]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_output.c
Merge remote-tracking branches 'regulator/topic/s2mps11', 'regulator/topic/s2mpu02...
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = TCP_INIT_CWND * 2;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 if (!(tp->ecn_flags & TCP_ECN_OK))
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327
328 /* Packet ECN state for a SYN. */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 tp->ecn_flags = 0;
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 }
338 }
339
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 if (inet_rsk(req)->ecn_ok)
344 th->ece = 1;
345 }
346
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348 * be sent.
349 */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 int tcp_header_len)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354
355 if (tp->ecn_flags & TCP_ECN_OK) {
356 /* Not-retransmitted data segment: set ECT and inject CWR. */
357 if (skb->len != tcp_header_len &&
358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 INET_ECN_xmit(sk);
360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 tcp_hdr(skb)->cwr = 1;
363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 }
365 } else {
366 /* ACK or retransmitted segment: clear ECT|CE */
367 INET_ECN_dontxmit(sk);
368 }
369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 tcp_hdr(skb)->ece = 1;
371 }
372 }
373
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375 * auto increment end seqno.
376 */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 struct skb_shared_info *shinfo = skb_shinfo(skb);
380
381 skb->ip_summed = CHECKSUM_PARTIAL;
382 skb->csum = 0;
383
384 TCP_SKB_CB(skb)->tcp_flags = flags;
385 TCP_SKB_CB(skb)->sacked = 0;
386
387 shinfo->gso_segs = 1;
388 shinfo->gso_size = 0;
389 shinfo->gso_type = 0;
390
391 TCP_SKB_CB(skb)->seq = seq;
392 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 seq++;
394 TCP_SKB_CB(skb)->end_seq = seq;
395 }
396
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 return tp->snd_una != tp->snd_up;
400 }
401
402 #define OPTION_SACK_ADVERTISE (1 << 0)
403 #define OPTION_TS (1 << 1)
404 #define OPTION_MD5 (1 << 2)
405 #define OPTION_WSCALE (1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
407
408 struct tcp_out_options {
409 u16 options; /* bit field of OPTION_* */
410 u16 mss; /* 0 to disable */
411 u8 ws; /* window scale, 0 to disable */
412 u8 num_sack_blocks; /* number of SACK blocks to include */
413 u8 hash_size; /* bytes in hash_location */
414 __u8 *hash_location; /* temporary pointer, overloaded */
415 __u32 tsval, tsecr; /* need to include OPTION_TS */
416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
417 };
418
419 /* Write previously computed TCP options to the packet.
420 *
421 * Beware: Something in the Internet is very sensitive to the ordering of
422 * TCP options, we learned this through the hard way, so be careful here.
423 * Luckily we can at least blame others for their non-compliance but from
424 * inter-operability perspective it seems that we're somewhat stuck with
425 * the ordering which we have been using if we want to keep working with
426 * those broken things (not that it currently hurts anybody as there isn't
427 * particular reason why the ordering would need to be changed).
428 *
429 * At least SACK_PERM as the first option is known to lead to a disaster
430 * (but it may well be that other scenarios fail similarly).
431 */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 struct tcp_out_options *opts)
434 {
435 u16 options = opts->options; /* mungable copy */
436
437 if (unlikely(OPTION_MD5 & options)) {
438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 /* overload cookie hash location */
441 opts->hash_location = (__u8 *)ptr;
442 ptr += 4;
443 }
444
445 if (unlikely(opts->mss)) {
446 *ptr++ = htonl((TCPOPT_MSS << 24) |
447 (TCPOLEN_MSS << 16) |
448 opts->mss);
449 }
450
451 if (likely(OPTION_TS & options)) {
452 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 (TCPOLEN_SACK_PERM << 16) |
455 (TCPOPT_TIMESTAMP << 8) |
456 TCPOLEN_TIMESTAMP);
457 options &= ~OPTION_SACK_ADVERTISE;
458 } else {
459 *ptr++ = htonl((TCPOPT_NOP << 24) |
460 (TCPOPT_NOP << 16) |
461 (TCPOPT_TIMESTAMP << 8) |
462 TCPOLEN_TIMESTAMP);
463 }
464 *ptr++ = htonl(opts->tsval);
465 *ptr++ = htonl(opts->tsecr);
466 }
467
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_NOP << 24) |
470 (TCPOPT_NOP << 16) |
471 (TCPOPT_SACK_PERM << 8) |
472 TCPOLEN_SACK_PERM);
473 }
474
475 if (unlikely(OPTION_WSCALE & options)) {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_WINDOW << 16) |
478 (TCPOLEN_WINDOW << 8) |
479 opts->ws);
480 }
481
482 if (unlikely(opts->num_sack_blocks)) {
483 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 tp->duplicate_sack : tp->selective_acks;
485 int this_sack;
486
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_NOP << 16) |
489 (TCPOPT_SACK << 8) |
490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 TCPOLEN_SACK_PERBLOCK)));
492
493 for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 ++this_sack) {
495 *ptr++ = htonl(sp[this_sack].start_seq);
496 *ptr++ = htonl(sp[this_sack].end_seq);
497 }
498
499 tp->rx_opt.dsack = 0;
500 }
501
502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504
505 *ptr++ = htonl((TCPOPT_EXP << 24) |
506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 TCPOPT_FASTOPEN_MAGIC);
508
509 memcpy(ptr, foc->val, foc->len);
510 if ((foc->len & 3) == 2) {
511 u8 *align = ((u8 *)ptr) + foc->len;
512 align[0] = align[1] = TCPOPT_NOP;
513 }
514 ptr += (foc->len + 3) >> 2;
515 }
516 }
517
518 /* Compute TCP options for SYN packets. This is not the final
519 * network wire format yet.
520 */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 struct tcp_out_options *opts,
523 struct tcp_md5sig_key **md5)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528
529 #ifdef CONFIG_TCP_MD5SIG
530 *md5 = tp->af_specific->md5_lookup(sk, sk);
531 if (*md5) {
532 opts->options |= OPTION_MD5;
533 remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 }
535 #else
536 *md5 = NULL;
537 #endif
538
539 /* We always get an MSS option. The option bytes which will be seen in
540 * normal data packets should timestamps be used, must be in the MSS
541 * advertised. But we subtract them from tp->mss_cache so that
542 * calculations in tcp_sendmsg are simpler etc. So account for this
543 * fact here if necessary. If we don't do this correctly, as a
544 * receiver we won't recognize data packets as being full sized when we
545 * should, and thus we won't abide by the delayed ACK rules correctly.
546 * SACKs don't matter, we never delay an ACK when we have any of those
547 * going out. */
548 opts->mss = tcp_advertise_mss(sk);
549 remaining -= TCPOLEN_MSS_ALIGNED;
550
551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 opts->options |= OPTION_TS;
553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 opts->tsecr = tp->rx_opt.ts_recent;
555 remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 }
557 if (likely(sysctl_tcp_window_scaling)) {
558 opts->ws = tp->rx_opt.rcv_wscale;
559 opts->options |= OPTION_WSCALE;
560 remaining -= TCPOLEN_WSCALE_ALIGNED;
561 }
562 if (likely(sysctl_tcp_sack)) {
563 opts->options |= OPTION_SACK_ADVERTISE;
564 if (unlikely(!(OPTION_TS & opts->options)))
565 remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 }
567
568 if (fastopen && fastopen->cookie.len >= 0) {
569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 need = (need + 3) & ~3U; /* Align to 32 bits */
571 if (remaining >= need) {
572 opts->options |= OPTION_FAST_OPEN_COOKIE;
573 opts->fastopen_cookie = &fastopen->cookie;
574 remaining -= need;
575 tp->syn_fastopen = 1;
576 }
577 }
578
579 return MAX_TCP_OPTION_SPACE - remaining;
580 }
581
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 struct request_sock *req,
585 unsigned int mss, struct sk_buff *skb,
586 struct tcp_out_options *opts,
587 struct tcp_md5sig_key **md5,
588 struct tcp_fastopen_cookie *foc)
589 {
590 struct inet_request_sock *ireq = inet_rsk(req);
591 unsigned int remaining = MAX_TCP_OPTION_SPACE;
592
593 #ifdef CONFIG_TCP_MD5SIG
594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 if (*md5) {
596 opts->options |= OPTION_MD5;
597 remaining -= TCPOLEN_MD5SIG_ALIGNED;
598
599 /* We can't fit any SACK blocks in a packet with MD5 + TS
600 * options. There was discussion about disabling SACK
601 * rather than TS in order to fit in better with old,
602 * buggy kernels, but that was deemed to be unnecessary.
603 */
604 ireq->tstamp_ok &= !ireq->sack_ok;
605 }
606 #else
607 *md5 = NULL;
608 #endif
609
610 /* We always send an MSS option. */
611 opts->mss = mss;
612 remaining -= TCPOLEN_MSS_ALIGNED;
613
614 if (likely(ireq->wscale_ok)) {
615 opts->ws = ireq->rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(ireq->tstamp_ok)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = TCP_SKB_CB(skb)->when;
622 opts->tsecr = req->ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 }
625 if (likely(ireq->sack_ok)) {
626 opts->options |= OPTION_SACK_ADVERTISE;
627 if (unlikely(!ireq->tstamp_ok))
628 remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 }
630 if (foc != NULL && foc->len >= 0) {
631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = foc;
636 remaining -= need;
637 }
638 }
639
640 return MAX_TCP_OPTION_SPACE - remaining;
641 }
642
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644 * final wire format yet.
645 */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 struct tcp_out_options *opts,
648 struct tcp_md5sig_key **md5)
649 {
650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 struct tcp_sock *tp = tcp_sk(sk);
652 unsigned int size = 0;
653 unsigned int eff_sacks;
654
655 opts->options = 0;
656
657 #ifdef CONFIG_TCP_MD5SIG
658 *md5 = tp->af_specific->md5_lookup(sk, sk);
659 if (unlikely(*md5)) {
660 opts->options |= OPTION_MD5;
661 size += TCPOLEN_MD5SIG_ALIGNED;
662 }
663 #else
664 *md5 = NULL;
665 #endif
666
667 if (likely(tp->rx_opt.tstamp_ok)) {
668 opts->options |= OPTION_TS;
669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 opts->tsecr = tp->rx_opt.ts_recent;
671 size += TCPOLEN_TSTAMP_ALIGNED;
672 }
673
674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 if (unlikely(eff_sacks)) {
676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 opts->num_sack_blocks =
678 min_t(unsigned int, eff_sacks,
679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 TCPOLEN_SACK_PERBLOCK);
681 size += TCPOLEN_SACK_BASE_ALIGNED +
682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 }
684
685 return size;
686 }
687
688
689 /* TCP SMALL QUEUES (TSQ)
690 *
691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692 * to reduce RTT and bufferbloat.
693 * We do this using a special skb destructor (tcp_wfree).
694 *
695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696 * needs to be reallocated in a driver.
697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698 *
699 * Since transmit from skb destructor is forbidden, we use a tasklet
700 * to process all sockets that eventually need to send more skbs.
701 * We use one tasklet per cpu, with its own queue of sockets.
702 */
703 struct tsq_tasklet {
704 struct tasklet_struct tasklet;
705 struct list_head head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 if ((1 << sk->sk_state) &
712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 0, GFP_ATOMIC);
716 }
717 /*
718 * One tasklet per cpu tries to send more skbs.
