]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/udp.c
udp: do fwd memory scheduling on dequeue
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 const struct udp_hslot *hslot,
139 unsigned long *bitmap,
140 struct sock *sk,
141 int (*saddr_comp)(const struct sock *sk1,
142 const struct sock *sk2,
143 bool match_wildcard),
144 unsigned int log)
145 {
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 !uid_eq(uid, sock_i_uid(sk2))) &&
159 saddr_comp(sk, sk2, true)) {
160 if (!bitmap)
161 return 1;
162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 }
164 }
165 return 0;
166 }
167
168 /*
169 * Note: we still hold spinlock of primary hash chain, so no other writer
170 * can insert/delete a socket with local_port == num
171 */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 struct udp_hslot *hslot2,
174 struct sock *sk,
175 int (*saddr_comp)(const struct sock *sk1,
176 const struct sock *sk2,
177 bool match_wildcard))
178 {
179 struct sock *sk2;
180 kuid_t uid = sock_i_uid(sk);
181 int res = 0;
182
183 spin_lock(&hslot2->lock);
184 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 if (net_eq(sock_net(sk2), net) &&
186 sk2 != sk &&
187 (udp_sk(sk2)->udp_port_hash == num) &&
188 (!sk2->sk_reuse || !sk->sk_reuse) &&
189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 rcu_access_pointer(sk->sk_reuseport_cb) ||
193 !uid_eq(uid, sock_i_uid(sk2))) &&
194 saddr_comp(sk, sk2, true)) {
195 res = 1;
196 break;
197 }
198 }
199 spin_unlock(&hslot2->lock);
200 return res;
201 }
202
203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 int (*saddr_same)(const struct sock *sk1,
205 const struct sock *sk2,
206 bool match_wildcard))
207 {
208 struct net *net = sock_net(sk);
209 kuid_t uid = sock_i_uid(sk);
210 struct sock *sk2;
211
212 sk_for_each(sk2, &hslot->head) {
213 if (net_eq(sock_net(sk2), net) &&
214 sk2 != sk &&
215 sk2->sk_family == sk->sk_family &&
216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 (*saddr_same)(sk, sk2, false)) {
221 return reuseport_add_sock(sk, sk2);
222 }
223 }
224
225 /* Initial allocation may have already happened via setsockopt */
226 if (!rcu_access_pointer(sk->sk_reuseport_cb))
227 return reuseport_alloc(sk);
228 return 0;
229 }
230
231 /**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @saddr_comp: AF-dependent comparison of bound local IP addresses
237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238 * with NULL address
239 */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 int (*saddr_comp)(const struct sock *sk1,
242 const struct sock *sk2,
243 bool match_wildcard),
244 unsigned int hash2_nulladdr)
245 {
246 struct udp_hslot *hslot, *hslot2;
247 struct udp_table *udptable = sk->sk_prot->h.udp_table;
248 int error = 1;
249 struct net *net = sock_net(sk);
250
251 if (!snum) {
252 int low, high, remaining;
253 unsigned int rand;
254 unsigned short first, last;
255 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
256
257 inet_get_local_port_range(net, &low, &high);
258 remaining = (high - low) + 1;
259
260 rand = prandom_u32();
261 first = reciprocal_scale(rand, remaining) + low;
262 /*
263 * force rand to be an odd multiple of UDP_HTABLE_SIZE
264 */
265 rand = (rand | 1) * (udptable->mask + 1);
266 last = first + udptable->mask + 1;
267 do {
268 hslot = udp_hashslot(udptable, net, first);
269 bitmap_zero(bitmap, PORTS_PER_CHAIN);
270 spin_lock_bh(&hslot->lock);
271 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
272 saddr_comp, udptable->log);
273
274 snum = first;
275 /*
276 * Iterate on all possible values of snum for this hash.
277 * Using steps of an odd multiple of UDP_HTABLE_SIZE
278 * give us randomization and full range coverage.
279 */
280 do {
281 if (low <= snum && snum <= high &&
282 !test_bit(snum >> udptable->log, bitmap) &&
283 !inet_is_local_reserved_port(net, snum))
284 goto found;
285 snum += rand;
286 } while (snum != first);
287 spin_unlock_bh(&hslot->lock);
288 } while (++first != last);
289 goto fail;
290 } else {
291 hslot = udp_hashslot(udptable, net, snum);
292 spin_lock_bh(&hslot->lock);
293 if (hslot->count > 10) {
294 int exist;
295 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296
297 slot2 &= udptable->mask;
298 hash2_nulladdr &= udptable->mask;
299
300 hslot2 = udp_hashslot2(udptable, slot2);
301 if (hslot->count < hslot2->count)
302 goto scan_primary_hash;
303
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 sk, saddr_comp);
306 if (!exist && (hash2_nulladdr != slot2)) {
307 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
308 exist = udp_lib_lport_inuse2(net, snum, hslot2,
309 sk, saddr_comp);
310 }
311 if (exist)
312 goto fail_unlock;
313 else
314 goto found;
315 }
316 scan_primary_hash:
317 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
318 saddr_comp, 0))
319 goto fail_unlock;
320 }
321 found:
322 inet_sk(sk)->inet_num = snum;
323 udp_sk(sk)->udp_port_hash = snum;
324 udp_sk(sk)->udp_portaddr_hash ^= snum;
325 if (sk_unhashed(sk)) {
326 if (sk->sk_reuseport &&
327 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
328 inet_sk(sk)->inet_num = 0;
329 udp_sk(sk)->udp_port_hash = 0;
330 udp_sk(sk)->udp_portaddr_hash ^= snum;
331 goto fail_unlock;
332 }
333
334 sk_add_node_rcu(sk, &hslot->head);
335 hslot->count++;
336 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
337
338 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
339 spin_lock(&hslot2->lock);
340 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
341 sk->sk_family == AF_INET6)
342 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 else
345 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
346 &hslot2->head);
347 hslot2->count++;
348 spin_unlock(&hslot2->lock);
349 }
350 sock_set_flag(sk, SOCK_RCU_FREE);
351 error = 0;
352 fail_unlock:
353 spin_unlock_bh(&hslot->lock);
354 fail:
355 return error;
356 }
357 EXPORT_SYMBOL(udp_lib_get_port);
358
359 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
360 * match_wildcard == false: addresses must be exactly the same, i.e.
361 * 0.0.0.0 only equals to 0.0.0.0
362 */
363 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
364 bool match_wildcard)
365 {
366 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
367
368 if (!ipv6_only_sock(sk2)) {
369 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
370 return 1;
371 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
372 return match_wildcard;
373 }
374 return 0;
375 }
376
377 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
378 unsigned int port)
379 {
380 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
381 }
382
383 int udp_v4_get_port(struct sock *sk, unsigned short snum)
384 {
385 unsigned int hash2_nulladdr =
386 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
387 unsigned int hash2_partial =
388 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
389
390 /* precompute partial secondary hash */
391 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
392 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
393 }
394
395 static int compute_score(struct sock *sk, struct net *net,
396 __be32 saddr, __be16 sport,
397 __be32 daddr, unsigned short hnum, int dif)
398 {
399 int score;
400 struct inet_sock *inet;
401
402 if (!net_eq(sock_net(sk), net) ||
403 udp_sk(sk)->udp_port_hash != hnum ||
404 ipv6_only_sock(sk))
405 return -1;
406
407 score = (sk->sk_family == PF_INET) ? 2 : 1;
408 inet = inet_sk(sk);
409
410 if (inet->inet_rcv_saddr) {
411 if (inet->inet_rcv_saddr != daddr)
412 return -1;
413 score += 4;
414 }
415
416 if (inet->inet_daddr) {
417 if (inet->inet_daddr != saddr)
418 return -1;
419 score += 4;
420 }
421
422 if (inet->inet_dport) {
423 if (inet->inet_dport != sport)
424 return -1;
425 score += 4;
426 }
427
428 if (sk->sk_bound_dev_if) {
429 if (sk->sk_bound_dev_if != dif)
430 return -1;
431 score += 4;
432 }
433 if (sk->sk_incoming_cpu == raw_smp_processor_id())
434 score++;
435 return score;
436 }
437
438 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
439 const __u16 lport, const __be32 faddr,
440 const __be16 fport)
441 {
442 static u32 udp_ehash_secret __read_mostly;
443
444 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
445
446 return __inet_ehashfn(laddr, lport, faddr, fport,
447 udp_ehash_secret + net_hash_mix(net));
448 }
449
450 /* called with rcu_read_lock() */
451 static struct sock *udp4_lib_lookup2(struct net *net,
452 __be32 saddr, __be16 sport,
453 __be32 daddr, unsigned int hnum, int dif,
454 struct udp_hslot *hslot2,
455 struct sk_buff *skb)
456 {
457 struct sock *sk, *result;
458 int score, badness, matches = 0, reuseport = 0;
459 u32 hash = 0;
460
461 result = NULL;
462 badness = 0;
463 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
464 score = compute_score(sk, net, saddr, sport,
465 daddr, hnum, dif);
466 if (score > badness) {
467 reuseport = sk->sk_reuseport;
468 if (reuseport) {
469 hash = udp_ehashfn(net, daddr, hnum,
470 saddr, sport);
471 result = reuseport_select_sock(sk, hash, skb,
472 sizeof(struct udphdr));
473 if (result)
474 return result;
475 matches = 1;
476 }
477 badness = score;
478 result = sk;
479 } else if (score == badness && reuseport) {
480 matches++;
481 if (reciprocal_scale(hash, matches) == 0)
482 result = sk;
483 hash = next_pseudo_random32(hash);
484 }
485 }
486 return result;
487 }
488
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 struct sock *sk, *result;
497 unsigned short hnum = ntohs(dport);
498 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 int score, badness, matches = 0, reuseport = 0;
501 u32 hash = 0;
502
503 if (hslot->count > 10) {
504 hash2 = udp4_portaddr_hash(net, daddr, hnum);
505 slot2 = hash2 & udptable->mask;
506 hslot2 = &udptable->hash2[slot2];
507 if (hslot->count < hslot2->count)
508 goto begin;
509
510 result = udp4_lib_lookup2(net, saddr, sport,
511 daddr, hnum, dif,
512 hslot2, skb);
513 if (!result) {
514 unsigned int old_slot2 = slot2;
515 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 slot2 = hash2 & udptable->mask;
517 /* avoid searching the same slot again. */
518 if (unlikely(slot2 == old_slot2))
519 return result;
520
521 hslot2 = &udptable->hash2[slot2];
522 if (hslot->count < hslot2->count)
523 goto begin;
524
525 result = udp4_lib_lookup2(net, saddr, sport,
526 daddr, hnum, dif,
527 hslot2, skb);
528 }
529 return result;
530 }
531 begin:
532 result = NULL;
533 badness = 0;
534 sk_for_each_rcu(sk, &hslot->head) {
535 score = compute_score(sk, net, saddr, sport,
536 daddr, hnum, dif);
537 if (score > badness) {
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 result = reuseport_select_sock(sk, hash, skb,
543 sizeof(struct udphdr));
544 if (result)
545 return result;
546 matches = 1;
547 }
548 result = sk;
549 badness = score;
550 } else if (score == badness && reuseport) {
551 matches++;
552 if (reciprocal_scale(hash, matches) == 0)
553 result = sk;
554 hash = next_pseudo_random32(hash);
555 }
556 }
557 return result;
558 }
559 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
560
561 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
562 __be16 sport, __be16 dport,
563 struct udp_table *udptable)
564 {
565 const struct iphdr *iph = ip_hdr(skb);
566
567 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
568 iph->daddr, dport, inet_iif(skb),
569 udptable, skb);
570 }
571
572 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
573 __be16 sport, __be16 dport)
574 {
575 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
578
579 /* Must be called under rcu_read_lock().
