]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
Merge tag 'pm+acpi-4.1-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166 const struct dst_entry *dst = __sk_dst_get(sk);
167
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 icsk->icsk_ack.pingpong = 1;
180 }
181
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188
189
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = TCP_INIT_CWND * 2;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202 }
203
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215 {
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (65535 << 14);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = (space / mss) * mss;
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
244 */
245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 while (space > 65535 && (*rcv_wscale) < 14) {
248 space >>= 1;
249 (*rcv_wscale)++;
250 }
251 }
252
253 if (mss > (1 << *rcv_wscale)) {
254 if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 init_rcv_wnd = tcp_default_init_rwnd(mss);
256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 }
258
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
268 */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 struct tcp_sock *tp = tcp_sk(sk);
272 u32 old_win = tp->rcv_wnd;
273 u32 cur_win = tcp_receive_window(tp);
274 u32 new_win = __tcp_select_window(sk);
275
276 /* Never shrink the offered window */
277 if (new_win < cur_win) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
282 *
283 * Relax Will Robinson.
284 */
285 if (new_win == 0)
286 NET_INC_STATS(sock_net(sk),
287 LINUX_MIB_TCPWANTZEROWINDOWADV);
288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 }
290 tp->rcv_wnd = new_win;
291 tp->rcv_wup = tp->rcv_nxt;
292
293 /* Make sure we do not exceed the maximum possible
294 * scaled window.
295 */
296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 new_win = min(new_win, MAX_TCP_WINDOW);
298 else
299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300
301 /* RFC1323 scaling applied */
302 new_win >>= tp->rx_opt.rcv_wscale;
303
304 /* If we advertise zero window, disable fast path. */
305 if (new_win == 0) {
306 tp->pred_flags = 0;
307 if (old_win)
308 NET_INC_STATS(sock_net(sk),
309 LINUX_MIB_TCPTOZEROWINDOWADV);
310 } else if (old_win == 0) {
311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 }
313
314 return new_win;
315 }
316
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 const struct tcp_sock *tp = tcp_sk(sk);
321
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 if (!(tp->ecn_flags & TCP_ECN_OK))
324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 else if (tcp_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
327 }
328
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 tcp_ca_needs_ecn(sk);
335
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
338
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
341 }
342
343 tp->ecn_flags = 0;
344
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk))
349 INET_ECN_xmit(sk);
350 }
351 }
352
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
355 struct sock *sk)
356 {
357 if (inet_rsk(req)->ecn_ok) {
358 th->ece = 1;
359 if (tcp_ca_needs_ecn(sk))
360 INET_ECN_xmit(sk);
361 }
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 tcp_hdr(skb)->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 tcp_hdr(skb)->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 struct skb_shared_info *shinfo = skb_shinfo(skb);
397
398 skb->ip_summed = CHECKSUM_PARTIAL;
399 skb->csum = 0;
400
401 TCP_SKB_CB(skb)->tcp_flags = flags;
402 TCP_SKB_CB(skb)->sacked = 0;
403
404 tcp_skb_pcount_set(skb, 1);
405 shinfo->gso_size = 0;
406 shinfo->gso_type = 0;
407
408 TCP_SKB_CB(skb)->seq = seq;
409 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 seq++;
411 TCP_SKB_CB(skb)->end_seq = seq;
412 }
413
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 return tp->snd_una != tp->snd_up;
417 }
418
419 #define OPTION_SACK_ADVERTISE (1 << 0)
420 #define OPTION_TS (1 << 1)
421 #define OPTION_MD5 (1 << 2)
422 #define OPTION_WSCALE (1 << 3)
423 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
424
425 struct tcp_out_options {
426 u16 options; /* bit field of OPTION_* */
427 u16 mss; /* 0 to disable */
428 u8 ws; /* window scale, 0 to disable */
429 u8 num_sack_blocks; /* number of SACK blocks to include */
430 u8 hash_size; /* bytes in hash_location */
431 __u8 *hash_location; /* temporary pointer, overloaded */
432 __u32 tsval, tsecr; /* need to include OPTION_TS */
433 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
434 };
435
436 /* Write previously computed TCP options to the packet.
437 *
438 * Beware: Something in the Internet is very sensitive to the ordering of
439 * TCP options, we learned this through the hard way, so be careful here.
440 * Luckily we can at least blame others for their non-compliance but from
441 * inter-operability perspective it seems that we're somewhat stuck with
442 * the ordering which we have been using if we want to keep working with
443 * those broken things (not that it currently hurts anybody as there isn't
444 * particular reason why the ordering would need to be changed).
445 *
446 * At least SACK_PERM as the first option is known to lead to a disaster
447 * (but it may well be that other scenarios fail similarly).
448 */
449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
450 struct tcp_out_options *opts)
451 {
452 u16 options = opts->options; /* mungable copy */
453
454 if (unlikely(OPTION_MD5 & options)) {
455 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
456 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
457 /* overload cookie hash location */
458 opts->hash_location = (__u8 *)ptr;
459 ptr += 4;
460 }
461
462 if (unlikely(opts->mss)) {
463 *ptr++ = htonl((TCPOPT_MSS << 24) |
464 (TCPOLEN_MSS << 16) |
465 opts->mss);
466 }
467
468 if (likely(OPTION_TS & options)) {
469 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
470 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
471 (TCPOLEN_SACK_PERM << 16) |
472 (TCPOPT_TIMESTAMP << 8) |
473 TCPOLEN_TIMESTAMP);
474 options &= ~OPTION_SACK_ADVERTISE;
475 } else {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_NOP << 16) |
478 (TCPOPT_TIMESTAMP << 8) |
479 TCPOLEN_TIMESTAMP);
480 }
481 *ptr++ = htonl(opts->tsval);
482 *ptr++ = htonl(opts->tsecr);
483 }
484
485 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
486 *ptr++ = htonl((TCPOPT_NOP << 24) |
487 (TCPOPT_NOP << 16) |
488 (TCPOPT_SACK_PERM << 8) |
489 TCPOLEN_SACK_PERM);
490 }
491
492 if (unlikely(OPTION_WSCALE & options)) {
493 *ptr++ = htonl((TCPOPT_NOP << 24) |
494 (TCPOPT_WINDOW << 16) |
495 (TCPOLEN_WINDOW << 8) |
496 opts->ws);
497 }
498
499 if (unlikely(opts->num_sack_blocks)) {
500 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
501 tp->duplicate_sack : tp->selective_acks;
502 int this_sack;
503
504 *ptr++ = htonl((TCPOPT_NOP << 24) |
505 (TCPOPT_NOP << 16) |
506 (TCPOPT_SACK << 8) |
507 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
508 TCPOLEN_SACK_PERBLOCK)));
509
510 for (this_sack = 0; this_sack < opts->num_sack_blocks;
511 ++this_sack) {
512 *ptr++ = htonl(sp[this_sack].start_seq);
513 *ptr++ = htonl(sp[this_sack].end_seq);
514 }
515
516 tp->rx_opt.dsack = 0;
517 }
518
519 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
520 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
521 u8 *p = (u8 *)ptr;
522 u32 len; /* Fast Open option length */
523
524 if (foc->exp) {
525 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
526 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
527 TCPOPT_FASTOPEN_MAGIC);
528 p += TCPOLEN_EXP_FASTOPEN_BASE;
529 } else {
530 len = TCPOLEN_FASTOPEN_BASE + foc->len;
531 *p++ = TCPOPT_FASTOPEN;
532 *p++ = len;
533 }
534
535 memcpy(p, foc->val, foc->len);
536 if ((len & 3) == 2) {
537 p[foc->len] = TCPOPT_NOP;
538 p[foc->len + 1] = TCPOPT_NOP;
539 }
540 ptr += (len + 3) >> 2;
541 }
542 }
543
544 /* Compute TCP options for SYN packets. This is not the final
545 * network wire format yet.
546 */
547 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
548 struct tcp_out_options *opts,
549 struct tcp_md5sig_key **md5)
550 {
551 struct tcp_sock *tp = tcp_sk(sk);
552 unsigned int remaining = MAX_TCP_OPTION_SPACE;
553 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
554
555 #ifdef CONFIG_TCP_MD5SIG
556 *md5 = tp->af_specific->md5_lookup(sk, sk);
557 if (*md5) {
558 opts->options |= OPTION_MD5;
559 remaining -= TCPOLEN_MD5SIG_ALIGNED;
560 }
561 #else
562 *md5 = NULL;
563 #endif
564
565 /* We always get an MSS option. The option bytes which will be seen in
566 * normal data packets should timestamps be used, must be in the MSS
567 * advertised. But we subtract them from tp->mss_cache so that
568 * calculations in tcp_sendmsg are simpler etc. So account for this
569 * fact here if necessary. If we don't do this correctly, as a
570 * receiver we won't recognize data packets as being full sized when we
571 * should, and thus we won't abide by the delayed ACK rules correctly.
572 * SACKs don't matter, we never delay an ACK when we have any of those
573 * going out. */
574 opts->mss = tcp_advertise_mss(sk);
575 remaining -= TCPOLEN_MSS_ALIGNED;
576
577 if (likely(sysctl_tcp_timestamps && !*md5)) {
578 opts->options |= OPTION_TS;
579 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
580 opts->tsecr = tp->rx_opt.ts_recent;
581 remaining -= TCPOLEN_TSTAMP_ALIGNED;
582 }
583 if (likely(sysctl_tcp_window_scaling)) {
584 opts->ws = tp->rx_opt.rcv_wscale;
585 opts->options |= OPTION_WSCALE;
586 remaining -= TCPOLEN_WSCALE_ALIGNED;
587 }
588 if (likely(sysctl_tcp_sack)) {
589 opts->options |= OPTION_SACK_ADVERTISE;
590 if (unlikely(!(OPTION_TS & opts->options)))
591 remaining -= TCPOLEN_SACKPERM_ALIGNED;
592 }
593
594 if (fastopen && fastopen->cookie.len >= 0) {
595 u32 need = fastopen->cookie.len;
596
597 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
598 TCPOLEN_FASTOPEN_BASE;
599 need = (need + 3) & ~3U; /* Align to 32 bits */
600 if (remaining >= need) {
601 opts->options |= OPTION_FAST_OPEN_COOKIE;
602 opts->fastopen_cookie = &fastopen->cookie;
603 remaining -= need;
604 tp->syn_fastopen = 1;
605 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
606 }
607 }
608
609 return MAX_TCP_OPTION_SPACE - remaining;
610 }
611
612 /* Set up TCP options for SYN-ACKs. */
613 static unsigned int tcp_synack_options(struct sock *sk,
614 struct request_sock *req,
615 unsigned int mss, struct sk_buff *skb,
616 struct tcp_out_options *opts,
617 const struct tcp_md5sig_key *md5,
618 struct tcp_fastopen_cookie *foc)
619 {
620 struct inet_request_sock *ireq = inet_rsk(req);
621 unsigned int remaining = MAX_TCP_OPTION_SPACE;
622
623 #ifdef CONFIG_TCP_MD5SIG
624 if (md5) {
625 opts->options |= OPTION_MD5;
626 remaining -= TCPOLEN_MD5SIG_ALIGNED;
627
628 /* We can't fit any SACK blocks in a packet with MD5 + TS
629 * options. There was discussion about disabling SACK
630 * rather than TS in order to fit in better with old,
631 * buggy kernels, but that was deemed to be unnecessary.
632 */
633 ireq->tstamp_ok &= !ireq->sack_ok;
634 }
635 #endif
636
637 /* We always send an MSS option. */
638 opts->mss = mss;
639 remaining -= TCPOLEN_MSS_ALIGNED;
640
641 if (likely(ireq->wscale_ok)) {
642 opts->ws = ireq->rcv_wscale;
643 opts->options |= OPTION_WSCALE;
644 remaining -= TCPOLEN_WSCALE_ALIGNED;
645 }
646 if (likely(ireq->tstamp_ok)) {
647 opts->options |= OPTION_TS;
648 opts->tsval = tcp_skb_timestamp(skb);
649 opts->tsecr = req->ts_recent;
650 remaining -= TCPOLEN_TSTAMP_ALIGNED;
651 }
652 if (likely(ireq->sack_ok)) {
653 opts->options |= OPTION_SACK_ADVERTISE;
654 if (unlikely(!ireq->tstamp_ok))
655 remaining -= TCPOLEN_SACKPERM_ALIGNED;
656 }
657 if (foc != NULL && foc->len >= 0) {
658 u32 need = foc->len;
659
660 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
661 TCPOLEN_FASTOPEN_BASE;
662 need = (need + 3) & ~3U; /* Align to 32 bits */
663 if (remaining >= need) {
664 opts->options |= OPTION_FAST_OPEN_COOKIE;
665 opts->fastopen_cookie = foc;
666 remaining -= need;
667 }
668 }
669
670 return MAX_TCP_OPTION_SPACE - remaining;
671 }
672
673 /* Compute TCP options for ESTABLISHED sockets. This is not the
674 * final wire format yet.
