]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_output.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = TCP_INIT_CWND * 2;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 if (!(tp->ecn_flags & TCP_ECN_OK))
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327
328 /* Packet ECN state for a SYN. */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 tp->ecn_flags = 0;
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 }
338 }
339
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 if (inet_rsk(req)->ecn_ok)
344 th->ece = 1;
345 }
346
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348 * be sent.
349 */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 int tcp_header_len)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354
355 if (tp->ecn_flags & TCP_ECN_OK) {
356 /* Not-retransmitted data segment: set ECT and inject CWR. */
357 if (skb->len != tcp_header_len &&
358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 INET_ECN_xmit(sk);
360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 tcp_hdr(skb)->cwr = 1;
363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 }
365 } else {
366 /* ACK or retransmitted segment: clear ECT|CE */
367 INET_ECN_dontxmit(sk);
368 }
369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 tcp_hdr(skb)->ece = 1;
371 }
372 }
373
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375 * auto increment end seqno.
376 */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 struct skb_shared_info *shinfo = skb_shinfo(skb);
380
381 skb->ip_summed = CHECKSUM_PARTIAL;
382 skb->csum = 0;
383
384 TCP_SKB_CB(skb)->tcp_flags = flags;
385 TCP_SKB_CB(skb)->sacked = 0;
386
387 shinfo->gso_segs = 1;
388 shinfo->gso_size = 0;
389 shinfo->gso_type = 0;
390
391 TCP_SKB_CB(skb)->seq = seq;
392 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 seq++;
394 TCP_SKB_CB(skb)->end_seq = seq;
395 }
396
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 return tp->snd_una != tp->snd_up;
400 }
401
402 #define OPTION_SACK_ADVERTISE (1 << 0)
403 #define OPTION_TS (1 << 1)
404 #define OPTION_MD5 (1 << 2)
405 #define OPTION_WSCALE (1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
407
408 struct tcp_out_options {
409 u16 options; /* bit field of OPTION_* */
410 u16 mss; /* 0 to disable */
411 u8 ws; /* window scale, 0 to disable */
412 u8 num_sack_blocks; /* number of SACK blocks to include */
413 u8 hash_size; /* bytes in hash_location */
414 __u8 *hash_location; /* temporary pointer, overloaded */
415 __u32 tsval, tsecr; /* need to include OPTION_TS */
416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
417 };
418
419 /* Write previously computed TCP options to the packet.
420 *
421 * Beware: Something in the Internet is very sensitive to the ordering of
422 * TCP options, we learned this through the hard way, so be careful here.
423 * Luckily we can at least blame others for their non-compliance but from
424 * inter-operability perspective it seems that we're somewhat stuck with
425 * the ordering which we have been using if we want to keep working with
426 * those broken things (not that it currently hurts anybody as there isn't
427 * particular reason why the ordering would need to be changed).
428 *
429 * At least SACK_PERM as the first option is known to lead to a disaster
430 * (but it may well be that other scenarios fail similarly).
431 */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 struct tcp_out_options *opts)
434 {
435 u16 options = opts->options; /* mungable copy */
436
437 if (unlikely(OPTION_MD5 & options)) {
438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 /* overload cookie hash location */
441 opts->hash_location = (__u8 *)ptr;
442 ptr += 4;
443 }
444
445 if (unlikely(opts->mss)) {
446 *ptr++ = htonl((TCPOPT_MSS << 24) |
447 (TCPOLEN_MSS << 16) |
448 opts->mss);
449 }
450
451 if (likely(OPTION_TS & options)) {
452 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 (TCPOLEN_SACK_PERM << 16) |
455 (TCPOPT_TIMESTAMP << 8) |
456 TCPOLEN_TIMESTAMP);
457 options &= ~OPTION_SACK_ADVERTISE;
458 } else {
459 *ptr++ = htonl((TCPOPT_NOP << 24) |
460 (TCPOPT_NOP << 16) |
461 (TCPOPT_TIMESTAMP << 8) |
462 TCPOLEN_TIMESTAMP);
463 }
464 *ptr++ = htonl(opts->tsval);
465 *ptr++ = htonl(opts->tsecr);
466 }
467
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_NOP << 24) |
470 (TCPOPT_NOP << 16) |
471 (TCPOPT_SACK_PERM << 8) |
472 TCPOLEN_SACK_PERM);
473 }
474
475 if (unlikely(OPTION_WSCALE & options)) {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_WINDOW << 16) |
478 (TCPOLEN_WINDOW << 8) |
479 opts->ws);
480 }
481
482 if (unlikely(opts->num_sack_blocks)) {
483 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 tp->duplicate_sack : tp->selective_acks;
485 int this_sack;
486
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_NOP << 16) |
489 (TCPOPT_SACK << 8) |
490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 TCPOLEN_SACK_PERBLOCK)));
492
493 for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 ++this_sack) {
495 *ptr++ = htonl(sp[this_sack].start_seq);
496 *ptr++ = htonl(sp[this_sack].end_seq);
497 }
498
499 tp->rx_opt.dsack = 0;
500 }
501
502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504
505 *ptr++ = htonl((TCPOPT_EXP << 24) |
506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 TCPOPT_FASTOPEN_MAGIC);
508
509 memcpy(ptr, foc->val, foc->len);
510 if ((foc->len & 3) == 2) {
511 u8 *align = ((u8 *)ptr) + foc->len;
512 align[0] = align[1] = TCPOPT_NOP;
513 }
514 ptr += (foc->len + 3) >> 2;
515 }
516 }
517
518 /* Compute TCP options for SYN packets. This is not the final
519 * network wire format yet.
520 */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 struct tcp_out_options *opts,
523 struct tcp_md5sig_key **md5)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528
529 #ifdef CONFIG_TCP_MD5SIG
530 *md5 = tp->af_specific->md5_lookup(sk, sk);
531 if (*md5) {
532 opts->options |= OPTION_MD5;
533 remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 }
535 #else
536 *md5 = NULL;
537 #endif
538
539 /* We always get an MSS option. The option bytes which will be seen in
540 * normal data packets should timestamps be used, must be in the MSS
541 * advertised. But we subtract them from tp->mss_cache so that
542 * calculations in tcp_sendmsg are simpler etc. So account for this
543 * fact here if necessary. If we don't do this correctly, as a
544 * receiver we won't recognize data packets as being full sized when we
545 * should, and thus we won't abide by the delayed ACK rules correctly.
546 * SACKs don't matter, we never delay an ACK when we have any of those
547 * going out. */
548 opts->mss = tcp_advertise_mss(sk);
549 remaining -= TCPOLEN_MSS_ALIGNED;
550
551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 opts->options |= OPTION_TS;
553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 opts->tsecr = tp->rx_opt.ts_recent;
555 remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 }
557 if (likely(sysctl_tcp_window_scaling)) {
558 opts->ws = tp->rx_opt.rcv_wscale;
559 opts->options |= OPTION_WSCALE;
560 remaining -= TCPOLEN_WSCALE_ALIGNED;
561 }
562 if (likely(sysctl_tcp_sack)) {
563 opts->options |= OPTION_SACK_ADVERTISE;
564 if (unlikely(!(OPTION_TS & opts->options)))
565 remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 }
567
568 if (fastopen && fastopen->cookie.len >= 0) {
569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 need = (need + 3) & ~3U; /* Align to 32 bits */
571 if (remaining >= need) {
572 opts->options |= OPTION_FAST_OPEN_COOKIE;
573 opts->fastopen_cookie = &fastopen->cookie;
574 remaining -= need;
575 tp->syn_fastopen = 1;
576 }
577 }
578
579 return MAX_TCP_OPTION_SPACE - remaining;
580 }
581
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 struct request_sock *req,
585 unsigned int mss, struct sk_buff *skb,
586 struct tcp_out_options *opts,
587 struct tcp_md5sig_key **md5,
588 struct tcp_fastopen_cookie *foc)
589 {
590 struct inet_request_sock *ireq = inet_rsk(req);
591 unsigned int remaining = MAX_TCP_OPTION_SPACE;
592
593 #ifdef CONFIG_TCP_MD5SIG
594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 if (*md5) {
596 opts->options |= OPTION_MD5;
597 remaining -= TCPOLEN_MD5SIG_ALIGNED;
598
599 /* We can't fit any SACK blocks in a packet with MD5 + TS
600 * options. There was discussion about disabling SACK
601 * rather than TS in order to fit in better with old,
602 * buggy kernels, but that was deemed to be unnecessary.
603 */
604 ireq->tstamp_ok &= !ireq->sack_ok;
605 }
606 #else
607 *md5 = NULL;
608 #endif
609
610 /* We always send an MSS option. */
611 opts->mss = mss;
612 remaining -= TCPOLEN_MSS_ALIGNED;
613
614 if (likely(ireq->wscale_ok)) {
615 opts->ws = ireq->rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(ireq->tstamp_ok)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = TCP_SKB_CB(skb)->when;
622 opts->tsecr = req->ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 }
625 if (likely(ireq->sack_ok)) {
626 opts->options |= OPTION_SACK_ADVERTISE;
627 if (unlikely(!ireq->tstamp_ok))
628 remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 }
630 if (foc != NULL && foc->len >= 0) {
631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = foc;
636 remaining -= need;
637 }
638 }
639
640 return MAX_TCP_OPTION_SPACE - remaining;
641 }
642
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644 * final wire format yet.
645 */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 struct tcp_out_options *opts,
648 struct tcp_md5sig_key **md5)
649 {
650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 struct tcp_sock *tp = tcp_sk(sk);
652 unsigned int size = 0;
653 unsigned int eff_sacks;
654
655 opts->options = 0;
656
657 #ifdef CONFIG_TCP_MD5SIG
658 *md5 = tp->af_specific->md5_lookup(sk, sk);
659 if (unlikely(*md5)) {
660 opts->options |= OPTION_MD5;
661 size += TCPOLEN_MD5SIG_ALIGNED;
662 }
663 #else
664 *md5 = NULL;
665 #endif
666
667 if (likely(tp->rx_opt.tstamp_ok)) {
668 opts->options |= OPTION_TS;
669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 opts->tsecr = tp->rx_opt.ts_recent;
671 size += TCPOLEN_TSTAMP_ALIGNED;
672 }
673
674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 if (unlikely(eff_sacks)) {
676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 opts->num_sack_blocks =
678 min_t(unsigned int, eff_sacks,
679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 TCPOLEN_SACK_PERBLOCK);
681 size += TCPOLEN_SACK_BASE_ALIGNED +
682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 }
684
685 return size;
686 }
687
688
689 /* TCP SMALL QUEUES (TSQ)
690 *
691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692 * to reduce RTT and bufferbloat.
693 * We do this using a special skb destructor (tcp_wfree).
694 *
695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696 * needs to be reallocated in a driver.
697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698 *
699 * Since transmit from skb destructor is forbidden, we use a tasklet
700 * to process all sockets that eventually need to send more skbs.
701 * We use one tasklet per cpu, with its own queue of sockets.
702 */
703 struct tsq_tasklet {
704 struct tasklet_struct tasklet;
705 struct list_head head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 if ((1 << sk->sk_state) &
712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 0, GFP_ATOMIC);
716 }
717 /*
718 * One tasklet per cpu tries to send more skbs.