719 * We run in tasklet context but need to disable irqs when
720 * transferring tsq->head because tcp_wfree() might
721 * interrupt us (non NAPI drivers)
722 */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 LIST_HEAD(list);
727 unsigned long flags;
728 struct list_head *q, *n;
729 struct tcp_sock *tp;
730 struct sock *sk;
731
732 local_irq_save(flags);
733 list_splice_init(&tsq->head, &list);
734 local_irq_restore(flags);
735
736 list_for_each_safe(q, n, &list) {
737 tp = list_entry(q, struct tcp_sock, tsq_node);
738 list_del(&tp->tsq_node);
739
740 sk = (struct sock *)tp;
741 bh_lock_sock(sk);
742
743 if (!sock_owned_by_user(sk)) {
744 tcp_tsq_handler(sk);
745 } else {
746 /* defer the work to tcp_release_cb() */
747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 }
749 bh_unlock_sock(sk);
750
751 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 sk_free(sk);
753 }
754 }
755
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
759 (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761 * tcp_release_cb - tcp release_sock() callback
762 * @sk: socket
763 *
764 * called from release_sock() to perform protocol dependent
765 * actions before socket release.
766 */
767 void tcp_release_cb(struct sock *sk)
768 {
769 struct tcp_sock *tp = tcp_sk(sk);
770 unsigned long flags, nflags;
771
772 /* perform an atomic operation only if at least one flag is set */
773 do {
774 flags = tp->tsq_flags;
775 if (!(flags & TCP_DEFERRED_ALL))
776 return;
777 nflags = flags & ~TCP_DEFERRED_ALL;
778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779
780 if (flags & (1UL << TCP_TSQ_DEFERRED))
781 tcp_tsq_handler(sk);
782
783 /* Here begins the tricky part :
784 * We are called from release_sock() with :
785 * 1) BH disabled
786 * 2) sk_lock.slock spinlock held
787 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 *
789 * But following code is meant to be called from BH handlers,
790 * so we should keep BH disabled, but early release socket ownership
791 */
792 sock_release_ownership(sk);
793
794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 tcp_write_timer_handler(sk);
796 __sock_put(sk);
797 }
798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 tcp_delack_timer_handler(sk);
800 __sock_put(sk);
801 }
802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 sk->sk_prot->mtu_reduced(sk);
804 __sock_put(sk);
805 }
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808
809 void __init tcp_tasklet_init(void)
810 {
811 int i;
812
813 for_each_possible_cpu(i) {
814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815
816 INIT_LIST_HEAD(&tsq->head);
817 tasklet_init(&tsq->tasklet,
818 tcp_tasklet_func,
819 (unsigned long)tsq);
820 }
821 }
822
823 /*
824 * Write buffer destructor automatically called from kfree_skb.
825 * We can't xmit new skbs from this context, as we might already
826 * hold qdisc lock.
827 */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 struct sock *sk = skb->sk;
831 struct tcp_sock *tp = tcp_sk(sk);
832
833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 unsigned long flags;
836 struct tsq_tasklet *tsq;
837
838 /* Keep a ref on socket.
839 * This last ref will be released in tcp_tasklet_func()
840 */
841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842
843 /* queue this socket to tasklet queue */
844 local_irq_save(flags);
845 tsq = &__get_cpu_var(tsq_tasklet);
846 list_add(&tp->tsq_node, &tsq->head);
847 tasklet_schedule(&tsq->tasklet);
848 local_irq_restore(flags);
849 } else {
850 sock_wfree(skb);
851 }
852 }
853
854 /* This routine actually transmits TCP packets queued in by
855 * tcp_do_sendmsg(). This is used by both the initial
856 * transmission and possible later retransmissions.
857 * All SKB's seen here are completely headerless. It is our
858 * job to build the TCP header, and pass the packet down to
859 * IP so it can do the same plus pass the packet off to the
860 * device.
861 *
862 * We are working here with either a clone of the original
863 * SKB, or a fresh unique copy made by the retransmit engine.
864 */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 gfp_t gfp_mask)
867 {
868 const struct inet_connection_sock *icsk = inet_csk(sk);
869 struct inet_sock *inet;
870 struct tcp_sock *tp;
871 struct tcp_skb_cb *tcb;
872 struct tcp_out_options opts;
873 unsigned int tcp_options_size, tcp_header_size;
874 struct tcp_md5sig_key *md5;
875 struct tcphdr *th;
876 int err;
877
878 BUG_ON(!skb || !tcp_skb_pcount(skb));
879
880 if (clone_it) {
881 skb_mstamp_get(&skb->skb_mstamp);
882
883 if (unlikely(skb_cloned(skb)))
884 skb = pskb_copy(skb, gfp_mask);
885 else
886 skb = skb_clone(skb, gfp_mask);
887 if (unlikely(!skb))
888 return -ENOBUFS;
889 /* Our usage of tstamp should remain private */
890 skb->tstamp.tv64 = 0;
891 }
892
893 inet = inet_sk(sk);
894 tp = tcp_sk(sk);
895 tcb = TCP_SKB_CB(skb);
896 memset(&opts, 0, sizeof(opts));
897
898 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
899 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
900 else
901 tcp_options_size = tcp_established_options(sk, skb, &opts,
902 &md5);
903 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
904
905 if (tcp_packets_in_flight(tp) == 0)
906 tcp_ca_event(sk, CA_EVENT_TX_START);
907
908 /* if no packet is in qdisc/device queue, then allow XPS to select
909 * another queue.
910 */
911 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
912
913 skb_push(skb, tcp_header_size);
914 skb_reset_transport_header(skb);
915
916 skb_orphan(skb);
917 skb->sk = sk;
918 skb->destructor = tcp_wfree;
919 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
920
921 /* Build TCP header and checksum it. */
922 th = tcp_hdr(skb);
923 th->source = inet->inet_sport;
924 th->dest = inet->inet_dport;
925 th->seq = htonl(tcb->seq);
926 th->ack_seq = htonl(tp->rcv_nxt);
927 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
928 tcb->tcp_flags);
929
930 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
931 /* RFC1323: The window in SYN & SYN/ACK segments
932 * is never scaled.
933 */
934 th->window = htons(min(tp->rcv_wnd, 65535U));
935 } else {
936 th->window = htons(tcp_select_window(sk));
937 }
938 th->check = 0;
939 th->urg_ptr = 0;
940
941 /* The urg_mode check is necessary during a below snd_una win probe */
942 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
943 if (before(tp->snd_up, tcb->seq + 0x10000)) {
944 th->urg_ptr = htons(tp->snd_up - tcb->seq);
945 th->urg = 1;
946 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
947 th->urg_ptr = htons(0xFFFF);
948 th->urg = 1;
949 }
950 }
951
952 tcp_options_write((__be32 *)(th + 1), tp, &opts);
953 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
954 TCP_ECN_send(sk, skb, tcp_header_size);
955
956 #ifdef CONFIG_TCP_MD5SIG
957 /* Calculate the MD5 hash, as we have all we need now */
958 if (md5) {
959 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
960 tp->af_specific->calc_md5_hash(opts.hash_location,
961 md5, sk, NULL, skb);
962 }
963 #endif
964
965 icsk->icsk_af_ops->send_check(sk, skb);
966
967 if (likely(tcb->tcp_flags & TCPHDR_ACK))
968 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
969
970 if (skb->len != tcp_header_size)
971 tcp_event_data_sent(tp, sk);
972
973 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
974 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
975 tcp_skb_pcount(skb));
976
977 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
978 if (likely(err <= 0))
979 return err;
980
981 tcp_enter_cwr(sk, 1);
982
983 return net_xmit_eval(err);
984 }
985
986 /* This routine just queues the buffer for sending.
987 *
988 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
989 * otherwise socket can stall.
990 */
991 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
992 {
993 struct tcp_sock *tp = tcp_sk(sk);
994
995 /* Advance write_seq and place onto the write_queue. */
996 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
997 skb_header_release(skb);
998 tcp_add_write_queue_tail(sk, skb);
999 sk->sk_wmem_queued += skb->truesize;
1000 sk_mem_charge(sk, skb->truesize);
1001 }
1002
1003 /* Initialize TSO segments for a packet. */
1004 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1005 unsigned int mss_now)
1006 {
1007 struct skb_shared_info *shinfo = skb_shinfo(skb);
1008
1009 /* Make sure we own this skb before messing gso_size/gso_segs */
1010 WARN_ON_ONCE(skb_cloned(skb));
1011
1012 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1013 /* Avoid the costly divide in the normal
1014 * non-TSO case.
1015 */
1016 shinfo->gso_segs = 1;
1017 shinfo->gso_size = 0;
1018 shinfo->gso_type = 0;
1019 } else {
1020 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1021 shinfo->gso_size = mss_now;
1022 shinfo->gso_type = sk->sk_gso_type;
1023 }
1024 }
1025
1026 /* When a modification to fackets out becomes necessary, we need to check
1027 * skb is counted to fackets_out or not.
1028 */
1029 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1030 int decr)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033
1034 if (!tp->sacked_out || tcp_is_reno(tp))
1035 return;
1036
1037 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1038 tp->fackets_out -= decr;
1039 }
1040
1041 /* Pcount in the middle of the write queue got changed, we need to do various
1042 * tweaks to fix counters
1043 */
1044 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1045 {
1046 struct tcp_sock *tp = tcp_sk(sk);
1047
1048 tp->packets_out -= decr;
1049
1050 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1051 tp->sacked_out -= decr;
1052 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1053 tp->retrans_out -= decr;
1054 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1055 tp->lost_out -= decr;
1056
1057 /* Reno case is special. Sigh... */
1058 if (tcp_is_reno(tp) && decr > 0)
1059 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1060
1061 tcp_adjust_fackets_out(sk, skb, decr);
1062
1063 if (tp->lost_skb_hint &&
1064 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1065 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1066 tp->lost_cnt_hint -= decr;
1067
1068 tcp_verify_left_out(tp);
1069 }
1070
1071 /* Function to create two new TCP segments. Shrinks the given segment
1072 * to the specified size and appends a new segment with the rest of the
1073 * packet to the list. This won't be called frequently, I hope.
1074 * Remember, these are still headerless SKBs at this point.
1075 */
1076 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1077 unsigned int mss_now, gfp_t gfp)
1078 {
1079 struct tcp_sock *tp = tcp_sk(sk);
1080 struct sk_buff *buff;
1081 int nsize, old_factor;
1082 int nlen;
1083 u8 flags;
1084
1085 if (WARN_ON(len > skb->len))
1086 return -EINVAL;
1087
1088 nsize = skb_headlen(skb) - len;
1089 if (nsize < 0)
1090 nsize = 0;
1091
1092 if (skb_unclone(skb, gfp))
1093 return -ENOMEM;
1094
1095 /* Get a new skb... force flag on. */
1096 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1097 if (buff == NULL)
1098 return -ENOMEM; /* We'll just try again later. */
1099
1100 sk->sk_wmem_queued += buff->truesize;
1101 sk_mem_charge(sk, buff->truesize);
1102 nlen = skb->len - len - nsize;
1103 buff->truesize += nlen;
1104 skb->truesize -= nlen;
1105
1106 /* Correct the sequence numbers. */
1107 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1108 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1109 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1110
1111 /* PSH and FIN should only be set in the second packet. */
1112 flags = TCP_SKB_CB(skb)->tcp_flags;
1113 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1114 TCP_SKB_CB(buff)->tcp_flags = flags;
1115 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1116
1117 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1118 /* Copy and checksum data tail into the new buffer. */
1119 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1120 skb_put(buff, nsize),
1121 nsize, 0);
1122
1123 skb_trim(skb, len);
1124
1125 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1126 } else {
1127 skb->ip_summed = CHECKSUM_PARTIAL;
1128 skb_split(skb, buff, len);
1129 }
1130
1131 buff->ip_summed = skb->ip_summed;
1132
1133 /* Looks stupid, but our code really uses when of
1134 * skbs, which it never sent before. --ANK
1135 */
1136 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1137 buff->tstamp = skb->tstamp;
1138
1139 old_factor = tcp_skb_pcount(skb);
1140
1141 /* Fix up tso_factor for both original and new SKB. */
1142 tcp_set_skb_tso_segs(sk, skb, mss_now);
1143 tcp_set_skb_tso_segs(sk, buff, mss_now);
1144
1145 /* If this packet has been sent out already, we must
1146 * adjust the various packet counters.