580 * Does increment socket refcount.
581 */
582 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
583 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 __be32 daddr, __be16 dport, int dif)
586 {
587 struct sock *sk;
588
589 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
590 dif, &udp_table, NULL);
591 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
592 sk = NULL;
593 return sk;
594 }
595 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
596 #endif
597
598 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
599 __be16 loc_port, __be32 loc_addr,
600 __be16 rmt_port, __be32 rmt_addr,
601 int dif, unsigned short hnum)
602 {
603 struct inet_sock *inet = inet_sk(sk);
604
605 if (!net_eq(sock_net(sk), net) ||
606 udp_sk(sk)->udp_port_hash != hnum ||
607 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
608 (inet->inet_dport != rmt_port && inet->inet_dport) ||
609 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
610 ipv6_only_sock(sk) ||
611 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
612 return false;
613 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
614 return false;
615 return true;
616 }
617
618 /*
619 * This routine is called by the ICMP module when it gets some
620 * sort of error condition. If err < 0 then the socket should
621 * be closed and the error returned to the user. If err > 0
622 * it's just the icmp type << 8 | icmp code.
623 * Header points to the ip header of the error packet. We move
624 * on past this. Then (as it used to claim before adjustment)
625 * header points to the first 8 bytes of the udp header. We need
626 * to find the appropriate port.
627 */
628
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 struct inet_sock *inet;
632 const struct iphdr *iph = (const struct iphdr *)skb->data;
633 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 const int type = icmp_hdr(skb)->type;
635 const int code = icmp_hdr(skb)->code;
636 struct sock *sk;
637 int harderr;
638 int err;
639 struct net *net = dev_net(skb->dev);
640
641 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 iph->saddr, uh->source, skb->dev->ifindex, udptable,
643 NULL);
644 if (!sk) {
645 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
646 return; /* No socket for error */
647 }
648
649 err = 0;
650 harderr = 0;
651 inet = inet_sk(sk);
652
653 switch (type) {
654 default:
655 case ICMP_TIME_EXCEEDED:
656 err = EHOSTUNREACH;
657 break;
658 case ICMP_SOURCE_QUENCH:
659 goto out;
660 case ICMP_PARAMETERPROB:
661 err = EPROTO;
662 harderr = 1;
663 break;
664 case ICMP_DEST_UNREACH:
665 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
666 ipv4_sk_update_pmtu(skb, sk, info);
667 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
668 err = EMSGSIZE;
669 harderr = 1;
670 break;
671 }
672 goto out;
673 }
674 err = EHOSTUNREACH;
675 if (code <= NR_ICMP_UNREACH) {
676 harderr = icmp_err_convert[code].fatal;
677 err = icmp_err_convert[code].errno;
678 }
679 break;
680 case ICMP_REDIRECT:
681 ipv4_sk_redirect(skb, sk);
682 goto out;
683 }
684
685 /*
686 * RFC1122: OK. Passes ICMP errors back to application, as per
687 * 4.1.3.3.
688 */
689 if (!inet->recverr) {
690 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
691 goto out;
692 } else
693 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
694
695 sk->sk_err = err;
696 sk->sk_error_report(sk);
697 out:
698 return;
699 }
700
701 void udp_err(struct sk_buff *skb, u32 info)
702 {
703 __udp4_lib_err(skb, info, &udp_table);
704 }
705
706 /*
707 * Throw away all pending data and cancel the corking. Socket is locked.
708 */
709 void udp_flush_pending_frames(struct sock *sk)
710 {
711 struct udp_sock *up = udp_sk(sk);
712
713 if (up->pending) {
714 up->len = 0;
715 up->pending = 0;
716 ip_flush_pending_frames(sk);
717 }
718 }
719 EXPORT_SYMBOL(udp_flush_pending_frames);
720
721 /**
722 * udp4_hwcsum - handle outgoing HW checksumming
723 * @skb: sk_buff containing the filled-in UDP header
724 * (checksum field must be zeroed out)
725 * @src: source IP address
726 * @dst: destination IP address
727 */
728 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
729 {
730 struct udphdr *uh = udp_hdr(skb);
731 int offset = skb_transport_offset(skb);
732 int len = skb->len - offset;
733 int hlen = len;
734 __wsum csum = 0;
735
736 if (!skb_has_frag_list(skb)) {
737 /*
738 * Only one fragment on the socket.
739 */
740 skb->csum_start = skb_transport_header(skb) - skb->head;
741 skb->csum_offset = offsetof(struct udphdr, check);
742 uh->check = ~csum_tcpudp_magic(src, dst, len,
743 IPPROTO_UDP, 0);
744 } else {
745 struct sk_buff *frags;
746
747 /*
748 * HW-checksum won't work as there are two or more
749 * fragments on the socket so that all csums of sk_buffs
750 * should be together
751 */
752 skb_walk_frags(skb, frags) {
753 csum = csum_add(csum, frags->csum);
754 hlen -= frags->len;
755 }
756
757 csum = skb_checksum(skb, offset, hlen, csum);
758 skb->ip_summed = CHECKSUM_NONE;
759
760 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
761 if (uh->check == 0)
762 uh->check = CSUM_MANGLED_0;
763 }
764 }
765 EXPORT_SYMBOL_GPL(udp4_hwcsum);
766
767 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
768 * for the simple case like when setting the checksum for a UDP tunnel.
