoked the first time we consider transmitting
1819 * SKB onto the wire.
1820 */
1821 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1822 {
1823 int tso_segs = tcp_skb_pcount(skb);
1824
1825 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1826 tcp_set_skb_tso_segs(skb, mss_now);
1827 tso_segs = tcp_skb_pcount(skb);
1828 }
1829 return tso_segs;
1830 }
1831
1832
1833 /* Return true if the Nagle test allows this packet to be
1834 * sent now.
1835 */
1836 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1837 unsigned int cur_mss, int nonagle)
1838 {
1839 /* Nagle rule does not apply to frames, which sit in the middle of the
1840 * write_queue (they have no chances to get new data).
1841 *
1842 * This is implemented in the callers, where they modify the 'nonagle'
1843 * argument based upon the location of SKB in the send queue.
1844 */
1845 if (nonagle & TCP_NAGLE_PUSH)
1846 return true;
1847
1848 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1849 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1850 return true;
1851
1852 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1853 return true;
1854
1855 return false;
1856 }
1857
1858 /* Does at least the first segment of SKB fit into the send window? */
1859 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1860 const struct sk_buff *skb,
1861 unsigned int cur_mss)
1862 {
1863 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1864
1865 if (skb->len > cur_mss)
1866 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1867
1868 return !after(end_seq, tcp_wnd_end(tp));
1869 }
1870
1871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1872 * which is put after SKB on the list. It is very much like
1873 * tcp_fragment() except that it may make several kinds of assumptions
1874 * in order to speed up the splitting operation. In particular, we
1875 * know that all the data is in scatter-gather pages, and that the
1876 * packet has never been sent out before (and thus is not cloned).
1877 */
1878 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1879 struct sk_buff *skb, unsigned int len,
1880 unsigned int mss_now, gfp_t gfp)
1881 {
1882 struct sk_buff *buff;
1883 int nlen = skb->len - len;
1884 u8 flags;
1885
1886 /* All of a TSO frame must be composed of paged data. */
1887 if (skb->len != skb->data_len)
1888 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1889
1890 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1891 if (unlikely(!buff))
1892 return -ENOMEM;
1893
1894 sk->sk_wmem_queued += buff->truesize;
1895 sk_mem_charge(sk, buff->truesize);
1896 buff->truesize += nlen;
1897 skb->truesize -= nlen;
1898
1899 /* Correct the sequence numbers. */
1900 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1901 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1902 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1903
1904 /* PSH and FIN should only be set in the second packet. */
1905 flags = TCP_SKB_CB(skb)->tcp_flags;
1906 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1907 TCP_SKB_CB(buff)->tcp_flags = flags;
1908
1909 /* This packet was never sent out yet, so no SACK bits. */
1910 TCP_SKB_CB(buff)->sacked = 0;
1911
1912 tcp_skb_fragment_eor(skb, buff);
1913
1914 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1915 skb_split(skb, buff, len);
1916 tcp_fragment_tstamp(skb, buff);
1917
1918 /* Fix up tso_factor for both original and new SKB. */
1919 tcp_set_skb_tso_segs(skb, mss_now);
1920 tcp_set_skb_tso_segs(buff, mss_now);
1921
1922 /* Link BUFF into the send queue. */
1923 __skb_header_release(buff);
1924 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1925
1926 return 0;
1927 }
1928
1929 /* Try to defer sending, if possible, in order to minimize the amount
1930 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1931 *
1932 * This algorithm is from John Heffner.
1933 */
1934 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1935 bool *is_cwnd_limited,
1936 bool *is_rwnd_limited,
1937 u32 max_segs)
1938 {
1939 const struct inet_connection_sock *icsk = inet_csk(sk);
1940 u32 age, send_win, cong_win, limit, in_flight;
1941 struct tcp_sock *tp = tcp_sk(sk);
1942 struct sk_buff *head;
1943 int win_divisor;
1944
1945 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1946 goto send_now;
1947
1948 /* Avoid bursty behavior by allowing defer
1949 * only if the last write was recent.
1950 */
1951 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1952 goto send_now;
1953
1954 in_flight = tcp_packets_in_flight(tp);
1955
1956 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1957
1958 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1959
1960 /* From in_flight test above, we know that cwnd > in_flight. */
1961 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1962
1963 limit = min(send_win, cong_win);
1964
1965 /* If a full-sized TSO skb can be sent, do it. */
1966 if (limit >= max_segs * tp->mss_cache)
1967 goto send_now;
1968
1969 /* Middle in queue won't get any more data, full sendable already? */
1970 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1971 goto send_now;
1972
1973 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1974 if (win_divisor) {
1975 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1976
1977 /* If at least some fraction of a window is available,
1978 * just use it.
1979 */
1980 chunk /= win_divisor;
1981 if (limit >= chunk)
1982 goto send_now;
1983 } else {
1984 /* Different approach, try not to defer past a single
1985 * ACK. Receiver should ACK every other full sized
1986 * frame, so if we have space for more than 3 frames
1987 * then send now.
1988 */
1989 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1990 goto send_now;
1991 }
1992
1993 /* TODO : use tsorted_sent_queue ? */
1994 head = tcp_rtx_queue_head(sk);
1995 if (!head)
1996 goto send_now;
1997 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1998 /* If next ACK is likely to come too late (half srtt), do not defer */
1999 if (age < (tp->srtt_us >> 4))
2000 goto send_now;
2001
2002 /* Ok, it looks like it is advisable to defer.
2003 * Three cases are tracked :
2004 * 1) We are cwnd-limited
2005 * 2) We are rwnd-limited
2006 * 3) We are application limited.
2007 */
2008 if (cong_win < send_win) {
2009 if (cong_win <= skb->len) {
2010 *is_cwnd_limited = true;
2011 return true;
2012 }
2013 } else {
2014 if (send_win <= skb->len) {
2015 *is_rwnd_limited = true;
2016 return true;
2017 }
2018 }
2019
2020 /* If this packet won't get more data, do not wait. */
2021 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2022 goto send_now;
2023
2024 return true;
2025
2026 send_now:
2027 return false;
2028 }
2029
2030 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2031 {
2032 struct inet_connection_sock *icsk = inet_csk(sk);
2033 struct tcp_sock *tp = tcp_sk(sk);
2034 struct net *net = sock_net(sk);
2035 u32 interval;
2036 s32 delta;
2037
2038 interval = net->ipv4.sysctl_tcp_probe_interval;
2039 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2040 if (unlikely(delta >= interval * HZ)) {
2041 int mss = tcp_current_mss(sk);
2042
2043 /* Update current search range */
2044 icsk->icsk_mtup.probe_size = 0;
2045 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2046 sizeof(struct tcphdr) +
2047 icsk->icsk_af_ops->net_header_len;
2048 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2049
2050 /* Update probe time stamp */
2051 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2052 }
2053 }
2054
2055 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2056 {
2057 struct sk_buff *skb, *next;
2058
2059 skb = tcp_send_head(sk);
2060 tcp_for_write_queue_from_safe(skb, next, sk) {
2061 if (len <= skb->len)
2062 break;
2063
2064 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2065 return false;
2066
2067 len -= skb->len;
2068 }
2069
2070 return true;
2071 }
2072
2073 /* Create a new MTU probe if we are ready.
2074 * MTU probe is regularly attempting to increase the path MTU by
2075 * deliberately sending larger packets. This discovers routing
2076 * changes resulting in larger path MTUs.
