]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_output.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47
48 /* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52 int sysctl_tcp_tso_win_divisor = 3;
53
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56 {
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62 }
63
64 /* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76 }
77
78 /* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104 }
105
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
109 {
110 struct tcp_sock *tp = tcp_sk(sk);
111 s32 delta = tcp_time_stamp - tp->lsndtime;
112 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
113 u32 cwnd = tp->snd_cwnd;
114
115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
116
117 tp->snd_ssthresh = tcp_current_ssthresh(sk);
118 restart_cwnd = min(restart_cwnd, cwnd);
119
120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
121 cwnd >>= 1;
122 tp->snd_cwnd = max(cwnd, restart_cwnd);
123 tp->snd_cwnd_stamp = tcp_time_stamp;
124 tp->snd_cwnd_used = 0;
125 }
126
127 static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 struct sk_buff *skb, struct sock *sk)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const u32 now = tcp_time_stamp;
132
133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
134 tcp_cwnd_restart(sk, __sk_dst_get(sk));
135
136 tp->lsndtime = now;
137
138 /* If it is a reply for ato after last received
139 * packet, enter pingpong mode.
140 */
141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
142 icsk->icsk_ack.pingpong = 1;
143 }
144
145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
146 {
147 tcp_dec_quickack_mode(sk, pkts);
148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
149 }
150
151 /* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158 void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161 {
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC2414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208 }
209
210 /* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215 static __inline__ u16 tcp_select_window(struct sock *sk)
216 {
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251 }
252
253
254 /* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266 {
267 if (skb != NULL) {
268 const struct inet_connection_sock *icsk = inet_csk(sk);
269 struct inet_sock *inet = inet_sk(sk);
270 struct tcp_sock *tp = tcp_sk(sk);
271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
272 int tcp_header_size = tp->tcp_header_len;
273 struct tcphdr *th;
274 int sysctl_flags;
275 int err;
276
277 BUG_ON(!tcp_skb_pcount(skb));
278
279 #define SYSCTL_FLAG_TSTAMPS 0x1
280 #define SYSCTL_FLAG_WSCALE 0x2
281 #define SYSCTL_FLAG_SACK 0x4
282
283 /* If congestion control is doing timestamping */
284 if (icsk->icsk_ca_ops->rtt_sample)
285 __net_timestamp(skb);
286
287 sysctl_flags = 0;
288 if (tcb->flags & TCPCB_FLAG_SYN) {
289 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
290 if(sysctl_tcp_timestamps) {
291 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
292 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
293 }
294 if(sysctl_tcp_window_scaling) {
295 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
296 sysctl_flags |= SYSCTL_FLAG_WSCALE;
297 }
298 if(sysctl_tcp_sack) {
299 sysctl_flags |= SYSCTL_FLAG_SACK;
300 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
301 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
302 }
303 } else if (tp->rx_opt.eff_sacks) {
304 /* A SACK is 2 pad bytes, a 2 byte header, plus
305 * 2 32-bit sequence numbers for each SACK block.
306 */
307 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
308 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
309 }
310
311 if (tcp_packets_in_flight(tp) == 0)
312 tcp_ca_event(sk, CA_EVENT_TX_START);
313
314 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
315 skb->h.th = th;
316 skb_set_owner_w(skb, sk);
317
318 /* Build TCP header and checksum it. */
319 th->source = inet->sport;
320 th->dest = inet->dport;
321 th->seq = htonl(tcb->seq);
322 th->ack_seq = htonl(tp->rcv_nxt);
323 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
324 if (tcb->flags & TCPCB_FLAG_SYN) {
325 /* RFC1323: The window in SYN & SYN/ACK segments
326 * is never scaled.
327 */
328 th->window = htons(tp->rcv_wnd);
329 } else {
330 th->window = htons(tcp_select_window(sk));
331 }
332 th->check = 0;
333 th->urg_ptr = 0;
334
335 if (tp->urg_mode &&
336 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
337 th->urg_ptr = htons(tp->snd_up-tcb->seq);
338 th->urg = 1;
339 }
340
341 if (tcb->flags & TCPCB_FLAG_SYN) {
342 tcp_syn_build_options((__u32 *)(th + 1),
343 tcp_advertise_mss(sk),
344 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
345 (sysctl_flags & SYSCTL_FLAG_SACK),
346 (sysctl_flags & SYSCTL_FLAG_WSCALE),
347 tp->rx_opt.rcv_wscale,
348 tcb->when,
349 tp->rx_opt.ts_recent);
350 } else {
351 tcp_build_and_update_options((__u32 *)(th + 1),
352 tp, tcb->when);
353
354 TCP_ECN_send(sk, tp, skb, tcp_header_size);
355 }
356 tp->af_specific->send_check(sk, th, skb->len, skb);
357
358 if (tcb->flags & TCPCB_FLAG_ACK)
359 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
360
361 if (skb->len != tcp_header_size)
362 tcp_event_data_sent(tp, skb, sk);
363
364 TCP_INC_STATS(TCP_MIB_OUTSEGS);
365
366 err = tp->af_specific->queue_xmit(skb, 0);
367 if (err <= 0)
368 return err;
369
370 tcp_enter_cwr(sk);
371
372 /* NET_XMIT_CN is special. It does not guarantee,
373 * that this packet is lost. It tells that device
374 * is about to start to drop packets or already
375 * drops some packets of the same priority and
376 * invokes us to send less aggressively.
377 */
378 return err == NET_XMIT_CN ? 0 : err;
379 }
380 return -ENOBUFS;
381 #undef SYSCTL_FLAG_TSTAMPS
382 #undef SYSCTL_FLAG_WSCALE
383 #undef SYSCTL_FLAG_SACK
384 }
385
386
387 /* This routine just queue's the buffer
388 *
389 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
390 * otherwise socket can stall.
391 */
392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395
396 /* Advance write_seq and place onto the write_queue. */
397 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
398 skb_header_release(skb);
399 __skb_queue_tail(&sk->sk_write_queue, skb);
400 sk_charge_skb(sk, skb);
401
402 /* Queue it, remembering where we must start sending. */
403 if (sk->sk_send_head == NULL)
404 sk->sk_send_head = skb;
405 }
406
407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
408 {
409 if (skb->len <= mss_now ||
410 !(sk->sk_route_caps & NETIF_F_TSO)) {
411 /* Avoid the costly divide in the normal
412 * non-TSO case.
413 */
414 skb_shinfo(skb)->tso_segs = 1;
415 skb_shinfo(skb)->tso_size = 0;
416 } else {
417 unsigned int factor;
418
419 factor = skb->len + (mss_now - 1);
420 factor /= mss_now;
421 skb_shinfo(skb)->tso_segs = factor;
422 skb_shinfo(skb)->tso_size = mss_now;
423 }
424 }
425
426 /* Function to create two new TCP segments. Shrinks the given segment
427 * to the specified size and appends a new segment with the rest of the
428 * packet to the list. This won't be called frequently, I hope.
429 * Remember, these are still headerless SKBs at this point.
