]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/udp.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / udp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127
128 /* IPCB reference means this can not be used from early demux */
129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
132 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
133 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
134 return true;
135 #endif
136 return false;
137 }
138
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 const struct udp_hslot *hslot,
141 unsigned long *bitmap,
142 struct sock *sk, unsigned int log)
143 {
144 struct sock *sk2;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_for_each(sk2, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 inet_rcv_saddr_equal(sk, sk2, true)) {
155 if (sk2->sk_reuseport && sk->sk_reuseport &&
156 !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 uid_eq(uid, sock_i_uid(sk2))) {
158 if (!bitmap)
159 return 0;
160 } else {
161 if (!bitmap)
162 return 1;
163 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 bitmap);
165 }
166 }
167 }
168 return 0;
169 }
170
171 /*
172 * Note: we still hold spinlock of primary hash chain, so no other writer
173 * can insert/delete a socket with local_port == num
174 */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 struct udp_hslot *hslot2,
177 struct sock *sk)
178 {
179 struct sock *sk2;
180 kuid_t uid = sock_i_uid(sk);
181 int res = 0;
182
183 spin_lock(&hslot2->lock);
184 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 if (net_eq(sock_net(sk2), net) &&
186 sk2 != sk &&
187 (udp_sk(sk2)->udp_port_hash == num) &&
188 (!sk2->sk_reuse || !sk->sk_reuse) &&
189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 inet_rcv_saddr_equal(sk, sk2, true)) {
192 if (sk2->sk_reuseport && sk->sk_reuseport &&
193 !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 uid_eq(uid, sock_i_uid(sk2))) {
195 res = 0;
196 } else {
197 res = 1;
198 }
199 break;
200 }
201 }
202 spin_unlock(&hslot2->lock);
203 return res;
204 }
205
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 struct net *net = sock_net(sk);
209 kuid_t uid = sock_i_uid(sk);
210 struct sock *sk2;
211
212 sk_for_each(sk2, &hslot->head) {
213 if (net_eq(sock_net(sk2), net) &&
214 sk2 != sk &&
215 sk2->sk_family == sk->sk_family &&
216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 inet_rcv_saddr_equal(sk, sk2, false)) {
221 return reuseport_add_sock(sk, sk2,
222 inet_rcv_saddr_any(sk));
223 }
224 }
225
226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228
229 /**
230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
231 *
232 * @sk: socket struct in question
233 * @snum: port number to look up
234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235 * with NULL address
236 */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 unsigned int hash2_nulladdr)
239 {
240 struct udp_hslot *hslot, *hslot2;
241 struct udp_table *udptable = sk->sk_prot->h.udp_table;
242 int error = 1;
243 struct net *net = sock_net(sk);
244
245 if (!snum) {
246 int low, high, remaining;
247 unsigned int rand;
248 unsigned short first, last;
249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250
251 inet_get_local_port_range(net, &low, &high);
252 remaining = (high - low) + 1;
253
254 rand = prandom_u32();
255 first = reciprocal_scale(rand, remaining) + low;
256 /*
257 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 */
259 rand = (rand | 1) * (udptable->mask + 1);
260 last = first + udptable->mask + 1;
261 do {
262 hslot = udp_hashslot(udptable, net, first);
263 bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 spin_lock_bh(&hslot->lock);
265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 udptable->log);
267
268 snum = first;
269 /*
270 * Iterate on all possible values of snum for this hash.
271 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 * give us randomization and full range coverage.
273 */
274 do {
275 if (low <= snum && snum <= high &&
276 !test_bit(snum >> udptable->log, bitmap) &&
277 !inet_is_local_reserved_port(net, snum))
278 goto found;
279 snum += rand;
280 } while (snum != first);
281 spin_unlock_bh(&hslot->lock);
282 cond_resched();
283 } while (++first != last);
284 goto fail;
285 } else {
286 hslot = udp_hashslot(udptable, net, snum);
287 spin_lock_bh(&hslot->lock);
288 if (hslot->count > 10) {
289 int exist;
290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291
292 slot2 &= udptable->mask;
293 hash2_nulladdr &= udptable->mask;
294
295 hslot2 = udp_hashslot2(udptable, slot2);
296 if (hslot->count < hslot2->count)
297 goto scan_primary_hash;
298
299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 if (!exist && (hash2_nulladdr != slot2)) {
301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 sk);
304 }
305 if (exist)
306 goto fail_unlock;
307 else
308 goto found;
309 }
310 scan_primary_hash:
311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 goto fail_unlock;
313 }
314 found:
315 inet_sk(sk)->inet_num = snum;
316 udp_sk(sk)->udp_port_hash = snum;
317 udp_sk(sk)->udp_portaddr_hash ^= snum;
318 if (sk_unhashed(sk)) {
319 if (sk->sk_reuseport &&
320 udp_reuseport_add_sock(sk, hslot)) {
321 inet_sk(sk)->inet_num = 0;
322 udp_sk(sk)->udp_port_hash = 0;
323 udp_sk(sk)->udp_portaddr_hash ^= snum;
324 goto fail_unlock;
325 }
326
327 sk_add_node_rcu(sk, &hslot->head);
328 hslot->count++;
329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330
331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 spin_lock(&hslot2->lock);
333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 sk->sk_family == AF_INET6)
335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 &hslot2->head);
337 else
338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 &hslot2->head);
340 hslot2->count++;
341 spin_unlock(&hslot2->lock);
342 }
343 sock_set_flag(sk, SOCK_RCU_FREE);
344 error = 0;
345 fail_unlock:
346 spin_unlock_bh(&hslot->lock);
347 fail:
348 return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 unsigned int hash2_nulladdr =
355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 unsigned int hash2_partial =
357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358
359 /* precompute partial secondary hash */
360 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363
364 static int compute_score(struct sock *sk, struct net *net,
365 __be32 saddr, __be16 sport,
366 __be32 daddr, unsigned short hnum,
367 int dif, int sdif, bool exact_dif)
368 {
369 int score;
370 struct inet_sock *inet;
371 bool dev_match;
372
373 if (!net_eq(sock_net(sk), net) ||
374 udp_sk(sk)->udp_port_hash != hnum ||
375 ipv6_only_sock(sk))
376 return -1;
377
378 if (sk->sk_rcv_saddr != daddr)
379 return -1;
380
381 score = (sk->sk_family == PF_INET) ? 2 : 1;
382
383 inet = inet_sk(sk);
384 if (inet->inet_daddr) {
385 if (inet->inet_daddr != saddr)
386 return -1;
387 score += 4;
388 }
389
390 if (inet->inet_dport) {
391 if (inet->inet_dport != sport)
392 return -1;
393 score += 4;
394 }
395
396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 dif, sdif);
398 if (!dev_match)
399 return -1;
400 score += 4;
401
402 if (sk->sk_incoming_cpu == raw_smp_processor_id())
403 score++;
404 return score;
405 }
406
407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
408 const __u16 lport, const __be32 faddr,
409 const __be16 fport)
410 {
411 static u32 udp_ehash_secret __read_mostly;
412
413 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
414
415 return __inet_ehashfn(laddr, lport, faddr, fport,
416 udp_ehash_secret + net_hash_mix(net));
417 }
418
419 /* called with rcu_read_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 __be32 saddr, __be16 sport,
422 __be32 daddr, unsigned int hnum,
423 int dif, int sdif, bool exact_dif,
424 struct udp_hslot *hslot2,
425 struct sk_buff *skb)
426 {
427 struct sock *sk, *result;
428 int score, badness;
429 u32 hash = 0;
430
431 result = NULL;
432 badness = 0;
433 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 score = compute_score(sk, net, saddr, sport,
435 daddr, hnum, dif, sdif, exact_dif);
436 if (score > badness) {
437 if (sk->sk_reuseport) {
438 hash = udp_ehashfn(net, daddr, hnum,
439 saddr, sport);
440 result = reuseport_select_sock(sk, hash, skb,
441 sizeof(struct udphdr));
442 if (result)
443 return result;
444 }
445 badness = score;
446 result = sk;
447 }
448 }
449 return result;
450 }
451
452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
453 * harder than this. -DaveM
454 */
455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
456 __be16 sport, __be32 daddr, __be16 dport, int dif,
457 int sdif, struct udp_table *udptable, struct sk_buff *skb)
458 {
459 struct sock *result;
460 unsigned short hnum = ntohs(dport);
461 unsigned int hash2, slot2;
462 struct udp_hslot *hslot2;
463 bool exact_dif = udp_lib_exact_dif_match(net, skb);
464
465 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
466 slot2 = hash2 & udptable->mask;
467 hslot2 = &udptable->hash2[slot2];
468
469 result = udp4_lib_lookup2(net, saddr, sport,
470 daddr, hnum, dif, sdif,
471 exact_dif, hslot2, skb);
472 if (!result) {
473 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 slot2 = hash2 & udptable->mask;
475 hslot2 = &udptable->hash2[slot2];
476
477 result = udp4_lib_lookup2(net, saddr, sport,
478 htonl(INADDR_ANY), hnum, dif, sdif,
479 exact_dif, hslot2, skb);
480 }
481 if (unlikely(IS_ERR(result)))
482 return NULL;
483 return result;
484 }
485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
486
487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
488 __be16 sport, __be16 dport,
489 struct udp_table *udptable)
490 {
491 const struct iphdr *iph = ip_hdr(skb);
492
493 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
494 iph->daddr, dport, inet_iif(skb),
495 inet_sdif(skb), udptable, skb);
496 }
497
498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
499 __be16 sport, __be16 dport)
500 {
501 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
502 }
503 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
504
505 /* Must be called under rcu_read_lock().