2077 *
2078 * Returns 0 if we should wait to probe (no cwnd available),
2079 * 1 if a probe was sent,
2080 * -1 otherwise
2081 */
2082 static int tcp_mtu_probe(struct sock *sk)
2083 {
2084 struct inet_connection_sock *icsk = inet_csk(sk);
2085 struct tcp_sock *tp = tcp_sk(sk);
2086 struct sk_buff *skb, *nskb, *next;
2087 struct net *net = sock_net(sk);
2088 int probe_size;
2089 int size_needed;
2090 int copy, len;
2091 int mss_now;
2092 int interval;
2093
2094 /* Not currently probing/verifying,
2095 * not in recovery,
2096 * have enough cwnd, and
2097 * not SACKing (the variable headers throw things off)
2098 */
2099 if (likely(!icsk->icsk_mtup.enabled ||
2100 icsk->icsk_mtup.probe_size ||
2101 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2102 tp->snd_cwnd < 11 ||
2103 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2104 return -1;
2105
2106 /* Use binary search for probe_size between tcp_mss_base,
2107 * and current mss_clamp. if (search_high - search_low)
2108 * smaller than a threshold, backoff from probing.
2109 */
2110 mss_now = tcp_current_mss(sk);
2111 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2112 icsk->icsk_mtup.search_low) >> 1);
2113 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2114 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2115 /* When misfortune happens, we are reprobing actively,
2116 * and then reprobe timer has expired. We stick with current
2117 * probing process by not resetting search range to its orignal.
2118 */
2119 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2120 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2121 /* Check whether enough time has elaplased for
2122 * another round of probing.
2123 */
2124 tcp_mtu_check_reprobe(sk);
2125 return -1;
2126 }
2127
2128 /* Have enough data in the send queue to probe? */
2129 if (tp->write_seq - tp->snd_nxt < size_needed)
2130 return -1;
2131
2132 if (tp->snd_wnd < size_needed)
2133 return -1;
2134 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2135 return 0;
2136
2137 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2138 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2139 if (!tcp_packets_in_flight(tp))
2140 return -1;
2141 else
2142 return 0;
2143 }
2144
2145 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2146 return -1;
2147
2148 /* We're allowed to probe. Build it now. */
2149 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2150 if (!nskb)
2151 return -1;
2152 sk->sk_wmem_queued += nskb->truesize;
2153 sk_mem_charge(sk, nskb->truesize);
2154
2155 skb = tcp_send_head(sk);
2156
2157 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2158 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2159 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2160 TCP_SKB_CB(nskb)->sacked = 0;
2161 nskb->csum = 0;
2162 nskb->ip_summed = skb->ip_summed;
2163
2164 tcp_insert_write_queue_before(nskb, skb, sk);
2165 tcp_highest_sack_replace(sk, skb, nskb);
2166
2167 len = 0;
2168 tcp_for_write_queue_from_safe(skb, next, sk) {
2169 copy = min_t(int, skb->len, probe_size - len);
2170 if (nskb->ip_summed) {
2171 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2172 } else {
2173 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2174 skb_put(nskb, copy),
2175 copy, 0);
2176 nskb->csum = csum_block_add(nskb->csum, csum, len);
2177 }
2178
2179 if (skb->len <= copy) {
2180 /* We've eaten all the data from this skb.
2181 * Throw it away. */
2182 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2183 /* If this is the last SKB we copy and eor is set
2184 * we need to propagate it to the new skb.
2185 */
2186 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2187 tcp_skb_collapse_tstamp(nskb, skb);
2188 tcp_unlink_write_queue(skb, sk);
2189 sk_wmem_free_skb(sk, skb);
2190 } else {
2191 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2192 ~(TCPHDR_FIN|TCPHDR_PSH);
2193 if (!skb_shinfo(skb)->nr_frags) {
2194 skb_pull(skb, copy);
2195 if (skb->ip_summed != CHECKSUM_PARTIAL)
2196 skb->csum = csum_partial(skb->data,
2197 skb->len, 0);
2198 } else {
2199 __pskb_trim_head(skb, copy);
2200 tcp_set_skb_tso_segs(skb, mss_now);
2201 }
2202 TCP_SKB_CB(skb)->seq += copy;
2203 }
2204
2205 len += copy;
2206
2207 if (len >= probe_size)
2208 break;
2209 }
2210 tcp_init_tso_segs(nskb, nskb->len);
2211
2212 /* We're ready to send. If this fails, the probe will
2213 * be resegmented into mss-sized pieces by tcp_write_xmit().
2214 */
2215 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2216 /* Decrement cwnd here because we are sending
2217 * effectively two packets. */
2218 tp->snd_cwnd--;
2219 tcp_event_new_data_sent(sk, nskb);
2220
2221 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2222 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2223 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2224
2225 return 1;
2226 }
2227
2228 return -1;
2229 }
2230
2231 static bool tcp_pacing_check(const struct sock *sk)
2232 {
2233 return tcp_needs_internal_pacing(sk) &&
2234 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2235 }
2236
2237 /* TCP Small Queues :
2238 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2239 * (These limits are doubled for retransmits)
2240 * This allows for :
2241 * - better RTT estimation and ACK scheduling
2242 * - faster recovery
2243 * - high rates
2244 * Alas, some drivers / subsystems require a fair amount
2245 * of queued bytes to ensure line rate.
2246 * One example is wifi aggregation (802.11 AMPDU)
2247 */
2248 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2249 unsigned int factor)
2250 {
2251 unsigned int limit;
2252
2253 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2254 limit = min_t(u32, limit,
2255 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2256 limit <<= factor;
2257
2258 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2259 /* Always send skb if rtx queue is empty.
2260 * No need to wait for TX completion to call us back,
2261 * after softirq/tasklet schedule.
2262 * This helps when TX completions are delayed too much.
2263 */
2264 if (tcp_rtx_queue_empty(sk))
2265 return false;
2266
2267 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2268 /* It is possible TX completion already happened
2269 * before we set TSQ_THROTTLED, so we must
2270 * test again the condition.
2271 */
2272 smp_mb__after_atomic();
2273 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2274 return true;
2275 }
2276 return false;
2277 }
2278
2279 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2280 {
2281 const u32 now = tcp_jiffies32;
2282 enum tcp_chrono old = tp->chrono_type;
2283
2284 if (old > TCP_CHRONO_UNSPEC)
2285 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2286 tp->chrono_start = now;
2287 tp->chrono_type = new;
2288 }
2289
2290 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2291 {
2292 struct tcp_sock *tp = tcp_sk(sk);
2293
2294 /* If there are multiple conditions worthy of tracking in a
2295 * chronograph then the highest priority enum takes precedence
2296 * over the other conditions. So that if something "more interesting"
2297 * starts happening, stop the previous chrono and start a new one.
2298 */
2299 if (type > tp->chrono_type)
2300 tcp_chrono_set(tp, type);
2301 }
2302
2303 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2304 {
2305 struct tcp_sock *tp = tcp_sk(sk);
2306
2307
2308 /* There are multiple conditions worthy of tracking in a
2309 * chronograph, so that the highest priority enum takes
2310 * precedence over the other conditions (see tcp_chrono_start).
2311 * If a condition stops, we only stop chrono tracking if
2312 * it's the "most interesting" or current chrono we are
2313 * tracking and starts busy chrono if we have pending data.
2314 */
2315 if (tcp_rtx_and_write_queues_empty(sk))
2316 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2317 else if (type == tp->chrono_type)
2318 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2319 }
2320
2321 /* This routine writes packets to the network. It advances the
2322 * send_head. This happens as incoming acks open up the remote
2323 * window for us.
2324 *
2325 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2326 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2327 * account rare use of URG, this is not a big flaw.
2328 *
2329 * Send at most one packet when push_one > 0. Temporarily ignore
2330 * cwnd limit to force at most one packet out when push_one == 2.
2331
2332 * Returns true, if no segments are in flight and we have queued segments,
2333 * but cannot send anything now because of SWS or another problem.