675 */
676 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
677 struct tcp_out_options *opts,
678 struct tcp_md5sig_key **md5)
679 {
680 struct tcp_sock *tp = tcp_sk(sk);
681 unsigned int size = 0;
682 unsigned int eff_sacks;
683
684 opts->options = 0;
685
686 #ifdef CONFIG_TCP_MD5SIG
687 *md5 = tp->af_specific->md5_lookup(sk, sk);
688 if (unlikely(*md5)) {
689 opts->options |= OPTION_MD5;
690 size += TCPOLEN_MD5SIG_ALIGNED;
691 }
692 #else
693 *md5 = NULL;
694 #endif
695
696 if (likely(tp->rx_opt.tstamp_ok)) {
697 opts->options |= OPTION_TS;
698 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
699 opts->tsecr = tp->rx_opt.ts_recent;
700 size += TCPOLEN_TSTAMP_ALIGNED;
701 }
702
703 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
704 if (unlikely(eff_sacks)) {
705 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
706 opts->num_sack_blocks =
707 min_t(unsigned int, eff_sacks,
708 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
709 TCPOLEN_SACK_PERBLOCK);
710 size += TCPOLEN_SACK_BASE_ALIGNED +
711 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
712 }
713
714 return size;
715 }
716
717
718 /* TCP SMALL QUEUES (TSQ)
719 *
720 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
721 * to reduce RTT and bufferbloat.
722 * We do this using a special skb destructor (tcp_wfree).
723 *
724 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
725 * needs to be reallocated in a driver.
726 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
727 *
728 * Since transmit from skb destructor is forbidden, we use a tasklet
729 * to process all sockets that eventually need to send more skbs.
730 * We use one tasklet per cpu, with its own queue of sockets.
731 */
732 struct tsq_tasklet {
733 struct tasklet_struct tasklet;
734 struct list_head head; /* queue of tcp sockets */
735 };
736 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
737
738 static void tcp_tsq_handler(struct sock *sk)
739 {
740 if ((1 << sk->sk_state) &
741 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
742 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
743 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
744 0, GFP_ATOMIC);
745 }
746 /*
747 * One tasklet per cpu tries to send more skbs.
748 * We run in tasklet context but need to disable irqs when
749 * transferring tsq->head because tcp_wfree() might
750 * interrupt us (non NAPI drivers)
751 */
752 static void tcp_tasklet_func(unsigned long data)
753 {
754 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
755 LIST_HEAD(list);
756 unsigned long flags;
757 struct list_head *q, *n;
758 struct tcp_sock *tp;
759 struct sock *sk;
760
761 local_irq_save(flags);
762 list_splice_init(&tsq->head, &list);
763 local_irq_restore(flags);
764
765 list_for_each_safe(q, n, &list) {
766 tp = list_entry(q, struct tcp_sock, tsq_node);
767 list_del(&tp->tsq_node);
768
769 sk = (struct sock *)tp;
770 bh_lock_sock(sk);
771
772 if (!sock_owned_by_user(sk)) {
773 tcp_tsq_handler(sk);
774 } else {
775 /* defer the work to tcp_release_cb() */
776 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
777 }
778 bh_unlock_sock(sk);
779
780 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
781 sk_free(sk);
782 }
783 }
784
785 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
786 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
787 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
788 (1UL << TCP_MTU_REDUCED_DEFERRED))
789 /**
790 * tcp_release_cb - tcp release_sock() callback
791 * @sk: socket
792 *
793 * called from release_sock() to perform protocol dependent
794 * actions before socket release.
795 */
796 void tcp_release_cb(struct sock *sk)
797 {
798 struct tcp_sock *tp = tcp_sk(sk);
799 unsigned long flags, nflags;
800
801 /* perform an atomic operation only if at least one flag is set */
802 do {
803 flags = tp->tsq_flags;
804 if (!(flags & TCP_DEFERRED_ALL))
805 return;
806 nflags = flags & ~TCP_DEFERRED_ALL;
807 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
808
809 if (flags & (1UL << TCP_TSQ_DEFERRED))
810 tcp_tsq_handler(sk);
811
812 /* Here begins the tricky part :
813 * We are called from release_sock() with :
814 * 1) BH disabled
815 * 2) sk_lock.slock spinlock held
816 * 3) socket owned by us (sk->sk_lock.owned == 1)
817 *
818 * But following code is meant to be called from BH handlers,
819 * so we should keep BH disabled, but early release socket ownership
820 */
821 sock_release_ownership(sk);
822
823 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
824 tcp_write_timer_handler(sk);
825 __sock_put(sk);
826 }
827 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
828 tcp_delack_timer_handler(sk);
829 __sock_put(sk);
830 }
831 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
832 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
833 __sock_put(sk);
834 }
835 }
836 EXPORT_SYMBOL(tcp_release_cb);
837
838 void __init tcp_tasklet_init(void)
839 {
840 int i;
841
842 for_each_possible_cpu(i) {
843 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
844
845 INIT_LIST_HEAD(&tsq->head);
846 tasklet_init(&tsq->tasklet,
847 tcp_tasklet_func,
848 (unsigned long)tsq);
849 }
850 }
851
852 /*
853 * Write buffer destructor automatically called from kfree_skb.
854 * We can't xmit new skbs from this context, as we might already
855 * hold qdisc lock.
856 */
857 void tcp_wfree(struct sk_buff *skb)
858 {
859 struct sock *sk = skb->sk;
860 struct tcp_sock *tp = tcp_sk(sk);
861 int wmem;
862
863 /* Keep one reference on sk_wmem_alloc.
864 * Will be released by sk_free() from here or tcp_tasklet_func()
865 */
866 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
867
868 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
869 * Wait until our queues (qdisc + devices) are drained.
870 * This gives :
871 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
872 * - chance for incoming ACK (processed by another cpu maybe)
873 * to migrate this flow (skb->ooo_okay will be eventually set)
874 */
875 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
876 goto out;
877
878 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
879 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
880 unsigned long flags;
881 struct tsq_tasklet *tsq;
882
883 /* queue this socket to tasklet queue */
884 local_irq_save(flags);
885 tsq = this_cpu_ptr(&tsq_tasklet);
886 list_add(&tp->tsq_node, &tsq->head);
887 tasklet_schedule(&tsq->tasklet);
888 local_irq_restore(flags);
889 return;
890 }
891 out:
892 sk_free(sk);
893 }
894
895 /* This routine actually transmits TCP packets queued in by
896 * tcp_do_sendmsg(). This is used by both the initial
897 * transmission and possible later retransmissions.
898 * All SKB's seen here are completely headerless. It is our
899 * job to build the TCP header, and pass the packet down to
900 * IP so it can do the same plus pass the packet off to the
901 * device.
902 *
903 * We are working here with either a clone of the original
904 * SKB, or a fresh unique copy made by the retransmit engine.
905 */
906 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
907 gfp_t gfp_mask)
908 {
909 const struct inet_connection_sock *icsk = inet_csk(sk);
910 struct inet_sock *inet;
911 struct tcp_sock *tp;
912 struct tcp_skb_cb *tcb;
913 struct tcp_out_options opts;
914 unsigned int tcp_options_size, tcp_header_size;
915 struct tcp_md5sig_key *md5;
916 struct tcphdr *th;
917 int err;
918
919 BUG_ON(!skb || !tcp_skb_pcount(skb));
920
921 if (clone_it) {
922 skb_mstamp_get(&skb->skb_mstamp);
923
924 if (unlikely(skb_cloned(skb)))
925 skb = pskb_copy(skb, gfp_mask);
926 else
927 skb = skb_clone(skb, gfp_mask);
928 if (unlikely(!skb))
929 return -ENOBUFS;
930 }
931
932 inet = inet_sk(sk);
933 tp = tcp_sk(sk);
934 tcb = TCP_SKB_CB(skb);
935 memset(&opts, 0, sizeof(opts));
936
937 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
938 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
939 else
940 tcp_options_size = tcp_established_options(sk, skb, &opts,
941 &md5);
942 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
943
944 if (tcp_packets_in_flight(tp) == 0)
945 tcp_ca_event(sk, CA_EVENT_TX_START);
946
947 /* if no packet is in qdisc/device queue, then allow XPS to select
948 * another queue. We can be called from tcp_tsq_handler()
949 * which holds one reference to sk_wmem_alloc.
950 *
951 * TODO: Ideally, in-flight pure ACK packets should not matter here.
952 * One way to get this would be to set skb->truesize = 2 on them.
953 */
954 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
955
956 skb_push(skb, tcp_header_size);
957 skb_reset_transport_header(skb);
958
959 skb_orphan(skb);
960 skb->sk = sk;
961 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
962 skb_set_hash_from_sk(skb, sk);
963 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
964
965 /* Build TCP header and checksum it. */
966 th = tcp_hdr(skb);
967 th->source = inet->inet_sport;
968 th->dest = inet->inet_dport;
969 th->seq = htonl(tcb->seq);
970 th->ack_seq = htonl(tp->rcv_nxt);
971 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
972 tcb->tcp_flags);
973
974 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
975 /* RFC1323: The window in SYN & SYN/ACK segments
976 * is never scaled.
977 */
978 th->window = htons(min(tp->rcv_wnd, 65535U));
979 } else {
980 th->window = htons(tcp_select_window(sk));
981 }
982 th->check = 0;
983 th->urg_ptr = 0;
984
985 /* The urg_mode check is necessary during a below snd_una win probe */
986 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
987 if (before(tp->snd_up, tcb->seq + 0x10000)) {
988 th->urg_ptr = htons(tp->snd_up - tcb->seq);
989 th->urg = 1;
990 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
991 th->urg_ptr = htons(0xFFFF);
992 th->urg = 1;
993 }
994 }
995
996 tcp_options_write((__be32 *)(th + 1), tp, &opts);
997 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
998 tcp_ecn_send(sk, skb, tcp_header_size);
999
1000 #ifdef CONFIG_TCP_MD5SIG
1001 /* Calculate the MD5 hash, as we have all we need now */
1002 if (md5) {
1003 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1004 tp->af_specific->calc_md5_hash(opts.hash_location,
1005 md5, sk, skb);
1006 }
1007 #endif
1008
1009 icsk->icsk_af_ops->send_check(sk, skb);
1010
1011 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1012 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1013
1014 if (skb->len != tcp_header_size)
1015 tcp_event_data_sent(tp, sk);
1016
1017 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1018 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1019 tcp_skb_pcount(skb));
1020
1021 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1022 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1023
1024 /* Our usage of tstamp should remain private */
1025 skb->tstamp.tv64 = 0;
1026
1027 /* Cleanup our debris for IP stacks */
1028 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1029 sizeof(struct inet6_skb_parm)));
1030
1031 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1032
1033 if (likely(err <= 0))
1034 return err;
1035
1036 tcp_enter_cwr(sk);
1037
1038 return net_xmit_eval(err);
1039 }
1040
1041 /* This routine just queues the buffer for sending.
1042 *
1043 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1044 * otherwise socket can stall.
1045 */
1046 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1047 {
1048 struct tcp_sock *tp = tcp_sk(sk);
1049
1050 /* Advance write_seq and place onto the write_queue. */
1051 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1052 __skb_header_release(skb);
1053 tcp_add_write_queue_tail(sk, skb);
1054 sk->sk_wmem_queued += skb->truesize;
1055 sk_mem_charge(sk, skb->truesize);
1056 }
1057
1058 /* Initialize TSO segments for a packet. */
1059 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1060 unsigned int mss_now)
1061 {
1062 struct skb_shared_info *shinfo = skb_shinfo(skb);
1063
1064 /* Make sure we own this skb before messing gso_size/gso_segs */
1065 WARN_ON_ONCE(skb_cloned(skb));
1066
1067 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1068 /* Avoid the costly divide in the normal
1069 * non-TSO case.
1070 */
1071 tcp_skb_pcount_set(skb, 1);
1072 shinfo->gso_size = 0;
1073 shinfo->gso_type = 0;
1074 } else {
1075 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1076 shinfo->gso_size = mss_now;
1077 shinfo->gso_type = sk->sk_gso_type;
1078 }
1079 }
1080
1081 /* When a modification to fackets out becomes necessary, we need to check
1082 * skb is counted to fackets_out or not.