430 */
431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
432 {
433 struct tcp_sock *tp = tcp_sk(sk);
434 struct sk_buff *buff;
435 int nsize, old_factor;
436 u16 flags;
437
438 if (unlikely(len >= skb->len)) {
439 printk(KERN_DEBUG "TCP: seg_size=%u, mss=%u, seq=%u, "
440 "end_seq=%u, skb->len=%u.\n", len, mss_now,
441 TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
442 skb->len);
443 WARN_ON(1);
444 return 0;
445 }
446
447 nsize = skb_headlen(skb) - len;
448 if (nsize < 0)
449 nsize = 0;
450
451 if (skb_cloned(skb) &&
452 skb_is_nonlinear(skb) &&
453 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
454 return -ENOMEM;
455
456 /* Get a new skb... force flag on. */
457 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
458 if (buff == NULL)
459 return -ENOMEM; /* We'll just try again later. */
460 sk_charge_skb(sk, buff);
461
462 /* Correct the sequence numbers. */
463 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
464 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
465 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
466
467 /* PSH and FIN should only be set in the second packet. */
468 flags = TCP_SKB_CB(skb)->flags;
469 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
470 TCP_SKB_CB(buff)->flags = flags;
471 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
472 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
473
474 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
475 /* Copy and checksum data tail into the new buffer. */
476 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
477 nsize, 0);
478
479 skb_trim(skb, len);
480
481 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
482 } else {
483 skb->ip_summed = CHECKSUM_HW;
484 skb_split(skb, buff, len);
485 }
486
487 buff->ip_summed = skb->ip_summed;
488
489 /* Looks stupid, but our code really uses when of
490 * skbs, which it never sent before. --ANK
491 */
492 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
493 buff->tstamp = skb->tstamp;
494
495 old_factor = tcp_skb_pcount(skb);
496
497 /* Fix up tso_factor for both original and new SKB. */
498 tcp_set_skb_tso_segs(sk, skb, mss_now);
499 tcp_set_skb_tso_segs(sk, buff, mss_now);
500
501 /* If this packet has been sent out already, we must
502 * adjust the various packet counters.
503 */
504 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
505 int diff = old_factor - tcp_skb_pcount(skb) -
506 tcp_skb_pcount(buff);
507
508 tp->packets_out -= diff;
509
510 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
511 tp->sacked_out -= diff;
512 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
513 tp->retrans_out -= diff;
514
515 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
516 tp->lost_out -= diff;
517 tp->left_out -= diff;
518 }
519
520 if (diff > 0) {
521 /* Adjust Reno SACK estimate. */
522 if (!tp->rx_opt.sack_ok) {
523 tp->sacked_out -= diff;
524 if ((int)tp->sacked_out < 0)
525 tp->sacked_out = 0;
526 tcp_sync_left_out(tp);
527 }
528
529 tp->fackets_out -= diff;
530 if ((int)tp->fackets_out < 0)
531 tp->fackets_out = 0;
532 }
533 }
534
535 /* Link BUFF into the send queue. */
536 skb_header_release(buff);
537 __skb_append(skb, buff, &sk->sk_write_queue);
538
539 return 0;
540 }
541
542 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
543 * eventually). The difference is that pulled data not copied, but
544 * immediately discarded.
545 */
546 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
547 {
548 int i, k, eat;
549
550 eat = len;
551 k = 0;
552 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
553 if (skb_shinfo(skb)->frags[i].size <= eat) {
554 put_page(skb_shinfo(skb)->frags[i].page);
555 eat -= skb_shinfo(skb)->frags[i].size;
556 } else {
557 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
558 if (eat) {
559 skb_shinfo(skb)->frags[k].page_offset += eat;
560 skb_shinfo(skb)->frags[k].size -= eat;
561 eat = 0;
562 }
563 k++;
564 }
565 }
566 skb_shinfo(skb)->nr_frags = k;
567
568 skb->tail = skb->data;
569 skb->data_len -= len;
570 skb->len = skb->data_len;
571 return skb->tail;
572 }
573
574 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
575 {
576 if (skb_cloned(skb) &&
577 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
578 return -ENOMEM;
579
580 if (len <= skb_headlen(skb)) {
581 __skb_pull(skb, len);
582 } else {
583 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
584 return -ENOMEM;
585 }
586
587 TCP_SKB_CB(skb)->seq += len;
588 skb->ip_summed = CHECKSUM_HW;
589
590 skb->truesize -= len;
591 sk->sk_wmem_queued -= len;
592 sk->sk_forward_alloc += len;
593 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
594
595 /* Any change of skb->len requires recalculation of tso
596 * factor and mss.
597 */
598 if (tcp_skb_pcount(skb) > 1)
599 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
600
601 return 0;
602 }
603
604 /* This function synchronize snd mss to current pmtu/exthdr set.
605
606 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
607 for TCP options, but includes only bare TCP header.
608
609 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
610 It is minumum of user_mss and mss received with SYN.
611 It also does not include TCP options.
612
613 tp->pmtu_cookie is last pmtu, seen by this function.
614
615 tp->mss_cache is current effective sending mss, including
616 all tcp options except for SACKs. It is evaluated,
617 taking into account current pmtu, but never exceeds
618 tp->rx_opt.mss_clamp.
619
620 NOTE1. rfc1122 clearly states that advertised MSS
621 DOES NOT include either tcp or ip options.
622
623 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
624 this function. --ANK (980731)
625 */
626
627 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
628 {
629 struct tcp_sock *tp = tcp_sk(sk);
630 int mss_now;
631
632 /* Calculate base mss without TCP options:
633 It is MMS_S - sizeof(tcphdr) of rfc1122
634 */
635 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
636
637 /* Clamp it (mss_clamp does not include tcp options) */
638 if (mss_now > tp->rx_opt.mss_clamp)
639 mss_now = tp->rx_opt.mss_clamp;
640
641 /* Now subtract optional transport overhead */
642 mss_now -= tp->ext_header_len;
643
644 /* Then reserve room for full set of TCP options and 8 bytes of data */
645 if (mss_now < 48)
646 mss_now = 48;
647
648 /* Now subtract TCP options size, not including SACKs */
649 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
650
651 /* Bound mss with half of window */
652 if (tp->max_window && mss_now > (tp->max_window>>1))
653 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
654
655 /* And store cached results */
656 tp->pmtu_cookie = pmtu;
657 tp->mss_cache = mss_now;
658
659 return mss_now;
660 }
661
662 /* Compute the current effective MSS, taking SACKs and IP options,
663 * and even PMTU discovery events into account.
664 *
665 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
666 * cannot be large. However, taking into account rare use of URG, this
667 * is not a big flaw.