506 * Does increment socket refcount.
507 */
508 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
509 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
510 __be32 daddr, __be16 dport, int dif)
511 {
512 struct sock *sk;
513
514 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
515 dif, 0, &udp_table, NULL);
516 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
517 sk = NULL;
518 return sk;
519 }
520 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
521 #endif
522
523 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
524 __be16 loc_port, __be32 loc_addr,
525 __be16 rmt_port, __be32 rmt_addr,
526 int dif, int sdif, unsigned short hnum)
527 {
528 struct inet_sock *inet = inet_sk(sk);
529
530 if (!net_eq(sock_net(sk), net) ||
531 udp_sk(sk)->udp_port_hash != hnum ||
532 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
533 (inet->inet_dport != rmt_port && inet->inet_dport) ||
534 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
535 ipv6_only_sock(sk) ||
536 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
537 sk->sk_bound_dev_if != sdif))
538 return false;
539 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
540 return false;
541 return true;
542 }
543
544 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
545 void udp_encap_enable(void)
546 {
547 static_branch_inc(&udp_encap_needed_key);
548 }
549 EXPORT_SYMBOL(udp_encap_enable);
550
551 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
552 * through error handlers in encapsulations looking for a match.
553 */
554 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
555 {
556 int i;
557
558 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
559 int (*handler)(struct sk_buff *skb, u32 info);
560 const struct ip_tunnel_encap_ops *encap;
561
562 encap = rcu_dereference(iptun_encaps[i]);
563 if (!encap)
564 continue;
565 handler = encap->err_handler;
566 if (handler && !handler(skb, info))
567 return 0;
568 }
569
570 return -ENOENT;
571 }
572
573 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
574 * reversing source and destination port: this will match tunnels that force the
575 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
576 * lwtunnels might actually break this assumption by being configured with
577 * different destination ports on endpoints, in this case we won't be able to
578 * trace ICMP messages back to them.
579 *
580 * If this doesn't match any socket, probe tunnels with arbitrary destination
581 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
582 * we've sent packets to won't necessarily match the local destination port.
583 *
584 * Then ask the tunnel implementation to match the error against a valid
585 * association.
586 *
587 * Return an error if we can't find a match, the socket if we need further
588 * processing, zero otherwise.
589 */
590 static struct sock *__udp4_lib_err_encap(struct net *net,
591 const struct iphdr *iph,
592 struct udphdr *uh,
593 struct udp_table *udptable,
594 struct sk_buff *skb, u32 info)
595 {
596 int network_offset, transport_offset;
597 struct sock *sk;
598
599 network_offset = skb_network_offset(skb);
600 transport_offset = skb_transport_offset(skb);
601
602 /* Network header needs to point to the outer IPv4 header inside ICMP */
603 skb_reset_network_header(skb);
604
605 /* Transport header needs to point to the UDP header */
606 skb_set_transport_header(skb, iph->ihl << 2);
607
608 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
609 iph->saddr, uh->dest, skb->dev->ifindex, 0,
610 udptable, NULL);
611 if (sk) {
612 int (*lookup)(struct sock *sk, struct sk_buff *skb);
613 struct udp_sock *up = udp_sk(sk);
614
615 lookup = READ_ONCE(up->encap_err_lookup);
616 if (!lookup || lookup(sk, skb))
617 sk = NULL;
618 }
619
620 if (!sk)
621 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
622
623 skb_set_transport_header(skb, transport_offset);
624 skb_set_network_header(skb, network_offset);
625
626 return sk;
627 }
628
629 /*
630 * This routine is called by the ICMP module when it gets some
631 * sort of error condition. If err < 0 then the socket should
632 * be closed and the error returned to the user. If err > 0
633 * it's just the icmp type << 8 | icmp code.
634 * Header points to the ip header of the error packet. We move
635 * on past this. Then (as it used to claim before adjustment)
636 * header points to the first 8 bytes of the udp header. We need
637 * to find the appropriate port.
638 */
639
640 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
641 {
642 struct inet_sock *inet;
643 const struct iphdr *iph = (const struct iphdr *)skb->data;
644 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
645 const int type = icmp_hdr(skb)->type;
646 const int code = icmp_hdr(skb)->code;
647 bool tunnel = false;
648 struct sock *sk;
649 int harderr;
650 int err;
651 struct net *net = dev_net(skb->dev);
652
653 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
654 iph->saddr, uh->source, skb->dev->ifindex,
655 inet_sdif(skb), udptable, NULL);
656 if (!sk) {
657 /* No socket for error: try tunnels before discarding */
658 sk = ERR_PTR(-ENOENT);
659 if (static_branch_unlikely(&udp_encap_needed_key)) {
660 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
661 info);
662 if (!sk)
663 return 0;
664 }
665
666 if (IS_ERR(sk)) {
667 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
668 return PTR_ERR(sk);
669 }
670
671 tunnel = true;
672 }
673
674 err = 0;
675 harderr = 0;
676 inet = inet_sk(sk);
677
678 switch (type) {
679 default:
680 case ICMP_TIME_EXCEEDED:
681 err = EHOSTUNREACH;
682 break;
683 case ICMP_SOURCE_QUENCH:
684 goto out;
685 case ICMP_PARAMETERPROB:
686 err = EPROTO;
687 harderr = 1;
688 break;
689 case ICMP_DEST_UNREACH:
690 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
691 ipv4_sk_update_pmtu(skb, sk, info);
692 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
693 err = EMSGSIZE;
694 harderr = 1;
695 break;
696 }
697 goto out;
698 }
699 err = EHOSTUNREACH;
700 if (code <= NR_ICMP_UNREACH) {
701 harderr = icmp_err_convert[code].fatal;
702 err = icmp_err_convert[code].errno;
703 }
704 break;
705 case ICMP_REDIRECT:
706 ipv4_sk_redirect(skb, sk);
707 goto out;
708 }
709
710 /*
711 * RFC1122: OK. Passes ICMP errors back to application, as per
712 * 4.1.3.3.
713 */
714 if (tunnel) {
715 /* ...not for tunnels though: we don't have a sending socket */
716 goto out;
717 }
718 if (!inet->recverr) {
719 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
720 goto out;
721 } else
722 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
723
724 sk->sk_err = err;
725 sk->sk_error_report(sk);
726 out:
727 return 0;
728 }
729
730 int udp_err(struct sk_buff *skb, u32 info)
731 {
732 return __udp4_lib_err(skb, info, &udp_table);
733 }
734
735 /*
736 * Throw away all pending data and cancel the corking. Socket is locked.
737 */
738 void udp_flush_pending_frames(struct sock *sk)
739 {
740 struct udp_sock *up = udp_sk(sk);
741
742 if (up->pending) {
743 up->len = 0;
744 up->pending = 0;
745 ip_flush_pending_frames(sk);
746 }
747 }
748 EXPORT_SYMBOL(udp_flush_pending_frames);
749
750 /**
751 * udp4_hwcsum - handle outgoing HW checksumming
752 * @skb: sk_buff containing the filled-in UDP header
753 * (checksum field must be zeroed out)
754 * @src: source IP address
755 * @dst: destination IP address
756 */
757 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
758 {
759 struct udphdr *uh = udp_hdr(skb);
760 int offset = skb_transport_offset(skb);
761 int len = skb->len - offset;
762 int hlen = len;
763 __wsum csum = 0;
764
765 if (!skb_has_frag_list(skb)) {
766 /*
767 * Only one fragment on the socket.
768 */
769 skb->csum_start = skb_transport_header(skb) - skb->head;
770 skb->csum_offset = offsetof(struct udphdr, check);
771 uh->check = ~csum_tcpudp_magic(src, dst, len,
772 IPPROTO_UDP, 0);
773 } else {
774 struct sk_buff *frags;
775
776 /*
777 * HW-checksum won't work as there are two or more
778 * fragments on the socket so that all csums of sk_buffs
779 * should be together
780 */
781 skb_walk_frags(skb, frags) {
782 csum = csum_add(csum, frags->csum);
783 hlen -= frags->len;
784 }
785
786 csum = skb_checksum(skb, offset, hlen, csum);
787 skb->ip_summed = CHECKSUM_NONE;
788
789 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
790 if (uh->check == 0)
791 uh->check = CSUM_MANGLED_0;
792 }
793 }
794 EXPORT_SYMBOL_GPL(udp4_hwcsum);
795
796 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
797 * for the simple case like when setting the checksum for a UDP tunnel.