1083 */
1084 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1085 int decr)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088
1089 if (!tp->sacked_out || tcp_is_reno(tp))
1090 return;
1091
1092 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1093 tp->fackets_out -= decr;
1094 }
1095
1096 /* Pcount in the middle of the write queue got changed, we need to do various
1097 * tweaks to fix counters
1098 */
1099 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1100 {
1101 struct tcp_sock *tp = tcp_sk(sk);
1102
1103 tp->packets_out -= decr;
1104
1105 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1106 tp->sacked_out -= decr;
1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1108 tp->retrans_out -= decr;
1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1110 tp->lost_out -= decr;
1111
1112 /* Reno case is special. Sigh... */
1113 if (tcp_is_reno(tp) && decr > 0)
1114 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1115
1116 tcp_adjust_fackets_out(sk, skb, decr);
1117
1118 if (tp->lost_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1120 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1121 tp->lost_cnt_hint -= decr;
1122
1123 tcp_verify_left_out(tp);
1124 }
1125
1126 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1127 {
1128 struct skb_shared_info *shinfo = skb_shinfo(skb);
1129
1130 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1131 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1132 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1133 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1134
1135 shinfo->tx_flags &= ~tsflags;
1136 shinfo2->tx_flags |= tsflags;
1137 swap(shinfo->tskey, shinfo2->tskey);
1138 }
1139 }
1140
1141 /* Function to create two new TCP segments. Shrinks the given segment
1142 * to the specified size and appends a new segment with the rest of the
1143 * packet to the list. This won't be called frequently, I hope.
1144 * Remember, these are still headerless SKBs at this point.
1145 */
1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1147 unsigned int mss_now, gfp_t gfp)
1148 {
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 struct sk_buff *buff;
1151 int nsize, old_factor;
1152 int nlen;
1153 u8 flags;
1154
1155 if (WARN_ON(len > skb->len))
1156 return -EINVAL;
1157
1158 nsize = skb_headlen(skb) - len;
1159 if (nsize < 0)
1160 nsize = 0;
1161
1162 if (skb_unclone(skb, gfp))
1163 return -ENOMEM;
1164
1165 /* Get a new skb... force flag on. */
1166 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1167 if (!buff)
1168 return -ENOMEM; /* We'll just try again later. */
1169
1170 sk->sk_wmem_queued += buff->truesize;
1171 sk_mem_charge(sk, buff->truesize);
1172 nlen = skb->len - len - nsize;
1173 buff->truesize += nlen;
1174 skb->truesize -= nlen;
1175
1176 /* Correct the sequence numbers. */
1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1180
1181 /* PSH and FIN should only be set in the second packet. */
1182 flags = TCP_SKB_CB(skb)->tcp_flags;
1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1184 TCP_SKB_CB(buff)->tcp_flags = flags;
1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1186
1187 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1188 /* Copy and checksum data tail into the new buffer. */
1189 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1190 skb_put(buff, nsize),
1191 nsize, 0);
1192
1193 skb_trim(skb, len);
1194
1195 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1196 } else {
1197 skb->ip_summed = CHECKSUM_PARTIAL;
1198 skb_split(skb, buff, len);
1199 }
1200
1201 buff->ip_summed = skb->ip_summed;
1202
1203 buff->tstamp = skb->tstamp;
1204 tcp_fragment_tstamp(skb, buff);
1205
1206 old_factor = tcp_skb_pcount(skb);
1207
1208 /* Fix up tso_factor for both original and new SKB. */
1209 tcp_set_skb_tso_segs(sk, skb, mss_now);
1210 tcp_set_skb_tso_segs(sk, buff, mss_now);
1211
1212 /* If this packet has been sent out already, we must
1213 * adjust the various packet counters.
1214 */
1215 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1216 int diff = old_factor - tcp_skb_pcount(skb) -
1217 tcp_skb_pcount(buff);
1218
1219 if (diff)
1220 tcp_adjust_pcount(sk, skb, diff);
1221 }
1222
1223 /* Link BUFF into the send queue. */
1224 __skb_header_release(buff);
1225 tcp_insert_write_queue_after(skb, buff, sk);
1226
1227 return 0;
1228 }
1229
1230 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1231 * eventually). The difference is that pulled data not copied, but
1232 * immediately discarded.
1233 */
1234 static void __pskb_trim_head(struct sk_buff *skb, int len)
1235 {
1236 struct skb_shared_info *shinfo;
1237 int i, k, eat;
1238
1239 eat = min_t(int, len, skb_headlen(skb));
1240 if (eat) {
1241 __skb_pull(skb, eat);
1242 len -= eat;
1243 if (!len)
1244 return;
1245 }
1246 eat = len;
1247 k = 0;
1248 shinfo = skb_shinfo(skb);
1249 for (i = 0; i < shinfo->nr_frags; i++) {
1250 int size = skb_frag_size(&shinfo->frags[i]);
1251
1252 if (size <= eat) {
1253 skb_frag_unref(skb, i);
1254 eat -= size;
1255 } else {
1256 shinfo->frags[k] = shinfo->frags[i];
1257 if (eat) {
1258 shinfo->frags[k].page_offset += eat;
1259 skb_frag_size_sub(&shinfo->frags[k], eat);
1260 eat = 0;
1261 }
1262 k++;
1263 }
1264 }
1265 shinfo->nr_frags = k;
1266
1267 skb_reset_tail_pointer(skb);
1268 skb->data_len -= len;
1269 skb->len = skb->data_len;
1270 }
1271
1272 /* Remove acked data from a packet in the transmit queue. */
1273 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1274 {
1275 if (skb_unclone(skb, GFP_ATOMIC))
1276 return -ENOMEM;
1277
1278 __pskb_trim_head(skb, len);
1279
1280 TCP_SKB_CB(skb)->seq += len;
1281 skb->ip_summed = CHECKSUM_PARTIAL;
1282
1283 skb->truesize -= len;
1284 sk->sk_wmem_queued -= len;
1285 sk_mem_uncharge(sk, len);
1286 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1287
1288 /* Any change of skb->len requires recalculation of tso factor. */
1289 if (tcp_skb_pcount(skb) > 1)
1290 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1291
1292 return 0;
1293 }
1294
1295 /* Calculate MSS not accounting any TCP options. */
1296 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1297 {
1298 const struct tcp_sock *tp = tcp_sk(sk);
1299 const struct inet_connection_sock *icsk = inet_csk(sk);
1300 int mss_now;
1301
1302 /* Calculate base mss without TCP options:
1303 It is MMS_S - sizeof(tcphdr) of rfc1122
1304 */
1305 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1306
1307 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1308 if (icsk->icsk_af_ops->net_frag_header_len) {
1309 const struct dst_entry *dst = __sk_dst_get(sk);
1310
1311 if (dst && dst_allfrag(dst))
1312 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1313 }
1314
1315 /* Clamp it (mss_clamp does not include tcp options) */
1316 if (mss_now > tp->rx_opt.mss_clamp)
1317 mss_now = tp->rx_opt.mss_clamp;
1318
1319 /* Now subtract optional transport overhead */
1320 mss_now -= icsk->icsk_ext_hdr_len;
1321
1322 /* Then reserve room for full set of TCP options and 8 bytes of data */
1323 if (mss_now < 48)
1324 mss_now = 48;
1325 return mss_now;
1326 }
1327
1328 /* Calculate MSS. Not accounting for SACKs here. */
1329 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1330 {
1331 /* Subtract TCP options size, not including SACKs */
1332 return __tcp_mtu_to_mss(sk, pmtu) -
1333 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1334 }
1335
1336 /* Inverse of above */
1337 int tcp_mss_to_mtu(struct sock *sk, int mss)
1338 {
1339 const struct tcp_sock *tp = tcp_sk(sk);
1340 const struct inet_connection_sock *icsk = inet_csk(sk);
1341 int mtu;
1342
1343 mtu = mss +
1344 tp->tcp_header_len +
1345 icsk->icsk_ext_hdr_len +
1346 icsk->icsk_af_ops->net_header_len;
1347
1348 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1349 if (icsk->icsk_af_ops->net_frag_header_len) {
1350 const struct dst_entry *dst = __sk_dst_get(sk);
1351
1352 if (dst && dst_allfrag(dst))
1353 mtu += icsk->icsk_af_ops->net_frag_header_len;
1354 }
1355 return mtu;
1356 }
1357
1358 /* MTU probing init per socket */
1359 void tcp_mtup_init(struct sock *sk)
1360 {
1361 struct tcp_sock *tp = tcp_sk(sk);
1362 struct inet_connection_sock *icsk = inet_csk(sk);
1363 struct net *net = sock_net(sk);
1364
1365 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1366 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1367 icsk->icsk_af_ops->net_header_len;
1368 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1369 icsk->icsk_mtup.probe_size = 0;
1370 if (icsk->icsk_mtup.enabled)
1371 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1372 }
1373 EXPORT_SYMBOL(tcp_mtup_init);
1374
1375 /* This function synchronize snd mss to current pmtu/exthdr set.
1376
1377 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1378 for TCP options, but includes only bare TCP header.
1379
1380 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1381 It is minimum of user_mss and mss received with SYN.
1382 It also does not include TCP options.
1383
1384 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1385
1386 tp->mss_cache is current effective sending mss, including
1387 all tcp options except for SACKs. It is evaluated,
1388 taking into account current pmtu, but never exceeds
1389 tp->rx_opt.mss_clamp.
1390
1391 NOTE1. rfc1122 clearly states that advertised MSS
1392 DOES NOT include either tcp or ip options.
1393
1394 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1395 are READ ONLY outside this function. --ANK (980731)
1396 */
1397 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1398 {
1399 struct tcp_sock *tp = tcp_sk(sk);
1400 struct inet_connection_sock *icsk = inet_csk(sk);
1401 int mss_now;
1402
1403 if (icsk->icsk_mtup.search_high > pmtu)
1404 icsk->icsk_mtup.search_high = pmtu;
1405
1406 mss_now = tcp_mtu_to_mss(sk, pmtu);
1407 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1408
1409 /* And store cached results */
1410 icsk->icsk_pmtu_cookie = pmtu;
1411 if (icsk->icsk_mtup.enabled)
1412 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1413 tp->mss_cache = mss_now;
1414
1415 return mss_now;
1416 }
1417 EXPORT_SYMBOL(tcp_sync_mss);
1418
1419 /* Compute the current effective MSS, taking SACKs and IP options,
1420 * and even PMTU discovery events into account.
1421 */
1422 unsigned int tcp_current_mss(struct sock *sk)
1423 {
1424 const struct tcp_sock *tp = tcp_sk(sk);
1425 const struct dst_entry *dst = __sk_dst_get(sk);
1426 u32 mss_now;
1427 unsigned int header_len;
1428 struct tcp_out_options opts;
1429 struct tcp_md5sig_key *md5;
1430
1431 mss_now = tp->mss_cache;
1432
1433 if (dst) {
1434 u32 mtu = dst_mtu(dst);
1435 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1436 mss_now = tcp_sync_mss(sk, mtu);
1437 }
1438
1439 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1440 sizeof(struct tcphdr);
1441 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1442 * some common options. If this is an odd packet (because we have SACK
1443 * blocks etc) then our calculated header_len will be different, and
1444 * we have to adjust mss_now correspondingly */
1445 if (header_len != tp->tcp_header_len) {
1446 int delta = (int) header_len - tp->tcp_header_len;
1447 mss_now -= delta;
1448 }
1449
1450 return mss_now;
1451 }
1452
1453 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1454 * As additional protections, we do not touch cwnd in retransmission phases,
1455 * and if application hit its sndbuf limit recently.
1456 */
1457 static void tcp_cwnd_application_limited(struct sock *sk)
1458 {
1459 struct tcp_sock *tp = tcp_sk(sk);
1460
1461 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1462 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1463 /* Limited by application or receiver window. */
1464 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1465 u32 win_used = max(tp->snd_cwnd_used, init_win);
1466 if (win_used < tp->snd_cwnd) {
1467 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1468 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1469 }
1470 tp->snd_cwnd_used = 0;
1471 }
1472 tp->snd_cwnd_stamp = tcp_time_stamp;
1473 }
1474
1475 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1476 {
1477 struct tcp_sock *tp = tcp_sk(sk);
1478
1479 /* Track the maximum number of outstanding packets in each
1480 * window, and remember whether we were cwnd-limited then.