769 */
770 void udp_set_csum(bool nocheck, struct sk_buff *skb,
771 __be32 saddr, __be32 daddr, int len)
772 {
773 struct udphdr *uh = udp_hdr(skb);
774
775 if (nocheck) {
776 uh->check = 0;
777 } else if (skb_is_gso(skb)) {
778 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
779 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
780 uh->check = 0;
781 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
782 if (uh->check == 0)
783 uh->check = CSUM_MANGLED_0;
784 } else {
785 skb->ip_summed = CHECKSUM_PARTIAL;
786 skb->csum_start = skb_transport_header(skb) - skb->head;
787 skb->csum_offset = offsetof(struct udphdr, check);
788 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
789 }
790 }
791 EXPORT_SYMBOL(udp_set_csum);
792
793 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
794 {
795 struct sock *sk = skb->sk;
796 struct inet_sock *inet = inet_sk(sk);
797 struct udphdr *uh;
798 int err = 0;
799 int is_udplite = IS_UDPLITE(sk);
800 int offset = skb_transport_offset(skb);
801 int len = skb->len - offset;
802 __wsum csum = 0;
803
804 /*
805 * Create a UDP header
806 */
807 uh = udp_hdr(skb);
808 uh->source = inet->inet_sport;
809 uh->dest = fl4->fl4_dport;
810 uh->len = htons(len);
811 uh->check = 0;
812
813 if (is_udplite) /* UDP-Lite */
814 csum = udplite_csum(skb);
815
816 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
817
818 skb->ip_summed = CHECKSUM_NONE;
819 goto send;
820
821 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
822
823 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
824 goto send;
825
826 } else
827 csum = udp_csum(skb);
828
829 /* add protocol-dependent pseudo-header */
830 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
831 sk->sk_protocol, csum);
832 if (uh->check == 0)
833 uh->check = CSUM_MANGLED_0;
834
835 send:
836 err = ip_send_skb(sock_net(sk), skb);
837 if (err) {
838 if (err == -ENOBUFS && !inet->recverr) {
839 UDP_INC_STATS(sock_net(sk),
840 UDP_MIB_SNDBUFERRORS, is_udplite);
841 err = 0;
842 }
843 } else
844 UDP_INC_STATS(sock_net(sk),
845 UDP_MIB_OUTDATAGRAMS, is_udplite);
846 return err;
847 }
848
849 /*
850 * Push out all pending data as one UDP datagram. Socket is locked.
851 */
852 int udp_push_pending_frames(struct sock *sk)
853 {
854 struct udp_sock *up = udp_sk(sk);
855 struct inet_sock *inet = inet_sk(sk);
856 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
857 struct sk_buff *skb;
858 int err = 0;
859
860 skb = ip_finish_skb(sk, fl4);
861 if (!skb)
862 goto out;
863
864 err = udp_send_skb(skb, fl4);
865
866 out:
867 up->len = 0;
868 up->pending = 0;
869 return err;
870 }
871 EXPORT_SYMBOL(udp_push_pending_frames);
872
873 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
874 {
875 struct inet_sock *inet = inet_sk(sk);
876 struct udp_sock *up = udp_sk(sk);
877 struct flowi4 fl4_stack;
878 struct flowi4 *fl4;
879 int ulen = len;
880 struct ipcm_cookie ipc;
881 struct rtable *rt = NULL;
882 int free = 0;
883 int connected = 0;
884 __be32 daddr, faddr, saddr;
885 __be16 dport;
886 u8 tos;
887 int err, is_udplite = IS_UDPLITE(sk);
888 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
889 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
890 struct sk_buff *skb;
891 struct ip_options_data opt_copy;
892
893 if (len > 0xFFFF)
894 return -EMSGSIZE;
895
896 /*
897 * Check the flags.
898 */
899
900 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
901 return -EOPNOTSUPP;
902
903 ipc.opt = NULL;
904 ipc.tx_flags = 0;
905 ipc.ttl = 0;
906 ipc.tos = -1;
907
908 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
909
910 fl4 = &inet->cork.fl.u.ip4;
911 if (up->pending) {
912 /*
913 * There are pending frames.
914 * The socket lock must be held while it's corked.
915 */
916 lock_sock(sk);
917 if (likely(up->pending)) {
918 if (unlikely(up->pending != AF_INET)) {
919 release_sock(sk);
920 return -EINVAL;
921 }
922 goto do_append_data;
923 }
924 release_sock(sk);
925 }
926 ulen += sizeof(struct udphdr);
927
928 /*
929 * Get and verify the address.
930 */
931 if (msg->msg_name) {
932 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
933 if (msg->msg_namelen < sizeof(*usin))
934 return -EINVAL;
935 if (usin->sin_family != AF_INET) {
936 if (usin->sin_family != AF_UNSPEC)
937 return -EAFNOSUPPORT;
938 }
939
940 daddr = usin->sin_addr.s_addr;
941 dport = usin->sin_port;
942 if (dport == 0)
943 return -EINVAL;
944 } else {
945 if (sk->sk_state != TCP_ESTABLISHED)
946 return -EDESTADDRREQ;
947 daddr = inet->inet_daddr;
948 dport = inet->inet_dport;
949 /* Open fast path for connected socket.
950 Route will not be used, if at least one option is set.
951 */
952 connected = 1;
953 }
954
955 ipc.sockc.tsflags = sk->sk_tsflags;
956 ipc.addr = inet->inet_saddr;
957 ipc.oif = sk->sk_bound_dev_if;
958
959 if (msg->msg_controllen) {
960 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
961 if (unlikely(err)) {
962 kfree(ipc.opt);
963 return err;
964 }
965 if (ipc.opt)
966 free = 1;
967 connected = 0;
968 }
969 if (!ipc.opt) {
970 struct ip_options_rcu *inet_opt;
971
972 rcu_read_lock();
973 inet_opt = rcu_dereference(inet->inet_opt);
974 if (inet_opt) {
975 memcpy(&opt_copy, inet_opt,
976 sizeof(*inet_opt) + inet_opt->opt.optlen);
977 ipc.opt = &opt_copy.opt;
978 }
979 rcu_read_unlock();
980 }
981
982 saddr = ipc.addr;
983 ipc.addr = faddr = daddr;
984
985 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
986
987 if (ipc.opt && ipc.opt->opt.srr) {
988 if (!daddr)
989 return -EINVAL;
990 faddr = ipc.opt->opt.faddr;
991 connected = 0;
992 }
993 tos = get_rttos(&ipc, inet);
994 if (sock_flag(sk, SOCK_LOCALROUTE) ||
995 (msg->msg_flags & MSG_DONTROUTE) ||
996 (ipc.opt && ipc.opt->opt.is_strictroute)) {
997 tos |= RTO_ONLINK;
998 connected = 0;
999 }
1000
1001 if (ipv4_is_multicast(daddr)) {
1002 if (!ipc.oif)
1003 ipc.oif = inet->mc_index;
1004 if (!saddr)
1005 saddr = inet->mc_addr;
1006 connected = 0;
1007 } else if (!ipc.oif)
1008 ipc.oif = inet->uc_index;
1009
1010 if (connected)
1011 rt = (struct rtable *)sk_dst_check(sk, 0);
1012
1013 if (!rt) {
1014 struct net *net = sock_net(sk);
1015 __u8 flow_flags = inet_sk_flowi_flags(sk);
1016
1017 fl4 = &fl4_stack;
1018
1019 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1020 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1021 flow_flags,
1022 faddr, saddr, dport, inet->inet_sport,
1023 sk->sk_uid);
1024
1025 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1026 rt = ip_route_output_flow(net, fl4, sk);
1027 if (IS_ERR(rt)) {
1028 err = PTR_ERR(rt);
1029 rt = NULL;
1030 if (err == -ENETUNREACH)
1031 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1032 goto out;
1033 }
1034
1035 err = -EACCES;
1036 if ((rt->rt_flags & RTCF_BROADCAST) &&
1037 !sock_flag(sk, SOCK_BROADCAST))
1038 goto out;
1039 if (connected)
1040 sk_dst_set(sk, dst_clone(&rt->dst));
1041 }
1042
1043 if (msg->msg_flags&MSG_CONFIRM)
1044 goto do_confirm;
1045 back_from_confirm:
1046
1047 saddr = fl4->saddr;
1048 if (!ipc.addr)
1049 daddr = ipc.addr = fl4->daddr;
1050
1051 /* Lockless fast path for the non-corking case. */
1052 if (!corkreq) {
1053 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1054 sizeof(struct udphdr), &ipc, &rt,
1055 msg->msg_flags);
1056 err = PTR_ERR(skb);
1057 if (!IS_ERR_OR_NULL(skb))
1058 err = udp_send_skb(skb, fl4);
1059 goto out;
1060 }
1061
1062 lock_sock(sk);
1063 if (unlikely(up->pending)) {
1064 /* The socket is already corked while preparing it. */
1065 /* ... which is an evident application bug. --ANK */
1066 release_sock(sk);
1067
1068 net_dbg_ratelimited("cork app bug 2\n");
1069 err = -EINVAL;
1070 goto out;
1071 }
1072 /*
1073 * Now cork the socket to pend data.
1074 */
1075 fl4 = &inet->cork.fl.u.ip4;
1076 fl4->daddr = daddr;
1077 fl4->saddr = saddr;
1078 fl4->fl4_dport = dport;
1079 fl4->fl4_sport = inet->inet_sport;
1080 up->pending = AF_INET;
1081
1082 do_append_data:
1083 up->len += ulen;
1084 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1085 sizeof(struct udphdr), &ipc, &rt,
1086 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1087 if (err)
1088 udp_flush_pending_frames(sk);
1089 else if (!corkreq)
1090 err = udp_push_pending_frames(sk);
1091 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1092 up->pending = 0;
1093 release_sock(sk);
1094
1095 out:
1096 ip_rt_put(rt);
1097 if (free)
1098 kfree(ipc.opt);
1099 if (!err)
1100 return len;
1101 /*
1102 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1103 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1104 * we don't have a good statistic (IpOutDiscards but it can be too many
1105 * things). We could add another new stat but at least for now that
1106 * seems like overkill.
