]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_output.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (new_win == 0)
281 NET_INC_STATS(sock_net(sk),
282 LINUX_MIB_TCPWANTZEROWINDOWADV);
283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 }
285 tp->rcv_wnd = new_win;
286 tp->rcv_wup = tp->rcv_nxt;
287
288 /* Make sure we do not exceed the maximum possible
289 * scaled window.
290 */
291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 new_win = min(new_win, MAX_TCP_WINDOW);
293 else
294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295
296 /* RFC1323 scaling applied */
297 new_win >>= tp->rx_opt.rcv_wscale;
298
299 /* If we advertise zero window, disable fast path. */
300 if (new_win == 0) {
301 tp->pred_flags = 0;
302 if (old_win)
303 NET_INC_STATS(sock_net(sk),
304 LINUX_MIB_TCPTOZEROWINDOWADV);
305 } else if (old_win == 0) {
306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 }
308
309 return new_win;
310 }
311
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 const struct tcp_sock *tp = tcp_sk(sk);
316
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 if (!(tp->ecn_flags & TCP_ECN_OK))
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 else if (tcp_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 tcp_ca_needs_ecn(sk);
330
331 if (!use_ecn) {
332 const struct dst_entry *dst = __sk_dst_get(sk);
333
334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 use_ecn = true;
336 }
337
338 tp->ecn_flags = 0;
339
340 if (use_ecn) {
341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 tp->ecn_flags = TCP_ECN_OK;
343 if (tcp_ca_needs_ecn(sk))
344 INET_ECN_xmit(sk);
345 }
346 }
347
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 /* tp->ecn_flags are cleared at a later point in time when
352 * SYN ACK is ultimatively being received.
353 */
354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 if (inet_rsk(req)->ecn_ok)
361 th->ece = 1;
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 struct tcphdr *th, int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 th->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 th->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 skb->ip_summed = CHECKSUM_PARTIAL;
397 skb->csum = 0;
398
399 TCP_SKB_CB(skb)->tcp_flags = flags;
400 TCP_SKB_CB(skb)->sacked = 0;
401
402 tcp_skb_pcount_set(skb, 1);
403
404 TCP_SKB_CB(skb)->seq = seq;
405 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 seq++;
407 TCP_SKB_CB(skb)->end_seq = seq;
408 }
409
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 return tp->snd_una != tp->snd_up;
413 }
414
415 #define OPTION_SACK_ADVERTISE (1 << 0)
416 #define OPTION_TS (1 << 1)
417 #define OPTION_MD5 (1 << 2)
418 #define OPTION_WSCALE (1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420
421 struct tcp_out_options {
422 u16 options; /* bit field of OPTION_* */
423 u16 mss; /* 0 to disable */
424 u8 ws; /* window scale, 0 to disable */
425 u8 num_sack_blocks; /* number of SACK blocks to include */
426 u8 hash_size; /* bytes in hash_location */
427 __u8 *hash_location; /* temporary pointer, overloaded */
428 __u32 tsval, tsecr; /* need to include OPTION_TS */
429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 };
431
432 /* Write previously computed TCP options to the packet.
433 *
434 * Beware: Something in the Internet is very sensitive to the ordering of
435 * TCP options, we learned this through the hard way, so be careful here.
436 * Luckily we can at least blame others for their non-compliance but from
437 * inter-operability perspective it seems that we're somewhat stuck with
438 * the ordering which we have been using if we want to keep working with
439 * those broken things (not that it currently hurts anybody as there isn't
440 * particular reason why the ordering would need to be changed).
441 *
442 * At least SACK_PERM as the first option is known to lead to a disaster
443 * (but it may well be that other scenarios fail similarly).
444 */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 u16 options = opts->options; /* mungable copy */
449
450 if (unlikely(OPTION_MD5 & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 /* overload cookie hash location */
454 opts->hash_location = (__u8 *)ptr;
455 ptr += 4;
456 }
457
458 if (unlikely(opts->mss)) {
459 *ptr++ = htonl((TCPOPT_MSS << 24) |
460 (TCPOLEN_MSS << 16) |
461 opts->mss);
462 }
463
464 if (likely(OPTION_TS & options)) {
465 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 (TCPOLEN_SACK_PERM << 16) |
468 (TCPOPT_TIMESTAMP << 8) |
469 TCPOLEN_TIMESTAMP);
470 options &= ~OPTION_SACK_ADVERTISE;
471 } else {
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 }
477 *ptr++ = htonl(opts->tsval);
478 *ptr++ = htonl(opts->tsecr);
479 }
480
481 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_NOP << 16) |
484 (TCPOPT_SACK_PERM << 8) |
485 TCPOLEN_SACK_PERM);
486 }
487
488 if (unlikely(OPTION_WSCALE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_WINDOW << 16) |
491 (TCPOLEN_WINDOW << 8) |
492 opts->ws);
493 }
494
495 if (unlikely(opts->num_sack_blocks)) {
496 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 tp->duplicate_sack : tp->selective_acks;
498 int this_sack;
499
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_NOP << 16) |
502 (TCPOPT_SACK << 8) |
503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 TCPOLEN_SACK_PERBLOCK)));
505
506 for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 ++this_sack) {
508 *ptr++ = htonl(sp[this_sack].start_seq);
509 *ptr++ = htonl(sp[this_sack].end_seq);
510 }
511
512 tp->rx_opt.dsack = 0;
513 }
514
515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 u8 *p = (u8 *)ptr;
518 u32 len; /* Fast Open option length */
519
520 if (foc->exp) {
521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 TCPOPT_FASTOPEN_MAGIC);
524 p += TCPOLEN_EXP_FASTOPEN_BASE;
525 } else {
526 len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 *p++ = TCPOPT_FASTOPEN;
528 *p++ = len;
529 }
530
531 memcpy(p, foc->val, foc->len);
532 if ((len & 3) == 2) {
533 p[foc->len] = TCPOPT_NOP;
534 p[foc->len + 1] = TCPOPT_NOP;
535 }
536 ptr += (len + 3) >> 2;
537 }
538 }
539
540 /* Compute TCP options for SYN packets. This is not the final
541 * network wire format yet.
542 */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 struct tcp_out_options *opts,
545 struct tcp_md5sig_key **md5)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550
551 #ifdef CONFIG_TCP_MD5SIG
552 *md5 = tp->af_specific->md5_lookup(sk, sk);
553 if (*md5) {
554 opts->options |= OPTION_MD5;
555 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 }
557 #else
558 *md5 = NULL;
559 #endif
560
561 /* We always get an MSS option. The option bytes which will be seen in
562 * normal data packets should timestamps be used, must be in the MSS
563 * advertised. But we subtract them from tp->mss_cache so that
564 * calculations in tcp_sendmsg are simpler etc. So account for this
565 * fact here if necessary. If we don't do this correctly, as a
566 * receiver we won't recognize data packets as being full sized when we
567 * should, and thus we won't abide by the delayed ACK rules correctly.
568 * SACKs don't matter, we never delay an ACK when we have any of those
569 * going out. */
570 opts->mss = tcp_advertise_mss(sk);
571 remaining -= TCPOLEN_MSS_ALIGNED;
572
573 if (likely(sysctl_tcp_timestamps && !*md5)) {
574 opts->options |= OPTION_TS;
575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 opts->tsecr = tp->rx_opt.ts_recent;
577 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 }
579 if (likely(sysctl_tcp_window_scaling)) {
580 opts->ws = tp->rx_opt.rcv_wscale;
581 opts->options |= OPTION_WSCALE;
582 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 }
584 if (likely(sysctl_tcp_sack)) {
585 opts->options |= OPTION_SACK_ADVERTISE;
586 if (unlikely(!(OPTION_TS & opts->options)))
587 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 }
589
590 if (fastopen && fastopen->cookie.len >= 0) {
591 u32 need = fastopen->cookie.len;
592
593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 TCPOLEN_FASTOPEN_BASE;
595 need = (need + 3) & ~3U; /* Align to 32 bits */
596 if (remaining >= need) {
597 opts->options |= OPTION_FAST_OPEN_COOKIE;
598 opts->fastopen_cookie = &fastopen->cookie;
599 remaining -= need;
600 tp->syn_fastopen = 1;
601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 }
603 }
604
605 return MAX_TCP_OPTION_SPACE - remaining;
606 }
607
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 unsigned int mss, struct sk_buff *skb,
611 struct tcp_out_options *opts,
612 const struct tcp_md5sig_key *md5,
613 struct tcp_fastopen_cookie *foc)
614 {
615 struct inet_request_sock *ireq = inet_rsk(req);
616 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617
618 #ifdef CONFIG_TCP_MD5SIG
619 if (md5) {
620 opts->options |= OPTION_MD5;
621 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622
623 /* We can't fit any SACK blocks in a packet with MD5 + TS
624 * options. There was discussion about disabling SACK
625 * rather than TS in order to fit in better with old,
626 * buggy kernels, but that was deemed to be unnecessary.
627 */
628 ireq->tstamp_ok &= !ireq->sack_ok;
629 }
630 #endif
631
632 /* We always send an MSS option. */
633 opts->mss = mss;
634 remaining -= TCPOLEN_MSS_ALIGNED;
635
636 if (likely(ireq->wscale_ok)) {
637 opts->ws = ireq->rcv_wscale;
638 opts->options |= OPTION_WSCALE;
639 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 }
641 if (likely(ireq->tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
644 opts->tsecr = req->ts_recent;
645 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 }
647 if (likely(ireq->sack_ok)) {
648 opts->options |= OPTION_SACK_ADVERTISE;
649 if (unlikely(!ireq->tstamp_ok))
650 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 }
652 if (foc != NULL && foc->len >= 0) {
653 u32 need = foc->len;
654
655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 TCPOLEN_FASTOPEN_BASE;
657 need = (need + 3) & ~3U; /* Align to 32 bits */
658 if (remaining >= need) {
659 opts->options |= OPTION_FAST_OPEN_COOKIE;
660 opts->fastopen_cookie = foc;
661 remaining -= need;
662 }
663 }
664
665 return MAX_TCP_OPTION_SPACE - remaining;
666 }
667
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669 * final wire format yet.
670 */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 struct tcp_out_options *opts,
673 struct tcp_md5sig_key **md5)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 unsigned int size = 0;
677 unsigned int eff_sacks;
678
679 opts->options = 0;
680
681 #ifdef CONFIG_TCP_MD5SIG
682 *md5 = tp->af_specific->md5_lookup(sk, sk);
683 if (unlikely(*md5)) {
684 opts->options |= OPTION_MD5;
685 size += TCPOLEN_MD5SIG_ALIGNED;
686 }
687 #else
688 *md5 = NULL;
689 #endif
690
691 if (likely(tp->rx_opt.tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 opts->tsecr = tp->rx_opt.ts_recent;
695 size += TCPOLEN_TSTAMP_ALIGNED;
696 }
697
698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 if (unlikely(eff_sacks)) {
700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 opts->num_sack_blocks =
702 min_t(unsigned int, eff_sacks,
703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 TCPOLEN_SACK_PERBLOCK);
705 size += TCPOLEN_SACK_BASE_ALIGNED +
706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 }
708
709 return size;
710 }
711
712
713 /* TCP SMALL QUEUES (TSQ)
714 *
715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716 * to reduce RTT and bufferbloat.
717 * We do this using a special skb destructor (tcp_wfree).
718 *
719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720 * needs to be reallocated in a driver.
721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 *
723 * Since transmit from skb destructor is forbidden, we use a tasklet
724 * to process all sockets that eventually need to send more skbs.
725 * We use one tasklet per cpu, with its own queue of sockets.
726 */
727 struct tsq_tasklet {
728 struct tasklet_struct tasklet;
729 struct list_head head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 if ((1 << sk->sk_state) &
736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
738 struct tcp_sock *tp = tcp_sk(sk);
739
740 if (tp->lost_out > tp->retrans_out &&
741 tp->snd_cwnd > tcp_packets_in_flight(tp))
742 tcp_xmit_retransmit_queue(sk);
743
744 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
745 0, GFP_ATOMIC);
746 }
747 }
748 /*
749 * One tasklet per cpu tries to send more skbs.
750 * We run in tasklet context but need to disable irqs when
751 * transferring tsq->head because tcp_wfree() might
752 * interrupt us (non NAPI drivers)
753 */
754 static void tcp_tasklet_func(unsigned long data)
755 {
756 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 LIST_HEAD(list);
758 unsigned long flags;
759 struct list_head *q, *n;
760 struct tcp_sock *tp;
761 struct sock *sk;
762
763 local_irq_save(flags);
764 list_splice_init(&tsq->head, &list);
765 local_irq_restore(flags);
766
767 list_for_each_safe(q, n, &list) {
768 tp = list_entry(q, struct tcp_sock, tsq_node);
769 list_del(&tp->tsq_node);
770
771 sk = (struct sock *)tp;
772 smp_mb__before_atomic();
773 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
774
775 if (!sk->sk_lock.owned &&
776 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
777 bh_lock_sock(sk);
778 if (!sock_owned_by_user(sk)) {
779 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
780 tcp_tsq_handler(sk);
781 }
782 bh_unlock_sock(sk);
783 }
784
785 sk_free(sk);
786 }
787 }
788
789 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
790 TCPF_WRITE_TIMER_DEFERRED | \
791 TCPF_DELACK_TIMER_DEFERRED | \
792 TCPF_MTU_REDUCED_DEFERRED)
793 /**
794 * tcp_release_cb - tcp release_sock() callback
795 * @sk: socket
796 *
797 * called from release_sock() to perform protocol dependent
798 * actions before socket release.