1147 */
1148 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1149 int diff = old_factor - tcp_skb_pcount(skb) -
1150 tcp_skb_pcount(buff);
1151
1152 if (diff)
1153 tcp_adjust_pcount(sk, skb, diff);
1154 }
1155
1156 /* Link BUFF into the send queue. */
1157 skb_header_release(buff);
1158 tcp_insert_write_queue_after(skb, buff, sk);
1159
1160 return 0;
1161 }
1162
1163 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1164 * eventually). The difference is that pulled data not copied, but
1165 * immediately discarded.
1166 */
1167 static void __pskb_trim_head(struct sk_buff *skb, int len)
1168 {
1169 struct skb_shared_info *shinfo;
1170 int i, k, eat;
1171
1172 eat = min_t(int, len, skb_headlen(skb));
1173 if (eat) {
1174 __skb_pull(skb, eat);
1175 len -= eat;
1176 if (!len)
1177 return;
1178 }
1179 eat = len;
1180 k = 0;
1181 shinfo = skb_shinfo(skb);
1182 for (i = 0; i < shinfo->nr_frags; i++) {
1183 int size = skb_frag_size(&shinfo->frags[i]);
1184
1185 if (size <= eat) {
1186 skb_frag_unref(skb, i);
1187 eat -= size;
1188 } else {
1189 shinfo->frags[k] = shinfo->frags[i];
1190 if (eat) {
1191 shinfo->frags[k].page_offset += eat;
1192 skb_frag_size_sub(&shinfo->frags[k], eat);
1193 eat = 0;
1194 }
1195 k++;
1196 }
1197 }
1198 shinfo->nr_frags = k;
1199
1200 skb_reset_tail_pointer(skb);
1201 skb->data_len -= len;
1202 skb->len = skb->data_len;
1203 }
1204
1205 /* Remove acked data from a packet in the transmit queue. */
1206 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1207 {
1208 if (skb_unclone(skb, GFP_ATOMIC))
1209 return -ENOMEM;
1210
1211 __pskb_trim_head(skb, len);
1212
1213 TCP_SKB_CB(skb)->seq += len;
1214 skb->ip_summed = CHECKSUM_PARTIAL;
1215
1216 skb->truesize -= len;
1217 sk->sk_wmem_queued -= len;
1218 sk_mem_uncharge(sk, len);
1219 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1220
1221 /* Any change of skb->len requires recalculation of tso factor. */
1222 if (tcp_skb_pcount(skb) > 1)
1223 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1224
1225 return 0;
1226 }
1227
1228 /* Calculate MSS not accounting any TCP options. */
1229 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1230 {
1231 const struct tcp_sock *tp = tcp_sk(sk);
1232 const struct inet_connection_sock *icsk = inet_csk(sk);
1233 int mss_now;
1234
1235 /* Calculate base mss without TCP options:
1236 It is MMS_S - sizeof(tcphdr) of rfc1122
1237 */
1238 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1239
1240 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1241 if (icsk->icsk_af_ops->net_frag_header_len) {
1242 const struct dst_entry *dst = __sk_dst_get(sk);
1243
1244 if (dst && dst_allfrag(dst))
1245 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1246 }
1247
1248 /* Clamp it (mss_clamp does not include tcp options) */
1249 if (mss_now > tp->rx_opt.mss_clamp)
1250 mss_now = tp->rx_opt.mss_clamp;
1251
1252 /* Now subtract optional transport overhead */
1253 mss_now -= icsk->icsk_ext_hdr_len;
1254
1255 /* Then reserve room for full set of TCP options and 8 bytes of data */
1256 if (mss_now < 48)
1257 mss_now = 48;
1258 return mss_now;
1259 }
1260
1261 /* Calculate MSS. Not accounting for SACKs here. */
1262 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1263 {
1264 /* Subtract TCP options size, not including SACKs */
1265 return __tcp_mtu_to_mss(sk, pmtu) -
1266 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1267 }
1268
1269 /* Inverse of above */
1270 int tcp_mss_to_mtu(struct sock *sk, int mss)
1271 {
1272 const struct tcp_sock *tp = tcp_sk(sk);
1273 const struct inet_connection_sock *icsk = inet_csk(sk);
1274 int mtu;
1275
1276 mtu = mss +
1277 tp->tcp_header_len +
1278 icsk->icsk_ext_hdr_len +
1279 icsk->icsk_af_ops->net_header_len;
1280
1281 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1282 if (icsk->icsk_af_ops->net_frag_header_len) {
1283 const struct dst_entry *dst = __sk_dst_get(sk);
1284
1285 if (dst && dst_allfrag(dst))
1286 mtu += icsk->icsk_af_ops->net_frag_header_len;
1287 }
1288 return mtu;
1289 }
1290
1291 /* MTU probing init per socket */
1292 void tcp_mtup_init(struct sock *sk)
1293 {
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 struct inet_connection_sock *icsk = inet_csk(sk);
1296
1297 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1298 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1299 icsk->icsk_af_ops->net_header_len;
1300 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1301 icsk->icsk_mtup.probe_size = 0;
1302 }
1303 EXPORT_SYMBOL(tcp_mtup_init);
1304
1305 /* This function synchronize snd mss to current pmtu/exthdr set.
1306
1307 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1308 for TCP options, but includes only bare TCP header.
1309
1310 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1311 It is minimum of user_mss and mss received with SYN.
1312 It also does not include TCP options.
1313
1314 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1315
1316 tp->mss_cache is current effective sending mss, including
1317 all tcp options except for SACKs. It is evaluated,
1318 taking into account current pmtu, but never exceeds
1319 tp->rx_opt.mss_clamp.
1320
1321 NOTE1. rfc1122 clearly states that advertised MSS
1322 DOES NOT include either tcp or ip options.
1323
1324 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1325 are READ ONLY outside this function. --ANK (980731)
1326 */
1327 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1328 {
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct inet_connection_sock *icsk = inet_csk(sk);
1331 int mss_now;
1332
1333 if (icsk->icsk_mtup.search_high > pmtu)
1334 icsk->icsk_mtup.search_high = pmtu;
1335
1336 mss_now = tcp_mtu_to_mss(sk, pmtu);
1337 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1338
1339 /* And store cached results */
1340 icsk->icsk_pmtu_cookie = pmtu;
1341 if (icsk->icsk_mtup.enabled)
1342 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1343 tp->mss_cache = mss_now;
1344
1345 return mss_now;
1346 }
1347 EXPORT_SYMBOL(tcp_sync_mss);
1348
1349 /* Compute the current effective MSS, taking SACKs and IP options,
1350 * and even PMTU discovery events into account.
1351 */
1352 unsigned int tcp_current_mss(struct sock *sk)
1353 {
1354 const struct tcp_sock *tp = tcp_sk(sk);
1355 const struct dst_entry *dst = __sk_dst_get(sk);
1356 u32 mss_now;
1357 unsigned int header_len;
1358 struct tcp_out_options opts;
1359 struct tcp_md5sig_key *md5;
1360
1361 mss_now = tp->mss_cache;
1362
1363 if (dst) {
1364 u32 mtu = dst_mtu(dst);
1365 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1366 mss_now = tcp_sync_mss(sk, mtu);
1367 }
1368
1369 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1370 sizeof(struct tcphdr);
1371 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1372 * some common options. If this is an odd packet (because we have SACK
1373 * blocks etc) then our calculated header_len will be different, and
1374 * we have to adjust mss_now correspondingly */
1375 if (header_len != tp->tcp_header_len) {
1376 int delta = (int) header_len - tp->tcp_header_len;
1377 mss_now -= delta;
1378 }
1379
1380 return mss_now;
1381 }
1382
1383 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1384 * As additional protections, we do not touch cwnd in retransmission phases,
1385 * and if application hit its sndbuf limit recently.
1386 */
1387 static void tcp_cwnd_application_limited(struct sock *sk)
1388 {
1389 struct tcp_sock *tp = tcp_sk(sk);
1390
1391 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1392 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1393 /* Limited by application or receiver window. */
1394 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1395 u32 win_used = max(tp->snd_cwnd_used, init_win);
1396 if (win_used < tp->snd_cwnd) {
1397 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1398 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1399 }
1400 tp->snd_cwnd_used = 0;
1401 }
1402 tp->snd_cwnd_stamp = tcp_time_stamp;
1403 }
1404
1405 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1406 {
1407 struct tcp_sock *tp = tcp_sk(sk);
1408
1409 /* Track the maximum number of outstanding packets in each
1410 * window, and remember whether we were cwnd-limited then.
1411 */
1412 if (!before(tp->snd_una, tp->max_packets_seq) ||
1413 tp->packets_out > tp->max_packets_out) {
1414 tp->max_packets_out = tp->packets_out;
1415 tp->max_packets_seq = tp->snd_nxt;
1416 tp->is_cwnd_limited = is_cwnd_limited;
1417 }
1418
1419 if (tcp_is_cwnd_limited(sk)) {
1420 /* Network is feed fully. */
1421 tp->snd_cwnd_used = 0;
1422 tp->snd_cwnd_stamp = tcp_time_stamp;
1423 } else {
1424 /* Network starves. */
1425 if (tp->packets_out > tp->snd_cwnd_used)
1426 tp->snd_cwnd_used = tp->packets_out;
1427
1428 if (sysctl_tcp_slow_start_after_idle &&
1429 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1430 tcp_cwnd_application_limited(sk);
1431 }
1432 }
1433
1434 /* Minshall's variant of the Nagle send check. */
1435 static bool tcp_minshall_check(const struct tcp_sock *tp)
1436 {
1437 return after(tp->snd_sml, tp->snd_una) &&
1438 !after(tp->snd_sml, tp->snd_nxt);
1439 }
1440
1441 /* Update snd_sml if this skb is under mss
1442 * Note that a TSO packet might end with a sub-mss segment
1443 * The test is really :
1444 * if ((skb->len % mss) != 0)
1445 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1446 * But we can avoid doing the divide again given we already have
1447 * skb_pcount = skb->len / mss_now
1448 */
1449 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1450 const struct sk_buff *skb)
1451 {
1452 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1453 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1454 }
1455
1456 /* Return false, if packet can be sent now without violation Nagle's rules:
1457 * 1. It is full sized. (provided by caller in %partial bool)
1458 * 2. Or it contains FIN. (already checked by caller)
1459 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1460 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1461 * With Minshall's modification: all sent small packets are ACKed.
