]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/ipv4/tcp_output.c
Merge branches 'battery-2.6.34', 'bugzilla-10805', 'bugzilla-14668', 'bugzilla-531916...
[mirror_ubuntu-hirsute-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
47 */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
53 */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61
62 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
63 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
64
65
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 struct tcp_sock *tp = tcp_sk(sk);
70 unsigned int prior_packets = tp->packets_out;
71
72 tcp_advance_send_head(sk, skb);
73 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
74
75 /* Don't override Nagle indefinately with F-RTO */
76 if (tp->frto_counter == 2)
77 tp->frto_counter = 3;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets)
81 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
82 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
83 }
84
85 /* SND.NXT, if window was not shrunk.
86 * If window has been shrunk, what should we make? It is not clear at all.
87 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
88 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
89 * invalid. OK, let's make this for now:
90 */
91 static inline __u32 tcp_acceptable_seq(struct sock *sk)
92 {
93 struct tcp_sock *tp = tcp_sk(sk);
94
95 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
96 return tp->snd_nxt;
97 else
98 return tcp_wnd_end(tp);
99 }
100
101 /* Calculate mss to advertise in SYN segment.
102 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
103 *
104 * 1. It is independent of path mtu.
105 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
106 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
107 * attached devices, because some buggy hosts are confused by
108 * large MSS.
109 * 4. We do not make 3, we advertise MSS, calculated from first
110 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
111 * This may be overridden via information stored in routing table.
112 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
113 * probably even Jumbo".
114 */
115 static __u16 tcp_advertise_mss(struct sock *sk)
116 {
117 struct tcp_sock *tp = tcp_sk(sk);
118 struct dst_entry *dst = __sk_dst_get(sk);
119 int mss = tp->advmss;
120
121 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
122 mss = dst_metric(dst, RTAX_ADVMSS);
123 tp->advmss = mss;
124 }
125
126 return (__u16)mss;
127 }
128
129 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
130 * This is the first part of cwnd validation mechanism. */
131 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
132 {
133 struct tcp_sock *tp = tcp_sk(sk);
134 s32 delta = tcp_time_stamp - tp->lsndtime;
135 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
136 u32 cwnd = tp->snd_cwnd;
137
138 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
139
140 tp->snd_ssthresh = tcp_current_ssthresh(sk);
141 restart_cwnd = min(restart_cwnd, cwnd);
142
143 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
144 cwnd >>= 1;
145 tp->snd_cwnd = max(cwnd, restart_cwnd);
146 tp->snd_cwnd_stamp = tcp_time_stamp;
147 tp->snd_cwnd_used = 0;
148 }
149
150 /* Congestion state accounting after a packet has been sent. */
151 static void tcp_event_data_sent(struct tcp_sock *tp,
152 struct sk_buff *skb, struct sock *sk)
153 {
154 struct inet_connection_sock *icsk = inet_csk(sk);
155 const u32 now = tcp_time_stamp;
156
157 if (sysctl_tcp_slow_start_after_idle &&
158 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
159 tcp_cwnd_restart(sk, __sk_dst_get(sk));
160
161 tp->lsndtime = now;
162
163 /* If it is a reply for ato after last received
164 * packet, enter pingpong mode.
165 */
166 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
167 icsk->icsk_ack.pingpong = 1;
168 }
169
170 /* Account for an ACK we sent. */
171 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
172 {
173 tcp_dec_quickack_mode(sk, pkts);
174 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
175 }
176
177 /* Determine a window scaling and initial window to offer.
178 * Based on the assumption that the given amount of space
179 * will be offered. Store the results in the tp structure.
180 * NOTE: for smooth operation initial space offering should
181 * be a multiple of mss if possible. We assume here that mss >= 1.
182 * This MUST be enforced by all callers.
183 */
184 void tcp_select_initial_window(int __space, __u32 mss,
185 __u32 *rcv_wnd, __u32 *window_clamp,
186 int wscale_ok, __u8 *rcv_wscale,
187 __u32 init_rcv_wnd)
188 {
189 unsigned int space = (__space < 0 ? 0 : __space);
190
191 /* If no clamp set the clamp to the max possible scaled window */
192 if (*window_clamp == 0)
193 (*window_clamp) = (65535 << 14);
194 space = min(*window_clamp, space);
195
196 /* Quantize space offering to a multiple of mss if possible. */
197 if (space > mss)
198 space = (space / mss) * mss;
199
200 /* NOTE: offering an initial window larger than 32767
201 * will break some buggy TCP stacks. If the admin tells us
202 * it is likely we could be speaking with such a buggy stack
203 * we will truncate our initial window offering to 32K-1
204 * unless the remote has sent us a window scaling option,
205 * which we interpret as a sign the remote TCP is not
206 * misinterpreting the window field as a signed quantity.
207 */
208 if (sysctl_tcp_workaround_signed_windows)
209 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
210 else
211 (*rcv_wnd) = space;
212
213 (*rcv_wscale) = 0;
214 if (wscale_ok) {
215 /* Set window scaling on max possible window
216 * See RFC1323 for an explanation of the limit to 14
217 */
218 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
219 space = min_t(u32, space, *window_clamp);
220 while (space > 65535 && (*rcv_wscale) < 14) {
221 space >>= 1;
222 (*rcv_wscale)++;
223 }
224 }
225
226 /* Set initial window to value enough for senders,
227 * following RFC2414. Senders, not following this RFC,
228 * will be satisfied with 2.
229 */
230 if (mss > (1 << *rcv_wscale)) {
231 int init_cwnd = 4;
232 if (mss > 1460 * 3)
233 init_cwnd = 2;
234 else if (mss > 1460)
235 init_cwnd = 3;
236 /* when initializing use the value from init_rcv_wnd
237 * rather than the default from above
238 */
239 if (init_rcv_wnd &&
240 (*rcv_wnd > init_rcv_wnd * mss))
241 *rcv_wnd = init_rcv_wnd * mss;
242 else if (*rcv_wnd > init_cwnd * mss)
243 *rcv_wnd = init_cwnd * mss;
244 }
245
246 /* Set the clamp no higher than max representable value */
247 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
248 }
249
250 /* Chose a new window to advertise, update state in tcp_sock for the
251 * socket, and return result with RFC1323 scaling applied. The return
252 * value can be stuffed directly into th->window for an outgoing
253 * frame.
254 */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 struct tcp_sock *tp = tcp_sk(sk);
258 u32 cur_win = tcp_receive_window(tp);
259 u32 new_win = __tcp_select_window(sk);
260
261 /* Never shrink the offered window */
262 if (new_win < cur_win) {
263 /* Danger Will Robinson!
264 * Don't update rcv_wup/rcv_wnd here or else
265 * we will not be able to advertise a zero
266 * window in time. --DaveM
267 *
268 * Relax Will Robinson.
269 */
270 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
271 }
272 tp->rcv_wnd = new_win;
273 tp->rcv_wup = tp->rcv_nxt;
274
275 /* Make sure we do not exceed the maximum possible
276 * scaled window.
277 */
278 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
279 new_win = min(new_win, MAX_TCP_WINDOW);
280 else
281 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
282
283 /* RFC1323 scaling applied */
284 new_win >>= tp->rx_opt.rcv_wscale;
285
286 /* If we advertise zero window, disable fast path. */
287 if (new_win == 0)
288 tp->pred_flags = 0;
289
290 return new_win;
291 }
292
293 /* Packet ECN state for a SYN-ACK */
294 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
295 {
296 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
297 if (!(tp->ecn_flags & TCP_ECN_OK))
298 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
299 }
300
301 /* Packet ECN state for a SYN. */
302 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305
306 tp->ecn_flags = 0;
307 if (sysctl_tcp_ecn == 1) {
308 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
309 tp->ecn_flags = TCP_ECN_OK;
310 }
311 }
312
313 static __inline__ void
314 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
315 {
316 if (inet_rsk(req)->ecn_ok)
317 th->ece = 1;
318 }
319
320 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
321 * be sent.
322 */
323 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
324 int tcp_header_len)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327
328 if (tp->ecn_flags & TCP_ECN_OK) {
329 /* Not-retransmitted data segment: set ECT and inject CWR. */
330 if (skb->len != tcp_header_len &&
331 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
332 INET_ECN_xmit(sk);
333 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 tcp_hdr(skb)->cwr = 1;
336 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
337 }
338 } else {
339 /* ACK or retransmitted segment: clear ECT|CE */
340 INET_ECN_dontxmit(sk);
341 }
342 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
343 tcp_hdr(skb)->ece = 1;
344 }
345 }
346
347 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
348 * auto increment end seqno.
349 */
350 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
351 {
352 skb->csum = 0;
353
354 TCP_SKB_CB(skb)->flags = flags;
355 TCP_SKB_CB(skb)->sacked = 0;
356
357 skb_shinfo(skb)->gso_segs = 1;
358 skb_shinfo(skb)->gso_size = 0;
359 skb_shinfo(skb)->gso_type = 0;
360
361 TCP_SKB_CB(skb)->seq = seq;
362 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
363 seq++;
364 TCP_SKB_CB(skb)->end_seq = seq;
365 }
366
367 static inline int tcp_urg_mode(const struct tcp_sock *tp)
368 {
369 return tp->snd_una != tp->snd_up;
370 }
371
372 #define OPTION_SACK_ADVERTISE (1 << 0)
373 #define OPTION_TS (1 << 1)
374 #define OPTION_MD5 (1 << 2)
375 #define OPTION_WSCALE (1 << 3)
376 #define OPTION_COOKIE_EXTENSION (1 << 4)
377
378 struct tcp_out_options {
379 u8 options; /* bit field of OPTION_* */
380 u8 ws; /* window scale, 0 to disable */
381 u8 num_sack_blocks; /* number of SACK blocks to include */
382 u8 hash_size; /* bytes in hash_location */
383 u16 mss; /* 0 to disable */
384 __u32 tsval, tsecr; /* need to include OPTION_TS */
385 __u8 *hash_location; /* temporary pointer, overloaded */
386 };
387
388 /* The sysctl int routines are generic, so check consistency here.
389 */
390 static u8 tcp_cookie_size_check(u8 desired)
391 {
392 if (desired > 0) {
393 /* previously specified */
394 return desired;
395 }
396 if (sysctl_tcp_cookie_size <= 0) {
397 /* no default specified */
398 return 0;
399 }
400 if (sysctl_tcp_cookie_size <= TCP_COOKIE_MIN) {
401 /* value too small, specify minimum */
402 return TCP_COOKIE_MIN;
403 }
404 if (sysctl_tcp_cookie_size >= TCP_COOKIE_MAX) {
405 /* value too large, specify maximum */
406 return TCP_COOKIE_MAX;
407 }
408 if (0x1 & sysctl_tcp_cookie_size) {
409 /* 8-bit multiple, illegal, fix it */
410 return (u8)(sysctl_tcp_cookie_size + 0x1);
411 }
412 return (u8)sysctl_tcp_cookie_size;
413 }
414
415 /* Write previously computed TCP options to the packet.