1481 */
1482 if (!before(tp->snd_una, tp->max_packets_seq) ||
1483 tp->packets_out > tp->max_packets_out) {
1484 tp->max_packets_out = tp->packets_out;
1485 tp->max_packets_seq = tp->snd_nxt;
1486 tp->is_cwnd_limited = is_cwnd_limited;
1487 }
1488
1489 if (tcp_is_cwnd_limited(sk)) {
1490 /* Network is feed fully. */
1491 tp->snd_cwnd_used = 0;
1492 tp->snd_cwnd_stamp = tcp_time_stamp;
1493 } else {
1494 /* Network starves. */
1495 if (tp->packets_out > tp->snd_cwnd_used)
1496 tp->snd_cwnd_used = tp->packets_out;
1497
1498 if (sysctl_tcp_slow_start_after_idle &&
1499 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1500 tcp_cwnd_application_limited(sk);
1501 }
1502 }
1503
1504 /* Minshall's variant of the Nagle send check. */
1505 static bool tcp_minshall_check(const struct tcp_sock *tp)
1506 {
1507 return after(tp->snd_sml, tp->snd_una) &&
1508 !after(tp->snd_sml, tp->snd_nxt);
1509 }
1510
1511 /* Update snd_sml if this skb is under mss
1512 * Note that a TSO packet might end with a sub-mss segment
1513 * The test is really :
1514 * if ((skb->len % mss) != 0)
1515 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1516 * But we can avoid doing the divide again given we already have
1517 * skb_pcount = skb->len / mss_now
1518 */
1519 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1520 const struct sk_buff *skb)
1521 {
1522 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1523 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1524 }
1525
1526 /* Return false, if packet can be sent now without violation Nagle's rules:
1527 * 1. It is full sized. (provided by caller in %partial bool)
1528 * 2. Or it contains FIN. (already checked by caller)
1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1531 * With Minshall's modification: all sent small packets are ACKed.
1532 */
1533 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1534 int nonagle)
1535 {
1536 return partial &&
1537 ((nonagle & TCP_NAGLE_CORK) ||
1538 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1539 }
1540
1541 /* Return how many segs we'd like on a TSO packet,
1542 * to send one TSO packet per ms
1543 */
1544 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1545 {
1546 u32 bytes, segs;
1547
1548 bytes = min(sk->sk_pacing_rate >> 10,
1549 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1550
1551 /* Goal is to send at least one packet per ms,
1552 * not one big TSO packet every 100 ms.
1553 * This preserves ACK clocking and is consistent
1554 * with tcp_tso_should_defer() heuristic.
1555 */
1556 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1557
1558 return min_t(u32, segs, sk->sk_gso_max_segs);
1559 }
1560
1561 /* Returns the portion of skb which can be sent right away */
1562 static unsigned int tcp_mss_split_point(const struct sock *sk,
1563 const struct sk_buff *skb,
1564 unsigned int mss_now,
1565 unsigned int max_segs,
1566 int nonagle)
1567 {
1568 const struct tcp_sock *tp = tcp_sk(sk);
1569 u32 partial, needed, window, max_len;
1570
1571 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1572 max_len = mss_now * max_segs;
1573
1574 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1575 return max_len;
1576
1577 needed = min(skb->len, window);
1578
1579 if (max_len <= needed)
1580 return max_len;
1581
1582 partial = needed % mss_now;
1583 /* If last segment is not a full MSS, check if Nagle rules allow us
1584 * to include this last segment in this skb.
1585 * Otherwise, we'll split the skb at last MSS boundary
1586 */
1587 if (tcp_nagle_check(partial != 0, tp, nonagle))
1588 return needed - partial;
1589
1590 return needed;
1591 }
1592
1593 /* Can at least one segment of SKB be sent right now, according to the
1594 * congestion window rules? If so, return how many segments are allowed.
1595 */
1596 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1597 const struct sk_buff *skb)
1598 {
1599 u32 in_flight, cwnd, halfcwnd;
1600
1601 /* Don't be strict about the congestion window for the final FIN. */
1602 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1603 tcp_skb_pcount(skb) == 1)
1604 return 1;
1605
1606 in_flight = tcp_packets_in_flight(tp);
1607 cwnd = tp->snd_cwnd;
1608 if (in_flight >= cwnd)
1609 return 0;
1610
1611 /* For better scheduling, ensure we have at least
1612 * 2 GSO packets in flight.
1613 */
1614 halfcwnd = max(cwnd >> 1, 1U);
1615 return min(halfcwnd, cwnd - in_flight);
1616 }
1617
1618 /* Initialize TSO state of a skb.
1619 * This must be invoked the first time we consider transmitting
1620 * SKB onto the wire.
1621 */
1622 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1623 unsigned int mss_now)
1624 {
1625 int tso_segs = tcp_skb_pcount(skb);
1626
1627 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1628 tcp_set_skb_tso_segs(sk, skb, mss_now);
1629 tso_segs = tcp_skb_pcount(skb);
1630 }
1631 return tso_segs;
1632 }
1633
1634
1635 /* Return true if the Nagle test allows this packet to be
1636 * sent now.
1637 */
1638 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1639 unsigned int cur_mss, int nonagle)
1640 {
1641 /* Nagle rule does not apply to frames, which sit in the middle of the
1642 * write_queue (they have no chances to get new data).
1643 *
1644 * This is implemented in the callers, where they modify the 'nonagle'
1645 * argument based upon the location of SKB in the send queue.
1646 */
1647 if (nonagle & TCP_NAGLE_PUSH)
1648 return true;
1649
1650 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1651 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1652 return true;
1653
1654 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1655 return true;
1656
1657 return false;
1658 }
1659
1660 /* Does at least the first segment of SKB fit into the send window? */
1661 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1662 const struct sk_buff *skb,
1663 unsigned int cur_mss)
1664 {
1665 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1666
1667 if (skb->len > cur_mss)
1668 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1669
1670 return !after(end_seq, tcp_wnd_end(tp));
1671 }
1672
1673 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1674 * should be put on the wire right now. If so, it returns the number of
1675 * packets allowed by the congestion window.
1676 */
1677 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1678 unsigned int cur_mss, int nonagle)
1679 {
1680 const struct tcp_sock *tp = tcp_sk(sk);
1681 unsigned int cwnd_quota;
1682
1683 tcp_init_tso_segs(sk, skb, cur_mss);
1684
1685 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1686 return 0;
1687
1688 cwnd_quota = tcp_cwnd_test(tp, skb);
1689 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1690 cwnd_quota = 0;
1691
1692 return cwnd_quota;
1693 }
1694
1695 /* Test if sending is allowed right now. */
1696 bool tcp_may_send_now(struct sock *sk)
1697 {
1698 const struct tcp_sock *tp = tcp_sk(sk);
1699 struct sk_buff *skb = tcp_send_head(sk);
1700
1701 return skb &&
1702 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1703 (tcp_skb_is_last(sk, skb) ?
1704 tp->nonagle : TCP_NAGLE_PUSH));
1705 }
1706
1707 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1708 * which is put after SKB on the list. It is very much like
1709 * tcp_fragment() except that it may make several kinds of assumptions
1710 * in order to speed up the splitting operation. In particular, we
1711 * know that all the data is in scatter-gather pages, and that the
1712 * packet has never been sent out before (and thus is not cloned).
1713 */
1714 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1715 unsigned int mss_now, gfp_t gfp)
1716 {
1717 struct sk_buff *buff;
1718 int nlen = skb->len - len;
1719 u8 flags;
1720
1721 /* All of a TSO frame must be composed of paged data. */
1722 if (skb->len != skb->data_len)
1723 return tcp_fragment(sk, skb, len, mss_now, gfp);
1724
1725 buff = sk_stream_alloc_skb(sk, 0, gfp);
1726 if (unlikely(!buff))
1727 return -ENOMEM;
1728
1729 sk->sk_wmem_queued += buff->truesize;
1730 sk_mem_charge(sk, buff->truesize);
1731 buff->truesize += nlen;
1732 skb->truesize -= nlen;
1733
1734 /* Correct the sequence numbers. */
1735 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1736 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1737 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1738
1739 /* PSH and FIN should only be set in the second packet. */
1740 flags = TCP_SKB_CB(skb)->tcp_flags;
1741 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1742 TCP_SKB_CB(buff)->tcp_flags = flags;
1743
1744 /* This packet was never sent out yet, so no SACK bits. */
1745 TCP_SKB_CB(buff)->sacked = 0;
1746
1747 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1748 skb_split(skb, buff, len);
1749 tcp_fragment_tstamp(skb, buff);
1750
1751 /* Fix up tso_factor for both original and new SKB. */
1752 tcp_set_skb_tso_segs(sk, skb, mss_now);
1753 tcp_set_skb_tso_segs(sk, buff, mss_now);
1754
1755 /* Link BUFF into the send queue. */
1756 __skb_header_release(buff);
1757 tcp_insert_write_queue_after(skb, buff, sk);
1758
1759 return 0;
1760 }
1761
1762 /* Try to defer sending, if possible, in order to minimize the amount
1763 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1764 *
1765 * This algorithm is from John Heffner.
1766 */
1767 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1768 bool *is_cwnd_limited, u32 max_segs)
1769 {
1770 const struct inet_connection_sock *icsk = inet_csk(sk);
1771 u32 age, send_win, cong_win, limit, in_flight;
1772 struct tcp_sock *tp = tcp_sk(sk);
1773 struct skb_mstamp now;
1774 struct sk_buff *head;
1775 int win_divisor;
1776
1777 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1778 goto send_now;
1779
1780 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1781 goto send_now;
1782
1783 /* Avoid bursty behavior by allowing defer
1784 * only if the last write was recent.
1785 */
1786 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1787 goto send_now;
1788
1789 in_flight = tcp_packets_in_flight(tp);
1790
1791 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1792
1793 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1794
1795 /* From in_flight test above, we know that cwnd > in_flight. */
1796 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1797
1798 limit = min(send_win, cong_win);
1799
1800 /* If a full-sized TSO skb can be sent, do it. */
1801 if (limit >= max_segs * tp->mss_cache)
1802 goto send_now;
1803
1804 /* Middle in queue won't get any more data, full sendable already? */
1805 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1806 goto send_now;
1807
1808 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1809 if (win_divisor) {
1810 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1811
1812 /* If at least some fraction of a window is available,
1813 * just use it.
1814 */
1815 chunk /= win_divisor;
1816 if (limit >= chunk)
1817 goto send_now;
1818 } else {
1819 /* Different approach, try not to defer past a single
1820 * ACK. Receiver should ACK every other full sized
1821 * frame, so if we have space for more than 3 frames
1822 * then send now.
1823 */
1824 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1825 goto send_now;
1826 }
1827
1828 head = tcp_write_queue_head(sk);
1829 skb_mstamp_get(&now);
1830 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1831 /* If next ACK is likely to come too late (half srtt), do not defer */
1832 if (age < (tp->srtt_us >> 4))
1833 goto send_now;
1834
1835 /* Ok, it looks like it is advisable to defer. */
1836
1837 if (cong_win < send_win && cong_win < skb->len)
1838 *is_cwnd_limited = true;
1839
1840 return true;
1841
1842 send_now:
1843 return false;
1844 }
1845
1846 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1847 {
1848 struct inet_connection_sock *icsk = inet_csk(sk);
1849 struct tcp_sock *tp = tcp_sk(sk);
1850 struct net *net = sock_net(sk);
1851 u32 interval;
1852 s32 delta;
1853
1854 interval = net->ipv4.sysctl_tcp_probe_interval;
1855 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1856 if (unlikely(delta >= interval * HZ)) {
1857 int mss = tcp_current_mss(sk);
1858
1859 /* Update current search range */
1860 icsk->icsk_mtup.probe_size = 0;
1861 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1862 sizeof(struct tcphdr) +
1863 icsk->icsk_af_ops->net_header_len;
1864 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1865
1866 /* Update probe time stamp */
1867 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1868 }
1869 }
1870
1871 /* Create a new MTU probe if we are ready.
1872 * MTU probe is regularly attempting to increase the path MTU by
1873 * deliberately sending larger packets. This discovers routing
1874 * changes resulting in larger path MTUs.
1875 *
1876 * Returns 0 if we should wait to probe (no cwnd available),
1877 * 1 if a probe was sent,
1878 * -1 otherwise
1879 */
1880 static int tcp_mtu_probe(struct sock *sk)
1881 {
1882 struct tcp_sock *tp = tcp_sk(sk);
1883 struct inet_connection_sock *icsk = inet_csk(sk);
1884 struct sk_buff *skb, *nskb, *next;
1885 struct net *net = sock_net(sk);
1886 int len;
1887 int probe_size;
1888 int size_needed;
1889 int copy;
1890 int mss_now;
1891 int interval;
1892
1893 /* Not currently probing/verifying,
1894 * not in recovery,
1895 * have enough cwnd, and
1896 * not SACKing (the variable headers throw things off) */
1897 if (!icsk->icsk_mtup.enabled ||
1898 icsk->icsk_mtup.probe_size ||
1899 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1900 tp->snd_cwnd < 11 ||
1901 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1902 return -1;
1903
1904 /* Use binary search for probe_size between tcp_mss_base,
1905 * and current mss_clamp. if (search_high - search_low)
1906 * smaller than a threshold, backoff from probing.