1107 */
1108 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1109 UDP_INC_STATS(sock_net(sk),
1110 UDP_MIB_SNDBUFERRORS, is_udplite);
1111 }
1112 return err;
1113
1114 do_confirm:
1115 dst_confirm(&rt->dst);
1116 if (!(msg->msg_flags&MSG_PROBE) || len)
1117 goto back_from_confirm;
1118 err = 0;
1119 goto out;
1120 }
1121 EXPORT_SYMBOL(udp_sendmsg);
1122
1123 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1124 size_t size, int flags)
1125 {
1126 struct inet_sock *inet = inet_sk(sk);
1127 struct udp_sock *up = udp_sk(sk);
1128 int ret;
1129
1130 if (flags & MSG_SENDPAGE_NOTLAST)
1131 flags |= MSG_MORE;
1132
1133 if (!up->pending) {
1134 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1135
1136 /* Call udp_sendmsg to specify destination address which
1137 * sendpage interface can't pass.
1138 * This will succeed only when the socket is connected.
1139 */
1140 ret = udp_sendmsg(sk, &msg, 0);
1141 if (ret < 0)
1142 return ret;
1143 }
1144
1145 lock_sock(sk);
1146
1147 if (unlikely(!up->pending)) {
1148 release_sock(sk);
1149
1150 net_dbg_ratelimited("udp cork app bug 3\n");
1151 return -EINVAL;
1152 }
1153
1154 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1155 page, offset, size, flags);
1156 if (ret == -EOPNOTSUPP) {
1157 release_sock(sk);
1158 return sock_no_sendpage(sk->sk_socket, page, offset,
1159 size, flags);
1160 }
1161 if (ret < 0) {
1162 udp_flush_pending_frames(sk);
1163 goto out;
1164 }
1165
1166 up->len += size;
1167 if (!(up->corkflag || (flags&MSG_MORE)))
1168 ret = udp_push_pending_frames(sk);
1169 if (!ret)
1170 ret = size;
1171 out:
1172 release_sock(sk);
1173 return ret;
1174 }
1175
1176 /* fully reclaim rmem/fwd memory allocated for skb */
1177 static void udp_rmem_release(struct sock *sk, int size, int partial)
1178 {
1179 int amt;
1180
1181 atomic_sub(size, &sk->sk_rmem_alloc);
1182 sk->sk_forward_alloc += size;
1183 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1184 sk->sk_forward_alloc -= amt;
1185
1186 if (amt)
1187 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1188 }
1189
1190 /* Note: called with sk_receive_queue.lock held */
1191 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1192 {
1193 udp_rmem_release(sk, skb->truesize, 1);
1194 }
1195 EXPORT_SYMBOL(udp_skb_destructor);
1196
1197 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1198 {
1199 struct sk_buff_head *list = &sk->sk_receive_queue;
1200 int rmem, delta, amt, err = -ENOMEM;
1201 int size = skb->truesize;
1202
1203 /* try to avoid the costly atomic add/sub pair when the receive
1204 * queue is full; always allow at least a packet
1205 */
1206 rmem = atomic_read(&sk->sk_rmem_alloc);
1207 if (rmem && (rmem + size > sk->sk_rcvbuf))
1208 goto drop;
1209
1210 /* we drop only if the receive buf is full and the receive
1211 * queue contains some other skb
1212 */
1213 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1214 if ((rmem > sk->sk_rcvbuf) && (rmem > size))
1215 goto uncharge_drop;
1216
1217 spin_lock(&list->lock);
1218 if (size >= sk->sk_forward_alloc) {
1219 amt = sk_mem_pages(size);
1220 delta = amt << SK_MEM_QUANTUM_SHIFT;
1221 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1222 err = -ENOBUFS;
1223 spin_unlock(&list->lock);
1224 goto uncharge_drop;
1225 }
1226
1227 sk->sk_forward_alloc += delta;
1228 }
1229
1230 sk->sk_forward_alloc -= size;
1231
1232 /* no need to setup a destructor, we will explicitly release the
1233 * forward allocated memory on dequeue
1234 */
1235 skb->dev = NULL;
1236 sock_skb_set_dropcount(sk, skb);
1237
1238 __skb_queue_tail(list, skb);
1239 spin_unlock(&list->lock);
1240
1241 if (!sock_flag(sk, SOCK_DEAD))
1242 sk->sk_data_ready(sk);
1243
1244 return 0;
1245
1246 uncharge_drop:
1247 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1248
1249 drop:
1250 atomic_inc(&sk->sk_drops);
1251 return err;
1252 }
1253 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1254
1255 static void udp_destruct_sock(struct sock *sk)
1256 {
1257 /* reclaim completely the forward allocated memory */
1258 unsigned int total = 0;
1259 struct sk_buff *skb;
1260
1261 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1262 total += skb->truesize;
1263 kfree_skb(skb);
1264 }
1265 udp_rmem_release(sk, total, 0);
1266
1267 inet_sock_destruct(sk);
1268 }
1269
1270 int udp_init_sock(struct sock *sk)
1271 {
1272 sk->sk_destruct = udp_destruct_sock;
1273 return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(udp_init_sock);
1276
1277 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1278 {
1279 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1280 bool slow = lock_sock_fast(sk);
1281
1282 sk_peek_offset_bwd(sk, len);
1283 unlock_sock_fast(sk, slow);
1284 }
1285 consume_skb(skb);
1286 }
1287 EXPORT_SYMBOL_GPL(skb_consume_udp);
1288
1289 /**
1290 * first_packet_length - return length of first packet in receive queue
1291 * @sk: socket
1292 *
1293 * Drops all bad checksum frames, until a valid one is found.
1294 * Returns the length of found skb, or -1 if none is found.
1295 */
1296 static int first_packet_length(struct sock *sk)
1297 {
1298 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1299 struct sk_buff *skb;
1300 int total = 0;
1301 int res;
1302
1303 spin_lock_bh(&rcvq->lock);
1304 while ((skb = skb_peek(rcvq)) != NULL &&
1305 udp_lib_checksum_complete(skb)) {
1306 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1307 IS_UDPLITE(sk));
1308 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1309 IS_UDPLITE(sk));
1310 atomic_inc(&sk->sk_drops);
1311 __skb_unlink(skb, rcvq);
1312 total += skb->truesize;
1313 kfree_skb(skb);
1314 }
1315 res = skb ? skb->len : -1;
1316 if (total)
1317 udp_rmem_release(sk, total, 1);
1318 spin_unlock_bh(&rcvq->lock);
1319 return res;
1320 }
1321
1322 /*
1323 * IOCTL requests applicable to the UDP protocol
1324 */
1325
1326 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1327 {
1328 switch (cmd) {
1329 case SIOCOUTQ:
1330 {
1331 int amount = sk_wmem_alloc_get(sk);
1332
1333 return put_user(amount, (int __user *)arg);
1334 }
1335
1336 case SIOCINQ:
1337 {
1338 int amount = max_t(int, 0, first_packet_length(sk));
1339
1340 return put_user(amount, (int __user *)arg);
1341 }
1342
1343 default:
1344 return -ENOIOCTLCMD;
1345 }
1346
1347 return 0;
1348 }
1349 EXPORT_SYMBOL(udp_ioctl);
1350
1351 /*
1352 * This should be easy, if there is something there we
1353 * return it, otherwise we block.
1354 */
1355
1356 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1357 int flags, int *addr_len)
1358 {
1359 struct inet_sock *inet = inet_sk(sk);
1360 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1361 struct sk_buff *skb;
1362 unsigned int ulen, copied;
1363 int peeked, peeking, off;
1364 int err;
1365 int is_udplite = IS_UDPLITE(sk);
1366 bool checksum_valid = false;
1367
1368 if (flags & MSG_ERRQUEUE)
1369 return ip_recv_error(sk, msg, len, addr_len);
1370
1371 try_again:
1372 peeking = off = sk_peek_offset(sk, flags);
1373 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1374 if (!skb)
1375 return err;
1376
1377 ulen = skb->len;
1378 copied = len;
1379 if (copied > ulen - off)
1380 copied = ulen - off;
1381 else if (copied < ulen)
1382 msg->msg_flags |= MSG_TRUNC;
1383
1384 /*
1385 * If checksum is needed at all, try to do it while copying the
1386 * data. If the data is truncated, or if we only want a partial
1387 * coverage checksum (UDP-Lite), do it before the copy.