719 * We run in tasklet context but need to disable irqs when
720 * transferring tsq->head because tcp_wfree() might
721 * interrupt us (non NAPI drivers)
722 */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 LIST_HEAD(list);
727 unsigned long flags;
728 struct list_head *q, *n;
729 struct tcp_sock *tp;
730 struct sock *sk;
731
732 local_irq_save(flags);
733 list_splice_init(&tsq->head, &list);
734 local_irq_restore(flags);
735
736 list_for_each_safe(q, n, &list) {
737 tp = list_entry(q, struct tcp_sock, tsq_node);
738 list_del(&tp->tsq_node);
739
740 sk = (struct sock *)tp;
741 bh_lock_sock(sk);
742
743 if (!sock_owned_by_user(sk)) {
744 tcp_tsq_handler(sk);
745 } else {
746 /* defer the work to tcp_release_cb() */
747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 }
749 bh_unlock_sock(sk);
750
751 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 sk_free(sk);
753 }
754 }
755
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
759 (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761 * tcp_release_cb - tcp release_sock() callback
762 * @sk: socket
763 *
764 * called from release_sock() to perform protocol dependent
765 * actions before socket release.
766 */
767 void tcp_release_cb(struct sock *sk)
768 {
769 struct tcp_sock *tp = tcp_sk(sk);
770 unsigned long flags, nflags;
771
772 /* perform an atomic operation only if at least one flag is set */
773 do {
774 flags = tp->tsq_flags;
775 if (!(flags & TCP_DEFERRED_ALL))
776 return;
777 nflags = flags & ~TCP_DEFERRED_ALL;
778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779
780 if (flags & (1UL << TCP_TSQ_DEFERRED))
781 tcp_tsq_handler(sk);
782
783 /* Here begins the tricky part :
784 * We are called from release_sock() with :
785 * 1) BH disabled
786 * 2) sk_lock.slock spinlock held
787 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 *
789 * But following code is meant to be called from BH handlers,
790 * so we should keep BH disabled, but early release socket ownership
791 */
792 sock_release_ownership(sk);
793
794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 tcp_write_timer_handler(sk);
796 __sock_put(sk);
797 }
798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 tcp_delack_timer_handler(sk);
800 __sock_put(sk);
801 }
802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 sk->sk_prot->mtu_reduced(sk);
804 __sock_put(sk);
805 }
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808
809 void __init tcp_tasklet_init(void)
810 {
811 int i;
812
813 for_each_possible_cpu(i) {
814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815
816 INIT_LIST_HEAD(&tsq->head);
817 tasklet_init(&tsq->tasklet,
818 tcp_tasklet_func,
819 (unsigned long)tsq);
820 }
821 }
822
823 /*
824 * Write buffer destructor automatically called from kfree_skb.
825 * We can't xmit new skbs from this context, as we might already
826 * hold qdisc lock.
827 */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 struct sock *sk = skb->sk;
831 struct tcp_sock *tp = tcp_sk(sk);
832
833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 unsigned long flags;
836 struct tsq_tasklet *tsq;
837
838 /* Keep a ref on socket.
839 * This last ref will be released in tcp_tasklet_func()
840 */
841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842
843 /* queue this socket to tasklet queue */
844 local_irq_save(flags);
845 tsq = &__get_cpu_var(tsq_tasklet);
846 list_add(&tp->tsq_node, &tsq->head);
847 tasklet_schedule(&tsq->tasklet);
848 local_irq_restore(flags);
849 } else {
850 sock_wfree(skb);
851 }
852 }
853
854 /* This routine actually transmits TCP packets queued in by
855 * tcp_do_sendmsg(). This is used by both the initial
856 * transmission and possible later retransmissions.
857 * All SKB's seen here are completely headerless. It is our
858 * job to build the TCP header, and pass the packet down to
859 * IP so it can do the same plus pass the packet off to the
860 * device.
861 *
862 * We are working here with either a clone of the original
863 * SKB, or a fresh unique copy made by the retransmit engine.
864 */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 gfp_t gfp_mask)
867 {
868 const struct inet_connection_sock *icsk = inet_csk(sk);
869 struct inet_sock *inet;
870 struct tcp_sock *tp;
871 struct tcp_skb_cb *tcb;
872 struct tcp_out_options opts;
873 unsigned int tcp_options_size, tcp_header_size;
874 struct tcp_md5sig_key *md5;
875 struct tcphdr *th;
876 int err;
877
878 BUG_ON(!skb || !tcp_skb_pcount(skb));
879
880 if (clone_it) {
881 skb_mstamp_get(&skb->skb_mstamp);
882
883 if (unlikely(skb_cloned(skb)))
884 skb = pskb_copy(skb, gfp_mask);
885 else
886 skb = skb_clone(skb, gfp_mask);
887 if (unlikely(!skb))
888 return -ENOBUFS;
889 /* Our usage of tstamp should remain private */
890 skb->tstamp.tv64 = 0;
891 }
892
893 inet = inet_sk(sk);
894 tp = tcp_sk(sk);
895 tcb = TCP_SKB_CB(skb);
896 memset(&opts, 0, sizeof(opts));
897
898 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
899 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
900 else
901 tcp_options_size = tcp_established_options(sk, skb, &opts,
902 &md5);
903 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
904
905 if (tcp_packets_in_flight(tp) == 0)
906 tcp_ca_event(sk, CA_EVENT_TX_START);
907
908 /* if no packet is in qdisc/device queue, then allow XPS to select
909 * another queue.
910 */
911 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
912
913 skb_push(skb, tcp_header_size);
914 skb_reset_transport_header(skb);
915
916 skb_orphan(skb);
917 skb->sk = sk;
918 skb->destructor = tcp_wfree;
919 skb_set_hash_from_sk(skb, sk);
920 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
921
922 /* Build TCP header and checksum it. */
923 th = tcp_hdr(skb);
924 th->source = inet->inet_sport;
925 th->dest = inet->inet_dport;
926 th->seq = htonl(tcb->seq);
927 th->ack_seq = htonl(tp->rcv_nxt);
928 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
929 tcb->tcp_flags);
930
931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
932 /* RFC1323: The window in SYN & SYN/ACK segments
933 * is never scaled.
934 */
935 th->window = htons(min(tp->rcv_wnd, 65535U));
936 } else {
937 th->window = htons(tcp_select_window(sk));
938 }
939 th->check = 0;
940 th->urg_ptr = 0;
941
942 /* The urg_mode check is necessary during a below snd_una win probe */
943 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
944 if (before(tp->snd_up, tcb->seq + 0x10000)) {
945 th->urg_ptr = htons(tp->snd_up - tcb->seq);
946 th->urg = 1;
947 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
948 th->urg_ptr = htons(0xFFFF);
949 th->urg = 1;
950 }
951 }
952
953 tcp_options_write((__be32 *)(th + 1), tp, &opts);
954 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
955 TCP_ECN_send(sk, skb, tcp_header_size);
956
957 #ifdef CONFIG_TCP_MD5SIG
958 /* Calculate the MD5 hash, as we have all we need now */
959 if (md5) {
960 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
961 tp->af_specific->calc_md5_hash(opts.hash_location,
962 md5, sk, NULL, skb);
963 }
964 #endif
965
966 icsk->icsk_af_ops->send_check(sk, skb);
967
968 if (likely(tcb->tcp_flags & TCPHDR_ACK))
969 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
970
971 if (skb->len != tcp_header_size)
972 tcp_event_data_sent(tp, sk);
973
974 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
975 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
976 tcp_skb_pcount(skb));
977
978 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
979 if (likely(err <= 0))
980 return err;
981
982 tcp_enter_cwr(sk);
983
984 return net_xmit_eval(err);
985 }
986
987 /* This routine just queues the buffer for sending.
988 *
989 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
990 * otherwise socket can stall.
991 */
992 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
993 {
994 struct tcp_sock *tp = tcp_sk(sk);
995
996 /* Advance write_seq and place onto the write_queue. */
997 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
998 skb_header_release(skb);
999 tcp_add_write_queue_tail(sk, skb);
1000 sk->sk_wmem_queued += skb->truesize;
1001 sk_mem_charge(sk, skb->truesize);
1002 }
1003
1004 /* Initialize TSO segments for a packet. */
1005 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1006 unsigned int mss_now)
1007 {
1008 struct skb_shared_info *shinfo = skb_shinfo(skb);
1009
1010 /* Make sure we own this skb before messing gso_size/gso_segs */
1011 WARN_ON_ONCE(skb_cloned(skb));
1012
1013 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1014 /* Avoid the costly divide in the normal
1015 * non-TSO case.
1016 */
1017 shinfo->gso_segs = 1;
1018 shinfo->gso_size = 0;
1019 shinfo->gso_type = 0;
1020 } else {
1021 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1022 shinfo->gso_size = mss_now;
1023 shinfo->gso_type = sk->sk_gso_type;
1024 }
1025 }
1026
1027 /* When a modification to fackets out becomes necessary, we need to check
1028 * skb is counted to fackets_out or not.
1029 */
1030 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1031 int decr)
1032 {
1033 struct tcp_sock *tp = tcp_sk(sk);
1034
1035 if (!tp->sacked_out || tcp_is_reno(tp))
1036 return;
1037
1038 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1039 tp->fackets_out -= decr;
1040 }
1041
1042 /* Pcount in the middle of the write queue got changed, we need to do various
1043 * tweaks to fix counters
1044 */
1045 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048
1049 tp->packets_out -= decr;
1050
1051 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1052 tp->sacked_out -= decr;
1053 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1054 tp->retrans_out -= decr;
1055 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1056 tp->lost_out -= decr;
1057
1058 /* Reno case is special. Sigh... */
1059 if (tcp_is_reno(tp) && decr > 0)
1060 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1061
1062 tcp_adjust_fackets_out(sk, skb, decr);
1063
1064 if (tp->lost_skb_hint &&
1065 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1066 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1067 tp->lost_cnt_hint -= decr;
1068
1069 tcp_verify_left_out(tp);
1070 }
1071
1072 /* Function to create two new TCP segments. Shrinks the given segment
1073 * to the specified size and appends a new segment with the rest of the
1074 * packet to the list. This won't be called frequently, I hope.
1075 * Remember, these are still headerless SKBs at this point.
1076 */
1077 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1078 unsigned int mss_now, gfp_t gfp)
1079 {
1080 struct tcp_sock *tp = tcp_sk(sk);
1081 struct sk_buff *buff;
1082 int nsize, old_factor;
1083 int nlen;
1084 u8 flags;
1085
1086 if (WARN_ON(len > skb->len))
1087 return -EINVAL;
1088
1089 nsize = skb_headlen(skb) - len;
1090 if (nsize < 0)
1091 nsize = 0;
1092
1093 if (skb_unclone(skb, gfp))
1094 return -ENOMEM;
1095
1096 /* Get a new skb... force flag on. */
1097 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1098 if (buff == NULL)
1099 return -ENOMEM; /* We'll just try again later. */
1100
1101 sk->sk_wmem_queued += buff->truesize;
1102 sk_mem_charge(sk, buff->truesize);
1103 nlen = skb->len - len - nsize;
1104 buff->truesize += nlen;
1105 skb->truesize -= nlen;
1106
1107 /* Correct the sequence numbers. */
1108 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1109 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1110 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1111
1112 /* PSH and FIN should only be set in the second packet. */
1113 flags = TCP_SKB_CB(skb)->tcp_flags;
1114 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1115 TCP_SKB_CB(buff)->tcp_flags = flags;
1116 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1117
1118 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1119 /* Copy and checksum data tail into the new buffer. */
1120 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1121 skb_put(buff, nsize),
1122 nsize, 0);
1123
1124 skb_trim(skb, len);
1125
1126 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1127 } else {
1128 skb->ip_summed = CHECKSUM_PARTIAL;
1129 skb_split(skb, buff, len);
1130 }
1131
1132 buff->ip_summed = skb->ip_summed;
1133
1134 /* Looks stupid, but our code really uses when of
1135 * skbs, which it never sent before. --ANK
1136 */
1137 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1138 buff->tstamp = skb->tstamp;
1139
1140 old_factor = tcp_skb_pcount(skb);
1141
1142 /* Fix up tso_factor for both original and new SKB. */
1143 tcp_set_skb_tso_segs(sk, skb, mss_now);
1144 tcp_set_skb_tso_segs(sk, buff, mss_now);
1145
1146 /* If this packet has been sent out already, we must
1147 * adjust the various packet counters.