668 */
669 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
670 {
671 struct tcp_sock *tp = tcp_sk(sk);
672 struct dst_entry *dst = __sk_dst_get(sk);
673 u32 mss_now;
674 u16 xmit_size_goal;
675 int doing_tso = 0;
676
677 mss_now = tp->mss_cache;
678
679 if (large_allowed &&
680 (sk->sk_route_caps & NETIF_F_TSO) &&
681 !tp->urg_mode)
682 doing_tso = 1;
683
684 if (dst) {
685 u32 mtu = dst_mtu(dst);
686 if (mtu != tp->pmtu_cookie)
687 mss_now = tcp_sync_mss(sk, mtu);
688 }
689
690 if (tp->rx_opt.eff_sacks)
691 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
692 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
693
694 xmit_size_goal = mss_now;
695
696 if (doing_tso) {
697 xmit_size_goal = 65535 -
698 tp->af_specific->net_header_len -
699 tp->ext_header_len - tp->tcp_header_len;
700
701 if (tp->max_window &&
702 (xmit_size_goal > (tp->max_window >> 1)))
703 xmit_size_goal = max((tp->max_window >> 1),
704 68U - tp->tcp_header_len);
705
706 xmit_size_goal -= (xmit_size_goal % mss_now);
707 }
708 tp->xmit_size_goal = xmit_size_goal;
709
710 return mss_now;
711 }
712
713 /* Congestion window validation. (RFC2861) */
714
715 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
716 {
717 __u32 packets_out = tp->packets_out;
718
719 if (packets_out >= tp->snd_cwnd) {
720 /* Network is feed fully. */
721 tp->snd_cwnd_used = 0;
722 tp->snd_cwnd_stamp = tcp_time_stamp;
723 } else {
724 /* Network starves. */
725 if (tp->packets_out > tp->snd_cwnd_used)
726 tp->snd_cwnd_used = tp->packets_out;
727
728 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
729 tcp_cwnd_application_limited(sk);
730 }
731 }
732
733 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
734 {
735 u32 window, cwnd_len;
736
737 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
738 cwnd_len = mss_now * cwnd;
739 return min(window, cwnd_len);
740 }
741
742 /* Can at least one segment of SKB be sent right now, according to the
743 * congestion window rules? If so, return how many segments are allowed.
744 */
745 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
746 {
747 u32 in_flight, cwnd;
748
749 /* Don't be strict about the congestion window for the final FIN. */
750 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
751 return 1;
752
753 in_flight = tcp_packets_in_flight(tp);
754 cwnd = tp->snd_cwnd;
755 if (in_flight < cwnd)
756 return (cwnd - in_flight);
757
758 return 0;
759 }
760
761 /* This must be invoked the first time we consider transmitting
762 * SKB onto the wire.
763 */
764 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
765 {
766 int tso_segs = tcp_skb_pcount(skb);
767
768 if (!tso_segs ||
769 (tso_segs > 1 &&
770 skb_shinfo(skb)->tso_size != mss_now)) {
771 tcp_set_skb_tso_segs(sk, skb, mss_now);
772 tso_segs = tcp_skb_pcount(skb);
773 }
774 return tso_segs;
775 }
776
777 static inline int tcp_minshall_check(const struct tcp_sock *tp)
778 {
779 return after(tp->snd_sml,tp->snd_una) &&
780 !after(tp->snd_sml, tp->snd_nxt);
781 }
782
783 /* Return 0, if packet can be sent now without violation Nagle's rules:
784 * 1. It is full sized.
785 * 2. Or it contains FIN. (already checked by caller)
786 * 3. Or TCP_NODELAY was set.
787 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
788 * With Minshall's modification: all sent small packets are ACKed.
789 */
790
791 static inline int tcp_nagle_check(const struct tcp_sock *tp,
792 const struct sk_buff *skb,
793 unsigned mss_now, int nonagle)
794 {
795 return (skb->len < mss_now &&
796 ((nonagle&TCP_NAGLE_CORK) ||
797 (!nonagle &&
798 tp->packets_out &&
799 tcp_minshall_check(tp))));
800 }
801
802 /* Return non-zero if the Nagle test allows this packet to be
803 * sent now.
804 */
805 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
806 unsigned int cur_mss, int nonagle)
807 {
808 /* Nagle rule does not apply to frames, which sit in the middle of the
809 * write_queue (they have no chances to get new data).
810 *
811 * This is implemented in the callers, where they modify the 'nonagle'
812 * argument based upon the location of SKB in the send queue.
813 */
814 if (nonagle & TCP_NAGLE_PUSH)
815 return 1;
816
817 /* Don't use the nagle rule for urgent data (or for the final FIN). */
818 if (tp->urg_mode ||
819 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
820 return 1;
821
822 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
823 return 1;
824
825 return 0;
826 }
827
828 /* Does at least the first segment of SKB fit into the send window? */
829 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
830 {
831 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
832
833 if (skb->len > cur_mss)
834 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
835
836 return !after(end_seq, tp->snd_una + tp->snd_wnd);
837 }
838
839 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
840 * should be put on the wire right now. If so, it returns the number of
841 * packets allowed by the congestion window.
842 */
843 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
844 unsigned int cur_mss, int nonagle)
845 {
846 struct tcp_sock *tp = tcp_sk(sk);
847 unsigned int cwnd_quota;
848
849 tcp_init_tso_segs(sk, skb, cur_mss);
850
851 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
852 return 0;
853
854 cwnd_quota = tcp_cwnd_test(tp, skb);
855 if (cwnd_quota &&
856 !tcp_snd_wnd_test(tp, skb, cur_mss))
857 cwnd_quota = 0;
858
859 return cwnd_quota;
860 }
861
862 static inline int tcp_skb_is_last(const struct sock *sk,
863 const struct sk_buff *skb)
864 {
865 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
866 }
867
868 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
869 {
870 struct sk_buff *skb = sk->sk_send_head;
871
872 return (skb &&
873 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
874 (tcp_skb_is_last(sk, skb) ?
875 TCP_NAGLE_PUSH :
876 tp->nonagle)));
877 }
878
879 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
880 * which is put after SKB on the list. It is very much like
881 * tcp_fragment() except that it may make several kinds of assumptions
882 * in order to speed up the splitting operation. In particular, we
883 * know that all the data is in scatter-gather pages, and that the
884 * packet has never been sent out before (and thus is not cloned).
885 */
886 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
887 {
888 struct sk_buff *buff;
889 int nlen = skb->len - len;
890 u16 flags;
891
892 /* All of a TSO frame must be composed of paged data. */
893 if (skb->len != skb->data_len)
894 return tcp_fragment(sk, skb, len, mss_now);
895
896 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
897 if (unlikely(buff == NULL))
898 return -ENOMEM;
899
900 buff->truesize = nlen;
901 skb->truesize -= nlen;
902
903 /* Correct the sequence numbers. */
904 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
905 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
906 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
907
908 /* PSH and FIN should only be set in the second packet. */
909 flags = TCP_SKB_CB(skb)->flags;
910 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
911 TCP_SKB_CB(buff)->flags = flags;
912
913 /* This packet was never sent out yet, so no SACK bits. */
914 TCP_SKB_CB(buff)->sacked = 0;
915
916 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
917 skb_split(skb, buff, len);
918
919 /* Fix up tso_factor for both original and new SKB. */
920 tcp_set_skb_tso_segs(sk, skb, mss_now);
921 tcp_set_skb_tso_segs(sk, buff, mss_now);
922
923 /* Link BUFF into the send queue. */
924 skb_header_release(buff);
925 __skb_append(skb, buff, &sk->sk_write_queue);
926
927 return 0;
928 }
929
930 /* Try to defer sending, if possible, in order to minimize the amount
931 * of TSO splitting we do. View it as a kind of TSO Nagle test.