2334 */
2335 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2336 int push_one, gfp_t gfp)
2337 {
2338 struct tcp_sock *tp = tcp_sk(sk);
2339 struct sk_buff *skb;
2340 unsigned int tso_segs, sent_pkts;
2341 int cwnd_quota;
2342 int result;
2343 bool is_cwnd_limited = false, is_rwnd_limited = false;
2344 u32 max_segs;
2345
2346 sent_pkts = 0;
2347
2348 tcp_mstamp_refresh(tp);
2349 if (!push_one) {
2350 /* Do MTU probing. */
2351 result = tcp_mtu_probe(sk);
2352 if (!result) {
2353 return false;
2354 } else if (result > 0) {
2355 sent_pkts = 1;
2356 }
2357 }
2358
2359 max_segs = tcp_tso_segs(sk, mss_now);
2360 while ((skb = tcp_send_head(sk))) {
2361 unsigned int limit;
2362
2363 if (tcp_pacing_check(sk))
2364 break;
2365
2366 tso_segs = tcp_init_tso_segs(skb, mss_now);
2367 BUG_ON(!tso_segs);
2368
2369 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2370 /* "skb_mstamp" is used as a start point for the retransmit timer */
2371 tcp_update_skb_after_send(tp, skb);
2372 goto repair; /* Skip network transmission */
2373 }
2374
2375 cwnd_quota = tcp_cwnd_test(tp, skb);
2376 if (!cwnd_quota) {
2377 if (push_one == 2)
2378 /* Force out a loss probe pkt. */
2379 cwnd_quota = 1;
2380 else
2381 break;
2382 }
2383
2384 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2385 is_rwnd_limited = true;
2386 break;
2387 }
2388
2389 if (tso_segs == 1) {
2390 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2391 (tcp_skb_is_last(sk, skb) ?
2392 nonagle : TCP_NAGLE_PUSH))))
2393 break;
2394 } else {
2395 if (!push_one &&
2396 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2397 &is_rwnd_limited, max_segs))
2398 break;
2399 }
2400
2401 limit = mss_now;
2402 if (tso_segs > 1 && !tcp_urg_mode(tp))
2403 limit = tcp_mss_split_point(sk, skb, mss_now,
2404 min_t(unsigned int,
2405 cwnd_quota,
2406 max_segs),
2407 nonagle);
2408
2409 if (skb->len > limit &&
2410 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2411 skb, limit, mss_now, gfp)))
2412 break;
2413
2414 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2415 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2416 if (tcp_small_queue_check(sk, skb, 0))
2417 break;
2418
2419 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2420 break;
2421
2422 repair:
2423 /* Advance the send_head. This one is sent out.
2424 * This call will increment packets_out.
2425 */
2426 tcp_event_new_data_sent(sk, skb);
2427
2428 tcp_minshall_update(tp, mss_now, skb);
2429 sent_pkts += tcp_skb_pcount(skb);
2430
2431 if (push_one)
2432 break;
2433 }
2434
2435 if (is_rwnd_limited)
2436 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2437 else
2438 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2439
2440 if (likely(sent_pkts)) {
2441 if (tcp_in_cwnd_reduction(sk))
2442 tp->prr_out += sent_pkts;
2443
2444 /* Send one loss probe per tail loss episode. */
2445 if (push_one != 2)
2446 tcp_schedule_loss_probe(sk, false);
2447 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2448 tcp_cwnd_validate(sk, is_cwnd_limited);
2449 return false;
2450 }
2451 return !tp->packets_out && !tcp_write_queue_empty(sk);
2452 }
2453
2454 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2455 {
2456 struct inet_connection_sock *icsk = inet_csk(sk);
2457 struct tcp_sock *tp = tcp_sk(sk);
2458 u32 timeout, rto_delta_us;
2459 int early_retrans;
2460
2461 /* Don't do any loss probe on a Fast Open connection before 3WHS
2462 * finishes.
2463 */
2464 if (tp->fastopen_rsk)
2465 return false;
2466
2467 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2468 /* Schedule a loss probe in 2*RTT for SACK capable connections
2469 * not in loss recovery, that are either limited by cwnd or application.
2470 */
2471 if ((early_retrans != 3 && early_retrans != 4) ||
2472 !tp->packets_out || !tcp_is_sack(tp) ||
2473 (icsk->icsk_ca_state != TCP_CA_Open &&
2474 icsk->icsk_ca_state != TCP_CA_CWR))
2475 return false;
2476
2477 /* Probe timeout is 2*rtt. Add minimum RTO to account
2478 * for delayed ack when there's one outstanding packet. If no RTT
2479 * sample is available then probe after TCP_TIMEOUT_INIT.
2480 */
2481 if (tp->srtt_us) {
2482 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2483 if (tp->packets_out == 1)
2484 timeout += TCP_RTO_MIN;
2485 else
2486 timeout += TCP_TIMEOUT_MIN;
2487 } else {
2488 timeout = TCP_TIMEOUT_INIT;
2489 }
2490
2491 /* If the RTO formula yields an earlier time, then use that time. */
2492 rto_delta_us = advancing_rto ?
2493 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2494 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2495 if (rto_delta_us > 0)
2496 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2497
2498 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2499 TCP_RTO_MAX);
2500 return true;
2501 }
2502
2503 /* Thanks to skb fast clones, we can detect if a prior transmit of
2504 * a packet is still in a qdisc or driver queue.
2505 * In this case, there is very little point doing a retransmit !
2506 */
2507 static bool skb_still_in_host_queue(const struct sock *sk,
2508 const struct sk_buff *skb)
2509 {
2510 if (unlikely(skb_fclone_busy(sk, skb))) {
2511 NET_INC_STATS(sock_net(sk),
2512 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2513 return true;
2514 }
2515 return false;
2516 }
2517
2518 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2519 * retransmit the last segment.
2520 */
2521 void tcp_send_loss_probe(struct sock *sk)
2522 {
2523 struct tcp_sock *tp = tcp_sk(sk);
2524 struct sk_buff *skb;
2525 int pcount;
2526 int mss = tcp_current_mss(sk);
2527
2528 skb = tcp_send_head(sk);
2529 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2530 pcount = tp->packets_out;
2531 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2532 if (tp->packets_out > pcount)
2533 goto probe_sent;
2534 goto rearm_timer;
2535 }
2536 skb = skb_rb_last(&sk->tcp_rtx_queue);
2537
2538 if (unlikely(!skb)) {
2539 WARN_ONCE(tp->packets_out,
2540 "invalid inflight: %u state %u cwnd %u mss %d\n",
2541 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2542 inet_csk(sk)->icsk_pending = 0;
2543 return;
2544 }
2545
2546 /* At most one outstanding TLP retransmission. */
2547 if (tp->tlp_high_seq)
2548 goto rearm_timer;
2549
2550 if (skb_still_in_host_queue(sk, skb))
2551 goto rearm_timer;
2552
2553 pcount = tcp_skb_pcount(skb);
2554 if (WARN_ON(!pcount))
2555 goto rearm_timer;
2556
2557 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2558 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2559 (pcount - 1) * mss, mss,
2560 GFP_ATOMIC)))
2561 goto rearm_timer;
2562 skb = skb_rb_next(skb);
2563 }
2564
2565 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2566 goto rearm_timer;
2567
2568 if (__tcp_retransmit_skb(sk, skb, 1))
2569 goto rearm_timer;
2570
2571 /* Record snd_nxt for loss detection. */
2572 tp->tlp_high_seq = tp->snd_nxt;
2573
2574 probe_sent:
2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2576 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2577 inet_csk(sk)->icsk_pending = 0;
2578 rearm_timer:
2579 tcp_rearm_rto(sk);
2580 }
2581
2582 /* Push out any pending frames which were held back due to
2583 * TCP_CORK or attempt at coalescing tiny packets.
2584 * The socket must be locked by the caller.
2585 */
2586 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2587 int nonagle)
2588 {
2589 /* If we are closed, the bytes will have to remain here.
2590 * In time closedown will finish, we empty the write queue and
2591 * all will be happy.