1148 */
1149 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1150 int diff = old_factor - tcp_skb_pcount(skb) -
1151 tcp_skb_pcount(buff);
1152
1153 if (diff)
1154 tcp_adjust_pcount(sk, skb, diff);
1155 }
1156
1157 /* Link BUFF into the send queue. */
1158 skb_header_release(buff);
1159 tcp_insert_write_queue_after(skb, buff, sk);
1160
1161 return 0;
1162 }
1163
1164 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1165 * eventually). The difference is that pulled data not copied, but
1166 * immediately discarded.
1167 */
1168 static void __pskb_trim_head(struct sk_buff *skb, int len)
1169 {
1170 struct skb_shared_info *shinfo;
1171 int i, k, eat;
1172
1173 eat = min_t(int, len, skb_headlen(skb));
1174 if (eat) {
1175 __skb_pull(skb, eat);
1176 len -= eat;
1177 if (!len)
1178 return;
1179 }
1180 eat = len;
1181 k = 0;
1182 shinfo = skb_shinfo(skb);
1183 for (i = 0; i < shinfo->nr_frags; i++) {
1184 int size = skb_frag_size(&shinfo->frags[i]);
1185
1186 if (size <= eat) {
1187 skb_frag_unref(skb, i);
1188 eat -= size;
1189 } else {
1190 shinfo->frags[k] = shinfo->frags[i];
1191 if (eat) {
1192 shinfo->frags[k].page_offset += eat;
1193 skb_frag_size_sub(&shinfo->frags[k], eat);
1194 eat = 0;
1195 }
1196 k++;
1197 }
1198 }
1199 shinfo->nr_frags = k;
1200
1201 skb_reset_tail_pointer(skb);
1202 skb->data_len -= len;
1203 skb->len = skb->data_len;
1204 }
1205
1206 /* Remove acked data from a packet in the transmit queue. */
1207 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1208 {
1209 if (skb_unclone(skb, GFP_ATOMIC))
1210 return -ENOMEM;
1211
1212 __pskb_trim_head(skb, len);
1213
1214 TCP_SKB_CB(skb)->seq += len;
1215 skb->ip_summed = CHECKSUM_PARTIAL;
1216
1217 skb->truesize -= len;
1218 sk->sk_wmem_queued -= len;
1219 sk_mem_uncharge(sk, len);
1220 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1221
1222 /* Any change of skb->len requires recalculation of tso factor. */
1223 if (tcp_skb_pcount(skb) > 1)
1224 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1225
1226 return 0;
1227 }
1228
1229 /* Calculate MSS not accounting any TCP options. */
1230 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1231 {
1232 const struct tcp_sock *tp = tcp_sk(sk);
1233 const struct inet_connection_sock *icsk = inet_csk(sk);
1234 int mss_now;
1235
1236 /* Calculate base mss without TCP options:
1237 It is MMS_S - sizeof(tcphdr) of rfc1122
1238 */
1239 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1240
1241 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1242 if (icsk->icsk_af_ops->net_frag_header_len) {
1243 const struct dst_entry *dst = __sk_dst_get(sk);
1244
1245 if (dst && dst_allfrag(dst))
1246 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1247 }
1248
1249 /* Clamp it (mss_clamp does not include tcp options) */
1250 if (mss_now > tp->rx_opt.mss_clamp)
1251 mss_now = tp->rx_opt.mss_clamp;
1252
1253 /* Now subtract optional transport overhead */
1254 mss_now -= icsk->icsk_ext_hdr_len;
1255
1256 /* Then reserve room for full set of TCP options and 8 bytes of data */
1257 if (mss_now < 48)
1258 mss_now = 48;
1259 return mss_now;
1260 }
1261
1262 /* Calculate MSS. Not accounting for SACKs here. */
1263 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1264 {
1265 /* Subtract TCP options size, not including SACKs */
1266 return __tcp_mtu_to_mss(sk, pmtu) -
1267 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1268 }
1269
1270 /* Inverse of above */
1271 int tcp_mss_to_mtu(struct sock *sk, int mss)
1272 {
1273 const struct tcp_sock *tp = tcp_sk(sk);
1274 const struct inet_connection_sock *icsk = inet_csk(sk);
1275 int mtu;
1276
1277 mtu = mss +
1278 tp->tcp_header_len +
1279 icsk->icsk_ext_hdr_len +
1280 icsk->icsk_af_ops->net_header_len;
1281
1282 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1283 if (icsk->icsk_af_ops->net_frag_header_len) {
1284 const struct dst_entry *dst = __sk_dst_get(sk);
1285
1286 if (dst && dst_allfrag(dst))
1287 mtu += icsk->icsk_af_ops->net_frag_header_len;
1288 }
1289 return mtu;
1290 }
1291
1292 /* MTU probing init per socket */
1293 void tcp_mtup_init(struct sock *sk)
1294 {
1295 struct tcp_sock *tp = tcp_sk(sk);
1296 struct inet_connection_sock *icsk = inet_csk(sk);
1297
1298 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1299 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1300 icsk->icsk_af_ops->net_header_len;
1301 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1302 icsk->icsk_mtup.probe_size = 0;
1303 }
1304 EXPORT_SYMBOL(tcp_mtup_init);
1305
1306 /* This function synchronize snd mss to current pmtu/exthdr set.
1307
1308 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1309 for TCP options, but includes only bare TCP header.
1310
1311 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1312 It is minimum of user_mss and mss received with SYN.
1313 It also does not include TCP options.
1314
1315 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1316
1317 tp->mss_cache is current effective sending mss, including
1318 all tcp options except for SACKs. It is evaluated,
1319 taking into account current pmtu, but never exceeds
1320 tp->rx_opt.mss_clamp.
1321
1322 NOTE1. rfc1122 clearly states that advertised MSS
1323 DOES NOT include either tcp or ip options.
1324
1325 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1326 are READ ONLY outside this function. --ANK (980731)
1327 */
1328 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1329 {
1330 struct tcp_sock *tp = tcp_sk(sk);
1331 struct inet_connection_sock *icsk = inet_csk(sk);
1332 int mss_now;
1333
1334 if (icsk->icsk_mtup.search_high > pmtu)
1335 icsk->icsk_mtup.search_high = pmtu;
1336
1337 mss_now = tcp_mtu_to_mss(sk, pmtu);
1338 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1339
1340 /* And store cached results */
1341 icsk->icsk_pmtu_cookie = pmtu;
1342 if (icsk->icsk_mtup.enabled)
1343 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1344 tp->mss_cache = mss_now;
1345
1346 return mss_now;
1347 }
1348 EXPORT_SYMBOL(tcp_sync_mss);
1349
1350 /* Compute the current effective MSS, taking SACKs and IP options,
1351 * and even PMTU discovery events into account.
1352 */
1353 unsigned int tcp_current_mss(struct sock *sk)
1354 {
1355 const struct tcp_sock *tp = tcp_sk(sk);
1356 const struct dst_entry *dst = __sk_dst_get(sk);
1357 u32 mss_now;
1358 unsigned int header_len;
1359 struct tcp_out_options opts;
1360 struct tcp_md5sig_key *md5;
1361
1362 mss_now = tp->mss_cache;
1363
1364 if (dst) {
1365 u32 mtu = dst_mtu(dst);
1366 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1367 mss_now = tcp_sync_mss(sk, mtu);
1368 }
1369
1370 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1371 sizeof(struct tcphdr);
1372 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1373 * some common options. If this is an odd packet (because we have SACK
1374 * blocks etc) then our calculated header_len will be different, and
1375 * we have to adjust mss_now correspondingly */
1376 if (header_len != tp->tcp_header_len) {
1377 int delta = (int) header_len - tp->tcp_header_len;
1378 mss_now -= delta;
1379 }
1380
1381 return mss_now;
1382 }
1383
1384 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1385 * As additional protections, we do not touch cwnd in retransmission phases,
1386 * and if application hit its sndbuf limit recently.
1387 */
1388 static void tcp_cwnd_application_limited(struct sock *sk)
1389 {
1390 struct tcp_sock *tp = tcp_sk(sk);
1391
1392 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1393 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1394 /* Limited by application or receiver window. */
1395 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1396 u32 win_used = max(tp->snd_cwnd_used, init_win);
1397 if (win_used < tp->snd_cwnd) {
1398 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1399 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1400 }
1401 tp->snd_cwnd_used = 0;
1402 }
1403 tp->snd_cwnd_stamp = tcp_time_stamp;
1404 }
1405
1406 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1407 {
1408 struct tcp_sock *tp = tcp_sk(sk);
1409
1410 /* Track the maximum number of outstanding packets in each
1411 * window, and remember whether we were cwnd-limited then.
1412 */
1413 if (!before(tp->snd_una, tp->max_packets_seq) ||
1414 tp->packets_out > tp->max_packets_out) {
1415 tp->max_packets_out = tp->packets_out;
1416 tp->max_packets_seq = tp->snd_nxt;
1417 tp->is_cwnd_limited = is_cwnd_limited;
1418 }
1419
1420 if (tcp_is_cwnd_limited(sk)) {
1421 /* Network is feed fully. */
1422 tp->snd_cwnd_used = 0;
1423 tp->snd_cwnd_stamp = tcp_time_stamp;
1424 } else {
1425 /* Network starves. */
1426 if (tp->packets_out > tp->snd_cwnd_used)
1427 tp->snd_cwnd_used = tp->packets_out;
1428
1429 if (sysctl_tcp_slow_start_after_idle &&
1430 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1431 tcp_cwnd_application_limited(sk);
1432 }
1433 }
1434
1435 /* Minshall's variant of the Nagle send check. */
1436 static bool tcp_minshall_check(const struct tcp_sock *tp)
1437 {
1438 return after(tp->snd_sml, tp->snd_una) &&
1439 !after(tp->snd_sml, tp->snd_nxt);
1440 }
1441
1442 /* Update snd_sml if this skb is under mss
1443 * Note that a TSO packet might end with a sub-mss segment
1444 * The test is really :
1445 * if ((skb->len % mss) != 0)
1446 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1447 * But we can avoid doing the divide again given we already have
1448 * skb_pcount = skb->len / mss_now
1449 */
1450 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1451 const struct sk_buff *skb)
1452 {
1453 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1454 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1455 }
1456
1457 /* Return false, if packet can be sent now without violation Nagle's rules:
1458 * 1. It is full sized. (provided by caller in %partial bool)
1459 * 2. Or it contains FIN. (already checked by caller)
1460 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1461 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1462 * With Minshall's modification: all sent small packets are ACKed.