799 */
800 void tcp_release_cb(struct sock *sk)
801 {
802 unsigned long flags, nflags;
803
804 /* perform an atomic operation only if at least one flag is set */
805 do {
806 flags = sk->sk_tsq_flags;
807 if (!(flags & TCP_DEFERRED_ALL))
808 return;
809 nflags = flags & ~TCP_DEFERRED_ALL;
810 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
811
812 if (flags & TCPF_TSQ_DEFERRED)
813 tcp_tsq_handler(sk);
814
815 /* Here begins the tricky part :
816 * We are called from release_sock() with :
817 * 1) BH disabled
818 * 2) sk_lock.slock spinlock held
819 * 3) socket owned by us (sk->sk_lock.owned == 1)
820 *
821 * But following code is meant to be called from BH handlers,
822 * so we should keep BH disabled, but early release socket ownership
823 */
824 sock_release_ownership(sk);
825
826 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
827 tcp_write_timer_handler(sk);
828 __sock_put(sk);
829 }
830 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
831 tcp_delack_timer_handler(sk);
832 __sock_put(sk);
833 }
834 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
835 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
836 __sock_put(sk);
837 }
838 }
839 EXPORT_SYMBOL(tcp_release_cb);
840
841 void __init tcp_tasklet_init(void)
842 {
843 int i;
844
845 for_each_possible_cpu(i) {
846 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
847
848 INIT_LIST_HEAD(&tsq->head);
849 tasklet_init(&tsq->tasklet,
850 tcp_tasklet_func,
851 (unsigned long)tsq);
852 }
853 }
854
855 /*
856 * Write buffer destructor automatically called from kfree_skb.
857 * We can't xmit new skbs from this context, as we might already
858 * hold qdisc lock.
859 */
860 void tcp_wfree(struct sk_buff *skb)
861 {
862 struct sock *sk = skb->sk;
863 struct tcp_sock *tp = tcp_sk(sk);
864 unsigned long flags, nval, oval;
865 int wmem;
866
867 /* Keep one reference on sk_wmem_alloc.
868 * Will be released by sk_free() from here or tcp_tasklet_func()
869 */
870 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
871
872 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 * Wait until our queues (qdisc + devices) are drained.
874 * This gives :
875 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 * - chance for incoming ACK (processed by another cpu maybe)
877 * to migrate this flow (skb->ooo_okay will be eventually set)
878 */
879 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 goto out;
881
882 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 struct tsq_tasklet *tsq;
884 bool empty;
885
886 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 goto out;
888
889 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 if (nval != oval)
892 continue;
893
894 /* queue this socket to tasklet queue */
895 local_irq_save(flags);
896 tsq = this_cpu_ptr(&tsq_tasklet);
897 empty = list_empty(&tsq->head);
898 list_add(&tp->tsq_node, &tsq->head);
899 if (empty)
900 tasklet_schedule(&tsq->tasklet);
901 local_irq_restore(flags);
902 return;
903 }
904 out:
905 sk_free(sk);
906 }
907
908 /* This routine actually transmits TCP packets queued in by
909 * tcp_do_sendmsg(). This is used by both the initial
910 * transmission and possible later retransmissions.
911 * All SKB's seen here are completely headerless. It is our
912 * job to build the TCP header, and pass the packet down to
913 * IP so it can do the same plus pass the packet off to the
914 * device.
915 *
916 * We are working here with either a clone of the original
917 * SKB, or a fresh unique copy made by the retransmit engine.
918 */
919 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
920 gfp_t gfp_mask)
921 {
922 const struct inet_connection_sock *icsk = inet_csk(sk);
923 struct inet_sock *inet;
924 struct tcp_sock *tp;
925 struct tcp_skb_cb *tcb;
926 struct tcp_out_options opts;
927 unsigned int tcp_options_size, tcp_header_size;
928 struct tcp_md5sig_key *md5;
929 struct tcphdr *th;
930 int err;
931
932 BUG_ON(!skb || !tcp_skb_pcount(skb));
933 tp = tcp_sk(sk);
934
935 if (clone_it) {
936 skb_mstamp_get(&skb->skb_mstamp);
937 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
938 - tp->snd_una;
939 tcp_rate_skb_sent(sk, skb);
940
941 if (unlikely(skb_cloned(skb)))
942 skb = pskb_copy(skb, gfp_mask);
943 else
944 skb = skb_clone(skb, gfp_mask);
945 if (unlikely(!skb))
946 return -ENOBUFS;
947 }
948
949 inet = inet_sk(sk);
950 tcb = TCP_SKB_CB(skb);
951 memset(&opts, 0, sizeof(opts));
952
953 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
954 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
955 else
956 tcp_options_size = tcp_established_options(sk, skb, &opts,
957 &md5);
958 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
959
960 /* if no packet is in qdisc/device queue, then allow XPS to select
961 * another queue. We can be called from tcp_tsq_handler()
962 * which holds one reference to sk_wmem_alloc.
963 *
964 * TODO: Ideally, in-flight pure ACK packets should not matter here.
965 * One way to get this would be to set skb->truesize = 2 on them.
966 */
967 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
968
969 skb_push(skb, tcp_header_size);
970 skb_reset_transport_header(skb);
971
972 skb_orphan(skb);
973 skb->sk = sk;
974 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
975 skb_set_hash_from_sk(skb, sk);
976 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
977
978 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
979
980 /* Build TCP header and checksum it. */
981 th = (struct tcphdr *)skb->data;
982 th->source = inet->inet_sport;
983 th->dest = inet->inet_dport;
984 th->seq = htonl(tcb->seq);
985 th->ack_seq = htonl(tp->rcv_nxt);
986 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
987 tcb->tcp_flags);
988
989 th->check = 0;
990 th->urg_ptr = 0;
991
992 /* The urg_mode check is necessary during a below snd_una win probe */
993 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
994 if (before(tp->snd_up, tcb->seq + 0x10000)) {
995 th->urg_ptr = htons(tp->snd_up - tcb->seq);
996 th->urg = 1;
997 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
998 th->urg_ptr = htons(0xFFFF);
999 th->urg = 1;
1000 }
1001 }
1002
1003 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1004 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1005 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1006 th->window = htons(tcp_select_window(sk));
1007 tcp_ecn_send(sk, skb, th, tcp_header_size);
1008 } else {
1009 /* RFC1323: The window in SYN & SYN/ACK segments
1010 * is never scaled.
1011 */
1012 th->window = htons(min(tp->rcv_wnd, 65535U));
1013 }
1014 #ifdef CONFIG_TCP_MD5SIG
1015 /* Calculate the MD5 hash, as we have all we need now */
1016 if (md5) {
1017 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1018 tp->af_specific->calc_md5_hash(opts.hash_location,
1019 md5, sk, skb);
1020 }
1021 #endif
1022
1023 icsk->icsk_af_ops->send_check(sk, skb);
1024
1025 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1026 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1027
1028 if (skb->len != tcp_header_size) {
1029 tcp_event_data_sent(tp, sk);
1030 tp->data_segs_out += tcp_skb_pcount(skb);
1031 }
1032
1033 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1034 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1035 tcp_skb_pcount(skb));
1036
1037 tp->segs_out += tcp_skb_pcount(skb);
1038 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1039 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1040 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1041
1042 /* Our usage of tstamp should remain private */
1043 skb->tstamp = 0;
1044
1045 /* Cleanup our debris for IP stacks */
1046 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1047 sizeof(struct inet6_skb_parm)));
1048
1049 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1050
1051 if (likely(err <= 0))
1052 return err;
1053
1054 tcp_enter_cwr(sk);
1055
1056 return net_xmit_eval(err);
1057 }
1058
1059 /* This routine just queues the buffer for sending.
1060 *
1061 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1062 * otherwise socket can stall.
1063 */
1064 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1065 {
1066 struct tcp_sock *tp = tcp_sk(sk);
1067
1068 /* Advance write_seq and place onto the write_queue. */
1069 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1070 __skb_header_release(skb);
1071 tcp_add_write_queue_tail(sk, skb);
1072 sk->sk_wmem_queued += skb->truesize;
1073 sk_mem_charge(sk, skb->truesize);
1074 }
1075
1076 /* Initialize TSO segments for a packet. */
1077 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1078 {
1079 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1080 /* Avoid the costly divide in the normal
1081 * non-TSO case.
1082 */
1083 tcp_skb_pcount_set(skb, 1);
1084 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1085 } else {
1086 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1087 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1088 }
1089 }
1090
1091 /* When a modification to fackets out becomes necessary, we need to check
1092 * skb is counted to fackets_out or not.
1093 */
1094 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1095 int decr)
1096 {
1097 struct tcp_sock *tp = tcp_sk(sk);
1098
1099 if (!tp->sacked_out || tcp_is_reno(tp))
1100 return;
1101
1102 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1103 tp->fackets_out -= decr;
1104 }
1105
1106 /* Pcount in the middle of the write queue got changed, we need to do various
1107 * tweaks to fix counters
1108 */
1109 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1110 {
1111 struct tcp_sock *tp = tcp_sk(sk);
1112
1113 tp->packets_out -= decr;
1114
1115 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1116 tp->sacked_out -= decr;
1117 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1118 tp->retrans_out -= decr;
1119 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1120 tp->lost_out -= decr;
1121
1122 /* Reno case is special. Sigh... */
1123 if (tcp_is_reno(tp) && decr > 0)
1124 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1125
1126 tcp_adjust_fackets_out(sk, skb, decr);
1127
1128 if (tp->lost_skb_hint &&
1129 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1130 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1131 tp->lost_cnt_hint -= decr;
1132
1133 tcp_verify_left_out(tp);
1134 }
1135
1136 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1137 {
1138 return TCP_SKB_CB(skb)->txstamp_ack ||
1139 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1140 }
1141
1142 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1143 {
1144 struct skb_shared_info *shinfo = skb_shinfo(skb);
1145
1146 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1147 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1148 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1149 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1150
1151 shinfo->tx_flags &= ~tsflags;
1152 shinfo2->tx_flags |= tsflags;
1153 swap(shinfo->tskey, shinfo2->tskey);
1154 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1155 TCP_SKB_CB(skb)->txstamp_ack = 0;
1156 }
1157 }
1158
1159 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1160 {
1161 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1162 TCP_SKB_CB(skb)->eor = 0;
1163 }
1164
1165 /* Function to create two new TCP segments. Shrinks the given segment
1166 * to the specified size and appends a new segment with the rest of the
1167 * packet to the list. This won't be called frequently, I hope.
1168 * Remember, these are still headerless SKBs at this point.
1169 */
1170 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1171 unsigned int mss_now, gfp_t gfp)
1172 {
1173 struct tcp_sock *tp = tcp_sk(sk);
1174 struct sk_buff *buff;
1175 int nsize, old_factor;
1176 int nlen;
1177 u8 flags;
1178
1179 if (WARN_ON(len > skb->len))
1180 return -EINVAL;
1181
1182 nsize = skb_headlen(skb) - len;
1183 if (nsize < 0)
1184 nsize = 0;
1185
1186 if (skb_unclone(skb, gfp))
1187 return -ENOMEM;
1188
1189 /* Get a new skb... force flag on. */
1190 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1191 if (!buff)
1192 return -ENOMEM; /* We'll just try again later. */
1193
1194 sk->sk_wmem_queued += buff->truesize;
1195 sk_mem_charge(sk, buff->truesize);
1196 nlen = skb->len - len - nsize;
1197 buff->truesize += nlen;
1198 skb->truesize -= nlen;
1199
1200 /* Correct the sequence numbers. */
1201 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1202 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1203 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1204
1205 /* PSH and FIN should only be set in the second packet. */
1206 flags = TCP_SKB_CB(skb)->tcp_flags;
1207 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1208 TCP_SKB_CB(buff)->tcp_flags = flags;
1209 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1210 tcp_skb_fragment_eor(skb, buff);
1211
1212 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1213 /* Copy and checksum data tail into the new buffer. */
1214 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1215 skb_put(buff, nsize),
1216 nsize, 0);
1217
1218 skb_trim(skb, len);
1219
1220 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1221 } else {
1222 skb->ip_summed = CHECKSUM_PARTIAL;
1223 skb_split(skb, buff, len);
1224 }
1225
1226 buff->ip_summed = skb->ip_summed;
1227
1228 buff->tstamp = skb->tstamp;
1229 tcp_fragment_tstamp(skb, buff);
1230
1231 old_factor = tcp_skb_pcount(skb);
1232
1233 /* Fix up tso_factor for both original and new SKB. */
1234 tcp_set_skb_tso_segs(skb, mss_now);
1235 tcp_set_skb_tso_segs(buff, mss_now);
1236
1237 /* Update delivered info for the new segment */
1238 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1239
1240 /* If this packet has been sent out already, we must
1241 * adjust the various packet counters.