416 *
417 * Beware: Something in the Internet is very sensitive to the ordering of
418 * TCP options, we learned this through the hard way, so be careful here.
419 * Luckily we can at least blame others for their non-compliance but from
420 * inter-operatibility perspective it seems that we're somewhat stuck with
421 * the ordering which we have been using if we want to keep working with
422 * those broken things (not that it currently hurts anybody as there isn't
423 * particular reason why the ordering would need to be changed).
424 *
425 * At least SACK_PERM as the first option is known to lead to a disaster
426 * (but it may well be that other scenarios fail similarly).
427 */
428 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
429 struct tcp_out_options *opts)
430 {
431 u8 options = opts->options; /* mungable copy */
432
433 /* Having both authentication and cookies for security is redundant,
434 * and there's certainly not enough room. Instead, the cookie-less
435 * extension variant is proposed.
436 *
437 * Consider the pessimal case with authentication. The options
438 * could look like:
439 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
440 */
441 if (unlikely(OPTION_MD5 & options)) {
442 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
443 *ptr++ = htonl((TCPOPT_COOKIE << 24) |
444 (TCPOLEN_COOKIE_BASE << 16) |
445 (TCPOPT_MD5SIG << 8) |
446 TCPOLEN_MD5SIG);
447 } else {
448 *ptr++ = htonl((TCPOPT_NOP << 24) |
449 (TCPOPT_NOP << 16) |
450 (TCPOPT_MD5SIG << 8) |
451 TCPOLEN_MD5SIG);
452 }
453 options &= ~OPTION_COOKIE_EXTENSION;
454 /* overload cookie hash location */
455 opts->hash_location = (__u8 *)ptr;
456 ptr += 4;
457 }
458
459 if (unlikely(opts->mss)) {
460 *ptr++ = htonl((TCPOPT_MSS << 24) |
461 (TCPOLEN_MSS << 16) |
462 opts->mss);
463 }
464
465 if (likely(OPTION_TS & options)) {
466 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 (TCPOLEN_SACK_PERM << 16) |
469 (TCPOPT_TIMESTAMP << 8) |
470 TCPOLEN_TIMESTAMP);
471 options &= ~OPTION_SACK_ADVERTISE;
472 } else {
473 *ptr++ = htonl((TCPOPT_NOP << 24) |
474 (TCPOPT_NOP << 16) |
475 (TCPOPT_TIMESTAMP << 8) |
476 TCPOLEN_TIMESTAMP);
477 }
478 *ptr++ = htonl(opts->tsval);
479 *ptr++ = htonl(opts->tsecr);
480 }
481
482 /* Specification requires after timestamp, so do it now.
483 *
484 * Consider the pessimal case without authentication. The options
485 * could look like:
486 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
487 */
488 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
489 __u8 *cookie_copy = opts->hash_location;
490 u8 cookie_size = opts->hash_size;
491
492 /* 8-bit multiple handled in tcp_cookie_size_check() above,
493 * and elsewhere.
494 */
495 if (0x2 & cookie_size) {
496 __u8 *p = (__u8 *)ptr;
497
498 /* 16-bit multiple */
499 *p++ = TCPOPT_COOKIE;
500 *p++ = TCPOLEN_COOKIE_BASE + cookie_size;
501 *p++ = *cookie_copy++;
502 *p++ = *cookie_copy++;
503 ptr++;
504 cookie_size -= 2;
505 } else {
506 /* 32-bit multiple */
507 *ptr++ = htonl(((TCPOPT_NOP << 24) |
508 (TCPOPT_NOP << 16) |
509 (TCPOPT_COOKIE << 8) |
510 TCPOLEN_COOKIE_BASE) +
511 cookie_size);
512 }
513
514 if (cookie_size > 0) {
515 memcpy(ptr, cookie_copy, cookie_size);
516 ptr += (cookie_size / 4);
517 }
518 }
519
520 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
521 *ptr++ = htonl((TCPOPT_NOP << 24) |
522 (TCPOPT_NOP << 16) |
523 (TCPOPT_SACK_PERM << 8) |
524 TCPOLEN_SACK_PERM);
525 }
526
527 if (unlikely(OPTION_WSCALE & options)) {
528 *ptr++ = htonl((TCPOPT_NOP << 24) |
529 (TCPOPT_WINDOW << 16) |
530 (TCPOLEN_WINDOW << 8) |
531 opts->ws);
532 }
533
534 if (unlikely(opts->num_sack_blocks)) {
535 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
536 tp->duplicate_sack : tp->selective_acks;
537 int this_sack;
538
539 *ptr++ = htonl((TCPOPT_NOP << 24) |
540 (TCPOPT_NOP << 16) |
541 (TCPOPT_SACK << 8) |
542 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
543 TCPOLEN_SACK_PERBLOCK)));
544
545 for (this_sack = 0; this_sack < opts->num_sack_blocks;
546 ++this_sack) {
547 *ptr++ = htonl(sp[this_sack].start_seq);
548 *ptr++ = htonl(sp[this_sack].end_seq);
549 }
550
551 tp->rx_opt.dsack = 0;
552 }
553 }
554
555 /* Compute TCP options for SYN packets. This is not the final
556 * network wire format yet.
557 */
558 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
559 struct tcp_out_options *opts,
560 struct tcp_md5sig_key **md5) {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct tcp_cookie_values *cvp = tp->cookie_values;
563 unsigned remaining = MAX_TCP_OPTION_SPACE;
564 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
565 tcp_cookie_size_check(cvp->cookie_desired) :
566 0;
567
568 #ifdef CONFIG_TCP_MD5SIG
569 *md5 = tp->af_specific->md5_lookup(sk, sk);
570 if (*md5) {
571 opts->options |= OPTION_MD5;
572 remaining -= TCPOLEN_MD5SIG_ALIGNED;
573 }
574 #else
575 *md5 = NULL;
576 #endif
577
578 /* We always get an MSS option. The option bytes which will be seen in
579 * normal data packets should timestamps be used, must be in the MSS
580 * advertised. But we subtract them from tp->mss_cache so that
581 * calculations in tcp_sendmsg are simpler etc. So account for this
582 * fact here if necessary. If we don't do this correctly, as a
583 * receiver we won't recognize data packets as being full sized when we
584 * should, and thus we won't abide by the delayed ACK rules correctly.
585 * SACKs don't matter, we never delay an ACK when we have any of those
586 * going out. */
587 opts->mss = tcp_advertise_mss(sk);
588 remaining -= TCPOLEN_MSS_ALIGNED;
589
590 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
591 opts->options |= OPTION_TS;
592 opts->tsval = TCP_SKB_CB(skb)->when;
593 opts->tsecr = tp->rx_opt.ts_recent;
594 remaining -= TCPOLEN_TSTAMP_ALIGNED;
595 }
596 if (likely(sysctl_tcp_window_scaling)) {
597 opts->ws = tp->rx_opt.rcv_wscale;
598 opts->options |= OPTION_WSCALE;
599 remaining -= TCPOLEN_WSCALE_ALIGNED;
600 }
601 if (likely(sysctl_tcp_sack)) {
602 opts->options |= OPTION_SACK_ADVERTISE;
603 if (unlikely(!(OPTION_TS & opts->options)))
604 remaining -= TCPOLEN_SACKPERM_ALIGNED;
605 }
606
607 /* Note that timestamps are required by the specification.
608 *
609 * Odd numbers of bytes are prohibited by the specification, ensuring
610 * that the cookie is 16-bit aligned, and the resulting cookie pair is
611 * 32-bit aligned.
612 */
613 if (*md5 == NULL &&
614 (OPTION_TS & opts->options) &&
615 cookie_size > 0) {
616 int need = TCPOLEN_COOKIE_BASE + cookie_size;
617
618 if (0x2 & need) {
619 /* 32-bit multiple */
620 need += 2; /* NOPs */
621
622 if (need > remaining) {
623 /* try shrinking cookie to fit */
624 cookie_size -= 2;
625 need -= 4;
626 }
627 }
628 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
629 cookie_size -= 4;
630 need -= 4;
631 }
632 if (TCP_COOKIE_MIN <= cookie_size) {
633 opts->options |= OPTION_COOKIE_EXTENSION;
634 opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
635 opts->hash_size = cookie_size;
636
637 /* Remember for future incarnations. */
638 cvp->cookie_desired = cookie_size;
639
640 if (cvp->cookie_desired != cvp->cookie_pair_size) {
641 /* Currently use random bytes as a nonce,
642 * assuming these are completely unpredictable
643 * by hostile users of the same system.
644 */
645 get_random_bytes(&cvp->cookie_pair[0],
646 cookie_size);
647 cvp->cookie_pair_size = cookie_size;
648 }
649
650 remaining -= need;
651 }
652 }
653 return MAX_TCP_OPTION_SPACE - remaining;
654 }
655
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned tcp_synack_options(struct sock *sk,
658 struct request_sock *req,
659 unsigned mss, struct sk_buff *skb,
660 struct tcp_out_options *opts,
661 struct tcp_md5sig_key **md5,
662 struct tcp_extend_values *xvp)
663 {
664 struct inet_request_sock *ireq = inet_rsk(req);
665 unsigned remaining = MAX_TCP_OPTION_SPACE;
666 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
667 xvp->cookie_plus :
668 0;
669 bool doing_ts = ireq->tstamp_ok;
670
671 #ifdef CONFIG_TCP_MD5SIG
672 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
673 if (*md5) {
674 opts->options |= OPTION_MD5;
675 remaining -= TCPOLEN_MD5SIG_ALIGNED;
676
677 /* We can't fit any SACK blocks in a packet with MD5 + TS
678 * options. There was discussion about disabling SACK
679 * rather than TS in order to fit in better with old,
680 * buggy kernels, but that was deemed to be unnecessary.
681 */
682 doing_ts &= !ireq->sack_ok;
683 }
684 #else
685 *md5 = NULL;
686 #endif
687
688 /* We always send an MSS option. */
689 opts->mss = mss;
690 remaining -= TCPOLEN_MSS_ALIGNED;
691
692 if (likely(ireq->wscale_ok)) {
693 opts->ws = ireq->rcv_wscale;
694 opts->options |= OPTION_WSCALE;
695 remaining -= TCPOLEN_WSCALE_ALIGNED;
696 }
697 if (likely(doing_ts)) {
698 opts->options |= OPTION_TS;
699 opts->tsval = TCP_SKB_CB(skb)->when;
700 opts->tsecr = req->ts_recent;
701 remaining -= TCPOLEN_TSTAMP_ALIGNED;
702 }
703 if (likely(ireq->sack_ok)) {
704 opts->options |= OPTION_SACK_ADVERTISE;
705 if (unlikely(!doing_ts))
706 remaining -= TCPOLEN_SACKPERM_ALIGNED;
707 }
708
709 /* Similar rationale to tcp_syn_options() applies here, too.
710 * If the <SYN> options fit, the same options should fit now!