1463 */
1464 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1465 int nonagle)
1466 {
1467 return partial &&
1468 ((nonagle & TCP_NAGLE_CORK) ||
1469 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1470 }
1471 /* Returns the portion of skb which can be sent right away */
1472 static unsigned int tcp_mss_split_point(const struct sock *sk,
1473 const struct sk_buff *skb,
1474 unsigned int mss_now,
1475 unsigned int max_segs,
1476 int nonagle)
1477 {
1478 const struct tcp_sock *tp = tcp_sk(sk);
1479 u32 partial, needed, window, max_len;
1480
1481 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1482 max_len = mss_now * max_segs;
1483
1484 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1485 return max_len;
1486
1487 needed = min(skb->len, window);
1488
1489 if (max_len <= needed)
1490 return max_len;
1491
1492 partial = needed % mss_now;
1493 /* If last segment is not a full MSS, check if Nagle rules allow us
1494 * to include this last segment in this skb.
1495 * Otherwise, we'll split the skb at last MSS boundary
1496 */
1497 if (tcp_nagle_check(partial != 0, tp, nonagle))
1498 return needed - partial;
1499
1500 return needed;
1501 }
1502
1503 /* Can at least one segment of SKB be sent right now, according to the
1504 * congestion window rules? If so, return how many segments are allowed.
1505 */
1506 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1507 const struct sk_buff *skb)
1508 {
1509 u32 in_flight, cwnd;
1510
1511 /* Don't be strict about the congestion window for the final FIN. */
1512 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1513 tcp_skb_pcount(skb) == 1)
1514 return 1;
1515
1516 in_flight = tcp_packets_in_flight(tp);
1517 cwnd = tp->snd_cwnd;
1518 if (in_flight < cwnd)
1519 return (cwnd - in_flight);
1520
1521 return 0;
1522 }
1523
1524 /* Initialize TSO state of a skb.
1525 * This must be invoked the first time we consider transmitting
1526 * SKB onto the wire.
1527 */
1528 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1529 unsigned int mss_now)
1530 {
1531 int tso_segs = tcp_skb_pcount(skb);
1532
1533 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1534 tcp_set_skb_tso_segs(sk, skb, mss_now);
1535 tso_segs = tcp_skb_pcount(skb);
1536 }
1537 return tso_segs;
1538 }
1539
1540
1541 /* Return true if the Nagle test allows this packet to be
1542 * sent now.
1543 */
1544 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1545 unsigned int cur_mss, int nonagle)
1546 {
1547 /* Nagle rule does not apply to frames, which sit in the middle of the
1548 * write_queue (they have no chances to get new data).
1549 *
1550 * This is implemented in the callers, where they modify the 'nonagle'
1551 * argument based upon the location of SKB in the send queue.
1552 */
1553 if (nonagle & TCP_NAGLE_PUSH)
1554 return true;
1555
1556 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1557 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1558 return true;
1559
1560 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1561 return true;
1562
1563 return false;
1564 }
1565
1566 /* Does at least the first segment of SKB fit into the send window? */
1567 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1568 const struct sk_buff *skb,
1569 unsigned int cur_mss)
1570 {
1571 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1572
1573 if (skb->len > cur_mss)
1574 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1575
1576 return !after(end_seq, tcp_wnd_end(tp));
1577 }
1578
1579 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1580 * should be put on the wire right now. If so, it returns the number of
1581 * packets allowed by the congestion window.
1582 */
1583 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1584 unsigned int cur_mss, int nonagle)
1585 {
1586 const struct tcp_sock *tp = tcp_sk(sk);
1587 unsigned int cwnd_quota;
1588
1589 tcp_init_tso_segs(sk, skb, cur_mss);
1590
1591 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1592 return 0;
1593
1594 cwnd_quota = tcp_cwnd_test(tp, skb);
1595 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1596 cwnd_quota = 0;
1597
1598 return cwnd_quota;
1599 }
1600
1601 /* Test if sending is allowed right now. */
1602 bool tcp_may_send_now(struct sock *sk)
1603 {
1604 const struct tcp_sock *tp = tcp_sk(sk);
1605 struct sk_buff *skb = tcp_send_head(sk);
1606
1607 return skb &&
1608 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1609 (tcp_skb_is_last(sk, skb) ?
1610 tp->nonagle : TCP_NAGLE_PUSH));
1611 }
1612
1613 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1614 * which is put after SKB on the list. It is very much like
1615 * tcp_fragment() except that it may make several kinds of assumptions
1616 * in order to speed up the splitting operation. In particular, we
1617 * know that all the data is in scatter-gather pages, and that the
1618 * packet has never been sent out before (and thus is not cloned).
1619 */
1620 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1621 unsigned int mss_now, gfp_t gfp)
1622 {
1623 struct sk_buff *buff;
1624 int nlen = skb->len - len;
1625 u8 flags;
1626
1627 /* All of a TSO frame must be composed of paged data. */
1628 if (skb->len != skb->data_len)
1629 return tcp_fragment(sk, skb, len, mss_now, gfp);
1630
1631 buff = sk_stream_alloc_skb(sk, 0, gfp);
1632 if (unlikely(buff == NULL))
1633 return -ENOMEM;
1634
1635 sk->sk_wmem_queued += buff->truesize;
1636 sk_mem_charge(sk, buff->truesize);
1637 buff->truesize += nlen;
1638 skb->truesize -= nlen;
1639
1640 /* Correct the sequence numbers. */
1641 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1642 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1643 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1644
1645 /* PSH and FIN should only be set in the second packet. */
1646 flags = TCP_SKB_CB(skb)->tcp_flags;
1647 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1648 TCP_SKB_CB(buff)->tcp_flags = flags;
1649
1650 /* This packet was never sent out yet, so no SACK bits. */
1651 TCP_SKB_CB(buff)->sacked = 0;
1652
1653 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1654 skb_split(skb, buff, len);
1655
1656 /* Fix up tso_factor for both original and new SKB. */
1657 tcp_set_skb_tso_segs(sk, skb, mss_now);
1658 tcp_set_skb_tso_segs(sk, buff, mss_now);
1659
1660 /* Link BUFF into the send queue. */
1661 skb_header_release(buff);
1662 tcp_insert_write_queue_after(skb, buff, sk);
1663
1664 return 0;
1665 }
1666
1667 /* Try to defer sending, if possible, in order to minimize the amount
1668 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1669 *
1670 * This algorithm is from John Heffner.
1671 */
1672 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1673 bool *is_cwnd_limited)
1674 {
1675 struct tcp_sock *tp = tcp_sk(sk);
1676 const struct inet_connection_sock *icsk = inet_csk(sk);
1677 u32 send_win, cong_win, limit, in_flight;
1678 int win_divisor;
1679
1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1681 goto send_now;
1682
1683 if (icsk->icsk_ca_state != TCP_CA_Open)
1684 goto send_now;
1685
1686 /* Defer for less than two clock ticks. */
1687 if (tp->tso_deferred &&
1688 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1689 goto send_now;
1690
1691 in_flight = tcp_packets_in_flight(tp);
1692
1693 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1694
1695 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1696
1697 /* From in_flight test above, we know that cwnd > in_flight. */
1698 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1699
1700 limit = min(send_win, cong_win);
1701
1702 /* If a full-sized TSO skb can be sent, do it. */
1703 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1704 tp->xmit_size_goal_segs * tp->mss_cache))
1705 goto send_now;
1706
1707 /* Middle in queue won't get any more data, full sendable already? */
1708 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1709 goto send_now;
1710
1711 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1712 if (win_divisor) {
1713 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1714
1715 /* If at least some fraction of a window is available,
1716 * just use it.
1717 */
1718 chunk /= win_divisor;
1719 if (limit >= chunk)
1720 goto send_now;
1721 } else {
1722 /* Different approach, try not to defer past a single
1723 * ACK. Receiver should ACK every other full sized
1724 * frame, so if we have space for more than 3 frames
1725 * then send now.
1726 */
1727 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1728 goto send_now;
1729 }
1730
1731 /* Ok, it looks like it is advisable to defer.
1732 * Do not rearm the timer if already set to not break TCP ACK clocking.
1733 */
1734 if (!tp->tso_deferred)
1735 tp->tso_deferred = 1 | (jiffies << 1);
1736
1737 if (cong_win < send_win && cong_win < skb->len)
1738 *is_cwnd_limited = true;
1739
1740 return true;
1741
1742 send_now:
1743 tp->tso_deferred = 0;
1744 return false;
1745 }
1746
1747 /* Create a new MTU probe if we are ready.
1748 * MTU probe is regularly attempting to increase the path MTU by
1749 * deliberately sending larger packets. This discovers routing
1750 * changes resulting in larger path MTUs.
1751 *
1752 * Returns 0 if we should wait to probe (no cwnd available),
1753 * 1 if a probe was sent,
1754 * -1 otherwise
1755 */
1756 static int tcp_mtu_probe(struct sock *sk)
1757 {
1758 struct tcp_sock *tp = tcp_sk(sk);
1759 struct inet_connection_sock *icsk = inet_csk(sk);
1760 struct sk_buff *skb, *nskb, *next;
1761 int len;
1762 int probe_size;
1763 int size_needed;
1764 int copy;
1765 int mss_now;
1766
1767 /* Not currently probing/verifying,
1768 * not in recovery,
1769 * have enough cwnd, and
1770 * not SACKing (the variable headers throw things off) */
1771 if (!icsk->icsk_mtup.enabled ||
1772 icsk->icsk_mtup.probe_size ||
1773 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1774 tp->snd_cwnd < 11 ||
1775 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1776 return -1;
1777
1778 /* Very simple search strategy: just double the MSS. */
1779 mss_now = tcp_current_mss(sk);
1780 probe_size = 2 * tp->mss_cache;
1781 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1782 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1783 /* TODO: set timer for probe_converge_event */
1784 return -1;
1785 }
1786
1787 /* Have enough data in the send queue to probe? */
1788 if (tp->write_seq - tp->snd_nxt < size_needed)
1789 return -1;
1790
1791 if (tp->snd_wnd < size_needed)
1792 return -1;
1793 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1794 return 0;
1795
1796 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1797 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1798 if (!tcp_packets_in_flight(tp))
1799 return -1;
1800 else
1801 return 0;
1802 }
1803
1804 /* We're allowed to probe. Build it now. */
1805 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1806 return -1;
1807 sk->sk_wmem_queued += nskb->truesize;
1808 sk_mem_charge(sk, nskb->truesize);
1809
1810 skb = tcp_send_head(sk);
1811
1812 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1813 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1814 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1815 TCP_SKB_CB(nskb)->sacked = 0;
1816 nskb->csum = 0;
1817 nskb->ip_summed = skb->ip_summed;
1818
1819 tcp_insert_write_queue_before(nskb, skb, sk);
1820
1821 len = 0;
1822 tcp_for_write_queue_from_safe(skb, next, sk) {
1823 copy = min_t(int, skb->len, probe_size - len);
1824 if (nskb->ip_summed)
1825 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1826 else
1827 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1828 skb_put(nskb, copy),
1829 copy, nskb->csum);
1830
1831 if (skb->len <= copy) {
1832 /* We've eaten all the data from this skb.