932 *
933 * This algorithm is from John Heffner.
934 */
935 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
936 {
937 const struct inet_connection_sock *icsk = inet_csk(sk);
938 u32 send_win, cong_win, limit, in_flight;
939
940 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
941 return 0;
942
943 if (icsk->icsk_ca_state != TCP_CA_Open)
944 return 0;
945
946 in_flight = tcp_packets_in_flight(tp);
947
948 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
949 (tp->snd_cwnd <= in_flight));
950
951 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
952
953 /* From in_flight test above, we know that cwnd > in_flight. */
954 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
955
956 limit = min(send_win, cong_win);
957
958 if (sysctl_tcp_tso_win_divisor) {
959 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
960
961 /* If at least some fraction of a window is available,
962 * just use it.
963 */
964 chunk /= sysctl_tcp_tso_win_divisor;
965 if (limit >= chunk)
966 return 0;
967 } else {
968 /* Different approach, try not to defer past a single
969 * ACK. Receiver should ACK every other full sized
970 * frame, so if we have space for more than 3 frames
971 * then send now.
972 */
973 if (limit > tcp_max_burst(tp) * tp->mss_cache)
974 return 0;
975 }
976
977 /* Ok, it looks like it is advisable to defer. */
978 return 1;
979 }
980
981 /* This routine writes packets to the network. It advances the
982 * send_head. This happens as incoming acks open up the remote
983 * window for us.
984 *
985 * Returns 1, if no segments are in flight and we have queued segments, but
986 * cannot send anything now because of SWS or another problem.
987 */
988 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
989 {
990 struct tcp_sock *tp = tcp_sk(sk);
991 struct sk_buff *skb;
992 unsigned int tso_segs, sent_pkts;
993 int cwnd_quota;
994
995 /* If we are closed, the bytes will have to remain here.
996 * In time closedown will finish, we empty the write queue and all
997 * will be happy.
998 */
999 if (unlikely(sk->sk_state == TCP_CLOSE))
1000 return 0;
1001
1002 sent_pkts = 0;
1003 while ((skb = sk->sk_send_head)) {
1004 unsigned int limit;
1005
1006 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1007 BUG_ON(!tso_segs);
1008
1009 cwnd_quota = tcp_cwnd_test(tp, skb);
1010 if (!cwnd_quota)
1011 break;
1012
1013 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1014 break;
1015
1016 if (tso_segs == 1) {
1017 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1018 (tcp_skb_is_last(sk, skb) ?
1019 nonagle : TCP_NAGLE_PUSH))))
1020 break;
1021 } else {
1022 if (tcp_tso_should_defer(sk, tp, skb))
1023 break;
1024 }
1025
1026 limit = mss_now;
1027 if (tso_segs > 1) {
1028 limit = tcp_window_allows(tp, skb,
1029 mss_now, cwnd_quota);
1030
1031 if (skb->len < limit) {
1032 unsigned int trim = skb->len % mss_now;
1033
1034 if (trim)
1035 limit = skb->len - trim;
1036 }
1037 }
1038
1039 if (skb->len > limit &&
1040 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1041 break;
1042
1043 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1044
1045 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
1046 break;
1047
1048 /* Advance the send_head. This one is sent out.
1049 * This call will increment packets_out.
1050 */
1051 update_send_head(sk, tp, skb);
1052
1053 tcp_minshall_update(tp, mss_now, skb);
1054 sent_pkts++;
1055 }
1056
1057 if (likely(sent_pkts)) {
1058 tcp_cwnd_validate(sk, tp);
1059 return 0;
1060 }
1061 return !tp->packets_out && sk->sk_send_head;
1062 }
1063
1064 /* Push out any pending frames which were held back due to
1065 * TCP_CORK or attempt at coalescing tiny packets.
1066 * The socket must be locked by the caller.
1067 */
1068 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1069 unsigned int cur_mss, int nonagle)
1070 {
1071 struct sk_buff *skb = sk->sk_send_head;
1072
1073 if (skb) {
1074 if (tcp_write_xmit(sk, cur_mss, nonagle))
1075 tcp_check_probe_timer(sk, tp);
1076 }
1077 }
1078
1079 /* Send _single_ skb sitting at the send head. This function requires
1080 * true push pending frames to setup probe timer etc.
1081 */
1082 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1083 {
1084 struct tcp_sock *tp = tcp_sk(sk);
1085 struct sk_buff *skb = sk->sk_send_head;
1086 unsigned int tso_segs, cwnd_quota;
1087
1088 BUG_ON(!skb || skb->len < mss_now);
1089
1090 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1091 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1092
1093 if (likely(cwnd_quota)) {
1094 unsigned int limit;
1095
1096 BUG_ON(!tso_segs);
1097
1098 limit = mss_now;
1099 if (tso_segs > 1) {
1100 limit = tcp_window_allows(tp, skb,
1101 mss_now, cwnd_quota);
1102
1103 if (skb->len < limit) {
1104 unsigned int trim = skb->len % mss_now;
1105
1106 if (trim)
1107 limit = skb->len - trim;
1108 }
1109 }
1110
1111 if (skb->len > limit &&
1112 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1113 return;
1114
1115 /* Send it out now. */
1116 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1117
1118 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1119 update_send_head(sk, tp, skb);
1120 tcp_cwnd_validate(sk, tp);
1121 return;
1122 }
1123 }
1124 }
1125
1126 /* This function returns the amount that we can raise the
1127 * usable window based on the following constraints
1128 *
1129 * 1. The window can never be shrunk once it is offered (RFC 793)
1130 * 2. We limit memory per socket
1131 *
1132 * RFC 1122:
1133 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1134 * RECV.NEXT + RCV.WIN fixed until:
1135 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1136 *
1137 * i.e. don't raise the right edge of the window until you can raise
1138 * it at least MSS bytes.
1139 *
1140 * Unfortunately, the recommended algorithm breaks header prediction,
1141 * since header prediction assumes th->window stays fixed.
1142 *
1143 * Strictly speaking, keeping th->window fixed violates the receiver
1144 * side SWS prevention criteria. The problem is that under this rule
1145 * a stream of single byte packets will cause the right side of the
1146 * window to always advance by a single byte.
1147 *
1148 * Of course, if the sender implements sender side SWS prevention
1149 * then this will not be a problem.
1150 *
1151 * BSD seems to make the following compromise:
1152 *
1153 * If the free space is less than the 1/4 of the maximum
1154 * space available and the free space is less than 1/2 mss,
1155 * then set the window to 0.
1156 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1157 * Otherwise, just prevent the window from shrinking
1158 * and from being larger than the largest representable value.
1159 *
1160 * This prevents incremental opening of the window in the regime
1161 * where TCP is limited by the speed of the reader side taking
1162 * data out of the TCP receive queue. It does nothing about
1163 * those cases where the window is constrained on the sender side
1164 * because the pipeline is full.
1165 *
1166 * BSD also seems to "accidentally" limit itself to windows that are a
1167 * multiple of MSS, at least until the free space gets quite small.
1168 * This would appear to be a side effect of the mbuf implementation.
1169 * Combining these two algorithms results in the observed behavior
1170 * of having a fixed window size at almost all times.