1462 */
1463 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1464 int nonagle)
1465 {
1466 return partial &&
1467 ((nonagle & TCP_NAGLE_CORK) ||
1468 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1469 }
1470 /* Returns the portion of skb which can be sent right away */
1471 static unsigned int tcp_mss_split_point(const struct sock *sk,
1472 const struct sk_buff *skb,
1473 unsigned int mss_now,
1474 unsigned int max_segs,
1475 int nonagle)
1476 {
1477 const struct tcp_sock *tp = tcp_sk(sk);
1478 u32 partial, needed, window, max_len;
1479
1480 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1481 max_len = mss_now * max_segs;
1482
1483 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1484 return max_len;
1485
1486 needed = min(skb->len, window);
1487
1488 if (max_len <= needed)
1489 return max_len;
1490
1491 partial = needed % mss_now;
1492 /* If last segment is not a full MSS, check if Nagle rules allow us
1493 * to include this last segment in this skb.
1494 * Otherwise, we'll split the skb at last MSS boundary
1495 */
1496 if (tcp_nagle_check(partial != 0, tp, nonagle))
1497 return needed - partial;
1498
1499 return needed;
1500 }
1501
1502 /* Can at least one segment of SKB be sent right now, according to the
1503 * congestion window rules? If so, return how many segments are allowed.
1504 */
1505 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1506 const struct sk_buff *skb)
1507 {
1508 u32 in_flight, cwnd;
1509
1510 /* Don't be strict about the congestion window for the final FIN. */
1511 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1512 tcp_skb_pcount(skb) == 1)
1513 return 1;
1514
1515 in_flight = tcp_packets_in_flight(tp);
1516 cwnd = tp->snd_cwnd;
1517 if (in_flight < cwnd)
1518 return (cwnd - in_flight);
1519
1520 return 0;
1521 }
1522
1523 /* Initialize TSO state of a skb.
1524 * This must be invoked the first time we consider transmitting
1525 * SKB onto the wire.
1526 */
1527 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1528 unsigned int mss_now)
1529 {
1530 int tso_segs = tcp_skb_pcount(skb);
1531
1532 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1533 tcp_set_skb_tso_segs(sk, skb, mss_now);
1534 tso_segs = tcp_skb_pcount(skb);
1535 }
1536 return tso_segs;
1537 }
1538
1539
1540 /* Return true if the Nagle test allows this packet to be
1541 * sent now.
1542 */
1543 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1544 unsigned int cur_mss, int nonagle)
1545 {
1546 /* Nagle rule does not apply to frames, which sit in the middle of the
1547 * write_queue (they have no chances to get new data).
1548 *
1549 * This is implemented in the callers, where they modify the 'nonagle'
1550 * argument based upon the location of SKB in the send queue.
1551 */
1552 if (nonagle & TCP_NAGLE_PUSH)
1553 return true;
1554
1555 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1556 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1557 return true;
1558
1559 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1560 return true;
1561
1562 return false;
1563 }
1564
1565 /* Does at least the first segment of SKB fit into the send window? */
1566 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1567 const struct sk_buff *skb,
1568 unsigned int cur_mss)
1569 {
1570 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1571
1572 if (skb->len > cur_mss)
1573 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1574
1575 return !after(end_seq, tcp_wnd_end(tp));
1576 }
1577
1578 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1579 * should be put on the wire right now. If so, it returns the number of
1580 * packets allowed by the congestion window.
1581 */
1582 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1583 unsigned int cur_mss, int nonagle)
1584 {
1585 const struct tcp_sock *tp = tcp_sk(sk);
1586 unsigned int cwnd_quota;
1587
1588 tcp_init_tso_segs(sk, skb, cur_mss);
1589
1590 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1591 return 0;
1592
1593 cwnd_quota = tcp_cwnd_test(tp, skb);
1594 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1595 cwnd_quota = 0;
1596
1597 return cwnd_quota;
1598 }
1599
1600 /* Test if sending is allowed right now. */
1601 bool tcp_may_send_now(struct sock *sk)
1602 {
1603 const struct tcp_sock *tp = tcp_sk(sk);
1604 struct sk_buff *skb = tcp_send_head(sk);
1605
1606 return skb &&
1607 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1608 (tcp_skb_is_last(sk, skb) ?
1609 tp->nonagle : TCP_NAGLE_PUSH));
1610 }
1611
1612 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1613 * which is put after SKB on the list. It is very much like
1614 * tcp_fragment() except that it may make several kinds of assumptions
1615 * in order to speed up the splitting operation. In particular, we
1616 * know that all the data is in scatter-gather pages, and that the
1617 * packet has never been sent out before (and thus is not cloned).
1618 */
1619 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1620 unsigned int mss_now, gfp_t gfp)
1621 {
1622 struct sk_buff *buff;
1623 int nlen = skb->len - len;
1624 u8 flags;
1625
1626 /* All of a TSO frame must be composed of paged data. */
1627 if (skb->len != skb->data_len)
1628 return tcp_fragment(sk, skb, len, mss_now, gfp);
1629
1630 buff = sk_stream_alloc_skb(sk, 0, gfp);
1631 if (unlikely(buff == NULL))
1632 return -ENOMEM;
1633
1634 sk->sk_wmem_queued += buff->truesize;
1635 sk_mem_charge(sk, buff->truesize);
1636 buff->truesize += nlen;
1637 skb->truesize -= nlen;
1638
1639 /* Correct the sequence numbers. */
1640 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1641 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1642 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1643
1644 /* PSH and FIN should only be set in the second packet. */
1645 flags = TCP_SKB_CB(skb)->tcp_flags;
1646 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1647 TCP_SKB_CB(buff)->tcp_flags = flags;
1648
1649 /* This packet was never sent out yet, so no SACK bits. */
1650 TCP_SKB_CB(buff)->sacked = 0;
1651
1652 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1653 skb_split(skb, buff, len);
1654
1655 /* Fix up tso_factor for both original and new SKB. */
1656 tcp_set_skb_tso_segs(sk, skb, mss_now);
1657 tcp_set_skb_tso_segs(sk, buff, mss_now);
1658
1659 /* Link BUFF into the send queue. */
1660 skb_header_release(buff);
1661 tcp_insert_write_queue_after(skb, buff, sk);
1662
1663 return 0;
1664 }
1665
1666 /* Try to defer sending, if possible, in order to minimize the amount
1667 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1668 *
1669 * This algorithm is from John Heffner.
1670 */
1671 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1672 bool *is_cwnd_limited)
1673 {
1674 struct tcp_sock *tp = tcp_sk(sk);
1675 const struct inet_connection_sock *icsk = inet_csk(sk);
1676 u32 send_win, cong_win, limit, in_flight;
1677 int win_divisor;
1678
1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1680 goto send_now;
1681
1682 if (icsk->icsk_ca_state != TCP_CA_Open)
1683 goto send_now;
1684
1685 /* Defer for less than two clock ticks. */
1686 if (tp->tso_deferred &&
1687 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1688 goto send_now;
1689
1690 in_flight = tcp_packets_in_flight(tp);
1691
1692 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1693
1694 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1695
1696 /* From in_flight test above, we know that cwnd > in_flight. */
1697 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1698
1699 limit = min(send_win, cong_win);
1700
1701 /* If a full-sized TSO skb can be sent, do it. */
1702 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1703 tp->xmit_size_goal_segs * tp->mss_cache))
1704 goto send_now;
1705
1706 /* Middle in queue won't get any more data, full sendable already? */
1707 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1708 goto send_now;
1709
1710 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1711 if (win_divisor) {
1712 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1713
1714 /* If at least some fraction of a window is available,
1715 * just use it.
1716 */
1717 chunk /= win_divisor;
1718 if (limit >= chunk)
1719 goto send_now;
1720 } else {
1721 /* Different approach, try not to defer past a single
1722 * ACK. Receiver should ACK every other full sized
1723 * frame, so if we have space for more than 3 frames
1724 * then send now.
1725 */
1726 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1727 goto send_now;
1728 }
1729
1730 /* Ok, it looks like it is advisable to defer.
1731 * Do not rearm the timer if already set to not break TCP ACK clocking.
1732 */
1733 if (!tp->tso_deferred)
1734 tp->tso_deferred = 1 | (jiffies << 1);
1735
1736 if (cong_win < send_win && cong_win < skb->len)
1737 *is_cwnd_limited = true;
1738
1739 return true;
1740
1741 send_now:
1742 tp->tso_deferred = 0;
1743 return false;
1744 }
1745
1746 /* Create a new MTU probe if we are ready.
1747 * MTU probe is regularly attempting to increase the path MTU by
1748 * deliberately sending larger packets. This discovers routing
1749 * changes resulting in larger path MTUs.
1750 *
1751 * Returns 0 if we should wait to probe (no cwnd available),
1752 * 1 if a probe was sent,
1753 * -1 otherwise
1754 */
1755 static int tcp_mtu_probe(struct sock *sk)
1756 {
1757 struct tcp_sock *tp = tcp_sk(sk);
1758 struct inet_connection_sock *icsk = inet_csk(sk);
1759 struct sk_buff *skb, *nskb, *next;
1760 int len;
1761 int probe_size;
1762 int size_needed;
1763 int copy;
1764 int mss_now;
1765
1766 /* Not currently probing/verifying,
1767 * not in recovery,
1768 * have enough cwnd, and
1769 * not SACKing (the variable headers throw things off) */
1770 if (!icsk->icsk_mtup.enabled ||
1771 icsk->icsk_mtup.probe_size ||
1772 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1773 tp->snd_cwnd < 11 ||
1774 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1775 return -1;
1776
1777 /* Very simple search strategy: just double the MSS. */
1778 mss_now = tcp_current_mss(sk);
1779 probe_size = 2 * tp->mss_cache;
1780 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1781 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1782 /* TODO: set timer for probe_converge_event */
1783 return -1;
1784 }
1785
1786 /* Have enough data in the send queue to probe? */
1787 if (tp->write_seq - tp->snd_nxt < size_needed)
1788 return -1;
1789
1790 if (tp->snd_wnd < size_needed)
1791 return -1;
1792 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1793 return 0;
1794
1795 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1796 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1797 if (!tcp_packets_in_flight(tp))
1798 return -1;
1799 else
1800 return 0;
1801 }
1802
1803 /* We're allowed to probe. Build it now. */
1804 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1805 return -1;
1806 sk->sk_wmem_queued += nskb->truesize;
1807 sk_mem_charge(sk, nskb->truesize);
1808
1809 skb = tcp_send_head(sk);
1810
1811 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1812 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1813 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1814 TCP_SKB_CB(nskb)->sacked = 0;
1815 nskb->csum = 0;
1816 nskb->ip_summed = skb->ip_summed;
1817
1818 tcp_insert_write_queue_before(nskb, skb, sk);
1819
1820 len = 0;
1821 tcp_for_write_queue_from_safe(skb, next, sk) {
1822 copy = min_t(int, skb->len, probe_size - len);
1823 if (nskb->ip_summed)
1824 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1825 else
1826 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1827 skb_put(nskb, copy),
1828 copy, nskb->csum);
1829
1830 if (skb->len <= copy) {
1831 /* We've eaten all the data from this skb.