1833 * Throw it away. */
1834 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1835 tcp_unlink_write_queue(skb, sk);
1836 sk_wmem_free_skb(sk, skb);
1837 } else {
1838 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1839 ~(TCPHDR_FIN|TCPHDR_PSH);
1840 if (!skb_shinfo(skb)->nr_frags) {
1841 skb_pull(skb, copy);
1842 if (skb->ip_summed != CHECKSUM_PARTIAL)
1843 skb->csum = csum_partial(skb->data,
1844 skb->len, 0);
1845 } else {
1846 __pskb_trim_head(skb, copy);
1847 tcp_set_skb_tso_segs(sk, skb, mss_now);
1848 }
1849 TCP_SKB_CB(skb)->seq += copy;
1850 }
1851
1852 len += copy;
1853
1854 if (len >= probe_size)
1855 break;
1856 }
1857 tcp_init_tso_segs(sk, nskb, nskb->len);
1858
1859 /* We're ready to send. If this fails, the probe will
1860 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1861 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1862 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1863 /* Decrement cwnd here because we are sending
1864 * effectively two packets. */
1865 tp->snd_cwnd--;
1866 tcp_event_new_data_sent(sk, nskb);
1867
1868 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1869 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1870 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1871
1872 return 1;
1873 }
1874
1875 return -1;
1876 }
1877
1878 /* This routine writes packets to the network. It advances the
1879 * send_head. This happens as incoming acks open up the remote
1880 * window for us.
1881 *
1882 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1883 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1884 * account rare use of URG, this is not a big flaw.
1885 *
1886 * Send at most one packet when push_one > 0. Temporarily ignore
1887 * cwnd limit to force at most one packet out when push_one == 2.
1888
1889 * Returns true, if no segments are in flight and we have queued segments,
1890 * but cannot send anything now because of SWS or another problem.
1891 */
1892 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1893 int push_one, gfp_t gfp)
1894 {
1895 struct tcp_sock *tp = tcp_sk(sk);
1896 struct sk_buff *skb;
1897 unsigned int tso_segs, sent_pkts;
1898 int cwnd_quota;
1899 int result;
1900 bool is_cwnd_limited = false;
1901
1902 sent_pkts = 0;
1903
1904 if (!push_one) {
1905 /* Do MTU probing. */
1906 result = tcp_mtu_probe(sk);
1907 if (!result) {
1908 return false;
1909 } else if (result > 0) {
1910 sent_pkts = 1;
1911 }
1912 }
1913
1914 while ((skb = tcp_send_head(sk))) {
1915 unsigned int limit;
1916
1917 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1918 BUG_ON(!tso_segs);
1919
1920 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1921 goto repair; /* Skip network transmission */
1922
1923 cwnd_quota = tcp_cwnd_test(tp, skb);
1924 if (!cwnd_quota) {
1925 is_cwnd_limited = true;
1926 if (push_one == 2)
1927 /* Force out a loss probe pkt. */
1928 cwnd_quota = 1;
1929 else
1930 break;
1931 }
1932
1933 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1934 break;
1935
1936 if (tso_segs == 1) {
1937 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1938 (tcp_skb_is_last(sk, skb) ?
1939 nonagle : TCP_NAGLE_PUSH))))
1940 break;
1941 } else {
1942 if (!push_one &&
1943 tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
1944 break;
1945 }
1946
1947 /* TCP Small Queues :
1948 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1949 * This allows for :
1950 * - better RTT estimation and ACK scheduling
1951 * - faster recovery
1952 * - high rates
1953 * Alas, some drivers / subsystems require a fair amount
1954 * of queued bytes to ensure line rate.
1955 * One example is wifi aggregation (802.11 AMPDU)
1956 */
1957 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1958 sk->sk_pacing_rate >> 10);
1959
1960 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1961 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1962 /* It is possible TX completion already happened
1963 * before we set TSQ_THROTTLED, so we must
1964 * test again the condition.
1965 */
1966 smp_mb__after_atomic();
1967 if (atomic_read(&sk->sk_wmem_alloc) > limit)
1968 break;
1969 }
1970
1971 limit = mss_now;
1972 if (tso_segs > 1 && !tcp_urg_mode(tp))
1973 limit = tcp_mss_split_point(sk, skb, mss_now,
1974 min_t(unsigned int,
1975 cwnd_quota,
1976 sk->sk_gso_max_segs),
1977 nonagle);
1978
1979 if (skb->len > limit &&
1980 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1981 break;
1982
1983 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1984
1985 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1986 break;
1987
1988 repair:
1989 /* Advance the send_head. This one is sent out.
1990 * This call will increment packets_out.
1991 */
1992 tcp_event_new_data_sent(sk, skb);
1993
1994 tcp_minshall_update(tp, mss_now, skb);
1995 sent_pkts += tcp_skb_pcount(skb);
1996
1997 if (push_one)
1998 break;
1999 }
2000
2001 if (likely(sent_pkts)) {
2002 if (tcp_in_cwnd_reduction(sk))
2003 tp->prr_out += sent_pkts;
2004
2005 /* Send one loss probe per tail loss episode. */
2006 if (push_one != 2)
2007 tcp_schedule_loss_probe(sk);
2008 tcp_cwnd_validate(sk, is_cwnd_limited);
2009 return false;
2010 }
2011 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2012 }
2013
2014 bool tcp_schedule_loss_probe(struct sock *sk)
2015 {
2016 struct inet_connection_sock *icsk = inet_csk(sk);
2017 struct tcp_sock *tp = tcp_sk(sk);
2018 u32 timeout, tlp_time_stamp, rto_time_stamp;
2019 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2020
2021 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2022 return false;
2023 /* No consecutive loss probes. */
2024 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2025 tcp_rearm_rto(sk);
2026 return false;
2027 }
2028 /* Don't do any loss probe on a Fast Open connection before 3WHS
2029 * finishes.
2030 */
2031 if (sk->sk_state == TCP_SYN_RECV)
2032 return false;
2033
2034 /* TLP is only scheduled when next timer event is RTO. */
2035 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2036 return false;
2037
2038 /* Schedule a loss probe in 2*RTT for SACK capable connections
2039 * in Open state, that are either limited by cwnd or application.
2040 */
2041 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2042 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2043 return false;
2044
2045 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2046 tcp_send_head(sk))
2047 return false;
2048
2049 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2050 * for delayed ack when there's one outstanding packet.
2051 */
2052 timeout = rtt << 1;
2053 if (tp->packets_out == 1)
2054 timeout = max_t(u32, timeout,
2055 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2056 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2057
2058 /* If RTO is shorter, just schedule TLP in its place. */
2059 tlp_time_stamp = tcp_time_stamp + timeout;
2060 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2061 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2062 s32 delta = rto_time_stamp - tcp_time_stamp;
2063 if (delta > 0)
2064 timeout = delta;
2065 }
2066
2067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2068 TCP_RTO_MAX);
2069 return true;
2070 }
2071
2072 /* Thanks to skb fast clones, we can detect if a prior transmit of
2073 * a packet is still in a qdisc or driver queue.
2074 * In this case, there is very little point doing a retransmit !
2075 * Note: This is called from BH context only.
2076 */
2077 static bool skb_still_in_host_queue(const struct sock *sk,
2078 const struct sk_buff *skb)
2079 {
2080 const struct sk_buff *fclone = skb + 1;
2081
2082 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
2083 fclone->fclone == SKB_FCLONE_CLONE)) {
2084 NET_INC_STATS_BH(sock_net(sk),
2085 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2086 return true;
2087 }
2088 return false;
2089 }
2090
2091 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2092 * retransmit the last segment.
2093 */
2094 void tcp_send_loss_probe(struct sock *sk)
2095 {
2096 struct tcp_sock *tp = tcp_sk(sk);
2097 struct sk_buff *skb;
2098 int pcount;
2099 int mss = tcp_current_mss(sk);
2100 int err = -1;
2101
2102 if (tcp_send_head(sk) != NULL) {
2103 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2104 goto rearm_timer;
2105 }
2106
2107 /* At most one outstanding TLP retransmission. */
2108 if (tp->tlp_high_seq)
2109 goto rearm_timer;
2110
2111 /* Retransmit last segment. */
2112 skb = tcp_write_queue_tail(sk);
2113 if (WARN_ON(!skb))
2114 goto rearm_timer;
2115
2116 if (skb_still_in_host_queue(sk, skb))
2117 goto rearm_timer;
2118
2119 pcount = tcp_skb_pcount(skb);
2120 if (WARN_ON(!pcount))
2121 goto rearm_timer;
2122
2123 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2124 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2125 GFP_ATOMIC)))
2126 goto rearm_timer;
2127 skb = tcp_write_queue_tail(sk);
2128 }
2129
2130 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2131 goto rearm_timer;
2132
2133 err = __tcp_retransmit_skb(sk, skb);
2134
2135 /* Record snd_nxt for loss detection. */
2136 if (likely(!err))
2137 tp->tlp_high_seq = tp->snd_nxt;
2138
2139 rearm_timer:
2140 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2141 inet_csk(sk)->icsk_rto,
2142 TCP_RTO_MAX);
2143
2144 if (likely(!err))
2145 NET_INC_STATS_BH(sock_net(sk),
2146 LINUX_MIB_TCPLOSSPROBES);
2147 }
2148
2149 /* Push out any pending frames which were held back due to
2150 * TCP_CORK or attempt at coalescing tiny packets.
2151 * The socket must be locked by the caller.
2152 */
2153 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2154 int nonagle)
2155 {
2156 /* If we are closed, the bytes will have to remain here.
2157 * In time closedown will finish, we empty the write queue and
2158 * all will be happy.
2159 */
2160 if (unlikely(sk->sk_state == TCP_CLOSE))
2161 return;
2162
2163 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2164 sk_gfp_atomic(sk, GFP_ATOMIC)))
2165 tcp_check_probe_timer(sk);
2166 }
2167
2168 /* Send _single_ skb sitting at the send head. This function requires
2169 * true push pending frames to setup probe timer etc.
2170 */
2171 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2172 {
2173 struct sk_buff *skb = tcp_send_head(sk);
2174
2175 BUG_ON(!skb || skb->len < mss_now);
2176
2177 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2178 }
2179
2180 /* This function returns the amount that we can raise the
2181 * usable window based on the following constraints
2182 *
2183 * 1. The window can never be shrunk once it is offered (RFC 793)
2184 * 2. We limit memory per socket
2185 *
2186 * RFC 1122:
2187 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2188 * RECV.NEXT + RCV.WIN fixed until:
2189 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2190 *
2191 * i.e. don't raise the right edge of the window until you can raise
2192 * it at least MSS bytes.
2193 *
2194 * Unfortunately, the recommended algorithm breaks header prediction,
2195 * since header prediction assumes th->window stays fixed.
2196 *
2197 * Strictly speaking, keeping th->window fixed violates the receiver
2198 * side SWS prevention criteria. The problem is that under this rule
2199 * a stream of single byte packets will cause the right side of the
2200 * window to always advance by a single byte.
2201 *
2202 * Of course, if the sender implements sender side SWS prevention
2203 * then this will not be a problem.
2204 *
2205 * BSD seems to make the following compromise:
2206 *
2207 * If the free space is less than the 1/4 of the maximum
2208 * space available and the free space is less than 1/2 mss,
2209 * then set the window to 0.
2210 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2211 * Otherwise, just prevent the window from shrinking
2212 * and from being larger than the largest representable value.