798 */
799 void udp_set_csum(bool nocheck, struct sk_buff *skb,
800 __be32 saddr, __be32 daddr, int len)
801 {
802 struct udphdr *uh = udp_hdr(skb);
803
804 if (nocheck) {
805 uh->check = 0;
806 } else if (skb_is_gso(skb)) {
807 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
808 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
809 uh->check = 0;
810 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
811 if (uh->check == 0)
812 uh->check = CSUM_MANGLED_0;
813 } else {
814 skb->ip_summed = CHECKSUM_PARTIAL;
815 skb->csum_start = skb_transport_header(skb) - skb->head;
816 skb->csum_offset = offsetof(struct udphdr, check);
817 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
818 }
819 }
820 EXPORT_SYMBOL(udp_set_csum);
821
822 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
823 struct inet_cork *cork)
824 {
825 struct sock *sk = skb->sk;
826 struct inet_sock *inet = inet_sk(sk);
827 struct udphdr *uh;
828 int err = 0;
829 int is_udplite = IS_UDPLITE(sk);
830 int offset = skb_transport_offset(skb);
831 int len = skb->len - offset;
832 __wsum csum = 0;
833
834 /*
835 * Create a UDP header
836 */
837 uh = udp_hdr(skb);
838 uh->source = inet->inet_sport;
839 uh->dest = fl4->fl4_dport;
840 uh->len = htons(len);
841 uh->check = 0;
842
843 if (cork->gso_size) {
844 const int hlen = skb_network_header_len(skb) +
845 sizeof(struct udphdr);
846
847 if (hlen + cork->gso_size > cork->fragsize) {
848 kfree_skb(skb);
849 return -EINVAL;
850 }
851 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
852 kfree_skb(skb);
853 return -EINVAL;
854 }
855 if (sk->sk_no_check_tx) {
856 kfree_skb(skb);
857 return -EINVAL;
858 }
859 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
860 dst_xfrm(skb_dst(skb))) {
861 kfree_skb(skb);
862 return -EIO;
863 }
864
865 skb_shinfo(skb)->gso_size = cork->gso_size;
866 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
867 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
868 cork->gso_size);
869 goto csum_partial;
870 }
871
872 if (is_udplite) /* UDP-Lite */
873 csum = udplite_csum(skb);
874
875 else if (sk->sk_no_check_tx) { /* UDP csum off */
876
877 skb->ip_summed = CHECKSUM_NONE;
878 goto send;
879
880 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
881 csum_partial:
882
883 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
884 goto send;
885
886 } else
887 csum = udp_csum(skb);
888
889 /* add protocol-dependent pseudo-header */
890 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
891 sk->sk_protocol, csum);
892 if (uh->check == 0)
893 uh->check = CSUM_MANGLED_0;
894
895 send:
896 err = ip_send_skb(sock_net(sk), skb);
897 if (err) {
898 if (err == -ENOBUFS && !inet->recverr) {
899 UDP_INC_STATS(sock_net(sk),
900 UDP_MIB_SNDBUFERRORS, is_udplite);
901 err = 0;
902 }
903 } else
904 UDP_INC_STATS(sock_net(sk),
905 UDP_MIB_OUTDATAGRAMS, is_udplite);
906 return err;
907 }
908
909 /*
910 * Push out all pending data as one UDP datagram. Socket is locked.
911 */
912 int udp_push_pending_frames(struct sock *sk)
913 {
914 struct udp_sock *up = udp_sk(sk);
915 struct inet_sock *inet = inet_sk(sk);
916 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
917 struct sk_buff *skb;
918 int err = 0;
919
920 skb = ip_finish_skb(sk, fl4);
921 if (!skb)
922 goto out;
923
924 err = udp_send_skb(skb, fl4, &inet->cork.base);
925
926 out:
927 up->len = 0;
928 up->pending = 0;
929 return err;
930 }
931 EXPORT_SYMBOL(udp_push_pending_frames);
932
933 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
934 {
935 switch (cmsg->cmsg_type) {
936 case UDP_SEGMENT:
937 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
938 return -EINVAL;
939 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
940 return 0;
941 default:
942 return -EINVAL;
943 }
944 }
945
946 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
947 {
948 struct cmsghdr *cmsg;
949 bool need_ip = false;
950 int err;
951
952 for_each_cmsghdr(cmsg, msg) {
953 if (!CMSG_OK(msg, cmsg))
954 return -EINVAL;
955
956 if (cmsg->cmsg_level != SOL_UDP) {
957 need_ip = true;
958 continue;
959 }
960
961 err = __udp_cmsg_send(cmsg, gso_size);
962 if (err)
963 return err;
964 }
965
966 return need_ip;
967 }
968 EXPORT_SYMBOL_GPL(udp_cmsg_send);
969
970 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
971 {
972 struct inet_sock *inet = inet_sk(sk);
973 struct udp_sock *up = udp_sk(sk);
974 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
975 struct flowi4 fl4_stack;
976 struct flowi4 *fl4;
977 int ulen = len;
978 struct ipcm_cookie ipc;
979 struct rtable *rt = NULL;
980 int free = 0;
981 int connected = 0;
982 __be32 daddr, faddr, saddr;
983 __be16 dport;
984 u8 tos;
985 int err, is_udplite = IS_UDPLITE(sk);
986 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
987 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
988 struct sk_buff *skb;
989 struct ip_options_data opt_copy;
990
991 if (len > 0xFFFF)
992 return -EMSGSIZE;
993
994 /*
995 * Check the flags.
996 */
997
998 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
999 return -EOPNOTSUPP;
1000
1001 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1002
1003 fl4 = &inet->cork.fl.u.ip4;
1004 if (up->pending) {
1005 /*
1006 * There are pending frames.
1007 * The socket lock must be held while it's corked.
1008 */
1009 lock_sock(sk);
1010 if (likely(up->pending)) {
1011 if (unlikely(up->pending != AF_INET)) {
1012 release_sock(sk);
1013 return -EINVAL;
1014 }
1015 goto do_append_data;
1016 }
1017 release_sock(sk);
1018 }
1019 ulen += sizeof(struct udphdr);
1020
1021 /*
1022 * Get and verify the address.
1023 */
1024 if (usin) {
1025 if (msg->msg_namelen < sizeof(*usin))
1026 return -EINVAL;
1027 if (usin->sin_family != AF_INET) {
1028 if (usin->sin_family != AF_UNSPEC)
1029 return -EAFNOSUPPORT;
1030 }
1031
1032 daddr = usin->sin_addr.s_addr;
1033 dport = usin->sin_port;
1034 if (dport == 0)
1035 return -EINVAL;
1036 } else {
1037 if (sk->sk_state != TCP_ESTABLISHED)
1038 return -EDESTADDRREQ;
1039 daddr = inet->inet_daddr;
1040 dport = inet->inet_dport;
1041 /* Open fast path for connected socket.
1042 Route will not be used, if at least one option is set.
1043 */
1044 connected = 1;
1045 }
1046
1047 ipcm_init_sk(&ipc, inet);
1048 ipc.gso_size = up->gso_size;
1049
1050 if (msg->msg_controllen) {
1051 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1052 if (err > 0)
1053 err = ip_cmsg_send(sk, msg, &ipc,
1054 sk->sk_family == AF_INET6);
1055 if (unlikely(err < 0)) {
1056 kfree(ipc.opt);
1057 return err;
1058 }
1059 if (ipc.opt)
1060 free = 1;
1061 connected = 0;
1062 }
1063 if (!ipc.opt) {
1064 struct ip_options_rcu *inet_opt;
1065
1066 rcu_read_lock();
1067 inet_opt = rcu_dereference(inet->inet_opt);
1068 if (inet_opt) {
1069 memcpy(&opt_copy, inet_opt,
1070 sizeof(*inet_opt) + inet_opt->opt.optlen);
1071 ipc.opt = &opt_copy.opt;
1072 }
1073 rcu_read_unlock();
1074 }
1075
1076 if (cgroup_bpf_enabled && !connected) {
1077 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1078 (struct sockaddr *)usin, &ipc.addr);
1079 if (err)
1080 goto out_free;
1081 if (usin) {
1082 if (usin->sin_port == 0) {
1083 /* BPF program set invalid port. Reject it. */
1084 err = -EINVAL;
1085 goto out_free;
1086 }
1087 daddr = usin->sin_addr.s_addr;
1088 dport = usin->sin_port;
1089 }
1090 }
1091
1092 saddr = ipc.addr;
1093 ipc.addr = faddr = daddr;
1094
1095 if (ipc.opt && ipc.opt->opt.srr) {
1096 if (!daddr) {
1097 err = -EINVAL;
1098 goto out_free;
1099 }
1100 faddr = ipc.opt->opt.faddr;
1101 connected = 0;
1102 }
1103 tos = get_rttos(&ipc, inet);
1104 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1105 (msg->msg_flags & MSG_DONTROUTE) ||
1106 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1107 tos |= RTO_ONLINK;
1108 connected = 0;
1109 }
1110
1111 if (ipv4_is_multicast(daddr)) {
1112 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1113 ipc.oif = inet->mc_index;
1114 if (!saddr)
1115 saddr = inet->mc_addr;
1116 connected = 0;
1117 } else if (!ipc.oif) {
1118 ipc.oif = inet->uc_index;
1119 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1120 /* oif is set, packet is to local broadcast and
1121 * and uc_index is set. oif is most likely set
1122 * by sk_bound_dev_if. If uc_index != oif check if the
1123 * oif is an L3 master and uc_index is an L3 slave.
1124 * If so, we want to allow the send using the uc_index.