711 */
712 if (*md5 == NULL &&
713 doing_ts &&
714 cookie_plus > TCPOLEN_COOKIE_BASE) {
715 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
716
717 if (0x2 & need) {
718 /* 32-bit multiple */
719 need += 2; /* NOPs */
720 }
721 if (need <= remaining) {
722 opts->options |= OPTION_COOKIE_EXTENSION;
723 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
724 remaining -= need;
725 } else {
726 /* There's no error return, so flag it. */
727 xvp->cookie_out_never = 1; /* true */
728 opts->hash_size = 0;
729 }
730 }
731 return MAX_TCP_OPTION_SPACE - remaining;
732 }
733
734 /* Compute TCP options for ESTABLISHED sockets. This is not the
735 * final wire format yet.
736 */
737 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
738 struct tcp_out_options *opts,
739 struct tcp_md5sig_key **md5) {
740 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
741 struct tcp_sock *tp = tcp_sk(sk);
742 unsigned size = 0;
743 unsigned int eff_sacks;
744
745 #ifdef CONFIG_TCP_MD5SIG
746 *md5 = tp->af_specific->md5_lookup(sk, sk);
747 if (unlikely(*md5)) {
748 opts->options |= OPTION_MD5;
749 size += TCPOLEN_MD5SIG_ALIGNED;
750 }
751 #else
752 *md5 = NULL;
753 #endif
754
755 if (likely(tp->rx_opt.tstamp_ok)) {
756 opts->options |= OPTION_TS;
757 opts->tsval = tcb ? tcb->when : 0;
758 opts->tsecr = tp->rx_opt.ts_recent;
759 size += TCPOLEN_TSTAMP_ALIGNED;
760 }
761
762 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
763 if (unlikely(eff_sacks)) {
764 const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
765 opts->num_sack_blocks =
766 min_t(unsigned, eff_sacks,
767 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
768 TCPOLEN_SACK_PERBLOCK);
769 size += TCPOLEN_SACK_BASE_ALIGNED +
770 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
771 }
772
773 return size;
774 }
775
776 /* This routine actually transmits TCP packets queued in by
777 * tcp_do_sendmsg(). This is used by both the initial
778 * transmission and possible later retransmissions.
779 * All SKB's seen here are completely headerless. It is our
780 * job to build the TCP header, and pass the packet down to
781 * IP so it can do the same plus pass the packet off to the
782 * device.
783 *
784 * We are working here with either a clone of the original
785 * SKB, or a fresh unique copy made by the retransmit engine.
786 */
787 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
788 gfp_t gfp_mask)
789 {
790 const struct inet_connection_sock *icsk = inet_csk(sk);
791 struct inet_sock *inet;
792 struct tcp_sock *tp;
793 struct tcp_skb_cb *tcb;
794 struct tcp_out_options opts;
795 unsigned tcp_options_size, tcp_header_size;
796 struct tcp_md5sig_key *md5;
797 struct tcphdr *th;
798 int err;
799
800 BUG_ON(!skb || !tcp_skb_pcount(skb));
801
802 /* If congestion control is doing timestamping, we must
803 * take such a timestamp before we potentially clone/copy.
804 */
805 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
806 __net_timestamp(skb);
807
808 if (likely(clone_it)) {
809 if (unlikely(skb_cloned(skb)))
810 skb = pskb_copy(skb, gfp_mask);
811 else
812 skb = skb_clone(skb, gfp_mask);
813 if (unlikely(!skb))
814 return -ENOBUFS;
815 }
816
817 inet = inet_sk(sk);
818 tp = tcp_sk(sk);
819 tcb = TCP_SKB_CB(skb);
820 memset(&opts, 0, sizeof(opts));
821
822 if (unlikely(tcb->flags & TCPCB_FLAG_SYN))
823 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
824 else
825 tcp_options_size = tcp_established_options(sk, skb, &opts,
826 &md5);
827 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
828
829 if (tcp_packets_in_flight(tp) == 0)
830 tcp_ca_event(sk, CA_EVENT_TX_START);
831
832 skb_push(skb, tcp_header_size);
833 skb_reset_transport_header(skb);
834 skb_set_owner_w(skb, sk);
835
836 /* Build TCP header and checksum it. */
837 th = tcp_hdr(skb);
838 th->source = inet->inet_sport;
839 th->dest = inet->inet_dport;
840 th->seq = htonl(tcb->seq);
841 th->ack_seq = htonl(tp->rcv_nxt);
842 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
843 tcb->flags);
844
845 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
846 /* RFC1323: The window in SYN & SYN/ACK segments
847 * is never scaled.
848 */
849 th->window = htons(min(tp->rcv_wnd, 65535U));
850 } else {
851 th->window = htons(tcp_select_window(sk));
852 }
853 th->check = 0;
854 th->urg_ptr = 0;
855
856 /* The urg_mode check is necessary during a below snd_una win probe */
857 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
858 if (before(tp->snd_up, tcb->seq + 0x10000)) {
859 th->urg_ptr = htons(tp->snd_up - tcb->seq);
860 th->urg = 1;
861 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
862 th->urg_ptr = 0xFFFF;
863 th->urg = 1;
864 }
865 }
866
867 tcp_options_write((__be32 *)(th + 1), tp, &opts);
868 if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0))
869 TCP_ECN_send(sk, skb, tcp_header_size);
870
871 #ifdef CONFIG_TCP_MD5SIG
872 /* Calculate the MD5 hash, as we have all we need now */
873 if (md5) {
874 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
875 tp->af_specific->calc_md5_hash(opts.hash_location,
876 md5, sk, NULL, skb);
877 }
878 #endif
879
880 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
881
882 if (likely(tcb->flags & TCPCB_FLAG_ACK))
883 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
884
885 if (skb->len != tcp_header_size)
886 tcp_event_data_sent(tp, skb, sk);
887
888 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
889 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
890
891 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
892 if (likely(err <= 0))
893 return err;
894
895 tcp_enter_cwr(sk, 1);
896
897 return net_xmit_eval(err);
898 }
899
900 /* This routine just queues the buffer for sending.
901 *
902 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
903 * otherwise socket can stall.
904 */
905 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
906 {
907 struct tcp_sock *tp = tcp_sk(sk);
908
909 /* Advance write_seq and place onto the write_queue. */
910 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
911 skb_header_release(skb);
912 tcp_add_write_queue_tail(sk, skb);
913 sk->sk_wmem_queued += skb->truesize;
914 sk_mem_charge(sk, skb->truesize);
915 }
916
917 /* Initialize TSO segments for a packet. */
918 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
919 unsigned int mss_now)
920 {
921 if (skb->len <= mss_now || !sk_can_gso(sk) ||
922 skb->ip_summed == CHECKSUM_NONE) {
923 /* Avoid the costly divide in the normal
924 * non-TSO case.
925 */
926 skb_shinfo(skb)->gso_segs = 1;
927 skb_shinfo(skb)->gso_size = 0;
928 skb_shinfo(skb)->gso_type = 0;
929 } else {
930 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
931 skb_shinfo(skb)->gso_size = mss_now;
932 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
933 }
934 }
935
936 /* When a modification to fackets out becomes necessary, we need to check
937 * skb is counted to fackets_out or not.
938 */
939 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
940 int decr)
941 {
942 struct tcp_sock *tp = tcp_sk(sk);
943
944 if (!tp->sacked_out || tcp_is_reno(tp))
945 return;
946
947 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
948 tp->fackets_out -= decr;
949 }
950
951 /* Pcount in the middle of the write queue got changed, we need to do various
952 * tweaks to fix counters
953 */
954 static void tcp_adjust_pcount(struct sock *sk, struct sk_buff *skb, int decr)
955 {
956 struct tcp_sock *tp = tcp_sk(sk);
957
958 tp->packets_out -= decr;
959
960 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
961 tp->sacked_out -= decr;
962 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
963 tp->retrans_out -= decr;
964 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
965 tp->lost_out -= decr;
966
967 /* Reno case is special. Sigh... */
968 if (tcp_is_reno(tp) && decr > 0)
969 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
970
971 tcp_adjust_fackets_out(sk, skb, decr);
972
973 if (tp->lost_skb_hint &&
974 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
975 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
976 tp->lost_cnt_hint -= decr;
977
978 tcp_verify_left_out(tp);
979 }
980
981 /* Function to create two new TCP segments. Shrinks the given segment
982 * to the specified size and appends a new segment with the rest of the
983 * packet to the list. This won't be called frequently, I hope.
984 * Remember, these are still headerless SKBs at this point.
985 */
986 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
987 unsigned int mss_now)
988 {
989 struct tcp_sock *tp = tcp_sk(sk);
990 struct sk_buff *buff;
991 int nsize, old_factor;
992 int nlen;
993 u8 flags;
994
995 BUG_ON(len > skb->len);
996
997 nsize = skb_headlen(skb) - len;
998 if (nsize < 0)
999 nsize = 0;
1000
1001 if (skb_cloned(skb) &&
1002 skb_is_nonlinear(skb) &&
1003 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1004 return -ENOMEM;
1005
1006 /* Get a new skb... force flag on. */
1007 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1008 if (buff == NULL)
1009 return -ENOMEM; /* We'll just try again later. */
1010
1011 sk->sk_wmem_queued += buff->truesize;
1012 sk_mem_charge(sk, buff->truesize);
1013 nlen = skb->len - len - nsize;
1014 buff->truesize += nlen;
1015 skb->truesize -= nlen;
1016
1017 /* Correct the sequence numbers. */
1018 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1019 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1020 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1021
1022 /* PSH and FIN should only be set in the second packet. */
1023 flags = TCP_SKB_CB(skb)->flags;
1024 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1025 TCP_SKB_CB(buff)->flags = flags;
1026 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1027
1028 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1029 /* Copy and checksum data tail into the new buffer. */
1030 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1031 skb_put(buff, nsize),
1032 nsize, 0);
1033
1034 skb_trim(skb, len);
1035
1036 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1037 } else {
1038 skb->ip_summed = CHECKSUM_PARTIAL;
1039 skb_split(skb, buff, len);
1040 }
1041
1042 buff->ip_summed = skb->ip_summed;
1043
1044 /* Looks stupid, but our code really uses when of
1045 * skbs, which it never sent before. --ANK
1046 */
1047 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1048 buff->tstamp = skb->tstamp;
1049
1050 old_factor = tcp_skb_pcount(skb);
1051
1052 /* Fix up tso_factor for both original and new SKB. */
1053 tcp_set_skb_tso_segs(sk, skb, mss_now);
1054 tcp_set_skb_tso_segs(sk, buff, mss_now);
1055
1056 /* If this packet has been sent out already, we must
1057 * adjust the various packet counters.
1058 */
1059 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1060 int diff = old_factor - tcp_skb_pcount(skb) -
1061 tcp_skb_pcount(buff);
1062
1063 if (diff)
1064 tcp_adjust_pcount(sk, skb, diff);
1065 }
1066
1067 /* Link BUFF into the send queue. */
1068 skb_header_release(buff);
1069 tcp_insert_write_queue_after(skb, buff, sk);
1070
1071 return 0;
1072 }
1073
1074 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1075 * eventually). The difference is that pulled data not copied, but
1076 * immediately discarded.