1388 */
1389
1390 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1391 checksum_valid = !udp_lib_checksum_complete(skb);
1392 if (!checksum_valid)
1393 goto csum_copy_err;
1394 }
1395
1396 if (checksum_valid || skb_csum_unnecessary(skb))
1397 err = skb_copy_datagram_msg(skb, off, msg, copied);
1398 else {
1399 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1400
1401 if (err == -EINVAL)
1402 goto csum_copy_err;
1403 }
1404
1405 if (unlikely(err)) {
1406 if (!peeked) {
1407 atomic_inc(&sk->sk_drops);
1408 UDP_INC_STATS(sock_net(sk),
1409 UDP_MIB_INERRORS, is_udplite);
1410 }
1411 kfree_skb(skb);
1412 return err;
1413 }
1414
1415 if (!peeked)
1416 UDP_INC_STATS(sock_net(sk),
1417 UDP_MIB_INDATAGRAMS, is_udplite);
1418
1419 sock_recv_ts_and_drops(msg, sk, skb);
1420
1421 /* Copy the address. */
1422 if (sin) {
1423 sin->sin_family = AF_INET;
1424 sin->sin_port = udp_hdr(skb)->source;
1425 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1426 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1427 *addr_len = sizeof(*sin);
1428 }
1429 if (inet->cmsg_flags)
1430 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1431
1432 err = copied;
1433 if (flags & MSG_TRUNC)
1434 err = ulen;
1435
1436 skb_consume_udp(sk, skb, peeking ? -err : err);
1437 return err;
1438
1439 csum_copy_err:
1440 if (!__sk_queue_drop_skb(sk, skb, flags)) {
1441 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1442 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1443 }
1444 kfree_skb(skb);
1445
1446 /* starting over for a new packet, but check if we need to yield */
1447 cond_resched();
1448 msg->msg_flags &= ~MSG_TRUNC;
1449 goto try_again;
1450 }
1451
1452 int __udp_disconnect(struct sock *sk, int flags)
1453 {
1454 struct inet_sock *inet = inet_sk(sk);
1455 /*
1456 * 1003.1g - break association.
1457 */
1458
1459 sk->sk_state = TCP_CLOSE;
1460 inet->inet_daddr = 0;
1461 inet->inet_dport = 0;
1462 sock_rps_reset_rxhash(sk);
1463 sk->sk_bound_dev_if = 0;
1464 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1465 inet_reset_saddr(sk);
1466
1467 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1468 sk->sk_prot->unhash(sk);
1469 inet->inet_sport = 0;
1470 }
1471 sk_dst_reset(sk);
1472 return 0;
1473 }
1474 EXPORT_SYMBOL(__udp_disconnect);
1475
1476 int udp_disconnect(struct sock *sk, int flags)
1477 {
1478 lock_sock(sk);
1479 __udp_disconnect(sk, flags);
1480 release_sock(sk);
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(udp_disconnect);
1484
1485 void udp_lib_unhash(struct sock *sk)
1486 {
1487 if (sk_hashed(sk)) {
1488 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1489 struct udp_hslot *hslot, *hslot2;
1490
1491 hslot = udp_hashslot(udptable, sock_net(sk),
1492 udp_sk(sk)->udp_port_hash);
1493 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1494
1495 spin_lock_bh(&hslot->lock);
1496 if (rcu_access_pointer(sk->sk_reuseport_cb))
1497 reuseport_detach_sock(sk);
1498 if (sk_del_node_init_rcu(sk)) {
1499 hslot->count--;
1500 inet_sk(sk)->inet_num = 0;
1501 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1502
1503 spin_lock(&hslot2->lock);
1504 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1505 hslot2->count--;
1506 spin_unlock(&hslot2->lock);
1507 }
1508 spin_unlock_bh(&hslot->lock);
1509 }
1510 }
1511 EXPORT_SYMBOL(udp_lib_unhash);
1512
1513 /*
1514 * inet_rcv_saddr was changed, we must rehash secondary hash
1515 */
1516 void udp_lib_rehash(struct sock *sk, u16 newhash)
1517 {
1518 if (sk_hashed(sk)) {
1519 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1520 struct udp_hslot *hslot, *hslot2, *nhslot2;
1521
1522 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1523 nhslot2 = udp_hashslot2(udptable, newhash);
1524 udp_sk(sk)->udp_portaddr_hash = newhash;
1525
1526 if (hslot2 != nhslot2 ||
1527 rcu_access_pointer(sk->sk_reuseport_cb)) {
1528 hslot = udp_hashslot(udptable, sock_net(sk),
1529 udp_sk(sk)->udp_port_hash);
1530 /* we must lock primary chain too */
1531 spin_lock_bh(&hslot->lock);
1532 if (rcu_access_pointer(sk->sk_reuseport_cb))
1533 reuseport_detach_sock(sk);
1534
1535 if (hslot2 != nhslot2) {
1536 spin_lock(&hslot2->lock);
1537 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1538 hslot2->count--;
1539 spin_unlock(&hslot2->lock);
1540
1541 spin_lock(&nhslot2->lock);
1542 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1543 &nhslot2->head);
1544 nhslot2->count++;
1545 spin_unlock(&nhslot2->lock);
1546 }
1547
1548 spin_unlock_bh(&hslot->lock);
1549 }
1550 }
1551 }
1552 EXPORT_SYMBOL(udp_lib_rehash);
1553
1554 static void udp_v4_rehash(struct sock *sk)
1555 {
1556 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1557 inet_sk(sk)->inet_rcv_saddr,
1558 inet_sk(sk)->inet_num);
1559 udp_lib_rehash(sk, new_hash);
1560 }
1561
1562 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1563 {
1564 int rc;
1565
1566 if (inet_sk(sk)->inet_daddr) {
1567 sock_rps_save_rxhash(sk, skb);
1568 sk_mark_napi_id(sk, skb);
1569 sk_incoming_cpu_update(sk);
1570 }
1571
1572 rc = __udp_enqueue_schedule_skb(sk, skb);
1573 if (rc < 0) {
1574 int is_udplite = IS_UDPLITE(sk);
1575
1576 /* Note that an ENOMEM error is charged twice */
1577 if (rc == -ENOMEM)
1578 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1579 is_udplite);
1580 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1581 kfree_skb(skb);
1582 trace_udp_fail_queue_rcv_skb(rc, sk);
1583 return -1;
1584 }
1585
1586 return 0;
1587 }
1588
1589 static struct static_key udp_encap_needed __read_mostly;
1590 void udp_encap_enable(void)
1591 {
1592 if (!static_key_enabled(&udp_encap_needed))
1593 static_key_slow_inc(&udp_encap_needed);
1594 }
1595 EXPORT_SYMBOL(udp_encap_enable);
1596
1597 /* returns:
1598 * -1: error
1599 * 0: success
1600 * >0: "udp encap" protocol resubmission
1601 *
1602 * Note that in the success and error cases, the skb is assumed to
1603 * have either been requeued or freed.
1604 */
1605 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1606 {
1607 struct udp_sock *up = udp_sk(sk);
1608 int is_udplite = IS_UDPLITE(sk);
1609
1610 /*
1611 * Charge it to the socket, dropping if the queue is full.
1612 */
1613 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1614 goto drop;
1615 nf_reset(skb);
1616
1617 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1618 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1619
1620 /*
1621 * This is an encapsulation socket so pass the skb to
1622 * the socket's udp_encap_rcv() hook. Otherwise, just
1623 * fall through and pass this up the UDP socket.
1624 * up->encap_rcv() returns the following value:
1625 * =0 if skb was successfully passed to the encap
1626 * handler or was discarded by it.
1627 * >0 if skb should be passed on to UDP.
1628 * <0 if skb should be resubmitted as proto -N
1629 */
1630
1631 /* if we're overly short, let UDP handle it */
1632 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1633 if (encap_rcv) {
1634 int ret;
1635
1636 /* Verify checksum before giving to encap */
1637 if (udp_lib_checksum_complete(skb))
1638 goto csum_error;
1639
1640 ret = encap_rcv(sk, skb);
1641 if (ret <= 0) {
1642 __UDP_INC_STATS(sock_net(sk),
1643 UDP_MIB_INDATAGRAMS,
1644 is_udplite);
1645 return -ret;
1646 }
1647 }
1648
1649 /* FALLTHROUGH -- it's a UDP Packet */
1650 }
1651
1652 /*
1653 * UDP-Lite specific tests, ignored on UDP sockets
1654 */
1655 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1656
1657 /*
1658 * MIB statistics other than incrementing the error count are
1659 * disabled for the following two types of errors: these depend
1660 * on the application settings, not on the functioning of the
1661 * protocol stack as such.
1662 *
1663 * RFC 3828 here recommends (sec 3.3): "There should also be a
1664 * way ... to ... at least let the receiving application block
1665 * delivery of packets with coverage values less than a value
1666 * provided by the application."
1667 */
1668 if (up->pcrlen == 0) { /* full coverage was set */
1669 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1670 UDP_SKB_CB(skb)->cscov, skb->len);
1671 goto drop;
1672 }
1673 /* The next case involves violating the min. coverage requested
1674 * by the receiver. This is subtle: if receiver wants x and x is
1675 * greater than the buffersize/MTU then receiver will complain
1676 * that it wants x while sender emits packets of smaller size y.
1677 * Therefore the above ...()->partial_cov statement is essential.
1678 */
1679 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1680 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1681 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1682 goto drop;
1683 }
1684 }
1685
1686 if (rcu_access_pointer(sk->sk_filter) &&
1687 udp_lib_checksum_complete(skb))
1688 goto csum_error;
1689
1690 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1691 goto drop;
1692
1693 udp_csum_pull_header(skb);
1694
1695 ipv4_pktinfo_prepare(sk, skb);
1696 return __udp_queue_rcv_skb(sk, skb);
1697
1698 csum_error:
1699 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1700 drop:
1701 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1702 atomic_inc(&sk->sk_drops);
1703 kfree_skb(skb);
1704 return -1;
1705 }
1706
1707 /* For TCP sockets, sk_rx_dst is protected by socket lock
1708 * For UDP, we use xchg() to guard against concurrent changes.