1171 *
1172 * Below we obtain similar behavior by forcing the offered window to
1173 * a multiple of the mss when it is feasible to do so.
1174 *
1175 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1176 * Regular options like TIMESTAMP are taken into account.
1177 */
1178 u32 __tcp_select_window(struct sock *sk)
1179 {
1180 struct inet_connection_sock *icsk = inet_csk(sk);
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 /* MSS for the peer's data. Previous verions used mss_clamp
1183 * here. I don't know if the value based on our guesses
1184 * of peer's MSS is better for the performance. It's more correct
1185 * but may be worse for the performance because of rcv_mss
1186 * fluctuations. --SAW 1998/11/1
1187 */
1188 int mss = icsk->icsk_ack.rcv_mss;
1189 int free_space = tcp_space(sk);
1190 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1191 int window;
1192
1193 if (mss > full_space)
1194 mss = full_space;
1195
1196 if (free_space < full_space/2) {
1197 icsk->icsk_ack.quick = 0;
1198
1199 if (tcp_memory_pressure)
1200 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1201
1202 if (free_space < mss)
1203 return 0;
1204 }
1205
1206 if (free_space > tp->rcv_ssthresh)
1207 free_space = tp->rcv_ssthresh;
1208
1209 /* Don't do rounding if we are using window scaling, since the
1210 * scaled window will not line up with the MSS boundary anyway.
1211 */
1212 window = tp->rcv_wnd;
1213 if (tp->rx_opt.rcv_wscale) {
1214 window = free_space;
1215
1216 /* Advertise enough space so that it won't get scaled away.
1217 * Import case: prevent zero window announcement if
1218 * 1<<rcv_wscale > mss.
1219 */
1220 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1221 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1222 << tp->rx_opt.rcv_wscale);
1223 } else {
1224 /* Get the largest window that is a nice multiple of mss.
1225 * Window clamp already applied above.
1226 * If our current window offering is within 1 mss of the
1227 * free space we just keep it. This prevents the divide
1228 * and multiply from happening most of the time.
1229 * We also don't do any window rounding when the free space
1230 * is too small.
1231 */
1232 if (window <= free_space - mss || window > free_space)
1233 window = (free_space/mss)*mss;
1234 }
1235
1236 return window;
1237 }
1238
1239 /* Attempt to collapse two adjacent SKB's during retransmission. */
1240 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1241 {
1242 struct tcp_sock *tp = tcp_sk(sk);
1243 struct sk_buff *next_skb = skb->next;
1244
1245 /* The first test we must make is that neither of these two
1246 * SKB's are still referenced by someone else.
1247 */
1248 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1249 int skb_size = skb->len, next_skb_size = next_skb->len;
1250 u16 flags = TCP_SKB_CB(skb)->flags;
1251
1252 /* Also punt if next skb has been SACK'd. */
1253 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1254 return;
1255
1256 /* Next skb is out of window. */
1257 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1258 return;
1259
1260 /* Punt if not enough space exists in the first SKB for
1261 * the data in the second, or the total combined payload
1262 * would exceed the MSS.
1263 */
1264 if ((next_skb_size > skb_tailroom(skb)) ||
1265 ((skb_size + next_skb_size) > mss_now))
1266 return;
1267
1268 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1269 tcp_skb_pcount(next_skb) != 1);
1270
1271 /* Ok. We will be able to collapse the packet. */
1272 __skb_unlink(next_skb, &sk->sk_write_queue);
1273
1274 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1275
1276 if (next_skb->ip_summed == CHECKSUM_HW)
1277 skb->ip_summed = CHECKSUM_HW;
1278
1279 if (skb->ip_summed != CHECKSUM_HW)
1280 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1281
1282 /* Update sequence range on original skb. */
1283 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1284
1285 /* Merge over control information. */
1286 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1287 TCP_SKB_CB(skb)->flags = flags;
1288
1289 /* All done, get rid of second SKB and account for it so
1290 * packet counting does not break.
1291 */
1292 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1293 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1294 tp->retrans_out -= tcp_skb_pcount(next_skb);
1295 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1296 tp->lost_out -= tcp_skb_pcount(next_skb);
1297 tp->left_out -= tcp_skb_pcount(next_skb);
1298 }
1299 /* Reno case is special. Sigh... */
1300 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1301 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1302 tp->left_out -= tcp_skb_pcount(next_skb);
1303 }
1304
1305 /* Not quite right: it can be > snd.fack, but
1306 * it is better to underestimate fackets.
1307 */
1308 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1309 tcp_packets_out_dec(tp, next_skb);
1310 sk_stream_free_skb(sk, next_skb);
1311 }
1312 }
1313
1314 /* Do a simple retransmit without using the backoff mechanisms in
1315 * tcp_timer. This is used for path mtu discovery.
1316 * The socket is already locked here.
1317 */
1318 void tcp_simple_retransmit(struct sock *sk)
1319 {
1320 const struct inet_connection_sock *icsk = inet_csk(sk);
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 struct sk_buff *skb;
1323 unsigned int mss = tcp_current_mss(sk, 0);
1324 int lost = 0;
1325
1326 sk_stream_for_retrans_queue(skb, sk) {
1327 if (skb->len > mss &&
1328 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1329 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1330 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1331 tp->retrans_out -= tcp_skb_pcount(skb);
1332 }
1333 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1334 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1335 tp->lost_out += tcp_skb_pcount(skb);
1336 lost = 1;
1337 }
1338 }
1339 }
1340
1341 if (!lost)
1342 return;
1343
1344 tcp_sync_left_out(tp);
1345
1346 /* Don't muck with the congestion window here.
1347 * Reason is that we do not increase amount of _data_
1348 * in network, but units changed and effective
1349 * cwnd/ssthresh really reduced now.
1350 */
1351 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1352 tp->high_seq = tp->snd_nxt;
1353 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1354 tp->prior_ssthresh = 0;
1355 tp->undo_marker = 0;
1356 tcp_set_ca_state(sk, TCP_CA_Loss);
1357 }
1358 tcp_xmit_retransmit_queue(sk);
1359 }
1360
1361 /* This retransmits one SKB. Policy decisions and retransmit queue
1362 * state updates are done by the caller. Returns non-zero if an
1363 * error occurred which prevented the send.
1364 */
1365 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1366 {
1367 struct tcp_sock *tp = tcp_sk(sk);
1368 unsigned int cur_mss = tcp_current_mss(sk, 0);
1369 int err;
1370
1371 /* Do not sent more than we queued. 1/4 is reserved for possible
1372 * copying overhead: frgagmentation, tunneling, mangling etc.
1373 */
1374 if (atomic_read(&sk->sk_wmem_alloc) >
1375 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1376 return -EAGAIN;
1377
1378 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1379 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1380 BUG();
1381 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1382 return -ENOMEM;
1383 }
1384
1385 /* If receiver has shrunk his window, and skb is out of
1386 * new window, do not retransmit it. The exception is the
1387 * case, when window is shrunk to zero. In this case
1388 * our retransmit serves as a zero window probe.