2592 */
2593 if (unlikely(sk->sk_state == TCP_CLOSE))
2594 return;
2595
2596 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2597 sk_gfp_mask(sk, GFP_ATOMIC)))
2598 tcp_check_probe_timer(sk);
2599 }
2600
2601 /* Send _single_ skb sitting at the send head. This function requires
2602 * true push pending frames to setup probe timer etc.
2603 */
2604 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2605 {
2606 struct sk_buff *skb = tcp_send_head(sk);
2607
2608 BUG_ON(!skb || skb->len < mss_now);
2609
2610 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2611 }
2612
2613 /* This function returns the amount that we can raise the
2614 * usable window based on the following constraints
2615 *
2616 * 1. The window can never be shrunk once it is offered (RFC 793)
2617 * 2. We limit memory per socket
2618 *
2619 * RFC 1122:
2620 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2621 * RECV.NEXT + RCV.WIN fixed until:
2622 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2623 *
2624 * i.e. don't raise the right edge of the window until you can raise
2625 * it at least MSS bytes.
2626 *
2627 * Unfortunately, the recommended algorithm breaks header prediction,
2628 * since header prediction assumes th->window stays fixed.
2629 *
2630 * Strictly speaking, keeping th->window fixed violates the receiver
2631 * side SWS prevention criteria. The problem is that under this rule
2632 * a stream of single byte packets will cause the right side of the
2633 * window to always advance by a single byte.
2634 *
2635 * Of course, if the sender implements sender side SWS prevention
2636 * then this will not be a problem.
2637 *
2638 * BSD seems to make the following compromise:
2639 *
2640 * If the free space is less than the 1/4 of the maximum
2641 * space available and the free space is less than 1/2 mss,
2642 * then set the window to 0.
2643 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2644 * Otherwise, just prevent the window from shrinking
2645 * and from being larger than the largest representable value.
2646 *
2647 * This prevents incremental opening of the window in the regime
2648 * where TCP is limited by the speed of the reader side taking
2649 * data out of the TCP receive queue. It does nothing about
2650 * those cases where the window is constrained on the sender side
2651 * because the pipeline is full.
2652 *
2653 * BSD also seems to "accidentally" limit itself to windows that are a
2654 * multiple of MSS, at least until the free space gets quite small.
2655 * This would appear to be a side effect of the mbuf implementation.
2656 * Combining these two algorithms results in the observed behavior
2657 * of having a fixed window size at almost all times.
2658 *
2659 * Below we obtain similar behavior by forcing the offered window to
2660 * a multiple of the mss when it is feasible to do so.
2661 *
2662 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2663 * Regular options like TIMESTAMP are taken into account.
2664 */
2665 u32 __tcp_select_window(struct sock *sk)
2666 {
2667 struct inet_connection_sock *icsk = inet_csk(sk);
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 /* MSS for the peer's data. Previous versions used mss_clamp
2670 * here. I don't know if the value based on our guesses
2671 * of peer's MSS is better for the performance. It's more correct
2672 * but may be worse for the performance because of rcv_mss
2673 * fluctuations. --SAW 1998/11/1
2674 */
2675 int mss = icsk->icsk_ack.rcv_mss;
2676 int free_space = tcp_space(sk);
2677 int allowed_space = tcp_full_space(sk);
2678 int full_space = min_t(int, tp->window_clamp, allowed_space);
2679 int window;
2680
2681 if (unlikely(mss > full_space)) {
2682 mss = full_space;
2683 if (mss <= 0)
2684 return 0;
2685 }
2686 if (free_space < (full_space >> 1)) {
2687 icsk->icsk_ack.quick = 0;
2688
2689 if (tcp_under_memory_pressure(sk))
2690 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2691 4U * tp->advmss);
2692
2693 /* free_space might become our new window, make sure we don't
2694 * increase it due to wscale.
2695 */
2696 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2697
2698 /* if free space is less than mss estimate, or is below 1/16th
2699 * of the maximum allowed, try to move to zero-window, else
2700 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2701 * new incoming data is dropped due to memory limits.
2702 * With large window, mss test triggers way too late in order
2703 * to announce zero window in time before rmem limit kicks in.
2704 */
2705 if (free_space < (allowed_space >> 4) || free_space < mss)
2706 return 0;
2707 }
2708
2709 if (free_space > tp->rcv_ssthresh)
2710 free_space = tp->rcv_ssthresh;
2711
2712 /* Don't do rounding if we are using window scaling, since the
2713 * scaled window will not line up with the MSS boundary anyway.
2714 */
2715 if (tp->rx_opt.rcv_wscale) {
2716 window = free_space;
2717
2718 /* Advertise enough space so that it won't get scaled away.
2719 * Import case: prevent zero window announcement if
2720 * 1<<rcv_wscale > mss.
2721 */
2722 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2723 } else {
2724 window = tp->rcv_wnd;
2725 /* Get the largest window that is a nice multiple of mss.
2726 * Window clamp already applied above.
2727 * If our current window offering is within 1 mss of the
2728 * free space we just keep it. This prevents the divide
2729 * and multiply from happening most of the time.
2730 * We also don't do any window rounding when the free space
2731 * is too small.
2732 */
2733 if (window <= free_space - mss || window > free_space)
2734 window = rounddown(free_space, mss);
2735 else if (mss == full_space &&
2736 free_space > window + (full_space >> 1))
2737 window = free_space;
2738 }
2739
2740 return window;
2741 }
2742
2743 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2744 const struct sk_buff *next_skb)
2745 {
2746 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2747 const struct skb_shared_info *next_shinfo =
2748 skb_shinfo(next_skb);
2749 struct skb_shared_info *shinfo = skb_shinfo(skb);
2750
2751 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2752 shinfo->tskey = next_shinfo->tskey;
2753 TCP_SKB_CB(skb)->txstamp_ack |=
2754 TCP_SKB_CB(next_skb)->txstamp_ack;
2755 }
2756 }
2757
2758 /* Collapses two adjacent SKB's during retransmission. */
2759 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2760 {
2761 struct tcp_sock *tp = tcp_sk(sk);
2762 struct sk_buff *next_skb = skb_rb_next(skb);
2763 int skb_size, next_skb_size;
2764
2765 skb_size = skb->len;
2766 next_skb_size = next_skb->len;
2767
2768 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2769
2770 if (next_skb_size) {
2771 if (next_skb_size <= skb_availroom(skb))
2772 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2773 next_skb_size);
2774 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2775 return false;
2776 }
2777 tcp_highest_sack_replace(sk, next_skb, skb);
2778
2779 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2780 skb->ip_summed = CHECKSUM_PARTIAL;
2781
2782 if (skb->ip_summed != CHECKSUM_PARTIAL)
2783 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2784
2785 /* Update sequence range on original skb. */
2786 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2787
2788 /* Merge over control information. This moves PSH/FIN etc. over */
2789 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2790
2791 /* All done, get rid of second SKB and account for it so
2792 * packet counting does not break.
2793 */
2794 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2795 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2796
2797 /* changed transmit queue under us so clear hints */
2798 tcp_clear_retrans_hints_partial(tp);
2799 if (next_skb == tp->retransmit_skb_hint)
2800 tp->retransmit_skb_hint = skb;
2801
2802 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2803
2804 tcp_skb_collapse_tstamp(skb, next_skb);
2805
2806 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2807 return true;
2808 }
2809
2810 /* Check if coalescing SKBs is legal. */
2811 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2812 {
2813 if (tcp_skb_pcount(skb) > 1)
2814 return false;
2815 if (skb_cloned(skb))
2816 return false;
2817 /* Some heuristics for collapsing over SACK'd could be invented */
2818 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2819 return false;
2820
2821 return true;
2822 }
2823
2824 /* Collapse packets in the retransmit queue to make to create
2825 * less packets on the wire. This is only done on retransmission.