1709 */
1710 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1711 {
1712 struct dst_entry *old;
1713
1714 dst_hold(dst);
1715 old = xchg(&sk->sk_rx_dst, dst);
1716 dst_release(old);
1717 }
1718
1719 /*
1720 * Multicasts and broadcasts go to each listener.
1721 *
1722 * Note: called only from the BH handler context.
1723 */
1724 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1725 struct udphdr *uh,
1726 __be32 saddr, __be32 daddr,
1727 struct udp_table *udptable,
1728 int proto)
1729 {
1730 struct sock *sk, *first = NULL;
1731 unsigned short hnum = ntohs(uh->dest);
1732 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1733 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1734 unsigned int offset = offsetof(typeof(*sk), sk_node);
1735 int dif = skb->dev->ifindex;
1736 struct hlist_node *node;
1737 struct sk_buff *nskb;
1738
1739 if (use_hash2) {
1740 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1741 udp_table.mask;
1742 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1743 start_lookup:
1744 hslot = &udp_table.hash2[hash2];
1745 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1746 }
1747
1748 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1749 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1750 uh->source, saddr, dif, hnum))
1751 continue;
1752
1753 if (!first) {
1754 first = sk;
1755 continue;
1756 }
1757 nskb = skb_clone(skb, GFP_ATOMIC);
1758
1759 if (unlikely(!nskb)) {
1760 atomic_inc(&sk->sk_drops);
1761 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1762 IS_UDPLITE(sk));
1763 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1764 IS_UDPLITE(sk));
1765 continue;
1766 }
1767 if (udp_queue_rcv_skb(sk, nskb) > 0)
1768 consume_skb(nskb);
1769 }
1770
1771 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1772 if (use_hash2 && hash2 != hash2_any) {
1773 hash2 = hash2_any;
1774 goto start_lookup;
1775 }
1776
1777 if (first) {
1778 if (udp_queue_rcv_skb(first, skb) > 0)
1779 consume_skb(skb);
1780 } else {
1781 kfree_skb(skb);
1782 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1783 proto == IPPROTO_UDPLITE);
1784 }
1785 return 0;
1786 }
1787
1788 /* Initialize UDP checksum. If exited with zero value (success),
1789 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1790 * Otherwise, csum completion requires chacksumming packet body,
1791 * including udp header and folding it to skb->csum.
1792 */
1793 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1794 int proto)
1795 {
1796 int err;
1797
1798 UDP_SKB_CB(skb)->partial_cov = 0;
1799 UDP_SKB_CB(skb)->cscov = skb->len;
1800
1801 if (proto == IPPROTO_UDPLITE) {
1802 err = udplite_checksum_init(skb, uh);
1803 if (err)
1804 return err;
1805 }
1806
1807 /* Note, we are only interested in != 0 or == 0, thus the
1808 * force to int.
1809 */
1810 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1811 inet_compute_pseudo);
1812 }
1813
1814 /*
1815 * All we need to do is get the socket, and then do a checksum.
1816 */
1817
1818 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1819 int proto)
1820 {
1821 struct sock *sk;
1822 struct udphdr *uh;
1823 unsigned short ulen;
1824 struct rtable *rt = skb_rtable(skb);
1825 __be32 saddr, daddr;
1826 struct net *net = dev_net(skb->dev);
1827
1828 /*
1829 * Validate the packet.
1830 */
1831 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1832 goto drop; /* No space for header. */
1833
1834 uh = udp_hdr(skb);
1835 ulen = ntohs(uh->len);
1836 saddr = ip_hdr(skb)->saddr;
1837 daddr = ip_hdr(skb)->daddr;
1838
1839 if (ulen > skb->len)
1840 goto short_packet;
1841
1842 if (proto == IPPROTO_UDP) {
1843 /* UDP validates ulen. */
1844 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1845 goto short_packet;
1846 uh = udp_hdr(skb);
1847 }
1848
1849 if (udp4_csum_init(skb, uh, proto))
1850 goto csum_error;
1851
1852 sk = skb_steal_sock(skb);
1853 if (sk) {
1854 struct dst_entry *dst = skb_dst(skb);
1855 int ret;
1856
1857 if (unlikely(sk->sk_rx_dst != dst))
1858 udp_sk_rx_dst_set(sk, dst);
1859
1860 ret = udp_queue_rcv_skb(sk, skb);
1861 sock_put(sk);
1862 /* a return value > 0 means to resubmit the input, but
1863 * it wants the return to be -protocol, or 0
1864 */
1865 if (ret > 0)
1866 return -ret;
1867 return 0;
1868 }
1869
1870 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1871 return __udp4_lib_mcast_deliver(net, skb, uh,
1872 saddr, daddr, udptable, proto);
1873
1874 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1875 if (sk) {
1876 int ret;
1877
1878 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1879 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1880 inet_compute_pseudo);
1881
1882 ret = udp_queue_rcv_skb(sk, skb);
1883
1884 /* a return value > 0 means to resubmit the input, but
1885 * it wants the return to be -protocol, or 0
1886 */
1887 if (ret > 0)
1888 return -ret;
1889 return 0;
1890 }
1891
1892 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1893 goto drop;
1894 nf_reset(skb);
1895
1896 /* No socket. Drop packet silently, if checksum is wrong */
1897 if (udp_lib_checksum_complete(skb))
1898 goto csum_error;
1899
1900 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1901 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1902
1903 /*
1904 * Hmm. We got an UDP packet to a port to which we
1905 * don't wanna listen. Ignore it.
1906 */
1907 kfree_skb(skb);
1908 return 0;
1909
1910 short_packet:
1911 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1912 proto == IPPROTO_UDPLITE ? "Lite" : "",
1913 &saddr, ntohs(uh->source),
1914 ulen, skb->len,
1915 &daddr, ntohs(uh->dest));
1916 goto drop;
1917
1918 csum_error:
1919 /*
1920 * RFC1122: OK. Discards the bad packet silently (as far as
1921 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1922 */
1923 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1924 proto == IPPROTO_UDPLITE ? "Lite" : "",
1925 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1926 ulen);
1927 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1928 drop:
1929 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1930 kfree_skb(skb);
1931 return 0;
1932 }
1933
1934 /* We can only early demux multicast if there is a single matching socket.
1935 * If more than one socket found returns NULL
1936 */
1937 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1938 __be16 loc_port, __be32 loc_addr,
1939 __be16 rmt_port, __be32 rmt_addr,
1940 int dif)
1941 {
1942 struct sock *sk, *result;
1943 unsigned short hnum = ntohs(loc_port);
1944 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1945 struct udp_hslot *hslot = &udp_table.hash[slot];
1946
1947 /* Do not bother scanning a too big list */
1948 if (hslot->count > 10)
1949 return NULL;
1950
1951 result = NULL;
1952 sk_for_each_rcu(sk, &hslot->head) {
1953 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1954 rmt_port, rmt_addr, dif, hnum)) {
1955 if (result)
1956 return NULL;
1957 result = sk;
1958 }
1959 }
1960
1961 return result;
1962 }
1963
1964 /* For unicast we should only early demux connected sockets or we can
1965 * break forwarding setups. The chains here can be long so only check
1966 * if the first socket is an exact match and if not move on.