1125 */
1126 if (ipc.oif != inet->uc_index &&
1127 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1128 inet->uc_index)) {
1129 ipc.oif = inet->uc_index;
1130 }
1131 }
1132
1133 if (connected)
1134 rt = (struct rtable *)sk_dst_check(sk, 0);
1135
1136 if (!rt) {
1137 struct net *net = sock_net(sk);
1138 __u8 flow_flags = inet_sk_flowi_flags(sk);
1139
1140 fl4 = &fl4_stack;
1141
1142 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1143 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1144 flow_flags,
1145 faddr, saddr, dport, inet->inet_sport,
1146 sk->sk_uid);
1147
1148 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1149 rt = ip_route_output_flow(net, fl4, sk);
1150 if (IS_ERR(rt)) {
1151 err = PTR_ERR(rt);
1152 rt = NULL;
1153 if (err == -ENETUNREACH)
1154 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1155 goto out;
1156 }
1157
1158 err = -EACCES;
1159 if ((rt->rt_flags & RTCF_BROADCAST) &&
1160 !sock_flag(sk, SOCK_BROADCAST))
1161 goto out;
1162 if (connected)
1163 sk_dst_set(sk, dst_clone(&rt->dst));
1164 }
1165
1166 if (msg->msg_flags&MSG_CONFIRM)
1167 goto do_confirm;
1168 back_from_confirm:
1169
1170 saddr = fl4->saddr;
1171 if (!ipc.addr)
1172 daddr = ipc.addr = fl4->daddr;
1173
1174 /* Lockless fast path for the non-corking case. */
1175 if (!corkreq) {
1176 struct inet_cork cork;
1177
1178 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1179 sizeof(struct udphdr), &ipc, &rt,
1180 &cork, msg->msg_flags);
1181 err = PTR_ERR(skb);
1182 if (!IS_ERR_OR_NULL(skb))
1183 err = udp_send_skb(skb, fl4, &cork);
1184 goto out;
1185 }
1186
1187 lock_sock(sk);
1188 if (unlikely(up->pending)) {
1189 /* The socket is already corked while preparing it. */
1190 /* ... which is an evident application bug. --ANK */
1191 release_sock(sk);
1192
1193 net_dbg_ratelimited("socket already corked\n");
1194 err = -EINVAL;
1195 goto out;
1196 }
1197 /*
1198 * Now cork the socket to pend data.
1199 */
1200 fl4 = &inet->cork.fl.u.ip4;
1201 fl4->daddr = daddr;
1202 fl4->saddr = saddr;
1203 fl4->fl4_dport = dport;
1204 fl4->fl4_sport = inet->inet_sport;
1205 up->pending = AF_INET;
1206
1207 do_append_data:
1208 up->len += ulen;
1209 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1210 sizeof(struct udphdr), &ipc, &rt,
1211 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1212 if (err)
1213 udp_flush_pending_frames(sk);
1214 else if (!corkreq)
1215 err = udp_push_pending_frames(sk);
1216 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1217 up->pending = 0;
1218 release_sock(sk);
1219
1220 out:
1221 ip_rt_put(rt);
1222 out_free:
1223 if (free)
1224 kfree(ipc.opt);
1225 if (!err)
1226 return len;
1227 /*
1228 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1229 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1230 * we don't have a good statistic (IpOutDiscards but it can be too many
1231 * things). We could add another new stat but at least for now that
1232 * seems like overkill.
1233 */
1234 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1235 UDP_INC_STATS(sock_net(sk),
1236 UDP_MIB_SNDBUFERRORS, is_udplite);
1237 }
1238 return err;
1239
1240 do_confirm:
1241 if (msg->msg_flags & MSG_PROBE)
1242 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1243 if (!(msg->msg_flags&MSG_PROBE) || len)
1244 goto back_from_confirm;
1245 err = 0;
1246 goto out;
1247 }
1248 EXPORT_SYMBOL(udp_sendmsg);
1249
1250 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1251 size_t size, int flags)
1252 {
1253 struct inet_sock *inet = inet_sk(sk);
1254 struct udp_sock *up = udp_sk(sk);
1255 int ret;
1256
1257 if (flags & MSG_SENDPAGE_NOTLAST)
1258 flags |= MSG_MORE;
1259
1260 if (!up->pending) {
1261 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1262
1263 /* Call udp_sendmsg to specify destination address which
1264 * sendpage interface can't pass.
1265 * This will succeed only when the socket is connected.
1266 */
1267 ret = udp_sendmsg(sk, &msg, 0);
1268 if (ret < 0)
1269 return ret;
1270 }
1271
1272 lock_sock(sk);
1273
1274 if (unlikely(!up->pending)) {
1275 release_sock(sk);
1276
1277 net_dbg_ratelimited("cork failed\n");
1278 return -EINVAL;
1279 }
1280
1281 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1282 page, offset, size, flags);
1283 if (ret == -EOPNOTSUPP) {
1284 release_sock(sk);
1285 return sock_no_sendpage(sk->sk_socket, page, offset,
1286 size, flags);
1287 }
1288 if (ret < 0) {
1289 udp_flush_pending_frames(sk);
1290 goto out;
1291 }
1292
1293 up->len += size;
1294 if (!(up->corkflag || (flags&MSG_MORE)))
1295 ret = udp_push_pending_frames(sk);
1296 if (!ret)
1297 ret = size;
1298 out:
1299 release_sock(sk);
1300 return ret;
1301 }
1302
1303 #define UDP_SKB_IS_STATELESS 0x80000000
1304
1305 static void udp_set_dev_scratch(struct sk_buff *skb)
1306 {
1307 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1308
1309 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1310 scratch->_tsize_state = skb->truesize;
1311 #if BITS_PER_LONG == 64
1312 scratch->len = skb->len;
1313 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1314 scratch->is_linear = !skb_is_nonlinear(skb);
1315 #endif
1316 /* all head states execept sp (dst, sk, nf) are always cleared by
1317 * udp_rcv() and we need to preserve secpath, if present, to eventually
1318 * process IP_CMSG_PASSSEC at recvmsg() time
1319 */
1320 if (likely(!skb_sec_path(skb)))
1321 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1322 }
1323
1324 static int udp_skb_truesize(struct sk_buff *skb)
1325 {
1326 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1327 }
1328
1329 static bool udp_skb_has_head_state(struct sk_buff *skb)
1330 {
1331 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1332 }
1333
1334 /* fully reclaim rmem/fwd memory allocated for skb */
1335 static void udp_rmem_release(struct sock *sk, int size, int partial,
1336 bool rx_queue_lock_held)
1337 {
1338 struct udp_sock *up = udp_sk(sk);
1339 struct sk_buff_head *sk_queue;
1340 int amt;
1341
1342 if (likely(partial)) {
1343 up->forward_deficit += size;
1344 size = up->forward_deficit;
1345 if (size < (sk->sk_rcvbuf >> 2))
1346 return;
1347 } else {
1348 size += up->forward_deficit;
1349 }
1350 up->forward_deficit = 0;
1351
1352 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1353 * if the called don't held it already
1354 */
1355 sk_queue = &sk->sk_receive_queue;
1356 if (!rx_queue_lock_held)
1357 spin_lock(&sk_queue->lock);
1358
1359
1360 sk->sk_forward_alloc += size;
1361 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1362 sk->sk_forward_alloc -= amt;
1363
1364 if (amt)
1365 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1366
1367 atomic_sub(size, &sk->sk_rmem_alloc);
1368
1369 /* this can save us from acquiring the rx queue lock on next receive */
1370 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1371
1372 if (!rx_queue_lock_held)
1373 spin_unlock(&sk_queue->lock);
1374 }
1375
1376 /* Note: called with reader_queue.lock held.
1377 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1378 * This avoids a cache line miss while receive_queue lock is held.
1379 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1380 */
1381 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1382 {
1383 prefetch(&skb->data);
1384 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1385 }
1386 EXPORT_SYMBOL(udp_skb_destructor);
1387
1388 /* as above, but the caller held the rx queue lock, too */
1389 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1390 {
1391 prefetch(&skb->data);
1392 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1393 }
1394
1395 /* Idea of busylocks is to let producers grab an extra spinlock
1396 * to relieve pressure on the receive_queue spinlock shared by consumer.
1397 * Under flood, this means that only one producer can be in line
1398 * trying to acquire the receive_queue spinlock.
