]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45
46 #include <trace/events/tcp.h>
47
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
50
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
57
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62
63 tp->packets_out += tcp_skb_pcount(skb);
64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 tcp_rearm_rto(sk);
66
67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 tcp_skb_pcount(skb));
69 }
70
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72 * window scaling factor due to loss of precision.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
77 */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 const struct tcp_sock *tp = tcp_sk(sk);
81
82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 (tp->rx_opt.wscale_ok &&
84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 return tp->snd_nxt;
86 else
87 return tcp_wnd_end(tp);
88 }
89
90 /* Calculate mss to advertise in SYN segment.
91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92 *
93 * 1. It is independent of path mtu.
94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96 * attached devices, because some buggy hosts are confused by
97 * large MSS.
98 * 4. We do not make 3, we advertise MSS, calculated from first
99 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
100 * This may be overridden via information stored in routing table.
101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102 * probably even Jumbo".
103 */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 struct tcp_sock *tp = tcp_sk(sk);
107 const struct dst_entry *dst = __sk_dst_get(sk);
108 int mss = tp->advmss;
109
110 if (dst) {
111 unsigned int metric = dst_metric_advmss(dst);
112
113 if (metric < mss) {
114 mss = metric;
115 tp->advmss = mss;
116 }
117 }
118
119 return (__u16)mss;
120 }
121
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123 * This is the first part of cwnd validation mechanism.
124 */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 struct tcp_sock *tp = tcp_sk(sk);
128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 u32 cwnd = tp->snd_cwnd;
130
131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132
133 tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 restart_cwnd = min(restart_cwnd, cwnd);
135
136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 cwnd >>= 1;
138 tp->snd_cwnd = max(cwnd, restart_cwnd);
139 tp->snd_cwnd_stamp = tcp_jiffies32;
140 tp->snd_cwnd_used = 0;
141 }
142
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 struct sock *sk)
146 {
147 struct inet_connection_sock *icsk = inet_csk(sk);
148 const u32 now = tcp_jiffies32;
149
150 if (tcp_packets_in_flight(tp) == 0)
151 tcp_ca_event(sk, CA_EVENT_TX_START);
152
153 tp->lsndtime = now;
154
155 /* If it is a reply for ato after last received
156 * packet, enter pingpong mode.
157 */
158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 icsk->icsk_ack.pingpong = 1;
160 }
161
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
164 {
165 tcp_dec_quickack_mode(sk, pkts);
166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
167 }
168
169
170 u32 tcp_default_init_rwnd(u32 mss)
171 {
172 /* Initial receive window should be twice of TCP_INIT_CWND to
173 * enable proper sending of new unsent data during fast recovery
174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
175 * limit when mss is larger than 1460.
176 */
177 u32 init_rwnd = TCP_INIT_CWND * 2;
178
179 if (mss > 1460)
180 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
181 return init_rwnd;
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = rounddown(space, mss);
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window */
223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
224 space = max_t(u32, space, sysctl_rmem_max);
225 space = min_t(u32, space, *window_clamp);
226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
227 space >>= 1;
228 (*rcv_wscale)++;
229 }
230 }
231
232 if (mss > (1 << *rcv_wscale)) {
233 if (!init_rcv_wnd) /* Use default unless specified otherwise */
234 init_rcv_wnd = tcp_default_init_rwnd(mss);
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 }
237
238 /* Set the clamp no higher than max representable value */
239 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
240 }
241 EXPORT_SYMBOL(tcp_select_initial_window);
242
243 /* Chose a new window to advertise, update state in tcp_sock for the
244 * socket, and return result with RFC1323 scaling applied. The return
245 * value can be stuffed directly into th->window for an outgoing
246 * frame.
247 */
248 static u16 tcp_select_window(struct sock *sk)
249 {
250 struct tcp_sock *tp = tcp_sk(sk);
251 u32 old_win = tp->rcv_wnd;
252 u32 cur_win = tcp_receive_window(tp);
253 u32 new_win = __tcp_select_window(sk);
254
255 /* Never shrink the offered window */
256 if (new_win < cur_win) {
257 /* Danger Will Robinson!
258 * Don't update rcv_wup/rcv_wnd here or else
259 * we will not be able to advertise a zero
260 * window in time. --DaveM
261 *
262 * Relax Will Robinson.
263 */
264 if (new_win == 0)
265 NET_INC_STATS(sock_net(sk),
266 LINUX_MIB_TCPWANTZEROWINDOWADV);
267 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
268 }
269 tp->rcv_wnd = new_win;
270 tp->rcv_wup = tp->rcv_nxt;
271
272 /* Make sure we do not exceed the maximum possible
273 * scaled window.
274 */
275 if (!tp->rx_opt.rcv_wscale &&
276 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
277 new_win = min(new_win, MAX_TCP_WINDOW);
278 else
279 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
280
281 /* RFC1323 scaling applied */
282 new_win >>= tp->rx_opt.rcv_wscale;
283
284 /* If we advertise zero window, disable fast path. */
285 if (new_win == 0) {
286 tp->pred_flags = 0;
287 if (old_win)
288 NET_INC_STATS(sock_net(sk),
289 LINUX_MIB_TCPTOZEROWINDOWADV);
290 } else if (old_win == 0) {
291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
292 }
293
294 return new_win;
295 }
296
297 /* Packet ECN state for a SYN-ACK */
298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
299 {
300 const struct tcp_sock *tp = tcp_sk(sk);
301
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 if (!(tp->ecn_flags & TCP_ECN_OK))
304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 else if (tcp_ca_needs_ecn(sk) ||
306 tcp_bpf_ca_needs_ecn(sk))
307 INET_ECN_xmit(sk);
308 }
309
310 /* Packet ECN state for a SYN. */
311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
312 {
313 struct tcp_sock *tp = tcp_sk(sk);
314 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
315 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
316 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
317
318 if (!use_ecn) {
319 const struct dst_entry *dst = __sk_dst_get(sk);
320
321 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
322 use_ecn = true;
323 }
324
325 tp->ecn_flags = 0;
326
327 if (use_ecn) {
328 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
329 tp->ecn_flags = TCP_ECN_OK;
330 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
331 INET_ECN_xmit(sk);
332 }
333 }
334
335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
336 {
337 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
338 /* tp->ecn_flags are cleared at a later point in time when
339 * SYN ACK is ultimatively being received.
340 */
341 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
342 }
343
344 static void
345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
346 {
347 if (inet_rsk(req)->ecn_ok)
348 th->ece = 1;
349 }
350
351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
352 * be sent.
353 */
354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
355 struct tcphdr *th, int tcp_header_len)
356 {
357 struct tcp_sock *tp = tcp_sk(sk);
358
359 if (tp->ecn_flags & TCP_ECN_OK) {
360 /* Not-retransmitted data segment: set ECT and inject CWR. */
361 if (skb->len != tcp_header_len &&
362 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
363 INET_ECN_xmit(sk);
364 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
365 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
366 th->cwr = 1;
367 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
368 }
369 } else if (!tcp_ca_needs_ecn(sk)) {
370 /* ACK or retransmitted segment: clear ECT|CE */
371 INET_ECN_dontxmit(sk);
372 }
373 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
374 th->ece = 1;
375 }
376 }
377
378 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
379 * auto increment end seqno.
380 */
381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
382 {
383 skb->ip_summed = CHECKSUM_PARTIAL;
384
385 TCP_SKB_CB(skb)->tcp_flags = flags;
386 TCP_SKB_CB(skb)->sacked = 0;
387
388 tcp_skb_pcount_set(skb, 1);
389
390 TCP_SKB_CB(skb)->seq = seq;
391 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
392 seq++;
393 TCP_SKB_CB(skb)->end_seq = seq;
394 }
395
396 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
397 {
398 return tp->snd_una != tp->snd_up;
399 }
400
401 #define OPTION_SACK_ADVERTISE (1 << 0)
402 #define OPTION_TS (1 << 1)
403 #define OPTION_MD5 (1 << 2)
404 #define OPTION_WSCALE (1 << 3)
405 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
406 #define OPTION_SMC (1 << 9)
407
408 static void smc_options_write(__be32 *ptr, u16 *options)
409 {
410 #if IS_ENABLED(CONFIG_SMC)
411 if (static_branch_unlikely(&tcp_have_smc)) {
412 if (unlikely(OPTION_SMC & *options)) {
413 *ptr++ = htonl((TCPOPT_NOP << 24) |
414 (TCPOPT_NOP << 16) |
415 (TCPOPT_EXP << 8) |
416 (TCPOLEN_EXP_SMC_BASE));
417 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
418 }
419 }
420 #endif
421 }
422
423 struct tcp_out_options {
424 u16 options; /* bit field of OPTION_* */
425 u16 mss; /* 0 to disable */
426 u8 ws; /* window scale, 0 to disable */
427 u8 num_sack_blocks; /* number of SACK blocks to include */
428 u8 hash_size; /* bytes in hash_location */
429 __u8 *hash_location; /* temporary pointer, overloaded */
430 __u32 tsval, tsecr; /* need to include OPTION_TS */
431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
432 };
433
434 /* Write previously computed TCP options to the packet.
435 *
436 * Beware: Something in the Internet is very sensitive to the ordering of
437 * TCP options, we learned this through the hard way, so be careful here.
438 * Luckily we can at least blame others for their non-compliance but from
439 * inter-operability perspective it seems that we're somewhat stuck with
440 * the ordering which we have been using if we want to keep working with
441 * those broken things (not that it currently hurts anybody as there isn't
442 * particular reason why the ordering would need to be changed).
443 *
444 * At least SACK_PERM as the first option is known to lead to a disaster
445 * (but it may well be that other scenarios fail similarly).
446 */
447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
448 struct tcp_out_options *opts)
449 {
450 u16 options = opts->options; /* mungable copy */
451
452 if (unlikely(OPTION_MD5 & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
455 /* overload cookie hash location */
456 opts->hash_location = (__u8 *)ptr;
457 ptr += 4;
458 }
459
460 if (unlikely(opts->mss)) {
461 *ptr++ = htonl((TCPOPT_MSS << 24) |
462 (TCPOLEN_MSS << 16) |
463 opts->mss);
464 }
465
466 if (likely(OPTION_TS & options)) {
467 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
469 (TCPOLEN_SACK_PERM << 16) |
470 (TCPOPT_TIMESTAMP << 8) |
471 TCPOLEN_TIMESTAMP);
472 options &= ~OPTION_SACK_ADVERTISE;
473 } else {
474 *ptr++ = htonl((TCPOPT_NOP << 24) |
475 (TCPOPT_NOP << 16) |
476 (TCPOPT_TIMESTAMP << 8) |
477 TCPOLEN_TIMESTAMP);
478 }
479 *ptr++ = htonl(opts->tsval);
480 *ptr++ = htonl(opts->tsecr);
481 }
482
483 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
484 *ptr++ = htonl((TCPOPT_NOP << 24) |
485 (TCPOPT_NOP << 16) |
486 (TCPOPT_SACK_PERM << 8) |
487 TCPOLEN_SACK_PERM);
488 }
489
490 if (unlikely(OPTION_WSCALE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
492 (TCPOPT_WINDOW << 16) |
493 (TCPOLEN_WINDOW << 8) |
494 opts->ws);
495 }
496
497 if (unlikely(opts->num_sack_blocks)) {
498 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
499 tp->duplicate_sack : tp->selective_acks;
500 int this_sack;
501
502 *ptr++ = htonl((TCPOPT_NOP << 24) |
503 (TCPOPT_NOP << 16) |
504 (TCPOPT_SACK << 8) |
505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
506 TCPOLEN_SACK_PERBLOCK)));
507
508 for (this_sack = 0; this_sack < opts->num_sack_blocks;
509 ++this_sack) {
510 *ptr++ = htonl(sp[this_sack].start_seq);
511 *ptr++ = htonl(sp[this_sack].end_seq);
512 }
513
514 tp->rx_opt.dsack = 0;
515 }
516
517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
519 u8 *p = (u8 *)ptr;
520 u32 len; /* Fast Open option length */
521
522 if (foc->exp) {
523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
525 TCPOPT_FASTOPEN_MAGIC);
526 p += TCPOLEN_EXP_FASTOPEN_BASE;
527 } else {
528 len = TCPOLEN_FASTOPEN_BASE + foc->len;
529 *p++ = TCPOPT_FASTOPEN;
530 *p++ = len;
531 }
532
533 memcpy(p, foc->val, foc->len);
534 if ((len & 3) == 2) {
535 p[foc->len] = TCPOPT_NOP;
536 p[foc->len + 1] = TCPOPT_NOP;
537 }
538 ptr += (len + 3) >> 2;
539 }
540
541 smc_options_write(ptr, &options);
542 }
543
544 static void smc_set_option(const struct tcp_sock *tp,
545 struct tcp_out_options *opts,
546 unsigned int *remaining)
547 {
548 #if IS_ENABLED(CONFIG_SMC)
549 if (static_branch_unlikely(&tcp_have_smc)) {
550 if (tp->syn_smc) {
551 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
552 opts->options |= OPTION_SMC;
553 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
554 }
555 }
556 }
557 #endif
558 }
559
560 static void smc_set_option_cond(const struct tcp_sock *tp,
561 const struct inet_request_sock *ireq,
562 struct tcp_out_options *opts,
563 unsigned int *remaining)
564 {
565 #if IS_ENABLED(CONFIG_SMC)
566 if (static_branch_unlikely(&tcp_have_smc)) {
567 if (tp->syn_smc && ireq->smc_ok) {
568 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
569 opts->options |= OPTION_SMC;
570 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
571 }
572 }
573 }
574 #endif
575 }
576
577 /* Compute TCP options for SYN packets. This is not the final
578 * network wire format yet.