2213 *
2214 * This prevents incremental opening of the window in the regime
2215 * where TCP is limited by the speed of the reader side taking
2216 * data out of the TCP receive queue. It does nothing about
2217 * those cases where the window is constrained on the sender side
2218 * because the pipeline is full.
2219 *
2220 * BSD also seems to "accidentally" limit itself to windows that are a
2221 * multiple of MSS, at least until the free space gets quite small.
2222 * This would appear to be a side effect of the mbuf implementation.
2223 * Combining these two algorithms results in the observed behavior
2224 * of having a fixed window size at almost all times.
2225 *
2226 * Below we obtain similar behavior by forcing the offered window to
2227 * a multiple of the mss when it is feasible to do so.
2228 *
2229 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2230 * Regular options like TIMESTAMP are taken into account.
2231 */
2232 u32 __tcp_select_window(struct sock *sk)
2233 {
2234 struct inet_connection_sock *icsk = inet_csk(sk);
2235 struct tcp_sock *tp = tcp_sk(sk);
2236 /* MSS for the peer's data. Previous versions used mss_clamp
2237 * here. I don't know if the value based on our guesses
2238 * of peer's MSS is better for the performance. It's more correct
2239 * but may be worse for the performance because of rcv_mss
2240 * fluctuations. --SAW 1998/11/1
2241 */
2242 int mss = icsk->icsk_ack.rcv_mss;
2243 int free_space = tcp_space(sk);
2244 int allowed_space = tcp_full_space(sk);
2245 int full_space = min_t(int, tp->window_clamp, allowed_space);
2246 int window;
2247
2248 if (mss > full_space)
2249 mss = full_space;
2250
2251 if (free_space < (full_space >> 1)) {
2252 icsk->icsk_ack.quick = 0;
2253
2254 if (sk_under_memory_pressure(sk))
2255 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2256 4U * tp->advmss);
2257
2258 /* free_space might become our new window, make sure we don't
2259 * increase it due to wscale.
2260 */
2261 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2262
2263 /* if free space is less than mss estimate, or is below 1/16th
2264 * of the maximum allowed, try to move to zero-window, else
2265 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2266 * new incoming data is dropped due to memory limits.
2267 * With large window, mss test triggers way too late in order
2268 * to announce zero window in time before rmem limit kicks in.
2269 */
2270 if (free_space < (allowed_space >> 4) || free_space < mss)
2271 return 0;
2272 }
2273
2274 if (free_space > tp->rcv_ssthresh)
2275 free_space = tp->rcv_ssthresh;
2276
2277 /* Don't do rounding if we are using window scaling, since the
2278 * scaled window will not line up with the MSS boundary anyway.
2279 */
2280 window = tp->rcv_wnd;
2281 if (tp->rx_opt.rcv_wscale) {
2282 window = free_space;
2283
2284 /* Advertise enough space so that it won't get scaled away.
2285 * Import case: prevent zero window announcement if
2286 * 1<<rcv_wscale > mss.
2287 */
2288 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2289 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2290 << tp->rx_opt.rcv_wscale);
2291 } else {
2292 /* Get the largest window that is a nice multiple of mss.
2293 * Window clamp already applied above.
2294 * If our current window offering is within 1 mss of the
2295 * free space we just keep it. This prevents the divide
2296 * and multiply from happening most of the time.
2297 * We also don't do any window rounding when the free space
2298 * is too small.
2299 */
2300 if (window <= free_space - mss || window > free_space)
2301 window = (free_space / mss) * mss;
2302 else if (mss == full_space &&
2303 free_space > window + (full_space >> 1))
2304 window = free_space;
2305 }
2306
2307 return window;
2308 }
2309
2310 /* Collapses two adjacent SKB's during retransmission. */
2311 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2312 {
2313 struct tcp_sock *tp = tcp_sk(sk);
2314 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2315 int skb_size, next_skb_size;
2316
2317 skb_size = skb->len;
2318 next_skb_size = next_skb->len;
2319
2320 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2321
2322 tcp_highest_sack_combine(sk, next_skb, skb);
2323
2324 tcp_unlink_write_queue(next_skb, sk);
2325
2326 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2327 next_skb_size);
2328
2329 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2330 skb->ip_summed = CHECKSUM_PARTIAL;
2331
2332 if (skb->ip_summed != CHECKSUM_PARTIAL)
2333 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2334
2335 /* Update sequence range on original skb. */
2336 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2337
2338 /* Merge over control information. This moves PSH/FIN etc. over */
2339 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2340
2341 /* All done, get rid of second SKB and account for it so
2342 * packet counting does not break.
2343 */
2344 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2345
2346 /* changed transmit queue under us so clear hints */
2347 tcp_clear_retrans_hints_partial(tp);
2348 if (next_skb == tp->retransmit_skb_hint)
2349 tp->retransmit_skb_hint = skb;
2350
2351 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2352
2353 sk_wmem_free_skb(sk, next_skb);
2354 }
2355
2356 /* Check if coalescing SKBs is legal. */
2357 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2358 {
2359 if (tcp_skb_pcount(skb) > 1)
2360 return false;
2361 /* TODO: SACK collapsing could be used to remove this condition */
2362 if (skb_shinfo(skb)->nr_frags != 0)
2363 return false;
2364 if (skb_cloned(skb))
2365 return false;
2366 if (skb == tcp_send_head(sk))
2367 return false;
2368 /* Some heurestics for collapsing over SACK'd could be invented */
2369 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370 return false;
2371
2372 return true;
2373 }
2374
2375 /* Collapse packets in the retransmit queue to make to create
2376 * less packets on the wire. This is only done on retransmission.
2377 */
2378 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2379 int space)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 struct sk_buff *skb = to, *tmp;
2383 bool first = true;
2384
2385 if (!sysctl_tcp_retrans_collapse)
2386 return;
2387 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2388 return;
2389
2390 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2391 if (!tcp_can_collapse(sk, skb))
2392 break;
2393
2394 space -= skb->len;
2395
2396 if (first) {
2397 first = false;
2398 continue;
2399 }
2400
2401 if (space < 0)
2402 break;
2403 /* Punt if not enough space exists in the first SKB for
2404 * the data in the second
2405 */
2406 if (skb->len > skb_availroom(to))
2407 break;
2408
2409 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2410 break;
2411
2412 tcp_collapse_retrans(sk, to);
2413 }
2414 }
2415
2416 /* This retransmits one SKB. Policy decisions and retransmit queue
2417 * state updates are done by the caller. Returns non-zero if an
2418 * error occurred which prevented the send.
2419 */
2420 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2421 {
2422 struct tcp_sock *tp = tcp_sk(sk);
2423 struct inet_connection_sock *icsk = inet_csk(sk);
2424 unsigned int cur_mss;
2425 int err;
2426
2427 /* Inconslusive MTU probe */
2428 if (icsk->icsk_mtup.probe_size) {
2429 icsk->icsk_mtup.probe_size = 0;
2430 }
2431
2432 /* Do not sent more than we queued. 1/4 is reserved for possible
2433 * copying overhead: fragmentation, tunneling, mangling etc.
2434 */
2435 if (atomic_read(&sk->sk_wmem_alloc) >
2436 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2437 return -EAGAIN;
2438
2439 if (skb_still_in_host_queue(sk, skb))
2440 return -EBUSY;
2441
2442 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2443 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2444 BUG();
2445 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2446 return -ENOMEM;
2447 }
2448
2449 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2450 return -EHOSTUNREACH; /* Routing failure or similar. */
2451
2452 cur_mss = tcp_current_mss(sk);
2453
2454 /* If receiver has shrunk his window, and skb is out of
2455 * new window, do not retransmit it. The exception is the
2456 * case, when window is shrunk to zero. In this case
2457 * our retransmit serves as a zero window probe.
2458 */
2459 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2460 TCP_SKB_CB(skb)->seq != tp->snd_una)
2461 return -EAGAIN;
2462
2463 if (skb->len > cur_mss) {
2464 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2465 return -ENOMEM; /* We'll try again later. */
2466 } else {
2467 int oldpcount = tcp_skb_pcount(skb);
2468
2469 if (unlikely(oldpcount > 1)) {
2470 if (skb_unclone(skb, GFP_ATOMIC))
2471 return -ENOMEM;
2472 tcp_init_tso_segs(sk, skb, cur_mss);
2473 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2474 }
2475 }
2476
2477 tcp_retrans_try_collapse(sk, skb, cur_mss);
2478
2479 /* Make a copy, if the first transmission SKB clone we made
2480 * is still in somebody's hands, else make a clone.
2481 */
2482 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2483
2484 /* make sure skb->data is aligned on arches that require it
2485 * and check if ack-trimming & collapsing extended the headroom
2486 * beyond what csum_start can cover.
2487 */
2488 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2489 skb_headroom(skb) >= 0xFFFF)) {
2490 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2491 GFP_ATOMIC);
2492 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2493 -ENOBUFS;
2494 } else {
2495 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2496 }
2497
2498 if (likely(!err)) {
2499 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2500 /* Update global TCP statistics. */
2501 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2502 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2504 tp->total_retrans++;
2505 }
2506 return err;
2507 }
2508
2509 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512 int err = __tcp_retransmit_skb(sk, skb);
2513
2514 if (err == 0) {
2515 #if FASTRETRANS_DEBUG > 0
2516 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2517 net_dbg_ratelimited("retrans_out leaked\n");
2518 }
2519 #endif
2520 if (!tp->retrans_out)
2521 tp->lost_retrans_low = tp->snd_nxt;
2522 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2523 tp->retrans_out += tcp_skb_pcount(skb);
2524
2525 /* Save stamp of the first retransmit. */
2526 if (!tp->retrans_stamp)
2527 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2528
2529 /* snd_nxt is stored to detect loss of retransmitted segment,
2530 * see tcp_input.c tcp_sacktag_write_queue().
2531 */
2532 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2533 } else if (err != -EBUSY) {
2534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2535 }
2536
2537 if (tp->undo_retrans < 0)
2538 tp->undo_retrans = 0;
2539 tp->undo_retrans += tcp_skb_pcount(skb);
2540 return err;
2541 }
2542
2543 /* Check if we forward retransmits are possible in the current
2544 * window/congestion state.
2545 */
2546 static bool tcp_can_forward_retransmit(struct sock *sk)
2547 {
2548 const struct inet_connection_sock *icsk = inet_csk(sk);
2549 const struct tcp_sock *tp = tcp_sk(sk);
2550
2551 /* Forward retransmissions are possible only during Recovery. */
2552 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2553 return false;
2554
2555 /* No forward retransmissions in Reno are possible. */
2556 if (tcp_is_reno(tp))
2557 return false;
2558
2559 /* Yeah, we have to make difficult choice between forward transmission
2560 * and retransmission... Both ways have their merits...
2561 *
2562 * For now we do not retransmit anything, while we have some new
2563 * segments to send. In the other cases, follow rule 3 for
2564 * NextSeg() specified in RFC3517.
2565 */
2566
2567 if (tcp_may_send_now(sk))
2568 return false;
2569
2570 return true;
2571 }
2572
2573 /* This gets called after a retransmit timeout, and the initially
2574 * retransmitted data is acknowledged. It tries to continue
2575 * resending the rest of the retransmit queue, until either
2576 * we've sent it all or the congestion window limit is reached.
2577 * If doing SACK, the first ACK which comes back for a timeout
2578 * based retransmit packet might feed us FACK information again.
2579 * If so, we use it to avoid unnecessarily retransmissions.