1907 */
1908 mss_now = tcp_current_mss(sk);
1909 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1910 icsk->icsk_mtup.search_low) >> 1);
1911 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1912 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1913 /* When misfortune happens, we are reprobing actively,
1914 * and then reprobe timer has expired. We stick with current
1915 * probing process by not resetting search range to its orignal.
1916 */
1917 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1918 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1919 /* Check whether enough time has elaplased for
1920 * another round of probing.
1921 */
1922 tcp_mtu_check_reprobe(sk);
1923 return -1;
1924 }
1925
1926 /* Have enough data in the send queue to probe? */
1927 if (tp->write_seq - tp->snd_nxt < size_needed)
1928 return -1;
1929
1930 if (tp->snd_wnd < size_needed)
1931 return -1;
1932 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1933 return 0;
1934
1935 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1936 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1937 if (!tcp_packets_in_flight(tp))
1938 return -1;
1939 else
1940 return 0;
1941 }
1942
1943 /* We're allowed to probe. Build it now. */
1944 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC);
1945 if (!nskb)
1946 return -1;
1947 sk->sk_wmem_queued += nskb->truesize;
1948 sk_mem_charge(sk, nskb->truesize);
1949
1950 skb = tcp_send_head(sk);
1951
1952 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1953 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1954 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1955 TCP_SKB_CB(nskb)->sacked = 0;
1956 nskb->csum = 0;
1957 nskb->ip_summed = skb->ip_summed;
1958
1959 tcp_insert_write_queue_before(nskb, skb, sk);
1960
1961 len = 0;
1962 tcp_for_write_queue_from_safe(skb, next, sk) {
1963 copy = min_t(int, skb->len, probe_size - len);
1964 if (nskb->ip_summed)
1965 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1966 else
1967 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1968 skb_put(nskb, copy),
1969 copy, nskb->csum);
1970
1971 if (skb->len <= copy) {
1972 /* We've eaten all the data from this skb.
1973 * Throw it away. */
1974 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1975 tcp_unlink_write_queue(skb, sk);
1976 sk_wmem_free_skb(sk, skb);
1977 } else {
1978 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1979 ~(TCPHDR_FIN|TCPHDR_PSH);
1980 if (!skb_shinfo(skb)->nr_frags) {
1981 skb_pull(skb, copy);
1982 if (skb->ip_summed != CHECKSUM_PARTIAL)
1983 skb->csum = csum_partial(skb->data,
1984 skb->len, 0);
1985 } else {
1986 __pskb_trim_head(skb, copy);
1987 tcp_set_skb_tso_segs(sk, skb, mss_now);
1988 }
1989 TCP_SKB_CB(skb)->seq += copy;
1990 }
1991
1992 len += copy;
1993
1994 if (len >= probe_size)
1995 break;
1996 }
1997 tcp_init_tso_segs(sk, nskb, nskb->len);
1998
1999 /* We're ready to send. If this fails, the probe will
2000 * be resegmented into mss-sized pieces by tcp_write_xmit().
2001 */
2002 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2003 /* Decrement cwnd here because we are sending
2004 * effectively two packets. */
2005 tp->snd_cwnd--;
2006 tcp_event_new_data_sent(sk, nskb);
2007
2008 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2009 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2010 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2011
2012 return 1;
2013 }
2014
2015 return -1;
2016 }
2017
2018 /* This routine writes packets to the network. It advances the
2019 * send_head. This happens as incoming acks open up the remote
2020 * window for us.
2021 *
2022 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2023 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2024 * account rare use of URG, this is not a big flaw.
2025 *
2026 * Send at most one packet when push_one > 0. Temporarily ignore
2027 * cwnd limit to force at most one packet out when push_one == 2.
2028
2029 * Returns true, if no segments are in flight and we have queued segments,
2030 * but cannot send anything now because of SWS or another problem.
2031 */
2032 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2033 int push_one, gfp_t gfp)
2034 {
2035 struct tcp_sock *tp = tcp_sk(sk);
2036 struct sk_buff *skb;
2037 unsigned int tso_segs, sent_pkts;
2038 int cwnd_quota;
2039 int result;
2040 bool is_cwnd_limited = false;
2041 u32 max_segs;
2042
2043 sent_pkts = 0;
2044
2045 if (!push_one) {
2046 /* Do MTU probing. */
2047 result = tcp_mtu_probe(sk);
2048 if (!result) {
2049 return false;
2050 } else if (result > 0) {
2051 sent_pkts = 1;
2052 }
2053 }
2054
2055 max_segs = tcp_tso_autosize(sk, mss_now);
2056 while ((skb = tcp_send_head(sk))) {
2057 unsigned int limit;
2058
2059 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2060 BUG_ON(!tso_segs);
2061
2062 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2063 /* "skb_mstamp" is used as a start point for the retransmit timer */
2064 skb_mstamp_get(&skb->skb_mstamp);
2065 goto repair; /* Skip network transmission */
2066 }
2067
2068 cwnd_quota = tcp_cwnd_test(tp, skb);
2069 if (!cwnd_quota) {
2070 is_cwnd_limited = true;
2071 if (push_one == 2)
2072 /* Force out a loss probe pkt. */
2073 cwnd_quota = 1;
2074 else
2075 break;
2076 }
2077
2078 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2079 break;
2080
2081 if (tso_segs == 1 || !max_segs) {
2082 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2083 (tcp_skb_is_last(sk, skb) ?
2084 nonagle : TCP_NAGLE_PUSH))))
2085 break;
2086 } else {
2087 if (!push_one &&
2088 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2089 max_segs))
2090 break;
2091 }
2092
2093 limit = mss_now;
2094 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2095 limit = tcp_mss_split_point(sk, skb, mss_now,
2096 min_t(unsigned int,
2097 cwnd_quota,
2098 max_segs),
2099 nonagle);
2100
2101 if (skb->len > limit &&
2102 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2103 break;
2104
2105 /* TCP Small Queues :
2106 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2107 * This allows for :
2108 * - better RTT estimation and ACK scheduling
2109 * - faster recovery
2110 * - high rates
2111 * Alas, some drivers / subsystems require a fair amount
2112 * of queued bytes to ensure line rate.
2113 * One example is wifi aggregation (802.11 AMPDU)
2114 */
2115 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2116 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2117
2118 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2119 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2120 /* It is possible TX completion already happened
2121 * before we set TSQ_THROTTLED, so we must
2122 * test again the condition.
2123 */
2124 smp_mb__after_atomic();
2125 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2126 break;
2127 }
2128
2129 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2130 break;
2131
2132 repair:
2133 /* Advance the send_head. This one is sent out.
2134 * This call will increment packets_out.
2135 */
2136 tcp_event_new_data_sent(sk, skb);
2137
2138 tcp_minshall_update(tp, mss_now, skb);
2139 sent_pkts += tcp_skb_pcount(skb);
2140
2141 if (push_one)
2142 break;
2143 }
2144
2145 if (likely(sent_pkts)) {
2146 if (tcp_in_cwnd_reduction(sk))
2147 tp->prr_out += sent_pkts;
2148
2149 /* Send one loss probe per tail loss episode. */
2150 if (push_one != 2)
2151 tcp_schedule_loss_probe(sk);
2152 tcp_cwnd_validate(sk, is_cwnd_limited);
2153 return false;
2154 }
2155 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2156 }
2157
2158 bool tcp_schedule_loss_probe(struct sock *sk)
2159 {
2160 struct inet_connection_sock *icsk = inet_csk(sk);
2161 struct tcp_sock *tp = tcp_sk(sk);
2162 u32 timeout, tlp_time_stamp, rto_time_stamp;
2163 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2164
2165 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2166 return false;
2167 /* No consecutive loss probes. */
2168 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2169 tcp_rearm_rto(sk);
2170 return false;
2171 }
2172 /* Don't do any loss probe on a Fast Open connection before 3WHS
2173 * finishes.
2174 */
2175 if (sk->sk_state == TCP_SYN_RECV)
2176 return false;
2177
2178 /* TLP is only scheduled when next timer event is RTO. */
2179 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2180 return false;
2181
2182 /* Schedule a loss probe in 2*RTT for SACK capable connections
2183 * in Open state, that are either limited by cwnd or application.
2184 */
2185 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2186 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2187 return false;
2188
2189 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2190 tcp_send_head(sk))
2191 return false;
2192
2193 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2194 * for delayed ack when there's one outstanding packet.
2195 */
2196 timeout = rtt << 1;
2197 if (tp->packets_out == 1)
2198 timeout = max_t(u32, timeout,
2199 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2200 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2201
2202 /* If RTO is shorter, just schedule TLP in its place. */
2203 tlp_time_stamp = tcp_time_stamp + timeout;
2204 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2205 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2206 s32 delta = rto_time_stamp - tcp_time_stamp;
2207 if (delta > 0)
2208 timeout = delta;
2209 }
2210
2211 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2212 TCP_RTO_MAX);
2213 return true;
2214 }
2215
2216 /* Thanks to skb fast clones, we can detect if a prior transmit of
2217 * a packet is still in a qdisc or driver queue.
2218 * In this case, there is very little point doing a retransmit !
2219 * Note: This is called from BH context only.
2220 */
2221 static bool skb_still_in_host_queue(const struct sock *sk,
2222 const struct sk_buff *skb)
2223 {
2224 if (unlikely(skb_fclone_busy(sk, skb))) {
2225 NET_INC_STATS_BH(sock_net(sk),
2226 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2227 return true;
2228 }
2229 return false;
2230 }
2231
2232 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2233 * retransmit the last segment.
2234 */
2235 void tcp_send_loss_probe(struct sock *sk)
2236 {
2237 struct tcp_sock *tp = tcp_sk(sk);
2238 struct sk_buff *skb;
2239 int pcount;
2240 int mss = tcp_current_mss(sk);
2241 int err = -1;
2242
2243 if (tcp_send_head(sk)) {
2244 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2245 goto rearm_timer;
2246 }
2247
2248 /* At most one outstanding TLP retransmission. */
2249 if (tp->tlp_high_seq)
2250 goto rearm_timer;
2251
2252 /* Retransmit last segment. */
2253 skb = tcp_write_queue_tail(sk);
2254 if (WARN_ON(!skb))
2255 goto rearm_timer;
2256
2257 if (skb_still_in_host_queue(sk, skb))
2258 goto rearm_timer;
2259
2260 pcount = tcp_skb_pcount(skb);
2261 if (WARN_ON(!pcount))
2262 goto rearm_timer;
2263
2264 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2265 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2266 GFP_ATOMIC)))
2267 goto rearm_timer;
2268 skb = tcp_write_queue_tail(sk);
2269 }
2270
2271 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2272 goto rearm_timer;
2273
2274 err = __tcp_retransmit_skb(sk, skb);
2275
2276 /* Record snd_nxt for loss detection. */
2277 if (likely(!err))
2278 tp->tlp_high_seq = tp->snd_nxt;
2279
2280 rearm_timer:
2281 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2282 inet_csk(sk)->icsk_rto,
2283 TCP_RTO_MAX);
2284
2285 if (likely(!err))
2286 NET_INC_STATS_BH(sock_net(sk),
2287 LINUX_MIB_TCPLOSSPROBES);
2288 }
2289
2290 /* Push out any pending frames which were held back due to
2291 * TCP_CORK or attempt at coalescing tiny packets.
2292 * The socket must be locked by the caller.
2293 */
2294 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2295 int nonagle)
2296 {
2297 /* If we are closed, the bytes will have to remain here.
2298 * In time closedown will finish, we empty the write queue and
2299 * all will be happy.
2300 */
2301 if (unlikely(sk->sk_state == TCP_CLOSE))
2302 return;
2303
2304 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2305 sk_gfp_atomic(sk, GFP_ATOMIC)))
2306 tcp_check_probe_timer(sk);
2307 }
2308
2309 /* Send _single_ skb sitting at the send head. This function requires
2310 * true push pending frames to setup probe timer etc.