579 */
580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
581 struct tcp_out_options *opts,
582 struct tcp_md5sig_key **md5)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 unsigned int remaining = MAX_TCP_OPTION_SPACE;
586 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
587
588 #ifdef CONFIG_TCP_MD5SIG
589 *md5 = tp->af_specific->md5_lookup(sk, sk);
590 if (*md5) {
591 opts->options |= OPTION_MD5;
592 remaining -= TCPOLEN_MD5SIG_ALIGNED;
593 }
594 #else
595 *md5 = NULL;
596 #endif
597
598 /* We always get an MSS option. The option bytes which will be seen in
599 * normal data packets should timestamps be used, must be in the MSS
600 * advertised. But we subtract them from tp->mss_cache so that
601 * calculations in tcp_sendmsg are simpler etc. So account for this
602 * fact here if necessary. If we don't do this correctly, as a
603 * receiver we won't recognize data packets as being full sized when we
604 * should, and thus we won't abide by the delayed ACK rules correctly.
605 * SACKs don't matter, we never delay an ACK when we have any of those
606 * going out. */
607 opts->mss = tcp_advertise_mss(sk);
608 remaining -= TCPOLEN_MSS_ALIGNED;
609
610 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
611 opts->options |= OPTION_TS;
612 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
613 opts->tsecr = tp->rx_opt.ts_recent;
614 remaining -= TCPOLEN_TSTAMP_ALIGNED;
615 }
616 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
617 opts->ws = tp->rx_opt.rcv_wscale;
618 opts->options |= OPTION_WSCALE;
619 remaining -= TCPOLEN_WSCALE_ALIGNED;
620 }
621 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
622 opts->options |= OPTION_SACK_ADVERTISE;
623 if (unlikely(!(OPTION_TS & opts->options)))
624 remaining -= TCPOLEN_SACKPERM_ALIGNED;
625 }
626
627 if (fastopen && fastopen->cookie.len >= 0) {
628 u32 need = fastopen->cookie.len;
629
630 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
631 TCPOLEN_FASTOPEN_BASE;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = &fastopen->cookie;
636 remaining -= need;
637 tp->syn_fastopen = 1;
638 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
639 }
640 }
641
642 smc_set_option(tp, opts, &remaining);
643
644 return MAX_TCP_OPTION_SPACE - remaining;
645 }
646
647 /* Set up TCP options for SYN-ACKs. */
648 static unsigned int tcp_synack_options(const struct sock *sk,
649 struct request_sock *req,
650 unsigned int mss, struct sk_buff *skb,
651 struct tcp_out_options *opts,
652 const struct tcp_md5sig_key *md5,
653 struct tcp_fastopen_cookie *foc)
654 {
655 struct inet_request_sock *ireq = inet_rsk(req);
656 unsigned int remaining = MAX_TCP_OPTION_SPACE;
657
658 #ifdef CONFIG_TCP_MD5SIG
659 if (md5) {
660 opts->options |= OPTION_MD5;
661 remaining -= TCPOLEN_MD5SIG_ALIGNED;
662
663 /* We can't fit any SACK blocks in a packet with MD5 + TS
664 * options. There was discussion about disabling SACK
665 * rather than TS in order to fit in better with old,
666 * buggy kernels, but that was deemed to be unnecessary.
667 */
668 ireq->tstamp_ok &= !ireq->sack_ok;
669 }
670 #endif
671
672 /* We always send an MSS option. */
673 opts->mss = mss;
674 remaining -= TCPOLEN_MSS_ALIGNED;
675
676 if (likely(ireq->wscale_ok)) {
677 opts->ws = ireq->rcv_wscale;
678 opts->options |= OPTION_WSCALE;
679 remaining -= TCPOLEN_WSCALE_ALIGNED;
680 }
681 if (likely(ireq->tstamp_ok)) {
682 opts->options |= OPTION_TS;
683 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
684 opts->tsecr = req->ts_recent;
685 remaining -= TCPOLEN_TSTAMP_ALIGNED;
686 }
687 if (likely(ireq->sack_ok)) {
688 opts->options |= OPTION_SACK_ADVERTISE;
689 if (unlikely(!ireq->tstamp_ok))
690 remaining -= TCPOLEN_SACKPERM_ALIGNED;
691 }
692 if (foc != NULL && foc->len >= 0) {
693 u32 need = foc->len;
694
695 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
696 TCPOLEN_FASTOPEN_BASE;
697 need = (need + 3) & ~3U; /* Align to 32 bits */
698 if (remaining >= need) {
699 opts->options |= OPTION_FAST_OPEN_COOKIE;
700 opts->fastopen_cookie = foc;
701 remaining -= need;
702 }
703 }
704
705 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
706
707 return MAX_TCP_OPTION_SPACE - remaining;
708 }
709
710 /* Compute TCP options for ESTABLISHED sockets. This is not the
711 * final wire format yet.
712 */
713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
714 struct tcp_out_options *opts,
715 struct tcp_md5sig_key **md5)
716 {
717 struct tcp_sock *tp = tcp_sk(sk);
718 unsigned int size = 0;
719 unsigned int eff_sacks;
720
721 opts->options = 0;
722
723 #ifdef CONFIG_TCP_MD5SIG
724 *md5 = tp->af_specific->md5_lookup(sk, sk);
725 if (unlikely(*md5)) {
726 opts->options |= OPTION_MD5;
727 size += TCPOLEN_MD5SIG_ALIGNED;
728 }
729 #else
730 *md5 = NULL;
731 #endif
732
733 if (likely(tp->rx_opt.tstamp_ok)) {
734 opts->options |= OPTION_TS;
735 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
736 opts->tsecr = tp->rx_opt.ts_recent;
737 size += TCPOLEN_TSTAMP_ALIGNED;
738 }
739
740 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
741 if (unlikely(eff_sacks)) {
742 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
743 opts->num_sack_blocks =
744 min_t(unsigned int, eff_sacks,
745 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
746 TCPOLEN_SACK_PERBLOCK);
747 size += TCPOLEN_SACK_BASE_ALIGNED +
748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
749 }
750
751 return size;
752 }
753
754
755 /* TCP SMALL QUEUES (TSQ)
756 *
757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
758 * to reduce RTT and bufferbloat.
759 * We do this using a special skb destructor (tcp_wfree).
760 *
761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
762 * needs to be reallocated in a driver.
763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
764 *
765 * Since transmit from skb destructor is forbidden, we use a tasklet
766 * to process all sockets that eventually need to send more skbs.
767 * We use one tasklet per cpu, with its own queue of sockets.
768 */
769 struct tsq_tasklet {
770 struct tasklet_struct tasklet;
771 struct list_head head; /* queue of tcp sockets */
772 };
773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
774
775 static void tcp_tsq_handler(struct sock *sk)
776 {
777 if ((1 << sk->sk_state) &
778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
780 struct tcp_sock *tp = tcp_sk(sk);
781
782 if (tp->lost_out > tp->retrans_out &&
783 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
784 tcp_mstamp_refresh(tp);
785 tcp_xmit_retransmit_queue(sk);
786 }
787
788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
789 0, GFP_ATOMIC);
790 }
791 }
792 /*
793 * One tasklet per cpu tries to send more skbs.
794 * We run in tasklet context but need to disable irqs when
795 * transferring tsq->head because tcp_wfree() might
796 * interrupt us (non NAPI drivers)
797 */
798 static void tcp_tasklet_func(unsigned long data)
799 {
800 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
801 LIST_HEAD(list);
802 unsigned long flags;
803 struct list_head *q, *n;
804 struct tcp_sock *tp;
805 struct sock *sk;
806
807 local_irq_save(flags);
808 list_splice_init(&tsq->head, &list);
809 local_irq_restore(flags);
810
811 list_for_each_safe(q, n, &list) {
812 tp = list_entry(q, struct tcp_sock, tsq_node);
813 list_del(&tp->tsq_node);
814
815 sk = (struct sock *)tp;
816 smp_mb__before_atomic();
817 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
818
819 if (!sk->sk_lock.owned &&
820 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
821 bh_lock_sock(sk);
822 if (!sock_owned_by_user(sk)) {
823 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
824 tcp_tsq_handler(sk);
825 }
826 bh_unlock_sock(sk);
827 }
828
829 sk_free(sk);
830 }
831 }
832
833 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
834 TCPF_WRITE_TIMER_DEFERRED | \
835 TCPF_DELACK_TIMER_DEFERRED | \
836 TCPF_MTU_REDUCED_DEFERRED)
837 /**
838 * tcp_release_cb - tcp release_sock() callback
839 * @sk: socket
840 *
841 * called from release_sock() to perform protocol dependent
842 * actions before socket release.
843 */
844 void tcp_release_cb(struct sock *sk)
845 {
846 unsigned long flags, nflags;
847
848 /* perform an atomic operation only if at least one flag is set */
849 do {
850 flags = sk->sk_tsq_flags;
851 if (!(flags & TCP_DEFERRED_ALL))
852 return;
853 nflags = flags & ~TCP_DEFERRED_ALL;
854 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
855
856 if (flags & TCPF_TSQ_DEFERRED)
857 tcp_tsq_handler(sk);
858
859 /* Here begins the tricky part :
860 * We are called from release_sock() with :
861 * 1) BH disabled
862 * 2) sk_lock.slock spinlock held
863 * 3) socket owned by us (sk->sk_lock.owned == 1)
864 *
865 * But following code is meant to be called from BH handlers,
866 * so we should keep BH disabled, but early release socket ownership
867 */
868 sock_release_ownership(sk);
869
870 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
871 tcp_write_timer_handler(sk);
872 __sock_put(sk);
873 }
874 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
875 tcp_delack_timer_handler(sk);
876 __sock_put(sk);
877 }
878 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
879 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
880 __sock_put(sk);
881 }
882 }
883 EXPORT_SYMBOL(tcp_release_cb);
884
885 void __init tcp_tasklet_init(void)
886 {
887 int i;
888
889 for_each_possible_cpu(i) {
890 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
891
892 INIT_LIST_HEAD(&tsq->head);
893 tasklet_init(&tsq->tasklet,
894 tcp_tasklet_func,
895 (unsigned long)tsq);
896 }
897 }
898
899 /*
900 * Write buffer destructor automatically called from kfree_skb.
901 * We can't xmit new skbs from this context, as we might already
902 * hold qdisc lock.
903 */
904 void tcp_wfree(struct sk_buff *skb)
905 {
906 struct sock *sk = skb->sk;
907 struct tcp_sock *tp = tcp_sk(sk);
908 unsigned long flags, nval, oval;
909
910 /* Keep one reference on sk_wmem_alloc.
911 * Will be released by sk_free() from here or tcp_tasklet_func()
912 */
913 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
914
915 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
916 * Wait until our queues (qdisc + devices) are drained.
917 * This gives :
918 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
919 * - chance for incoming ACK (processed by another cpu maybe)
920 * to migrate this flow (skb->ooo_okay will be eventually set)
921 */
922 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
923 goto out;
924
925 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
926 struct tsq_tasklet *tsq;
927 bool empty;
928
929 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
930 goto out;
931
932 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
933 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
934 if (nval != oval)
935 continue;
936
937 /* queue this socket to tasklet queue */
938 local_irq_save(flags);
939 tsq = this_cpu_ptr(&tsq_tasklet);
940 empty = list_empty(&tsq->head);
941 list_add(&tp->tsq_node, &tsq->head);
942 if (empty)
943 tasklet_schedule(&tsq->tasklet);
944 local_irq_restore(flags);
945 return;
946 }
947 out:
948 sk_free(sk);
949 }
950
951 /* Note: Called under hard irq.
952 * We can not call TCP stack right away.
953 */
954 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
955 {
956 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
957 struct sock *sk = (struct sock *)tp;
958 unsigned long nval, oval;
959
960 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
961 struct tsq_tasklet *tsq;
962 bool empty;
963
964 if (oval & TSQF_QUEUED)
965 break;
966
967 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
968 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
969 if (nval != oval)
970 continue;
971
972 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
973 break;
974 /* queue this socket to tasklet queue */
975 tsq = this_cpu_ptr(&tsq_tasklet);
976 empty = list_empty(&tsq->head);
977 list_add(&tp->tsq_node, &tsq->head);
978 if (empty)
979 tasklet_schedule(&tsq->tasklet);
980 break;
981 }
982 return HRTIMER_NORESTART;
983 }
984
985 /* BBR congestion control needs pacing.
986 * Same remark for SO_MAX_PACING_RATE.
987 * sch_fq packet scheduler is efficiently handling pacing,
988 * but is not always installed/used.
989 * Return true if TCP stack should pace packets itself.
990 */
991 static bool tcp_needs_internal_pacing(const struct sock *sk)
992 {
993 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
994 }
995
996 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
997 {
998 u64 len_ns;
999 u32 rate;
1000
1001 if (!tcp_needs_internal_pacing(sk))
1002 return;
1003 rate = sk->sk_pacing_rate;
1004 if (!rate || rate == ~0U)
1005 return;
1006
1007 /* Should account for header sizes as sch_fq does,
1008 * but lets make things simple.
1009 */
1010 len_ns = (u64)skb->len * NSEC_PER_SEC;
1011 do_div(len_ns, rate);
1012 hrtimer_start(&tcp_sk(sk)->pacing_timer,
1013 ktime_add_ns(ktime_get(), len_ns),
1014 HRTIMER_MODE_ABS_PINNED);
1015 }
1016
1017 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1018 {
1019 skb->skb_mstamp = tp->tcp_mstamp;
1020 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1021 }
1022
1023 /* This routine actually transmits TCP packets queued in by
1024 * tcp_do_sendmsg(). This is used by both the initial
1025 * transmission and possible later retransmissions.
1026 * All SKB's seen here are completely headerless. It is our
1027 * job to build the TCP header, and pass the packet down to
1028 * IP so it can do the same plus pass the packet off to the
1029 * device.
1030 *
1031 * We are working here with either a clone of the original
1032 * SKB, or a fresh unique copy made by the retransmit engine.