1967 */
1968 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1969 __be16 loc_port, __be32 loc_addr,
1970 __be16 rmt_port, __be32 rmt_addr,
1971 int dif)
1972 {
1973 unsigned short hnum = ntohs(loc_port);
1974 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1975 unsigned int slot2 = hash2 & udp_table.mask;
1976 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1977 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1978 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1979 struct sock *sk;
1980
1981 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1982 if (INET_MATCH(sk, net, acookie, rmt_addr,
1983 loc_addr, ports, dif))
1984 return sk;
1985 /* Only check first socket in chain */
1986 break;
1987 }
1988 return NULL;
1989 }
1990
1991 void udp_v4_early_demux(struct sk_buff *skb)
1992 {
1993 struct net *net = dev_net(skb->dev);
1994 const struct iphdr *iph;
1995 const struct udphdr *uh;
1996 struct sock *sk = NULL;
1997 struct dst_entry *dst;
1998 int dif = skb->dev->ifindex;
1999 int ours;
2000
2001 /* validate the packet */
2002 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2003 return;
2004
2005 iph = ip_hdr(skb);
2006 uh = udp_hdr(skb);
2007
2008 if (skb->pkt_type == PACKET_BROADCAST ||
2009 skb->pkt_type == PACKET_MULTICAST) {
2010 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2011
2012 if (!in_dev)
2013 return;
2014
2015 /* we are supposed to accept bcast packets */
2016 if (skb->pkt_type == PACKET_MULTICAST) {
2017 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2018 iph->protocol);
2019 if (!ours)
2020 return;
2021 }
2022
2023 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2024 uh->source, iph->saddr, dif);
2025 } else if (skb->pkt_type == PACKET_HOST) {
2026 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2027 uh->source, iph->saddr, dif);
2028 }
2029
2030 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2031 return;
2032
2033 skb->sk = sk;
2034 skb->destructor = sock_efree;
2035 dst = READ_ONCE(sk->sk_rx_dst);
2036
2037 if (dst)
2038 dst = dst_check(dst, 0);
2039 if (dst) {
2040 /* DST_NOCACHE can not be used without taking a reference */
2041 if (dst->flags & DST_NOCACHE) {
2042 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2043 skb_dst_set(skb, dst);
2044 } else {
2045 skb_dst_set_noref(skb, dst);
2046 }
2047 }
2048 }
2049
2050 int udp_rcv(struct sk_buff *skb)
2051 {
2052 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2053 }
2054
2055 void udp_destroy_sock(struct sock *sk)
2056 {
2057 struct udp_sock *up = udp_sk(sk);
2058 bool slow = lock_sock_fast(sk);
2059 udp_flush_pending_frames(sk);
2060 unlock_sock_fast(sk, slow);
2061 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2062 void (*encap_destroy)(struct sock *sk);
2063 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2064 if (encap_destroy)
2065 encap_destroy(sk);
2066 }
2067 }
2068
2069 /*
2070 * Socket option code for UDP
2071 */
2072 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2073 char __user *optval, unsigned int optlen,
2074 int (*push_pending_frames)(struct sock *))
2075 {
2076 struct udp_sock *up = udp_sk(sk);
2077 int val, valbool;
2078 int err = 0;
2079 int is_udplite = IS_UDPLITE(sk);
2080
2081 if (optlen < sizeof(int))
2082 return -EINVAL;
2083
2084 if (get_user(val, (int __user *)optval))
2085 return -EFAULT;
2086
2087 valbool = val ? 1 : 0;
2088
2089 switch (optname) {
2090 case UDP_CORK:
2091 if (val != 0) {
2092 up->corkflag = 1;
2093 } else {
2094 up->corkflag = 0;
2095 lock_sock(sk);
2096 push_pending_frames(sk);
2097 release_sock(sk);
2098 }
2099 break;
2100
2101 case UDP_ENCAP:
2102 switch (val) {
2103 case 0:
2104 case UDP_ENCAP_ESPINUDP:
2105 case UDP_ENCAP_ESPINUDP_NON_IKE:
2106 up->encap_rcv = xfrm4_udp_encap_rcv;
2107 /* FALLTHROUGH */
2108 case UDP_ENCAP_L2TPINUDP:
2109 up->encap_type = val;
2110 udp_encap_enable();
2111 break;
2112 default:
2113 err = -ENOPROTOOPT;
2114 break;
2115 }
2116 break;
2117
2118 case UDP_NO_CHECK6_TX:
2119 up->no_check6_tx = valbool;
2120 break;
2121
2122 case UDP_NO_CHECK6_RX:
2123 up->no_check6_rx = valbool;
2124 break;
2125
2126 /*
2127 * UDP-Lite's partial checksum coverage (RFC 3828).
2128 */
2129 /* The sender sets actual checksum coverage length via this option.
2130 * The case coverage > packet length is handled by send module. */
2131 case UDPLITE_SEND_CSCOV:
2132 if (!is_udplite) /* Disable the option on UDP sockets */
2133 return -ENOPROTOOPT;
2134 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2135 val = 8;
2136 else if (val > USHRT_MAX)
2137 val = USHRT_MAX;
2138 up->pcslen = val;
2139 up->pcflag |= UDPLITE_SEND_CC;
2140 break;
2141
2142 /* The receiver specifies a minimum checksum coverage value. To make
2143 * sense, this should be set to at least 8 (as done below). If zero is
2144 * used, this again means full checksum coverage. */
2145 case UDPLITE_RECV_CSCOV:
2146 if (!is_udplite) /* Disable the option on UDP sockets */
2147 return -ENOPROTOOPT;
2148 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2149 val = 8;
2150 else if (val > USHRT_MAX)
2151 val = USHRT_MAX;
2152 up->pcrlen = val;
2153 up->pcflag |= UDPLITE_RECV_CC;
2154 break;
2155
2156 default:
2157 err = -ENOPROTOOPT;
2158 break;
2159 }
2160
2161 return err;
2162 }
2163 EXPORT_SYMBOL(udp_lib_setsockopt);
2164
2165 int udp_setsockopt(struct sock *sk, int level, int optname,
2166 char __user *optval, unsigned int optlen)
2167 {
2168 if (level == SOL_UDP || level == SOL_UDPLITE)
2169 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2170 udp_push_pending_frames);
2171 return ip_setsockopt(sk, level, optname, optval, optlen);
2172 }
2173
2174 #ifdef CONFIG_COMPAT
2175 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2176 char __user *optval, unsigned int optlen)
2177 {
2178 if (level == SOL_UDP || level == SOL_UDPLITE)
2179 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2180 udp_push_pending_frames);
2181 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2182 }
2183 #endif
2184
2185 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2186 char __user *optval, int __user *optlen)
2187 {
2188 struct udp_sock *up = udp_sk(sk);
2189 int val, len;
2190
2191 if (get_user(len, optlen))
2192 return -EFAULT;
2193
2194 len = min_t(unsigned int, len, sizeof(int));
2195
2196 if (len < 0)
2197 return -EINVAL;
2198
2199 switch (optname) {
2200 case UDP_CORK:
2201 val = up->corkflag;
2202 break;
2203
2204 case UDP_ENCAP:
2205 val = up->encap_type;
2206 break;
2207
2208 case UDP_NO_CHECK6_TX:
2209 val = up->no_check6_tx;
2210 break;
2211
2212 case UDP_NO_CHECK6_RX:
2213 val = up->no_check6_rx;
2214 break;
2215
2216 /* The following two cannot be changed on UDP sockets, the return is
2217 * always 0 (which corresponds to the full checksum coverage of UDP). */
2218 case UDPLITE_SEND_CSCOV:
2219 val = up->pcslen;
2220 break;
2221
2222 case UDPLITE_RECV_CSCOV:
2223 val = up->pcrlen;
2224 break;
2225
2226 default:
2227 return -ENOPROTOOPT;
2228 }
2229
2230 if (put_user(len, optlen))
2231 return -EFAULT;
2232 if (copy_to_user(optval, &val, len))
2233 return -EFAULT;
2234 return 0;
2235 }
2236 EXPORT_SYMBOL(udp_lib_getsockopt);
2237
2238 int udp_getsockopt(struct sock *sk, int level, int optname,
2239 char __user *optval, int __user *optlen)
2240 {
2241 if (level == SOL_UDP || level == SOL_UDPLITE)
2242 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2243 return ip_getsockopt(sk, level, optname, optval, optlen);
2244 }
2245
2246 #ifdef CONFIG_COMPAT
2247 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2248 char __user *optval, int __user *optlen)
2249 {
2250 if (level == SOL_UDP || level == SOL_UDPLITE)
2251 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2252 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2253 }
2254 #endif
2255 /**
2256 * udp_poll - wait for a UDP event.
2257 * @file - file struct
2258 * @sock - socket
2259 * @wait - poll table
2260 *
2261 * This is same as datagram poll, except for the special case of
2262 * blocking sockets. If application is using a blocking fd
2263 * and a packet with checksum error is in the queue;
2264 * then it could get return from select indicating data available
2265 * but then block when reading it. Add special case code
2266 * to work around these arguably broken applications.