2826 */
2827 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2828 int space)
2829 {
2830 struct tcp_sock *tp = tcp_sk(sk);
2831 struct sk_buff *skb = to, *tmp;
2832 bool first = true;
2833
2834 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2835 return;
2836 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2837 return;
2838
2839 skb_rbtree_walk_from_safe(skb, tmp) {
2840 if (!tcp_can_collapse(sk, skb))
2841 break;
2842
2843 if (!tcp_skb_can_collapse_to(to))
2844 break;
2845
2846 space -= skb->len;
2847
2848 if (first) {
2849 first = false;
2850 continue;
2851 }
2852
2853 if (space < 0)
2854 break;
2855
2856 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2857 break;
2858
2859 if (!tcp_collapse_retrans(sk, to))
2860 break;
2861 }
2862 }
2863
2864 /* This retransmits one SKB. Policy decisions and retransmit queue
2865 * state updates are done by the caller. Returns non-zero if an
2866 * error occurred which prevented the send.
2867 */
2868 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2869 {
2870 struct inet_connection_sock *icsk = inet_csk(sk);
2871 struct tcp_sock *tp = tcp_sk(sk);
2872 unsigned int cur_mss;
2873 int diff, len, err;
2874
2875
2876 /* Inconclusive MTU probe */
2877 if (icsk->icsk_mtup.probe_size)
2878 icsk->icsk_mtup.probe_size = 0;
2879
2880 /* Do not sent more than we queued. 1/4 is reserved for possible
2881 * copying overhead: fragmentation, tunneling, mangling etc.
2882 */
2883 if (refcount_read(&sk->sk_wmem_alloc) >
2884 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2885 sk->sk_sndbuf))
2886 return -EAGAIN;
2887
2888 if (skb_still_in_host_queue(sk, skb))
2889 return -EBUSY;
2890
2891 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2892 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2893 WARN_ON_ONCE(1);
2894 return -EINVAL;
2895 }
2896 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2897 return -ENOMEM;
2898 }
2899
2900 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2901 return -EHOSTUNREACH; /* Routing failure or similar. */
2902
2903 cur_mss = tcp_current_mss(sk);
2904
2905 /* If receiver has shrunk his window, and skb is out of
2906 * new window, do not retransmit it. The exception is the
2907 * case, when window is shrunk to zero. In this case
2908 * our retransmit serves as a zero window probe.
2909 */
2910 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2911 TCP_SKB_CB(skb)->seq != tp->snd_una)
2912 return -EAGAIN;
2913
2914 len = cur_mss * segs;
2915 if (skb->len > len) {
2916 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2917 cur_mss, GFP_ATOMIC))
2918 return -ENOMEM; /* We'll try again later. */
2919 } else {
2920 if (skb_unclone(skb, GFP_ATOMIC))
2921 return -ENOMEM;
2922
2923 diff = tcp_skb_pcount(skb);
2924 tcp_set_skb_tso_segs(skb, cur_mss);
2925 diff -= tcp_skb_pcount(skb);
2926 if (diff)
2927 tcp_adjust_pcount(sk, skb, diff);
2928 if (skb->len < cur_mss)
2929 tcp_retrans_try_collapse(sk, skb, cur_mss);
2930 }
2931
2932 /* RFC3168, section 6.1.1.1. ECN fallback */
2933 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2934 tcp_ecn_clear_syn(sk, skb);
2935
2936 /* Update global and local TCP statistics. */
2937 segs = tcp_skb_pcount(skb);
2938 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2939 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2940 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2941 tp->total_retrans += segs;
2942
2943 /* make sure skb->data is aligned on arches that require it
2944 * and check if ack-trimming & collapsing extended the headroom
2945 * beyond what csum_start can cover.
2946 */
2947 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2948 skb_headroom(skb) >= 0xFFFF)) {
2949 struct sk_buff *nskb;
2950
2951 tcp_skb_tsorted_save(skb) {
2952 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2953 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2954 -ENOBUFS;
2955 } tcp_skb_tsorted_restore(skb);
2956
2957 if (!err) {
2958 tcp_update_skb_after_send(tp, skb);
2959 tcp_rate_skb_sent(sk, skb);
2960 }
2961 } else {
2962 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2963 }
2964
2965 if (likely(!err)) {
2966 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2967 trace_tcp_retransmit_skb(sk, skb);
2968 } else if (err != -EBUSY) {
2969 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2970 }
2971 return err;
2972 }
2973
2974 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2975 {
2976 struct tcp_sock *tp = tcp_sk(sk);
2977 int err = __tcp_retransmit_skb(sk, skb, segs);
2978
2979 if (err == 0) {
2980 #if FASTRETRANS_DEBUG > 0
2981 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2982 net_dbg_ratelimited("retrans_out leaked\n");
2983 }
2984 #endif
2985 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2986 tp->retrans_out += tcp_skb_pcount(skb);
2987
2988 /* Save stamp of the first retransmit. */
2989 if (!tp->retrans_stamp)
2990 tp->retrans_stamp = tcp_skb_timestamp(skb);
2991
2992 }
2993
2994 if (tp->undo_retrans < 0)
2995 tp->undo_retrans = 0;
2996 tp->undo_retrans += tcp_skb_pcount(skb);
2997 return err;
2998 }
2999
3000 /* This gets called after a retransmit timeout, and the initially
3001 * retransmitted data is acknowledged. It tries to continue
3002 * resending the rest of the retransmit queue, until either
3003 * we've sent it all or the congestion window limit is reached.
3004 */
3005 void tcp_xmit_retransmit_queue(struct sock *sk)
3006 {
3007 const struct inet_connection_sock *icsk = inet_csk(sk);
3008 struct sk_buff *skb, *rtx_head, *hole = NULL;
3009 struct tcp_sock *tp = tcp_sk(sk);
3010 u32 max_segs;
3011 int mib_idx;
3012
3013 if (!tp->packets_out)
3014 return;
3015
3016 rtx_head = tcp_rtx_queue_head(sk);
3017 skb = tp->retransmit_skb_hint ?: rtx_head;
3018 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3019 skb_rbtree_walk_from(skb) {
3020 __u8 sacked;
3021 int segs;
3022
3023 if (tcp_pacing_check(sk))
3024 break;
3025
3026 /* we could do better than to assign each time */
3027 if (!hole)
3028 tp->retransmit_skb_hint = skb;
3029
3030 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3031 if (segs <= 0)
3032 return;
3033 sacked = TCP_SKB_CB(skb)->sacked;
3034 /* In case tcp_shift_skb_data() have aggregated large skbs,
3035 * we need to make sure not sending too bigs TSO packets
3036 */
3037 segs = min_t(int, segs, max_segs);
3038
3039 if (tp->retrans_out >= tp->lost_out) {
3040 break;
3041 } else if (!(sacked & TCPCB_LOST)) {
3042 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3043 hole = skb;
3044 continue;
3045
3046 } else {
3047 if (icsk->icsk_ca_state != TCP_CA_Loss)
3048 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3049 else
3050 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3051 }
3052
3053 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3054 continue;
3055
3056 if (tcp_small_queue_check(sk, skb, 1))
3057 return;
3058
3059 if (tcp_retransmit_skb(sk, skb, segs))
3060 return;
3061
3062 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3063
3064 if (tcp_in_cwnd_reduction(sk))
3065 tp->prr_out += tcp_skb_pcount(skb);
3066
3067 if (skb == rtx_head &&
3068 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3069 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3070 inet_csk(sk)->icsk_rto,
3071 TCP_RTO_MAX);
3072 }
3073 }
3074
3075 /* We allow to exceed memory limits for FIN packets to expedite
3076 * connection tear down and (memory) recovery.
3077 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3078 * or even be forced to close flow without any FIN.