1399 * These busylock can be allocated on a per cpu manner, instead of a
1400 * per socket one (that would consume a cache line per socket)
1401 */
1402 static int udp_busylocks_log __read_mostly;
1403 static spinlock_t *udp_busylocks __read_mostly;
1404
1405 static spinlock_t *busylock_acquire(void *ptr)
1406 {
1407 spinlock_t *busy;
1408
1409 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1410 spin_lock(busy);
1411 return busy;
1412 }
1413
1414 static void busylock_release(spinlock_t *busy)
1415 {
1416 if (busy)
1417 spin_unlock(busy);
1418 }
1419
1420 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1421 {
1422 struct sk_buff_head *list = &sk->sk_receive_queue;
1423 int rmem, delta, amt, err = -ENOMEM;
1424 spinlock_t *busy = NULL;
1425 int size;
1426
1427 /* try to avoid the costly atomic add/sub pair when the receive
1428 * queue is full; always allow at least a packet
1429 */
1430 rmem = atomic_read(&sk->sk_rmem_alloc);
1431 if (rmem > sk->sk_rcvbuf)
1432 goto drop;
1433
1434 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1435 * having linear skbs :
1436 * - Reduce memory overhead and thus increase receive queue capacity
1437 * - Less cache line misses at copyout() time
1438 * - Less work at consume_skb() (less alien page frag freeing)
1439 */
1440 if (rmem > (sk->sk_rcvbuf >> 1)) {
1441 skb_condense(skb);
1442
1443 busy = busylock_acquire(sk);
1444 }
1445 size = skb->truesize;
1446 udp_set_dev_scratch(skb);
1447
1448 /* we drop only if the receive buf is full and the receive
1449 * queue contains some other skb
1450 */
1451 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1452 if (rmem > (size + sk->sk_rcvbuf))
1453 goto uncharge_drop;
1454
1455 spin_lock(&list->lock);
1456 if (size >= sk->sk_forward_alloc) {
1457 amt = sk_mem_pages(size);
1458 delta = amt << SK_MEM_QUANTUM_SHIFT;
1459 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1460 err = -ENOBUFS;
1461 spin_unlock(&list->lock);
1462 goto uncharge_drop;
1463 }
1464
1465 sk->sk_forward_alloc += delta;
1466 }
1467
1468 sk->sk_forward_alloc -= size;
1469
1470 /* no need to setup a destructor, we will explicitly release the
1471 * forward allocated memory on dequeue
1472 */
1473 sock_skb_set_dropcount(sk, skb);
1474
1475 __skb_queue_tail(list, skb);
1476 spin_unlock(&list->lock);
1477
1478 if (!sock_flag(sk, SOCK_DEAD))
1479 sk->sk_data_ready(sk);
1480
1481 busylock_release(busy);
1482 return 0;
1483
1484 uncharge_drop:
1485 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1486
1487 drop:
1488 atomic_inc(&sk->sk_drops);
1489 busylock_release(busy);
1490 return err;
1491 }
1492 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1493
1494 void udp_destruct_sock(struct sock *sk)
1495 {
1496 /* reclaim completely the forward allocated memory */
1497 struct udp_sock *up = udp_sk(sk);
1498 unsigned int total = 0;
1499 struct sk_buff *skb;
1500
1501 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1502 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1503 total += skb->truesize;
1504 kfree_skb(skb);
1505 }
1506 udp_rmem_release(sk, total, 0, true);
1507
1508 inet_sock_destruct(sk);
1509 }
1510 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1511
1512 int udp_init_sock(struct sock *sk)
1513 {
1514 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1515 sk->sk_destruct = udp_destruct_sock;
1516 return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(udp_init_sock);
1519
1520 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1521 {
1522 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1523 bool slow = lock_sock_fast(sk);
1524
1525 sk_peek_offset_bwd(sk, len);
1526 unlock_sock_fast(sk, slow);
1527 }
1528
1529 if (!skb_unref(skb))
1530 return;
1531
1532 /* In the more common cases we cleared the head states previously,
1533 * see __udp_queue_rcv_skb().
1534 */
1535 if (unlikely(udp_skb_has_head_state(skb)))
1536 skb_release_head_state(skb);
1537 __consume_stateless_skb(skb);
1538 }
1539 EXPORT_SYMBOL_GPL(skb_consume_udp);
1540
1541 static struct sk_buff *__first_packet_length(struct sock *sk,
1542 struct sk_buff_head *rcvq,
1543 int *total)
1544 {
1545 struct sk_buff *skb;
1546
1547 while ((skb = skb_peek(rcvq)) != NULL) {
1548 if (udp_lib_checksum_complete(skb)) {
1549 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1550 IS_UDPLITE(sk));
1551 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1552 IS_UDPLITE(sk));
1553 atomic_inc(&sk->sk_drops);
1554 __skb_unlink(skb, rcvq);
1555 *total += skb->truesize;
1556 kfree_skb(skb);
1557 } else {
1558 /* the csum related bits could be changed, refresh
1559 * the scratch area
1560 */
1561 udp_set_dev_scratch(skb);
1562 break;
1563 }
1564 }
1565 return skb;
1566 }
1567
1568 /**
1569 * first_packet_length - return length of first packet in receive queue
1570 * @sk: socket
1571 *
1572 * Drops all bad checksum frames, until a valid one is found.
1573 * Returns the length of found skb, or -1 if none is found.
1574 */
1575 static int first_packet_length(struct sock *sk)
1576 {
1577 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1578 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1579 struct sk_buff *skb;
1580 int total = 0;
1581 int res;
1582
1583 spin_lock_bh(&rcvq->lock);
1584 skb = __first_packet_length(sk, rcvq, &total);
1585 if (!skb && !skb_queue_empty(sk_queue)) {
1586 spin_lock(&sk_queue->lock);
1587 skb_queue_splice_tail_init(sk_queue, rcvq);
1588 spin_unlock(&sk_queue->lock);
1589
1590 skb = __first_packet_length(sk, rcvq, &total);
1591 }
1592 res = skb ? skb->len : -1;
1593 if (total)
1594 udp_rmem_release(sk, total, 1, false);
1595 spin_unlock_bh(&rcvq->lock);
1596 return res;
1597 }
1598
1599 /*
1600 * IOCTL requests applicable to the UDP protocol
1601 */
1602
1603 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1604 {
1605 switch (cmd) {
1606 case SIOCOUTQ:
1607 {
1608 int amount = sk_wmem_alloc_get(sk);
1609
1610 return put_user(amount, (int __user *)arg);
1611 }
1612
1613 case SIOCINQ:
1614 {
1615 int amount = max_t(int, 0, first_packet_length(sk));
1616
1617 return put_user(amount, (int __user *)arg);
1618 }
1619
1620 default:
1621 return -ENOIOCTLCMD;
1622 }
1623
1624 return 0;
1625 }
1626 EXPORT_SYMBOL(udp_ioctl);
1627
1628 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1629 int noblock, int *off, int *err)
1630 {
1631 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1632 struct sk_buff_head *queue;
1633 struct sk_buff *last;
1634 long timeo;
1635 int error;
1636
1637 queue = &udp_sk(sk)->reader_queue;
1638 flags |= noblock ? MSG_DONTWAIT : 0;
1639 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1640 do {
1641 struct sk_buff *skb;
1642
1643 error = sock_error(sk);
1644 if (error)
1645 break;
1646
1647 error = -EAGAIN;
1648 do {
1649 spin_lock_bh(&queue->lock);
1650 skb = __skb_try_recv_from_queue(sk, queue, flags,
1651 udp_skb_destructor,
1652 off, err, &last);
1653 if (skb) {
1654 spin_unlock_bh(&queue->lock);
1655 return skb;
1656 }
1657
1658 if (skb_queue_empty(sk_queue)) {
1659 spin_unlock_bh(&queue->lock);
1660 goto busy_check;
1661 }
1662
1663 /* refill the reader queue and walk it again
1664 * keep both queues locked to avoid re-acquiring
1665 * the sk_receive_queue lock if fwd memory scheduling
1666 * is needed.
1667 */
1668 spin_lock(&sk_queue->lock);
1669 skb_queue_splice_tail_init(sk_queue, queue);
1670
1671 skb = __skb_try_recv_from_queue(sk, queue, flags,
1672 udp_skb_dtor_locked,
1673 off, err, &last);
1674 spin_unlock(&sk_queue->lock);
1675 spin_unlock_bh(&queue->lock);
1676 if (skb)
1677 return skb;
1678
1679 busy_check:
1680 if (!sk_can_busy_loop(sk))
1681 break;
1682
1683 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1684 } while (!skb_queue_empty(sk_queue));
1685
1686 /* sk_queue is empty, reader_queue may contain peeked packets */
1687 } while (timeo &&
1688 !__skb_wait_for_more_packets(sk, &error, &timeo,
1689 (struct sk_buff *)sk_queue));
1690
1691 *err = error;
1692 return NULL;
1693 }
1694 EXPORT_SYMBOL(__skb_recv_udp);
1695
1696 /*
1697 * This should be easy, if there is something there we
1698 * return it, otherwise we block.
1699 */
1700
1701 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1702 int flags, int *addr_len)
1703 {
1704 struct inet_sock *inet = inet_sk(sk);
1705 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1706 struct sk_buff *skb;
1707 unsigned int ulen, copied;
1708 int off, err, peeking = flags & MSG_PEEK;
1709 int is_udplite = IS_UDPLITE(sk);
1710 bool checksum_valid = false;
1711
1712 if (flags & MSG_ERRQUEUE)
1713 return ip_recv_error(sk, msg, len, addr_len);
1714
1715 try_again:
1716 off = sk_peek_offset(sk, flags);
1717 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1718 if (!skb)
1719 return err;
1720
1721 ulen = udp_skb_len(skb);
1722 copied = len;
1723 if (copied > ulen - off)
1724 copied = ulen - off;
1725 else if (copied < ulen)
1726 msg->msg_flags |= MSG_TRUNC;
1727
1728 /*
1729 * If checksum is needed at all, try to do it while copying the
1730 * data. If the data is truncated, or if we only want a partial
1731 * coverage checksum (UDP-Lite), do it before the copy.