1832 * Throw it away. */
1833 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1834 tcp_unlink_write_queue(skb, sk);
1835 sk_wmem_free_skb(sk, skb);
1836 } else {
1837 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1838 ~(TCPHDR_FIN|TCPHDR_PSH);
1839 if (!skb_shinfo(skb)->nr_frags) {
1840 skb_pull(skb, copy);
1841 if (skb->ip_summed != CHECKSUM_PARTIAL)
1842 skb->csum = csum_partial(skb->data,
1843 skb->len, 0);
1844 } else {
1845 __pskb_trim_head(skb, copy);
1846 tcp_set_skb_tso_segs(sk, skb, mss_now);
1847 }
1848 TCP_SKB_CB(skb)->seq += copy;
1849 }
1850
1851 len += copy;
1852
1853 if (len >= probe_size)
1854 break;
1855 }
1856 tcp_init_tso_segs(sk, nskb, nskb->len);
1857
1858 /* We're ready to send. If this fails, the probe will
1859 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1860 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1861 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1862 /* Decrement cwnd here because we are sending
1863 * effectively two packets. */
1864 tp->snd_cwnd--;
1865 tcp_event_new_data_sent(sk, nskb);
1866
1867 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1868 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1869 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1870
1871 return 1;
1872 }
1873
1874 return -1;
1875 }
1876
1877 /* This routine writes packets to the network. It advances the
1878 * send_head. This happens as incoming acks open up the remote
1879 * window for us.
1880 *
1881 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1882 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1883 * account rare use of URG, this is not a big flaw.
1884 *
1885 * Send at most one packet when push_one > 0. Temporarily ignore
1886 * cwnd limit to force at most one packet out when push_one == 2.
1887
1888 * Returns true, if no segments are in flight and we have queued segments,
1889 * but cannot send anything now because of SWS or another problem.
1890 */
1891 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1892 int push_one, gfp_t gfp)
1893 {
1894 struct tcp_sock *tp = tcp_sk(sk);
1895 struct sk_buff *skb;
1896 unsigned int tso_segs, sent_pkts;
1897 int cwnd_quota;
1898 int result;
1899 bool is_cwnd_limited = false;
1900
1901 sent_pkts = 0;
1902
1903 if (!push_one) {
1904 /* Do MTU probing. */
1905 result = tcp_mtu_probe(sk);
1906 if (!result) {
1907 return false;
1908 } else if (result > 0) {
1909 sent_pkts = 1;
1910 }
1911 }
1912
1913 while ((skb = tcp_send_head(sk))) {
1914 unsigned int limit;
1915
1916 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1917 BUG_ON(!tso_segs);
1918
1919 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1920 goto repair; /* Skip network transmission */
1921
1922 cwnd_quota = tcp_cwnd_test(tp, skb);
1923 if (!cwnd_quota) {
1924 is_cwnd_limited = true;
1925 if (push_one == 2)
1926 /* Force out a loss probe pkt. */
1927 cwnd_quota = 1;
1928 else
1929 break;
1930 }
1931
1932 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1933 break;
1934
1935 if (tso_segs == 1) {
1936 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1937 (tcp_skb_is_last(sk, skb) ?
1938 nonagle : TCP_NAGLE_PUSH))))
1939 break;
1940 } else {
1941 if (!push_one &&
1942 tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
1943 break;
1944 }
1945
1946 /* TCP Small Queues :
1947 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1948 * This allows for :
1949 * - better RTT estimation and ACK scheduling
1950 * - faster recovery
1951 * - high rates
1952 * Alas, some drivers / subsystems require a fair amount
1953 * of queued bytes to ensure line rate.
1954 * One example is wifi aggregation (802.11 AMPDU)
1955 */
1956 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1957 sk->sk_pacing_rate >> 10);
1958
1959 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1960 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1961 /* It is possible TX completion already happened
1962 * before we set TSQ_THROTTLED, so we must
1963 * test again the condition.
1964 */
1965 smp_mb__after_atomic();
1966 if (atomic_read(&sk->sk_wmem_alloc) > limit)
1967 break;
1968 }
1969
1970 limit = mss_now;
1971 if (tso_segs > 1 && !tcp_urg_mode(tp))
1972 limit = tcp_mss_split_point(sk, skb, mss_now,
1973 min_t(unsigned int,
1974 cwnd_quota,
1975 sk->sk_gso_max_segs),
1976 nonagle);
1977
1978 if (skb->len > limit &&
1979 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1980 break;
1981
1982 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1983
1984 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1985 break;
1986
1987 repair:
1988 /* Advance the send_head. This one is sent out.
1989 * This call will increment packets_out.
1990 */
1991 tcp_event_new_data_sent(sk, skb);
1992
1993 tcp_minshall_update(tp, mss_now, skb);
1994 sent_pkts += tcp_skb_pcount(skb);
1995
1996 if (push_one)
1997 break;
1998 }
1999
2000 if (likely(sent_pkts)) {
2001 if (tcp_in_cwnd_reduction(sk))
2002 tp->prr_out += sent_pkts;
2003
2004 /* Send one loss probe per tail loss episode. */
2005 if (push_one != 2)
2006 tcp_schedule_loss_probe(sk);
2007 tcp_cwnd_validate(sk, is_cwnd_limited);
2008 return false;
2009 }
2010 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2011 }
2012
2013 bool tcp_schedule_loss_probe(struct sock *sk)
2014 {
2015 struct inet_connection_sock *icsk = inet_csk(sk);
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 u32 timeout, tlp_time_stamp, rto_time_stamp;
2018 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2019
2020 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2021 return false;
2022 /* No consecutive loss probes. */
2023 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2024 tcp_rearm_rto(sk);
2025 return false;
2026 }
2027 /* Don't do any loss probe on a Fast Open connection before 3WHS
2028 * finishes.
2029 */
2030 if (sk->sk_state == TCP_SYN_RECV)
2031 return false;
2032
2033 /* TLP is only scheduled when next timer event is RTO. */
2034 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2035 return false;
2036
2037 /* Schedule a loss probe in 2*RTT for SACK capable connections
2038 * in Open state, that are either limited by cwnd or application.
2039 */
2040 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2041 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2042 return false;
2043
2044 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2045 tcp_send_head(sk))
2046 return false;
2047
2048 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2049 * for delayed ack when there's one outstanding packet.
2050 */
2051 timeout = rtt << 1;
2052 if (tp->packets_out == 1)
2053 timeout = max_t(u32, timeout,
2054 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2055 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2056
2057 /* If RTO is shorter, just schedule TLP in its place. */
2058 tlp_time_stamp = tcp_time_stamp + timeout;
2059 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2060 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2061 s32 delta = rto_time_stamp - tcp_time_stamp;
2062 if (delta > 0)
2063 timeout = delta;
2064 }
2065
2066 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2067 TCP_RTO_MAX);
2068 return true;
2069 }
2070
2071 /* Thanks to skb fast clones, we can detect if a prior transmit of
2072 * a packet is still in a qdisc or driver queue.
2073 * In this case, there is very little point doing a retransmit !
2074 * Note: This is called from BH context only.
2075 */
2076 static bool skb_still_in_host_queue(const struct sock *sk,
2077 const struct sk_buff *skb)
2078 {
2079 const struct sk_buff *fclone = skb + 1;
2080
2081 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
2082 fclone->fclone == SKB_FCLONE_CLONE)) {
2083 NET_INC_STATS_BH(sock_net(sk),
2084 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2085 return true;
2086 }
2087 return false;
2088 }
2089
2090 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2091 * retransmit the last segment.
2092 */
2093 void tcp_send_loss_probe(struct sock *sk)
2094 {
2095 struct tcp_sock *tp = tcp_sk(sk);
2096 struct sk_buff *skb;
2097 int pcount;
2098 int mss = tcp_current_mss(sk);
2099 int err = -1;
2100
2101 if (tcp_send_head(sk) != NULL) {
2102 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2103 goto rearm_timer;
2104 }
2105
2106 /* At most one outstanding TLP retransmission. */
2107 if (tp->tlp_high_seq)
2108 goto rearm_timer;
2109
2110 /* Retransmit last segment. */
2111 skb = tcp_write_queue_tail(sk);
2112 if (WARN_ON(!skb))
2113 goto rearm_timer;
2114
2115 if (skb_still_in_host_queue(sk, skb))
2116 goto rearm_timer;
2117
2118 pcount = tcp_skb_pcount(skb);
2119 if (WARN_ON(!pcount))
2120 goto rearm_timer;
2121
2122 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2123 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2124 GFP_ATOMIC)))
2125 goto rearm_timer;
2126 skb = tcp_write_queue_tail(sk);
2127 }
2128
2129 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2130 goto rearm_timer;
2131
2132 err = __tcp_retransmit_skb(sk, skb);
2133
2134 /* Record snd_nxt for loss detection. */
2135 if (likely(!err))
2136 tp->tlp_high_seq = tp->snd_nxt;
2137
2138 rearm_timer:
2139 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2140 inet_csk(sk)->icsk_rto,
2141 TCP_RTO_MAX);
2142
2143 if (likely(!err))
2144 NET_INC_STATS_BH(sock_net(sk),
2145 LINUX_MIB_TCPLOSSPROBES);
2146 }
2147
2148 /* Push out any pending frames which were held back due to
2149 * TCP_CORK or attempt at coalescing tiny packets.
2150 * The socket must be locked by the caller.
2151 */
2152 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2153 int nonagle)
2154 {
2155 /* If we are closed, the bytes will have to remain here.
2156 * In time closedown will finish, we empty the write queue and
2157 * all will be happy.
2158 */
2159 if (unlikely(sk->sk_state == TCP_CLOSE))
2160 return;
2161
2162 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2163 sk_gfp_atomic(sk, GFP_ATOMIC)))
2164 tcp_check_probe_timer(sk);
2165 }
2166
2167 /* Send _single_ skb sitting at the send head. This function requires
2168 * true push pending frames to setup probe timer etc.
2169 */
2170 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2171 {
2172 struct sk_buff *skb = tcp_send_head(sk);
2173
2174 BUG_ON(!skb || skb->len < mss_now);
2175
2176 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2177 }
2178
2179 /* This function returns the amount that we can raise the
2180 * usable window based on the following constraints
2181 *
2182 * 1. The window can never be shrunk once it is offered (RFC 793)
2183 * 2. We limit memory per socket
2184 *
2185 * RFC 1122:
2186 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2187 * RECV.NEXT + RCV.WIN fixed until:
2188 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2189 *
2190 * i.e. don't raise the right edge of the window until you can raise
2191 * it at least MSS bytes.
2192 *
2193 * Unfortunately, the recommended algorithm breaks header prediction,
2194 * since header prediction assumes th->window stays fixed.
2195 *
2196 * Strictly speaking, keeping th->window fixed violates the receiver
2197 * side SWS prevention criteria. The problem is that under this rule
2198 * a stream of single byte packets will cause the right side of the
2199 * window to always advance by a single byte.
2200 *
2201 * Of course, if the sender implements sender side SWS prevention
2202 * then this will not be a problem.
2203 *
2204 * BSD seems to make the following compromise:
2205 *
2206 * If the free space is less than the 1/4 of the maximum
2207 * space available and the free space is less than 1/2 mss,
2208 * then set the window to 0.
2209 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2210 * Otherwise, just prevent the window from shrinking
2211 * and from being larger than the largest representable value.