1033 */
1034 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1035 gfp_t gfp_mask)
1036 {
1037 const struct inet_connection_sock *icsk = inet_csk(sk);
1038 struct inet_sock *inet;
1039 struct tcp_sock *tp;
1040 struct tcp_skb_cb *tcb;
1041 struct tcp_out_options opts;
1042 unsigned int tcp_options_size, tcp_header_size;
1043 struct sk_buff *oskb = NULL;
1044 struct tcp_md5sig_key *md5;
1045 struct tcphdr *th;
1046 int err;
1047
1048 BUG_ON(!skb || !tcp_skb_pcount(skb));
1049 tp = tcp_sk(sk);
1050
1051 if (clone_it) {
1052 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1053 - tp->snd_una;
1054 oskb = skb;
1055
1056 tcp_skb_tsorted_save(oskb) {
1057 if (unlikely(skb_cloned(oskb)))
1058 skb = pskb_copy(oskb, gfp_mask);
1059 else
1060 skb = skb_clone(oskb, gfp_mask);
1061 } tcp_skb_tsorted_restore(oskb);
1062
1063 if (unlikely(!skb))
1064 return -ENOBUFS;
1065 }
1066 skb->skb_mstamp = tp->tcp_mstamp;
1067
1068 inet = inet_sk(sk);
1069 tcb = TCP_SKB_CB(skb);
1070 memset(&opts, 0, sizeof(opts));
1071
1072 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1073 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1074 else
1075 tcp_options_size = tcp_established_options(sk, skb, &opts,
1076 &md5);
1077 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1078
1079 /* if no packet is in qdisc/device queue, then allow XPS to select
1080 * another queue. We can be called from tcp_tsq_handler()
1081 * which holds one reference to sk_wmem_alloc.
1082 *
1083 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1084 * One way to get this would be to set skb->truesize = 2 on them.
1085 */
1086 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1087
1088 /* If we had to use memory reserve to allocate this skb,
1089 * this might cause drops if packet is looped back :
1090 * Other socket might not have SOCK_MEMALLOC.
1091 * Packets not looped back do not care about pfmemalloc.
1092 */
1093 skb->pfmemalloc = 0;
1094
1095 skb_push(skb, tcp_header_size);
1096 skb_reset_transport_header(skb);
1097
1098 skb_orphan(skb);
1099 skb->sk = sk;
1100 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1101 skb_set_hash_from_sk(skb, sk);
1102 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1103
1104 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1105
1106 /* Build TCP header and checksum it. */
1107 th = (struct tcphdr *)skb->data;
1108 th->source = inet->inet_sport;
1109 th->dest = inet->inet_dport;
1110 th->seq = htonl(tcb->seq);
1111 th->ack_seq = htonl(tp->rcv_nxt);
1112 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1113 tcb->tcp_flags);
1114
1115 th->check = 0;
1116 th->urg_ptr = 0;
1117
1118 /* The urg_mode check is necessary during a below snd_una win probe */
1119 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1120 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1121 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1122 th->urg = 1;
1123 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1124 th->urg_ptr = htons(0xFFFF);
1125 th->urg = 1;
1126 }
1127 }
1128
1129 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1130 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1131 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1132 th->window = htons(tcp_select_window(sk));
1133 tcp_ecn_send(sk, skb, th, tcp_header_size);
1134 } else {
1135 /* RFC1323: The window in SYN & SYN/ACK segments
1136 * is never scaled.
1137 */
1138 th->window = htons(min(tp->rcv_wnd, 65535U));
1139 }
1140 #ifdef CONFIG_TCP_MD5SIG
1141 /* Calculate the MD5 hash, as we have all we need now */
1142 if (md5) {
1143 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1144 tp->af_specific->calc_md5_hash(opts.hash_location,
1145 md5, sk, skb);
1146 }
1147 #endif
1148
1149 icsk->icsk_af_ops->send_check(sk, skb);
1150
1151 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1152 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1153
1154 if (skb->len != tcp_header_size) {
1155 tcp_event_data_sent(tp, sk);
1156 tp->data_segs_out += tcp_skb_pcount(skb);
1157 tcp_internal_pacing(sk, skb);
1158 }
1159
1160 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1161 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1162 tcp_skb_pcount(skb));
1163
1164 tp->segs_out += tcp_skb_pcount(skb);
1165 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1166 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1167 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1168
1169 /* Our usage of tstamp should remain private */
1170 skb->tstamp = 0;
1171
1172 /* Cleanup our debris for IP stacks */
1173 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1174 sizeof(struct inet6_skb_parm)));
1175
1176 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1177
1178 if (unlikely(err > 0)) {
1179 tcp_enter_cwr(sk);
1180 err = net_xmit_eval(err);
1181 }
1182 if (!err && oskb) {
1183 tcp_update_skb_after_send(tp, oskb);
1184 tcp_rate_skb_sent(sk, oskb);
1185 }
1186 return err;
1187 }
1188
1189 /* This routine just queues the buffer for sending.
1190 *
1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1192 * otherwise socket can stall.
1193 */
1194 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1195 {
1196 struct tcp_sock *tp = tcp_sk(sk);
1197
1198 /* Advance write_seq and place onto the write_queue. */
1199 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1200 __skb_header_release(skb);
1201 tcp_add_write_queue_tail(sk, skb);
1202 sk->sk_wmem_queued += skb->truesize;
1203 sk_mem_charge(sk, skb->truesize);
1204 }
1205
1206 /* Initialize TSO segments for a packet. */
1207 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1208 {
1209 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1210 /* Avoid the costly divide in the normal
1211 * non-TSO case.
1212 */
1213 tcp_skb_pcount_set(skb, 1);
1214 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1215 } else {
1216 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1217 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1218 }
1219 }
1220
1221 /* Pcount in the middle of the write queue got changed, we need to do various
1222 * tweaks to fix counters
1223 */
1224 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1225 {
1226 struct tcp_sock *tp = tcp_sk(sk);
1227
1228 tp->packets_out -= decr;
1229
1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1231 tp->sacked_out -= decr;
1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1233 tp->retrans_out -= decr;
1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1235 tp->lost_out -= decr;
1236
1237 /* Reno case is special. Sigh... */
1238 if (tcp_is_reno(tp) && decr > 0)
1239 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1240
1241 if (tp->lost_skb_hint &&
1242 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1244 tp->lost_cnt_hint -= decr;
1245
1246 tcp_verify_left_out(tp);
1247 }
1248
1249 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1250 {
1251 return TCP_SKB_CB(skb)->txstamp_ack ||
1252 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1253 }
1254
1255 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1256 {
1257 struct skb_shared_info *shinfo = skb_shinfo(skb);
1258
1259 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1260 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1261 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1262 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1263
1264 shinfo->tx_flags &= ~tsflags;
1265 shinfo2->tx_flags |= tsflags;
1266 swap(shinfo->tskey, shinfo2->tskey);
1267 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1268 TCP_SKB_CB(skb)->txstamp_ack = 0;
1269 }
1270 }
1271
1272 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1273 {
1274 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1275 TCP_SKB_CB(skb)->eor = 0;
1276 }
1277
1278 /* Insert buff after skb on the write or rtx queue of sk. */
1279 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1280 struct sk_buff *buff,
1281 struct sock *sk,
1282 enum tcp_queue tcp_queue)
1283 {
1284 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1285 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1286 else
1287 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1288 }
1289
1290 /* Function to create two new TCP segments. Shrinks the given segment
1291 * to the specified size and appends a new segment with the rest of the
1292 * packet to the list. This won't be called frequently, I hope.
1293 * Remember, these are still headerless SKBs at this point.
1294 */
1295 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1296 struct sk_buff *skb, u32 len,
1297 unsigned int mss_now, gfp_t gfp)
1298 {
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 struct sk_buff *buff;
1301 int nsize, old_factor;
1302 int nlen;
1303 u8 flags;
1304
1305 if (WARN_ON(len > skb->len))
1306 return -EINVAL;
1307
1308 nsize = skb_headlen(skb) - len;
1309 if (nsize < 0)
1310 nsize = 0;
1311
1312 if (skb_unclone(skb, gfp))
1313 return -ENOMEM;
1314
1315 /* Get a new skb... force flag on. */
1316 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1317 if (!buff)
1318 return -ENOMEM; /* We'll just try again later. */
1319
1320 sk->sk_wmem_queued += buff->truesize;
1321 sk_mem_charge(sk, buff->truesize);
1322 nlen = skb->len - len - nsize;
1323 buff->truesize += nlen;
1324 skb->truesize -= nlen;
1325
1326 /* Correct the sequence numbers. */
1327 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1328 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1329 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1330
1331 /* PSH and FIN should only be set in the second packet. */
1332 flags = TCP_SKB_CB(skb)->tcp_flags;
1333 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1334 TCP_SKB_CB(buff)->tcp_flags = flags;
1335 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1336 tcp_skb_fragment_eor(skb, buff);
1337
1338 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1339 /* Copy and checksum data tail into the new buffer. */
1340 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1341 skb_put(buff, nsize),
1342 nsize, 0);
1343
1344 skb_trim(skb, len);
1345
1346 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1347 } else {
1348 skb->ip_summed = CHECKSUM_PARTIAL;
1349 skb_split(skb, buff, len);
1350 }
1351
1352 buff->ip_summed = skb->ip_summed;
1353
1354 buff->tstamp = skb->tstamp;
1355 tcp_fragment_tstamp(skb, buff);
1356
1357 old_factor = tcp_skb_pcount(skb);
1358
1359 /* Fix up tso_factor for both original and new SKB. */
1360 tcp_set_skb_tso_segs(skb, mss_now);
1361 tcp_set_skb_tso_segs(buff, mss_now);
1362
1363 /* Update delivered info for the new segment */
1364 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1365
1366 /* If this packet has been sent out already, we must
1367 * adjust the various packet counters.
1368 */
1369 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1370 int diff = old_factor - tcp_skb_pcount(skb) -
1371 tcp_skb_pcount(buff);
1372
1373 if (diff)
1374 tcp_adjust_pcount(sk, skb, diff);
1375 }
1376
1377 /* Link BUFF into the send queue. */
1378 __skb_header_release(buff);
1379 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1380 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1381 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1382
1383 return 0;
1384 }
1385
1386 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1387 * data is not copied, but immediately discarded.
1388 */
1389 static int __pskb_trim_head(struct sk_buff *skb, int len)
1390 {
1391 struct skb_shared_info *shinfo;
1392 int i, k, eat;
1393
1394 eat = min_t(int, len, skb_headlen(skb));
1395 if (eat) {
1396 __skb_pull(skb, eat);
1397 len -= eat;
1398 if (!len)
1399 return 0;
1400 }
1401 eat = len;
1402 k = 0;
1403 shinfo = skb_shinfo(skb);
1404 for (i = 0; i < shinfo->nr_frags; i++) {
1405 int size = skb_frag_size(&shinfo->frags[i]);
1406
1407 if (size <= eat) {
1408 skb_frag_unref(skb, i);
1409 eat -= size;
1410 } else {
1411 shinfo->frags[k] = shinfo->frags[i];
1412 if (eat) {
1413 shinfo->frags[k].page_offset += eat;
1414 skb_frag_size_sub(&shinfo->frags[k], eat);
1415 eat = 0;
1416 }
1417 k++;
1418 }
1419 }
1420 shinfo->nr_frags = k;
1421
1422 skb->data_len -= len;
1423 skb->len = skb->data_len;
1424 return len;
1425 }
1426
1427 /* Remove acked data from a packet in the transmit queue. */
1428 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1429 {
1430 u32 delta_truesize;
1431
1432 if (skb_unclone(skb, GFP_ATOMIC))
1433 return -ENOMEM;
1434
1435 delta_truesize = __pskb_trim_head(skb, len);
1436
1437 TCP_SKB_CB(skb)->seq += len;
1438 skb->ip_summed = CHECKSUM_PARTIAL;
1439
1440 if (delta_truesize) {
1441 skb->truesize -= delta_truesize;
1442 sk->sk_wmem_queued -= delta_truesize;
1443 sk_mem_uncharge(sk, delta_truesize);
1444 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1445 }
1446
1447 /* Any change of skb->len requires recalculation of tso factor. */
1448 if (tcp_skb_pcount(skb) > 1)
1449 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1450
1451 return 0;
1452 }
1453
1454 /* Calculate MSS not accounting any TCP options. */
1455 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1456 {
1457 const struct tcp_sock *tp = tcp_sk(sk);
1458 const struct inet_connection_sock *icsk = inet_csk(sk);
1459 int mss_now;
1460
1461 /* Calculate base mss without TCP options:
1462 It is MMS_S - sizeof(tcphdr) of rfc1122
1463 */
1464 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1465
1466 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1467 if (icsk->icsk_af_ops->net_frag_header_len) {
1468 const struct dst_entry *dst = __sk_dst_get(sk);
1469
1470 if (dst && dst_allfrag(dst))
1471 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1472 }
1473
1474 /* Clamp it (mss_clamp does not include tcp options) */
1475 if (mss_now > tp->rx_opt.mss_clamp)
1476 mss_now = tp->rx_opt.mss_clamp;
1477
1478 /* Now subtract optional transport overhead */
1479 mss_now -= icsk->icsk_ext_hdr_len;
1480
1481 /* Then reserve room for full set of TCP options and 8 bytes of data */
1482 if (mss_now < 48)
1483 mss_now = 48;
1484 return mss_now;
1485 }
1486
1487 /* Calculate MSS. Not accounting for SACKs here. */
1488 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1489 {
1490 /* Subtract TCP options size, not including SACKs */
1491 return __tcp_mtu_to_mss(sk, pmtu) -
1492 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1493 }
1494
1495 /* Inverse of above */
1496 int tcp_mss_to_mtu(struct sock *sk, int mss)
1497 {
1498 const struct tcp_sock *tp = tcp_sk(sk);
1499 const struct inet_connection_sock *icsk = inet_csk(sk);
1500 int mtu;
1501
1502 mtu = mss +
1503 tp->tcp_header_len +
1504 icsk->icsk_ext_hdr_len +
1505 icsk->icsk_af_ops->net_header_len;
1506
1507 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1508 if (icsk->icsk_af_ops->net_frag_header_len) {
1509 const struct dst_entry *dst = __sk_dst_get(sk);
1510
1511 if (dst && dst_allfrag(dst))
1512 mtu += icsk->icsk_af_ops->net_frag_header_len;
1513 }
1514 return mtu;
1515 }
1516 EXPORT_SYMBOL(tcp_mss_to_mtu);
1517
1518 /* MTU probing init per socket */
1519 void tcp_mtup_init(struct sock *sk)
1520 {
1521 struct tcp_sock *tp = tcp_sk(sk);
1522 struct inet_connection_sock *icsk = inet_csk(sk);
1523 struct net *net = sock_net(sk);
1524
1525 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1526 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1527 icsk->icsk_af_ops->net_header_len;
1528 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1529 icsk->icsk_mtup.probe_size = 0;
1530 if (icsk->icsk_mtup.enabled)
1531 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1532 }
1533 EXPORT_SYMBOL(tcp_mtup_init);
1534
1535 /* This function synchronize snd mss to current pmtu/exthdr set.