1242 */
1243 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1244 int diff = old_factor - tcp_skb_pcount(skb) -
1245 tcp_skb_pcount(buff);
1246
1247 if (diff)
1248 tcp_adjust_pcount(sk, skb, diff);
1249 }
1250
1251 /* Link BUFF into the send queue. */
1252 __skb_header_release(buff);
1253 tcp_insert_write_queue_after(skb, buff, sk);
1254
1255 return 0;
1256 }
1257
1258 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1259 * eventually). The difference is that pulled data not copied, but
1260 * immediately discarded.
1261 */
1262 static int __pskb_trim_head(struct sk_buff *skb, int len)
1263 {
1264 struct skb_shared_info *shinfo;
1265 int i, k, eat;
1266
1267 eat = min_t(int, len, skb_headlen(skb));
1268 if (eat) {
1269 __skb_pull(skb, eat);
1270 len -= eat;
1271 if (!len)
1272 return 0;
1273 }
1274 eat = len;
1275 k = 0;
1276 shinfo = skb_shinfo(skb);
1277 for (i = 0; i < shinfo->nr_frags; i++) {
1278 int size = skb_frag_size(&shinfo->frags[i]);
1279
1280 if (size <= eat) {
1281 skb_frag_unref(skb, i);
1282 eat -= size;
1283 } else {
1284 shinfo->frags[k] = shinfo->frags[i];
1285 if (eat) {
1286 shinfo->frags[k].page_offset += eat;
1287 skb_frag_size_sub(&shinfo->frags[k], eat);
1288 eat = 0;
1289 }
1290 k++;
1291 }
1292 }
1293 shinfo->nr_frags = k;
1294
1295 skb_reset_tail_pointer(skb);
1296 skb->data_len -= len;
1297 skb->len = skb->data_len;
1298 return len;
1299 }
1300
1301 /* Remove acked data from a packet in the transmit queue. */
1302 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1303 {
1304 u32 delta_truesize;
1305
1306 if (skb_unclone(skb, GFP_ATOMIC))
1307 return -ENOMEM;
1308
1309 delta_truesize = __pskb_trim_head(skb, len);
1310
1311 TCP_SKB_CB(skb)->seq += len;
1312 skb->ip_summed = CHECKSUM_PARTIAL;
1313
1314 if (delta_truesize) {
1315 skb->truesize -= delta_truesize;
1316 sk->sk_wmem_queued -= delta_truesize;
1317 sk_mem_uncharge(sk, delta_truesize);
1318 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1319 }
1320
1321 /* Any change of skb->len requires recalculation of tso factor. */
1322 if (tcp_skb_pcount(skb) > 1)
1323 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1324
1325 return 0;
1326 }
1327
1328 /* Calculate MSS not accounting any TCP options. */
1329 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1330 {
1331 const struct tcp_sock *tp = tcp_sk(sk);
1332 const struct inet_connection_sock *icsk = inet_csk(sk);
1333 int mss_now;
1334
1335 /* Calculate base mss without TCP options:
1336 It is MMS_S - sizeof(tcphdr) of rfc1122
1337 */
1338 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1339
1340 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1341 if (icsk->icsk_af_ops->net_frag_header_len) {
1342 const struct dst_entry *dst = __sk_dst_get(sk);
1343
1344 if (dst && dst_allfrag(dst))
1345 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1346 }
1347
1348 /* Clamp it (mss_clamp does not include tcp options) */
1349 if (mss_now > tp->rx_opt.mss_clamp)
1350 mss_now = tp->rx_opt.mss_clamp;
1351
1352 /* Now subtract optional transport overhead */
1353 mss_now -= icsk->icsk_ext_hdr_len;
1354
1355 /* Then reserve room for full set of TCP options and 8 bytes of data */
1356 if (mss_now < 48)
1357 mss_now = 48;
1358 return mss_now;
1359 }
1360
1361 /* Calculate MSS. Not accounting for SACKs here. */
1362 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1363 {
1364 /* Subtract TCP options size, not including SACKs */
1365 return __tcp_mtu_to_mss(sk, pmtu) -
1366 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1367 }
1368
1369 /* Inverse of above */
1370 int tcp_mss_to_mtu(struct sock *sk, int mss)
1371 {
1372 const struct tcp_sock *tp = tcp_sk(sk);
1373 const struct inet_connection_sock *icsk = inet_csk(sk);
1374 int mtu;
1375
1376 mtu = mss +
1377 tp->tcp_header_len +
1378 icsk->icsk_ext_hdr_len +
1379 icsk->icsk_af_ops->net_header_len;
1380
1381 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1382 if (icsk->icsk_af_ops->net_frag_header_len) {
1383 const struct dst_entry *dst = __sk_dst_get(sk);
1384
1385 if (dst && dst_allfrag(dst))
1386 mtu += icsk->icsk_af_ops->net_frag_header_len;
1387 }
1388 return mtu;
1389 }
1390 EXPORT_SYMBOL(tcp_mss_to_mtu);
1391
1392 /* MTU probing init per socket */
1393 void tcp_mtup_init(struct sock *sk)
1394 {
1395 struct tcp_sock *tp = tcp_sk(sk);
1396 struct inet_connection_sock *icsk = inet_csk(sk);
1397 struct net *net = sock_net(sk);
1398
1399 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1400 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1401 icsk->icsk_af_ops->net_header_len;
1402 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1403 icsk->icsk_mtup.probe_size = 0;
1404 if (icsk->icsk_mtup.enabled)
1405 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1406 }
1407 EXPORT_SYMBOL(tcp_mtup_init);
1408
1409 /* This function synchronize snd mss to current pmtu/exthdr set.
1410
1411 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1412 for TCP options, but includes only bare TCP header.
1413
1414 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1415 It is minimum of user_mss and mss received with SYN.
1416 It also does not include TCP options.
1417
1418 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1419
1420 tp->mss_cache is current effective sending mss, including
1421 all tcp options except for SACKs. It is evaluated,
1422 taking into account current pmtu, but never exceeds
1423 tp->rx_opt.mss_clamp.
1424
1425 NOTE1. rfc1122 clearly states that advertised MSS
1426 DOES NOT include either tcp or ip options.
1427
1428 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1429 are READ ONLY outside this function. --ANK (980731)
1430 */
1431 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1432 {
1433 struct tcp_sock *tp = tcp_sk(sk);
1434 struct inet_connection_sock *icsk = inet_csk(sk);
1435 int mss_now;
1436
1437 if (icsk->icsk_mtup.search_high > pmtu)
1438 icsk->icsk_mtup.search_high = pmtu;
1439
1440 mss_now = tcp_mtu_to_mss(sk, pmtu);
1441 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1442
1443 /* And store cached results */
1444 icsk->icsk_pmtu_cookie = pmtu;
1445 if (icsk->icsk_mtup.enabled)
1446 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1447 tp->mss_cache = mss_now;
1448
1449 return mss_now;
1450 }
1451 EXPORT_SYMBOL(tcp_sync_mss);
1452
1453 /* Compute the current effective MSS, taking SACKs and IP options,
1454 * and even PMTU discovery events into account.
1455 */
1456 unsigned int tcp_current_mss(struct sock *sk)
1457 {
1458 const struct tcp_sock *tp = tcp_sk(sk);
1459 const struct dst_entry *dst = __sk_dst_get(sk);
1460 u32 mss_now;
1461 unsigned int header_len;
1462 struct tcp_out_options opts;
1463 struct tcp_md5sig_key *md5;
1464
1465 mss_now = tp->mss_cache;
1466
1467 if (dst) {
1468 u32 mtu = dst_mtu(dst);
1469 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1470 mss_now = tcp_sync_mss(sk, mtu);
1471 }
1472
1473 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1474 sizeof(struct tcphdr);
1475 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1476 * some common options. If this is an odd packet (because we have SACK
1477 * blocks etc) then our calculated header_len will be different, and
1478 * we have to adjust mss_now correspondingly */
1479 if (header_len != tp->tcp_header_len) {
1480 int delta = (int) header_len - tp->tcp_header_len;
1481 mss_now -= delta;
1482 }
1483
1484 return mss_now;
1485 }
1486
1487 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1488 * As additional protections, we do not touch cwnd in retransmission phases,
1489 * and if application hit its sndbuf limit recently.
1490 */
1491 static void tcp_cwnd_application_limited(struct sock *sk)
1492 {
1493 struct tcp_sock *tp = tcp_sk(sk);
1494
1495 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1496 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1497 /* Limited by application or receiver window. */
1498 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1499 u32 win_used = max(tp->snd_cwnd_used, init_win);
1500 if (win_used < tp->snd_cwnd) {
1501 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1502 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1503 }
1504 tp->snd_cwnd_used = 0;
1505 }
1506 tp->snd_cwnd_stamp = tcp_time_stamp;
1507 }
1508
1509 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1510 {
1511 struct tcp_sock *tp = tcp_sk(sk);
1512
1513 /* Track the maximum number of outstanding packets in each
1514 * window, and remember whether we were cwnd-limited then.
1515 */
1516 if (!before(tp->snd_una, tp->max_packets_seq) ||
1517 tp->packets_out > tp->max_packets_out) {
1518 tp->max_packets_out = tp->packets_out;
1519 tp->max_packets_seq = tp->snd_nxt;
1520 tp->is_cwnd_limited = is_cwnd_limited;
1521 }
1522
1523 if (tcp_is_cwnd_limited(sk)) {
1524 /* Network is feed fully. */
1525 tp->snd_cwnd_used = 0;
1526 tp->snd_cwnd_stamp = tcp_time_stamp;
1527 } else {
1528 /* Network starves. */
1529 if (tp->packets_out > tp->snd_cwnd_used)
1530 tp->snd_cwnd_used = tp->packets_out;
1531
1532 if (sysctl_tcp_slow_start_after_idle &&
1533 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1534 tcp_cwnd_application_limited(sk);
1535
1536 /* The following conditions together indicate the starvation
1537 * is caused by insufficient sender buffer:
1538 * 1) just sent some data (see tcp_write_xmit)
1539 * 2) not cwnd limited (this else condition)
1540 * 3) no more data to send (null tcp_send_head )
1541 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1542 */
1543 if (!tcp_send_head(sk) && sk->sk_socket &&
1544 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1545 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1546 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1547 }
1548 }
1549
1550 /* Minshall's variant of the Nagle send check. */
1551 static bool tcp_minshall_check(const struct tcp_sock *tp)
1552 {
1553 return after(tp->snd_sml, tp->snd_una) &&
1554 !after(tp->snd_sml, tp->snd_nxt);
1555 }
1556
1557 /* Update snd_sml if this skb is under mss
1558 * Note that a TSO packet might end with a sub-mss segment
1559 * The test is really :
1560 * if ((skb->len % mss) != 0)
1561 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1562 * But we can avoid doing the divide again given we already have
1563 * skb_pcount = skb->len / mss_now
1564 */
1565 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1566 const struct sk_buff *skb)
1567 {
1568 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1569 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1570 }
1571
1572 /* Return false, if packet can be sent now without violation Nagle's rules:
1573 * 1. It is full sized. (provided by caller in %partial bool)
1574 * 2. Or it contains FIN. (already checked by caller)
1575 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1576 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1577 * With Minshall's modification: all sent small packets are ACKed.
1578 */
1579 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1580 int nonagle)
1581 {
1582 return partial &&
1583 ((nonagle & TCP_NAGLE_CORK) ||
1584 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1585 }
1586
1587 /* Return how many segs we'd like on a TSO packet,
1588 * to send one TSO packet per ms
1589 */
1590 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1591 int min_tso_segs)
1592 {
1593 u32 bytes, segs;
1594
1595 bytes = min(sk->sk_pacing_rate >> 10,
1596 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1597
1598 /* Goal is to send at least one packet per ms,
1599 * not one big TSO packet every 100 ms.
1600 * This preserves ACK clocking and is consistent
1601 * with tcp_tso_should_defer() heuristic.
1602 */
1603 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1604
1605 return min_t(u32, segs, sk->sk_gso_max_segs);
1606 }
1607 EXPORT_SYMBOL(tcp_tso_autosize);
1608
1609 /* Return the number of segments we want in the skb we are transmitting.
1610 * See if congestion control module wants to decide; otherwise, autosize.