2311 */
2312 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2313 {
2314 struct sk_buff *skb = tcp_send_head(sk);
2315
2316 BUG_ON(!skb || skb->len < mss_now);
2317
2318 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2319 }
2320
2321 /* This function returns the amount that we can raise the
2322 * usable window based on the following constraints
2323 *
2324 * 1. The window can never be shrunk once it is offered (RFC 793)
2325 * 2. We limit memory per socket
2326 *
2327 * RFC 1122:
2328 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2329 * RECV.NEXT + RCV.WIN fixed until:
2330 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2331 *
2332 * i.e. don't raise the right edge of the window until you can raise
2333 * it at least MSS bytes.
2334 *
2335 * Unfortunately, the recommended algorithm breaks header prediction,
2336 * since header prediction assumes th->window stays fixed.
2337 *
2338 * Strictly speaking, keeping th->window fixed violates the receiver
2339 * side SWS prevention criteria. The problem is that under this rule
2340 * a stream of single byte packets will cause the right side of the
2341 * window to always advance by a single byte.
2342 *
2343 * Of course, if the sender implements sender side SWS prevention
2344 * then this will not be a problem.
2345 *
2346 * BSD seems to make the following compromise:
2347 *
2348 * If the free space is less than the 1/4 of the maximum
2349 * space available and the free space is less than 1/2 mss,
2350 * then set the window to 0.
2351 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2352 * Otherwise, just prevent the window from shrinking
2353 * and from being larger than the largest representable value.
2354 *
2355 * This prevents incremental opening of the window in the regime
2356 * where TCP is limited by the speed of the reader side taking
2357 * data out of the TCP receive queue. It does nothing about
2358 * those cases where the window is constrained on the sender side
2359 * because the pipeline is full.
2360 *
2361 * BSD also seems to "accidentally" limit itself to windows that are a
2362 * multiple of MSS, at least until the free space gets quite small.
2363 * This would appear to be a side effect of the mbuf implementation.
2364 * Combining these two algorithms results in the observed behavior
2365 * of having a fixed window size at almost all times.
2366 *
2367 * Below we obtain similar behavior by forcing the offered window to
2368 * a multiple of the mss when it is feasible to do so.
2369 *
2370 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2371 * Regular options like TIMESTAMP are taken into account.
2372 */
2373 u32 __tcp_select_window(struct sock *sk)
2374 {
2375 struct inet_connection_sock *icsk = inet_csk(sk);
2376 struct tcp_sock *tp = tcp_sk(sk);
2377 /* MSS for the peer's data. Previous versions used mss_clamp
2378 * here. I don't know if the value based on our guesses
2379 * of peer's MSS is better for the performance. It's more correct
2380 * but may be worse for the performance because of rcv_mss
2381 * fluctuations. --SAW 1998/11/1
2382 */
2383 int mss = icsk->icsk_ack.rcv_mss;
2384 int free_space = tcp_space(sk);
2385 int allowed_space = tcp_full_space(sk);
2386 int full_space = min_t(int, tp->window_clamp, allowed_space);
2387 int window;
2388
2389 if (mss > full_space)
2390 mss = full_space;
2391
2392 if (free_space < (full_space >> 1)) {
2393 icsk->icsk_ack.quick = 0;
2394
2395 if (sk_under_memory_pressure(sk))
2396 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2397 4U * tp->advmss);
2398
2399 /* free_space might become our new window, make sure we don't
2400 * increase it due to wscale.
2401 */
2402 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2403
2404 /* if free space is less than mss estimate, or is below 1/16th
2405 * of the maximum allowed, try to move to zero-window, else
2406 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2407 * new incoming data is dropped due to memory limits.
2408 * With large window, mss test triggers way too late in order
2409 * to announce zero window in time before rmem limit kicks in.
2410 */
2411 if (free_space < (allowed_space >> 4) || free_space < mss)
2412 return 0;
2413 }
2414
2415 if (free_space > tp->rcv_ssthresh)
2416 free_space = tp->rcv_ssthresh;
2417
2418 /* Don't do rounding if we are using window scaling, since the
2419 * scaled window will not line up with the MSS boundary anyway.
2420 */
2421 window = tp->rcv_wnd;
2422 if (tp->rx_opt.rcv_wscale) {
2423 window = free_space;
2424
2425 /* Advertise enough space so that it won't get scaled away.
2426 * Import case: prevent zero window announcement if
2427 * 1<<rcv_wscale > mss.
2428 */
2429 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2430 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2431 << tp->rx_opt.rcv_wscale);
2432 } else {
2433 /* Get the largest window that is a nice multiple of mss.
2434 * Window clamp already applied above.
2435 * If our current window offering is within 1 mss of the
2436 * free space we just keep it. This prevents the divide
2437 * and multiply from happening most of the time.
2438 * We also don't do any window rounding when the free space
2439 * is too small.
2440 */
2441 if (window <= free_space - mss || window > free_space)
2442 window = (free_space / mss) * mss;
2443 else if (mss == full_space &&
2444 free_space > window + (full_space >> 1))
2445 window = free_space;
2446 }
2447
2448 return window;
2449 }
2450
2451 /* Collapses two adjacent SKB's during retransmission. */
2452 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2453 {
2454 struct tcp_sock *tp = tcp_sk(sk);
2455 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2456 int skb_size, next_skb_size;
2457
2458 skb_size = skb->len;
2459 next_skb_size = next_skb->len;
2460
2461 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2462
2463 tcp_highest_sack_combine(sk, next_skb, skb);
2464
2465 tcp_unlink_write_queue(next_skb, sk);
2466
2467 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2468 next_skb_size);
2469
2470 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2471 skb->ip_summed = CHECKSUM_PARTIAL;
2472
2473 if (skb->ip_summed != CHECKSUM_PARTIAL)
2474 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2475
2476 /* Update sequence range on original skb. */
2477 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2478
2479 /* Merge over control information. This moves PSH/FIN etc. over */
2480 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2481
2482 /* All done, get rid of second SKB and account for it so
2483 * packet counting does not break.
2484 */
2485 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2486
2487 /* changed transmit queue under us so clear hints */
2488 tcp_clear_retrans_hints_partial(tp);
2489 if (next_skb == tp->retransmit_skb_hint)
2490 tp->retransmit_skb_hint = skb;
2491
2492 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2493
2494 sk_wmem_free_skb(sk, next_skb);
2495 }
2496
2497 /* Check if coalescing SKBs is legal. */
2498 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2499 {
2500 if (tcp_skb_pcount(skb) > 1)
2501 return false;
2502 /* TODO: SACK collapsing could be used to remove this condition */
2503 if (skb_shinfo(skb)->nr_frags != 0)
2504 return false;
2505 if (skb_cloned(skb))
2506 return false;
2507 if (skb == tcp_send_head(sk))
2508 return false;
2509 /* Some heurestics for collapsing over SACK'd could be invented */
2510 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2511 return false;
2512
2513 return true;
2514 }
2515
2516 /* Collapse packets in the retransmit queue to make to create
2517 * less packets on the wire. This is only done on retransmission.
2518 */
2519 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2520 int space)
2521 {
2522 struct tcp_sock *tp = tcp_sk(sk);
2523 struct sk_buff *skb = to, *tmp;
2524 bool first = true;
2525
2526 if (!sysctl_tcp_retrans_collapse)
2527 return;
2528 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2529 return;
2530
2531 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2532 if (!tcp_can_collapse(sk, skb))
2533 break;
2534
2535 space -= skb->len;
2536
2537 if (first) {
2538 first = false;
2539 continue;
2540 }
2541
2542 if (space < 0)
2543 break;
2544 /* Punt if not enough space exists in the first SKB for
2545 * the data in the second
2546 */
2547 if (skb->len > skb_availroom(to))
2548 break;
2549
2550 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2551 break;
2552
2553 tcp_collapse_retrans(sk, to);
2554 }
2555 }
2556
2557 /* This retransmits one SKB. Policy decisions and retransmit queue
2558 * state updates are done by the caller. Returns non-zero if an
2559 * error occurred which prevented the send.
2560 */
2561 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564 struct inet_connection_sock *icsk = inet_csk(sk);
2565 unsigned int cur_mss;
2566 int err;
2567
2568 /* Inconslusive MTU probe */
2569 if (icsk->icsk_mtup.probe_size) {
2570 icsk->icsk_mtup.probe_size = 0;
2571 }
2572
2573 /* Do not sent more than we queued. 1/4 is reserved for possible
2574 * copying overhead: fragmentation, tunneling, mangling etc.
2575 */
2576 if (atomic_read(&sk->sk_wmem_alloc) >
2577 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2578 return -EAGAIN;
2579
2580 if (skb_still_in_host_queue(sk, skb))
2581 return -EBUSY;
2582
2583 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2584 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2585 BUG();
2586 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2587 return -ENOMEM;
2588 }
2589
2590 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2591 return -EHOSTUNREACH; /* Routing failure or similar. */
2592
2593 cur_mss = tcp_current_mss(sk);
2594
2595 /* If receiver has shrunk his window, and skb is out of
2596 * new window, do not retransmit it. The exception is the
2597 * case, when window is shrunk to zero. In this case
2598 * our retransmit serves as a zero window probe.
2599 */
2600 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2601 TCP_SKB_CB(skb)->seq != tp->snd_una)
2602 return -EAGAIN;
2603
2604 if (skb->len > cur_mss) {
2605 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2606 return -ENOMEM; /* We'll try again later. */
2607 } else {
2608 int oldpcount = tcp_skb_pcount(skb);
2609
2610 if (unlikely(oldpcount > 1)) {
2611 if (skb_unclone(skb, GFP_ATOMIC))
2612 return -ENOMEM;
2613 tcp_init_tso_segs(sk, skb, cur_mss);
2614 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2615 }
2616 }
2617
2618 tcp_retrans_try_collapse(sk, skb, cur_mss);
2619
2620 /* Make a copy, if the first transmission SKB clone we made
2621 * is still in somebody's hands, else make a clone.
2622 */
2623
2624 /* make sure skb->data is aligned on arches that require it
2625 * and check if ack-trimming & collapsing extended the headroom
2626 * beyond what csum_start can cover.
2627 */
2628 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2629 skb_headroom(skb) >= 0xFFFF)) {
2630 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2631 GFP_ATOMIC);
2632 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2633 -ENOBUFS;
2634 } else {
2635 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2636 }
2637
2638 if (likely(!err)) {
2639 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2640 /* Update global TCP statistics. */
2641 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2642 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2643 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2644 tp->total_retrans++;
2645 }
2646 return err;
2647 }
2648
2649 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2650 {
2651 struct tcp_sock *tp = tcp_sk(sk);
2652 int err = __tcp_retransmit_skb(sk, skb);
2653
2654 if (err == 0) {
2655 #if FASTRETRANS_DEBUG > 0
2656 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2657 net_dbg_ratelimited("retrans_out leaked\n");
2658 }
2659 #endif
2660 if (!tp->retrans_out)
2661 tp->lost_retrans_low = tp->snd_nxt;
2662 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2663 tp->retrans_out += tcp_skb_pcount(skb);
2664
2665 /* Save stamp of the first retransmit. */
2666 if (!tp->retrans_stamp)
2667 tp->retrans_stamp = tcp_skb_timestamp(skb);
2668
2669 /* snd_nxt is stored to detect loss of retransmitted segment,
2670 * see tcp_input.c tcp_sacktag_write_queue().
2671 */
2672 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2673 } else if (err != -EBUSY) {
2674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2675 }
2676
2677 if (tp->undo_retrans < 0)
2678 tp->undo_retrans = 0;
2679 tp->undo_retrans += tcp_skb_pcount(skb);
2680 return err;
2681 }
2682
2683 /* Check if we forward retransmits are possible in the current
2684 * window/congestion state.
2685 */
2686 static bool tcp_can_forward_retransmit(struct sock *sk)
2687 {
2688 const struct inet_connection_sock *icsk = inet_csk(sk);
2689 const struct tcp_sock *tp = tcp_sk(sk);
2690
2691 /* Forward retransmissions are possible only during Recovery. */
2692 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2693 return false;
2694
2695 /* No forward retransmissions in Reno are possible. */
2696 if (tcp_is_reno(tp))
2697 return false;
2698
2699 /* Yeah, we have to make difficult choice between forward transmission
2700 * and retransmission... Both ways have their merits...
2701 *
2702 * For now we do not retransmit anything, while we have some new
2703 * segments to send. In the other cases, follow rule 3 for
2704 * NextSeg() specified in RFC3517.
2705 */
2706
2707 if (tcp_may_send_now(sk))
2708 return false;
2709
2710 return true;
2711 }
2712
2713 /* This gets called after a retransmit timeout, and the initially
2714 * retransmitted data is acknowledged. It tries to continue
2715 * resending the rest of the retransmit queue, until either
2716 * we've sent it all or the congestion window limit is reached.