1536
1537 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1538 for TCP options, but includes only bare TCP header.
1539
1540 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1541 It is minimum of user_mss and mss received with SYN.
1542 It also does not include TCP options.
1543
1544 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1545
1546 tp->mss_cache is current effective sending mss, including
1547 all tcp options except for SACKs. It is evaluated,
1548 taking into account current pmtu, but never exceeds
1549 tp->rx_opt.mss_clamp.
1550
1551 NOTE1. rfc1122 clearly states that advertised MSS
1552 DOES NOT include either tcp or ip options.
1553
1554 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1555 are READ ONLY outside this function. --ANK (980731)
1556 */
1557 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1558 {
1559 struct tcp_sock *tp = tcp_sk(sk);
1560 struct inet_connection_sock *icsk = inet_csk(sk);
1561 int mss_now;
1562
1563 if (icsk->icsk_mtup.search_high > pmtu)
1564 icsk->icsk_mtup.search_high = pmtu;
1565
1566 mss_now = tcp_mtu_to_mss(sk, pmtu);
1567 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1568
1569 /* And store cached results */
1570 icsk->icsk_pmtu_cookie = pmtu;
1571 if (icsk->icsk_mtup.enabled)
1572 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1573 tp->mss_cache = mss_now;
1574
1575 return mss_now;
1576 }
1577 EXPORT_SYMBOL(tcp_sync_mss);
1578
1579 /* Compute the current effective MSS, taking SACKs and IP options,
1580 * and even PMTU discovery events into account.
1581 */
1582 unsigned int tcp_current_mss(struct sock *sk)
1583 {
1584 const struct tcp_sock *tp = tcp_sk(sk);
1585 const struct dst_entry *dst = __sk_dst_get(sk);
1586 u32 mss_now;
1587 unsigned int header_len;
1588 struct tcp_out_options opts;
1589 struct tcp_md5sig_key *md5;
1590
1591 mss_now = tp->mss_cache;
1592
1593 if (dst) {
1594 u32 mtu = dst_mtu(dst);
1595 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1596 mss_now = tcp_sync_mss(sk, mtu);
1597 }
1598
1599 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1600 sizeof(struct tcphdr);
1601 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1602 * some common options. If this is an odd packet (because we have SACK
1603 * blocks etc) then our calculated header_len will be different, and
1604 * we have to adjust mss_now correspondingly */
1605 if (header_len != tp->tcp_header_len) {
1606 int delta = (int) header_len - tp->tcp_header_len;
1607 mss_now -= delta;
1608 }
1609
1610 return mss_now;
1611 }
1612
1613 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1614 * As additional protections, we do not touch cwnd in retransmission phases,
1615 * and if application hit its sndbuf limit recently.
1616 */
1617 static void tcp_cwnd_application_limited(struct sock *sk)
1618 {
1619 struct tcp_sock *tp = tcp_sk(sk);
1620
1621 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1622 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1623 /* Limited by application or receiver window. */
1624 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1625 u32 win_used = max(tp->snd_cwnd_used, init_win);
1626 if (win_used < tp->snd_cwnd) {
1627 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1628 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1629 }
1630 tp->snd_cwnd_used = 0;
1631 }
1632 tp->snd_cwnd_stamp = tcp_jiffies32;
1633 }
1634
1635 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1636 {
1637 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1638 struct tcp_sock *tp = tcp_sk(sk);
1639
1640 /* Track the maximum number of outstanding packets in each
1641 * window, and remember whether we were cwnd-limited then.
1642 */
1643 if (!before(tp->snd_una, tp->max_packets_seq) ||
1644 tp->packets_out > tp->max_packets_out) {
1645 tp->max_packets_out = tp->packets_out;
1646 tp->max_packets_seq = tp->snd_nxt;
1647 tp->is_cwnd_limited = is_cwnd_limited;
1648 }
1649
1650 if (tcp_is_cwnd_limited(sk)) {
1651 /* Network is feed fully. */
1652 tp->snd_cwnd_used = 0;
1653 tp->snd_cwnd_stamp = tcp_jiffies32;
1654 } else {
1655 /* Network starves. */
1656 if (tp->packets_out > tp->snd_cwnd_used)
1657 tp->snd_cwnd_used = tp->packets_out;
1658
1659 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1660 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1661 !ca_ops->cong_control)
1662 tcp_cwnd_application_limited(sk);
1663
1664 /* The following conditions together indicate the starvation
1665 * is caused by insufficient sender buffer:
1666 * 1) just sent some data (see tcp_write_xmit)
1667 * 2) not cwnd limited (this else condition)
1668 * 3) no more data to send (tcp_write_queue_empty())
1669 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1670 */
1671 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1672 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1673 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1674 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1675 }
1676 }
1677
1678 /* Minshall's variant of the Nagle send check. */
1679 static bool tcp_minshall_check(const struct tcp_sock *tp)
1680 {
1681 return after(tp->snd_sml, tp->snd_una) &&
1682 !after(tp->snd_sml, tp->snd_nxt);
1683 }
1684
1685 /* Update snd_sml if this skb is under mss
1686 * Note that a TSO packet might end with a sub-mss segment
1687 * The test is really :
1688 * if ((skb->len % mss) != 0)
1689 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1690 * But we can avoid doing the divide again given we already have
1691 * skb_pcount = skb->len / mss_now
1692 */
1693 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1694 const struct sk_buff *skb)
1695 {
1696 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1697 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1698 }
1699
1700 /* Return false, if packet can be sent now without violation Nagle's rules:
1701 * 1. It is full sized. (provided by caller in %partial bool)
1702 * 2. Or it contains FIN. (already checked by caller)
1703 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1704 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1705 * With Minshall's modification: all sent small packets are ACKed.
1706 */
1707 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1708 int nonagle)
1709 {
1710 return partial &&
1711 ((nonagle & TCP_NAGLE_CORK) ||
1712 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1713 }
1714
1715 /* Return how many segs we'd like on a TSO packet,
1716 * to send one TSO packet per ms
1717 */
1718 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1719 int min_tso_segs)
1720 {
1721 u32 bytes, segs;
1722
1723 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1724 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1725
1726 /* Goal is to send at least one packet per ms,
1727 * not one big TSO packet every 100 ms.
1728 * This preserves ACK clocking and is consistent
1729 * with tcp_tso_should_defer() heuristic.
1730 */
1731 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1732
1733 return min_t(u32, segs, sk->sk_gso_max_segs);
1734 }
1735 EXPORT_SYMBOL(tcp_tso_autosize);
1736
1737 /* Return the number of segments we want in the skb we are transmitting.
1738 * See if congestion control module wants to decide; otherwise, autosize.
1739 */
1740 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1741 {
1742 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1743 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1744
1745 return tso_segs ? :
1746 tcp_tso_autosize(sk, mss_now,
1747 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1748 }
1749
1750 /* Returns the portion of skb which can be sent right away */
1751 static unsigned int tcp_mss_split_point(const struct sock *sk,
1752 const struct sk_buff *skb,
1753 unsigned int mss_now,
1754 unsigned int max_segs,
1755 int nonagle)
1756 {
1757 const struct tcp_sock *tp = tcp_sk(sk);
1758 u32 partial, needed, window, max_len;
1759
1760 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1761 max_len = mss_now * max_segs;
1762
1763 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1764 return max_len;
1765
1766 needed = min(skb->len, window);
1767
1768 if (max_len <= needed)
1769 return max_len;
1770
1771 partial = needed % mss_now;
1772 /* If last segment is not a full MSS, check if Nagle rules allow us
1773 * to include this last segment in this skb.
1774 * Otherwise, we'll split the skb at last MSS boundary
1775 */
1776 if (tcp_nagle_check(partial != 0, tp, nonagle))
1777 return needed - partial;
1778
1779 return needed;
1780 }
1781
1782 /* Can at least one segment of SKB be sent right now, according to the
1783 * congestion window rules? If so, return how many segments are allowed.
1784 */
1785 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1786 const struct sk_buff *skb)
1787 {
1788 u32 in_flight, cwnd, halfcwnd;
1789
1790 /* Don't be strict about the congestion window for the final FIN. */
1791 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1792 tcp_skb_pcount(skb) == 1)
1793 return 1;
1794
1795 in_flight = tcp_packets_in_flight(tp);
1796 cwnd = tp->snd_cwnd;
1797 if (in_flight >= cwnd)
1798 return 0;
1799
1800 /* For better scheduling, ensure we have at least
1801 * 2 GSO packets in flight.
1802 */
1803 halfcwnd = max(cwnd >> 1, 1U);
1804 return min(halfcwnd, cwnd - in_flight);
1805 }
1806
1807 /* Initialize TSO state of a skb.
1808 * This must be invoked the first time we consider transmitting
1809 * SKB onto the wire.
1810 */
1811 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1812 {
1813 int tso_segs = tcp_skb_pcount(skb);
1814
1815 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1816 tcp_set_skb_tso_segs(skb, mss_now);
1817 tso_segs = tcp_skb_pcount(skb);
1818 }
1819 return tso_segs;
1820 }
1821
1822
1823 /* Return true if the Nagle test allows this packet to be
1824 * sent now.
1825 */
1826 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1827 unsigned int cur_mss, int nonagle)
1828 {
1829 /* Nagle rule does not apply to frames, which sit in the middle of the
1830 * write_queue (they have no chances to get new data).
1831 *
1832 * This is implemented in the callers, where they modify the 'nonagle'
1833 * argument based upon the location of SKB in the send queue.
1834 */
1835 if (nonagle & TCP_NAGLE_PUSH)
1836 return true;
1837
1838 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1839 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1840 return true;
1841
1842 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /* Does at least the first segment of SKB fit into the send window? */
1849 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1850 const struct sk_buff *skb,
1851 unsigned int cur_mss)
1852 {
1853 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1854
1855 if (skb->len > cur_mss)
1856 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1857
1858 return !after(end_seq, tcp_wnd_end(tp));
1859 }
1860
1861 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1862 * which is put after SKB on the list. It is very much like
1863 * tcp_fragment() except that it may make several kinds of assumptions
1864 * in order to speed up the splitting operation. In particular, we
1865 * know that all the data is in scatter-gather pages, and that the
1866 * packet has never been sent out before (and thus is not cloned).
1867 */
1868 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1869 struct sk_buff *skb, unsigned int len,
1870 unsigned int mss_now, gfp_t gfp)
1871 {
1872 struct sk_buff *buff;
1873 int nlen = skb->len - len;
1874 u8 flags;
1875
1876 /* All of a TSO frame must be composed of paged data. */
1877 if (skb->len != skb->data_len)
1878 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1879
1880 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1881 if (unlikely(!buff))
1882 return -ENOMEM;
1883
1884 sk->sk_wmem_queued += buff->truesize;
1885 sk_mem_charge(sk, buff->truesize);
1886 buff->truesize += nlen;
1887 skb->truesize -= nlen;
1888
1889 /* Correct the sequence numbers. */
1890 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1891 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1892 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1893
1894 /* PSH and FIN should only be set in the second packet. */
1895 flags = TCP_SKB_CB(skb)->tcp_flags;
1896 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1897 TCP_SKB_CB(buff)->tcp_flags = flags;
1898
1899 /* This packet was never sent out yet, so no SACK bits. */
1900 TCP_SKB_CB(buff)->sacked = 0;
1901
1902 tcp_skb_fragment_eor(skb, buff);
1903
1904 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1905 skb_split(skb, buff, len);
1906 tcp_fragment_tstamp(skb, buff);
1907
1908 /* Fix up tso_factor for both original and new SKB. */
1909 tcp_set_skb_tso_segs(skb, mss_now);
1910 tcp_set_skb_tso_segs(buff, mss_now);
1911
1912 /* Link BUFF into the send queue. */
1913 __skb_header_release(buff);
1914 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1915
1916 return 0;
1917 }
1918
1919 /* Try to defer sending, if possible, in order to minimize the amount
1920 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1921 *
1922 * This algorithm is from John Heffner.
1923 */
1924 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1925 bool *is_cwnd_limited, u32 max_segs)
1926 {
1927 const struct inet_connection_sock *icsk = inet_csk(sk);
1928 u32 age, send_win, cong_win, limit, in_flight;
1929 struct tcp_sock *tp = tcp_sk(sk);
1930 struct sk_buff *head;
1931 int win_divisor;
1932
1933 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1934 goto send_now;
1935
1936 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1937 goto send_now;
1938
1939 /* Avoid bursty behavior by allowing defer
1940 * only if the last write was recent.
1941 */
1942 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1943 goto send_now;
1944
1945 in_flight = tcp_packets_in_flight(tp);
1946
1947 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1948
1949 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1950
1951 /* From in_flight test above, we know that cwnd > in_flight. */
1952 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1953
1954 limit = min(send_win, cong_win);
1955
1956 /* If a full-sized TSO skb can be sent, do it. */
1957 if (limit >= max_segs * tp->mss_cache)
1958 goto send_now;
1959
1960 /* Middle in queue won't get any more data, full sendable already? */
1961 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1962 goto send_now;
1963
1964 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1965 if (win_divisor) {
1966 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1967
1968 /* If at least some fraction of a window is available,
1969 * just use it.