1389 */
1390 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1391 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1392 return -EAGAIN;
1393
1394 if (skb->len > cur_mss) {
1395 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1396 return -ENOMEM; /* We'll try again later. */
1397 }
1398
1399 /* Collapse two adjacent packets if worthwhile and we can. */
1400 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1401 (skb->len < (cur_mss >> 1)) &&
1402 (skb->next != sk->sk_send_head) &&
1403 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1404 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1405 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1406 (sysctl_tcp_retrans_collapse != 0))
1407 tcp_retrans_try_collapse(sk, skb, cur_mss);
1408
1409 if(tp->af_specific->rebuild_header(sk))
1410 return -EHOSTUNREACH; /* Routing failure or similar. */
1411
1412 /* Some Solaris stacks overoptimize and ignore the FIN on a
1413 * retransmit when old data is attached. So strip it off
1414 * since it is cheap to do so and saves bytes on the network.
1415 */
1416 if(skb->len > 0 &&
1417 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1418 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1419 if (!pskb_trim(skb, 0)) {
1420 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1421 skb_shinfo(skb)->tso_segs = 1;
1422 skb_shinfo(skb)->tso_size = 0;
1423 skb->ip_summed = CHECKSUM_NONE;
1424 skb->csum = 0;
1425 }
1426 }
1427
1428 /* Make a copy, if the first transmission SKB clone we made
1429 * is still in somebody's hands, else make a clone.
1430 */
1431 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1432
1433 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1434 pskb_copy(skb, GFP_ATOMIC):
1435 skb_clone(skb, GFP_ATOMIC)));
1436
1437 if (err == 0) {
1438 /* Update global TCP statistics. */
1439 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1440
1441 tp->total_retrans++;
1442
1443 #if FASTRETRANS_DEBUG > 0
1444 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1445 if (net_ratelimit())
1446 printk(KERN_DEBUG "retrans_out leaked.\n");
1447 }
1448 #endif
1449 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1450 tp->retrans_out += tcp_skb_pcount(skb);
1451
1452 /* Save stamp of the first retransmit. */
1453 if (!tp->retrans_stamp)
1454 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1455
1456 tp->undo_retrans++;
1457
1458 /* snd_nxt is stored to detect loss of retransmitted segment,
1459 * see tcp_input.c tcp_sacktag_write_queue().
1460 */
1461 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1462 }
1463 return err;
1464 }
1465
1466 /* This gets called after a retransmit timeout, and the initially
1467 * retransmitted data is acknowledged. It tries to continue
1468 * resending the rest of the retransmit queue, until either
1469 * we've sent it all or the congestion window limit is reached.
1470 * If doing SACK, the first ACK which comes back for a timeout
1471 * based retransmit packet might feed us FACK information again.
1472 * If so, we use it to avoid unnecessarily retransmissions.
1473 */
1474 void tcp_xmit_retransmit_queue(struct sock *sk)
1475 {
1476 const struct inet_connection_sock *icsk = inet_csk(sk);
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 struct sk_buff *skb;
1479 int packet_cnt = tp->lost_out;
1480
1481 /* First pass: retransmit lost packets. */
1482 if (packet_cnt) {
1483 sk_stream_for_retrans_queue(skb, sk) {
1484 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1485
1486 /* Assume this retransmit will generate
1487 * only one packet for congestion window
1488 * calculation purposes. This works because
1489 * tcp_retransmit_skb() will chop up the
1490 * packet to be MSS sized and all the
1491 * packet counting works out.
1492 */
1493 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1494 return;
1495
1496 if (sacked&TCPCB_LOST) {
1497 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1498 if (tcp_retransmit_skb(sk, skb))
1499 return;
1500 if (icsk->icsk_ca_state != TCP_CA_Loss)
1501 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1502 else
1503 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1504
1505 if (skb ==
1506 skb_peek(&sk->sk_write_queue))
1507 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1508 inet_csk(sk)->icsk_rto,
1509 TCP_RTO_MAX);
1510 }
1511
1512 packet_cnt -= tcp_skb_pcount(skb);
1513 if (packet_cnt <= 0)
1514 break;
1515 }
1516 }
1517 }
1518
1519 /* OK, demanded retransmission is finished. */
1520
1521 /* Forward retransmissions are possible only during Recovery. */
1522 if (icsk->icsk_ca_state != TCP_CA_Recovery)
1523 return;
1524
1525 /* No forward retransmissions in Reno are possible. */
1526 if (!tp->rx_opt.sack_ok)
1527 return;
1528
1529 /* Yeah, we have to make difficult choice between forward transmission
1530 * and retransmission... Both ways have their merits...
1531 *
1532 * For now we do not retransmit anything, while we have some new
1533 * segments to send.
1534 */
1535
1536 if (tcp_may_send_now(sk, tp))
1537 return;
1538
1539 packet_cnt = 0;
1540
1541 sk_stream_for_retrans_queue(skb, sk) {
1542 /* Similar to the retransmit loop above we
1543 * can pretend that the retransmitted SKB
1544 * we send out here will be composed of one
1545 * real MSS sized packet because tcp_retransmit_skb()
1546 * will fragment it if necessary.
1547 */
1548 if (++packet_cnt > tp->fackets_out)
1549 break;
1550
1551 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1552 break;
1553
1554 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1555 continue;
1556
1557 /* Ok, retransmit it. */
1558 if (tcp_retransmit_skb(sk, skb))
1559 break;
1560
1561 if (skb == skb_peek(&sk->sk_write_queue))
1562 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1563 inet_csk(sk)->icsk_rto,
1564 TCP_RTO_MAX);
1565
1566 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1567 }
1568 }
1569
1570
1571 /* Send a fin. The caller locks the socket for us. This cannot be
1572 * allowed to fail queueing a FIN frame under any circumstances.
1573 */
1574 void tcp_send_fin(struct sock *sk)
1575 {
1576 struct tcp_sock *tp = tcp_sk(sk);
1577 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1578 int mss_now;
1579
1580 /* Optimization, tack on the FIN if we have a queue of
1581 * unsent frames. But be careful about outgoing SACKS
1582 * and IP options.
1583 */
1584 mss_now = tcp_current_mss(sk, 1);
1585
1586 if (sk->sk_send_head != NULL) {
1587 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1588 TCP_SKB_CB(skb)->end_seq++;
1589 tp->write_seq++;
1590 } else {
1591 /* Socket is locked, keep trying until memory is available. */
1592 for (;;) {
1593 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1594 if (skb)
1595 break;
1596 yield();
1597 }
1598
1599 /* Reserve space for headers and prepare control bits. */
1600 skb_reserve(skb, MAX_TCP_HEADER);
1601 skb->csum = 0;
1602 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1603 TCP_SKB_CB(skb)->sacked = 0;
1604 skb_shinfo(skb)->tso_segs = 1;
1605 skb_shinfo(skb)->tso_size = 0;
1606
1607 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1608 TCP_SKB_CB(skb)->seq = tp->write_seq;
1609 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1610 tcp_queue_skb(sk, skb);
1611 }
1612 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1613 }
1614
1615 /* We get here when a process closes a file descriptor (either due to
1616 * an explicit close() or as a byproduct of exit()'ing) and there
1617 * was unread data in the receive queue. This behavior is recommended
1618 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1619 */
1620 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1621 {
1622 struct tcp_sock *tp = tcp_sk(sk);
1623 struct sk_buff *skb;
1624
1625 /* NOTE: No TCP options attached and we never retransmit this. */
1626 skb = alloc_skb(MAX_TCP_HEADER, priority);
1627 if (!skb) {
1628 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1629 return;
1630 }
1631
1632 /* Reserve space for headers and prepare control bits. */
1633 skb_reserve(skb, MAX_TCP_HEADER);
1634 skb->csum = 0;
1635 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1636 TCP_SKB_CB(skb)->sacked = 0;
1637 skb_shinfo(skb)->tso_segs = 1;
1638 skb_shinfo(skb)->tso_size = 0;
1639
1640 /* Send it off. */
1641 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1642 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1643 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1644 if (tcp_transmit_skb(sk, skb))
1645 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1646 }
1647
1648 /* WARNING: This routine must only be called when we have already sent
1649 * a SYN packet that crossed the incoming SYN that caused this routine
1650 * to get called. If this assumption fails then the initial rcv_wnd
1651 * and rcv_wscale values will not be correct.