1611 */
1612 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1613 {
1614 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1615 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1616
1617 return tso_segs ? :
1618 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1619 }
1620
1621 /* Returns the portion of skb which can be sent right away */
1622 static unsigned int tcp_mss_split_point(const struct sock *sk,
1623 const struct sk_buff *skb,
1624 unsigned int mss_now,
1625 unsigned int max_segs,
1626 int nonagle)
1627 {
1628 const struct tcp_sock *tp = tcp_sk(sk);
1629 u32 partial, needed, window, max_len;
1630
1631 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1632 max_len = mss_now * max_segs;
1633
1634 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1635 return max_len;
1636
1637 needed = min(skb->len, window);
1638
1639 if (max_len <= needed)
1640 return max_len;
1641
1642 partial = needed % mss_now;
1643 /* If last segment is not a full MSS, check if Nagle rules allow us
1644 * to include this last segment in this skb.
1645 * Otherwise, we'll split the skb at last MSS boundary
1646 */
1647 if (tcp_nagle_check(partial != 0, tp, nonagle))
1648 return needed - partial;
1649
1650 return needed;
1651 }
1652
1653 /* Can at least one segment of SKB be sent right now, according to the
1654 * congestion window rules? If so, return how many segments are allowed.
1655 */
1656 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1657 const struct sk_buff *skb)
1658 {
1659 u32 in_flight, cwnd, halfcwnd;
1660
1661 /* Don't be strict about the congestion window for the final FIN. */
1662 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1663 tcp_skb_pcount(skb) == 1)
1664 return 1;
1665
1666 in_flight = tcp_packets_in_flight(tp);
1667 cwnd = tp->snd_cwnd;
1668 if (in_flight >= cwnd)
1669 return 0;
1670
1671 /* For better scheduling, ensure we have at least
1672 * 2 GSO packets in flight.
1673 */
1674 halfcwnd = max(cwnd >> 1, 1U);
1675 return min(halfcwnd, cwnd - in_flight);
1676 }
1677
1678 /* Initialize TSO state of a skb.
1679 * This must be invoked the first time we consider transmitting
1680 * SKB onto the wire.
1681 */
1682 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1683 {
1684 int tso_segs = tcp_skb_pcount(skb);
1685
1686 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1687 tcp_set_skb_tso_segs(skb, mss_now);
1688 tso_segs = tcp_skb_pcount(skb);
1689 }
1690 return tso_segs;
1691 }
1692
1693
1694 /* Return true if the Nagle test allows this packet to be
1695 * sent now.
1696 */
1697 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1698 unsigned int cur_mss, int nonagle)
1699 {
1700 /* Nagle rule does not apply to frames, which sit in the middle of the
1701 * write_queue (they have no chances to get new data).
1702 *
1703 * This is implemented in the callers, where they modify the 'nonagle'
1704 * argument based upon the location of SKB in the send queue.
1705 */
1706 if (nonagle & TCP_NAGLE_PUSH)
1707 return true;
1708
1709 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1710 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1711 return true;
1712
1713 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1714 return true;
1715
1716 return false;
1717 }
1718
1719 /* Does at least the first segment of SKB fit into the send window? */
1720 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1721 const struct sk_buff *skb,
1722 unsigned int cur_mss)
1723 {
1724 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1725
1726 if (skb->len > cur_mss)
1727 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1728
1729 return !after(end_seq, tcp_wnd_end(tp));
1730 }
1731
1732 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1733 * should be put on the wire right now. If so, it returns the number of
1734 * packets allowed by the congestion window.
1735 */
1736 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1737 unsigned int cur_mss, int nonagle)
1738 {
1739 const struct tcp_sock *tp = tcp_sk(sk);
1740 unsigned int cwnd_quota;
1741
1742 tcp_init_tso_segs(skb, cur_mss);
1743
1744 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1745 return 0;
1746
1747 cwnd_quota = tcp_cwnd_test(tp, skb);
1748 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1749 cwnd_quota = 0;
1750
1751 return cwnd_quota;
1752 }
1753
1754 /* Test if sending is allowed right now. */
1755 bool tcp_may_send_now(struct sock *sk)
1756 {
1757 const struct tcp_sock *tp = tcp_sk(sk);
1758 struct sk_buff *skb = tcp_send_head(sk);
1759
1760 return skb &&
1761 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1762 (tcp_skb_is_last(sk, skb) ?
1763 tp->nonagle : TCP_NAGLE_PUSH));
1764 }
1765
1766 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1767 * which is put after SKB on the list. It is very much like
1768 * tcp_fragment() except that it may make several kinds of assumptions
1769 * in order to speed up the splitting operation. In particular, we
1770 * know that all the data is in scatter-gather pages, and that the
1771 * packet has never been sent out before (and thus is not cloned).
1772 */
1773 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1774 unsigned int mss_now, gfp_t gfp)
1775 {
1776 struct sk_buff *buff;
1777 int nlen = skb->len - len;
1778 u8 flags;
1779
1780 /* All of a TSO frame must be composed of paged data. */
1781 if (skb->len != skb->data_len)
1782 return tcp_fragment(sk, skb, len, mss_now, gfp);
1783
1784 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1785 if (unlikely(!buff))
1786 return -ENOMEM;
1787
1788 sk->sk_wmem_queued += buff->truesize;
1789 sk_mem_charge(sk, buff->truesize);
1790 buff->truesize += nlen;
1791 skb->truesize -= nlen;
1792
1793 /* Correct the sequence numbers. */
1794 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1795 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1796 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1797
1798 /* PSH and FIN should only be set in the second packet. */
1799 flags = TCP_SKB_CB(skb)->tcp_flags;
1800 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1801 TCP_SKB_CB(buff)->tcp_flags = flags;
1802
1803 /* This packet was never sent out yet, so no SACK bits. */
1804 TCP_SKB_CB(buff)->sacked = 0;
1805
1806 tcp_skb_fragment_eor(skb, buff);
1807
1808 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1809 skb_split(skb, buff, len);
1810 tcp_fragment_tstamp(skb, buff);
1811
1812 /* Fix up tso_factor for both original and new SKB. */
1813 tcp_set_skb_tso_segs(skb, mss_now);
1814 tcp_set_skb_tso_segs(buff, mss_now);
1815
1816 /* Link BUFF into the send queue. */
1817 __skb_header_release(buff);
1818 tcp_insert_write_queue_after(skb, buff, sk);
1819
1820 return 0;
1821 }
1822
1823 /* Try to defer sending, if possible, in order to minimize the amount
1824 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1825 *
1826 * This algorithm is from John Heffner.
1827 */
1828 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1829 bool *is_cwnd_limited, u32 max_segs)
1830 {
1831 const struct inet_connection_sock *icsk = inet_csk(sk);
1832 u32 age, send_win, cong_win, limit, in_flight;
1833 struct tcp_sock *tp = tcp_sk(sk);
1834 struct skb_mstamp now;
1835 struct sk_buff *head;
1836 int win_divisor;
1837
1838 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1839 goto send_now;
1840
1841 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1842 goto send_now;
1843
1844 /* Avoid bursty behavior by allowing defer
1845 * only if the last write was recent.
1846 */
1847 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1848 goto send_now;
1849
1850 in_flight = tcp_packets_in_flight(tp);
1851
1852 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1853
1854 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1855
1856 /* From in_flight test above, we know that cwnd > in_flight. */
1857 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1858
1859 limit = min(send_win, cong_win);
1860
1861 /* If a full-sized TSO skb can be sent, do it. */
1862 if (limit >= max_segs * tp->mss_cache)
1863 goto send_now;
1864
1865 /* Middle in queue won't get any more data, full sendable already? */
1866 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1867 goto send_now;
1868
1869 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1870 if (win_divisor) {
1871 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1872
1873 /* If at least some fraction of a window is available,
1874 * just use it.
1875 */
1876 chunk /= win_divisor;
1877 if (limit >= chunk)
1878 goto send_now;
1879 } else {
1880 /* Different approach, try not to defer past a single
1881 * ACK. Receiver should ACK every other full sized
1882 * frame, so if we have space for more than 3 frames
1883 * then send now.
1884 */
1885 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1886 goto send_now;
1887 }
1888
1889 head = tcp_write_queue_head(sk);
1890 skb_mstamp_get(&now);
1891 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1892 /* If next ACK is likely to come too late (half srtt), do not defer */
1893 if (age < (tp->srtt_us >> 4))
1894 goto send_now;
1895
1896 /* Ok, it looks like it is advisable to defer. */
1897
1898 if (cong_win < send_win && cong_win <= skb->len)
1899 *is_cwnd_limited = true;
1900
1901 return true;
1902
1903 send_now:
1904 return false;
1905 }
1906
1907 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1908 {
1909 struct inet_connection_sock *icsk = inet_csk(sk);
1910 struct tcp_sock *tp = tcp_sk(sk);
1911 struct net *net = sock_net(sk);
1912 u32 interval;
1913 s32 delta;
1914
1915 interval = net->ipv4.sysctl_tcp_probe_interval;
1916 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1917 if (unlikely(delta >= interval * HZ)) {
1918 int mss = tcp_current_mss(sk);
1919
1920 /* Update current search range */
1921 icsk->icsk_mtup.probe_size = 0;
1922 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1923 sizeof(struct tcphdr) +
1924 icsk->icsk_af_ops->net_header_len;
1925 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1926
1927 /* Update probe time stamp */
1928 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1929 }
1930 }
1931
1932 /* Create a new MTU probe if we are ready.
1933 * MTU probe is regularly attempting to increase the path MTU by
1934 * deliberately sending larger packets. This discovers routing
1935 * changes resulting in larger path MTUs.
1936 *
1937 * Returns 0 if we should wait to probe (no cwnd available),
1938 * 1 if a probe was sent,
1939 * -1 otherwise
1940 */
1941 static int tcp_mtu_probe(struct sock *sk)
1942 {
1943 struct inet_connection_sock *icsk = inet_csk(sk);
1944 struct tcp_sock *tp = tcp_sk(sk);
1945 struct sk_buff *skb, *nskb, *next;
1946 struct net *net = sock_net(sk);
1947 int probe_size;
1948 int size_needed;
1949 int copy, len;
1950 int mss_now;
1951 int interval;
1952
1953 /* Not currently probing/verifying,
1954 * not in recovery,
1955 * have enough cwnd, and
1956 * not SACKing (the variable headers throw things off)
1957 */
1958 if (likely(!icsk->icsk_mtup.enabled ||
1959 icsk->icsk_mtup.probe_size ||
1960 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1961 tp->snd_cwnd < 11 ||
1962 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1963 return -1;
1964
1965 /* Use binary search for probe_size between tcp_mss_base,
1966 * and current mss_clamp. if (search_high - search_low)
1967 * smaller than a threshold, backoff from probing.
1968 */
1969 mss_now = tcp_current_mss(sk);
1970 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1971 icsk->icsk_mtup.search_low) >> 1);
1972 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1973 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1974 /* When misfortune happens, we are reprobing actively,
1975 * and then reprobe timer has expired. We stick with current
1976 * probing process by not resetting search range to its orignal.
1977 */
1978 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1979 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1980 /* Check whether enough time has elaplased for
1981 * another round of probing.
1982 */
1983 tcp_mtu_check_reprobe(sk);
1984 return -1;
1985 }
1986
1987 /* Have enough data in the send queue to probe? */
1988 if (tp->write_seq - tp->snd_nxt < size_needed)
1989 return -1;
1990
1991 if (tp->snd_wnd < size_needed)
1992 return -1;
1993 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1994 return 0;
1995
1996 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1997 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1998 if (!tcp_packets_in_flight(tp))
1999 return -1;
2000 else
2001 return 0;
2002 }
2003
2004 /* We're allowed to probe. Build it now. */
2005 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2006 if (!nskb)
2007 return -1;
2008 sk->sk_wmem_queued += nskb->truesize;
2009 sk_mem_charge(sk, nskb->truesize);
2010
2011 skb = tcp_send_head(sk);
2012
2013 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2014 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2015 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2016 TCP_SKB_CB(nskb)->sacked = 0;
2017 nskb->csum = 0;
2018 nskb->ip_summed = skb->ip_summed;
2019
2020 tcp_insert_write_queue_before(nskb, skb, sk);
2021
2022 len = 0;
2023 tcp_for_write_queue_from_safe(skb, next, sk) {
2024 copy = min_t(int, skb->len, probe_size - len);
2025 if (nskb->ip_summed) {
2026 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2027 } else {
2028 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2029 skb_put(nskb, copy),
2030 copy, 0);
2031 nskb->csum = csum_block_add(nskb->csum, csum, len);
2032 }
2033
2034 if (skb->len <= copy) {
2035 /* We've eaten all the data from this skb.