1077 */
1078 static void __pskb_trim_head(struct sk_buff *skb, int len)
1079 {
1080 int i, k, eat;
1081
1082 eat = len;
1083 k = 0;
1084 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1085 if (skb_shinfo(skb)->frags[i].size <= eat) {
1086 put_page(skb_shinfo(skb)->frags[i].page);
1087 eat -= skb_shinfo(skb)->frags[i].size;
1088 } else {
1089 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1090 if (eat) {
1091 skb_shinfo(skb)->frags[k].page_offset += eat;
1092 skb_shinfo(skb)->frags[k].size -= eat;
1093 eat = 0;
1094 }
1095 k++;
1096 }
1097 }
1098 skb_shinfo(skb)->nr_frags = k;
1099
1100 skb_reset_tail_pointer(skb);
1101 skb->data_len -= len;
1102 skb->len = skb->data_len;
1103 }
1104
1105 /* Remove acked data from a packet in the transmit queue. */
1106 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1107 {
1108 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1109 return -ENOMEM;
1110
1111 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
1112 if (unlikely(len < skb_headlen(skb)))
1113 __skb_pull(skb, len);
1114 else
1115 __pskb_trim_head(skb, len - skb_headlen(skb));
1116
1117 TCP_SKB_CB(skb)->seq += len;
1118 skb->ip_summed = CHECKSUM_PARTIAL;
1119
1120 skb->truesize -= len;
1121 sk->sk_wmem_queued -= len;
1122 sk_mem_uncharge(sk, len);
1123 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1124
1125 /* Any change of skb->len requires recalculation of tso
1126 * factor and mss.
1127 */
1128 if (tcp_skb_pcount(skb) > 1)
1129 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk));
1130
1131 return 0;
1132 }
1133
1134 /* Calculate MSS. Not accounting for SACKs here. */
1135 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1136 {
1137 struct tcp_sock *tp = tcp_sk(sk);
1138 struct inet_connection_sock *icsk = inet_csk(sk);
1139 int mss_now;
1140
1141 /* Calculate base mss without TCP options:
1142 It is MMS_S - sizeof(tcphdr) of rfc1122
1143 */
1144 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1145
1146 /* Clamp it (mss_clamp does not include tcp options) */
1147 if (mss_now > tp->rx_opt.mss_clamp)
1148 mss_now = tp->rx_opt.mss_clamp;
1149
1150 /* Now subtract optional transport overhead */
1151 mss_now -= icsk->icsk_ext_hdr_len;
1152
1153 /* Then reserve room for full set of TCP options and 8 bytes of data */
1154 if (mss_now < 48)
1155 mss_now = 48;
1156
1157 /* Now subtract TCP options size, not including SACKs */
1158 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1159
1160 return mss_now;
1161 }
1162
1163 /* Inverse of above */
1164 int tcp_mss_to_mtu(struct sock *sk, int mss)
1165 {
1166 struct tcp_sock *tp = tcp_sk(sk);
1167 struct inet_connection_sock *icsk = inet_csk(sk);
1168 int mtu;
1169
1170 mtu = mss +
1171 tp->tcp_header_len +
1172 icsk->icsk_ext_hdr_len +
1173 icsk->icsk_af_ops->net_header_len;
1174
1175 return mtu;
1176 }
1177
1178 /* MTU probing init per socket */
1179 void tcp_mtup_init(struct sock *sk)
1180 {
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 struct inet_connection_sock *icsk = inet_csk(sk);
1183
1184 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1185 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1186 icsk->icsk_af_ops->net_header_len;
1187 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1188 icsk->icsk_mtup.probe_size = 0;
1189 }
1190
1191 /* This function synchronize snd mss to current pmtu/exthdr set.
1192
1193 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1194 for TCP options, but includes only bare TCP header.
1195
1196 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1197 It is minimum of user_mss and mss received with SYN.
1198 It also does not include TCP options.
1199
1200 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1201
1202 tp->mss_cache is current effective sending mss, including
1203 all tcp options except for SACKs. It is evaluated,
1204 taking into account current pmtu, but never exceeds
1205 tp->rx_opt.mss_clamp.
1206
1207 NOTE1. rfc1122 clearly states that advertised MSS
1208 DOES NOT include either tcp or ip options.
1209
1210 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1211 are READ ONLY outside this function. --ANK (980731)
1212 */
1213 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1214 {
1215 struct tcp_sock *tp = tcp_sk(sk);
1216 struct inet_connection_sock *icsk = inet_csk(sk);
1217 int mss_now;
1218
1219 if (icsk->icsk_mtup.search_high > pmtu)
1220 icsk->icsk_mtup.search_high = pmtu;
1221
1222 mss_now = tcp_mtu_to_mss(sk, pmtu);
1223 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1224
1225 /* And store cached results */
1226 icsk->icsk_pmtu_cookie = pmtu;
1227 if (icsk->icsk_mtup.enabled)
1228 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1229 tp->mss_cache = mss_now;
1230
1231 return mss_now;
1232 }
1233
1234 /* Compute the current effective MSS, taking SACKs and IP options,
1235 * and even PMTU discovery events into account.
1236 */
1237 unsigned int tcp_current_mss(struct sock *sk)
1238 {
1239 struct tcp_sock *tp = tcp_sk(sk);
1240 struct dst_entry *dst = __sk_dst_get(sk);
1241 u32 mss_now;
1242 unsigned header_len;
1243 struct tcp_out_options opts;
1244 struct tcp_md5sig_key *md5;
1245
1246 mss_now = tp->mss_cache;
1247
1248 if (dst) {
1249 u32 mtu = dst_mtu(dst);
1250 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1251 mss_now = tcp_sync_mss(sk, mtu);
1252 }
1253
1254 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1255 sizeof(struct tcphdr);
1256 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1257 * some common options. If this is an odd packet (because we have SACK
1258 * blocks etc) then our calculated header_len will be different, and
1259 * we have to adjust mss_now correspondingly */
1260 if (header_len != tp->tcp_header_len) {
1261 int delta = (int) header_len - tp->tcp_header_len;
1262 mss_now -= delta;
1263 }
1264
1265 return mss_now;
1266 }
1267
1268 /* Congestion window validation. (RFC2861) */
1269 static void tcp_cwnd_validate(struct sock *sk)
1270 {
1271 struct tcp_sock *tp = tcp_sk(sk);
1272
1273 if (tp->packets_out >= tp->snd_cwnd) {
1274 /* Network is feed fully. */
1275 tp->snd_cwnd_used = 0;
1276 tp->snd_cwnd_stamp = tcp_time_stamp;
1277 } else {
1278 /* Network starves. */
1279 if (tp->packets_out > tp->snd_cwnd_used)
1280 tp->snd_cwnd_used = tp->packets_out;
1281
1282 if (sysctl_tcp_slow_start_after_idle &&
1283 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1284 tcp_cwnd_application_limited(sk);
1285 }
1286 }
1287
1288 /* Returns the portion of skb which can be sent right away without
1289 * introducing MSS oddities to segment boundaries. In rare cases where
1290 * mss_now != mss_cache, we will request caller to create a small skb
1291 * per input skb which could be mostly avoided here (if desired).
1292 *
1293 * We explicitly want to create a request for splitting write queue tail
1294 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1295 * thus all the complexity (cwnd_len is always MSS multiple which we
1296 * return whenever allowed by the other factors). Basically we need the
1297 * modulo only when the receiver window alone is the limiting factor or
1298 * when we would be allowed to send the split-due-to-Nagle skb fully.
1299 */
1300 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1301 unsigned int mss_now, unsigned int cwnd)
1302 {
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 u32 needed, window, cwnd_len;
1305
1306 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1307 cwnd_len = mss_now * cwnd;
1308
1309 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1310 return cwnd_len;
1311
1312 needed = min(skb->len, window);
1313
1314 if (cwnd_len <= needed)
1315 return cwnd_len;
1316
1317 return needed - needed % mss_now;
1318 }
1319
1320 /* Can at least one segment of SKB be sent right now, according to the
1321 * congestion window rules? If so, return how many segments are allowed.
1322 */
1323 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1324 struct sk_buff *skb)
1325 {
1326 u32 in_flight, cwnd;
1327
1328 /* Don't be strict about the congestion window for the final FIN. */
1329 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1330 tcp_skb_pcount(skb) == 1)
1331 return 1;
1332
1333 in_flight = tcp_packets_in_flight(tp);
1334 cwnd = tp->snd_cwnd;
1335 if (in_flight < cwnd)
1336 return (cwnd - in_flight);
1337
1338 return 0;
1339 }
1340
1341 /* Intialize TSO state of a skb.
1342 * This must be invoked the first time we consider transmitting
1343 * SKB onto the wire.
1344 */
1345 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1346 unsigned int mss_now)
1347 {
1348 int tso_segs = tcp_skb_pcount(skb);
1349
1350 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1351 tcp_set_skb_tso_segs(sk, skb, mss_now);
1352 tso_segs = tcp_skb_pcount(skb);
1353 }
1354 return tso_segs;
1355 }
1356
1357 /* Minshall's variant of the Nagle send check. */
1358 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1359 {
1360 return after(tp->snd_sml, tp->snd_una) &&
1361 !after(tp->snd_sml, tp->snd_nxt);
1362 }
1363
1364 /* Return 0, if packet can be sent now without violation Nagle's rules:
1365 * 1. It is full sized.
1366 * 2. Or it contains FIN. (already checked by caller)
1367 * 3. Or TCP_NODELAY was set.
1368 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1369 * With Minshall's modification: all sent small packets are ACKed.
1370 */
1371 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1372 const struct sk_buff *skb,
1373 unsigned mss_now, int nonagle)
1374 {
1375 return (skb->len < mss_now &&
1376 ((nonagle & TCP_NAGLE_CORK) ||
1377 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1378 }
1379
1380 /* Return non-zero if the Nagle test allows this packet to be
1381 * sent now.
1382 */
1383 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1384 unsigned int cur_mss, int nonagle)
1385 {
1386 /* Nagle rule does not apply to frames, which sit in the middle of the
1387 * write_queue (they have no chances to get new data).
1388 *
1389 * This is implemented in the callers, where they modify the 'nonagle'
1390 * argument based upon the location of SKB in the send queue.
1391 */
1392 if (nonagle & TCP_NAGLE_PUSH)
1393 return 1;
1394
1395 /* Don't use the nagle rule for urgent data (or for the final FIN).
1396 * Nagle can be ignored during F-RTO too (see RFC4138).
1397 */
1398 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1399 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1400 return 1;
1401
1402 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1403 return 1;
1404
1405 return 0;
1406 }
1407
1408 /* Does at least the first segment of SKB fit into the send window? */
1409 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1410 unsigned int cur_mss)
1411 {
1412 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1413
1414 if (skb->len > cur_mss)
1415 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1416
1417 return !after(end_seq, tcp_wnd_end(tp));
1418 }
1419
1420 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1421 * should be put on the wire right now. If so, it returns the number of
1422 * packets allowed by the congestion window.