1970 */
1971 chunk /= win_divisor;
1972 if (limit >= chunk)
1973 goto send_now;
1974 } else {
1975 /* Different approach, try not to defer past a single
1976 * ACK. Receiver should ACK every other full sized
1977 * frame, so if we have space for more than 3 frames
1978 * then send now.
1979 */
1980 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1981 goto send_now;
1982 }
1983
1984 /* TODO : use tsorted_sent_queue ? */
1985 head = tcp_rtx_queue_head(sk);
1986 if (!head)
1987 goto send_now;
1988 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1989 /* If next ACK is likely to come too late (half srtt), do not defer */
1990 if (age < (tp->srtt_us >> 4))
1991 goto send_now;
1992
1993 /* Ok, it looks like it is advisable to defer. */
1994
1995 if (cong_win < send_win && cong_win <= skb->len)
1996 *is_cwnd_limited = true;
1997
1998 return true;
1999
2000 send_now:
2001 return false;
2002 }
2003
2004 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2005 {
2006 struct inet_connection_sock *icsk = inet_csk(sk);
2007 struct tcp_sock *tp = tcp_sk(sk);
2008 struct net *net = sock_net(sk);
2009 u32 interval;
2010 s32 delta;
2011
2012 interval = net->ipv4.sysctl_tcp_probe_interval;
2013 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2014 if (unlikely(delta >= interval * HZ)) {
2015 int mss = tcp_current_mss(sk);
2016
2017 /* Update current search range */
2018 icsk->icsk_mtup.probe_size = 0;
2019 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2020 sizeof(struct tcphdr) +
2021 icsk->icsk_af_ops->net_header_len;
2022 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2023
2024 /* Update probe time stamp */
2025 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2026 }
2027 }
2028
2029 /* Create a new MTU probe if we are ready.
2030 * MTU probe is regularly attempting to increase the path MTU by
2031 * deliberately sending larger packets. This discovers routing
2032 * changes resulting in larger path MTUs.
2033 *
2034 * Returns 0 if we should wait to probe (no cwnd available),
2035 * 1 if a probe was sent,
2036 * -1 otherwise
2037 */
2038 static int tcp_mtu_probe(struct sock *sk)
2039 {
2040 struct inet_connection_sock *icsk = inet_csk(sk);
2041 struct tcp_sock *tp = tcp_sk(sk);
2042 struct sk_buff *skb, *nskb, *next;
2043 struct net *net = sock_net(sk);
2044 int probe_size;
2045 int size_needed;
2046 int copy, len;
2047 int mss_now;
2048 int interval;
2049
2050 /* Not currently probing/verifying,
2051 * not in recovery,
2052 * have enough cwnd, and
2053 * not SACKing (the variable headers throw things off)
2054 */
2055 if (likely(!icsk->icsk_mtup.enabled ||
2056 icsk->icsk_mtup.probe_size ||
2057 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2058 tp->snd_cwnd < 11 ||
2059 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2060 return -1;
2061
2062 /* Use binary search for probe_size between tcp_mss_base,
2063 * and current mss_clamp. if (search_high - search_low)
2064 * smaller than a threshold, backoff from probing.
2065 */
2066 mss_now = tcp_current_mss(sk);
2067 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2068 icsk->icsk_mtup.search_low) >> 1);
2069 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2070 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2071 /* When misfortune happens, we are reprobing actively,
2072 * and then reprobe timer has expired. We stick with current
2073 * probing process by not resetting search range to its orignal.
2074 */
2075 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2076 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2077 /* Check whether enough time has elaplased for
2078 * another round of probing.
2079 */
2080 tcp_mtu_check_reprobe(sk);
2081 return -1;
2082 }
2083
2084 /* Have enough data in the send queue to probe? */
2085 if (tp->write_seq - tp->snd_nxt < size_needed)
2086 return -1;
2087
2088 if (tp->snd_wnd < size_needed)
2089 return -1;
2090 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2091 return 0;
2092
2093 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2094 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2095 if (!tcp_packets_in_flight(tp))
2096 return -1;
2097 else
2098 return 0;
2099 }
2100
2101 /* We're allowed to probe. Build it now. */
2102 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2103 if (!nskb)
2104 return -1;
2105 sk->sk_wmem_queued += nskb->truesize;
2106 sk_mem_charge(sk, nskb->truesize);
2107
2108 skb = tcp_send_head(sk);
2109
2110 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2111 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2112 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2113 TCP_SKB_CB(nskb)->sacked = 0;
2114 nskb->csum = 0;
2115 nskb->ip_summed = skb->ip_summed;
2116
2117 tcp_insert_write_queue_before(nskb, skb, sk);
2118 tcp_highest_sack_replace(sk, skb, nskb);
2119
2120 len = 0;
2121 tcp_for_write_queue_from_safe(skb, next, sk) {
2122 copy = min_t(int, skb->len, probe_size - len);
2123 if (nskb->ip_summed) {
2124 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2125 } else {
2126 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2127 skb_put(nskb, copy),
2128 copy, 0);
2129 nskb->csum = csum_block_add(nskb->csum, csum, len);
2130 }
2131
2132 if (skb->len <= copy) {
2133 /* We've eaten all the data from this skb.
2134 * Throw it away. */
2135 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2136 tcp_unlink_write_queue(skb, sk);
2137 sk_wmem_free_skb(sk, skb);
2138 } else {
2139 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2140 ~(TCPHDR_FIN|TCPHDR_PSH);
2141 if (!skb_shinfo(skb)->nr_frags) {
2142 skb_pull(skb, copy);
2143 if (skb->ip_summed != CHECKSUM_PARTIAL)
2144 skb->csum = csum_partial(skb->data,
2145 skb->len, 0);
2146 } else {
2147 __pskb_trim_head(skb, copy);
2148 tcp_set_skb_tso_segs(skb, mss_now);
2149 }
2150 TCP_SKB_CB(skb)->seq += copy;
2151 }
2152
2153 len += copy;
2154
2155 if (len >= probe_size)
2156 break;
2157 }
2158 tcp_init_tso_segs(nskb, nskb->len);
2159
2160 /* We're ready to send. If this fails, the probe will
2161 * be resegmented into mss-sized pieces by tcp_write_xmit().
2162 */
2163 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2164 /* Decrement cwnd here because we are sending
2165 * effectively two packets. */
2166 tp->snd_cwnd--;
2167 tcp_event_new_data_sent(sk, nskb);
2168
2169 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2170 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2171 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2172
2173 return 1;
2174 }
2175
2176 return -1;
2177 }
2178
2179 static bool tcp_pacing_check(const struct sock *sk)
2180 {
2181 return tcp_needs_internal_pacing(sk) &&
2182 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2183 }
2184
2185 /* TCP Small Queues :
2186 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2187 * (These limits are doubled for retransmits)
2188 * This allows for :
2189 * - better RTT estimation and ACK scheduling
2190 * - faster recovery
2191 * - high rates
2192 * Alas, some drivers / subsystems require a fair amount
2193 * of queued bytes to ensure line rate.
2194 * One example is wifi aggregation (802.11 AMPDU)
2195 */
2196 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2197 unsigned int factor)
2198 {
2199 unsigned int limit;
2200
2201 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2202 limit = min_t(u32, limit,
2203 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2204 limit <<= factor;
2205
2206 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2207 /* Always send skb if rtx queue is empty.
2208 * No need to wait for TX completion to call us back,
2209 * after softirq/tasklet schedule.
2210 * This helps when TX completions are delayed too much.
2211 */
2212 if (tcp_rtx_queue_empty(sk))
2213 return false;
2214
2215 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2216 /* It is possible TX completion already happened
2217 * before we set TSQ_THROTTLED, so we must
2218 * test again the condition.
2219 */
2220 smp_mb__after_atomic();
2221 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2222 return true;
2223 }
2224 return false;
2225 }
2226
2227 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2228 {
2229 const u32 now = tcp_jiffies32;
2230 enum tcp_chrono old = tp->chrono_type;
2231
2232 if (old > TCP_CHRONO_UNSPEC)
2233 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2234 tp->chrono_start = now;
2235 tp->chrono_type = new;
2236 }
2237
2238 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2239 {
2240 struct tcp_sock *tp = tcp_sk(sk);
2241
2242 /* If there are multiple conditions worthy of tracking in a
2243 * chronograph then the highest priority enum takes precedence
2244 * over the other conditions. So that if something "more interesting"
2245 * starts happening, stop the previous chrono and start a new one.
2246 */
2247 if (type > tp->chrono_type)
2248 tcp_chrono_set(tp, type);
2249 }
2250
2251 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2252 {
2253 struct tcp_sock *tp = tcp_sk(sk);
2254
2255
2256 /* There are multiple conditions worthy of tracking in a
2257 * chronograph, so that the highest priority enum takes
2258 * precedence over the other conditions (see tcp_chrono_start).
2259 * If a condition stops, we only stop chrono tracking if
2260 * it's the "most interesting" or current chrono we are
2261 * tracking and starts busy chrono if we have pending data.
2262 */
2263 if (tcp_rtx_and_write_queues_empty(sk))
2264 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2265 else if (type == tp->chrono_type)
2266 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2267 }
2268
2269 /* This routine writes packets to the network. It advances the
2270 * send_head. This happens as incoming acks open up the remote
2271 * window for us.
2272 *
2273 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2274 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2275 * account rare use of URG, this is not a big flaw.
2276 *
2277 * Send at most one packet when push_one > 0. Temporarily ignore
2278 * cwnd limit to force at most one packet out when push_one == 2.
2279
2280 * Returns true, if no segments are in flight and we have queued segments,
2281 * but cannot send anything now because of SWS or another problem.
2282 */
2283 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2284 int push_one, gfp_t gfp)
2285 {
2286 struct tcp_sock *tp = tcp_sk(sk);
2287 struct sk_buff *skb;
2288 unsigned int tso_segs, sent_pkts;
2289 int cwnd_quota;
2290 int result;
2291 bool is_cwnd_limited = false, is_rwnd_limited = false;
2292 u32 max_segs;
2293
2294 sent_pkts = 0;
2295
2296 tcp_mstamp_refresh(tp);
2297 if (!push_one) {
2298 /* Do MTU probing. */
2299 result = tcp_mtu_probe(sk);
2300 if (!result) {
2301 return false;
2302 } else if (result > 0) {
2303 sent_pkts = 1;
2304 }
2305 }
2306
2307 max_segs = tcp_tso_segs(sk, mss_now);
2308 while ((skb = tcp_send_head(sk))) {
2309 unsigned int limit;
2310
2311 if (tcp_pacing_check(sk))
2312 break;
2313
2314 tso_segs = tcp_init_tso_segs(skb, mss_now);
2315 BUG_ON(!tso_segs);
2316
2317 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2318 /* "skb_mstamp" is used as a start point for the retransmit timer */
2319 tcp_update_skb_after_send(tp, skb);
2320 goto repair; /* Skip network transmission */
2321 }
2322
2323 cwnd_quota = tcp_cwnd_test(tp, skb);
2324 if (!cwnd_quota) {
2325 if (push_one == 2)
2326 /* Force out a loss probe pkt. */
2327 cwnd_quota = 1;
2328 else
2329 break;
2330 }
2331
2332 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2333 is_rwnd_limited = true;
2334 break;
2335 }
2336
2337 if (tso_segs == 1) {
2338 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2339 (tcp_skb_is_last(sk, skb) ?
2340 nonagle : TCP_NAGLE_PUSH))))
2341 break;
2342 } else {
2343 if (!push_one &&
2344 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2345 max_segs))
2346 break;
2347 }
2348
2349 limit = mss_now;
2350 if (tso_segs > 1 && !tcp_urg_mode(tp))
2351 limit = tcp_mss_split_point(sk, skb, mss_now,
2352 min_t(unsigned int,
2353 cwnd_quota,
2354 max_segs),
2355 nonagle);
2356
2357 if (skb->len > limit &&
2358 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2359 skb, limit, mss_now, gfp)))
2360 break;
2361
2362 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2363 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2364 if (tcp_small_queue_check(sk, skb, 0))
2365 break;
2366
2367 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2368 break;
2369
2370 repair:
2371 /* Advance the send_head. This one is sent out.
2372 * This call will increment packets_out.
2373 */
2374 tcp_event_new_data_sent(sk, skb);
2375
2376 tcp_minshall_update(tp, mss_now, skb);
2377 sent_pkts += tcp_skb_pcount(skb);
2378
2379 if (push_one)
2380 break;
2381 }
2382
2383 if (is_rwnd_limited)
2384 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2385 else
2386 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2387
2388 if (likely(sent_pkts)) {
2389 if (tcp_in_cwnd_reduction(sk))
2390 tp->prr_out += sent_pkts;
2391
2392 /* Send one loss probe per tail loss episode. */
2393 if (push_one != 2)
2394 tcp_schedule_loss_probe(sk, false);
2395 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2396 tcp_cwnd_validate(sk, is_cwnd_limited);
2397 return false;
2398 }
2399 return !tp->packets_out && !tcp_write_queue_empty(sk);
2400 }
2401
2402 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2403 {
2404 struct inet_connection_sock *icsk = inet_csk(sk);
2405 struct tcp_sock *tp = tcp_sk(sk);
2406 u32 timeout, rto_delta_us;
2407 int early_retrans;
2408
2409 /* Don't do any loss probe on a Fast Open connection before 3WHS
2410 * finishes.
2411 */
2412 if (tp->fastopen_rsk)
2413 return false;
2414
2415 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2416 /* Schedule a loss probe in 2*RTT for SACK capable connections
2417 * in Open state, that are either limited by cwnd or application.
2418 */
2419 if ((early_retrans != 3 && early_retrans != 4) ||
2420 !tp->packets_out || !tcp_is_sack(tp) ||
2421 icsk->icsk_ca_state != TCP_CA_Open)
2422 return false;
2423
2424 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2425 !tcp_write_queue_empty(sk))
2426 return false;
2427
2428 /* Probe timeout is 2*rtt. Add minimum RTO to account
2429 * for delayed ack when there's one outstanding packet. If no RTT
2430 * sample is available then probe after TCP_TIMEOUT_INIT.