2267 */
2268 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2269 {
2270 unsigned int mask = datagram_poll(file, sock, wait);
2271 struct sock *sk = sock->sk;
2272
2273 sock_rps_record_flow(sk);
2274
2275 /* Check for false positives due to checksum errors */
2276 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2277 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2278 mask &= ~(POLLIN | POLLRDNORM);
2279
2280 return mask;
2281
2282 }
2283 EXPORT_SYMBOL(udp_poll);
2284
2285 int udp_abort(struct sock *sk, int err)
2286 {
2287 lock_sock(sk);
2288
2289 sk->sk_err = err;
2290 sk->sk_error_report(sk);
2291 __udp_disconnect(sk, 0);
2292
2293 release_sock(sk);
2294
2295 return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(udp_abort);
2298
2299 struct proto udp_prot = {
2300 .name = "UDP",
2301 .owner = THIS_MODULE,
2302 .close = udp_lib_close,
2303 .connect = ip4_datagram_connect,
2304 .disconnect = udp_disconnect,
2305 .ioctl = udp_ioctl,
2306 .init = udp_init_sock,
2307 .destroy = udp_destroy_sock,
2308 .setsockopt = udp_setsockopt,
2309 .getsockopt = udp_getsockopt,
2310 .sendmsg = udp_sendmsg,
2311 .recvmsg = udp_recvmsg,
2312 .sendpage = udp_sendpage,
2313 .release_cb = ip4_datagram_release_cb,
2314 .hash = udp_lib_hash,
2315 .unhash = udp_lib_unhash,
2316 .rehash = udp_v4_rehash,
2317 .get_port = udp_v4_get_port,
2318 .memory_allocated = &udp_memory_allocated,
2319 .sysctl_mem = sysctl_udp_mem,
2320 .sysctl_wmem = &sysctl_udp_wmem_min,
2321 .sysctl_rmem = &sysctl_udp_rmem_min,
2322 .obj_size = sizeof(struct udp_sock),
2323 .h.udp_table = &udp_table,
2324 #ifdef CONFIG_COMPAT
2325 .compat_setsockopt = compat_udp_setsockopt,
2326 .compat_getsockopt = compat_udp_getsockopt,
2327 #endif
2328 .diag_destroy = udp_abort,
2329 };
2330 EXPORT_SYMBOL(udp_prot);
2331
2332 /* ------------------------------------------------------------------------ */
2333 #ifdef CONFIG_PROC_FS
2334
2335 static struct sock *udp_get_first(struct seq_file *seq, int start)
2336 {
2337 struct sock *sk;
2338 struct udp_iter_state *state = seq->private;
2339 struct net *net = seq_file_net(seq);
2340
2341 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2342 ++state->bucket) {
2343 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2344
2345 if (hlist_empty(&hslot->head))
2346 continue;
2347
2348 spin_lock_bh(&hslot->lock);
2349 sk_for_each(sk, &hslot->head) {
2350 if (!net_eq(sock_net(sk), net))
2351 continue;
2352 if (sk->sk_family == state->family)
2353 goto found;
2354 }
2355 spin_unlock_bh(&hslot->lock);
2356 }
2357 sk = NULL;
2358 found:
2359 return sk;
2360 }
2361
2362 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2363 {
2364 struct udp_iter_state *state = seq->private;
2365 struct net *net = seq_file_net(seq);
2366
2367 do {
2368 sk = sk_next(sk);
2369 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2370
2371 if (!sk) {
2372 if (state->bucket <= state->udp_table->mask)
2373 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2374 return udp_get_first(seq, state->bucket + 1);
2375 }
2376 return sk;
2377 }
2378
2379 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2380 {
2381 struct sock *sk = udp_get_first(seq, 0);
2382
2383 if (sk)
2384 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2385 --pos;
2386 return pos ? NULL : sk;
2387 }
2388
2389 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2390 {
2391 struct udp_iter_state *state = seq->private;
2392 state->bucket = MAX_UDP_PORTS;
2393
2394 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2395 }
2396
2397 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398 {
2399 struct sock *sk;
2400
2401 if (v == SEQ_START_TOKEN)
2402 sk = udp_get_idx(seq, 0);
2403 else
2404 sk = udp_get_next(seq, v);
2405
2406 ++*pos;
2407 return sk;
2408 }
2409
2410 static void udp_seq_stop(struct seq_file *seq, void *v)
2411 {
2412 struct udp_iter_state *state = seq->private;
2413
2414 if (state->bucket <= state->udp_table->mask)
2415 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2416 }
2417
2418 int udp_seq_open(struct inode *inode, struct file *file)
2419 {
2420 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2421 struct udp_iter_state *s;
2422 int err;
2423
2424 err = seq_open_net(inode, file, &afinfo->seq_ops,
2425 sizeof(struct udp_iter_state));
2426 if (err < 0)
2427 return err;
2428
2429 s = ((struct seq_file *)file->private_data)->private;
2430 s->family = afinfo->family;
2431 s->udp_table = afinfo->udp_table;
2432 return err;
2433 }
2434 EXPORT_SYMBOL(udp_seq_open);
2435
2436 /* ------------------------------------------------------------------------ */
2437 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2438 {
2439 struct proc_dir_entry *p;
2440 int rc = 0;
2441
2442 afinfo->seq_ops.start = udp_seq_start;
2443 afinfo->seq_ops.next = udp_seq_next;
2444 afinfo->seq_ops.stop = udp_seq_stop;
2445
2446 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2447 afinfo->seq_fops, afinfo);
2448 if (!p)
2449 rc = -ENOMEM;
2450 return rc;
2451 }
2452 EXPORT_SYMBOL(udp_proc_register);
2453
2454 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2455 {
2456 remove_proc_entry(afinfo->name, net->proc_net);
2457 }
2458 EXPORT_SYMBOL(udp_proc_unregister);
2459
2460 /* ------------------------------------------------------------------------ */
2461 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2462 int bucket)
2463 {
2464 struct inet_sock *inet = inet_sk(sp);
2465 __be32 dest = inet->inet_daddr;
2466 __be32 src = inet->inet_rcv_saddr;
2467 __u16 destp = ntohs(inet->inet_dport);
2468 __u16 srcp = ntohs(inet->inet_sport);
2469
2470 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2471 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2472 bucket, src, srcp, dest, destp, sp->sk_state,
2473 sk_wmem_alloc_get(sp),
2474 sk_rmem_alloc_get(sp),
2475 0, 0L, 0,
2476 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2477 0, sock_i_ino(sp),
2478 atomic_read(&sp->sk_refcnt), sp,
2479 atomic_read(&sp->sk_drops));
2480 }
2481
2482 int udp4_seq_show(struct seq_file *seq, void *v)
2483 {
2484 seq_setwidth(seq, 127);
2485 if (v == SEQ_START_TOKEN)
2486 seq_puts(seq, " sl local_address rem_address st tx_queue "
2487 "rx_queue tr tm->when retrnsmt uid timeout "
2488 "inode ref pointer drops");
2489 else {
2490 struct udp_iter_state *state = seq->private;
2491
2492 udp4_format_sock(v, seq, state->bucket);
2493 }
2494 seq_pad(seq, '\n');
2495 return 0;
2496 }
2497
2498 static const struct file_operations udp_afinfo_seq_fops = {
2499 .owner = THIS_MODULE,
2500 .open = udp_seq_open,
2501 .read = seq_read,
2502 .llseek = seq_lseek,
2503 .release = seq_release_net
2504 };
2505
2506 /* ------------------------------------------------------------------------ */
2507 static struct udp_seq_afinfo udp4_seq_afinfo = {
2508 .name = "udp",
2509 .family = AF_INET,
2510 .udp_table = &udp_table,
2511 .seq_fops = &udp_afinfo_seq_fops,
2512 .seq_ops = {
2513 .show = udp4_seq_show,
2514 },
2515 };
2516
2517 static int __net_init udp4_proc_init_net(struct net *net)
2518 {
2519 return udp_proc_register(net, &udp4_seq_afinfo);
2520 }
2521
2522 static void __net_exit udp4_proc_exit_net(struct net *net)
2523 {
2524 udp_proc_unregister(net, &udp4_seq_afinfo);
2525 }
2526
2527 static struct pernet_operations udp4_net_ops = {
2528 .init = udp4_proc_init_net,
2529 .exit = udp4_proc_exit_net,
2530 };
2531
2532 int __init udp4_proc_init(void)
2533 {
2534 return register_pernet_subsys(&udp4_net_ops);
2535 }
2536
2537 void udp4_proc_exit(void)
2538 {
2539 unregister_pernet_subsys(&udp4_net_ops);
2540 }
2541 #endif /* CONFIG_PROC_FS */
2542
2543 static __initdata unsigned long uhash_entries;
2544 static int __init set_uhash_entries(char *str)
2545 {
2546 ssize_t ret;
2547
2548 if (!str)
2549 return 0;
2550
2551 ret = kstrtoul(str, 0, &uhash_entries);
2552 if (ret)
2553 return 0;
2554
2555 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2556 uhash_entries = UDP_HTABLE_SIZE_MIN;
2557 return 1;
2558 }
2559 __setup("uhash_entries=", set_uhash_entries);
2560
2561 void __init udp_table_init(struct udp_table *table, const char *name)
2562 {
2563 unsigned int i;
2564
2565 table->hash = alloc_large_system_hash(name,
2566 2 * sizeof(struct udp_hslot),
2567 uhash_entries,
2568 21, /* one slot per 2 MB */
2569 0,
2570 &table->log,
2571 &table->mask,
2572 UDP_HTABLE_SIZE_MIN,
2573 64 * 1024);
2574
2575 table->hash2 = table->hash + (table->mask + 1);
2576 for (i = 0; i <= table->mask; i++) {
2577 INIT_HLIST_HEAD(&table->hash[i].head);
2578 table->hash[i].count = 0;
2579 spin_lock_init(&table->hash[i].lock);
2580 }
2581 for (i = 0; i <= table->mask; i++) {
2582 INIT_HLIST_HEAD(&table->hash2[i].head);
2583 table->hash2[i].count = 0;
2584 spin_lock_init(&table->hash2[i].lock);
2585 }
2586 }
2587
2588 u32 udp_flow_hashrnd(void)
2589 {
2590 static u32 hashrnd __read_mostly;
2591
2592 net_get_random_once(&hashrnd, sizeof(hashrnd));
2593
2594 return hashrnd;
2595 }
2596 EXPORT_SYMBOL(udp_flow_hashrnd);
2597
2598 void __init udp_init(void)
2599 {
2600 unsigned long limit;
2601
2602 udp_table_init(&udp_table, "UDP");
2603 limit = nr_free_buffer_pages() / 8;
2604 limit = max(limit, 128UL);
2605 sysctl_udp_mem[0] = limit / 4 * 3;
2606 sysctl_udp_mem[1] = limit;
2607 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2608
2609 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2610 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2611 }