2717 * If doing SACK, the first ACK which comes back for a timeout
2718 * based retransmit packet might feed us FACK information again.
2719 * If so, we use it to avoid unnecessarily retransmissions.
2720 */
2721 void tcp_xmit_retransmit_queue(struct sock *sk)
2722 {
2723 const struct inet_connection_sock *icsk = inet_csk(sk);
2724 struct tcp_sock *tp = tcp_sk(sk);
2725 struct sk_buff *skb;
2726 struct sk_buff *hole = NULL;
2727 u32 last_lost;
2728 int mib_idx;
2729 int fwd_rexmitting = 0;
2730
2731 if (!tp->packets_out)
2732 return;
2733
2734 if (!tp->lost_out)
2735 tp->retransmit_high = tp->snd_una;
2736
2737 if (tp->retransmit_skb_hint) {
2738 skb = tp->retransmit_skb_hint;
2739 last_lost = TCP_SKB_CB(skb)->end_seq;
2740 if (after(last_lost, tp->retransmit_high))
2741 last_lost = tp->retransmit_high;
2742 } else {
2743 skb = tcp_write_queue_head(sk);
2744 last_lost = tp->snd_una;
2745 }
2746
2747 tcp_for_write_queue_from(skb, sk) {
2748 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2749
2750 if (skb == tcp_send_head(sk))
2751 break;
2752 /* we could do better than to assign each time */
2753 if (!hole)
2754 tp->retransmit_skb_hint = skb;
2755
2756 /* Assume this retransmit will generate
2757 * only one packet for congestion window
2758 * calculation purposes. This works because
2759 * tcp_retransmit_skb() will chop up the
2760 * packet to be MSS sized and all the
2761 * packet counting works out.
2762 */
2763 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2764 return;
2765
2766 if (fwd_rexmitting) {
2767 begin_fwd:
2768 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2769 break;
2770 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2771
2772 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2773 tp->retransmit_high = last_lost;
2774 if (!tcp_can_forward_retransmit(sk))
2775 break;
2776 /* Backtrack if necessary to non-L'ed skb */
2777 if (hole) {
2778 skb = hole;
2779 hole = NULL;
2780 }
2781 fwd_rexmitting = 1;
2782 goto begin_fwd;
2783
2784 } else if (!(sacked & TCPCB_LOST)) {
2785 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2786 hole = skb;
2787 continue;
2788
2789 } else {
2790 last_lost = TCP_SKB_CB(skb)->end_seq;
2791 if (icsk->icsk_ca_state != TCP_CA_Loss)
2792 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2793 else
2794 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2795 }
2796
2797 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2798 continue;
2799
2800 if (tcp_retransmit_skb(sk, skb))
2801 return;
2802
2803 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2804
2805 if (tcp_in_cwnd_reduction(sk))
2806 tp->prr_out += tcp_skb_pcount(skb);
2807
2808 if (skb == tcp_write_queue_head(sk))
2809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2810 inet_csk(sk)->icsk_rto,
2811 TCP_RTO_MAX);
2812 }
2813 }
2814
2815 /* We allow to exceed memory limits for FIN packets to expedite
2816 * connection tear down and (memory) recovery.
2817 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2818 * or even be forced to close flow without any FIN.
2819 */
2820 static void sk_forced_wmem_schedule(struct sock *sk, int size)
2821 {
2822 int amt, status;
2823
2824 if (size <= sk->sk_forward_alloc)
2825 return;
2826 amt = sk_mem_pages(size);
2827 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2828 sk_memory_allocated_add(sk, amt, &status);
2829 }
2830
2831 /* Send a FIN. The caller locks the socket for us.
2832 * We should try to send a FIN packet really hard, but eventually give up.
2833 */
2834 void tcp_send_fin(struct sock *sk)
2835 {
2836 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2837 struct tcp_sock *tp = tcp_sk(sk);
2838
2839 /* Optimization, tack on the FIN if we have one skb in write queue and
2840 * this skb was not yet sent, or we are under memory pressure.
2841 * Note: in the latter case, FIN packet will be sent after a timeout,
2842 * as TCP stack thinks it has already been transmitted.
2843 */
2844 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2845 coalesce:
2846 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2847 TCP_SKB_CB(tskb)->end_seq++;
2848 tp->write_seq++;
2849 if (!tcp_send_head(sk)) {
2850 /* This means tskb was already sent.
2851 * Pretend we included the FIN on previous transmit.
2852 * We need to set tp->snd_nxt to the value it would have
2853 * if FIN had been sent. This is because retransmit path
2854 * does not change tp->snd_nxt.
2855 */
2856 tp->snd_nxt++;
2857 return;
2858 }
2859 } else {
2860 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2861 if (unlikely(!skb)) {
2862 if (tskb)
2863 goto coalesce;
2864 return;
2865 }
2866 skb_reserve(skb, MAX_TCP_HEADER);
2867 sk_forced_wmem_schedule(sk, skb->truesize);
2868 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2869 tcp_init_nondata_skb(skb, tp->write_seq,
2870 TCPHDR_ACK | TCPHDR_FIN);
2871 tcp_queue_skb(sk, skb);
2872 }
2873 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2874 }
2875
2876 /* We get here when a process closes a file descriptor (either due to
2877 * an explicit close() or as a byproduct of exit()'ing) and there
2878 * was unread data in the receive queue. This behavior is recommended
2879 * by RFC 2525, section 2.17. -DaveM
2880 */
2881 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2882 {
2883 struct sk_buff *skb;
2884
2885 /* NOTE: No TCP options attached and we never retransmit this. */
2886 skb = alloc_skb(MAX_TCP_HEADER, priority);
2887 if (!skb) {
2888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2889 return;
2890 }
2891
2892 /* Reserve space for headers and prepare control bits. */
2893 skb_reserve(skb, MAX_TCP_HEADER);
2894 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2895 TCPHDR_ACK | TCPHDR_RST);
2896 /* Send it off. */
2897 if (tcp_transmit_skb(sk, skb, 0, priority))
2898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2899
2900 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2901 }
2902
2903 /* Send a crossed SYN-ACK during socket establishment.
2904 * WARNING: This routine must only be called when we have already sent
2905 * a SYN packet that crossed the incoming SYN that caused this routine
2906 * to get called. If this assumption fails then the initial rcv_wnd
2907 * and rcv_wscale values will not be correct.
2908 */
2909 int tcp_send_synack(struct sock *sk)
2910 {
2911 struct sk_buff *skb;
2912
2913 skb = tcp_write_queue_head(sk);
2914 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2915 pr_debug("%s: wrong queue state\n", __func__);
2916 return -EFAULT;
2917 }
2918 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2919 if (skb_cloned(skb)) {
2920 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2921 if (!nskb)
2922 return -ENOMEM;
2923 tcp_unlink_write_queue(skb, sk);
2924 __skb_header_release(nskb);
2925 __tcp_add_write_queue_head(sk, nskb);
2926 sk_wmem_free_skb(sk, skb);
2927 sk->sk_wmem_queued += nskb->truesize;
2928 sk_mem_charge(sk, nskb->truesize);
2929 skb = nskb;
2930 }
2931
2932 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2933 tcp_ecn_send_synack(sk, skb);
2934 }
2935 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2936 }
2937
2938 /**
2939 * tcp_make_synack - Prepare a SYN-ACK.
2940 * sk: listener socket
2941 * dst: dst entry attached to the SYNACK
2942 * req: request_sock pointer
2943 *
2944 * Allocate one skb and build a SYNACK packet.
2945 * @dst is consumed : Caller should not use it again.
2946 */
2947 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2948 struct request_sock *req,
2949 struct tcp_fastopen_cookie *foc)
2950 {
2951 struct tcp_out_options opts;
2952 struct inet_request_sock *ireq = inet_rsk(req);
2953 struct tcp_sock *tp = tcp_sk(sk);
2954 struct tcphdr *th;
2955 struct sk_buff *skb;
2956 struct tcp_md5sig_key *md5 = NULL;
2957 int tcp_header_size;
2958 int mss;
2959
2960 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2961 if (unlikely(!skb)) {
2962 dst_release(dst);
2963 return NULL;
2964 }
2965 /* Reserve space for headers. */
2966 skb_reserve(skb, MAX_TCP_HEADER);
2967
2968 skb_dst_set(skb, dst);
2969
2970 mss = dst_metric_advmss(dst);
2971 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2972 mss = tp->rx_opt.user_mss;
2973
2974 memset(&opts, 0, sizeof(opts));
2975 #ifdef CONFIG_SYN_COOKIES
2976 if (unlikely(req->cookie_ts))
2977 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2978 else
2979 #endif
2980 skb_mstamp_get(&skb->skb_mstamp);
2981
2982 #ifdef CONFIG_TCP_MD5SIG
2983 rcu_read_lock();
2984 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2985 #endif
2986 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
2987 foc) + sizeof(*th);
2988
2989 skb_push(skb, tcp_header_size);
2990 skb_reset_transport_header(skb);
2991
2992 th = tcp_hdr(skb);
2993 memset(th, 0, sizeof(struct tcphdr));
2994 th->syn = 1;
2995 th->ack = 1;
2996 tcp_ecn_make_synack(req, th, sk);
2997 th->source = htons(ireq->ir_num);
2998 th->dest = ireq->ir_rmt_port;
2999 /* Setting of flags are superfluous here for callers (and ECE is
3000 * not even correctly set)
3001 */
3002 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3003 TCPHDR_SYN | TCPHDR_ACK);
3004
3005 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3006 /* XXX data is queued and acked as is. No buffer/window check */
3007 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3008
3009 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3010 th->window = htons(min(req->rcv_wnd, 65535U));
3011 tcp_options_write((__be32 *)(th + 1), tp, &opts);
3012 th->doff = (tcp_header_size >> 2);
3013 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3014
3015 #ifdef CONFIG_TCP_MD5SIG
3016 /* Okay, we have all we need - do the md5 hash if needed */
3017 if (md5)
3018 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3019 md5, req_to_sk(req), skb);
3020 rcu_read_unlock();
3021 #endif
3022
3023 /* Do not fool tcpdump (if any), clean our debris */
3024 skb->tstamp.tv64 = 0;
3025 return skb;
3026 }
3027 EXPORT_SYMBOL(tcp_make_synack);
3028
3029 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3030 {
3031 struct inet_connection_sock *icsk = inet_csk(sk);
3032 const struct tcp_congestion_ops *ca;
3033 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3034
3035 if (ca_key == TCP_CA_UNSPEC)
3036 return;
3037
3038 rcu_read_lock();
3039 ca = tcp_ca_find_key(ca_key);
3040 if (likely(ca && try_module_get(ca->owner))) {
3041 module_put(icsk->icsk_ca_ops->owner);
3042 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3043 icsk->icsk_ca_ops = ca;
3044 }
3045 rcu_read_unlock();
3046 }
3047
3048 /* Do all connect socket setups that can be done AF independent. */
3049 static void tcp_connect_init(struct sock *sk)
3050 {
3051 const struct dst_entry *dst = __sk_dst_get(sk);
3052 struct tcp_sock *tp = tcp_sk(sk);
3053 __u8 rcv_wscale;
3054
3055 /* We'll fix this up when we get a response from the other end.