2431 */
2432 if (tp->srtt_us) {
2433 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2434 if (tp->packets_out == 1)
2435 timeout += TCP_RTO_MIN;
2436 else
2437 timeout += TCP_TIMEOUT_MIN;
2438 } else {
2439 timeout = TCP_TIMEOUT_INIT;
2440 }
2441
2442 /* If the RTO formula yields an earlier time, then use that time. */
2443 rto_delta_us = advancing_rto ?
2444 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2445 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2446 if (rto_delta_us > 0)
2447 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2448
2449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2450 TCP_RTO_MAX);
2451 return true;
2452 }
2453
2454 /* Thanks to skb fast clones, we can detect if a prior transmit of
2455 * a packet is still in a qdisc or driver queue.
2456 * In this case, there is very little point doing a retransmit !
2457 */
2458 static bool skb_still_in_host_queue(const struct sock *sk,
2459 const struct sk_buff *skb)
2460 {
2461 if (unlikely(skb_fclone_busy(sk, skb))) {
2462 NET_INC_STATS(sock_net(sk),
2463 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2464 return true;
2465 }
2466 return false;
2467 }
2468
2469 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2470 * retransmit the last segment.
2471 */
2472 void tcp_send_loss_probe(struct sock *sk)
2473 {
2474 struct tcp_sock *tp = tcp_sk(sk);
2475 struct sk_buff *skb;
2476 int pcount;
2477 int mss = tcp_current_mss(sk);
2478
2479 skb = tcp_send_head(sk);
2480 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2481 pcount = tp->packets_out;
2482 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2483 if (tp->packets_out > pcount)
2484 goto probe_sent;
2485 goto rearm_timer;
2486 }
2487 skb = skb_rb_last(&sk->tcp_rtx_queue);
2488
2489 /* At most one outstanding TLP retransmission. */
2490 if (tp->tlp_high_seq)
2491 goto rearm_timer;
2492
2493 /* Retransmit last segment. */
2494 if (WARN_ON(!skb))
2495 goto rearm_timer;
2496
2497 if (skb_still_in_host_queue(sk, skb))
2498 goto rearm_timer;
2499
2500 pcount = tcp_skb_pcount(skb);
2501 if (WARN_ON(!pcount))
2502 goto rearm_timer;
2503
2504 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2505 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2506 (pcount - 1) * mss, mss,
2507 GFP_ATOMIC)))
2508 goto rearm_timer;
2509 skb = skb_rb_next(skb);
2510 }
2511
2512 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2513 goto rearm_timer;
2514
2515 if (__tcp_retransmit_skb(sk, skb, 1))
2516 goto rearm_timer;
2517
2518 /* Record snd_nxt for loss detection. */
2519 tp->tlp_high_seq = tp->snd_nxt;
2520
2521 probe_sent:
2522 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2523 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2524 inet_csk(sk)->icsk_pending = 0;
2525 rearm_timer:
2526 tcp_rearm_rto(sk);
2527 }
2528
2529 /* Push out any pending frames which were held back due to
2530 * TCP_CORK or attempt at coalescing tiny packets.
2531 * The socket must be locked by the caller.
2532 */
2533 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2534 int nonagle)
2535 {
2536 /* If we are closed, the bytes will have to remain here.
2537 * In time closedown will finish, we empty the write queue and
2538 * all will be happy.
2539 */
2540 if (unlikely(sk->sk_state == TCP_CLOSE))
2541 return;
2542
2543 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2544 sk_gfp_mask(sk, GFP_ATOMIC)))
2545 tcp_check_probe_timer(sk);
2546 }
2547
2548 /* Send _single_ skb sitting at the send head. This function requires
2549 * true push pending frames to setup probe timer etc.
2550 */
2551 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2552 {
2553 struct sk_buff *skb = tcp_send_head(sk);
2554
2555 BUG_ON(!skb || skb->len < mss_now);
2556
2557 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2558 }
2559
2560 /* This function returns the amount that we can raise the
2561 * usable window based on the following constraints
2562 *
2563 * 1. The window can never be shrunk once it is offered (RFC 793)
2564 * 2. We limit memory per socket
2565 *
2566 * RFC 1122:
2567 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2568 * RECV.NEXT + RCV.WIN fixed until:
2569 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2570 *
2571 * i.e. don't raise the right edge of the window until you can raise
2572 * it at least MSS bytes.
2573 *
2574 * Unfortunately, the recommended algorithm breaks header prediction,
2575 * since header prediction assumes th->window stays fixed.
2576 *
2577 * Strictly speaking, keeping th->window fixed violates the receiver
2578 * side SWS prevention criteria. The problem is that under this rule
2579 * a stream of single byte packets will cause the right side of the
2580 * window to always advance by a single byte.
2581 *
2582 * Of course, if the sender implements sender side SWS prevention
2583 * then this will not be a problem.
2584 *
2585 * BSD seems to make the following compromise:
2586 *
2587 * If the free space is less than the 1/4 of the maximum
2588 * space available and the free space is less than 1/2 mss,
2589 * then set the window to 0.
2590 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2591 * Otherwise, just prevent the window from shrinking
2592 * and from being larger than the largest representable value.
2593 *
2594 * This prevents incremental opening of the window in the regime
2595 * where TCP is limited by the speed of the reader side taking
2596 * data out of the TCP receive queue. It does nothing about
2597 * those cases where the window is constrained on the sender side
2598 * because the pipeline is full.
2599 *
2600 * BSD also seems to "accidentally" limit itself to windows that are a
2601 * multiple of MSS, at least until the free space gets quite small.
2602 * This would appear to be a side effect of the mbuf implementation.
2603 * Combining these two algorithms results in the observed behavior
2604 * of having a fixed window size at almost all times.
2605 *
2606 * Below we obtain similar behavior by forcing the offered window to
2607 * a multiple of the mss when it is feasible to do so.
2608 *
2609 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2610 * Regular options like TIMESTAMP are taken into account.
2611 */
2612 u32 __tcp_select_window(struct sock *sk)
2613 {
2614 struct inet_connection_sock *icsk = inet_csk(sk);
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 /* MSS for the peer's data. Previous versions used mss_clamp
2617 * here. I don't know if the value based on our guesses
2618 * of peer's MSS is better for the performance. It's more correct
2619 * but may be worse for the performance because of rcv_mss
2620 * fluctuations. --SAW 1998/11/1
2621 */
2622 int mss = icsk->icsk_ack.rcv_mss;
2623 int free_space = tcp_space(sk);
2624 int allowed_space = tcp_full_space(sk);
2625 int full_space = min_t(int, tp->window_clamp, allowed_space);
2626 int window;
2627
2628 if (unlikely(mss > full_space)) {
2629 mss = full_space;
2630 if (mss <= 0)
2631 return 0;
2632 }
2633 if (free_space < (full_space >> 1)) {
2634 icsk->icsk_ack.quick = 0;
2635
2636 if (tcp_under_memory_pressure(sk))
2637 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2638 4U * tp->advmss);
2639
2640 /* free_space might become our new window, make sure we don't
2641 * increase it due to wscale.
2642 */
2643 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2644
2645 /* if free space is less than mss estimate, or is below 1/16th
2646 * of the maximum allowed, try to move to zero-window, else
2647 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2648 * new incoming data is dropped due to memory limits.
2649 * With large window, mss test triggers way too late in order
2650 * to announce zero window in time before rmem limit kicks in.
2651 */
2652 if (free_space < (allowed_space >> 4) || free_space < mss)
2653 return 0;
2654 }
2655
2656 if (free_space > tp->rcv_ssthresh)
2657 free_space = tp->rcv_ssthresh;
2658
2659 /* Don't do rounding if we are using window scaling, since the
2660 * scaled window will not line up with the MSS boundary anyway.
2661 */
2662 if (tp->rx_opt.rcv_wscale) {
2663 window = free_space;
2664
2665 /* Advertise enough space so that it won't get scaled away.
2666 * Import case: prevent zero window announcement if
2667 * 1<<rcv_wscale > mss.
2668 */
2669 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2670 } else {
2671 window = tp->rcv_wnd;
2672 /* Get the largest window that is a nice multiple of mss.
2673 * Window clamp already applied above.
2674 * If our current window offering is within 1 mss of the
2675 * free space we just keep it. This prevents the divide
2676 * and multiply from happening most of the time.
2677 * We also don't do any window rounding when the free space
2678 * is too small.
2679 */
2680 if (window <= free_space - mss || window > free_space)
2681 window = rounddown(free_space, mss);
2682 else if (mss == full_space &&
2683 free_space > window + (full_space >> 1))
2684 window = free_space;
2685 }
2686
2687 return window;
2688 }
2689
2690 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2691 const struct sk_buff *next_skb)
2692 {
2693 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2694 const struct skb_shared_info *next_shinfo =
2695 skb_shinfo(next_skb);
2696 struct skb_shared_info *shinfo = skb_shinfo(skb);
2697
2698 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2699 shinfo->tskey = next_shinfo->tskey;
2700 TCP_SKB_CB(skb)->txstamp_ack |=
2701 TCP_SKB_CB(next_skb)->txstamp_ack;
2702 }
2703 }
2704
2705 /* Collapses two adjacent SKB's during retransmission. */
2706 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2707 {
2708 struct tcp_sock *tp = tcp_sk(sk);
2709 struct sk_buff *next_skb = skb_rb_next(skb);
2710 int skb_size, next_skb_size;
2711
2712 skb_size = skb->len;
2713 next_skb_size = next_skb->len;
2714
2715 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2716
2717 if (next_skb_size) {
2718 if (next_skb_size <= skb_availroom(skb))
2719 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2720 next_skb_size);
2721 else if (!skb_shift(skb, next_skb, next_skb_size))
2722 return false;
2723 }
2724 tcp_highest_sack_replace(sk, next_skb, skb);
2725
2726 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2727 skb->ip_summed = CHECKSUM_PARTIAL;
2728
2729 if (skb->ip_summed != CHECKSUM_PARTIAL)
2730 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2731
2732 /* Update sequence range on original skb. */
2733 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2734
2735 /* Merge over control information. This moves PSH/FIN etc. over */
2736 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2737
2738 /* All done, get rid of second SKB and account for it so
2739 * packet counting does not break.
2740 */
2741 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2742 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2743
2744 /* changed transmit queue under us so clear hints */
2745 tcp_clear_retrans_hints_partial(tp);
2746 if (next_skb == tp->retransmit_skb_hint)
2747 tp->retransmit_skb_hint = skb;
2748
2749 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2750
2751 tcp_skb_collapse_tstamp(skb, next_skb);
2752
2753 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2754 return true;
2755 }
2756
2757 /* Check if coalescing SKBs is legal. */
2758 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2759 {
2760 if (tcp_skb_pcount(skb) > 1)
2761 return false;
2762 if (skb_cloned(skb))
2763 return false;
2764 /* Some heuristics for collapsing over SACK'd could be invented */
2765 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2766 return false;
2767
2768 return true;
2769 }
2770
2771 /* Collapse packets in the retransmit queue to make to create
2772 * less packets on the wire. This is only done on retransmission.
2773 */
2774 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2775 int space)
2776 {
2777 struct tcp_sock *tp = tcp_sk(sk);
2778 struct sk_buff *skb = to, *tmp;
2779 bool first = true;
2780
2781 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2782 return;
2783 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2784 return;
2785
2786 skb_rbtree_walk_from_safe(skb, tmp) {
2787 if (!tcp_can_collapse(sk, skb))
2788 break;
2789
2790 if (!tcp_skb_can_collapse_to(to))
2791 break;
2792
2793 space -= skb->len;
2794
2795 if (first) {
2796 first = false;
2797 continue;
2798 }
2799
2800 if (space < 0)
2801 break;
2802
2803 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2804 break;
2805
2806 if (!tcp_collapse_retrans(sk, to))
2807 break;
2808 }
2809 }
2810
2811 /* This retransmits one SKB. Policy decisions and retransmit queue
2812 * state updates are done by the caller. Returns non-zero if an
2813 * error occurred which prevented the send.
2814 */
2815 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2816 {
2817 struct inet_connection_sock *icsk = inet_csk(sk);
2818 struct tcp_sock *tp = tcp_sk(sk);
2819 unsigned int cur_mss;
2820 int diff, len, err;
2821
2822
2823 /* Inconclusive MTU probe */
2824 if (icsk->icsk_mtup.probe_size)
2825 icsk->icsk_mtup.probe_size = 0;
2826
2827 /* Do not sent more than we queued. 1/4 is reserved for possible
2828 * copying overhead: fragmentation, tunneling, mangling etc.
2829 */
2830 if (refcount_read(&sk->sk_wmem_alloc) >
2831 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2832 sk->sk_sndbuf))
2833 return -EAGAIN;
2834
2835 if (skb_still_in_host_queue(sk, skb))
2836 return -EBUSY;
2837
2838 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2839 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2840 BUG();
2841 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2842 return -ENOMEM;
2843 }
2844
2845 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2846 return -EHOSTUNREACH; /* Routing failure or similar. */
2847
2848 cur_mss = tcp_current_mss(sk);
2849
2850 /* If receiver has shrunk his window, and skb is out of
2851 * new window, do not retransmit it. The exception is the
2852 * case, when window is shrunk to zero. In this case
2853 * our retransmit serves as a zero window probe.
2854 */
2855 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2856 TCP_SKB_CB(skb)->seq != tp->snd_una)
2857 return -EAGAIN;
2858
2859 len = cur_mss * segs;
2860 if (skb->len > len) {
2861 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2862 cur_mss, GFP_ATOMIC))
2863 return -ENOMEM; /* We'll try again later. */
2864 } else {
2865 if (skb_unclone(skb, GFP_ATOMIC))
2866 return -ENOMEM;
2867
2868 diff = tcp_skb_pcount(skb);
2869 tcp_set_skb_tso_segs(skb, cur_mss);
2870 diff -= tcp_skb_pcount(skb);
2871 if (diff)
2872 tcp_adjust_pcount(sk, skb, diff);
2873 if (skb->len < cur_mss)
2874 tcp_retrans_try_collapse(sk, skb, cur_mss);
2875 }
2876
2877 /* RFC3168, section 6.1.1.1. ECN fallback */
2878 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2879 tcp_ecn_clear_syn(sk, skb);
2880
2881 /* Update global and local TCP statistics. */
2882 segs = tcp_skb_pcount(skb);
2883 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2885 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2886 tp->total_retrans += segs;
2887
2888 /* make sure skb->data is aligned on arches that require it
2889 * and check if ack-trimming & collapsing extended the headroom
2890 * beyond what csum_start can cover.