1423 */
1424 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1425 unsigned int cur_mss, int nonagle)
1426 {
1427 struct tcp_sock *tp = tcp_sk(sk);
1428 unsigned int cwnd_quota;
1429
1430 tcp_init_tso_segs(sk, skb, cur_mss);
1431
1432 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1433 return 0;
1434
1435 cwnd_quota = tcp_cwnd_test(tp, skb);
1436 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1437 cwnd_quota = 0;
1438
1439 return cwnd_quota;
1440 }
1441
1442 /* Test if sending is allowed right now. */
1443 int tcp_may_send_now(struct sock *sk)
1444 {
1445 struct tcp_sock *tp = tcp_sk(sk);
1446 struct sk_buff *skb = tcp_send_head(sk);
1447
1448 return (skb &&
1449 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1450 (tcp_skb_is_last(sk, skb) ?
1451 tp->nonagle : TCP_NAGLE_PUSH)));
1452 }
1453
1454 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1455 * which is put after SKB on the list. It is very much like
1456 * tcp_fragment() except that it may make several kinds of assumptions
1457 * in order to speed up the splitting operation. In particular, we
1458 * know that all the data is in scatter-gather pages, and that the
1459 * packet has never been sent out before (and thus is not cloned).
1460 */
1461 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1462 unsigned int mss_now)
1463 {
1464 struct sk_buff *buff;
1465 int nlen = skb->len - len;
1466 u8 flags;
1467
1468 /* All of a TSO frame must be composed of paged data. */
1469 if (skb->len != skb->data_len)
1470 return tcp_fragment(sk, skb, len, mss_now);
1471
1472 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1473 if (unlikely(buff == NULL))
1474 return -ENOMEM;
1475
1476 sk->sk_wmem_queued += buff->truesize;
1477 sk_mem_charge(sk, buff->truesize);
1478 buff->truesize += nlen;
1479 skb->truesize -= nlen;
1480
1481 /* Correct the sequence numbers. */
1482 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1483 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1484 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1485
1486 /* PSH and FIN should only be set in the second packet. */
1487 flags = TCP_SKB_CB(skb)->flags;
1488 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1489 TCP_SKB_CB(buff)->flags = flags;
1490
1491 /* This packet was never sent out yet, so no SACK bits. */
1492 TCP_SKB_CB(buff)->sacked = 0;
1493
1494 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1495 skb_split(skb, buff, len);
1496
1497 /* Fix up tso_factor for both original and new SKB. */
1498 tcp_set_skb_tso_segs(sk, skb, mss_now);
1499 tcp_set_skb_tso_segs(sk, buff, mss_now);
1500
1501 /* Link BUFF into the send queue. */
1502 skb_header_release(buff);
1503 tcp_insert_write_queue_after(skb, buff, sk);
1504
1505 return 0;
1506 }
1507
1508 /* Try to defer sending, if possible, in order to minimize the amount
1509 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1510 *
1511 * This algorithm is from John Heffner.
1512 */
1513 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1514 {
1515 struct tcp_sock *tp = tcp_sk(sk);
1516 const struct inet_connection_sock *icsk = inet_csk(sk);
1517 u32 send_win, cong_win, limit, in_flight;
1518
1519 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1520 goto send_now;
1521
1522 if (icsk->icsk_ca_state != TCP_CA_Open)
1523 goto send_now;
1524
1525 /* Defer for less than two clock ticks. */
1526 if (tp->tso_deferred &&
1527 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1528 goto send_now;
1529
1530 in_flight = tcp_packets_in_flight(tp);
1531
1532 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1533
1534 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1535
1536 /* From in_flight test above, we know that cwnd > in_flight. */
1537 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1538
1539 limit = min(send_win, cong_win);
1540
1541 /* If a full-sized TSO skb can be sent, do it. */
1542 if (limit >= sk->sk_gso_max_size)
1543 goto send_now;
1544
1545 /* Middle in queue won't get any more data, full sendable already? */
1546 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1547 goto send_now;
1548
1549 if (sysctl_tcp_tso_win_divisor) {
1550 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1551
1552 /* If at least some fraction of a window is available,
1553 * just use it.
1554 */
1555 chunk /= sysctl_tcp_tso_win_divisor;
1556 if (limit >= chunk)
1557 goto send_now;
1558 } else {
1559 /* Different approach, try not to defer past a single
1560 * ACK. Receiver should ACK every other full sized
1561 * frame, so if we have space for more than 3 frames
1562 * then send now.
1563 */
1564 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1565 goto send_now;
1566 }
1567
1568 /* Ok, it looks like it is advisable to defer. */
1569 tp->tso_deferred = 1 | (jiffies << 1);
1570
1571 return 1;
1572
1573 send_now:
1574 tp->tso_deferred = 0;
1575 return 0;
1576 }
1577
1578 /* Create a new MTU probe if we are ready.
1579 * MTU probe is regularly attempting to increase the path MTU by
1580 * deliberately sending larger packets. This discovers routing
1581 * changes resulting in larger path MTUs.
1582 *
1583 * Returns 0 if we should wait to probe (no cwnd available),
1584 * 1 if a probe was sent,
1585 * -1 otherwise
1586 */
1587 static int tcp_mtu_probe(struct sock *sk)
1588 {
1589 struct tcp_sock *tp = tcp_sk(sk);
1590 struct inet_connection_sock *icsk = inet_csk(sk);
1591 struct sk_buff *skb, *nskb, *next;
1592 int len;
1593 int probe_size;
1594 int size_needed;
1595 int copy;
1596 int mss_now;
1597
1598 /* Not currently probing/verifying,
1599 * not in recovery,
1600 * have enough cwnd, and
1601 * not SACKing (the variable headers throw things off) */
1602 if (!icsk->icsk_mtup.enabled ||
1603 icsk->icsk_mtup.probe_size ||
1604 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1605 tp->snd_cwnd < 11 ||
1606 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1607 return -1;
1608
1609 /* Very simple search strategy: just double the MSS. */
1610 mss_now = tcp_current_mss(sk);
1611 probe_size = 2 * tp->mss_cache;
1612 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1613 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1614 /* TODO: set timer for probe_converge_event */
1615 return -1;
1616 }
1617
1618 /* Have enough data in the send queue to probe? */
1619 if (tp->write_seq - tp->snd_nxt < size_needed)
1620 return -1;
1621
1622 if (tp->snd_wnd < size_needed)
1623 return -1;
1624 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1625 return 0;
1626
1627 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1628 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1629 if (!tcp_packets_in_flight(tp))
1630 return -1;
1631 else
1632 return 0;
1633 }
1634
1635 /* We're allowed to probe. Build it now. */
1636 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1637 return -1;
1638 sk->sk_wmem_queued += nskb->truesize;
1639 sk_mem_charge(sk, nskb->truesize);
1640
1641 skb = tcp_send_head(sk);
1642
1643 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1644 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1645 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1646 TCP_SKB_CB(nskb)->sacked = 0;
1647 nskb->csum = 0;
1648 nskb->ip_summed = skb->ip_summed;
1649
1650 tcp_insert_write_queue_before(nskb, skb, sk);
1651
1652 len = 0;
1653 tcp_for_write_queue_from_safe(skb, next, sk) {
1654 copy = min_t(int, skb->len, probe_size - len);
1655 if (nskb->ip_summed)
1656 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1657 else
1658 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1659 skb_put(nskb, copy),
1660 copy, nskb->csum);
1661
1662 if (skb->len <= copy) {
1663 /* We've eaten all the data from this skb.
1664 * Throw it away. */
1665 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1666 tcp_unlink_write_queue(skb, sk);
1667 sk_wmem_free_skb(sk, skb);
1668 } else {
1669 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1670 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1671 if (!skb_shinfo(skb)->nr_frags) {
1672 skb_pull(skb, copy);
1673 if (skb->ip_summed != CHECKSUM_PARTIAL)
1674 skb->csum = csum_partial(skb->data,
1675 skb->len, 0);
1676 } else {
1677 __pskb_trim_head(skb, copy);
1678 tcp_set_skb_tso_segs(sk, skb, mss_now);
1679 }
1680 TCP_SKB_CB(skb)->seq += copy;
1681 }
1682
1683 len += copy;
1684
1685 if (len >= probe_size)
1686 break;
1687 }
1688 tcp_init_tso_segs(sk, nskb, nskb->len);
1689
1690 /* We're ready to send. If this fails, the probe will
1691 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1692 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1693 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1694 /* Decrement cwnd here because we are sending
1695 * effectively two packets. */
1696 tp->snd_cwnd--;
1697 tcp_event_new_data_sent(sk, nskb);
1698
1699 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1700 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1701 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1702
1703 return 1;
1704 }
1705
1706 return -1;
1707 }
1708
1709 /* This routine writes packets to the network. It advances the
1710 * send_head. This happens as incoming acks open up the remote
1711 * window for us.
1712 *
1713 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1714 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1715 * account rare use of URG, this is not a big flaw.
1716 *
1717 * Returns 1, if no segments are in flight and we have queued segments, but
1718 * cannot send anything now because of SWS or another problem.
1719 */
1720 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1721 int push_one, gfp_t gfp)
1722 {
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 struct sk_buff *skb;
1725 unsigned int tso_segs, sent_pkts;
1726 int cwnd_quota;
1727 int result;
1728
1729 sent_pkts = 0;
1730
1731 if (!push_one) {
1732 /* Do MTU probing. */
1733 result = tcp_mtu_probe(sk);
1734 if (!result) {
1735 return 0;
1736 } else if (result > 0) {
1737 sent_pkts = 1;
1738 }
1739 }
1740
1741 while ((skb = tcp_send_head(sk))) {
1742 unsigned int limit;
1743
1744 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1745 BUG_ON(!tso_segs);
1746
1747 cwnd_quota = tcp_cwnd_test(tp, skb);
1748 if (!cwnd_quota)
1749 break;
1750
1751 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1752 break;
1753
1754 if (tso_segs == 1) {
1755 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1756 (tcp_skb_is_last(sk, skb) ?
1757 nonagle : TCP_NAGLE_PUSH))))
1758 break;
1759 } else {
1760 if (!push_one && tcp_tso_should_defer(sk, skb))
1761 break;
1762 }
1763
1764 limit = mss_now;
1765 if (tso_segs > 1 && !tcp_urg_mode(tp))
1766 limit = tcp_mss_split_point(sk, skb, mss_now,
1767 cwnd_quota);
1768
1769 if (skb->len > limit &&
1770 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1771 break;
1772
1773 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1774
1775 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1776 break;
1777
1778 /* Advance the send_head. This one is sent out.
1779 * This call will increment packets_out.
1780 */
1781 tcp_event_new_data_sent(sk, skb);
1782
1783 tcp_minshall_update(tp, mss_now, skb);
1784 sent_pkts++;
1785
1786 if (push_one)
1787 break;
1788 }
1789
1790 if (likely(sent_pkts)) {
1791 tcp_cwnd_validate(sk);
1792 return 0;
1793 }
1794 return !tp->packets_out && tcp_send_head(sk);
1795 }
1796
1797 /* Push out any pending frames which were held back due to
1798 * TCP_CORK or attempt at coalescing tiny packets.