3079 * In general, we want to allow one skb per socket to avoid hangs
3080 * with edge trigger epoll()
3081 */
3082 void sk_forced_mem_schedule(struct sock *sk, int size)
3083 {
3084 int amt;
3085
3086 if (size <= sk->sk_forward_alloc)
3087 return;
3088 amt = sk_mem_pages(size);
3089 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3090 sk_memory_allocated_add(sk, amt);
3091
3092 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3093 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3094 }
3095
3096 /* Send a FIN. The caller locks the socket for us.
3097 * We should try to send a FIN packet really hard, but eventually give up.
3098 */
3099 void tcp_send_fin(struct sock *sk)
3100 {
3101 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3102 struct tcp_sock *tp = tcp_sk(sk);
3103
3104 /* Optimization, tack on the FIN if we have one skb in write queue and
3105 * this skb was not yet sent, or we are under memory pressure.
3106 * Note: in the latter case, FIN packet will be sent after a timeout,
3107 * as TCP stack thinks it has already been transmitted.
3108 */
3109 if (!tskb && tcp_under_memory_pressure(sk))
3110 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3111
3112 if (tskb) {
3113 coalesce:
3114 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3115 TCP_SKB_CB(tskb)->end_seq++;
3116 tp->write_seq++;
3117 if (tcp_write_queue_empty(sk)) {
3118 /* This means tskb was already sent.
3119 * Pretend we included the FIN on previous transmit.
3120 * We need to set tp->snd_nxt to the value it would have
3121 * if FIN had been sent. This is because retransmit path
3122 * does not change tp->snd_nxt.
3123 */
3124 tp->snd_nxt++;
3125 return;
3126 }
3127 } else {
3128 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3129 if (unlikely(!skb)) {
3130 if (tskb)
3131 goto coalesce;
3132 return;
3133 }
3134 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3135 skb_reserve(skb, MAX_TCP_HEADER);
3136 sk_forced_mem_schedule(sk, skb->truesize);
3137 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3138 tcp_init_nondata_skb(skb, tp->write_seq,
3139 TCPHDR_ACK | TCPHDR_FIN);
3140 tcp_queue_skb(sk, skb);
3141 }
3142 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3143 }
3144
3145 /* We get here when a process closes a file descriptor (either due to
3146 * an explicit close() or as a byproduct of exit()'ing) and there
3147 * was unread data in the receive queue. This behavior is recommended
3148 * by RFC 2525, section 2.17. -DaveM
3149 */
3150 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3151 {
3152 struct sk_buff *skb;
3153
3154 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3155
3156 /* NOTE: No TCP options attached and we never retransmit this. */
3157 skb = alloc_skb(MAX_TCP_HEADER, priority);
3158 if (!skb) {
3159 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3160 return;
3161 }
3162
3163 /* Reserve space for headers and prepare control bits. */
3164 skb_reserve(skb, MAX_TCP_HEADER);
3165 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3166 TCPHDR_ACK | TCPHDR_RST);
3167 tcp_mstamp_refresh(tcp_sk(sk));
3168 /* Send it off. */
3169 if (tcp_transmit_skb(sk, skb, 0, priority))
3170 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3171
3172 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3173 * skb here is different to the troublesome skb, so use NULL
3174 */
3175 trace_tcp_send_reset(sk, NULL);
3176 }
3177
3178 /* Send a crossed SYN-ACK during socket establishment.
3179 * WARNING: This routine must only be called when we have already sent
3180 * a SYN packet that crossed the incoming SYN that caused this routine
3181 * to get called. If this assumption fails then the initial rcv_wnd
3182 * and rcv_wscale values will not be correct.
3183 */
3184 int tcp_send_synack(struct sock *sk)
3185 {
3186 struct sk_buff *skb;
3187
3188 skb = tcp_rtx_queue_head(sk);
3189 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3190 pr_err("%s: wrong queue state\n", __func__);
3191 return -EFAULT;
3192 }
3193 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3194 if (skb_cloned(skb)) {
3195 struct sk_buff *nskb;
3196
3197 tcp_skb_tsorted_save(skb) {
3198 nskb = skb_copy(skb, GFP_ATOMIC);
3199 } tcp_skb_tsorted_restore(skb);
3200 if (!nskb)
3201 return -ENOMEM;
3202 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3203 tcp_rtx_queue_unlink_and_free(skb, sk);
3204 __skb_header_release(nskb);
3205 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3206 sk->sk_wmem_queued += nskb->truesize;
3207 sk_mem_charge(sk, nskb->truesize);
3208 skb = nskb;
3209 }
3210
3211 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3212 tcp_ecn_send_synack(sk, skb);
3213 }
3214 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3215 }
3216
3217 /**
3218 * tcp_make_synack - Prepare a SYN-ACK.
3219 * sk: listener socket
3220 * dst: dst entry attached to the SYNACK
3221 * req: request_sock pointer
3222 *
3223 * Allocate one skb and build a SYNACK packet.
3224 * @dst is consumed : Caller should not use it again.
3225 */
3226 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3227 struct request_sock *req,
3228 struct tcp_fastopen_cookie *foc,
3229 enum tcp_synack_type synack_type)
3230 {
3231 struct inet_request_sock *ireq = inet_rsk(req);
3232 const struct tcp_sock *tp = tcp_sk(sk);
3233 struct tcp_md5sig_key *md5 = NULL;
3234 struct tcp_out_options opts;
3235 struct sk_buff *skb;
3236 int tcp_header_size;
3237 struct tcphdr *th;
3238 int mss;
3239
3240 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3241 if (unlikely(!skb)) {
3242 dst_release(dst);
3243 return NULL;
3244 }
3245 /* Reserve space for headers. */
3246 skb_reserve(skb, MAX_TCP_HEADER);
3247
3248 switch (synack_type) {
3249 case TCP_SYNACK_NORMAL:
3250 skb_set_owner_w(skb, req_to_sk(req));
3251 break;
3252 case TCP_SYNACK_COOKIE:
3253 /* Under synflood, we do not attach skb to a socket,
3254 * to avoid false sharing.
3255 */
3256 break;
3257 case TCP_SYNACK_FASTOPEN:
3258 /* sk is a const pointer, because we want to express multiple
3259 * cpu might call us concurrently.
3260 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3261 */
3262 skb_set_owner_w(skb, (struct sock *)sk);
3263 break;
3264 }
3265 skb_dst_set(skb, dst);
3266
3267 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3268
3269 memset(&opts, 0, sizeof(opts));
3270 #ifdef CONFIG_SYN_COOKIES
3271 if (unlikely(req->cookie_ts))
3272 skb->skb_mstamp = cookie_init_timestamp(req);
3273 else
3274 #endif
3275 skb->skb_mstamp = tcp_clock_us();
3276
3277 #ifdef CONFIG_TCP_MD5SIG
3278 rcu_read_lock();
3279 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3280 #endif
3281 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3282 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3283 foc) + sizeof(*th);
3284
3285 skb_push(skb, tcp_header_size);
3286 skb_reset_transport_header(skb);
3287
3288 th = (struct tcphdr *)skb->data;
3289 memset(th, 0, sizeof(struct tcphdr));
3290 th->syn = 1;
3291 th->ack = 1;
3292 tcp_ecn_make_synack(req, th);
3293 th->source = htons(ireq->ir_num);
3294 th->dest = ireq->ir_rmt_port;
3295 skb->mark = ireq->ir_mark;
3296 skb->ip_summed = CHECKSUM_PARTIAL;
3297 th->seq = htonl(tcp_rsk(req)->snt_isn);
3298 /* XXX data is queued and acked as is. No buffer/window check */
3299 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3300
3301 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3302 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3303 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3304 th->doff = (tcp_header_size >> 2);
3305 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3306
3307 #ifdef CONFIG_TCP_MD5SIG
3308 /* Okay, we have all we need - do the md5 hash if needed */
3309 if (md5)
3310 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3311 md5, req_to_sk(req), skb);
3312 rcu_read_unlock();
3313 #endif
3314
3315 /* Do not fool tcpdump (if any), clean our debris */
3316 skb->tstamp = 0;
3317 return skb;
3318 }
3319 EXPORT_SYMBOL(tcp_make_synack);
3320
3321 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3322 {
3323 struct inet_connection_sock *icsk = inet_csk(sk);
3324 const struct tcp_congestion_ops *ca;
3325 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3326
3327 if (ca_key == TCP_CA_UNSPEC)
3328 return;
3329
3330 rcu_read_lock();
3331 ca = tcp_ca_find_key(ca_key);
3332 if (likely(ca && try_module_get(ca->owner))) {
3333 module_put(icsk->icsk_ca_ops->owner);
3334 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3335 icsk->icsk_ca_ops = ca;
3336 }
3337 rcu_read_unlock();
3338 }
3339
3340 /* Do all connect socket setups that can be done AF independent. */
3341 static void tcp_connect_init(struct sock *sk)
3342 {
3343 const struct dst_entry *dst = __sk_dst_get(sk);
3344 struct tcp_sock *tp = tcp_sk(sk);
3345 __u8 rcv_wscale;
3346 u32 rcv_wnd;
3347
3348 /* We'll fix this up when we get a response from the other end.