2036 * Throw it away. */
2037 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2038 tcp_unlink_write_queue(skb, sk);
2039 sk_wmem_free_skb(sk, skb);
2040 } else {
2041 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2042 ~(TCPHDR_FIN|TCPHDR_PSH);
2043 if (!skb_shinfo(skb)->nr_frags) {
2044 skb_pull(skb, copy);
2045 if (skb->ip_summed != CHECKSUM_PARTIAL)
2046 skb->csum = csum_partial(skb->data,
2047 skb->len, 0);
2048 } else {
2049 __pskb_trim_head(skb, copy);
2050 tcp_set_skb_tso_segs(skb, mss_now);
2051 }
2052 TCP_SKB_CB(skb)->seq += copy;
2053 }
2054
2055 len += copy;
2056
2057 if (len >= probe_size)
2058 break;
2059 }
2060 tcp_init_tso_segs(nskb, nskb->len);
2061
2062 /* We're ready to send. If this fails, the probe will
2063 * be resegmented into mss-sized pieces by tcp_write_xmit().
2064 */
2065 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2066 /* Decrement cwnd here because we are sending
2067 * effectively two packets. */
2068 tp->snd_cwnd--;
2069 tcp_event_new_data_sent(sk, nskb);
2070
2071 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2072 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2073 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2074
2075 return 1;
2076 }
2077
2078 return -1;
2079 }
2080
2081 /* TCP Small Queues :
2082 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2083 * (These limits are doubled for retransmits)
2084 * This allows for :
2085 * - better RTT estimation and ACK scheduling
2086 * - faster recovery
2087 * - high rates
2088 * Alas, some drivers / subsystems require a fair amount
2089 * of queued bytes to ensure line rate.
2090 * One example is wifi aggregation (802.11 AMPDU)
2091 */
2092 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2093 unsigned int factor)
2094 {
2095 unsigned int limit;
2096
2097 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2098 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2099 limit <<= factor;
2100
2101 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2102 /* Always send the 1st or 2nd skb in write queue.
2103 * No need to wait for TX completion to call us back,
2104 * after softirq/tasklet schedule.
2105 * This helps when TX completions are delayed too much.
2106 */
2107 if (skb == sk->sk_write_queue.next ||
2108 skb->prev == sk->sk_write_queue.next)
2109 return false;
2110
2111 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2112 /* It is possible TX completion already happened
2113 * before we set TSQ_THROTTLED, so we must
2114 * test again the condition.
2115 */
2116 smp_mb__after_atomic();
2117 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2118 return true;
2119 }
2120 return false;
2121 }
2122
2123 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2124 {
2125 const u32 now = tcp_time_stamp;
2126
2127 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2128 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2129 tp->chrono_start = now;
2130 tp->chrono_type = new;
2131 }
2132
2133 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2134 {
2135 struct tcp_sock *tp = tcp_sk(sk);
2136
2137 /* If there are multiple conditions worthy of tracking in a
2138 * chronograph then the highest priority enum takes precedence
2139 * over the other conditions. So that if something "more interesting"
2140 * starts happening, stop the previous chrono and start a new one.
2141 */
2142 if (type > tp->chrono_type)
2143 tcp_chrono_set(tp, type);
2144 }
2145
2146 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2147 {
2148 struct tcp_sock *tp = tcp_sk(sk);
2149
2150
2151 /* There are multiple conditions worthy of tracking in a
2152 * chronograph, so that the highest priority enum takes
2153 * precedence over the other conditions (see tcp_chrono_start).
2154 * If a condition stops, we only stop chrono tracking if
2155 * it's the "most interesting" or current chrono we are
2156 * tracking and starts busy chrono if we have pending data.
2157 */
2158 if (tcp_write_queue_empty(sk))
2159 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2160 else if (type == tp->chrono_type)
2161 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2162 }
2163
2164 /* This routine writes packets to the network. It advances the
2165 * send_head. This happens as incoming acks open up the remote
2166 * window for us.
2167 *
2168 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2169 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2170 * account rare use of URG, this is not a big flaw.
2171 *
2172 * Send at most one packet when push_one > 0. Temporarily ignore
2173 * cwnd limit to force at most one packet out when push_one == 2.
2174
2175 * Returns true, if no segments are in flight and we have queued segments,
2176 * but cannot send anything now because of SWS or another problem.
2177 */
2178 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2179 int push_one, gfp_t gfp)
2180 {
2181 struct tcp_sock *tp = tcp_sk(sk);
2182 struct sk_buff *skb;
2183 unsigned int tso_segs, sent_pkts;
2184 int cwnd_quota;
2185 int result;
2186 bool is_cwnd_limited = false, is_rwnd_limited = false;
2187 u32 max_segs;
2188
2189 sent_pkts = 0;
2190
2191 if (!push_one) {
2192 /* Do MTU probing. */
2193 result = tcp_mtu_probe(sk);
2194 if (!result) {
2195 return false;
2196 } else if (result > 0) {
2197 sent_pkts = 1;
2198 }
2199 }
2200
2201 max_segs = tcp_tso_segs(sk, mss_now);
2202 while ((skb = tcp_send_head(sk))) {
2203 unsigned int limit;
2204
2205 tso_segs = tcp_init_tso_segs(skb, mss_now);
2206 BUG_ON(!tso_segs);
2207
2208 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2209 /* "skb_mstamp" is used as a start point for the retransmit timer */
2210 skb_mstamp_get(&skb->skb_mstamp);
2211 goto repair; /* Skip network transmission */
2212 }
2213
2214 cwnd_quota = tcp_cwnd_test(tp, skb);
2215 if (!cwnd_quota) {
2216 if (push_one == 2)
2217 /* Force out a loss probe pkt. */
2218 cwnd_quota = 1;
2219 else
2220 break;
2221 }
2222
2223 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2224 is_rwnd_limited = true;
2225 break;
2226 }
2227
2228 if (tso_segs == 1) {
2229 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2230 (tcp_skb_is_last(sk, skb) ?
2231 nonagle : TCP_NAGLE_PUSH))))
2232 break;
2233 } else {
2234 if (!push_one &&
2235 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2236 max_segs))
2237 break;
2238 }
2239
2240 limit = mss_now;
2241 if (tso_segs > 1 && !tcp_urg_mode(tp))
2242 limit = tcp_mss_split_point(sk, skb, mss_now,
2243 min_t(unsigned int,
2244 cwnd_quota,
2245 max_segs),
2246 nonagle);
2247
2248 if (skb->len > limit &&
2249 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2250 break;
2251
2252 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2253 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2254 if (tcp_small_queue_check(sk, skb, 0))
2255 break;
2256
2257 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2258 break;
2259
2260 repair:
2261 /* Advance the send_head. This one is sent out.
2262 * This call will increment packets_out.
2263 */
2264 tcp_event_new_data_sent(sk, skb);
2265
2266 tcp_minshall_update(tp, mss_now, skb);
2267 sent_pkts += tcp_skb_pcount(skb);
2268
2269 if (push_one)
2270 break;
2271 }
2272
2273 if (is_rwnd_limited)
2274 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2275 else
2276 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2277
2278 if (likely(sent_pkts)) {
2279 if (tcp_in_cwnd_reduction(sk))
2280 tp->prr_out += sent_pkts;
2281
2282 /* Send one loss probe per tail loss episode. */
2283 if (push_one != 2)
2284 tcp_schedule_loss_probe(sk);
2285 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2286 tcp_cwnd_validate(sk, is_cwnd_limited);
2287 return false;
2288 }
2289 return !tp->packets_out && tcp_send_head(sk);
2290 }
2291
2292 bool tcp_schedule_loss_probe(struct sock *sk)
2293 {
2294 struct inet_connection_sock *icsk = inet_csk(sk);
2295 struct tcp_sock *tp = tcp_sk(sk);
2296 u32 timeout, tlp_time_stamp, rto_time_stamp;
2297 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2298
2299 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2300 return false;
2301 /* No consecutive loss probes. */
2302 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2303 tcp_rearm_rto(sk);
2304 return false;
2305 }
2306 /* Don't do any loss probe on a Fast Open connection before 3WHS
2307 * finishes.
2308 */
2309 if (tp->fastopen_rsk)
2310 return false;
2311
2312 /* TLP is only scheduled when next timer event is RTO. */
2313 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2314 return false;
2315
2316 /* Schedule a loss probe in 2*RTT for SACK capable connections
2317 * in Open state, that are either limited by cwnd or application.
2318 */
2319 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2320 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2321 return false;
2322
2323 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2324 tcp_send_head(sk))
2325 return false;
2326
2327 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2328 * for delayed ack when there's one outstanding packet. If no RTT
2329 * sample is available then probe after TCP_TIMEOUT_INIT.
2330 */
2331 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2332 if (tp->packets_out == 1)
2333 timeout = max_t(u32, timeout,
2334 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2335 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2336
2337 /* If RTO is shorter, just schedule TLP in its place. */
2338 tlp_time_stamp = tcp_time_stamp + timeout;
2339 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2340 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2341 s32 delta = rto_time_stamp - tcp_time_stamp;
2342 if (delta > 0)
2343 timeout = delta;
2344 }
2345
2346 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2347 TCP_RTO_MAX);
2348 return true;
2349 }
2350
2351 /* Thanks to skb fast clones, we can detect if a prior transmit of
2352 * a packet is still in a qdisc or driver queue.
2353 * In this case, there is very little point doing a retransmit !
2354 */
2355 static bool skb_still_in_host_queue(const struct sock *sk,
2356 const struct sk_buff *skb)
2357 {
2358 if (unlikely(skb_fclone_busy(sk, skb))) {
2359 NET_INC_STATS(sock_net(sk),
2360 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2361 return true;
2362 }
2363 return false;
2364 }
2365
2366 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2367 * retransmit the last segment.
2368 */
2369 void tcp_send_loss_probe(struct sock *sk)
2370 {
2371 struct tcp_sock *tp = tcp_sk(sk);
2372 struct sk_buff *skb;
2373 int pcount;
2374 int mss = tcp_current_mss(sk);
2375
2376 skb = tcp_send_head(sk);
2377 if (skb) {
2378 if (tcp_snd_wnd_test(tp, skb, mss)) {
2379 pcount = tp->packets_out;
2380 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2381 if (tp->packets_out > pcount)
2382 goto probe_sent;
2383 goto rearm_timer;
2384 }
2385 skb = tcp_write_queue_prev(sk, skb);
2386 } else {
2387 skb = tcp_write_queue_tail(sk);
2388 }
2389
2390 /* At most one outstanding TLP retransmission. */
2391 if (tp->tlp_high_seq)
2392 goto rearm_timer;
2393
2394 /* Retransmit last segment. */
2395 if (WARN_ON(!skb))
2396 goto rearm_timer;
2397
2398 if (skb_still_in_host_queue(sk, skb))
2399 goto rearm_timer;
2400
2401 pcount = tcp_skb_pcount(skb);
2402 if (WARN_ON(!pcount))
2403 goto rearm_timer;
2404
2405 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2406 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2407 GFP_ATOMIC)))
2408 goto rearm_timer;
2409 skb = tcp_write_queue_next(sk, skb);
2410 }
2411
2412 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2413 goto rearm_timer;
2414
2415 if (__tcp_retransmit_skb(sk, skb, 1))
2416 goto rearm_timer;
2417
2418 /* Record snd_nxt for loss detection. */
2419 tp->tlp_high_seq = tp->snd_nxt;
2420
2421 probe_sent:
2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2423 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2424 inet_csk(sk)->icsk_pending = 0;
2425 rearm_timer:
2426 tcp_rearm_rto(sk);
2427 }
2428
2429 /* Push out any pending frames which were held back due to
2430 * TCP_CORK or attempt at coalescing tiny packets.
2431 * The socket must be locked by the caller.
2432 */
2433 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2434 int nonagle)
2435 {
2436 /* If we are closed, the bytes will have to remain here.
2437 * In time closedown will finish, we empty the write queue and
2438 * all will be happy.
2439 */
2440 if (unlikely(sk->sk_state == TCP_CLOSE))
2441 return;
2442
2443 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2444 sk_gfp_mask(sk, GFP_ATOMIC)))
2445 tcp_check_probe_timer(sk);
2446 }
2447
2448 /* Send _single_ skb sitting at the send head. This function requires
2449 * true push pending frames to setup probe timer etc.
2450 */
2451 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2452 {
2453 struct sk_buff *skb = tcp_send_head(sk);
2454
2455 BUG_ON(!skb || skb->len < mss_now);
2456
2457 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2458 }
2459
2460 /* This function returns the amount that we can raise the
2461 * usable window based on the following constraints
2462 *
2463 * 1. The window can never be shrunk once it is offered (RFC 793)
2464 * 2. We limit memory per socket
2465 *
2466 * RFC 1122:
2467 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2468 * RECV.NEXT + RCV.WIN fixed until:
2469 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2470 *
2471 * i.e. don't raise the right edge of the window until you can raise
2472 * it at least MSS bytes.
2473 *
2474 * Unfortunately, the recommended algorithm breaks header prediction,
2475 * since header prediction assumes th->window stays fixed.
2476 *
2477 * Strictly speaking, keeping th->window fixed violates the receiver
2478 * side SWS prevention criteria. The problem is that under this rule
2479 * a stream of single byte packets will cause the right side of the
2480 * window to always advance by a single byte.