1799 * The socket must be locked by the caller.
1800 */
1801 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1802 int nonagle)
1803 {
1804 /* If we are closed, the bytes will have to remain here.
1805 * In time closedown will finish, we empty the write queue and
1806 * all will be happy.
1807 */
1808 if (unlikely(sk->sk_state == TCP_CLOSE))
1809 return;
1810
1811 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
1812 tcp_check_probe_timer(sk);
1813 }
1814
1815 /* Send _single_ skb sitting at the send head. This function requires
1816 * true push pending frames to setup probe timer etc.
1817 */
1818 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1819 {
1820 struct sk_buff *skb = tcp_send_head(sk);
1821
1822 BUG_ON(!skb || skb->len < mss_now);
1823
1824 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
1825 }
1826
1827 /* This function returns the amount that we can raise the
1828 * usable window based on the following constraints
1829 *
1830 * 1. The window can never be shrunk once it is offered (RFC 793)
1831 * 2. We limit memory per socket
1832 *
1833 * RFC 1122:
1834 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1835 * RECV.NEXT + RCV.WIN fixed until:
1836 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1837 *
1838 * i.e. don't raise the right edge of the window until you can raise
1839 * it at least MSS bytes.
1840 *
1841 * Unfortunately, the recommended algorithm breaks header prediction,
1842 * since header prediction assumes th->window stays fixed.
1843 *
1844 * Strictly speaking, keeping th->window fixed violates the receiver
1845 * side SWS prevention criteria. The problem is that under this rule
1846 * a stream of single byte packets will cause the right side of the
1847 * window to always advance by a single byte.
1848 *
1849 * Of course, if the sender implements sender side SWS prevention
1850 * then this will not be a problem.
1851 *
1852 * BSD seems to make the following compromise:
1853 *
1854 * If the free space is less than the 1/4 of the maximum
1855 * space available and the free space is less than 1/2 mss,
1856 * then set the window to 0.
1857 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1858 * Otherwise, just prevent the window from shrinking
1859 * and from being larger than the largest representable value.
1860 *
1861 * This prevents incremental opening of the window in the regime
1862 * where TCP is limited by the speed of the reader side taking
1863 * data out of the TCP receive queue. It does nothing about
1864 * those cases where the window is constrained on the sender side
1865 * because the pipeline is full.
1866 *
1867 * BSD also seems to "accidentally" limit itself to windows that are a
1868 * multiple of MSS, at least until the free space gets quite small.
1869 * This would appear to be a side effect of the mbuf implementation.
1870 * Combining these two algorithms results in the observed behavior
1871 * of having a fixed window size at almost all times.
1872 *
1873 * Below we obtain similar behavior by forcing the offered window to
1874 * a multiple of the mss when it is feasible to do so.
1875 *
1876 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1877 * Regular options like TIMESTAMP are taken into account.
1878 */
1879 u32 __tcp_select_window(struct sock *sk)
1880 {
1881 struct inet_connection_sock *icsk = inet_csk(sk);
1882 struct tcp_sock *tp = tcp_sk(sk);
1883 /* MSS for the peer's data. Previous versions used mss_clamp
1884 * here. I don't know if the value based on our guesses
1885 * of peer's MSS is better for the performance. It's more correct
1886 * but may be worse for the performance because of rcv_mss
1887 * fluctuations. --SAW 1998/11/1
1888 */
1889 int mss = icsk->icsk_ack.rcv_mss;
1890 int free_space = tcp_space(sk);
1891 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1892 int window;
1893
1894 if (mss > full_space)
1895 mss = full_space;
1896
1897 if (free_space < (full_space >> 1)) {
1898 icsk->icsk_ack.quick = 0;
1899
1900 if (tcp_memory_pressure)
1901 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1902 4U * tp->advmss);
1903
1904 if (free_space < mss)
1905 return 0;
1906 }
1907
1908 if (free_space > tp->rcv_ssthresh)
1909 free_space = tp->rcv_ssthresh;
1910
1911 /* Don't do rounding if we are using window scaling, since the
1912 * scaled window will not line up with the MSS boundary anyway.
1913 */
1914 window = tp->rcv_wnd;
1915 if (tp->rx_opt.rcv_wscale) {
1916 window = free_space;
1917
1918 /* Advertise enough space so that it won't get scaled away.
1919 * Import case: prevent zero window announcement if
1920 * 1<<rcv_wscale > mss.
1921 */
1922 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1923 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1924 << tp->rx_opt.rcv_wscale);
1925 } else {
1926 /* Get the largest window that is a nice multiple of mss.
1927 * Window clamp already applied above.
1928 * If our current window offering is within 1 mss of the
1929 * free space we just keep it. This prevents the divide
1930 * and multiply from happening most of the time.
1931 * We also don't do any window rounding when the free space
1932 * is too small.
1933 */
1934 if (window <= free_space - mss || window > free_space)
1935 window = (free_space / mss) * mss;
1936 else if (mss == full_space &&
1937 free_space > window + (full_space >> 1))
1938 window = free_space;
1939 }
1940
1941 return window;
1942 }
1943
1944 /* Collapses two adjacent SKB's during retransmission. */
1945 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
1946 {
1947 struct tcp_sock *tp = tcp_sk(sk);
1948 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1949 int skb_size, next_skb_size;
1950
1951 skb_size = skb->len;
1952 next_skb_size = next_skb->len;
1953
1954 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1955
1956 tcp_highest_sack_combine(sk, next_skb, skb);
1957
1958 tcp_unlink_write_queue(next_skb, sk);
1959
1960 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1961 next_skb_size);
1962
1963 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1964 skb->ip_summed = CHECKSUM_PARTIAL;
1965
1966 if (skb->ip_summed != CHECKSUM_PARTIAL)
1967 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1968
1969 /* Update sequence range on original skb. */
1970 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1971
1972 /* Merge over control information. This moves PSH/FIN etc. over */
1973 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(next_skb)->flags;
1974
1975 /* All done, get rid of second SKB and account for it so
1976 * packet counting does not break.
1977 */
1978 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1979
1980 /* changed transmit queue under us so clear hints */
1981 tcp_clear_retrans_hints_partial(tp);
1982 if (next_skb == tp->retransmit_skb_hint)
1983 tp->retransmit_skb_hint = skb;
1984
1985 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
1986
1987 sk_wmem_free_skb(sk, next_skb);
1988 }
1989
1990 /* Check if coalescing SKBs is legal. */
1991 static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb)
1992 {
1993 if (tcp_skb_pcount(skb) > 1)
1994 return 0;
1995 /* TODO: SACK collapsing could be used to remove this condition */
1996 if (skb_shinfo(skb)->nr_frags != 0)
1997 return 0;
1998 if (skb_cloned(skb))
1999 return 0;
2000 if (skb == tcp_send_head(sk))
2001 return 0;
2002 /* Some heurestics for collapsing over SACK'd could be invented */
2003 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2004 return 0;
2005
2006 return 1;
2007 }
2008
2009 /* Collapse packets in the retransmit queue to make to create
2010 * less packets on the wire. This is only done on retransmission.
2011 */
2012 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2013 int space)
2014 {
2015 struct tcp_sock *tp = tcp_sk(sk);
2016 struct sk_buff *skb = to, *tmp;
2017 int first = 1;
2018
2019 if (!sysctl_tcp_retrans_collapse)
2020 return;
2021 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)
2022 return;
2023
2024 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2025 if (!tcp_can_collapse(sk, skb))
2026 break;
2027
2028 space -= skb->len;
2029
2030 if (first) {
2031 first = 0;
2032 continue;
2033 }
2034
2035 if (space < 0)
2036 break;
2037 /* Punt if not enough space exists in the first SKB for
2038 * the data in the second
2039 */
2040 if (skb->len > skb_tailroom(to))
2041 break;
2042
2043 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2044 break;
2045
2046 tcp_collapse_retrans(sk, to);
2047 }
2048 }
2049
2050 /* This retransmits one SKB. Policy decisions and retransmit queue
2051 * state updates are done by the caller. Returns non-zero if an
2052 * error occurred which prevented the send.
2053 */
2054 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2055 {
2056 struct tcp_sock *tp = tcp_sk(sk);
2057 struct inet_connection_sock *icsk = inet_csk(sk);
2058 unsigned int cur_mss;
2059 int err;
2060
2061 /* Inconslusive MTU probe */
2062 if (icsk->icsk_mtup.probe_size) {
2063 icsk->icsk_mtup.probe_size = 0;
2064 }
2065
2066 /* Do not sent more than we queued. 1/4 is reserved for possible
2067 * copying overhead: fragmentation, tunneling, mangling etc.
2068 */
2069 if (atomic_read(&sk->sk_wmem_alloc) >
2070 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2071 return -EAGAIN;
2072
2073 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2074 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2075 BUG();
2076 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2077 return -ENOMEM;
2078 }
2079
2080 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2081 return -EHOSTUNREACH; /* Routing failure or similar. */
2082
2083 cur_mss = tcp_current_mss(sk);
2084
2085 /* If receiver has shrunk his window, and skb is out of
2086 * new window, do not retransmit it. The exception is the
2087 * case, when window is shrunk to zero. In this case
2088 * our retransmit serves as a zero window probe.
2089 */
2090 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2091 TCP_SKB_CB(skb)->seq != tp->snd_una)
2092 return -EAGAIN;
2093
2094 if (skb->len > cur_mss) {
2095 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2096 return -ENOMEM; /* We'll try again later. */
2097 } else {
2098 int oldpcount = tcp_skb_pcount(skb);
2099
2100 if (unlikely(oldpcount > 1)) {
2101 tcp_init_tso_segs(sk, skb, cur_mss);
2102 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2103 }
2104 }
2105
2106 tcp_retrans_try_collapse(sk, skb, cur_mss);
2107
2108 /* Some Solaris stacks overoptimize and ignore the FIN on a
2109 * retransmit when old data is attached. So strip it off
2110 * since it is cheap to do so and saves bytes on the network.
2111 */
2112 if (skb->len > 0 &&
2113 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
2114 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2115 if (!pskb_trim(skb, 0)) {
2116 /* Reuse, even though it does some unnecessary work */
2117 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2118 TCP_SKB_CB(skb)->flags);
2119 skb->ip_summed = CHECKSUM_NONE;
2120 }
2121 }
2122
2123 /* Make a copy, if the first transmission SKB clone we made
2124 * is still in somebody's hands, else make a clone.