3349 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3350 */
3351 tp->tcp_header_len = sizeof(struct tcphdr);
3352 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3353 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3354
3355 #ifdef CONFIG_TCP_MD5SIG
3356 if (tp->af_specific->md5_lookup(sk, sk))
3357 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3358 #endif
3359
3360 /* If user gave his TCP_MAXSEG, record it to clamp */
3361 if (tp->rx_opt.user_mss)
3362 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3363 tp->max_window = 0;
3364 tcp_mtup_init(sk);
3365 tcp_sync_mss(sk, dst_mtu(dst));
3366
3367 tcp_ca_dst_init(sk, dst);
3368
3369 if (!tp->window_clamp)
3370 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3371 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3372
3373 tcp_initialize_rcv_mss(sk);
3374
3375 /* limit the window selection if the user enforce a smaller rx buffer */
3376 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3377 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3378 tp->window_clamp = tcp_full_space(sk);
3379
3380 rcv_wnd = tcp_rwnd_init_bpf(sk);
3381 if (rcv_wnd == 0)
3382 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3383
3384 tcp_select_initial_window(sk, tcp_full_space(sk),
3385 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3386 &tp->rcv_wnd,
3387 &tp->window_clamp,
3388 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3389 &rcv_wscale,
3390 rcv_wnd);
3391
3392 tp->rx_opt.rcv_wscale = rcv_wscale;
3393 tp->rcv_ssthresh = tp->rcv_wnd;
3394
3395 sk->sk_err = 0;
3396 sock_reset_flag(sk, SOCK_DONE);
3397 tp->snd_wnd = 0;
3398 tcp_init_wl(tp, 0);
3399 tcp_write_queue_purge(sk);
3400 tp->snd_una = tp->write_seq;
3401 tp->snd_sml = tp->write_seq;
3402 tp->snd_up = tp->write_seq;
3403 tp->snd_nxt = tp->write_seq;
3404
3405 if (likely(!tp->repair))
3406 tp->rcv_nxt = 0;
3407 else
3408 tp->rcv_tstamp = tcp_jiffies32;
3409 tp->rcv_wup = tp->rcv_nxt;
3410 tp->copied_seq = tp->rcv_nxt;
3411
3412 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3413 inet_csk(sk)->icsk_retransmits = 0;
3414 tcp_clear_retrans(tp);
3415 }
3416
3417 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3418 {
3419 struct tcp_sock *tp = tcp_sk(sk);
3420 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3421
3422 tcb->end_seq += skb->len;
3423 __skb_header_release(skb);
3424 sk->sk_wmem_queued += skb->truesize;
3425 sk_mem_charge(sk, skb->truesize);
3426 tp->write_seq = tcb->end_seq;
3427 tp->packets_out += tcp_skb_pcount(skb);
3428 }
3429
3430 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3431 * queue a data-only packet after the regular SYN, such that regular SYNs
3432 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3433 * only the SYN sequence, the data are retransmitted in the first ACK.
3434 * If cookie is not cached or other error occurs, falls back to send a
3435 * regular SYN with Fast Open cookie request option.
3436 */
3437 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3438 {
3439 struct tcp_sock *tp = tcp_sk(sk);
3440 struct tcp_fastopen_request *fo = tp->fastopen_req;
3441 int space, err = 0;
3442 struct sk_buff *syn_data;
3443
3444 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3445 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3446 goto fallback;
3447
3448 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3449 * user-MSS. Reserve maximum option space for middleboxes that add
3450 * private TCP options. The cost is reduced data space in SYN :(
3451 */
3452 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3453
3454 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3455 MAX_TCP_OPTION_SPACE;
3456
3457 space = min_t(size_t, space, fo->size);
3458
3459 /* limit to order-0 allocations */
3460 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3461
3462 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3463 if (!syn_data)
3464 goto fallback;
3465 syn_data->ip_summed = CHECKSUM_PARTIAL;
3466 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3467 if (space) {
3468 int copied = copy_from_iter(skb_put(syn_data, space), space,
3469 &fo->data->msg_iter);
3470 if (unlikely(!copied)) {
3471 tcp_skb_tsorted_anchor_cleanup(syn_data);
3472 kfree_skb(syn_data);
3473 goto fallback;
3474 }
3475 if (copied != space) {
3476 skb_trim(syn_data, copied);
3477 space = copied;
3478 }
3479 }
3480 /* No more data pending in inet_wait_for_connect() */
3481 if (space == fo->size)
3482 fo->data = NULL;
3483 fo->copied = space;
3484
3485 tcp_connect_queue_skb(sk, syn_data);
3486 if (syn_data->len)
3487 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3488
3489 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3490
3491 syn->skb_mstamp = syn_data->skb_mstamp;
3492
3493 /* Now full SYN+DATA was cloned and sent (or not),
3494 * remove the SYN from the original skb (syn_data)
3495 * we keep in write queue in case of a retransmit, as we
3496 * also have the SYN packet (with no data) in the same queue.
3497 */
3498 TCP_SKB_CB(syn_data)->seq++;
3499 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3500 if (!err) {
3501 tp->syn_data = (fo->copied > 0);
3502 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3504 goto done;
3505 }
3506
3507 /* data was not sent, put it in write_queue */
3508 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3509 tp->packets_out -= tcp_skb_pcount(syn_data);
3510
3511 fallback:
3512 /* Send a regular SYN with Fast Open cookie request option */
3513 if (fo->cookie.len > 0)
3514 fo->cookie.len = 0;
3515 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3516 if (err)
3517 tp->syn_fastopen = 0;
3518 done:
3519 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3520 return err;
3521 }
3522
3523 /* Build a SYN and send it off. */
3524 int tcp_connect(struct sock *sk)
3525 {
3526 struct tcp_sock *tp = tcp_sk(sk);
3527 struct sk_buff *buff;
3528 int err;
3529
3530 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3531
3532 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3533 return -EHOSTUNREACH; /* Routing failure or similar. */
3534
3535 tcp_connect_init(sk);
3536
3537 if (unlikely(tp->repair)) {
3538 tcp_finish_connect(sk, NULL);
3539 return 0;
3540 }
3541
3542 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3543 if (unlikely(!buff))
3544 return -ENOBUFS;
3545
3546 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3547 tcp_mstamp_refresh(tp);
3548 tp->retrans_stamp = tcp_time_stamp(tp);
3549 tcp_connect_queue_skb(sk, buff);
3550 tcp_ecn_send_syn(sk, buff);
3551 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3552
3553 /* Send off SYN; include data in Fast Open. */
3554 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3555 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3556 if (err == -ECONNREFUSED)
3557 return err;
3558
3559 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3560 * in order to make this packet get counted in tcpOutSegs.