2580 */
2581 void tcp_xmit_retransmit_queue(struct sock *sk)
2582 {
2583 const struct inet_connection_sock *icsk = inet_csk(sk);
2584 struct tcp_sock *tp = tcp_sk(sk);
2585 struct sk_buff *skb;
2586 struct sk_buff *hole = NULL;
2587 u32 last_lost;
2588 int mib_idx;
2589 int fwd_rexmitting = 0;
2590
2591 if (!tp->packets_out)
2592 return;
2593
2594 if (!tp->lost_out)
2595 tp->retransmit_high = tp->snd_una;
2596
2597 if (tp->retransmit_skb_hint) {
2598 skb = tp->retransmit_skb_hint;
2599 last_lost = TCP_SKB_CB(skb)->end_seq;
2600 if (after(last_lost, tp->retransmit_high))
2601 last_lost = tp->retransmit_high;
2602 } else {
2603 skb = tcp_write_queue_head(sk);
2604 last_lost = tp->snd_una;
2605 }
2606
2607 tcp_for_write_queue_from(skb, sk) {
2608 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2609
2610 if (skb == tcp_send_head(sk))
2611 break;
2612 /* we could do better than to assign each time */
2613 if (hole == NULL)
2614 tp->retransmit_skb_hint = skb;
2615
2616 /* Assume this retransmit will generate
2617 * only one packet for congestion window
2618 * calculation purposes. This works because
2619 * tcp_retransmit_skb() will chop up the
2620 * packet to be MSS sized and all the
2621 * packet counting works out.
2622 */
2623 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2624 return;
2625
2626 if (fwd_rexmitting) {
2627 begin_fwd:
2628 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2629 break;
2630 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2631
2632 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2633 tp->retransmit_high = last_lost;
2634 if (!tcp_can_forward_retransmit(sk))
2635 break;
2636 /* Backtrack if necessary to non-L'ed skb */
2637 if (hole != NULL) {
2638 skb = hole;
2639 hole = NULL;
2640 }
2641 fwd_rexmitting = 1;
2642 goto begin_fwd;
2643
2644 } else if (!(sacked & TCPCB_LOST)) {
2645 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2646 hole = skb;
2647 continue;
2648
2649 } else {
2650 last_lost = TCP_SKB_CB(skb)->end_seq;
2651 if (icsk->icsk_ca_state != TCP_CA_Loss)
2652 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2653 else
2654 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2655 }
2656
2657 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2658 continue;
2659
2660 if (tcp_retransmit_skb(sk, skb))
2661 return;
2662
2663 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664
2665 if (tcp_in_cwnd_reduction(sk))
2666 tp->prr_out += tcp_skb_pcount(skb);
2667
2668 if (skb == tcp_write_queue_head(sk))
2669 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2670 inet_csk(sk)->icsk_rto,
2671 TCP_RTO_MAX);
2672 }
2673 }
2674
2675 /* Send a fin. The caller locks the socket for us. This cannot be
2676 * allowed to fail queueing a FIN frame under any circumstances.
2677 */
2678 void tcp_send_fin(struct sock *sk)
2679 {
2680 struct tcp_sock *tp = tcp_sk(sk);
2681 struct sk_buff *skb = tcp_write_queue_tail(sk);
2682 int mss_now;
2683
2684 /* Optimization, tack on the FIN if we have a queue of
2685 * unsent frames. But be careful about outgoing SACKS
2686 * and IP options.
2687 */
2688 mss_now = tcp_current_mss(sk);
2689
2690 if (tcp_send_head(sk) != NULL) {
2691 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2692 TCP_SKB_CB(skb)->end_seq++;
2693 tp->write_seq++;
2694 } else {
2695 /* Socket is locked, keep trying until memory is available. */
2696 for (;;) {
2697 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2698 sk->sk_allocation);
2699 if (skb)
2700 break;
2701 yield();
2702 }
2703
2704 /* Reserve space for headers and prepare control bits. */
2705 skb_reserve(skb, MAX_TCP_HEADER);
2706 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2707 tcp_init_nondata_skb(skb, tp->write_seq,
2708 TCPHDR_ACK | TCPHDR_FIN);
2709 tcp_queue_skb(sk, skb);
2710 }
2711 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2712 }
2713
2714 /* We get here when a process closes a file descriptor (either due to
2715 * an explicit close() or as a byproduct of exit()'ing) and there
2716 * was unread data in the receive queue. This behavior is recommended
2717 * by RFC 2525, section 2.17. -DaveM
2718 */
2719 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2720 {
2721 struct sk_buff *skb;
2722
2723 /* NOTE: No TCP options attached and we never retransmit this. */
2724 skb = alloc_skb(MAX_TCP_HEADER, priority);
2725 if (!skb) {
2726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2727 return;
2728 }
2729
2730 /* Reserve space for headers and prepare control bits. */
2731 skb_reserve(skb, MAX_TCP_HEADER);
2732 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2733 TCPHDR_ACK | TCPHDR_RST);
2734 /* Send it off. */
2735 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2736 if (tcp_transmit_skb(sk, skb, 0, priority))
2737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2738
2739 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2740 }
2741
2742 /* Send a crossed SYN-ACK during socket establishment.
2743 * WARNING: This routine must only be called when we have already sent
2744 * a SYN packet that crossed the incoming SYN that caused this routine
2745 * to get called. If this assumption fails then the initial rcv_wnd
2746 * and rcv_wscale values will not be correct.
2747 */
2748 int tcp_send_synack(struct sock *sk)
2749 {
2750 struct sk_buff *skb;
2751
2752 skb = tcp_write_queue_head(sk);
2753 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2754 pr_debug("%s: wrong queue state\n", __func__);
2755 return -EFAULT;
2756 }
2757 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2758 if (skb_cloned(skb)) {
2759 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2760 if (nskb == NULL)
2761 return -ENOMEM;
2762 tcp_unlink_write_queue(skb, sk);
2763 skb_header_release(nskb);
2764 __tcp_add_write_queue_head(sk, nskb);
2765 sk_wmem_free_skb(sk, skb);
2766 sk->sk_wmem_queued += nskb->truesize;
2767 sk_mem_charge(sk, nskb->truesize);
2768 skb = nskb;
2769 }
2770
2771 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2772 TCP_ECN_send_synack(tcp_sk(sk), skb);
2773 }
2774 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2775 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2776 }
2777
2778 /**
2779 * tcp_make_synack - Prepare a SYN-ACK.
2780 * sk: listener socket
2781 * dst: dst entry attached to the SYNACK
2782 * req: request_sock pointer
2783 *
2784 * Allocate one skb and build a SYNACK packet.
2785 * @dst is consumed : Caller should not use it again.
2786 */
2787 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2788 struct request_sock *req,
2789 struct tcp_fastopen_cookie *foc)
2790 {
2791 struct tcp_out_options opts;
2792 struct inet_request_sock *ireq = inet_rsk(req);
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 struct tcphdr *th;
2795 struct sk_buff *skb;
2796 struct tcp_md5sig_key *md5;
2797 int tcp_header_size;
2798 int mss;
2799
2800 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2801 if (unlikely(!skb)) {
2802 dst_release(dst);
2803 return NULL;
2804 }
2805 /* Reserve space for headers. */
2806 skb_reserve(skb, MAX_TCP_HEADER);
2807
2808 skb_dst_set(skb, dst);
2809 security_skb_owned_by(skb, sk);
2810
2811 mss = dst_metric_advmss(dst);
2812 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2813 mss = tp->rx_opt.user_mss;
2814
2815 memset(&opts, 0, sizeof(opts));
2816 #ifdef CONFIG_SYN_COOKIES
2817 if (unlikely(req->cookie_ts))
2818 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2819 else
2820 #endif
2821 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2822 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2823 foc) + sizeof(*th);
2824
2825 skb_push(skb, tcp_header_size);
2826 skb_reset_transport_header(skb);
2827
2828 th = tcp_hdr(skb);
2829 memset(th, 0, sizeof(struct tcphdr));
2830 th->syn = 1;
2831 th->ack = 1;
2832 TCP_ECN_make_synack(req, th);
2833 th->source = htons(ireq->ir_num);
2834 th->dest = ireq->ir_rmt_port;
2835 /* Setting of flags are superfluous here for callers (and ECE is
2836 * not even correctly set)
2837 */
2838 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2839 TCPHDR_SYN | TCPHDR_ACK);
2840
2841 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2842 /* XXX data is queued and acked as is. No buffer/window check */
2843 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2844
2845 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2846 th->window = htons(min(req->rcv_wnd, 65535U));
2847 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2848 th->doff = (tcp_header_size >> 2);
2849 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2850
2851 #ifdef CONFIG_TCP_MD5SIG
2852 /* Okay, we have all we need - do the md5 hash if needed */
2853 if (md5) {
2854 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2855 md5, NULL, req, skb);
2856 }
2857 #endif
2858
2859 return skb;
2860 }
2861 EXPORT_SYMBOL(tcp_make_synack);
2862
2863 /* Do all connect socket setups that can be done AF independent. */
2864 static void tcp_connect_init(struct sock *sk)
2865 {
2866 const struct dst_entry *dst = __sk_dst_get(sk);
2867 struct tcp_sock *tp = tcp_sk(sk);
2868 __u8 rcv_wscale;
2869
2870 /* We'll fix this up when we get a response from the other end.
2871 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2872 */
2873 tp->tcp_header_len = sizeof(struct tcphdr) +
2874 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2875
2876 #ifdef CONFIG_TCP_MD5SIG
2877 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2878 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2879 #endif
2880
2881 /* If user gave his TCP_MAXSEG, record it to clamp */
2882 if (tp->rx_opt.user_mss)
2883 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2884 tp->max_window = 0;
2885 tcp_mtup_init(sk);
2886 tcp_sync_mss(sk, dst_mtu(dst));
2887
2888 if (!tp->window_clamp)
2889 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2890 tp->advmss = dst_metric_advmss(dst);
2891 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2892 tp->advmss = tp->rx_opt.user_mss;
2893
2894 tcp_initialize_rcv_mss(sk);
2895
2896 /* limit the window selection if the user enforce a smaller rx buffer */
2897 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2898 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2899 tp->window_clamp = tcp_full_space(sk);
2900
2901 tcp_select_initial_window(tcp_full_space(sk),
2902 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2903 &tp->rcv_wnd,
2904 &tp->window_clamp,
2905 sysctl_tcp_window_scaling,
2906 &rcv_wscale,
2907 dst_metric(dst, RTAX_INITRWND));
2908
2909 tp->rx_opt.rcv_wscale = rcv_wscale;
2910 tp->rcv_ssthresh = tp->rcv_wnd;
2911
2912 sk->sk_err = 0;
2913 sock_reset_flag(sk, SOCK_DONE);
2914 tp->snd_wnd = 0;
2915 tcp_init_wl(tp, 0);
2916 tp->snd_una = tp->write_seq;
2917 tp->snd_sml = tp->write_seq;
2918 tp->snd_up = tp->write_seq;
2919 tp->snd_nxt = tp->write_seq;
2920
2921 if (likely(!tp->repair))
2922 tp->rcv_nxt = 0;
2923 else
2924 tp->rcv_tstamp = tcp_time_stamp;
2925 tp->rcv_wup = tp->rcv_nxt;
2926 tp->copied_seq = tp->rcv_nxt;
2927
2928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2929 inet_csk(sk)->icsk_retransmits = 0;
2930 tcp_clear_retrans(tp);
2931 }
2932
2933 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2934 {
2935 struct tcp_sock *tp = tcp_sk(sk);
2936 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2937
2938 tcb->end_seq += skb->len;
2939 skb_header_release(skb);
2940 __tcp_add_write_queue_tail(sk, skb);
2941 sk->sk_wmem_queued += skb->truesize;
2942 sk_mem_charge(sk, skb->truesize);
2943 tp->write_seq = tcb->end_seq;
2944 tp->packets_out += tcp_skb_pcount(skb);
2945 }
2946
2947 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2948 * queue a data-only packet after the regular SYN, such that regular SYNs
2949 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2950 * only the SYN sequence, the data are retransmitted in the first ACK.