3056 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3057 */
3058 tp->tcp_header_len = sizeof(struct tcphdr) +
3059 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3060
3061 #ifdef CONFIG_TCP_MD5SIG
3062 if (tp->af_specific->md5_lookup(sk, sk))
3063 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3064 #endif
3065
3066 /* If user gave his TCP_MAXSEG, record it to clamp */
3067 if (tp->rx_opt.user_mss)
3068 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3069 tp->max_window = 0;
3070 tcp_mtup_init(sk);
3071 tcp_sync_mss(sk, dst_mtu(dst));
3072
3073 tcp_ca_dst_init(sk, dst);
3074
3075 if (!tp->window_clamp)
3076 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3077 tp->advmss = dst_metric_advmss(dst);
3078 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3079 tp->advmss = tp->rx_opt.user_mss;
3080
3081 tcp_initialize_rcv_mss(sk);
3082
3083 /* limit the window selection if the user enforce a smaller rx buffer */
3084 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3085 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3086 tp->window_clamp = tcp_full_space(sk);
3087
3088 tcp_select_initial_window(tcp_full_space(sk),
3089 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3090 &tp->rcv_wnd,
3091 &tp->window_clamp,
3092 sysctl_tcp_window_scaling,
3093 &rcv_wscale,
3094 dst_metric(dst, RTAX_INITRWND));
3095
3096 tp->rx_opt.rcv_wscale = rcv_wscale;
3097 tp->rcv_ssthresh = tp->rcv_wnd;
3098
3099 sk->sk_err = 0;
3100 sock_reset_flag(sk, SOCK_DONE);
3101 tp->snd_wnd = 0;
3102 tcp_init_wl(tp, 0);
3103 tp->snd_una = tp->write_seq;
3104 tp->snd_sml = tp->write_seq;
3105 tp->snd_up = tp->write_seq;
3106 tp->snd_nxt = tp->write_seq;
3107
3108 if (likely(!tp->repair))
3109 tp->rcv_nxt = 0;
3110 else
3111 tp->rcv_tstamp = tcp_time_stamp;
3112 tp->rcv_wup = tp->rcv_nxt;
3113 tp->copied_seq = tp->rcv_nxt;
3114
3115 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3116 inet_csk(sk)->icsk_retransmits = 0;
3117 tcp_clear_retrans(tp);
3118 }
3119
3120 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3121 {
3122 struct tcp_sock *tp = tcp_sk(sk);
3123 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3124
3125 tcb->end_seq += skb->len;
3126 __skb_header_release(skb);
3127 __tcp_add_write_queue_tail(sk, skb);
3128 sk->sk_wmem_queued += skb->truesize;
3129 sk_mem_charge(sk, skb->truesize);
3130 tp->write_seq = tcb->end_seq;
3131 tp->packets_out += tcp_skb_pcount(skb);
3132 }
3133
3134 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3135 * queue a data-only packet after the regular SYN, such that regular SYNs
3136 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3137 * only the SYN sequence, the data are retransmitted in the first ACK.
3138 * If cookie is not cached or other error occurs, falls back to send a
3139 * regular SYN with Fast Open cookie request option.
3140 */
3141 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3142 {
3143 struct tcp_sock *tp = tcp_sk(sk);
3144 struct tcp_fastopen_request *fo = tp->fastopen_req;
3145 int syn_loss = 0, space, err = 0, copied;
3146 unsigned long last_syn_loss = 0;
3147 struct sk_buff *syn_data;
3148
3149 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3150 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3151 &syn_loss, &last_syn_loss);
3152 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3153 if (syn_loss > 1 &&
3154 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3155 fo->cookie.len = -1;
3156 goto fallback;
3157 }
3158
3159 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3160 fo->cookie.len = -1;
3161 else if (fo->cookie.len <= 0)
3162 goto fallback;
3163
3164 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3165 * user-MSS. Reserve maximum option space for middleboxes that add
3166 * private TCP options. The cost is reduced data space in SYN :(
3167 */
3168 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3169 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3170 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3171 MAX_TCP_OPTION_SPACE;
3172
3173 space = min_t(size_t, space, fo->size);
3174
3175 /* limit to order-0 allocations */
3176 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3177
3178 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3179 if (!syn_data)
3180 goto fallback;
3181 syn_data->ip_summed = CHECKSUM_PARTIAL;
3182 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3183 copied = copy_from_iter(skb_put(syn_data, space), space,
3184 &fo->data->msg_iter);
3185 if (unlikely(!copied)) {
3186 kfree_skb(syn_data);
3187 goto fallback;
3188 }
3189 if (copied != space) {
3190 skb_trim(syn_data, copied);
3191 space = copied;
3192 }
3193
3194 /* No more data pending in inet_wait_for_connect() */
3195 if (space == fo->size)
3196 fo->data = NULL;
3197 fo->copied = space;
3198
3199 tcp_connect_queue_skb(sk, syn_data);
3200
3201 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3202
3203 syn->skb_mstamp = syn_data->skb_mstamp;
3204
3205 /* Now full SYN+DATA was cloned and sent (or not),
3206 * remove the SYN from the original skb (syn_data)
3207 * we keep in write queue in case of a retransmit, as we
3208 * also have the SYN packet (with no data) in the same queue.
3209 */
3210 TCP_SKB_CB(syn_data)->seq++;
3211 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3212 if (!err) {
3213 tp->syn_data = (fo->copied > 0);
3214 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3215 goto done;
3216 }
3217
3218 fallback:
3219 /* Send a regular SYN with Fast Open cookie request option */
3220 if (fo->cookie.len > 0)
3221 fo->cookie.len = 0;
3222 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3223 if (err)
3224 tp->syn_fastopen = 0;
3225 done:
3226 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3227 return err;
3228 }
3229
3230 /* Build a SYN and send it off. */
3231 int tcp_connect(struct sock *sk)
3232 {
3233 struct tcp_sock *tp = tcp_sk(sk);
3234 struct sk_buff *buff;
3235 int err;
3236
3237 tcp_connect_init(sk);
3238
3239 if (unlikely(tp->repair)) {
3240 tcp_finish_connect(sk, NULL);
3241 return 0;
3242 }
3243
3244 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3245 if (unlikely(!buff))
3246 return -ENOBUFS;
3247
3248 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3249 tp->retrans_stamp = tcp_time_stamp;
3250 tcp_connect_queue_skb(sk, buff);
3251 tcp_ecn_send_syn(sk, buff);
3252
3253 /* Send off SYN; include data in Fast Open. */
3254 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3255 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3256 if (err == -ECONNREFUSED)
3257 return err;
3258
3259 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3260 * in order to make this packet get counted in tcpOutSegs.
3261 */
3262 tp->snd_nxt = tp->write_seq;
3263 tp->pushed_seq = tp->write_seq;
3264 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3265
3266 /* Timer for repeating the SYN until an answer. */
3267 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3268 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3269 return 0;
3270 }
3271 EXPORT_SYMBOL(tcp_connect);
3272
3273 /* Send out a delayed ack, the caller does the policy checking
3274 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3275 * for details.
3276 */
3277 void tcp_send_delayed_ack(struct sock *sk)
3278 {
3279 struct inet_connection_sock *icsk = inet_csk(sk);
3280 int ato = icsk->icsk_ack.ato;
3281 unsigned long timeout;
3282
3283 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3284
3285 if (ato > TCP_DELACK_MIN) {
3286 const struct tcp_sock *tp = tcp_sk(sk);
3287 int max_ato = HZ / 2;
3288
3289 if (icsk->icsk_ack.pingpong ||
3290 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3291 max_ato = TCP_DELACK_MAX;
3292
3293 /* Slow path, intersegment interval is "high". */
3294
3295 /* If some rtt estimate is known, use it to bound delayed ack.
3296 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3297 * directly.
3298 */
3299 if (tp->srtt_us) {
3300 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3301 TCP_DELACK_MIN);
3302
3303 if (rtt < max_ato)
3304 max_ato = rtt;
3305 }
3306
3307 ato = min(ato, max_ato);
3308 }
3309
3310 /* Stay within the limit we were given */
3311 timeout = jiffies + ato;
3312
3313 /* Use new timeout only if there wasn't a older one earlier. */
3314 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3315 /* If delack timer was blocked or is about to expire,
3316 * send ACK now.
3317 */
3318 if (icsk->icsk_ack.blocked ||
3319 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3320 tcp_send_ack(sk);
3321 return;
3322 }
3323
3324 if (!time_before(timeout, icsk->icsk_ack.timeout))
3325 timeout = icsk->icsk_ack.timeout;
3326 }
3327 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3328 icsk->icsk_ack.timeout = timeout;
3329 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3330 }
3331
3332 /* This routine sends an ack and also updates the window. */
3333 void tcp_send_ack(struct sock *sk)
3334 {
3335 struct sk_buff *buff;
3336
3337 /* If we have been reset, we may not send again. */
3338 if (sk->sk_state == TCP_CLOSE)
3339 return;
3340
3341 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3342
3343 /* We are not putting this on the write queue, so
3344 * tcp_transmit_skb() will set the ownership to this
3345 * sock.
3346 */
3347 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3348 if (!buff) {
3349 inet_csk_schedule_ack(sk);
3350 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3351 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3352 TCP_DELACK_MAX, TCP_RTO_MAX);
3353 return;
3354 }
3355
3356 /* Reserve space for headers and prepare control bits. */
3357 skb_reserve(buff, MAX_TCP_HEADER);
3358 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3359
3360 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3361 * too much.
3362 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3363 * We also avoid tcp_wfree() overhead (cache line miss accessing
3364 * tp->tsq_flags) by using regular sock_wfree()
3365 */
3366 skb_set_tcp_pure_ack(buff);
3367
3368 /* Send it off, this clears delayed acks for us. */
3369 skb_mstamp_get(&buff->skb_mstamp);
3370 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3371 }
3372 EXPORT_SYMBOL_GPL(tcp_send_ack);
3373
3374 /* This routine sends a packet with an out of date sequence
3375 * number. It assumes the other end will try to ack it.
3376 *
3377 * Question: what should we make while urgent mode?
3378 * 4.4BSD forces sending single byte of data. We cannot send
3379 * out of window data, because we have SND.NXT==SND.MAX...
3380 *
3381 * Current solution: to send TWO zero-length segments in urgent mode:
3382 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3383 * out-of-date with SND.UNA-1 to probe window.
3384 */
3385 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3386 {
3387 struct tcp_sock *tp = tcp_sk(sk);
3388 struct sk_buff *skb;
3389
3390 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3391 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3392 if (!skb)
3393 return -1;
3394
3395 /* Reserve space for headers and set control bits. */
3396 skb_reserve(skb, MAX_TCP_HEADER);
3397 /* Use a previous sequence. This should cause the other
3398 * end to send an ack. Don't queue or clone SKB, just
3399 * send it.
3400 */
3401 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3402 skb_mstamp_get(&skb->skb_mstamp);
3403 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3404 }
3405
3406 void tcp_send_window_probe(struct sock *sk)
3407 {
3408 if (sk->sk_state == TCP_ESTABLISHED) {
3409 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3410 tcp_xmit_probe_skb(sk, 0);
3411 }
3412 }
3413
3414 /* Initiate keepalive or window probe from timer. */
3415 int tcp_write_wakeup(struct sock *sk)
3416 {
3417 struct tcp_sock *tp = tcp_sk(sk);
3418 struct sk_buff *skb;
3419
3420 if (sk->sk_state == TCP_CLOSE)
3421 return -1;
3422
3423 skb = tcp_send_head(sk);
3424 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3425 int err;
3426 unsigned int mss = tcp_current_mss(sk);
3427 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3428
3429 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3430 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3431
3432 /* We are probing the opening of a window
3433 * but the window size is != 0
3434 * must have been a result SWS avoidance ( sender )
3435 */
3436 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3437 skb->len > mss) {
3438 seg_size = min(seg_size, mss);
3439 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3440 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3441 return -1;
3442 } else if (!tcp_skb_pcount(skb))
3443 tcp_set_skb_tso_segs(sk, skb, mss);
3444
3445 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3446 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3447 if (!err)
3448 tcp_event_new_data_sent(sk, skb);
3449 return err;
3450 } else {
3451 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3452 tcp_xmit_probe_skb(sk, 1);
3453 return tcp_xmit_probe_skb(sk, 0);
3454 }
3455 }
3456
3457 /* A window probe timeout has occurred. If window is not closed send
3458 * a partial packet else a zero probe.
3459 */
3460 void tcp_send_probe0(struct sock *sk)
3461 {
3462 struct inet_connection_sock *icsk = inet_csk(sk);
3463 struct tcp_sock *tp = tcp_sk(sk);
3464 unsigned long probe_max;
3465 int err;
3466
3467 err = tcp_write_wakeup(sk);
3468
3469 if (tp->packets_out || !tcp_send_head(sk)) {
3470 /* Cancel probe timer, if it is not required. */
3471 icsk->icsk_probes_out = 0;
3472 icsk->icsk_backoff = 0;
3473 return;
3474 }
3475
3476 if (err <= 0) {
3477 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3478 icsk->icsk_backoff++;
3479 icsk->icsk_probes_out++;
3480 probe_max = TCP_RTO_MAX;
3481 } else {
3482 /* If packet was not sent due to local congestion,
3483 * do not backoff and do not remember icsk_probes_out.
3484 * Let local senders to fight for local resources.
3485 *
3486 * Use accumulated backoff yet.
3487 */
3488 if (!icsk->icsk_probes_out)
3489 icsk->icsk_probes_out = 1;
3490 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3491 }
3492 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3493 inet_csk_rto_backoff(icsk, probe_max),
3494 TCP_RTO_MAX);
3495 }
3496
3497 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3498 {
3499 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3500 struct flowi fl;
3501 int res;
3502
3503 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3504 if (!res) {
3505 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3507 }
3508 return res;
3509 }
3510 EXPORT_SYMBOL(tcp_rtx_synack);