2212 *
2213 * This prevents incremental opening of the window in the regime
2214 * where TCP is limited by the speed of the reader side taking
2215 * data out of the TCP receive queue. It does nothing about
2216 * those cases where the window is constrained on the sender side
2217 * because the pipeline is full.
2218 *
2219 * BSD also seems to "accidentally" limit itself to windows that are a
2220 * multiple of MSS, at least until the free space gets quite small.
2221 * This would appear to be a side effect of the mbuf implementation.
2222 * Combining these two algorithms results in the observed behavior
2223 * of having a fixed window size at almost all times.
2224 *
2225 * Below we obtain similar behavior by forcing the offered window to
2226 * a multiple of the mss when it is feasible to do so.
2227 *
2228 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2229 * Regular options like TIMESTAMP are taken into account.
2230 */
2231 u32 __tcp_select_window(struct sock *sk)
2232 {
2233 struct inet_connection_sock *icsk = inet_csk(sk);
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 /* MSS for the peer's data. Previous versions used mss_clamp
2236 * here. I don't know if the value based on our guesses
2237 * of peer's MSS is better for the performance. It's more correct
2238 * but may be worse for the performance because of rcv_mss
2239 * fluctuations. --SAW 1998/11/1
2240 */
2241 int mss = icsk->icsk_ack.rcv_mss;
2242 int free_space = tcp_space(sk);
2243 int allowed_space = tcp_full_space(sk);
2244 int full_space = min_t(int, tp->window_clamp, allowed_space);
2245 int window;
2246
2247 if (mss > full_space)
2248 mss = full_space;
2249
2250 if (free_space < (full_space >> 1)) {
2251 icsk->icsk_ack.quick = 0;
2252
2253 if (sk_under_memory_pressure(sk))
2254 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2255 4U * tp->advmss);
2256
2257 /* free_space might become our new window, make sure we don't
2258 * increase it due to wscale.
2259 */
2260 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2261
2262 /* if free space is less than mss estimate, or is below 1/16th
2263 * of the maximum allowed, try to move to zero-window, else
2264 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2265 * new incoming data is dropped due to memory limits.
2266 * With large window, mss test triggers way too late in order
2267 * to announce zero window in time before rmem limit kicks in.
2268 */
2269 if (free_space < (allowed_space >> 4) || free_space < mss)
2270 return 0;
2271 }
2272
2273 if (free_space > tp->rcv_ssthresh)
2274 free_space = tp->rcv_ssthresh;
2275
2276 /* Don't do rounding if we are using window scaling, since the
2277 * scaled window will not line up with the MSS boundary anyway.
2278 */
2279 window = tp->rcv_wnd;
2280 if (tp->rx_opt.rcv_wscale) {
2281 window = free_space;
2282
2283 /* Advertise enough space so that it won't get scaled away.
2284 * Import case: prevent zero window announcement if
2285 * 1<<rcv_wscale > mss.
2286 */
2287 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2288 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2289 << tp->rx_opt.rcv_wscale);
2290 } else {
2291 /* Get the largest window that is a nice multiple of mss.
2292 * Window clamp already applied above.
2293 * If our current window offering is within 1 mss of the
2294 * free space we just keep it. This prevents the divide
2295 * and multiply from happening most of the time.
2296 * We also don't do any window rounding when the free space
2297 * is too small.
2298 */
2299 if (window <= free_space - mss || window > free_space)
2300 window = (free_space / mss) * mss;
2301 else if (mss == full_space &&
2302 free_space > window + (full_space >> 1))
2303 window = free_space;
2304 }
2305
2306 return window;
2307 }
2308
2309 /* Collapses two adjacent SKB's during retransmission. */
2310 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2311 {
2312 struct tcp_sock *tp = tcp_sk(sk);
2313 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2314 int skb_size, next_skb_size;
2315
2316 skb_size = skb->len;
2317 next_skb_size = next_skb->len;
2318
2319 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2320
2321 tcp_highest_sack_combine(sk, next_skb, skb);
2322
2323 tcp_unlink_write_queue(next_skb, sk);
2324
2325 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2326 next_skb_size);
2327
2328 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2329 skb->ip_summed = CHECKSUM_PARTIAL;
2330
2331 if (skb->ip_summed != CHECKSUM_PARTIAL)
2332 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2333
2334 /* Update sequence range on original skb. */
2335 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2336
2337 /* Merge over control information. This moves PSH/FIN etc. over */
2338 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2339
2340 /* All done, get rid of second SKB and account for it so
2341 * packet counting does not break.
2342 */
2343 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2344
2345 /* changed transmit queue under us so clear hints */
2346 tcp_clear_retrans_hints_partial(tp);
2347 if (next_skb == tp->retransmit_skb_hint)
2348 tp->retransmit_skb_hint = skb;
2349
2350 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2351
2352 sk_wmem_free_skb(sk, next_skb);
2353 }
2354
2355 /* Check if coalescing SKBs is legal. */
2356 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2357 {
2358 if (tcp_skb_pcount(skb) > 1)
2359 return false;
2360 /* TODO: SACK collapsing could be used to remove this condition */
2361 if (skb_shinfo(skb)->nr_frags != 0)
2362 return false;
2363 if (skb_cloned(skb))
2364 return false;
2365 if (skb == tcp_send_head(sk))
2366 return false;
2367 /* Some heurestics for collapsing over SACK'd could be invented */
2368 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2369 return false;
2370
2371 return true;
2372 }
2373
2374 /* Collapse packets in the retransmit queue to make to create
2375 * less packets on the wire. This is only done on retransmission.
2376 */
2377 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2378 int space)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381 struct sk_buff *skb = to, *tmp;
2382 bool first = true;
2383
2384 if (!sysctl_tcp_retrans_collapse)
2385 return;
2386 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2387 return;
2388
2389 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2390 if (!tcp_can_collapse(sk, skb))
2391 break;
2392
2393 space -= skb->len;
2394
2395 if (first) {
2396 first = false;
2397 continue;
2398 }
2399
2400 if (space < 0)
2401 break;
2402 /* Punt if not enough space exists in the first SKB for
2403 * the data in the second
2404 */
2405 if (skb->len > skb_availroom(to))
2406 break;
2407
2408 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2409 break;
2410
2411 tcp_collapse_retrans(sk, to);
2412 }
2413 }
2414
2415 /* This retransmits one SKB. Policy decisions and retransmit queue
2416 * state updates are done by the caller. Returns non-zero if an
2417 * error occurred which prevented the send.
2418 */
2419 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2420 {
2421 struct tcp_sock *tp = tcp_sk(sk);
2422 struct inet_connection_sock *icsk = inet_csk(sk);
2423 unsigned int cur_mss;
2424 int err;
2425
2426 /* Inconslusive MTU probe */
2427 if (icsk->icsk_mtup.probe_size) {
2428 icsk->icsk_mtup.probe_size = 0;
2429 }
2430
2431 /* Do not sent more than we queued. 1/4 is reserved for possible
2432 * copying overhead: fragmentation, tunneling, mangling etc.
2433 */
2434 if (atomic_read(&sk->sk_wmem_alloc) >
2435 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2436 return -EAGAIN;
2437
2438 if (skb_still_in_host_queue(sk, skb))
2439 return -EBUSY;
2440
2441 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2442 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2443 BUG();
2444 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2445 return -ENOMEM;
2446 }
2447
2448 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2449 return -EHOSTUNREACH; /* Routing failure or similar. */
2450
2451 cur_mss = tcp_current_mss(sk);
2452
2453 /* If receiver has shrunk his window, and skb is out of
2454 * new window, do not retransmit it. The exception is the
2455 * case, when window is shrunk to zero. In this case
2456 * our retransmit serves as a zero window probe.
2457 */
2458 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2459 TCP_SKB_CB(skb)->seq != tp->snd_una)
2460 return -EAGAIN;
2461
2462 if (skb->len > cur_mss) {
2463 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2464 return -ENOMEM; /* We'll try again later. */
2465 } else {
2466 int oldpcount = tcp_skb_pcount(skb);
2467
2468 if (unlikely(oldpcount > 1)) {
2469 if (skb_unclone(skb, GFP_ATOMIC))
2470 return -ENOMEM;
2471 tcp_init_tso_segs(sk, skb, cur_mss);
2472 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2473 }
2474 }
2475
2476 tcp_retrans_try_collapse(sk, skb, cur_mss);
2477
2478 /* Make a copy, if the first transmission SKB clone we made
2479 * is still in somebody's hands, else make a clone.
2480 */
2481 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2482
2483 /* make sure skb->data is aligned on arches that require it
2484 * and check if ack-trimming & collapsing extended the headroom
2485 * beyond what csum_start can cover.
2486 */
2487 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2488 skb_headroom(skb) >= 0xFFFF)) {
2489 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2490 GFP_ATOMIC);
2491 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2492 -ENOBUFS;
2493 } else {
2494 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2495 }
2496
2497 if (likely(!err)) {
2498 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2499 /* Update global TCP statistics. */
2500 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2501 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2503 tp->total_retrans++;
2504 }
2505 return err;
2506 }
2507
2508 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2509 {
2510 struct tcp_sock *tp = tcp_sk(sk);
2511 int err = __tcp_retransmit_skb(sk, skb);
2512
2513 if (err == 0) {
2514 #if FASTRETRANS_DEBUG > 0
2515 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2516 net_dbg_ratelimited("retrans_out leaked\n");
2517 }
2518 #endif
2519 if (!tp->retrans_out)
2520 tp->lost_retrans_low = tp->snd_nxt;
2521 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2522 tp->retrans_out += tcp_skb_pcount(skb);
2523
2524 /* Save stamp of the first retransmit. */
2525 if (!tp->retrans_stamp)
2526 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2527
2528 /* snd_nxt is stored to detect loss of retransmitted segment,
2529 * see tcp_input.c tcp_sacktag_write_queue().
2530 */
2531 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2532 } else if (err != -EBUSY) {
2533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2534 }
2535
2536 if (tp->undo_retrans < 0)
2537 tp->undo_retrans = 0;
2538 tp->undo_retrans += tcp_skb_pcount(skb);
2539 return err;
2540 }
2541
2542 /* Check if we forward retransmits are possible in the current
2543 * window/congestion state.
2544 */
2545 static bool tcp_can_forward_retransmit(struct sock *sk)
2546 {
2547 const struct inet_connection_sock *icsk = inet_csk(sk);
2548 const struct tcp_sock *tp = tcp_sk(sk);
2549
2550 /* Forward retransmissions are possible only during Recovery. */
2551 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2552 return false;
2553
2554 /* No forward retransmissions in Reno are possible. */
2555 if (tcp_is_reno(tp))
2556 return false;
2557
2558 /* Yeah, we have to make difficult choice between forward transmission
2559 * and retransmission... Both ways have their merits...
2560 *
2561 * For now we do not retransmit anything, while we have some new
2562 * segments to send. In the other cases, follow rule 3 for
2563 * NextSeg() specified in RFC3517.
2564 */
2565
2566 if (tcp_may_send_now(sk))
2567 return false;
2568
2569 return true;
2570 }
2571
2572 /* This gets called after a retransmit timeout, and the initially
2573 * retransmitted data is acknowledged. It tries to continue
2574 * resending the rest of the retransmit queue, until either
2575 * we've sent it all or the congestion window limit is reached.
2576 * If doing SACK, the first ACK which comes back for a timeout
2577 * based retransmit packet might feed us FACK information again.
2578 * If so, we use it to avoid unnecessarily retransmissions.