2481 *
2482 * Of course, if the sender implements sender side SWS prevention
2483 * then this will not be a problem.
2484 *
2485 * BSD seems to make the following compromise:
2486 *
2487 * If the free space is less than the 1/4 of the maximum
2488 * space available and the free space is less than 1/2 mss,
2489 * then set the window to 0.
2490 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2491 * Otherwise, just prevent the window from shrinking
2492 * and from being larger than the largest representable value.
2493 *
2494 * This prevents incremental opening of the window in the regime
2495 * where TCP is limited by the speed of the reader side taking
2496 * data out of the TCP receive queue. It does nothing about
2497 * those cases where the window is constrained on the sender side
2498 * because the pipeline is full.
2499 *
2500 * BSD also seems to "accidentally" limit itself to windows that are a
2501 * multiple of MSS, at least until the free space gets quite small.
2502 * This would appear to be a side effect of the mbuf implementation.
2503 * Combining these two algorithms results in the observed behavior
2504 * of having a fixed window size at almost all times.
2505 *
2506 * Below we obtain similar behavior by forcing the offered window to
2507 * a multiple of the mss when it is feasible to do so.
2508 *
2509 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2510 * Regular options like TIMESTAMP are taken into account.
2511 */
2512 u32 __tcp_select_window(struct sock *sk)
2513 {
2514 struct inet_connection_sock *icsk = inet_csk(sk);
2515 struct tcp_sock *tp = tcp_sk(sk);
2516 /* MSS for the peer's data. Previous versions used mss_clamp
2517 * here. I don't know if the value based on our guesses
2518 * of peer's MSS is better for the performance. It's more correct
2519 * but may be worse for the performance because of rcv_mss
2520 * fluctuations. --SAW 1998/11/1
2521 */
2522 int mss = icsk->icsk_ack.rcv_mss;
2523 int free_space = tcp_space(sk);
2524 int allowed_space = tcp_full_space(sk);
2525 int full_space = min_t(int, tp->window_clamp, allowed_space);
2526 int window;
2527
2528 if (unlikely(mss > full_space)) {
2529 mss = full_space;
2530 if (mss <= 0)
2531 return 0;
2532 }
2533 if (free_space < (full_space >> 1)) {
2534 icsk->icsk_ack.quick = 0;
2535
2536 if (tcp_under_memory_pressure(sk))
2537 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2538 4U * tp->advmss);
2539
2540 /* free_space might become our new window, make sure we don't
2541 * increase it due to wscale.
2542 */
2543 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2544
2545 /* if free space is less than mss estimate, or is below 1/16th
2546 * of the maximum allowed, try to move to zero-window, else
2547 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2548 * new incoming data is dropped due to memory limits.
2549 * With large window, mss test triggers way too late in order
2550 * to announce zero window in time before rmem limit kicks in.
2551 */
2552 if (free_space < (allowed_space >> 4) || free_space < mss)
2553 return 0;
2554 }
2555
2556 if (free_space > tp->rcv_ssthresh)
2557 free_space = tp->rcv_ssthresh;
2558
2559 /* Don't do rounding if we are using window scaling, since the
2560 * scaled window will not line up with the MSS boundary anyway.
2561 */
2562 window = tp->rcv_wnd;
2563 if (tp->rx_opt.rcv_wscale) {
2564 window = free_space;
2565
2566 /* Advertise enough space so that it won't get scaled away.
2567 * Import case: prevent zero window announcement if
2568 * 1<<rcv_wscale > mss.
2569 */
2570 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2571 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2572 << tp->rx_opt.rcv_wscale);
2573 } else {
2574 /* Get the largest window that is a nice multiple of mss.
2575 * Window clamp already applied above.
2576 * If our current window offering is within 1 mss of the
2577 * free space we just keep it. This prevents the divide
2578 * and multiply from happening most of the time.
2579 * We also don't do any window rounding when the free space
2580 * is too small.
2581 */
2582 if (window <= free_space - mss || window > free_space)
2583 window = (free_space / mss) * mss;
2584 else if (mss == full_space &&
2585 free_space > window + (full_space >> 1))
2586 window = free_space;
2587 }
2588
2589 return window;
2590 }
2591
2592 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2593 const struct sk_buff *next_skb)
2594 {
2595 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2596 const struct skb_shared_info *next_shinfo =
2597 skb_shinfo(next_skb);
2598 struct skb_shared_info *shinfo = skb_shinfo(skb);
2599
2600 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2601 shinfo->tskey = next_shinfo->tskey;
2602 TCP_SKB_CB(skb)->txstamp_ack |=
2603 TCP_SKB_CB(next_skb)->txstamp_ack;
2604 }
2605 }
2606
2607 /* Collapses two adjacent SKB's during retransmission. */
2608 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2609 {
2610 struct tcp_sock *tp = tcp_sk(sk);
2611 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2612 int skb_size, next_skb_size;
2613
2614 skb_size = skb->len;
2615 next_skb_size = next_skb->len;
2616
2617 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2618
2619 if (next_skb_size) {
2620 if (next_skb_size <= skb_availroom(skb))
2621 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2622 next_skb_size);
2623 else if (!skb_shift(skb, next_skb, next_skb_size))
2624 return false;
2625 }
2626 tcp_highest_sack_combine(sk, next_skb, skb);
2627
2628 tcp_unlink_write_queue(next_skb, sk);
2629
2630 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2631 skb->ip_summed = CHECKSUM_PARTIAL;
2632
2633 if (skb->ip_summed != CHECKSUM_PARTIAL)
2634 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2635
2636 /* Update sequence range on original skb. */
2637 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2638
2639 /* Merge over control information. This moves PSH/FIN etc. over */
2640 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2641
2642 /* All done, get rid of second SKB and account for it so
2643 * packet counting does not break.
2644 */
2645 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2646 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2647
2648 /* changed transmit queue under us so clear hints */
2649 tcp_clear_retrans_hints_partial(tp);
2650 if (next_skb == tp->retransmit_skb_hint)
2651 tp->retransmit_skb_hint = skb;
2652
2653 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2654
2655 tcp_skb_collapse_tstamp(skb, next_skb);
2656
2657 sk_wmem_free_skb(sk, next_skb);
2658 return true;
2659 }
2660
2661 /* Check if coalescing SKBs is legal. */
2662 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2663 {
2664 if (tcp_skb_pcount(skb) > 1)
2665 return false;
2666 if (skb_cloned(skb))
2667 return false;
2668 if (skb == tcp_send_head(sk))
2669 return false;
2670 /* Some heuristics for collapsing over SACK'd could be invented */
2671 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2672 return false;
2673
2674 return true;
2675 }
2676
2677 /* Collapse packets in the retransmit queue to make to create
2678 * less packets on the wire. This is only done on retransmission.
2679 */
2680 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2681 int space)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 struct sk_buff *skb = to, *tmp;
2685 bool first = true;
2686
2687 if (!sysctl_tcp_retrans_collapse)
2688 return;
2689 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2690 return;
2691
2692 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2693 if (!tcp_can_collapse(sk, skb))
2694 break;
2695
2696 if (!tcp_skb_can_collapse_to(to))
2697 break;
2698
2699 space -= skb->len;
2700
2701 if (first) {
2702 first = false;
2703 continue;
2704 }
2705
2706 if (space < 0)
2707 break;
2708
2709 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2710 break;
2711
2712 if (!tcp_collapse_retrans(sk, to))
2713 break;
2714 }
2715 }
2716
2717 /* This retransmits one SKB. Policy decisions and retransmit queue
2718 * state updates are done by the caller. Returns non-zero if an
2719 * error occurred which prevented the send.
2720 */
2721 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2722 {
2723 struct inet_connection_sock *icsk = inet_csk(sk);
2724 struct tcp_sock *tp = tcp_sk(sk);
2725 unsigned int cur_mss;
2726 int diff, len, err;
2727
2728
2729 /* Inconclusive MTU probe */
2730 if (icsk->icsk_mtup.probe_size)
2731 icsk->icsk_mtup.probe_size = 0;
2732
2733 /* Do not sent more than we queued. 1/4 is reserved for possible
2734 * copying overhead: fragmentation, tunneling, mangling etc.
2735 */
2736 if (atomic_read(&sk->sk_wmem_alloc) >
2737 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2738 sk->sk_sndbuf))
2739 return -EAGAIN;
2740
2741 if (skb_still_in_host_queue(sk, skb))
2742 return -EBUSY;
2743
2744 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2745 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2746 BUG();
2747 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2748 return -ENOMEM;
2749 }
2750
2751 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2752 return -EHOSTUNREACH; /* Routing failure or similar. */
2753
2754 cur_mss = tcp_current_mss(sk);
2755
2756 /* If receiver has shrunk his window, and skb is out of
2757 * new window, do not retransmit it. The exception is the
2758 * case, when window is shrunk to zero. In this case
2759 * our retransmit serves as a zero window probe.
2760 */
2761 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2762 TCP_SKB_CB(skb)->seq != tp->snd_una)
2763 return -EAGAIN;
2764
2765 len = cur_mss * segs;
2766 if (skb->len > len) {
2767 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2768 return -ENOMEM; /* We'll try again later. */
2769 } else {
2770 if (skb_unclone(skb, GFP_ATOMIC))
2771 return -ENOMEM;
2772
2773 diff = tcp_skb_pcount(skb);
2774 tcp_set_skb_tso_segs(skb, cur_mss);
2775 diff -= tcp_skb_pcount(skb);
2776 if (diff)
2777 tcp_adjust_pcount(sk, skb, diff);
2778 if (skb->len < cur_mss)
2779 tcp_retrans_try_collapse(sk, skb, cur_mss);
2780 }
2781
2782 /* RFC3168, section 6.1.1.1. ECN fallback */
2783 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2784 tcp_ecn_clear_syn(sk, skb);
2785
2786 /* make sure skb->data is aligned on arches that require it
2787 * and check if ack-trimming & collapsing extended the headroom
2788 * beyond what csum_start can cover.
2789 */
2790 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2791 skb_headroom(skb) >= 0xFFFF)) {
2792 struct sk_buff *nskb;
2793
2794 skb_mstamp_get(&skb->skb_mstamp);
2795 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2796 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2797 -ENOBUFS;
2798 } else {
2799 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2800 }
2801
2802 if (likely(!err)) {
2803 segs = tcp_skb_pcount(skb);
2804
2805 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2806 /* Update global TCP statistics. */
2807 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2808 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2809 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2810 tp->total_retrans += segs;
2811 }
2812 return err;
2813 }
2814
2815 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2816 {
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 int err = __tcp_retransmit_skb(sk, skb, segs);
2819
2820 if (err == 0) {
2821 #if FASTRETRANS_DEBUG > 0
2822 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2823 net_dbg_ratelimited("retrans_out leaked\n");
2824 }
2825 #endif
2826 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2827 tp->retrans_out += tcp_skb_pcount(skb);
2828
2829 /* Save stamp of the first retransmit. */
2830 if (!tp->retrans_stamp)
2831 tp->retrans_stamp = tcp_skb_timestamp(skb);
2832
2833 } else if (err != -EBUSY) {
2834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2835 }
2836
2837 if (tp->undo_retrans < 0)
2838 tp->undo_retrans = 0;
2839 tp->undo_retrans += tcp_skb_pcount(skb);
2840 return err;
2841 }
2842
2843 /* Check if we forward retransmits are possible in the current
2844 * window/congestion state.
2845 */
2846 static bool tcp_can_forward_retransmit(struct sock *sk)
2847 {
2848 const struct inet_connection_sock *icsk = inet_csk(sk);
2849 const struct tcp_sock *tp = tcp_sk(sk);
2850
2851 /* Forward retransmissions are possible only during Recovery. */
2852 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2853 return false;
2854
2855 /* No forward retransmissions in Reno are possible. */
2856 if (tcp_is_reno(tp))
2857 return false;
2858
2859 /* Yeah, we have to make difficult choice between forward transmission
2860 * and retransmission... Both ways have their merits...
2861 *
2862 * For now we do not retransmit anything, while we have some new
2863 * segments to send. In the other cases, follow rule 3 for
2864 * NextSeg() specified in RFC3517.
2865 */
2866
2867 if (tcp_may_send_now(sk))
2868 return false;
2869
2870 return true;
2871 }
2872
2873 /* This gets called after a retransmit timeout, and the initially
2874 * retransmitted data is acknowledged. It tries to continue
2875 * resending the rest of the retransmit queue, until either
2876 * we've sent it all or the congestion window limit is reached.
2877 * If doing SACK, the first ACK which comes back for a timeout
2878 * based retransmit packet might feed us FACK information again.
2879 * If so, we use it to avoid unnecessarily retransmissions.