2125 */
2126 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2127
2128 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2129
2130 if (err == 0) {
2131 /* Update global TCP statistics. */
2132 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2133
2134 tp->total_retrans++;
2135
2136 #if FASTRETRANS_DEBUG > 0
2137 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2138 if (net_ratelimit())
2139 printk(KERN_DEBUG "retrans_out leaked.\n");
2140 }
2141 #endif
2142 if (!tp->retrans_out)
2143 tp->lost_retrans_low = tp->snd_nxt;
2144 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2145 tp->retrans_out += tcp_skb_pcount(skb);
2146
2147 /* Save stamp of the first retransmit. */
2148 if (!tp->retrans_stamp)
2149 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2150
2151 tp->undo_retrans++;
2152
2153 /* snd_nxt is stored to detect loss of retransmitted segment,
2154 * see tcp_input.c tcp_sacktag_write_queue().
2155 */
2156 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2157 }
2158 return err;
2159 }
2160
2161 /* Check if we forward retransmits are possible in the current
2162 * window/congestion state.
2163 */
2164 static int tcp_can_forward_retransmit(struct sock *sk)
2165 {
2166 const struct inet_connection_sock *icsk = inet_csk(sk);
2167 struct tcp_sock *tp = tcp_sk(sk);
2168
2169 /* Forward retransmissions are possible only during Recovery. */
2170 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2171 return 0;
2172
2173 /* No forward retransmissions in Reno are possible. */
2174 if (tcp_is_reno(tp))
2175 return 0;
2176
2177 /* Yeah, we have to make difficult choice between forward transmission
2178 * and retransmission... Both ways have their merits...
2179 *
2180 * For now we do not retransmit anything, while we have some new
2181 * segments to send. In the other cases, follow rule 3 for
2182 * NextSeg() specified in RFC3517.
2183 */
2184
2185 if (tcp_may_send_now(sk))
2186 return 0;
2187
2188 return 1;
2189 }
2190
2191 /* This gets called after a retransmit timeout, and the initially
2192 * retransmitted data is acknowledged. It tries to continue
2193 * resending the rest of the retransmit queue, until either
2194 * we've sent it all or the congestion window limit is reached.
2195 * If doing SACK, the first ACK which comes back for a timeout
2196 * based retransmit packet might feed us FACK information again.
2197 * If so, we use it to avoid unnecessarily retransmissions.
2198 */
2199 void tcp_xmit_retransmit_queue(struct sock *sk)
2200 {
2201 const struct inet_connection_sock *icsk = inet_csk(sk);
2202 struct tcp_sock *tp = tcp_sk(sk);
2203 struct sk_buff *skb;
2204 struct sk_buff *hole = NULL;
2205 u32 last_lost;
2206 int mib_idx;
2207 int fwd_rexmitting = 0;
2208
2209 if (!tp->lost_out)
2210 tp->retransmit_high = tp->snd_una;
2211
2212 if (tp->retransmit_skb_hint) {
2213 skb = tp->retransmit_skb_hint;
2214 last_lost = TCP_SKB_CB(skb)->end_seq;
2215 if (after(last_lost, tp->retransmit_high))
2216 last_lost = tp->retransmit_high;
2217 } else {
2218 skb = tcp_write_queue_head(sk);
2219 last_lost = tp->snd_una;
2220 }
2221
2222 tcp_for_write_queue_from(skb, sk) {
2223 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2224
2225 if (skb == tcp_send_head(sk))
2226 break;
2227 /* we could do better than to assign each time */
2228 if (hole == NULL)
2229 tp->retransmit_skb_hint = skb;
2230
2231 /* Assume this retransmit will generate
2232 * only one packet for congestion window
2233 * calculation purposes. This works because
2234 * tcp_retransmit_skb() will chop up the
2235 * packet to be MSS sized and all the
2236 * packet counting works out.
2237 */
2238 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2239 return;
2240
2241 if (fwd_rexmitting) {
2242 begin_fwd:
2243 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2244 break;
2245 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2246
2247 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2248 tp->retransmit_high = last_lost;
2249 if (!tcp_can_forward_retransmit(sk))
2250 break;
2251 /* Backtrack if necessary to non-L'ed skb */
2252 if (hole != NULL) {
2253 skb = hole;
2254 hole = NULL;
2255 }
2256 fwd_rexmitting = 1;
2257 goto begin_fwd;
2258
2259 } else if (!(sacked & TCPCB_LOST)) {
2260 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2261 hole = skb;
2262 continue;
2263
2264 } else {
2265 last_lost = TCP_SKB_CB(skb)->end_seq;
2266 if (icsk->icsk_ca_state != TCP_CA_Loss)
2267 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2268 else
2269 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2270 }
2271
2272 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2273 continue;
2274
2275 if (tcp_retransmit_skb(sk, skb))
2276 return;
2277 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2278
2279 if (skb == tcp_write_queue_head(sk))
2280 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2281 inet_csk(sk)->icsk_rto,
2282 TCP_RTO_MAX);
2283 }
2284 }
2285
2286 /* Send a fin. The caller locks the socket for us. This cannot be
2287 * allowed to fail queueing a FIN frame under any circumstances.
2288 */
2289 void tcp_send_fin(struct sock *sk)
2290 {
2291 struct tcp_sock *tp = tcp_sk(sk);
2292 struct sk_buff *skb = tcp_write_queue_tail(sk);
2293 int mss_now;
2294
2295 /* Optimization, tack on the FIN if we have a queue of
2296 * unsent frames. But be careful about outgoing SACKS
2297 * and IP options.
2298 */
2299 mss_now = tcp_current_mss(sk);
2300
2301 if (tcp_send_head(sk) != NULL) {
2302 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2303 TCP_SKB_CB(skb)->end_seq++;
2304 tp->write_seq++;
2305 } else {
2306 /* Socket is locked, keep trying until memory is available. */
2307 for (;;) {
2308 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2309 sk->sk_allocation);
2310 if (skb)
2311 break;
2312 yield();
2313 }
2314
2315 /* Reserve space for headers and prepare control bits. */
2316 skb_reserve(skb, MAX_TCP_HEADER);
2317 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2318 tcp_init_nondata_skb(skb, tp->write_seq,
2319 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2320 tcp_queue_skb(sk, skb);
2321 }
2322 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2323 }
2324
2325 /* We get here when a process closes a file descriptor (either due to
2326 * an explicit close() or as a byproduct of exit()'ing) and there
2327 * was unread data in the receive queue. This behavior is recommended
2328 * by RFC 2525, section 2.17. -DaveM
2329 */
2330 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2331 {
2332 struct sk_buff *skb;
2333
2334 /* NOTE: No TCP options attached and we never retransmit this. */
2335 skb = alloc_skb(MAX_TCP_HEADER, priority);
2336 if (!skb) {
2337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2338 return;
2339 }
2340
2341 /* Reserve space for headers and prepare control bits. */
2342 skb_reserve(skb, MAX_TCP_HEADER);
2343 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2344 TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2345 /* Send it off. */
2346 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2347 if (tcp_transmit_skb(sk, skb, 0, priority))
2348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2349
2350 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2351 }
2352
2353 /* Send a crossed SYN-ACK during socket establishment.
2354 * WARNING: This routine must only be called when we have already sent
2355 * a SYN packet that crossed the incoming SYN that caused this routine
2356 * to get called. If this assumption fails then the initial rcv_wnd
2357 * and rcv_wscale values will not be correct.
2358 */
2359 int tcp_send_synack(struct sock *sk)
2360 {
2361 struct sk_buff *skb;
2362
2363 skb = tcp_write_queue_head(sk);
2364 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2365 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2366 return -EFAULT;
2367 }
2368 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2369 if (skb_cloned(skb)) {
2370 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2371 if (nskb == NULL)
2372 return -ENOMEM;
2373 tcp_unlink_write_queue(skb, sk);
2374 skb_header_release(nskb);
2375 __tcp_add_write_queue_head(sk, nskb);
2376 sk_wmem_free_skb(sk, skb);
2377 sk->sk_wmem_queued += nskb->truesize;
2378 sk_mem_charge(sk, nskb->truesize);
2379 skb = nskb;
2380 }
2381
2382 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2383 TCP_ECN_send_synack(tcp_sk(sk), skb);
2384 }
2385 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2386 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2387 }
2388
2389 /* Prepare a SYN-ACK. */
2390 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2391 struct request_sock *req,
2392 struct request_values *rvp)
2393 {
2394 struct tcp_out_options opts;
2395 struct tcp_extend_values *xvp = tcp_xv(rvp);
2396 struct inet_request_sock *ireq = inet_rsk(req);
2397 struct tcp_sock *tp = tcp_sk(sk);
2398 const struct tcp_cookie_values *cvp = tp->cookie_values;
2399 struct tcphdr *th;
2400 struct sk_buff *skb;
2401 struct tcp_md5sig_key *md5;
2402 int tcp_header_size;
2403 int mss;
2404 int s_data_desired = 0;
2405
2406 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2407 s_data_desired = cvp->s_data_desired;
2408 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC);
2409 if (skb == NULL)
2410 return NULL;
2411
2412 /* Reserve space for headers. */
2413 skb_reserve(skb, MAX_TCP_HEADER);
2414
2415 skb_dst_set(skb, dst_clone(dst));
2416
2417 mss = dst_metric(dst, RTAX_ADVMSS);
2418 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2419 mss = tp->rx_opt.user_mss;
2420
2421 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2422 __u8 rcv_wscale;
2423 /* Set this up on the first call only */
2424 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2425 /* tcp_full_space because it is guaranteed to be the first packet */
2426 tcp_select_initial_window(tcp_full_space(sk),
2427 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2428 &req->rcv_wnd,
2429 &req->window_clamp,
2430 ireq->wscale_ok,
2431 &rcv_wscale,
2432 dst_metric(dst, RTAX_INITRWND));
2433 ireq->rcv_wscale = rcv_wscale;
2434 }
2435
2436 memset(&opts, 0, sizeof(opts));
2437 #ifdef CONFIG_SYN_COOKIES
2438 if (unlikely(req->cookie_ts))
2439 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2440 else
2441 #endif
2442 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2443 tcp_header_size = tcp_synack_options(sk, req, mss,
2444 skb, &opts, &md5, xvp)
2445 + sizeof(*th);
2446
2447 skb_push(skb, tcp_header_size);
2448 skb_reset_transport_header(skb);
2449
2450 th = tcp_hdr(skb);
2451 memset(th, 0, sizeof(struct tcphdr));
2452 th->syn = 1;
2453 th->ack = 1;
2454 TCP_ECN_make_synack(req, th);
2455 th->source = ireq->loc_port;
2456 th->dest = ireq->rmt_port;
2457 /* Setting of flags are superfluous here for callers (and ECE is
2458 * not even correctly set)
2459 */
2460 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2461 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2462
2463 if (OPTION_COOKIE_EXTENSION & opts.options) {
2464 if (s_data_desired) {
2465 u8 *buf = skb_put(skb, s_data_desired);
2466
2467 /* copy data directly from the listening socket. */
2468 memcpy(buf, cvp->s_data_payload, s_data_desired);
2469 TCP_SKB_CB(skb)->end_seq += s_data_desired;
2470 }
2471
2472 if (opts.hash_size > 0) {
2473 __u32 workspace[SHA_WORKSPACE_WORDS];
2474 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2475 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2476
2477 /* Secret recipe depends on the Timestamp, (future)
2478 * Sequence and Acknowledgment Numbers, Initiator
2479 * Cookie, and others handled by IP variant caller.