2891 */
2892 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2893 skb_headroom(skb) >= 0xFFFF)) {
2894 struct sk_buff *nskb;
2895
2896 tcp_skb_tsorted_save(skb) {
2897 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2898 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2899 -ENOBUFS;
2900 } tcp_skb_tsorted_restore(skb);
2901
2902 if (!err) {
2903 tcp_update_skb_after_send(tp, skb);
2904 tcp_rate_skb_sent(sk, skb);
2905 }
2906 } else {
2907 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2908 }
2909
2910 if (likely(!err)) {
2911 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2912 trace_tcp_retransmit_skb(sk, skb);
2913 } else if (err != -EBUSY) {
2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2915 }
2916 return err;
2917 }
2918
2919 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2920 {
2921 struct tcp_sock *tp = tcp_sk(sk);
2922 int err = __tcp_retransmit_skb(sk, skb, segs);
2923
2924 if (err == 0) {
2925 #if FASTRETRANS_DEBUG > 0
2926 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2927 net_dbg_ratelimited("retrans_out leaked\n");
2928 }
2929 #endif
2930 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2931 tp->retrans_out += tcp_skb_pcount(skb);
2932
2933 /* Save stamp of the first retransmit. */
2934 if (!tp->retrans_stamp)
2935 tp->retrans_stamp = tcp_skb_timestamp(skb);
2936
2937 }
2938
2939 if (tp->undo_retrans < 0)
2940 tp->undo_retrans = 0;
2941 tp->undo_retrans += tcp_skb_pcount(skb);
2942 return err;
2943 }
2944
2945 /* This gets called after a retransmit timeout, and the initially
2946 * retransmitted data is acknowledged. It tries to continue
2947 * resending the rest of the retransmit queue, until either
2948 * we've sent it all or the congestion window limit is reached.
2949 */
2950 void tcp_xmit_retransmit_queue(struct sock *sk)
2951 {
2952 const struct inet_connection_sock *icsk = inet_csk(sk);
2953 struct sk_buff *skb, *rtx_head, *hole = NULL;
2954 struct tcp_sock *tp = tcp_sk(sk);
2955 u32 max_segs;
2956 int mib_idx;
2957
2958 if (!tp->packets_out)
2959 return;
2960
2961 rtx_head = tcp_rtx_queue_head(sk);
2962 skb = tp->retransmit_skb_hint ?: rtx_head;
2963 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2964 skb_rbtree_walk_from(skb) {
2965 __u8 sacked;
2966 int segs;
2967
2968 if (tcp_pacing_check(sk))
2969 break;
2970
2971 /* we could do better than to assign each time */
2972 if (!hole)
2973 tp->retransmit_skb_hint = skb;
2974
2975 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2976 if (segs <= 0)
2977 return;
2978 sacked = TCP_SKB_CB(skb)->sacked;
2979 /* In case tcp_shift_skb_data() have aggregated large skbs,
2980 * we need to make sure not sending too bigs TSO packets
2981 */
2982 segs = min_t(int, segs, max_segs);
2983
2984 if (tp->retrans_out >= tp->lost_out) {
2985 break;
2986 } else if (!(sacked & TCPCB_LOST)) {
2987 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2988 hole = skb;
2989 continue;
2990
2991 } else {
2992 if (icsk->icsk_ca_state != TCP_CA_Loss)
2993 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2994 else
2995 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2996 }
2997
2998 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2999 continue;
3000
3001 if (tcp_small_queue_check(sk, skb, 1))
3002 return;
3003
3004 if (tcp_retransmit_skb(sk, skb, segs))
3005 return;
3006
3007 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3008
3009 if (tcp_in_cwnd_reduction(sk))
3010 tp->prr_out += tcp_skb_pcount(skb);
3011
3012 if (skb == rtx_head &&
3013 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3014 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3015 inet_csk(sk)->icsk_rto,
3016 TCP_RTO_MAX);
3017 }
3018 }
3019
3020 /* We allow to exceed memory limits for FIN packets to expedite
3021 * connection tear down and (memory) recovery.
3022 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3023 * or even be forced to close flow without any FIN.
3024 * In general, we want to allow one skb per socket to avoid hangs
3025 * with edge trigger epoll()
3026 */
3027 void sk_forced_mem_schedule(struct sock *sk, int size)
3028 {
3029 int amt;
3030
3031 if (size <= sk->sk_forward_alloc)
3032 return;
3033 amt = sk_mem_pages(size);
3034 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3035 sk_memory_allocated_add(sk, amt);
3036
3037 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3038 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3039 }
3040
3041 /* Send a FIN. The caller locks the socket for us.
3042 * We should try to send a FIN packet really hard, but eventually give up.
3043 */
3044 void tcp_send_fin(struct sock *sk)
3045 {
3046 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3047 struct tcp_sock *tp = tcp_sk(sk);
3048
3049 /* Optimization, tack on the FIN if we have one skb in write queue and
3050 * this skb was not yet sent, or we are under memory pressure.
3051 * Note: in the latter case, FIN packet will be sent after a timeout,
3052 * as TCP stack thinks it has already been transmitted.
3053 */
3054 if (!tskb && tcp_under_memory_pressure(sk))
3055 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3056
3057 if (tskb) {
3058 coalesce:
3059 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3060 TCP_SKB_CB(tskb)->end_seq++;
3061 tp->write_seq++;
3062 if (tcp_write_queue_empty(sk)) {
3063 /* This means tskb was already sent.
3064 * Pretend we included the FIN on previous transmit.
3065 * We need to set tp->snd_nxt to the value it would have
3066 * if FIN had been sent. This is because retransmit path
3067 * does not change tp->snd_nxt.
3068 */
3069 tp->snd_nxt++;
3070 return;
3071 }
3072 } else {
3073 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3074 if (unlikely(!skb)) {
3075 if (tskb)
3076 goto coalesce;
3077 return;
3078 }
3079 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3080 skb_reserve(skb, MAX_TCP_HEADER);
3081 sk_forced_mem_schedule(sk, skb->truesize);
3082 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3083 tcp_init_nondata_skb(skb, tp->write_seq,
3084 TCPHDR_ACK | TCPHDR_FIN);
3085 tcp_queue_skb(sk, skb);
3086 }
3087 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3088 }
3089
3090 /* We get here when a process closes a file descriptor (either due to
3091 * an explicit close() or as a byproduct of exit()'ing) and there
3092 * was unread data in the receive queue. This behavior is recommended
3093 * by RFC 2525, section 2.17. -DaveM
3094 */
3095 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3096 {
3097 struct sk_buff *skb;
3098
3099 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3100
3101 /* NOTE: No TCP options attached and we never retransmit this. */
3102 skb = alloc_skb(MAX_TCP_HEADER, priority);
3103 if (!skb) {
3104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3105 return;
3106 }
3107
3108 /* Reserve space for headers and prepare control bits. */
3109 skb_reserve(skb, MAX_TCP_HEADER);
3110 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3111 TCPHDR_ACK | TCPHDR_RST);
3112 tcp_mstamp_refresh(tcp_sk(sk));
3113 /* Send it off. */
3114 if (tcp_transmit_skb(sk, skb, 0, priority))
3115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3116
3117 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3118 * skb here is different to the troublesome skb, so use NULL
3119 */
3120 trace_tcp_send_reset(sk, NULL);
3121 }
3122
3123 /* Send a crossed SYN-ACK during socket establishment.
3124 * WARNING: This routine must only be called when we have already sent
3125 * a SYN packet that crossed the incoming SYN that caused this routine
3126 * to get called. If this assumption fails then the initial rcv_wnd
3127 * and rcv_wscale values will not be correct.
3128 */
3129 int tcp_send_synack(struct sock *sk)
3130 {
3131 struct sk_buff *skb;
3132
3133 skb = tcp_rtx_queue_head(sk);
3134 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3135 pr_err("%s: wrong queue state\n", __func__);
3136 return -EFAULT;
3137 }
3138 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3139 if (skb_cloned(skb)) {
3140 struct sk_buff *nskb;
3141
3142 tcp_skb_tsorted_save(skb) {
3143 nskb = skb_copy(skb, GFP_ATOMIC);
3144 } tcp_skb_tsorted_restore(skb);
3145 if (!nskb)
3146 return -ENOMEM;
3147 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3148 tcp_rtx_queue_unlink_and_free(skb, sk);
3149 __skb_header_release(nskb);
3150 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3151 sk->sk_wmem_queued += nskb->truesize;
3152 sk_mem_charge(sk, nskb->truesize);
3153 skb = nskb;
3154 }
3155
3156 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3157 tcp_ecn_send_synack(sk, skb);
3158 }
3159 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3160 }
3161
3162 /**
3163 * tcp_make_synack - Prepare a SYN-ACK.
3164 * sk: listener socket
3165 * dst: dst entry attached to the SYNACK
3166 * req: request_sock pointer
3167 *
3168 * Allocate one skb and build a SYNACK packet.
3169 * @dst is consumed : Caller should not use it again.
3170 */
3171 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3172 struct request_sock *req,
3173 struct tcp_fastopen_cookie *foc,
3174 enum tcp_synack_type synack_type)
3175 {
3176 struct inet_request_sock *ireq = inet_rsk(req);
3177 const struct tcp_sock *tp = tcp_sk(sk);
3178 struct tcp_md5sig_key *md5 = NULL;
3179 struct tcp_out_options opts;
3180 struct sk_buff *skb;
3181 int tcp_header_size;
3182 struct tcphdr *th;
3183 int mss;
3184
3185 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3186 if (unlikely(!skb)) {
3187 dst_release(dst);
3188 return NULL;
3189 }
3190 /* Reserve space for headers. */
3191 skb_reserve(skb, MAX_TCP_HEADER);
3192
3193 switch (synack_type) {
3194 case TCP_SYNACK_NORMAL:
3195 skb_set_owner_w(skb, req_to_sk(req));
3196 break;
3197 case TCP_SYNACK_COOKIE:
3198 /* Under synflood, we do not attach skb to a socket,
3199 * to avoid false sharing.
3200 */
3201 break;
3202 case TCP_SYNACK_FASTOPEN:
3203 /* sk is a const pointer, because we want to express multiple
3204 * cpu might call us concurrently.
3205 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3206 */
3207 skb_set_owner_w(skb, (struct sock *)sk);
3208 break;
3209 }
3210 skb_dst_set(skb, dst);
3211
3212 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3213
3214 memset(&opts, 0, sizeof(opts));
3215 #ifdef CONFIG_SYN_COOKIES
3216 if (unlikely(req->cookie_ts))
3217 skb->skb_mstamp = cookie_init_timestamp(req);
3218 else
3219 #endif
3220 skb->skb_mstamp = tcp_clock_us();
3221
3222 #ifdef CONFIG_TCP_MD5SIG
3223 rcu_read_lock();
3224 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3225 #endif
3226 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3227 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3228 foc) + sizeof(*th);
3229
3230 skb_push(skb, tcp_header_size);
3231 skb_reset_transport_header(skb);
3232
3233 th = (struct tcphdr *)skb->data;
3234 memset(th, 0, sizeof(struct tcphdr));
3235 th->syn = 1;
3236 th->ack = 1;
3237 tcp_ecn_make_synack(req, th);
3238 th->source = htons(ireq->ir_num);
3239 th->dest = ireq->ir_rmt_port;
3240 skb->mark = ireq->ir_mark;
3241 skb->ip_summed = CHECKSUM_PARTIAL;
3242 th->seq = htonl(tcp_rsk(req)->snt_isn);
3243 /* XXX data is queued and acked as is. No buffer/window check */
3244 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3245
3246 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3247 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3248 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3249 th->doff = (tcp_header_size >> 2);
3250 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3251
3252 #ifdef CONFIG_TCP_MD5SIG
3253 /* Okay, we have all we need - do the md5 hash if needed */
3254 if (md5)
3255 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3256 md5, req_to_sk(req), skb);
3257 rcu_read_unlock();
3258 #endif
3259
3260 /* Do not fool tcpdump (if any), clean our debris */
3261 skb->tstamp = 0;
3262 return skb;
3263 }
3264 EXPORT_SYMBOL(tcp_make_synack);
3265
3266 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3267 {
3268 struct inet_connection_sock *icsk = inet_csk(sk);
3269 const struct tcp_congestion_ops *ca;
3270 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3271
3272 if (ca_key == TCP_CA_UNSPEC)
3273 return;
3274
3275 rcu_read_lock();
3276 ca = tcp_ca_find_key(ca_key);
3277 if (likely(ca && try_module_get(ca->owner))) {
3278 module_put(icsk->icsk_ca_ops->owner);
3279 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3280 icsk->icsk_ca_ops = ca;
3281 }
3282 rcu_read_unlock();
3283 }
3284
3285 /* Do all connect socket setups that can be done AF independent. */
3286 static void tcp_connect_init(struct sock *sk)
3287 {
3288 const struct dst_entry *dst = __sk_dst_get(sk);
3289 struct tcp_sock *tp = tcp_sk(sk);
3290 __u8 rcv_wscale;
3291 u32 rcv_wnd;
3292
3293 /* We'll fix this up when we get a response from the other end.