2880 */
2881 void tcp_xmit_retransmit_queue(struct sock *sk)
2882 {
2883 const struct inet_connection_sock *icsk = inet_csk(sk);
2884 struct tcp_sock *tp = tcp_sk(sk);
2885 struct sk_buff *skb;
2886 struct sk_buff *hole = NULL;
2887 u32 max_segs, last_lost;
2888 int mib_idx;
2889 int fwd_rexmitting = 0;
2890
2891 if (!tp->packets_out)
2892 return;
2893
2894 if (!tp->lost_out)
2895 tp->retransmit_high = tp->snd_una;
2896
2897 if (tp->retransmit_skb_hint) {
2898 skb = tp->retransmit_skb_hint;
2899 last_lost = TCP_SKB_CB(skb)->end_seq;
2900 if (after(last_lost, tp->retransmit_high))
2901 last_lost = tp->retransmit_high;
2902 } else {
2903 skb = tcp_write_queue_head(sk);
2904 last_lost = tp->snd_una;
2905 }
2906
2907 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2908 tcp_for_write_queue_from(skb, sk) {
2909 __u8 sacked;
2910 int segs;
2911
2912 if (skb == tcp_send_head(sk))
2913 break;
2914 /* we could do better than to assign each time */
2915 if (!hole)
2916 tp->retransmit_skb_hint = skb;
2917
2918 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2919 if (segs <= 0)
2920 return;
2921 sacked = TCP_SKB_CB(skb)->sacked;
2922 /* In case tcp_shift_skb_data() have aggregated large skbs,
2923 * we need to make sure not sending too bigs TSO packets
2924 */
2925 segs = min_t(int, segs, max_segs);
2926
2927 if (fwd_rexmitting) {
2928 begin_fwd:
2929 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2930 break;
2931 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2932
2933 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2934 tp->retransmit_high = last_lost;
2935 if (!tcp_can_forward_retransmit(sk))
2936 break;
2937 /* Backtrack if necessary to non-L'ed skb */
2938 if (hole) {
2939 skb = hole;
2940 hole = NULL;
2941 }
2942 fwd_rexmitting = 1;
2943 goto begin_fwd;
2944
2945 } else if (!(sacked & TCPCB_LOST)) {
2946 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2947 hole = skb;
2948 continue;
2949
2950 } else {
2951 last_lost = TCP_SKB_CB(skb)->end_seq;
2952 if (icsk->icsk_ca_state != TCP_CA_Loss)
2953 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2954 else
2955 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2956 }
2957
2958 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2959 continue;
2960
2961 if (tcp_small_queue_check(sk, skb, 1))
2962 return;
2963
2964 if (tcp_retransmit_skb(sk, skb, segs))
2965 return;
2966
2967 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2968
2969 if (tcp_in_cwnd_reduction(sk))
2970 tp->prr_out += tcp_skb_pcount(skb);
2971
2972 if (skb == tcp_write_queue_head(sk))
2973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2974 inet_csk(sk)->icsk_rto,
2975 TCP_RTO_MAX);
2976 }
2977 }
2978
2979 /* We allow to exceed memory limits for FIN packets to expedite
2980 * connection tear down and (memory) recovery.
2981 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2982 * or even be forced to close flow without any FIN.
2983 * In general, we want to allow one skb per socket to avoid hangs
2984 * with edge trigger epoll()
2985 */
2986 void sk_forced_mem_schedule(struct sock *sk, int size)
2987 {
2988 int amt;
2989
2990 if (size <= sk->sk_forward_alloc)
2991 return;
2992 amt = sk_mem_pages(size);
2993 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2994 sk_memory_allocated_add(sk, amt);
2995
2996 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2997 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2998 }
2999
3000 /* Send a FIN. The caller locks the socket for us.
3001 * We should try to send a FIN packet really hard, but eventually give up.
3002 */
3003 void tcp_send_fin(struct sock *sk)
3004 {
3005 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3006 struct tcp_sock *tp = tcp_sk(sk);
3007
3008 /* Optimization, tack on the FIN if we have one skb in write queue and
3009 * this skb was not yet sent, or we are under memory pressure.
3010 * Note: in the latter case, FIN packet will be sent after a timeout,
3011 * as TCP stack thinks it has already been transmitted.
3012 */
3013 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3014 coalesce:
3015 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3016 TCP_SKB_CB(tskb)->end_seq++;
3017 tp->write_seq++;
3018 if (!tcp_send_head(sk)) {
3019 /* This means tskb was already sent.
3020 * Pretend we included the FIN on previous transmit.
3021 * We need to set tp->snd_nxt to the value it would have
3022 * if FIN had been sent. This is because retransmit path
3023 * does not change tp->snd_nxt.
3024 */
3025 tp->snd_nxt++;
3026 return;
3027 }
3028 } else {
3029 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3030 if (unlikely(!skb)) {
3031 if (tskb)
3032 goto coalesce;
3033 return;
3034 }
3035 skb_reserve(skb, MAX_TCP_HEADER);
3036 sk_forced_mem_schedule(sk, skb->truesize);
3037 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3038 tcp_init_nondata_skb(skb, tp->write_seq,
3039 TCPHDR_ACK | TCPHDR_FIN);
3040 tcp_queue_skb(sk, skb);
3041 }
3042 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3043 }
3044
3045 /* We get here when a process closes a file descriptor (either due to
3046 * an explicit close() or as a byproduct of exit()'ing) and there
3047 * was unread data in the receive queue. This behavior is recommended
3048 * by RFC 2525, section 2.17. -DaveM
3049 */
3050 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3051 {
3052 struct sk_buff *skb;
3053
3054 /* NOTE: No TCP options attached and we never retransmit this. */
3055 skb = alloc_skb(MAX_TCP_HEADER, priority);
3056 if (!skb) {
3057 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3058 return;
3059 }
3060
3061 /* Reserve space for headers and prepare control bits. */
3062 skb_reserve(skb, MAX_TCP_HEADER);
3063 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3064 TCPHDR_ACK | TCPHDR_RST);
3065 skb_mstamp_get(&skb->skb_mstamp);
3066 /* Send it off. */
3067 if (tcp_transmit_skb(sk, skb, 0, priority))
3068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3069
3070 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3071 }
3072
3073 /* Send a crossed SYN-ACK during socket establishment.
3074 * WARNING: This routine must only be called when we have already sent
3075 * a SYN packet that crossed the incoming SYN that caused this routine
3076 * to get called. If this assumption fails then the initial rcv_wnd
3077 * and rcv_wscale values will not be correct.
3078 */
3079 int tcp_send_synack(struct sock *sk)
3080 {
3081 struct sk_buff *skb;
3082
3083 skb = tcp_write_queue_head(sk);
3084 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3085 pr_debug("%s: wrong queue state\n", __func__);
3086 return -EFAULT;
3087 }
3088 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3089 if (skb_cloned(skb)) {
3090 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3091 if (!nskb)
3092 return -ENOMEM;
3093 tcp_unlink_write_queue(skb, sk);
3094 __skb_header_release(nskb);
3095 __tcp_add_write_queue_head(sk, nskb);
3096 sk_wmem_free_skb(sk, skb);
3097 sk->sk_wmem_queued += nskb->truesize;
3098 sk_mem_charge(sk, nskb->truesize);
3099 skb = nskb;
3100 }
3101
3102 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3103 tcp_ecn_send_synack(sk, skb);
3104 }
3105 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3106 }
3107
3108 /**
3109 * tcp_make_synack - Prepare a SYN-ACK.
3110 * sk: listener socket
3111 * dst: dst entry attached to the SYNACK
3112 * req: request_sock pointer
3113 *
3114 * Allocate one skb and build a SYNACK packet.
3115 * @dst is consumed : Caller should not use it again.
3116 */
3117 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3118 struct request_sock *req,
3119 struct tcp_fastopen_cookie *foc,
3120 enum tcp_synack_type synack_type)
3121 {
3122 struct inet_request_sock *ireq = inet_rsk(req);
3123 const struct tcp_sock *tp = tcp_sk(sk);
3124 struct tcp_md5sig_key *md5 = NULL;
3125 struct tcp_out_options opts;
3126 struct sk_buff *skb;
3127 int tcp_header_size;
3128 struct tcphdr *th;
3129 u16 user_mss;
3130 int mss;
3131
3132 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3133 if (unlikely(!skb)) {
3134 dst_release(dst);
3135 return NULL;
3136 }
3137 /* Reserve space for headers. */
3138 skb_reserve(skb, MAX_TCP_HEADER);
3139
3140 switch (synack_type) {
3141 case TCP_SYNACK_NORMAL:
3142 skb_set_owner_w(skb, req_to_sk(req));
3143 break;
3144 case TCP_SYNACK_COOKIE:
3145 /* Under synflood, we do not attach skb to a socket,
3146 * to avoid false sharing.
3147 */
3148 break;
3149 case TCP_SYNACK_FASTOPEN:
3150 /* sk is a const pointer, because we want to express multiple
3151 * cpu might call us concurrently.
3152 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3153 */
3154 skb_set_owner_w(skb, (struct sock *)sk);
3155 break;
3156 }
3157 skb_dst_set(skb, dst);
3158
3159 mss = dst_metric_advmss(dst);
3160 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3161 if (user_mss && user_mss < mss)
3162 mss = user_mss;
3163
3164 memset(&opts, 0, sizeof(opts));
3165 #ifdef CONFIG_SYN_COOKIES
3166 if (unlikely(req->cookie_ts))
3167 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3168 else
3169 #endif
3170 skb_mstamp_get(&skb->skb_mstamp);
3171
3172 #ifdef CONFIG_TCP_MD5SIG
3173 rcu_read_lock();
3174 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3175 #endif
3176 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3177 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3178 sizeof(*th);
3179
3180 skb_push(skb, tcp_header_size);
3181 skb_reset_transport_header(skb);
3182
3183 th = (struct tcphdr *)skb->data;
3184 memset(th, 0, sizeof(struct tcphdr));
3185 th->syn = 1;
3186 th->ack = 1;
3187 tcp_ecn_make_synack(req, th);
3188 th->source = htons(ireq->ir_num);
3189 th->dest = ireq->ir_rmt_port;
3190 /* Setting of flags are superfluous here for callers (and ECE is
3191 * not even correctly set)
3192 */
3193 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3194 TCPHDR_SYN | TCPHDR_ACK);
3195
3196 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3197 /* XXX data is queued and acked as is. No buffer/window check */
3198 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3199
3200 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3201 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3202 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3203 th->doff = (tcp_header_size >> 2);
3204 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3205
3206 #ifdef CONFIG_TCP_MD5SIG
3207 /* Okay, we have all we need - do the md5 hash if needed */
3208 if (md5)
3209 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3210 md5, req_to_sk(req), skb);
3211 rcu_read_unlock();
3212 #endif
3213
3214 /* Do not fool tcpdump (if any), clean our debris */
3215 skb->tstamp = 0;
3216 return skb;
3217 }
3218 EXPORT_SYMBOL(tcp_make_synack);
3219
3220 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3221 {
3222 struct inet_connection_sock *icsk = inet_csk(sk);
3223 const struct tcp_congestion_ops *ca;
3224 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3225
3226 if (ca_key == TCP_CA_UNSPEC)
3227 return;
3228
3229 rcu_read_lock();
3230 ca = tcp_ca_find_key(ca_key);
3231 if (likely(ca && try_module_get(ca->owner))) {
3232 module_put(icsk->icsk_ca_ops->owner);
3233 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3234 icsk->icsk_ca_ops = ca;
3235 }
3236 rcu_read_unlock();
3237 }
3238
3239 /* Do all connect socket setups that can be done AF independent. */
3240 static void tcp_connect_init(struct sock *sk)
3241 {
3242 const struct dst_entry *dst = __sk_dst_get(sk);
3243 struct tcp_sock *tp = tcp_sk(sk);
3244 __u8 rcv_wscale;
3245
3246 /* We'll fix this up when we get a response from the other end.