1732 */
1733
1734 if (copied < ulen || peeking ||
1735 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1736 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1737 !__udp_lib_checksum_complete(skb);
1738 if (!checksum_valid)
1739 goto csum_copy_err;
1740 }
1741
1742 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1743 if (udp_skb_is_linear(skb))
1744 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1745 else
1746 err = skb_copy_datagram_msg(skb, off, msg, copied);
1747 } else {
1748 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1749
1750 if (err == -EINVAL)
1751 goto csum_copy_err;
1752 }
1753
1754 if (unlikely(err)) {
1755 if (!peeking) {
1756 atomic_inc(&sk->sk_drops);
1757 UDP_INC_STATS(sock_net(sk),
1758 UDP_MIB_INERRORS, is_udplite);
1759 }
1760 kfree_skb(skb);
1761 return err;
1762 }
1763
1764 if (!peeking)
1765 UDP_INC_STATS(sock_net(sk),
1766 UDP_MIB_INDATAGRAMS, is_udplite);
1767
1768 sock_recv_ts_and_drops(msg, sk, skb);
1769
1770 /* Copy the address. */
1771 if (sin) {
1772 sin->sin_family = AF_INET;
1773 sin->sin_port = udp_hdr(skb)->source;
1774 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1775 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1776 *addr_len = sizeof(*sin);
1777 }
1778
1779 if (udp_sk(sk)->gro_enabled)
1780 udp_cmsg_recv(msg, sk, skb);
1781
1782 if (inet->cmsg_flags)
1783 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1784
1785 err = copied;
1786 if (flags & MSG_TRUNC)
1787 err = ulen;
1788
1789 skb_consume_udp(sk, skb, peeking ? -err : err);
1790 return err;
1791
1792 csum_copy_err:
1793 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1794 udp_skb_destructor)) {
1795 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1796 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1797 }
1798 kfree_skb(skb);
1799
1800 /* starting over for a new packet, but check if we need to yield */
1801 cond_resched();
1802 msg->msg_flags &= ~MSG_TRUNC;
1803 goto try_again;
1804 }
1805
1806 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1807 {
1808 /* This check is replicated from __ip4_datagram_connect() and
1809 * intended to prevent BPF program called below from accessing bytes
1810 * that are out of the bound specified by user in addr_len.
1811 */
1812 if (addr_len < sizeof(struct sockaddr_in))
1813 return -EINVAL;
1814
1815 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1816 }
1817 EXPORT_SYMBOL(udp_pre_connect);
1818
1819 int __udp_disconnect(struct sock *sk, int flags)
1820 {
1821 struct inet_sock *inet = inet_sk(sk);
1822 /*
1823 * 1003.1g - break association.
1824 */
1825
1826 sk->sk_state = TCP_CLOSE;
1827 inet->inet_daddr = 0;
1828 inet->inet_dport = 0;
1829 sock_rps_reset_rxhash(sk);
1830 sk->sk_bound_dev_if = 0;
1831 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1832 inet_reset_saddr(sk);
1833
1834 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1835 sk->sk_prot->unhash(sk);
1836 inet->inet_sport = 0;
1837 }
1838 sk_dst_reset(sk);
1839 return 0;
1840 }
1841 EXPORT_SYMBOL(__udp_disconnect);
1842
1843 int udp_disconnect(struct sock *sk, int flags)
1844 {
1845 lock_sock(sk);
1846 __udp_disconnect(sk, flags);
1847 release_sock(sk);
1848 return 0;
1849 }
1850 EXPORT_SYMBOL(udp_disconnect);
1851
1852 void udp_lib_unhash(struct sock *sk)
1853 {
1854 if (sk_hashed(sk)) {
1855 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1856 struct udp_hslot *hslot, *hslot2;
1857
1858 hslot = udp_hashslot(udptable, sock_net(sk),
1859 udp_sk(sk)->udp_port_hash);
1860 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1861
1862 spin_lock_bh(&hslot->lock);
1863 if (rcu_access_pointer(sk->sk_reuseport_cb))
1864 reuseport_detach_sock(sk);
1865 if (sk_del_node_init_rcu(sk)) {
1866 hslot->count--;
1867 inet_sk(sk)->inet_num = 0;
1868 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1869
1870 spin_lock(&hslot2->lock);
1871 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1872 hslot2->count--;
1873 spin_unlock(&hslot2->lock);
1874 }
1875 spin_unlock_bh(&hslot->lock);
1876 }
1877 }
1878 EXPORT_SYMBOL(udp_lib_unhash);
1879
1880 /*
1881 * inet_rcv_saddr was changed, we must rehash secondary hash
1882 */
1883 void udp_lib_rehash(struct sock *sk, u16 newhash)
1884 {
1885 if (sk_hashed(sk)) {
1886 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1887 struct udp_hslot *hslot, *hslot2, *nhslot2;
1888
1889 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1890 nhslot2 = udp_hashslot2(udptable, newhash);
1891 udp_sk(sk)->udp_portaddr_hash = newhash;
1892
1893 if (hslot2 != nhslot2 ||
1894 rcu_access_pointer(sk->sk_reuseport_cb)) {
1895 hslot = udp_hashslot(udptable, sock_net(sk),
1896 udp_sk(sk)->udp_port_hash);
1897 /* we must lock primary chain too */
1898 spin_lock_bh(&hslot->lock);
1899 if (rcu_access_pointer(sk->sk_reuseport_cb))
1900 reuseport_detach_sock(sk);
1901
1902 if (hslot2 != nhslot2) {
1903 spin_lock(&hslot2->lock);
1904 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1905 hslot2->count--;
1906 spin_unlock(&hslot2->lock);
1907
1908 spin_lock(&nhslot2->lock);
1909 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1910 &nhslot2->head);
1911 nhslot2->count++;
1912 spin_unlock(&nhslot2->lock);
1913 }
1914
1915 spin_unlock_bh(&hslot->lock);
1916 }
1917 }
1918 }
1919 EXPORT_SYMBOL(udp_lib_rehash);
1920
1921 void udp_v4_rehash(struct sock *sk)
1922 {
1923 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1924 inet_sk(sk)->inet_rcv_saddr,
1925 inet_sk(sk)->inet_num);
1926 udp_lib_rehash(sk, new_hash);
1927 }
1928
1929 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1930 {
1931 int rc;
1932
1933 if (inet_sk(sk)->inet_daddr) {
1934 sock_rps_save_rxhash(sk, skb);
1935 sk_mark_napi_id(sk, skb);
1936 sk_incoming_cpu_update(sk);
1937 } else {
1938 sk_mark_napi_id_once(sk, skb);
1939 }
1940
1941 rc = __udp_enqueue_schedule_skb(sk, skb);
1942 if (rc < 0) {
1943 int is_udplite = IS_UDPLITE(sk);
1944
1945 /* Note that an ENOMEM error is charged twice */
1946 if (rc == -ENOMEM)
1947 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1948 is_udplite);
1949 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1950 kfree_skb(skb);
1951 trace_udp_fail_queue_rcv_skb(rc, sk);
1952 return -1;
1953 }
1954
1955 return 0;
1956 }
1957
1958 /* returns:
1959 * -1: error
1960 * 0: success
1961 * >0: "udp encap" protocol resubmission
1962 *
1963 * Note that in the success and error cases, the skb is assumed to
1964 * have either been requeued or freed.
1965 */
1966 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1967 {
1968 struct udp_sock *up = udp_sk(sk);
1969 int is_udplite = IS_UDPLITE(sk);
1970
1971 /*
1972 * Charge it to the socket, dropping if the queue is full.
1973 */
1974 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1975 goto drop;
1976 nf_reset(skb);
1977
1978 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1979 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1980
1981 /*
1982 * This is an encapsulation socket so pass the skb to
1983 * the socket's udp_encap_rcv() hook. Otherwise, just
1984 * fall through and pass this up the UDP socket.
1985 * up->encap_rcv() returns the following value:
1986 * =0 if skb was successfully passed to the encap
1987 * handler or was discarded by it.
1988 * >0 if skb should be passed on to UDP.
1989 * <0 if skb should be resubmitted as proto -N
1990 */
1991
1992 /* if we're overly short, let UDP handle it */
1993 encap_rcv = READ_ONCE(up->encap_rcv);
1994 if (encap_rcv) {
1995 int ret;
1996
1997 /* Verify checksum before giving to encap */
1998 if (udp_lib_checksum_complete(skb))
1999 goto csum_error;
2000
2001 ret = encap_rcv(sk, skb);
2002 if (ret <= 0) {
2003 __UDP_INC_STATS(sock_net(sk),
2004 UDP_MIB_INDATAGRAMS,
2005 is_udplite);
2006 return -ret;
2007 }
2008 }
2009
2010 /* FALLTHROUGH -- it's a UDP Packet */
2011 }
2012
2013 /*
2014 * UDP-Lite specific tests, ignored on UDP sockets
2015 */
2016 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2017
2018 /*
2019 * MIB statistics other than incrementing the error count are
2020 * disabled for the following two types of errors: these depend
2021 * on the application settings, not on the functioning of the
2022 * protocol stack as such.
2023 *
2024 * RFC 3828 here recommends (sec 3.3): "There should also be a
2025 * way ... to ... at least let the receiving application block
2026 * delivery of packets with coverage values less than a value
2027 * provided by the application."
2028 */
2029 if (up->pcrlen == 0) { /* full coverage was set */
2030 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2031 UDP_SKB_CB(skb)->cscov, skb->len);
2032 goto drop;
2033 }
2034 /* The next case involves violating the min. coverage requested
2035 * by the receiver. This is subtle: if receiver wants x and x is
2036 * greater than the buffersize/MTU then receiver will complain
2037 * that it wants x while sender emits packets of smaller size y.
2038 * Therefore the above ...()->partial_cov statement is essential.