3294 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3295 */
3296 tp->tcp_header_len = sizeof(struct tcphdr);
3297 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3298 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3299
3300 #ifdef CONFIG_TCP_MD5SIG
3301 if (tp->af_specific->md5_lookup(sk, sk))
3302 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3303 #endif
3304
3305 /* If user gave his TCP_MAXSEG, record it to clamp */
3306 if (tp->rx_opt.user_mss)
3307 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3308 tp->max_window = 0;
3309 tcp_mtup_init(sk);
3310 tcp_sync_mss(sk, dst_mtu(dst));
3311
3312 tcp_ca_dst_init(sk, dst);
3313
3314 if (!tp->window_clamp)
3315 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3316 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3317
3318 tcp_initialize_rcv_mss(sk);
3319
3320 /* limit the window selection if the user enforce a smaller rx buffer */
3321 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3322 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3323 tp->window_clamp = tcp_full_space(sk);
3324
3325 rcv_wnd = tcp_rwnd_init_bpf(sk);
3326 if (rcv_wnd == 0)
3327 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3328
3329 tcp_select_initial_window(sk, tcp_full_space(sk),
3330 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3331 &tp->rcv_wnd,
3332 &tp->window_clamp,
3333 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3334 &rcv_wscale,
3335 rcv_wnd);
3336
3337 tp->rx_opt.rcv_wscale = rcv_wscale;
3338 tp->rcv_ssthresh = tp->rcv_wnd;
3339
3340 sk->sk_err = 0;
3341 sock_reset_flag(sk, SOCK_DONE);
3342 tp->snd_wnd = 0;
3343 tcp_init_wl(tp, 0);
3344 tp->snd_una = tp->write_seq;
3345 tp->snd_sml = tp->write_seq;
3346 tp->snd_up = tp->write_seq;
3347 tp->snd_nxt = tp->write_seq;
3348
3349 if (likely(!tp->repair))
3350 tp->rcv_nxt = 0;
3351 else
3352 tp->rcv_tstamp = tcp_jiffies32;
3353 tp->rcv_wup = tp->rcv_nxt;
3354 tp->copied_seq = tp->rcv_nxt;
3355
3356 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3357 inet_csk(sk)->icsk_retransmits = 0;
3358 tcp_clear_retrans(tp);
3359 }
3360
3361 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3362 {
3363 struct tcp_sock *tp = tcp_sk(sk);
3364 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3365
3366 tcb->end_seq += skb->len;
3367 __skb_header_release(skb);
3368 sk->sk_wmem_queued += skb->truesize;
3369 sk_mem_charge(sk, skb->truesize);
3370 tp->write_seq = tcb->end_seq;
3371 tp->packets_out += tcp_skb_pcount(skb);
3372 }
3373
3374 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3375 * queue a data-only packet after the regular SYN, such that regular SYNs
3376 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3377 * only the SYN sequence, the data are retransmitted in the first ACK.
3378 * If cookie is not cached or other error occurs, falls back to send a
3379 * regular SYN with Fast Open cookie request option.
3380 */
3381 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3382 {
3383 struct tcp_sock *tp = tcp_sk(sk);
3384 struct tcp_fastopen_request *fo = tp->fastopen_req;
3385 int space, err = 0;
3386 struct sk_buff *syn_data;
3387
3388 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3389 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3390 goto fallback;
3391
3392 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3393 * user-MSS. Reserve maximum option space for middleboxes that add
3394 * private TCP options. The cost is reduced data space in SYN :(
3395 */
3396 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3397
3398 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3399 MAX_TCP_OPTION_SPACE;
3400
3401 space = min_t(size_t, space, fo->size);
3402
3403 /* limit to order-0 allocations */
3404 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3405
3406 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3407 if (!syn_data)
3408 goto fallback;
3409 syn_data->ip_summed = CHECKSUM_PARTIAL;
3410 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3411 if (space) {
3412 int copied = copy_from_iter(skb_put(syn_data, space), space,
3413 &fo->data->msg_iter);
3414 if (unlikely(!copied)) {
3415 tcp_skb_tsorted_anchor_cleanup(syn_data);
3416 kfree_skb(syn_data);
3417 goto fallback;
3418 }
3419 if (copied != space) {
3420 skb_trim(syn_data, copied);
3421 space = copied;
3422 }
3423 }
3424 /* No more data pending in inet_wait_for_connect() */
3425 if (space == fo->size)
3426 fo->data = NULL;
3427 fo->copied = space;
3428
3429 tcp_connect_queue_skb(sk, syn_data);
3430 if (syn_data->len)
3431 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3432
3433 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3434
3435 syn->skb_mstamp = syn_data->skb_mstamp;
3436
3437 /* Now full SYN+DATA was cloned and sent (or not),
3438 * remove the SYN from the original skb (syn_data)
3439 * we keep in write queue in case of a retransmit, as we
3440 * also have the SYN packet (with no data) in the same queue.
3441 */
3442 TCP_SKB_CB(syn_data)->seq++;
3443 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3444 if (!err) {
3445 tp->syn_data = (fo->copied > 0);
3446 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3448 goto done;
3449 }
3450
3451 /* data was not sent, put it in write_queue */
3452 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3453 tp->packets_out -= tcp_skb_pcount(syn_data);
3454
3455 fallback:
3456 /* Send a regular SYN with Fast Open cookie request option */
3457 if (fo->cookie.len > 0)
3458 fo->cookie.len = 0;
3459 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3460 if (err)
3461 tp->syn_fastopen = 0;
3462 done:
3463 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3464 return err;
3465 }
3466
3467 /* Build a SYN and send it off. */
3468 int tcp_connect(struct sock *sk)
3469 {
3470 struct tcp_sock *tp = tcp_sk(sk);
3471 struct sk_buff *buff;
3472 int err;
3473
3474 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3475
3476 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3477 return -EHOSTUNREACH; /* Routing failure or similar. */
3478
3479 tcp_connect_init(sk);
3480
3481 if (unlikely(tp->repair)) {
3482 tcp_finish_connect(sk, NULL);
3483 return 0;
3484 }
3485
3486 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3487 if (unlikely(!buff))
3488 return -ENOBUFS;
3489
3490 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3491 tcp_mstamp_refresh(tp);
3492 tp->retrans_stamp = tcp_time_stamp(tp);
3493 tcp_connect_queue_skb(sk, buff);
3494 tcp_ecn_send_syn(sk, buff);
3495 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3496
3497 /* Send off SYN; include data in Fast Open. */
3498 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3499 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3500 if (err == -ECONNREFUSED)
3501 return err;
3502
3503 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3504 * in order to make this packet get counted in tcpOutSegs.
3505 */
3506 tp->snd_nxt = tp->write_seq;
3507 tp->pushed_seq = tp->write_seq;
3508 buff = tcp_send_head(sk);
3509 if (unlikely(buff)) {
3510 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3511 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3512 }
3513 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3514
3515 /* Timer for repeating the SYN until an answer. */
3516 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3517 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3518 return 0;
3519 }
3520 EXPORT_SYMBOL(tcp_connect);
3521
3522 /* Send out a delayed ack, the caller does the policy checking
3523 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3524 * for details.
3525 */
3526 void tcp_send_delayed_ack(struct sock *sk)
3527 {
3528 struct inet_connection_sock *icsk = inet_csk(sk);
3529 int ato = icsk->icsk_ack.ato;
3530 unsigned long timeout;
3531
3532 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3533
3534 if (ato > TCP_DELACK_MIN) {
3535 const struct tcp_sock *tp = tcp_sk(sk);
3536 int max_ato = HZ / 2;
3537
3538 if (icsk->icsk_ack.pingpong ||
3539 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3540 max_ato = TCP_DELACK_MAX;
3541
3542 /* Slow path, intersegment interval is "high". */
3543
3544 /* If some rtt estimate is known, use it to bound delayed ack.
3545 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3546 * directly.
3547 */
3548 if (tp->srtt_us) {
3549 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3550 TCP_DELACK_MIN);
3551
3552 if (rtt < max_ato)
3553 max_ato = rtt;
3554 }
3555
3556 ato = min(ato, max_ato);
3557 }
3558
3559 /* Stay within the limit we were given */
3560 timeout = jiffies + ato;
3561
3562 /* Use new timeout only if there wasn't a older one earlier. */
3563 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3564 /* If delack timer was blocked or is about to expire,
3565 * send ACK now.
3566 */
3567 if (icsk->icsk_ack.blocked ||
3568 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3569 tcp_send_ack(sk);
3570 return;
3571 }
3572
3573 if (!time_before(timeout, icsk->icsk_ack.timeout))
3574 timeout = icsk->icsk_ack.timeout;
3575 }
3576 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3577 icsk->icsk_ack.timeout = timeout;
3578 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3579 }
3580
3581 /* This routine sends an ack and also updates the window. */
3582 void tcp_send_ack(struct sock *sk)
3583 {
3584 struct sk_buff *buff;
3585
3586 /* If we have been reset, we may not send again. */
3587 if (sk->sk_state == TCP_CLOSE)
3588 return;
3589
3590 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3591
3592 /* We are not putting this on the write queue, so
3593 * tcp_transmit_skb() will set the ownership to this
3594 * sock.
3595 */
3596 buff = alloc_skb(MAX_TCP_HEADER,
3597 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3598 if (unlikely(!buff)) {
3599 inet_csk_schedule_ack(sk);
3600 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3601 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3602 TCP_DELACK_MAX, TCP_RTO_MAX);
3603 return;
3604 }
3605
3606 /* Reserve space for headers and prepare control bits. */
3607 skb_reserve(buff, MAX_TCP_HEADER);
3608 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3609
3610 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3611 * too much.
3612 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3613 */
3614 skb_set_tcp_pure_ack(buff);
3615
3616 /* Send it off, this clears delayed acks for us. */
3617 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3618 }
3619 EXPORT_SYMBOL_GPL(tcp_send_ack);
3620
3621 /* This routine sends a packet with an out of date sequence
3622 * number. It assumes the other end will try to ack it.
3623 *
3624 * Question: what should we make while urgent mode?
3625 * 4.4BSD forces sending single byte of data. We cannot send
3626 * out of window data, because we have SND.NXT==SND.MAX...
3627 *
3628 * Current solution: to send TWO zero-length segments in urgent mode:
3629 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3630 * out-of-date with SND.UNA-1 to probe window.
3631 */
3632 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3633 {
3634 struct tcp_sock *tp = tcp_sk(sk);
3635 struct sk_buff *skb;
3636
3637 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3638 skb = alloc_skb(MAX_TCP_HEADER,
3639 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3640 if (!skb)
3641 return -1;
3642
3643 /* Reserve space for headers and set control bits. */
3644 skb_reserve(skb, MAX_TCP_HEADER);
3645 /* Use a previous sequence. This should cause the other
3646 * end to send an ack. Don't queue or clone SKB, just
3647 * send it.
3648 */
3649 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3650 NET_INC_STATS(sock_net(sk), mib);
3651 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3652 }
3653
3654 /* Called from setsockopt( ... TCP_REPAIR ) */
3655 void tcp_send_window_probe(struct sock *sk)
3656 {
3657 if (sk->sk_state == TCP_ESTABLISHED) {
3658 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3659 tcp_mstamp_refresh(tcp_sk(sk));
3660 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3661 }
3662 }
3663
3664 /* Initiate keepalive or window probe from timer. */
3665 int tcp_write_wakeup(struct sock *sk, int mib)
3666 {
3667 struct tcp_sock *tp = tcp_sk(sk);
3668 struct sk_buff *skb;
3669
3670 if (sk->sk_state == TCP_CLOSE)
3671 return -1;
3672
3673 skb = tcp_send_head(sk);
3674 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3675 int err;
3676 unsigned int mss = tcp_current_mss(sk);
3677 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3678
3679 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3680 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3681
3682 /* We are probing the opening of a window
3683 * but the window size is != 0
3684 * must have been a result SWS avoidance ( sender )
3685 */
3686 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3687 skb->len > mss) {
3688 seg_size = min(seg_size, mss);
3689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3690 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3691 skb, seg_size, mss, GFP_ATOMIC))
3692 return -1;
3693 } else if (!tcp_skb_pcount(skb))
3694 tcp_set_skb_tso_segs(skb, mss);
3695
3696 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3697 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3698 if (!err)
3699 tcp_event_new_data_sent(sk, skb);
3700 return err;
3701 } else {
3702 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3703 tcp_xmit_probe_skb(sk, 1, mib);
3704 return tcp_xmit_probe_skb(sk, 0, mib);
3705 }
3706 }
3707
3708 /* A window probe timeout has occurred. If window is not closed send
3709 * a partial packet else a zero probe.
3710 */
3711 void tcp_send_probe0(struct sock *sk)
3712 {
3713 struct inet_connection_sock *icsk = inet_csk(sk);
3714 struct tcp_sock *tp = tcp_sk(sk);
3715 struct net *net = sock_net(sk);
3716 unsigned long probe_max;
3717 int err;
3718
3719 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3720
3721 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3722 /* Cancel probe timer, if it is not required. */
3723 icsk->icsk_probes_out = 0;
3724 icsk->icsk_backoff = 0;
3725 return;
3726 }
3727
3728 if (err <= 0) {
3729 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3730 icsk->icsk_backoff++;
3731 icsk->icsk_probes_out++;
3732 probe_max = TCP_RTO_MAX;
3733 } else {
3734 /* If packet was not sent due to local congestion,
3735 * do not backoff and do not remember icsk_probes_out.
3736 * Let local senders to fight for local resources.
3737 *
3738 * Use accumulated backoff yet.
3739 */
3740 if (!icsk->icsk_probes_out)
3741 icsk->icsk_probes_out = 1;
3742 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3743 }
3744 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3745 tcp_probe0_when(sk, probe_max),
3746 TCP_RTO_MAX);
3747 }
3748
3749 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3750 {
3751 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3752 struct flowi fl;
3753 int res;
3754
3755 tcp_rsk(req)->txhash = net_tx_rndhash();
3756 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3757 if (!res) {
3758 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3759 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3760 if (unlikely(tcp_passive_fastopen(sk)))
3761 tcp_sk(sk)->total_retrans++;
3762 trace_tcp_retransmit_synack(sk, req);
3763 }
3764 return res;
3765 }
3766 EXPORT_SYMBOL(tcp_rtx_synack);