3247 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3248 */
3249 tp->tcp_header_len = sizeof(struct tcphdr) +
3250 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3251
3252 #ifdef CONFIG_TCP_MD5SIG
3253 if (tp->af_specific->md5_lookup(sk, sk))
3254 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3255 #endif
3256
3257 /* If user gave his TCP_MAXSEG, record it to clamp */
3258 if (tp->rx_opt.user_mss)
3259 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3260 tp->max_window = 0;
3261 tcp_mtup_init(sk);
3262 tcp_sync_mss(sk, dst_mtu(dst));
3263
3264 tcp_ca_dst_init(sk, dst);
3265
3266 if (!tp->window_clamp)
3267 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3268 tp->advmss = dst_metric_advmss(dst);
3269 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3270 tp->advmss = tp->rx_opt.user_mss;
3271
3272 tcp_initialize_rcv_mss(sk);
3273
3274 /* limit the window selection if the user enforce a smaller rx buffer */
3275 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3276 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3277 tp->window_clamp = tcp_full_space(sk);
3278
3279 tcp_select_initial_window(tcp_full_space(sk),
3280 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3281 &tp->rcv_wnd,
3282 &tp->window_clamp,
3283 sysctl_tcp_window_scaling,
3284 &rcv_wscale,
3285 dst_metric(dst, RTAX_INITRWND));
3286
3287 tp->rx_opt.rcv_wscale = rcv_wscale;
3288 tp->rcv_ssthresh = tp->rcv_wnd;
3289
3290 sk->sk_err = 0;
3291 sock_reset_flag(sk, SOCK_DONE);
3292 tp->snd_wnd = 0;
3293 tcp_init_wl(tp, 0);
3294 tp->snd_una = tp->write_seq;
3295 tp->snd_sml = tp->write_seq;
3296 tp->snd_up = tp->write_seq;
3297 tp->snd_nxt = tp->write_seq;
3298
3299 if (likely(!tp->repair))
3300 tp->rcv_nxt = 0;
3301 else
3302 tp->rcv_tstamp = tcp_time_stamp;
3303 tp->rcv_wup = tp->rcv_nxt;
3304 tp->copied_seq = tp->rcv_nxt;
3305
3306 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3307 inet_csk(sk)->icsk_retransmits = 0;
3308 tcp_clear_retrans(tp);
3309 }
3310
3311 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3312 {
3313 struct tcp_sock *tp = tcp_sk(sk);
3314 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3315
3316 tcb->end_seq += skb->len;
3317 __skb_header_release(skb);
3318 __tcp_add_write_queue_tail(sk, skb);
3319 sk->sk_wmem_queued += skb->truesize;
3320 sk_mem_charge(sk, skb->truesize);
3321 tp->write_seq = tcb->end_seq;
3322 tp->packets_out += tcp_skb_pcount(skb);
3323 }
3324
3325 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3326 * queue a data-only packet after the regular SYN, such that regular SYNs
3327 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3328 * only the SYN sequence, the data are retransmitted in the first ACK.
3329 * If cookie is not cached or other error occurs, falls back to send a
3330 * regular SYN with Fast Open cookie request option.
3331 */
3332 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3333 {
3334 struct tcp_sock *tp = tcp_sk(sk);
3335 struct tcp_fastopen_request *fo = tp->fastopen_req;
3336 int syn_loss = 0, space, err = 0;
3337 unsigned long last_syn_loss = 0;
3338 struct sk_buff *syn_data;
3339
3340 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3341 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3342 &syn_loss, &last_syn_loss);
3343 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3344 if (syn_loss > 1 &&
3345 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3346 fo->cookie.len = -1;
3347 goto fallback;
3348 }
3349
3350 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3351 fo->cookie.len = -1;
3352 else if (fo->cookie.len <= 0)
3353 goto fallback;
3354
3355 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3356 * user-MSS. Reserve maximum option space for middleboxes that add
3357 * private TCP options. The cost is reduced data space in SYN :(
3358 */
3359 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3360 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3361 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3362 MAX_TCP_OPTION_SPACE;
3363
3364 space = min_t(size_t, space, fo->size);
3365
3366 /* limit to order-0 allocations */
3367 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3368
3369 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3370 if (!syn_data)
3371 goto fallback;
3372 syn_data->ip_summed = CHECKSUM_PARTIAL;
3373 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3374 if (space) {
3375 int copied = copy_from_iter(skb_put(syn_data, space), space,
3376 &fo->data->msg_iter);
3377 if (unlikely(!copied)) {
3378 kfree_skb(syn_data);
3379 goto fallback;
3380 }
3381 if (copied != space) {
3382 skb_trim(syn_data, copied);
3383 space = copied;
3384 }
3385 }
3386 /* No more data pending in inet_wait_for_connect() */
3387 if (space == fo->size)
3388 fo->data = NULL;
3389 fo->copied = space;
3390
3391 tcp_connect_queue_skb(sk, syn_data);
3392 if (syn_data->len)
3393 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3394
3395 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3396
3397 syn->skb_mstamp = syn_data->skb_mstamp;
3398
3399 /* Now full SYN+DATA was cloned and sent (or not),
3400 * remove the SYN from the original skb (syn_data)
3401 * we keep in write queue in case of a retransmit, as we
3402 * also have the SYN packet (with no data) in the same queue.
3403 */
3404 TCP_SKB_CB(syn_data)->seq++;
3405 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3406 if (!err) {
3407 tp->syn_data = (fo->copied > 0);
3408 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3409 goto done;
3410 }
3411
3412 fallback:
3413 /* Send a regular SYN with Fast Open cookie request option */
3414 if (fo->cookie.len > 0)
3415 fo->cookie.len = 0;
3416 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3417 if (err)
3418 tp->syn_fastopen = 0;
3419 done:
3420 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3421 return err;
3422 }
3423
3424 /* Build a SYN and send it off. */
3425 int tcp_connect(struct sock *sk)
3426 {
3427 struct tcp_sock *tp = tcp_sk(sk);
3428 struct sk_buff *buff;
3429 int err;
3430
3431 tcp_connect_init(sk);
3432
3433 if (unlikely(tp->repair)) {
3434 tcp_finish_connect(sk, NULL);
3435 return 0;
3436 }
3437
3438 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3439 if (unlikely(!buff))
3440 return -ENOBUFS;
3441
3442 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3443 tp->retrans_stamp = tcp_time_stamp;
3444 tcp_connect_queue_skb(sk, buff);
3445 tcp_ecn_send_syn(sk, buff);
3446
3447 /* Send off SYN; include data in Fast Open. */
3448 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3449 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3450 if (err == -ECONNREFUSED)
3451 return err;
3452
3453 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3454 * in order to make this packet get counted in tcpOutSegs.
3455 */
3456 tp->snd_nxt = tp->write_seq;
3457 tp->pushed_seq = tp->write_seq;
3458 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3459
3460 /* Timer for repeating the SYN until an answer. */
3461 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3462 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3463 return 0;
3464 }
3465 EXPORT_SYMBOL(tcp_connect);
3466
3467 /* Send out a delayed ack, the caller does the policy checking
3468 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3469 * for details.
3470 */
3471 void tcp_send_delayed_ack(struct sock *sk)
3472 {
3473 struct inet_connection_sock *icsk = inet_csk(sk);
3474 int ato = icsk->icsk_ack.ato;
3475 unsigned long timeout;
3476
3477 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3478
3479 if (ato > TCP_DELACK_MIN) {
3480 const struct tcp_sock *tp = tcp_sk(sk);
3481 int max_ato = HZ / 2;
3482
3483 if (icsk->icsk_ack.pingpong ||
3484 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3485 max_ato = TCP_DELACK_MAX;
3486
3487 /* Slow path, intersegment interval is "high". */
3488
3489 /* If some rtt estimate is known, use it to bound delayed ack.
3490 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3491 * directly.
3492 */
3493 if (tp->srtt_us) {
3494 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3495 TCP_DELACK_MIN);
3496
3497 if (rtt < max_ato)
3498 max_ato = rtt;
3499 }
3500
3501 ato = min(ato, max_ato);
3502 }
3503
3504 /* Stay within the limit we were given */
3505 timeout = jiffies + ato;
3506
3507 /* Use new timeout only if there wasn't a older one earlier. */
3508 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3509 /* If delack timer was blocked or is about to expire,
3510 * send ACK now.
3511 */
3512 if (icsk->icsk_ack.blocked ||
3513 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3514 tcp_send_ack(sk);
3515 return;
3516 }
3517
3518 if (!time_before(timeout, icsk->icsk_ack.timeout))
3519 timeout = icsk->icsk_ack.timeout;
3520 }
3521 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3522 icsk->icsk_ack.timeout = timeout;
3523 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3524 }
3525
3526 /* This routine sends an ack and also updates the window. */
3527 void tcp_send_ack(struct sock *sk)
3528 {
3529 struct sk_buff *buff;
3530
3531 /* If we have been reset, we may not send again. */
3532 if (sk->sk_state == TCP_CLOSE)
3533 return;
3534
3535 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3536
3537 /* We are not putting this on the write queue, so
3538 * tcp_transmit_skb() will set the ownership to this
3539 * sock.
3540 */
3541 buff = alloc_skb(MAX_TCP_HEADER,
3542 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3543 if (unlikely(!buff)) {
3544 inet_csk_schedule_ack(sk);
3545 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3546 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3547 TCP_DELACK_MAX, TCP_RTO_MAX);
3548 return;
3549 }
3550
3551 /* Reserve space for headers and prepare control bits. */
3552 skb_reserve(buff, MAX_TCP_HEADER);
3553 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3554
3555 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3556 * too much.
3557 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3558 */
3559 skb_set_tcp_pure_ack(buff);
3560
3561 /* Send it off, this clears delayed acks for us. */
3562 skb_mstamp_get(&buff->skb_mstamp);
3563 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3564 }
3565 EXPORT_SYMBOL_GPL(tcp_send_ack);
3566
3567 /* This routine sends a packet with an out of date sequence
3568 * number. It assumes the other end will try to ack it.
3569 *
3570 * Question: what should we make while urgent mode?
3571 * 4.4BSD forces sending single byte of data. We cannot send
3572 * out of window data, because we have SND.NXT==SND.MAX...
3573 *
3574 * Current solution: to send TWO zero-length segments in urgent mode:
3575 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3576 * out-of-date with SND.UNA-1 to probe window.
3577 */
3578 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3579 {
3580 struct tcp_sock *tp = tcp_sk(sk);
3581 struct sk_buff *skb;
3582
3583 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3584 skb = alloc_skb(MAX_TCP_HEADER,
3585 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3586 if (!skb)
3587 return -1;
3588
3589 /* Reserve space for headers and set control bits. */
3590 skb_reserve(skb, MAX_TCP_HEADER);
3591 /* Use a previous sequence. This should cause the other
3592 * end to send an ack. Don't queue or clone SKB, just
3593 * send it.
3594 */
3595 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3596 skb_mstamp_get(&skb->skb_mstamp);
3597 NET_INC_STATS(sock_net(sk), mib);
3598 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3599 }
3600
3601 void tcp_send_window_probe(struct sock *sk)
3602 {
3603 if (sk->sk_state == TCP_ESTABLISHED) {
3604 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3605 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3606 }
3607 }
3608
3609 /* Initiate keepalive or window probe from timer. */
3610 int tcp_write_wakeup(struct sock *sk, int mib)
3611 {
3612 struct tcp_sock *tp = tcp_sk(sk);
3613 struct sk_buff *skb;
3614
3615 if (sk->sk_state == TCP_CLOSE)
3616 return -1;
3617
3618 skb = tcp_send_head(sk);
3619 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3620 int err;
3621 unsigned int mss = tcp_current_mss(sk);
3622 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3623
3624 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3625 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3626
3627 /* We are probing the opening of a window
3628 * but the window size is != 0
3629 * must have been a result SWS avoidance ( sender )
3630 */
3631 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3632 skb->len > mss) {
3633 seg_size = min(seg_size, mss);
3634 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3635 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3636 return -1;
3637 } else if (!tcp_skb_pcount(skb))
3638 tcp_set_skb_tso_segs(skb, mss);
3639
3640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3641 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3642 if (!err)
3643 tcp_event_new_data_sent(sk, skb);
3644 return err;
3645 } else {
3646 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3647 tcp_xmit_probe_skb(sk, 1, mib);
3648 return tcp_xmit_probe_skb(sk, 0, mib);
3649 }
3650 }
3651
3652 /* A window probe timeout has occurred. If window is not closed send
3653 * a partial packet else a zero probe.
3654 */
3655 void tcp_send_probe0(struct sock *sk)
3656 {
3657 struct inet_connection_sock *icsk = inet_csk(sk);
3658 struct tcp_sock *tp = tcp_sk(sk);
3659 struct net *net = sock_net(sk);
3660 unsigned long probe_max;
3661 int err;
3662
3663 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3664
3665 if (tp->packets_out || !tcp_send_head(sk)) {
3666 /* Cancel probe timer, if it is not required. */
3667 icsk->icsk_probes_out = 0;
3668 icsk->icsk_backoff = 0;
3669 return;
3670 }
3671
3672 if (err <= 0) {
3673 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3674 icsk->icsk_backoff++;
3675 icsk->icsk_probes_out++;
3676 probe_max = TCP_RTO_MAX;
3677 } else {
3678 /* If packet was not sent due to local congestion,
3679 * do not backoff and do not remember icsk_probes_out.
3680 * Let local senders to fight for local resources.
3681 *
3682 * Use accumulated backoff yet.
3683 */
3684 if (!icsk->icsk_probes_out)
3685 icsk->icsk_probes_out = 1;
3686 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3687 }
3688 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3689 tcp_probe0_when(sk, probe_max),
3690 TCP_RTO_MAX);
3691 }
3692
3693 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3694 {
3695 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3696 struct flowi fl;
3697 int res;
3698
3699 tcp_rsk(req)->txhash = net_tx_rndhash();
3700 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3701 if (!res) {
3702 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3703 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3704 if (unlikely(tcp_passive_fastopen(sk)))
3705 tcp_sk(sk)->total_retrans++;
3706 }
3707 return res;
3708 }
3709 EXPORT_SYMBOL(tcp_rtx_synack);