1652 */
1653 int tcp_send_synack(struct sock *sk)
1654 {
1655 struct sk_buff* skb;
1656
1657 skb = skb_peek(&sk->sk_write_queue);
1658 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1659 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1660 return -EFAULT;
1661 }
1662 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1663 if (skb_cloned(skb)) {
1664 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1665 if (nskb == NULL)
1666 return -ENOMEM;
1667 __skb_unlink(skb, &sk->sk_write_queue);
1668 skb_header_release(nskb);
1669 __skb_queue_head(&sk->sk_write_queue, nskb);
1670 sk_stream_free_skb(sk, skb);
1671 sk_charge_skb(sk, nskb);
1672 skb = nskb;
1673 }
1674
1675 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1676 TCP_ECN_send_synack(tcp_sk(sk), skb);
1677 }
1678 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1679 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1680 }
1681
1682 /*
1683 * Prepare a SYN-ACK.
1684 */
1685 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1686 struct request_sock *req)
1687 {
1688 struct inet_request_sock *ireq = inet_rsk(req);
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 struct tcphdr *th;
1691 int tcp_header_size;
1692 struct sk_buff *skb;
1693
1694 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1695 if (skb == NULL)
1696 return NULL;
1697
1698 /* Reserve space for headers. */
1699 skb_reserve(skb, MAX_TCP_HEADER);
1700
1701 skb->dst = dst_clone(dst);
1702
1703 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1704 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1705 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1706 /* SACK_PERM is in the place of NOP NOP of TS */
1707 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1708 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1709
1710 memset(th, 0, sizeof(struct tcphdr));
1711 th->syn = 1;
1712 th->ack = 1;
1713 if (dst->dev->features&NETIF_F_TSO)
1714 ireq->ecn_ok = 0;
1715 TCP_ECN_make_synack(req, th);
1716 th->source = inet_sk(sk)->sport;
1717 th->dest = ireq->rmt_port;
1718 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1719 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1720 TCP_SKB_CB(skb)->sacked = 0;
1721 skb_shinfo(skb)->tso_segs = 1;
1722 skb_shinfo(skb)->tso_size = 0;
1723 th->seq = htonl(TCP_SKB_CB(skb)->seq);
1724 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1725 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1726 __u8 rcv_wscale;
1727 /* Set this up on the first call only */
1728 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1729 /* tcp_full_space because it is guaranteed to be the first packet */
1730 tcp_select_initial_window(tcp_full_space(sk),
1731 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1732 &req->rcv_wnd,
1733 &req->window_clamp,
1734 ireq->wscale_ok,
1735 &rcv_wscale);
1736 ireq->rcv_wscale = rcv_wscale;
1737 }
1738
1739 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1740 th->window = htons(req->rcv_wnd);
1741
1742 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1743 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1744 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1745 TCP_SKB_CB(skb)->when,
1746 req->ts_recent);
1747
1748 skb->csum = 0;
1749 th->doff = (tcp_header_size >> 2);
1750 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1751 return skb;
1752 }
1753
1754 /*
1755 * Do all connect socket setups that can be done AF independent.
1756 */
1757 static inline void tcp_connect_init(struct sock *sk)
1758 {
1759 struct dst_entry *dst = __sk_dst_get(sk);
1760 struct tcp_sock *tp = tcp_sk(sk);
1761 __u8 rcv_wscale;
1762
1763 /* We'll fix this up when we get a response from the other end.
1764 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1765 */
1766 tp->tcp_header_len = sizeof(struct tcphdr) +
1767 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1768
1769 /* If user gave his TCP_MAXSEG, record it to clamp */
1770 if (tp->rx_opt.user_mss)
1771 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1772 tp->max_window = 0;
1773 tcp_sync_mss(sk, dst_mtu(dst));
1774
1775 if (!tp->window_clamp)
1776 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1777 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1778 tcp_initialize_rcv_mss(sk);
1779
1780 tcp_select_initial_window(tcp_full_space(sk),
1781 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1782 &tp->rcv_wnd,
1783 &tp->window_clamp,
1784 sysctl_tcp_window_scaling,
1785 &rcv_wscale);
1786
1787 tp->rx_opt.rcv_wscale = rcv_wscale;
1788 tp->rcv_ssthresh = tp->rcv_wnd;
1789
1790 sk->sk_err = 0;
1791 sock_reset_flag(sk, SOCK_DONE);
1792 tp->snd_wnd = 0;
1793 tcp_init_wl(tp, tp->write_seq, 0);
1794 tp->snd_una = tp->write_seq;
1795 tp->snd_sml = tp->write_seq;
1796 tp->rcv_nxt = 0;
1797 tp->rcv_wup = 0;
1798 tp->copied_seq = 0;
1799
1800 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1801 inet_csk(sk)->icsk_retransmits = 0;
1802 tcp_clear_retrans(tp);
1803 }
1804
1805 /*
1806 * Build a SYN and send it off.
1807 */
1808 int tcp_connect(struct sock *sk)
1809 {
1810 struct tcp_sock *tp = tcp_sk(sk);
1811 struct sk_buff *buff;
1812
1813 tcp_connect_init(sk);
1814
1815 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
1816 if (unlikely(buff == NULL))
1817 return -ENOBUFS;
1818
1819 /* Reserve space for headers. */
1820 skb_reserve(buff, MAX_TCP_HEADER);
1821
1822 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1823 TCP_ECN_send_syn(sk, tp, buff);
1824 TCP_SKB_CB(buff)->sacked = 0;
1825 skb_shinfo(buff)->tso_segs = 1;
1826 skb_shinfo(buff)->tso_size = 0;
1827 buff->csum = 0;
1828 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1829 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1830 tp->snd_nxt = tp->write_seq;
1831 tp->pushed_seq = tp->write_seq;
1832
1833 /* Send it off. */
1834 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1835 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1836 skb_header_release(buff);
1837 __skb_queue_tail(&sk->sk_write_queue, buff);
1838 sk_charge_skb(sk, buff);
1839 tp->packets_out += tcp_skb_pcount(buff);
1840 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1841 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1842
1843 /* Timer for repeating the SYN until an answer. */
1844 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1845 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1846 return 0;
1847 }
1848
1849 /* Send out a delayed ack, the caller does the policy checking
1850 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1851 * for details.