2579 */
2580 void tcp_xmit_retransmit_queue(struct sock *sk)
2581 {
2582 const struct inet_connection_sock *icsk = inet_csk(sk);
2583 struct tcp_sock *tp = tcp_sk(sk);
2584 struct sk_buff *skb;
2585 struct sk_buff *hole = NULL;
2586 u32 last_lost;
2587 int mib_idx;
2588 int fwd_rexmitting = 0;
2589
2590 if (!tp->packets_out)
2591 return;
2592
2593 if (!tp->lost_out)
2594 tp->retransmit_high = tp->snd_una;
2595
2596 if (tp->retransmit_skb_hint) {
2597 skb = tp->retransmit_skb_hint;
2598 last_lost = TCP_SKB_CB(skb)->end_seq;
2599 if (after(last_lost, tp->retransmit_high))
2600 last_lost = tp->retransmit_high;
2601 } else {
2602 skb = tcp_write_queue_head(sk);
2603 last_lost = tp->snd_una;
2604 }
2605
2606 tcp_for_write_queue_from(skb, sk) {
2607 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2608
2609 if (skb == tcp_send_head(sk))
2610 break;
2611 /* we could do better than to assign each time */
2612 if (hole == NULL)
2613 tp->retransmit_skb_hint = skb;
2614
2615 /* Assume this retransmit will generate
2616 * only one packet for congestion window
2617 * calculation purposes. This works because
2618 * tcp_retransmit_skb() will chop up the
2619 * packet to be MSS sized and all the
2620 * packet counting works out.
2621 */
2622 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2623 return;
2624
2625 if (fwd_rexmitting) {
2626 begin_fwd:
2627 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2628 break;
2629 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2630
2631 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2632 tp->retransmit_high = last_lost;
2633 if (!tcp_can_forward_retransmit(sk))
2634 break;
2635 /* Backtrack if necessary to non-L'ed skb */
2636 if (hole != NULL) {
2637 skb = hole;
2638 hole = NULL;
2639 }
2640 fwd_rexmitting = 1;
2641 goto begin_fwd;
2642
2643 } else if (!(sacked & TCPCB_LOST)) {
2644 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2645 hole = skb;
2646 continue;
2647
2648 } else {
2649 last_lost = TCP_SKB_CB(skb)->end_seq;
2650 if (icsk->icsk_ca_state != TCP_CA_Loss)
2651 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2652 else
2653 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2654 }
2655
2656 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2657 continue;
2658
2659 if (tcp_retransmit_skb(sk, skb))
2660 return;
2661
2662 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2663
2664 if (tcp_in_cwnd_reduction(sk))
2665 tp->prr_out += tcp_skb_pcount(skb);
2666
2667 if (skb == tcp_write_queue_head(sk))
2668 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2669 inet_csk(sk)->icsk_rto,
2670 TCP_RTO_MAX);
2671 }
2672 }
2673
2674 /* Send a fin. The caller locks the socket for us. This cannot be
2675 * allowed to fail queueing a FIN frame under any circumstances.
2676 */
2677 void tcp_send_fin(struct sock *sk)
2678 {
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 struct sk_buff *skb = tcp_write_queue_tail(sk);
2681 int mss_now;
2682
2683 /* Optimization, tack on the FIN if we have a queue of
2684 * unsent frames. But be careful about outgoing SACKS
2685 * and IP options.
2686 */
2687 mss_now = tcp_current_mss(sk);
2688
2689 if (tcp_send_head(sk) != NULL) {
2690 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2691 TCP_SKB_CB(skb)->end_seq++;
2692 tp->write_seq++;
2693 } else {
2694 /* Socket is locked, keep trying until memory is available. */
2695 for (;;) {
2696 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2697 sk->sk_allocation);
2698 if (skb)
2699 break;
2700 yield();
2701 }
2702
2703 /* Reserve space for headers and prepare control bits. */
2704 skb_reserve(skb, MAX_TCP_HEADER);
2705 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2706 tcp_init_nondata_skb(skb, tp->write_seq,
2707 TCPHDR_ACK | TCPHDR_FIN);
2708 tcp_queue_skb(sk, skb);
2709 }
2710 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2711 }
2712
2713 /* We get here when a process closes a file descriptor (either due to
2714 * an explicit close() or as a byproduct of exit()'ing) and there
2715 * was unread data in the receive queue. This behavior is recommended
2716 * by RFC 2525, section 2.17. -DaveM
2717 */
2718 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2719 {
2720 struct sk_buff *skb;
2721
2722 /* NOTE: No TCP options attached and we never retransmit this. */
2723 skb = alloc_skb(MAX_TCP_HEADER, priority);
2724 if (!skb) {
2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2726 return;
2727 }
2728
2729 /* Reserve space for headers and prepare control bits. */
2730 skb_reserve(skb, MAX_TCP_HEADER);
2731 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2732 TCPHDR_ACK | TCPHDR_RST);
2733 /* Send it off. */
2734 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2735 if (tcp_transmit_skb(sk, skb, 0, priority))
2736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2737
2738 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2739 }
2740
2741 /* Send a crossed SYN-ACK during socket establishment.
2742 * WARNING: This routine must only be called when we have already sent
2743 * a SYN packet that crossed the incoming SYN that caused this routine
2744 * to get called. If this assumption fails then the initial rcv_wnd
2745 * and rcv_wscale values will not be correct.
2746 */
2747 int tcp_send_synack(struct sock *sk)
2748 {
2749 struct sk_buff *skb;
2750
2751 skb = tcp_write_queue_head(sk);
2752 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2753 pr_debug("%s: wrong queue state\n", __func__);
2754 return -EFAULT;
2755 }
2756 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2757 if (skb_cloned(skb)) {
2758 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2759 if (nskb == NULL)
2760 return -ENOMEM;
2761 tcp_unlink_write_queue(skb, sk);
2762 skb_header_release(nskb);
2763 __tcp_add_write_queue_head(sk, nskb);
2764 sk_wmem_free_skb(sk, skb);
2765 sk->sk_wmem_queued += nskb->truesize;
2766 sk_mem_charge(sk, nskb->truesize);
2767 skb = nskb;
2768 }
2769
2770 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2771 TCP_ECN_send_synack(tcp_sk(sk), skb);
2772 }
2773 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2774 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2775 }
2776
2777 /**
2778 * tcp_make_synack - Prepare a SYN-ACK.
2779 * sk: listener socket
2780 * dst: dst entry attached to the SYNACK
2781 * req: request_sock pointer
2782 *
2783 * Allocate one skb and build a SYNACK packet.
2784 * @dst is consumed : Caller should not use it again.
2785 */
2786 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2787 struct request_sock *req,
2788 struct tcp_fastopen_cookie *foc)
2789 {
2790 struct tcp_out_options opts;
2791 struct inet_request_sock *ireq = inet_rsk(req);
2792 struct tcp_sock *tp = tcp_sk(sk);
2793 struct tcphdr *th;
2794 struct sk_buff *skb;
2795 struct tcp_md5sig_key *md5;
2796 int tcp_header_size;
2797 int mss;
2798
2799 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2800 if (unlikely(!skb)) {
2801 dst_release(dst);
2802 return NULL;
2803 }
2804 /* Reserve space for headers. */
2805 skb_reserve(skb, MAX_TCP_HEADER);
2806
2807 skb_dst_set(skb, dst);
2808 security_skb_owned_by(skb, sk);
2809
2810 mss = dst_metric_advmss(dst);
2811 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2812 mss = tp->rx_opt.user_mss;
2813
2814 memset(&opts, 0, sizeof(opts));
2815 #ifdef CONFIG_SYN_COOKIES
2816 if (unlikely(req->cookie_ts))
2817 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2818 else
2819 #endif
2820 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2821 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2822 foc) + sizeof(*th);
2823
2824 skb_push(skb, tcp_header_size);
2825 skb_reset_transport_header(skb);
2826
2827 th = tcp_hdr(skb);
2828 memset(th, 0, sizeof(struct tcphdr));
2829 th->syn = 1;
2830 th->ack = 1;
2831 TCP_ECN_make_synack(req, th);
2832 th->source = htons(ireq->ir_num);
2833 th->dest = ireq->ir_rmt_port;
2834 /* Setting of flags are superfluous here for callers (and ECE is
2835 * not even correctly set)
2836 */
2837 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2838 TCPHDR_SYN | TCPHDR_ACK);
2839
2840 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2841 /* XXX data is queued and acked as is. No buffer/window check */
2842 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2843
2844 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2845 th->window = htons(min(req->rcv_wnd, 65535U));
2846 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2847 th->doff = (tcp_header_size >> 2);
2848 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2849
2850 #ifdef CONFIG_TCP_MD5SIG
2851 /* Okay, we have all we need - do the md5 hash if needed */
2852 if (md5) {
2853 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2854 md5, NULL, req, skb);
2855 }
2856 #endif
2857
2858 return skb;
2859 }
2860 EXPORT_SYMBOL(tcp_make_synack);
2861
2862 /* Do all connect socket setups that can be done AF independent. */
2863 static void tcp_connect_init(struct sock *sk)
2864 {
2865 const struct dst_entry *dst = __sk_dst_get(sk);
2866 struct tcp_sock *tp = tcp_sk(sk);
2867 __u8 rcv_wscale;
2868
2869 /* We'll fix this up when we get a response from the other end.
2870 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2871 */
2872 tp->tcp_header_len = sizeof(struct tcphdr) +
2873 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2874
2875 #ifdef CONFIG_TCP_MD5SIG
2876 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2877 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2878 #endif
2879
2880 /* If user gave his TCP_MAXSEG, record it to clamp */
2881 if (tp->rx_opt.user_mss)
2882 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2883 tp->max_window = 0;
2884 tcp_mtup_init(sk);
2885 tcp_sync_mss(sk, dst_mtu(dst));
2886
2887 if (!tp->window_clamp)
2888 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2889 tp->advmss = dst_metric_advmss(dst);
2890 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2891 tp->advmss = tp->rx_opt.user_mss;
2892
2893 tcp_initialize_rcv_mss(sk);
2894
2895 /* limit the window selection if the user enforce a smaller rx buffer */
2896 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2897 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2898 tp->window_clamp = tcp_full_space(sk);
2899
2900 tcp_select_initial_window(tcp_full_space(sk),
2901 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2902 &tp->rcv_wnd,
2903 &tp->window_clamp,
2904 sysctl_tcp_window_scaling,
2905 &rcv_wscale,
2906 dst_metric(dst, RTAX_INITRWND));
2907
2908 tp->rx_opt.rcv_wscale = rcv_wscale;
2909 tp->rcv_ssthresh = tp->rcv_wnd;
2910
2911 sk->sk_err = 0;
2912 sock_reset_flag(sk, SOCK_DONE);
2913 tp->snd_wnd = 0;
2914 tcp_init_wl(tp, 0);
2915 tp->snd_una = tp->write_seq;
2916 tp->snd_sml = tp->write_seq;
2917 tp->snd_up = tp->write_seq;
2918 tp->snd_nxt = tp->write_seq;
2919
2920 if (likely(!tp->repair))
2921 tp->rcv_nxt = 0;
2922 else
2923 tp->rcv_tstamp = tcp_time_stamp;
2924 tp->rcv_wup = tp->rcv_nxt;
2925 tp->copied_seq = tp->rcv_nxt;
2926
2927 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2928 inet_csk(sk)->icsk_retransmits = 0;
2929 tcp_clear_retrans(tp);
2930 }
2931
2932 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2933 {
2934 struct tcp_sock *tp = tcp_sk(sk);
2935 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2936
2937 tcb->end_seq += skb->len;
2938 skb_header_release(skb);
2939 __tcp_add_write_queue_tail(sk, skb);
2940 sk->sk_wmem_queued += skb->truesize;
2941 sk_mem_charge(sk, skb->truesize);
2942 tp->write_seq = tcb->end_seq;
2943 tp->packets_out += tcp_skb_pcount(skb);
2944 }
2945
2946 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2947 * queue a data-only packet after the regular SYN, such that regular SYNs
2948 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2949 * only the SYN sequence, the data are retransmitted in the first ACK.