2951 * If cookie is not cached or other error occurs, falls back to send a
2952 * regular SYN with Fast Open cookie request option.
2953 */
2954 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2955 {
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 struct tcp_fastopen_request *fo = tp->fastopen_req;
2958 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2959 struct sk_buff *syn_data = NULL, *data;
2960 unsigned long last_syn_loss = 0;
2961
2962 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2963 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2964 &syn_loss, &last_syn_loss);
2965 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2966 if (syn_loss > 1 &&
2967 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2968 fo->cookie.len = -1;
2969 goto fallback;
2970 }
2971
2972 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2973 fo->cookie.len = -1;
2974 else if (fo->cookie.len <= 0)
2975 goto fallback;
2976
2977 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2978 * user-MSS. Reserve maximum option space for middleboxes that add
2979 * private TCP options. The cost is reduced data space in SYN :(
2980 */
2981 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2982 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2983 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2984 MAX_TCP_OPTION_SPACE;
2985
2986 space = min_t(size_t, space, fo->size);
2987
2988 /* limit to order-0 allocations */
2989 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2990
2991 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2992 sk->sk_allocation);
2993 if (syn_data == NULL)
2994 goto fallback;
2995
2996 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2997 struct iovec *iov = &fo->data->msg_iov[i];
2998 unsigned char __user *from = iov->iov_base;
2999 int len = iov->iov_len;
3000
3001 if (syn_data->len + len > space)
3002 len = space - syn_data->len;
3003 else if (i + 1 == iovlen)
3004 /* No more data pending in inet_wait_for_connect() */
3005 fo->data = NULL;
3006
3007 if (skb_add_data(syn_data, from, len))
3008 goto fallback;
3009 }
3010
3011 /* Queue a data-only packet after the regular SYN for retransmission */
3012 data = pskb_copy(syn_data, sk->sk_allocation);
3013 if (data == NULL)
3014 goto fallback;
3015 TCP_SKB_CB(data)->seq++;
3016 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3017 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3018 tcp_connect_queue_skb(sk, data);
3019 fo->copied = data->len;
3020
3021 /* syn_data is about to be sent, we need to take current time stamps
3022 * for the packets that are in write queue : SYN packet and DATA
3023 */
3024 skb_mstamp_get(&syn->skb_mstamp);
3025 data->skb_mstamp = syn->skb_mstamp;
3026
3027 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3028 tp->syn_data = (fo->copied > 0);
3029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3030 goto done;
3031 }
3032 syn_data = NULL;
3033
3034 fallback:
3035 /* Send a regular SYN with Fast Open cookie request option */
3036 if (fo->cookie.len > 0)
3037 fo->cookie.len = 0;
3038 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3039 if (err)
3040 tp->syn_fastopen = 0;
3041 kfree_skb(syn_data);
3042 done:
3043 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3044 return err;
3045 }
3046
3047 /* Build a SYN and send it off. */
3048 int tcp_connect(struct sock *sk)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051 struct sk_buff *buff;
3052 int err;
3053
3054 tcp_connect_init(sk);
3055
3056 if (unlikely(tp->repair)) {
3057 tcp_finish_connect(sk, NULL);
3058 return 0;
3059 }
3060
3061 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3062 if (unlikely(buff == NULL))
3063 return -ENOBUFS;
3064
3065 /* Reserve space for headers. */
3066 skb_reserve(buff, MAX_TCP_HEADER);
3067
3068 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3069 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3070 tcp_connect_queue_skb(sk, buff);
3071 TCP_ECN_send_syn(sk, buff);
3072
3073 /* Send off SYN; include data in Fast Open. */
3074 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3075 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3076 if (err == -ECONNREFUSED)
3077 return err;
3078
3079 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3080 * in order to make this packet get counted in tcpOutSegs.
3081 */
3082 tp->snd_nxt = tp->write_seq;
3083 tp->pushed_seq = tp->write_seq;
3084 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3085
3086 /* Timer for repeating the SYN until an answer. */
3087 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3088 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3089 return 0;
3090 }
3091 EXPORT_SYMBOL(tcp_connect);
3092
3093 /* Send out a delayed ack, the caller does the policy checking
3094 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3095 * for details.
3096 */
3097 void tcp_send_delayed_ack(struct sock *sk)
3098 {
3099 struct inet_connection_sock *icsk = inet_csk(sk);
3100 int ato = icsk->icsk_ack.ato;
3101 unsigned long timeout;
3102
3103 if (ato > TCP_DELACK_MIN) {
3104 const struct tcp_sock *tp = tcp_sk(sk);
3105 int max_ato = HZ / 2;
3106
3107 if (icsk->icsk_ack.pingpong ||
3108 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3109 max_ato = TCP_DELACK_MAX;
3110
3111 /* Slow path, intersegment interval is "high". */
3112
3113 /* If some rtt estimate is known, use it to bound delayed ack.
3114 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3115 * directly.
3116 */
3117 if (tp->srtt_us) {
3118 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3119 TCP_DELACK_MIN);
3120
3121 if (rtt < max_ato)
3122 max_ato = rtt;
3123 }
3124
3125 ato = min(ato, max_ato);
3126 }
3127
3128 /* Stay within the limit we were given */
3129 timeout = jiffies + ato;
3130
3131 /* Use new timeout only if there wasn't a older one earlier. */
3132 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3133 /* If delack timer was blocked or is about to expire,
3134 * send ACK now.
3135 */
3136 if (icsk->icsk_ack.blocked ||
3137 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3138 tcp_send_ack(sk);
3139 return;
3140 }
3141
3142 if (!time_before(timeout, icsk->icsk_ack.timeout))
3143 timeout = icsk->icsk_ack.timeout;
3144 }
3145 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3146 icsk->icsk_ack.timeout = timeout;
3147 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3148 }
3149
3150 /* This routine sends an ack and also updates the window. */
3151 void tcp_send_ack(struct sock *sk)
3152 {
3153 struct sk_buff *buff;
3154
3155 /* If we have been reset, we may not send again. */
3156 if (sk->sk_state == TCP_CLOSE)
3157 return;
3158
3159 /* We are not putting this on the write queue, so
3160 * tcp_transmit_skb() will set the ownership to this
3161 * sock.
3162 */
3163 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3164 if (buff == NULL) {
3165 inet_csk_schedule_ack(sk);
3166 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3167 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3168 TCP_DELACK_MAX, TCP_RTO_MAX);
3169 return;
3170 }
3171
3172 /* Reserve space for headers and prepare control bits. */
3173 skb_reserve(buff, MAX_TCP_HEADER);
3174 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3175
3176 /* Send it off, this clears delayed acks for us. */
3177 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3178 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3179 }
3180
3181 /* This routine sends a packet with an out of date sequence
3182 * number. It assumes the other end will try to ack it.
3183 *
3184 * Question: what should we make while urgent mode?
3185 * 4.4BSD forces sending single byte of data. We cannot send
3186 * out of window data, because we have SND.NXT==SND.MAX...
3187 *
3188 * Current solution: to send TWO zero-length segments in urgent mode:
3189 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3190 * out-of-date with SND.UNA-1 to probe window.
3191 */
3192 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3193 {
3194 struct tcp_sock *tp = tcp_sk(sk);
3195 struct sk_buff *skb;
3196
3197 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3198 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3199 if (skb == NULL)
3200 return -1;
3201
3202 /* Reserve space for headers and set control bits. */
3203 skb_reserve(skb, MAX_TCP_HEADER);
3204 /* Use a previous sequence. This should cause the other
3205 * end to send an ack. Don't queue or clone SKB, just
3206 * send it.
3207 */
3208 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3209 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3210 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3211 }
3212
3213 void tcp_send_window_probe(struct sock *sk)
3214 {
3215 if (sk->sk_state == TCP_ESTABLISHED) {
3216 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3217 tcp_xmit_probe_skb(sk, 0);
3218 }
3219 }
3220
3221 /* Initiate keepalive or window probe from timer. */
3222 int tcp_write_wakeup(struct sock *sk)
3223 {
3224 struct tcp_sock *tp = tcp_sk(sk);
3225 struct sk_buff *skb;
3226
3227 if (sk->sk_state == TCP_CLOSE)
3228 return -1;
3229
3230 if ((skb = tcp_send_head(sk)) != NULL &&
3231 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3232 int err;
3233 unsigned int mss = tcp_current_mss(sk);
3234 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3235
3236 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3237 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3238
3239 /* We are probing the opening of a window
3240 * but the window size is != 0
3241 * must have been a result SWS avoidance ( sender )
3242 */
3243 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3244 skb->len > mss) {
3245 seg_size = min(seg_size, mss);
3246 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3247 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3248 return -1;
3249 } else if (!tcp_skb_pcount(skb))
3250 tcp_set_skb_tso_segs(sk, skb, mss);
3251
3252 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3253 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3254 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3255 if (!err)
3256 tcp_event_new_data_sent(sk, skb);
3257 return err;
3258 } else {
3259 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3260 tcp_xmit_probe_skb(sk, 1);
3261 return tcp_xmit_probe_skb(sk, 0);
3262 }
3263 }
3264
3265 /* A window probe timeout has occurred. If window is not closed send
3266 * a partial packet else a zero probe.
3267 */
3268 void tcp_send_probe0(struct sock *sk)
3269 {
3270 struct inet_connection_sock *icsk = inet_csk(sk);
3271 struct tcp_sock *tp = tcp_sk(sk);
3272 int err;
3273
3274 err = tcp_write_wakeup(sk);
3275
3276 if (tp->packets_out || !tcp_send_head(sk)) {
3277 /* Cancel probe timer, if it is not required. */
3278 icsk->icsk_probes_out = 0;
3279 icsk->icsk_backoff = 0;
3280 return;
3281 }
3282
3283 if (err <= 0) {
3284 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3285 icsk->icsk_backoff++;
3286 icsk->icsk_probes_out++;
3287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3289 TCP_RTO_MAX);
3290 } else {
3291 /* If packet was not sent due to local congestion,
3292 * do not backoff and do not remember icsk_probes_out.
3293 * Let local senders to fight for local resources.
3294 *
3295 * Use accumulated backoff yet.
3296 */
3297 if (!icsk->icsk_probes_out)
3298 icsk->icsk_probes_out = 1;
3299 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3300 min(icsk->icsk_rto << icsk->icsk_backoff,
3301 TCP_RESOURCE_PROBE_INTERVAL),
3302 TCP_RTO_MAX);
3303 }
3304 }
3305
3306 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3307 {
3308 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3309 struct flowi fl;
3310 int res;
3311
3312 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3313 if (!res) {
3314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3316 }
3317 return res;
3318 }
3319 EXPORT_SYMBOL(tcp_rtx_synack);