2039 */
2040 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2041 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2042 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2043 goto drop;
2044 }
2045 }
2046
2047 prefetch(&sk->sk_rmem_alloc);
2048 if (rcu_access_pointer(sk->sk_filter) &&
2049 udp_lib_checksum_complete(skb))
2050 goto csum_error;
2051
2052 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2053 goto drop;
2054
2055 udp_csum_pull_header(skb);
2056
2057 ipv4_pktinfo_prepare(sk, skb);
2058 return __udp_queue_rcv_skb(sk, skb);
2059
2060 csum_error:
2061 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2062 drop:
2063 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2064 atomic_inc(&sk->sk_drops);
2065 kfree_skb(skb);
2066 return -1;
2067 }
2068
2069 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2070 {
2071 struct sk_buff *next, *segs;
2072 int ret;
2073
2074 if (likely(!udp_unexpected_gso(sk, skb)))
2075 return udp_queue_rcv_one_skb(sk, skb);
2076
2077 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2078 __skb_push(skb, -skb_mac_offset(skb));
2079 segs = udp_rcv_segment(sk, skb, true);
2080 for (skb = segs; skb; skb = next) {
2081 next = skb->next;
2082 __skb_pull(skb, skb_transport_offset(skb));
2083 ret = udp_queue_rcv_one_skb(sk, skb);
2084 if (ret > 0)
2085 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2086 }
2087 return 0;
2088 }
2089
2090 /* For TCP sockets, sk_rx_dst is protected by socket lock
2091 * For UDP, we use xchg() to guard against concurrent changes.
2092 */
2093 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2094 {
2095 struct dst_entry *old;
2096
2097 if (dst_hold_safe(dst)) {
2098 old = xchg(&sk->sk_rx_dst, dst);
2099 dst_release(old);
2100 return old != dst;
2101 }
2102 return false;
2103 }
2104 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2105
2106 /*
2107 * Multicasts and broadcasts go to each listener.
2108 *
2109 * Note: called only from the BH handler context.
2110 */
2111 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2112 struct udphdr *uh,
2113 __be32 saddr, __be32 daddr,
2114 struct udp_table *udptable,
2115 int proto)
2116 {
2117 struct sock *sk, *first = NULL;
2118 unsigned short hnum = ntohs(uh->dest);
2119 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2120 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2121 unsigned int offset = offsetof(typeof(*sk), sk_node);
2122 int dif = skb->dev->ifindex;
2123 int sdif = inet_sdif(skb);
2124 struct hlist_node *node;
2125 struct sk_buff *nskb;
2126
2127 if (use_hash2) {
2128 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2129 udptable->mask;
2130 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2131 start_lookup:
2132 hslot = &udptable->hash2[hash2];
2133 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2134 }
2135
2136 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2137 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2138 uh->source, saddr, dif, sdif, hnum))
2139 continue;
2140
2141 if (!first) {
2142 first = sk;
2143 continue;
2144 }
2145 nskb = skb_clone(skb, GFP_ATOMIC);
2146
2147 if (unlikely(!nskb)) {
2148 atomic_inc(&sk->sk_drops);
2149 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2150 IS_UDPLITE(sk));
2151 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2152 IS_UDPLITE(sk));
2153 continue;
2154 }
2155 if (udp_queue_rcv_skb(sk, nskb) > 0)
2156 consume_skb(nskb);
2157 }
2158
2159 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2160 if (use_hash2 && hash2 != hash2_any) {
2161 hash2 = hash2_any;
2162 goto start_lookup;
2163 }
2164
2165 if (first) {
2166 if (udp_queue_rcv_skb(first, skb) > 0)
2167 consume_skb(skb);
2168 } else {
2169 kfree_skb(skb);
2170 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2171 proto == IPPROTO_UDPLITE);
2172 }
2173 return 0;
2174 }
2175
2176 /* Initialize UDP checksum. If exited with zero value (success),
2177 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2178 * Otherwise, csum completion requires chacksumming packet body,
2179 * including udp header and folding it to skb->csum.
2180 */
2181 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2182 int proto)
2183 {
2184 int err;
2185
2186 UDP_SKB_CB(skb)->partial_cov = 0;
2187 UDP_SKB_CB(skb)->cscov = skb->len;
2188
2189 if (proto == IPPROTO_UDPLITE) {
2190 err = udplite_checksum_init(skb, uh);
2191 if (err)
2192 return err;
2193
2194 if (UDP_SKB_CB(skb)->partial_cov) {
2195 skb->csum = inet_compute_pseudo(skb, proto);
2196 return 0;
2197 }
2198 }
2199
2200 /* Note, we are only interested in != 0 or == 0, thus the
2201 * force to int.
2202 */
2203 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2204 inet_compute_pseudo);
2205 if (err)
2206 return err;
2207
2208 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2209 /* If SW calculated the value, we know it's bad */
2210 if (skb->csum_complete_sw)
2211 return 1;
2212
2213 /* HW says the value is bad. Let's validate that.
2214 * skb->csum is no longer the full packet checksum,
2215 * so don't treat it as such.
2216 */
2217 skb_checksum_complete_unset(skb);
2218 }
2219
2220 return 0;
2221 }
2222
2223 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2224 * return code conversion for ip layer consumption
2225 */
2226 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2227 struct udphdr *uh)
2228 {
2229 int ret;
2230
2231 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2232 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2233 inet_compute_pseudo);
2234
2235 ret = udp_queue_rcv_skb(sk, skb);
2236
2237 /* a return value > 0 means to resubmit the input, but
2238 * it wants the return to be -protocol, or 0
2239 */
2240 if (ret > 0)
2241 return -ret;
2242 return 0;
2243 }
2244
2245 /*
2246 * All we need to do is get the socket, and then do a checksum.
2247 */
2248
2249 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2250 int proto)
2251 {
2252 struct sock *sk;
2253 struct udphdr *uh;
2254 unsigned short ulen;
2255 struct rtable *rt = skb_rtable(skb);
2256 __be32 saddr, daddr;
2257 struct net *net = dev_net(skb->dev);
2258
2259 /*
2260 * Validate the packet.
2261 */
2262 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2263 goto drop; /* No space for header. */
2264
2265 uh = udp_hdr(skb);
2266 ulen = ntohs(uh->len);
2267 saddr = ip_hdr(skb)->saddr;
2268 daddr = ip_hdr(skb)->daddr;
2269
2270 if (ulen > skb->len)
2271 goto short_packet;
2272
2273 if (proto == IPPROTO_UDP) {
2274 /* UDP validates ulen. */
2275 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2276 goto short_packet;
2277 uh = udp_hdr(skb);
2278 }
2279
2280 if (udp4_csum_init(skb, uh, proto))
2281 goto csum_error;
2282
2283 sk = skb_steal_sock(skb);
2284 if (sk) {
2285 struct dst_entry *dst = skb_dst(skb);
2286 int ret;
2287
2288 if (unlikely(sk->sk_rx_dst != dst))
2289 udp_sk_rx_dst_set(sk, dst);
2290
2291 ret = udp_unicast_rcv_skb(sk, skb, uh);
2292 sock_put(sk);
2293 return ret;
2294 }
2295
2296 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2297 return __udp4_lib_mcast_deliver(net, skb, uh,
2298 saddr, daddr, udptable, proto);
2299
2300 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2301 if (sk)
2302 return udp_unicast_rcv_skb(sk, skb, uh);
2303
2304 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2305 goto drop;
2306 nf_reset(skb);
2307
2308 /* No socket. Drop packet silently, if checksum is wrong */
2309 if (udp_lib_checksum_complete(skb))
2310 goto csum_error;
2311
2312 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2313 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2314
2315 /*
2316 * Hmm. We got an UDP packet to a port to which we
2317 * don't wanna listen. Ignore it.
2318 */
2319 kfree_skb(skb);
2320 return 0;
2321
2322 short_packet:
2323 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2324 proto == IPPROTO_UDPLITE ? "Lite" : "",
2325 &saddr, ntohs(uh->source),
2326 ulen, skb->len,
2327 &daddr, ntohs(uh->dest));
2328 goto drop;
2329
2330 csum_error:
2331 /*
2332 * RFC1122: OK. Discards the bad packet silently (as far as
2333 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2334 */
2335 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2336 proto == IPPROTO_UDPLITE ? "Lite" : "",
2337 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2338 ulen);
2339 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2340 drop:
2341 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2342 kfree_skb(skb);
2343 return 0;
2344 }
2345
2346 /* We can only early demux multicast if there is a single matching socket.
2347 * If more than one socket found returns NULL
2348 */
2349 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2350 __be16 loc_port, __be32 loc_addr,
2351 __be16 rmt_port, __be32 rmt_addr,
2352 int dif, int sdif)
2353 {
2354 struct sock *sk, *result;
2355 unsigned short hnum = ntohs(loc_port);
2356 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2357 struct udp_hslot *hslot = &udp_table.hash[slot];
2358
2359 /* Do not bother scanning a too big list */
2360 if (hslot->count > 10)
2361 return NULL;
2362
2363 result = NULL;
2364 sk_for_each_rcu(sk, &hslot->head) {
2365 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2366 rmt_port, rmt_addr, dif, sdif, hnum)) {
2367 if (result)
2368 return NULL;
2369 result = sk;
2370 }
2371 }
2372
2373 return result;
2374 }
2375
2376 /* For unicast we should only early demux connected sockets or we can
2377 * break forwarding setups. The chains here can be long so only check
2378 * if the first socket is an exact match and if not move on.