2950 * If cookie is not cached or other error occurs, falls back to send a
2951 * regular SYN with Fast Open cookie request option.
2952 */
2953 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2954 {
2955 struct tcp_sock *tp = tcp_sk(sk);
2956 struct tcp_fastopen_request *fo = tp->fastopen_req;
2957 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2958 struct sk_buff *syn_data = NULL, *data;
2959 unsigned long last_syn_loss = 0;
2960
2961 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2962 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2963 &syn_loss, &last_syn_loss);
2964 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2965 if (syn_loss > 1 &&
2966 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2967 fo->cookie.len = -1;
2968 goto fallback;
2969 }
2970
2971 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2972 fo->cookie.len = -1;
2973 else if (fo->cookie.len <= 0)
2974 goto fallback;
2975
2976 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2977 * user-MSS. Reserve maximum option space for middleboxes that add
2978 * private TCP options. The cost is reduced data space in SYN :(
2979 */
2980 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2981 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2982 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2983 MAX_TCP_OPTION_SPACE;
2984
2985 space = min_t(size_t, space, fo->size);
2986
2987 /* limit to order-0 allocations */
2988 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2989
2990 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2991 sk->sk_allocation);
2992 if (syn_data == NULL)
2993 goto fallback;
2994
2995 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2996 struct iovec *iov = &fo->data->msg_iov[i];
2997 unsigned char __user *from = iov->iov_base;
2998 int len = iov->iov_len;
2999
3000 if (syn_data->len + len > space)
3001 len = space - syn_data->len;
3002 else if (i + 1 == iovlen)
3003 /* No more data pending in inet_wait_for_connect() */
3004 fo->data = NULL;
3005
3006 if (skb_add_data(syn_data, from, len))
3007 goto fallback;
3008 }
3009
3010 /* Queue a data-only packet after the regular SYN for retransmission */
3011 data = pskb_copy(syn_data, sk->sk_allocation);
3012 if (data == NULL)
3013 goto fallback;
3014 TCP_SKB_CB(data)->seq++;
3015 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3016 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3017 tcp_connect_queue_skb(sk, data);
3018 fo->copied = data->len;
3019
3020 /* syn_data is about to be sent, we need to take current time stamps
3021 * for the packets that are in write queue : SYN packet and DATA
3022 */
3023 skb_mstamp_get(&syn->skb_mstamp);
3024 data->skb_mstamp = syn->skb_mstamp;
3025
3026 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3027 tp->syn_data = (fo->copied > 0);
3028 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3029 goto done;
3030 }
3031 syn_data = NULL;
3032
3033 fallback:
3034 /* Send a regular SYN with Fast Open cookie request option */
3035 if (fo->cookie.len > 0)
3036 fo->cookie.len = 0;
3037 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3038 if (err)
3039 tp->syn_fastopen = 0;
3040 kfree_skb(syn_data);
3041 done:
3042 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3043 return err;
3044 }
3045
3046 /* Build a SYN and send it off. */
3047 int tcp_connect(struct sock *sk)
3048 {
3049 struct tcp_sock *tp = tcp_sk(sk);
3050 struct sk_buff *buff;
3051 int err;
3052
3053 tcp_connect_init(sk);
3054
3055 if (unlikely(tp->repair)) {
3056 tcp_finish_connect(sk, NULL);
3057 return 0;
3058 }
3059
3060 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3061 if (unlikely(buff == NULL))
3062 return -ENOBUFS;
3063
3064 /* Reserve space for headers. */
3065 skb_reserve(buff, MAX_TCP_HEADER);
3066
3067 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3068 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3069 tcp_connect_queue_skb(sk, buff);
3070 TCP_ECN_send_syn(sk, buff);
3071
3072 /* Send off SYN; include data in Fast Open. */
3073 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3074 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3075 if (err == -ECONNREFUSED)
3076 return err;
3077
3078 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3079 * in order to make this packet get counted in tcpOutSegs.
3080 */
3081 tp->snd_nxt = tp->write_seq;
3082 tp->pushed_seq = tp->write_seq;
3083 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3084
3085 /* Timer for repeating the SYN until an answer. */
3086 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3087 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3088 return 0;
3089 }
3090 EXPORT_SYMBOL(tcp_connect);
3091
3092 /* Send out a delayed ack, the caller does the policy checking
3093 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3094 * for details.
3095 */
3096 void tcp_send_delayed_ack(struct sock *sk)
3097 {
3098 struct inet_connection_sock *icsk = inet_csk(sk);
3099 int ato = icsk->icsk_ack.ato;
3100 unsigned long timeout;
3101
3102 if (ato > TCP_DELACK_MIN) {
3103 const struct tcp_sock *tp = tcp_sk(sk);
3104 int max_ato = HZ / 2;
3105
3106 if (icsk->icsk_ack.pingpong ||
3107 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3108 max_ato = TCP_DELACK_MAX;
3109
3110 /* Slow path, intersegment interval is "high". */
3111
3112 /* If some rtt estimate is known, use it to bound delayed ack.
3113 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3114 * directly.
3115 */
3116 if (tp->srtt_us) {
3117 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3118 TCP_DELACK_MIN);
3119
3120 if (rtt < max_ato)
3121 max_ato = rtt;
3122 }
3123
3124 ato = min(ato, max_ato);
3125 }
3126
3127 /* Stay within the limit we were given */
3128 timeout = jiffies + ato;
3129
3130 /* Use new timeout only if there wasn't a older one earlier. */
3131 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3132 /* If delack timer was blocked or is about to expire,
3133 * send ACK now.
3134 */
3135 if (icsk->icsk_ack.blocked ||
3136 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3137 tcp_send_ack(sk);
3138 return;
3139 }
3140
3141 if (!time_before(timeout, icsk->icsk_ack.timeout))
3142 timeout = icsk->icsk_ack.timeout;
3143 }
3144 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3145 icsk->icsk_ack.timeout = timeout;
3146 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3147 }
3148
3149 /* This routine sends an ack and also updates the window. */
3150 void tcp_send_ack(struct sock *sk)
3151 {
3152 struct sk_buff *buff;
3153
3154 /* If we have been reset, we may not send again. */
3155 if (sk->sk_state == TCP_CLOSE)
3156 return;
3157
3158 /* We are not putting this on the write queue, so
3159 * tcp_transmit_skb() will set the ownership to this
3160 * sock.
3161 */
3162 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3163 if (buff == NULL) {
3164 inet_csk_schedule_ack(sk);
3165 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3166 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3167 TCP_DELACK_MAX, TCP_RTO_MAX);
3168 return;
3169 }
3170
3171 /* Reserve space for headers and prepare control bits. */
3172 skb_reserve(buff, MAX_TCP_HEADER);
3173 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3174
3175 /* Send it off, this clears delayed acks for us. */
3176 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3177 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3178 }
3179
3180 /* This routine sends a packet with an out of date sequence
3181 * number. It assumes the other end will try to ack it.
3182 *
3183 * Question: what should we make while urgent mode?
3184 * 4.4BSD forces sending single byte of data. We cannot send
3185 * out of window data, because we have SND.NXT==SND.MAX...
3186 *
3187 * Current solution: to send TWO zero-length segments in urgent mode:
3188 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3189 * out-of-date with SND.UNA-1 to probe window.
3190 */
3191 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3192 {
3193 struct tcp_sock *tp = tcp_sk(sk);
3194 struct sk_buff *skb;
3195
3196 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3197 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3198 if (skb == NULL)
3199 return -1;
3200
3201 /* Reserve space for headers and set control bits. */
3202 skb_reserve(skb, MAX_TCP_HEADER);
3203 /* Use a previous sequence. This should cause the other
3204 * end to send an ack. Don't queue or clone SKB, just
3205 * send it.
3206 */
3207 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3208 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3209 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3210 }
3211
3212 void tcp_send_window_probe(struct sock *sk)
3213 {
3214 if (sk->sk_state == TCP_ESTABLISHED) {
3215 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3216 tcp_xmit_probe_skb(sk, 0);
3217 }
3218 }
3219
3220 /* Initiate keepalive or window probe from timer. */
3221 int tcp_write_wakeup(struct sock *sk)
3222 {
3223 struct tcp_sock *tp = tcp_sk(sk);
3224 struct sk_buff *skb;
3225
3226 if (sk->sk_state == TCP_CLOSE)
3227 return -1;
3228
3229 if ((skb = tcp_send_head(sk)) != NULL &&
3230 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3231 int err;
3232 unsigned int mss = tcp_current_mss(sk);
3233 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3234
3235 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3236 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3237
3238 /* We are probing the opening of a window
3239 * but the window size is != 0
3240 * must have been a result SWS avoidance ( sender )
3241 */
3242 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3243 skb->len > mss) {
3244 seg_size = min(seg_size, mss);
3245 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3246 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3247 return -1;
3248 } else if (!tcp_skb_pcount(skb))
3249 tcp_set_skb_tso_segs(sk, skb, mss);
3250
3251 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3252 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3253 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3254 if (!err)
3255 tcp_event_new_data_sent(sk, skb);
3256 return err;
3257 } else {
3258 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3259 tcp_xmit_probe_skb(sk, 1);
3260 return tcp_xmit_probe_skb(sk, 0);
3261 }
3262 }
3263
3264 /* A window probe timeout has occurred. If window is not closed send
3265 * a partial packet else a zero probe.
3266 */
3267 void tcp_send_probe0(struct sock *sk)
3268 {
3269 struct inet_connection_sock *icsk = inet_csk(sk);
3270 struct tcp_sock *tp = tcp_sk(sk);
3271 int err;
3272
3273 err = tcp_write_wakeup(sk);
3274
3275 if (tp->packets_out || !tcp_send_head(sk)) {
3276 /* Cancel probe timer, if it is not required. */
3277 icsk->icsk_probes_out = 0;
3278 icsk->icsk_backoff = 0;
3279 return;
3280 }
3281
3282 if (err <= 0) {
3283 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3284 icsk->icsk_backoff++;
3285 icsk->icsk_probes_out++;
3286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3287 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3288 TCP_RTO_MAX);
3289 } else {
3290 /* If packet was not sent due to local congestion,
3291 * do not backoff and do not remember icsk_probes_out.
3292 * Let local senders to fight for local resources.
3293 *
3294 * Use accumulated backoff yet.
3295 */
3296 if (!icsk->icsk_probes_out)
3297 icsk->icsk_probes_out = 1;
3298 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3299 min(icsk->icsk_rto << icsk->icsk_backoff,
3300 TCP_RESOURCE_PROBE_INTERVAL),
3301 TCP_RTO_MAX);
3302 }
3303 }