1852 */
1853 void tcp_send_delayed_ack(struct sock *sk)
1854 {
1855 struct inet_connection_sock *icsk = inet_csk(sk);
1856 int ato = icsk->icsk_ack.ato;
1857 unsigned long timeout;
1858
1859 if (ato > TCP_DELACK_MIN) {
1860 const struct tcp_sock *tp = tcp_sk(sk);
1861 int max_ato = HZ/2;
1862
1863 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
1864 max_ato = TCP_DELACK_MAX;
1865
1866 /* Slow path, intersegment interval is "high". */
1867
1868 /* If some rtt estimate is known, use it to bound delayed ack.
1869 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
1870 * directly.
1871 */
1872 if (tp->srtt) {
1873 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1874
1875 if (rtt < max_ato)
1876 max_ato = rtt;
1877 }
1878
1879 ato = min(ato, max_ato);
1880 }
1881
1882 /* Stay within the limit we were given */
1883 timeout = jiffies + ato;
1884
1885 /* Use new timeout only if there wasn't a older one earlier. */
1886 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
1887 /* If delack timer was blocked or is about to expire,
1888 * send ACK now.
1889 */
1890 if (icsk->icsk_ack.blocked ||
1891 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
1892 tcp_send_ack(sk);
1893 return;
1894 }
1895
1896 if (!time_before(timeout, icsk->icsk_ack.timeout))
1897 timeout = icsk->icsk_ack.timeout;
1898 }
1899 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
1900 icsk->icsk_ack.timeout = timeout;
1901 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
1902 }
1903
1904 /* This routine sends an ack and also updates the window. */
1905 void tcp_send_ack(struct sock *sk)
1906 {
1907 /* If we have been reset, we may not send again. */
1908 if (sk->sk_state != TCP_CLOSE) {
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 struct sk_buff *buff;
1911
1912 /* We are not putting this on the write queue, so
1913 * tcp_transmit_skb() will set the ownership to this
1914 * sock.
1915 */
1916 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1917 if (buff == NULL) {
1918 inet_csk_schedule_ack(sk);
1919 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
1920 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1921 TCP_DELACK_MAX, TCP_RTO_MAX);
1922 return;
1923 }
1924
1925 /* Reserve space for headers and prepare control bits. */
1926 skb_reserve(buff, MAX_TCP_HEADER);
1927 buff->csum = 0;
1928 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1929 TCP_SKB_CB(buff)->sacked = 0;
1930 skb_shinfo(buff)->tso_segs = 1;
1931 skb_shinfo(buff)->tso_size = 0;
1932
1933 /* Send it off, this clears delayed acks for us. */
1934 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1935 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1936 tcp_transmit_skb(sk, buff);
1937 }
1938 }
1939
1940 /* This routine sends a packet with an out of date sequence
1941 * number. It assumes the other end will try to ack it.
1942 *
1943 * Question: what should we make while urgent mode?
1944 * 4.4BSD forces sending single byte of data. We cannot send
1945 * out of window data, because we have SND.NXT==SND.MAX...
1946 *
1947 * Current solution: to send TWO zero-length segments in urgent mode:
1948 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1949 * out-of-date with SND.UNA-1 to probe window.
1950 */
1951 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1952 {
1953 struct tcp_sock *tp = tcp_sk(sk);
1954 struct sk_buff *skb;
1955
1956 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1957 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1958 if (skb == NULL)
1959 return -1;
1960
1961 /* Reserve space for headers and set control bits. */
1962 skb_reserve(skb, MAX_TCP_HEADER);
1963 skb->csum = 0;
1964 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1965 TCP_SKB_CB(skb)->sacked = urgent;
1966 skb_shinfo(skb)->tso_segs = 1;
1967 skb_shinfo(skb)->tso_size = 0;
1968
1969 /* Use a previous sequence. This should cause the other
1970 * end to send an ack. Don't queue or clone SKB, just
1971 * send it.
1972 */
1973 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1974 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1975 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1976 return tcp_transmit_skb(sk, skb);
1977 }
1978
1979 int tcp_write_wakeup(struct sock *sk)
1980 {
1981 if (sk->sk_state != TCP_CLOSE) {
1982 struct tcp_sock *tp = tcp_sk(sk);
1983 struct sk_buff *skb;
1984
1985 if ((skb = sk->sk_send_head) != NULL &&
1986 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1987 int err;
1988 unsigned int mss = tcp_current_mss(sk, 0);
1989 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1990
1991 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1992 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1993
1994 /* We are probing the opening of a window
1995 * but the window size is != 0
1996 * must have been a result SWS avoidance ( sender )
1997 */
1998 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1999 skb->len > mss) {
2000 seg_size = min(seg_size, mss);
2001 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2002 if (tcp_fragment(sk, skb, seg_size, mss))
2003 return -1;
2004 } else if (!tcp_skb_pcount(skb))
2005 tcp_set_skb_tso_segs(sk, skb, mss);
2006
2007 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2008 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2009 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
2010 if (!err) {
2011 update_send_head(sk, tp, skb);
2012 }
2013 return err;
2014 } else {
2015 if (tp->urg_mode &&
2016 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2017 tcp_xmit_probe_skb(sk, TCPCB_URG);
2018 return tcp_xmit_probe_skb(sk, 0);
2019 }
2020 }
2021 return -1;
2022 }
2023
2024 /* A window probe timeout has occurred. If window is not closed send
2025 * a partial packet else a zero probe.
2026 */
2027 void tcp_send_probe0(struct sock *sk)
2028 {
2029 struct inet_connection_sock *icsk = inet_csk(sk);
2030 struct tcp_sock *tp = tcp_sk(sk);
2031 int err;
2032
2033 err = tcp_write_wakeup(sk);
2034
2035 if (tp->packets_out || !sk->sk_send_head) {
2036 /* Cancel probe timer, if it is not required. */
2037 icsk->icsk_probes_out = 0;
2038 icsk->icsk_backoff = 0;
2039 return;
2040 }
2041
2042 if (err <= 0) {
2043 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2044 icsk->icsk_backoff++;
2045 icsk->icsk_probes_out++;
2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2047 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2048 TCP_RTO_MAX);
2049 } else {
2050 /* If packet was not sent due to local congestion,
2051 * do not backoff and do not remember icsk_probes_out.
2052 * Let local senders to fight for local resources.
2053 *
2054 * Use accumulated backoff yet.
2055 */
2056 if (!icsk->icsk_probes_out)
2057 icsk->icsk_probes_out = 1;
2058 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2059 min(icsk->icsk_rto << icsk->icsk_backoff,
2060 TCP_RESOURCE_PROBE_INTERVAL),
2061 TCP_RTO_MAX);
2062 }
2063 }
2064
2065 EXPORT_SYMBOL(tcp_connect);
2066 EXPORT_SYMBOL(tcp_make_synack);
2067 EXPORT_SYMBOL(tcp_simple_retransmit);
2068 EXPORT_SYMBOL(tcp_sync_mss);