2480 */
2481 *tail-- ^= opts.tsval;
2482 *tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2483 *tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2484
2485 /* recommended */
2486 *tail-- ^= ((th->dest << 16) | th->source);
2487 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2488
2489 sha_transform((__u32 *)&xvp->cookie_bakery[0],
2490 (char *)mess,
2491 &workspace[0]);
2492 opts.hash_location =
2493 (__u8 *)&xvp->cookie_bakery[0];
2494 }
2495 }
2496
2497 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2498 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2499
2500 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2501 th->window = htons(min(req->rcv_wnd, 65535U));
2502 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2503 th->doff = (tcp_header_size >> 2);
2504 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2505
2506 #ifdef CONFIG_TCP_MD5SIG
2507 /* Okay, we have all we need - do the md5 hash if needed */
2508 if (md5) {
2509 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2510 md5, NULL, req, skb);
2511 }
2512 #endif
2513
2514 return skb;
2515 }
2516
2517 /* Do all connect socket setups that can be done AF independent. */
2518 static void tcp_connect_init(struct sock *sk)
2519 {
2520 struct dst_entry *dst = __sk_dst_get(sk);
2521 struct tcp_sock *tp = tcp_sk(sk);
2522 __u8 rcv_wscale;
2523
2524 /* We'll fix this up when we get a response from the other end.
2525 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2526 */
2527 tp->tcp_header_len = sizeof(struct tcphdr) +
2528 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2529
2530 #ifdef CONFIG_TCP_MD5SIG
2531 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2532 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2533 #endif
2534
2535 /* If user gave his TCP_MAXSEG, record it to clamp */
2536 if (tp->rx_opt.user_mss)
2537 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2538 tp->max_window = 0;
2539 tcp_mtup_init(sk);
2540 tcp_sync_mss(sk, dst_mtu(dst));
2541
2542 if (!tp->window_clamp)
2543 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2544 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2545 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2546 tp->advmss = tp->rx_opt.user_mss;
2547
2548 tcp_initialize_rcv_mss(sk);
2549
2550 tcp_select_initial_window(tcp_full_space(sk),
2551 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2552 &tp->rcv_wnd,
2553 &tp->window_clamp,
2554 sysctl_tcp_window_scaling,
2555 &rcv_wscale,
2556 dst_metric(dst, RTAX_INITRWND));
2557
2558 tp->rx_opt.rcv_wscale = rcv_wscale;
2559 tp->rcv_ssthresh = tp->rcv_wnd;
2560
2561 sk->sk_err = 0;
2562 sock_reset_flag(sk, SOCK_DONE);
2563 tp->snd_wnd = 0;
2564 tcp_init_wl(tp, 0);
2565 tp->snd_una = tp->write_seq;
2566 tp->snd_sml = tp->write_seq;
2567 tp->snd_up = tp->write_seq;
2568 tp->rcv_nxt = 0;
2569 tp->rcv_wup = 0;
2570 tp->copied_seq = 0;
2571
2572 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2573 inet_csk(sk)->icsk_retransmits = 0;
2574 tcp_clear_retrans(tp);
2575 }
2576
2577 /* Build a SYN and send it off. */
2578 int tcp_connect(struct sock *sk)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581 struct sk_buff *buff;
2582
2583 tcp_connect_init(sk);
2584
2585 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2586 if (unlikely(buff == NULL))
2587 return -ENOBUFS;
2588
2589 /* Reserve space for headers. */
2590 skb_reserve(buff, MAX_TCP_HEADER);
2591
2592 tp->snd_nxt = tp->write_seq;
2593 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2594 TCP_ECN_send_syn(sk, buff);
2595
2596 /* Send it off. */
2597 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2598 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2599 skb_header_release(buff);
2600 __tcp_add_write_queue_tail(sk, buff);
2601 sk->sk_wmem_queued += buff->truesize;
2602 sk_mem_charge(sk, buff->truesize);
2603 tp->packets_out += tcp_skb_pcount(buff);
2604 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2605
2606 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2607 * in order to make this packet get counted in tcpOutSegs.
2608 */
2609 tp->snd_nxt = tp->write_seq;
2610 tp->pushed_seq = tp->write_seq;
2611 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2612
2613 /* Timer for repeating the SYN until an answer. */
2614 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2615 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2616 return 0;
2617 }
2618
2619 /* Send out a delayed ack, the caller does the policy checking
2620 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2621 * for details.
2622 */
2623 void tcp_send_delayed_ack(struct sock *sk)
2624 {
2625 struct inet_connection_sock *icsk = inet_csk(sk);
2626 int ato = icsk->icsk_ack.ato;
2627 unsigned long timeout;
2628
2629 if (ato > TCP_DELACK_MIN) {
2630 const struct tcp_sock *tp = tcp_sk(sk);
2631 int max_ato = HZ / 2;
2632
2633 if (icsk->icsk_ack.pingpong ||
2634 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2635 max_ato = TCP_DELACK_MAX;
2636
2637 /* Slow path, intersegment interval is "high". */
2638
2639 /* If some rtt estimate is known, use it to bound delayed ack.
2640 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2641 * directly.
2642 */
2643 if (tp->srtt) {
2644 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2645
2646 if (rtt < max_ato)
2647 max_ato = rtt;
2648 }
2649
2650 ato = min(ato, max_ato);
2651 }
2652
2653 /* Stay within the limit we were given */
2654 timeout = jiffies + ato;
2655
2656 /* Use new timeout only if there wasn't a older one earlier. */
2657 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2658 /* If delack timer was blocked or is about to expire,
2659 * send ACK now.
2660 */
2661 if (icsk->icsk_ack.blocked ||
2662 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2663 tcp_send_ack(sk);
2664 return;
2665 }
2666
2667 if (!time_before(timeout, icsk->icsk_ack.timeout))
2668 timeout = icsk->icsk_ack.timeout;
2669 }
2670 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2671 icsk->icsk_ack.timeout = timeout;
2672 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2673 }
2674
2675 /* This routine sends an ack and also updates the window. */
2676 void tcp_send_ack(struct sock *sk)
2677 {
2678 struct sk_buff *buff;
2679
2680 /* If we have been reset, we may not send again. */
2681 if (sk->sk_state == TCP_CLOSE)
2682 return;
2683
2684 /* We are not putting this on the write queue, so
2685 * tcp_transmit_skb() will set the ownership to this
2686 * sock.
2687 */
2688 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2689 if (buff == NULL) {
2690 inet_csk_schedule_ack(sk);
2691 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2692 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2693 TCP_DELACK_MAX, TCP_RTO_MAX);
2694 return;
2695 }
2696
2697 /* Reserve space for headers and prepare control bits. */
2698 skb_reserve(buff, MAX_TCP_HEADER);
2699 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2700
2701 /* Send it off, this clears delayed acks for us. */
2702 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2703 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2704 }
2705
2706 /* This routine sends a packet with an out of date sequence
2707 * number. It assumes the other end will try to ack it.
2708 *
2709 * Question: what should we make while urgent mode?
2710 * 4.4BSD forces sending single byte of data. We cannot send
2711 * out of window data, because we have SND.NXT==SND.MAX...
2712 *
2713 * Current solution: to send TWO zero-length segments in urgent mode:
2714 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2715 * out-of-date with SND.UNA-1 to probe window.
2716 */
2717 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2718 {
2719 struct tcp_sock *tp = tcp_sk(sk);
2720 struct sk_buff *skb;
2721
2722 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2723 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2724 if (skb == NULL)
2725 return -1;
2726
2727 /* Reserve space for headers and set control bits. */
2728 skb_reserve(skb, MAX_TCP_HEADER);
2729 /* Use a previous sequence. This should cause the other
2730 * end to send an ack. Don't queue or clone SKB, just
2731 * send it.
2732 */
2733 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2734 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2735 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2736 }
2737
2738 /* Initiate keepalive or window probe from timer. */
2739 int tcp_write_wakeup(struct sock *sk)
2740 {
2741 struct tcp_sock *tp = tcp_sk(sk);
2742 struct sk_buff *skb;
2743
2744 if (sk->sk_state == TCP_CLOSE)
2745 return -1;
2746
2747 if ((skb = tcp_send_head(sk)) != NULL &&
2748 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2749 int err;
2750 unsigned int mss = tcp_current_mss(sk);
2751 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2752
2753 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2754 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2755
2756 /* We are probing the opening of a window
2757 * but the window size is != 0
2758 * must have been a result SWS avoidance ( sender )
2759 */
2760 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2761 skb->len > mss) {
2762 seg_size = min(seg_size, mss);
2763 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2764 if (tcp_fragment(sk, skb, seg_size, mss))
2765 return -1;
2766 } else if (!tcp_skb_pcount(skb))
2767 tcp_set_skb_tso_segs(sk, skb, mss);
2768
2769 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2770 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2771 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2772 if (!err)
2773 tcp_event_new_data_sent(sk, skb);
2774 return err;
2775 } else {
2776 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2777 tcp_xmit_probe_skb(sk, 1);
2778 return tcp_xmit_probe_skb(sk, 0);
2779 }
2780 }
2781
2782 /* A window probe timeout has occurred. If window is not closed send
2783 * a partial packet else a zero probe.
2784 */
2785 void tcp_send_probe0(struct sock *sk)
2786 {
2787 struct inet_connection_sock *icsk = inet_csk(sk);
2788 struct tcp_sock *tp = tcp_sk(sk);
2789 int err;
2790
2791 err = tcp_write_wakeup(sk);
2792
2793 if (tp->packets_out || !tcp_send_head(sk)) {
2794 /* Cancel probe timer, if it is not required. */
2795 icsk->icsk_probes_out = 0;
2796 icsk->icsk_backoff = 0;
2797 return;
2798 }
2799
2800 if (err <= 0) {
2801 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2802 icsk->icsk_backoff++;
2803 icsk->icsk_probes_out++;
2804 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2805 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2806 TCP_RTO_MAX);
2807 } else {
2808 /* If packet was not sent due to local congestion,
2809 * do not backoff and do not remember icsk_probes_out.
2810 * Let local senders to fight for local resources.
2811 *
2812 * Use accumulated backoff yet.
2813 */
2814 if (!icsk->icsk_probes_out)
2815 icsk->icsk_probes_out = 1;
2816 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2817 min(icsk->icsk_rto << icsk->icsk_backoff,
2818 TCP_RESOURCE_PROBE_INTERVAL),
2819 TCP_RTO_MAX);
2820 }
2821 }
2822
2823 EXPORT_SYMBOL(tcp_select_initial_window);
2824 EXPORT_SYMBOL(tcp_connect);
2825 EXPORT_SYMBOL(tcp_make_synack);
2826 EXPORT_SYMBOL(tcp_simple_retransmit);
2827 EXPORT_SYMBOL(tcp_sync_mss);
2828 EXPORT_SYMBOL(tcp_mtup_init);