3561 */
3562 tp->snd_nxt = tp->write_seq;
3563 tp->pushed_seq = tp->write_seq;
3564 buff = tcp_send_head(sk);
3565 if (unlikely(buff)) {
3566 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3567 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3568 }
3569 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3570
3571 /* Timer for repeating the SYN until an answer. */
3572 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3573 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3574 return 0;
3575 }
3576 EXPORT_SYMBOL(tcp_connect);
3577
3578 /* Send out a delayed ack, the caller does the policy checking
3579 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3580 * for details.
3581 */
3582 void tcp_send_delayed_ack(struct sock *sk)
3583 {
3584 struct inet_connection_sock *icsk = inet_csk(sk);
3585 int ato = icsk->icsk_ack.ato;
3586 unsigned long timeout;
3587
3588 if (ato > TCP_DELACK_MIN) {
3589 const struct tcp_sock *tp = tcp_sk(sk);
3590 int max_ato = HZ / 2;
3591
3592 if (icsk->icsk_ack.pingpong ||
3593 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3594 max_ato = TCP_DELACK_MAX;
3595
3596 /* Slow path, intersegment interval is "high". */
3597
3598 /* If some rtt estimate is known, use it to bound delayed ack.
3599 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3600 * directly.
3601 */
3602 if (tp->srtt_us) {
3603 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3604 TCP_DELACK_MIN);
3605
3606 if (rtt < max_ato)
3607 max_ato = rtt;
3608 }
3609
3610 ato = min(ato, max_ato);
3611 }
3612
3613 /* Stay within the limit we were given */
3614 timeout = jiffies + ato;
3615
3616 /* Use new timeout only if there wasn't a older one earlier. */
3617 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3618 /* If delack timer was blocked or is about to expire,
3619 * send ACK now.
3620 */
3621 if (icsk->icsk_ack.blocked ||
3622 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3623 tcp_send_ack(sk);
3624 return;
3625 }
3626
3627 if (!time_before(timeout, icsk->icsk_ack.timeout))
3628 timeout = icsk->icsk_ack.timeout;
3629 }
3630 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3631 icsk->icsk_ack.timeout = timeout;
3632 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3633 }
3634
3635 /* This routine sends an ack and also updates the window. */
3636 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3637 {
3638 struct sk_buff *buff;
3639
3640 /* If we have been reset, we may not send again. */
3641 if (sk->sk_state == TCP_CLOSE)
3642 return;
3643
3644 /* We are not putting this on the write queue, so
3645 * tcp_transmit_skb() will set the ownership to this
3646 * sock.
3647 */
3648 buff = alloc_skb(MAX_TCP_HEADER,
3649 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3650 if (unlikely(!buff)) {
3651 inet_csk_schedule_ack(sk);
3652 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3653 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3654 TCP_DELACK_MAX, TCP_RTO_MAX);
3655 return;
3656 }
3657
3658 /* Reserve space for headers and prepare control bits. */
3659 skb_reserve(buff, MAX_TCP_HEADER);
3660 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3661
3662 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3663 * too much.
3664 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3665 */
3666 skb_set_tcp_pure_ack(buff);
3667
3668 /* Send it off, this clears delayed acks for us. */
3669 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3670 }
3671 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3672
3673 void tcp_send_ack(struct sock *sk)
3674 {
3675 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3676 }
3677
3678 /* This routine sends a packet with an out of date sequence
3679 * number. It assumes the other end will try to ack it.
3680 *
3681 * Question: what should we make while urgent mode?
3682 * 4.4BSD forces sending single byte of data. We cannot send
3683 * out of window data, because we have SND.NXT==SND.MAX...
3684 *
3685 * Current solution: to send TWO zero-length segments in urgent mode:
3686 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3687 * out-of-date with SND.UNA-1 to probe window.
3688 */
3689 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3690 {
3691 struct tcp_sock *tp = tcp_sk(sk);
3692 struct sk_buff *skb;
3693
3694 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3695 skb = alloc_skb(MAX_TCP_HEADER,
3696 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3697 if (!skb)
3698 return -1;
3699
3700 /* Reserve space for headers and set control bits. */
3701 skb_reserve(skb, MAX_TCP_HEADER);
3702 /* Use a previous sequence. This should cause the other
3703 * end to send an ack. Don't queue or clone SKB, just
3704 * send it.
3705 */
3706 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3707 NET_INC_STATS(sock_net(sk), mib);
3708 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3709 }
3710
3711 /* Called from setsockopt( ... TCP_REPAIR ) */
3712 void tcp_send_window_probe(struct sock *sk)
3713 {
3714 if (sk->sk_state == TCP_ESTABLISHED) {
3715 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3716 tcp_mstamp_refresh(tcp_sk(sk));
3717 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3718 }
3719 }
3720
3721 /* Initiate keepalive or window probe from timer. */
3722 int tcp_write_wakeup(struct sock *sk, int mib)
3723 {
3724 struct tcp_sock *tp = tcp_sk(sk);
3725 struct sk_buff *skb;
3726
3727 if (sk->sk_state == TCP_CLOSE)
3728 return -1;
3729
3730 skb = tcp_send_head(sk);
3731 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3732 int err;
3733 unsigned int mss = tcp_current_mss(sk);
3734 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3735
3736 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3737 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3738
3739 /* We are probing the opening of a window
3740 * but the window size is != 0
3741 * must have been a result SWS avoidance ( sender )
3742 */
3743 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3744 skb->len > mss) {
3745 seg_size = min(seg_size, mss);
3746 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3747 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3748 skb, seg_size, mss, GFP_ATOMIC))
3749 return -1;
3750 } else if (!tcp_skb_pcount(skb))
3751 tcp_set_skb_tso_segs(skb, mss);
3752
3753 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3754 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3755 if (!err)
3756 tcp_event_new_data_sent(sk, skb);
3757 return err;
3758 } else {
3759 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3760 tcp_xmit_probe_skb(sk, 1, mib);
3761 return tcp_xmit_probe_skb(sk, 0, mib);
3762 }
3763 }
3764
3765 /* A window probe timeout has occurred. If window is not closed send
3766 * a partial packet else a zero probe.
3767 */
3768 void tcp_send_probe0(struct sock *sk)
3769 {
3770 struct inet_connection_sock *icsk = inet_csk(sk);
3771 struct tcp_sock *tp = tcp_sk(sk);
3772 struct net *net = sock_net(sk);
3773 unsigned long probe_max;
3774 int err;
3775
3776 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3777
3778 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3779 /* Cancel probe timer, if it is not required. */
3780 icsk->icsk_probes_out = 0;
3781 icsk->icsk_backoff = 0;
3782 return;
3783 }
3784
3785 if (err <= 0) {
3786 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3787 icsk->icsk_backoff++;
3788 icsk->icsk_probes_out++;
3789 probe_max = TCP_RTO_MAX;
3790 } else {
3791 /* If packet was not sent due to local congestion,
3792 * do not backoff and do not remember icsk_probes_out.
3793 * Let local senders to fight for local resources.
3794 *
3795 * Use accumulated backoff yet.
3796 */
3797 if (!icsk->icsk_probes_out)
3798 icsk->icsk_probes_out = 1;
3799 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3800 }
3801 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3802 tcp_probe0_when(sk, probe_max),
3803 TCP_RTO_MAX);
3804 }
3805
3806 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3807 {
3808 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3809 struct flowi fl;
3810 int res;
3811
3812 tcp_rsk(req)->txhash = net_tx_rndhash();
3813 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3814 if (!res) {
3815 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3816 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3817 if (unlikely(tcp_passive_fastopen(sk)))
3818 tcp_sk(sk)->total_retrans++;
3819 trace_tcp_retransmit_synack(sk, req);
3820 }
3821 return res;
3822 }
3823 EXPORT_SYMBOL(tcp_rtx_synack);