2379 */
2380 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2381 __be16 loc_port, __be32 loc_addr,
2382 __be16 rmt_port, __be32 rmt_addr,
2383 int dif, int sdif)
2384 {
2385 unsigned short hnum = ntohs(loc_port);
2386 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2387 unsigned int slot2 = hash2 & udp_table.mask;
2388 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2389 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2390 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2391 struct sock *sk;
2392
2393 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2394 if (INET_MATCH(sk, net, acookie, rmt_addr,
2395 loc_addr, ports, dif, sdif))
2396 return sk;
2397 /* Only check first socket in chain */
2398 break;
2399 }
2400 return NULL;
2401 }
2402
2403 int udp_v4_early_demux(struct sk_buff *skb)
2404 {
2405 struct net *net = dev_net(skb->dev);
2406 struct in_device *in_dev = NULL;
2407 const struct iphdr *iph;
2408 const struct udphdr *uh;
2409 struct sock *sk = NULL;
2410 struct dst_entry *dst;
2411 int dif = skb->dev->ifindex;
2412 int sdif = inet_sdif(skb);
2413 int ours;
2414
2415 /* validate the packet */
2416 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2417 return 0;
2418
2419 iph = ip_hdr(skb);
2420 uh = udp_hdr(skb);
2421
2422 if (skb->pkt_type == PACKET_MULTICAST) {
2423 in_dev = __in_dev_get_rcu(skb->dev);
2424
2425 if (!in_dev)
2426 return 0;
2427
2428 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2429 iph->protocol);
2430 if (!ours)
2431 return 0;
2432
2433 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2434 uh->source, iph->saddr,
2435 dif, sdif);
2436 } else if (skb->pkt_type == PACKET_HOST) {
2437 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2438 uh->source, iph->saddr, dif, sdif);
2439 }
2440
2441 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2442 return 0;
2443
2444 skb->sk = sk;
2445 skb->destructor = sock_efree;
2446 dst = READ_ONCE(sk->sk_rx_dst);
2447
2448 if (dst)
2449 dst = dst_check(dst, 0);
2450 if (dst) {
2451 u32 itag = 0;
2452
2453 /* set noref for now.
2454 * any place which wants to hold dst has to call
2455 * dst_hold_safe()
2456 */
2457 skb_dst_set_noref(skb, dst);
2458
2459 /* for unconnected multicast sockets we need to validate
2460 * the source on each packet
2461 */
2462 if (!inet_sk(sk)->inet_daddr && in_dev)
2463 return ip_mc_validate_source(skb, iph->daddr,
2464 iph->saddr, iph->tos,
2465 skb->dev, in_dev, &itag);
2466 }
2467 return 0;
2468 }
2469
2470 int udp_rcv(struct sk_buff *skb)
2471 {
2472 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2473 }
2474
2475 void udp_destroy_sock(struct sock *sk)
2476 {
2477 struct udp_sock *up = udp_sk(sk);
2478 bool slow = lock_sock_fast(sk);
2479 udp_flush_pending_frames(sk);
2480 unlock_sock_fast(sk, slow);
2481 if (static_branch_unlikely(&udp_encap_needed_key)) {
2482 if (up->encap_type) {
2483 void (*encap_destroy)(struct sock *sk);
2484 encap_destroy = READ_ONCE(up->encap_destroy);
2485 if (encap_destroy)
2486 encap_destroy(sk);
2487 }
2488 if (up->encap_enabled)
2489 static_branch_dec(&udp_encap_needed_key);
2490 }
2491 }
2492
2493 /*
2494 * Socket option code for UDP
2495 */
2496 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2497 char __user *optval, unsigned int optlen,
2498 int (*push_pending_frames)(struct sock *))
2499 {
2500 struct udp_sock *up = udp_sk(sk);
2501 int val, valbool;
2502 int err = 0;
2503 int is_udplite = IS_UDPLITE(sk);
2504
2505 if (optlen < sizeof(int))
2506 return -EINVAL;
2507
2508 if (get_user(val, (int __user *)optval))
2509 return -EFAULT;
2510
2511 valbool = val ? 1 : 0;
2512
2513 switch (optname) {
2514 case UDP_CORK:
2515 if (val != 0) {
2516 up->corkflag = 1;
2517 } else {
2518 up->corkflag = 0;
2519 lock_sock(sk);
2520 push_pending_frames(sk);
2521 release_sock(sk);
2522 }
2523 break;
2524
2525 case UDP_ENCAP:
2526 switch (val) {
2527 case 0:
2528 case UDP_ENCAP_ESPINUDP:
2529 case UDP_ENCAP_ESPINUDP_NON_IKE:
2530 up->encap_rcv = xfrm4_udp_encap_rcv;
2531 /* FALLTHROUGH */
2532 case UDP_ENCAP_L2TPINUDP:
2533 up->encap_type = val;
2534 lock_sock(sk);
2535 udp_tunnel_encap_enable(sk->sk_socket);
2536 release_sock(sk);
2537 break;
2538 default:
2539 err = -ENOPROTOOPT;
2540 break;
2541 }
2542 break;
2543
2544 case UDP_NO_CHECK6_TX:
2545 up->no_check6_tx = valbool;
2546 break;
2547
2548 case UDP_NO_CHECK6_RX:
2549 up->no_check6_rx = valbool;
2550 break;
2551
2552 case UDP_SEGMENT:
2553 if (val < 0 || val > USHRT_MAX)
2554 return -EINVAL;
2555 up->gso_size = val;
2556 break;
2557
2558 case UDP_GRO:
2559 lock_sock(sk);
2560 if (valbool)
2561 udp_tunnel_encap_enable(sk->sk_socket);
2562 up->gro_enabled = valbool;
2563 release_sock(sk);
2564 break;
2565
2566 /*
2567 * UDP-Lite's partial checksum coverage (RFC 3828).
2568 */
2569 /* The sender sets actual checksum coverage length via this option.
2570 * The case coverage > packet length is handled by send module. */
2571 case UDPLITE_SEND_CSCOV:
2572 if (!is_udplite) /* Disable the option on UDP sockets */
2573 return -ENOPROTOOPT;
2574 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2575 val = 8;
2576 else if (val > USHRT_MAX)
2577 val = USHRT_MAX;
2578 up->pcslen = val;
2579 up->pcflag |= UDPLITE_SEND_CC;
2580 break;
2581
2582 /* The receiver specifies a minimum checksum coverage value. To make
2583 * sense, this should be set to at least 8 (as done below). If zero is
2584 * used, this again means full checksum coverage. */
2585 case UDPLITE_RECV_CSCOV:
2586 if (!is_udplite) /* Disable the option on UDP sockets */
2587 return -ENOPROTOOPT;
2588 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2589 val = 8;
2590 else if (val > USHRT_MAX)
2591 val = USHRT_MAX;
2592 up->pcrlen = val;
2593 up->pcflag |= UDPLITE_RECV_CC;
2594 break;
2595
2596 default:
2597 err = -ENOPROTOOPT;
2598 break;
2599 }
2600
2601 return err;
2602 }
2603 EXPORT_SYMBOL(udp_lib_setsockopt);
2604
2605 int udp_setsockopt(struct sock *sk, int level, int optname,
2606 char __user *optval, unsigned int optlen)
2607 {
2608 if (level == SOL_UDP || level == SOL_UDPLITE)
2609 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2610 udp_push_pending_frames);
2611 return ip_setsockopt(sk, level, optname, optval, optlen);
2612 }
2613
2614 #ifdef CONFIG_COMPAT
2615 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2616 char __user *optval, unsigned int optlen)
2617 {
2618 if (level == SOL_UDP || level == SOL_UDPLITE)
2619 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2620 udp_push_pending_frames);
2621 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2622 }
2623 #endif
2624
2625 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2626 char __user *optval, int __user *optlen)
2627 {
2628 struct udp_sock *up = udp_sk(sk);
2629 int val, len;
2630
2631 if (get_user(len, optlen))
2632 return -EFAULT;
2633
2634 len = min_t(unsigned int, len, sizeof(int));
2635
2636 if (len < 0)
2637 return -EINVAL;
2638
2639 switch (optname) {
2640 case UDP_CORK:
2641 val = up->corkflag;
2642 break;
2643
2644 case UDP_ENCAP:
2645 val = up->encap_type;
2646 break;
2647
2648 case UDP_NO_CHECK6_TX:
2649 val = up->no_check6_tx;
2650 break;
2651
2652 case UDP_NO_CHECK6_RX:
2653 val = up->no_check6_rx;
2654 break;
2655
2656 case UDP_SEGMENT:
2657 val = up->gso_size;
2658 break;
2659
2660 /* The following two cannot be changed on UDP sockets, the return is
2661 * always 0 (which corresponds to the full checksum coverage of UDP). */
2662 case UDPLITE_SEND_CSCOV:
2663 val = up->pcslen;
2664 break;
2665
2666 case UDPLITE_RECV_CSCOV:
2667 val = up->pcrlen;
2668 break;
2669
2670 default:
2671 return -ENOPROTOOPT;
2672 }
2673
2674 if (put_user(len, optlen))
2675 return -EFAULT;
2676 if (copy_to_user(optval, &val, len))
2677 return -EFAULT;
2678 return 0;
2679 }
2680 EXPORT_SYMBOL(udp_lib_getsockopt);
2681
2682 int udp_getsockopt(struct sock *sk, int level, int optname,
2683 char __user *optval, int __user *optlen)
2684 {
2685 if (level == SOL_UDP || level == SOL_UDPLITE)
2686 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2687 return ip_getsockopt(sk, level, optname, optval, optlen);
2688 }
2689
2690 #ifdef CONFIG_COMPAT
2691 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2692 char __user *optval, int __user *optlen)
2693 {
2694 if (level == SOL_UDP || level == SOL_UDPLITE)
2695 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2696 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2697 }
2698 #endif
2699 /**
2700 * udp_poll - wait for a UDP event.
2701 * @file - file struct
2702 * @sock - socket
2703 * @wait - poll table
2704 *
2705 * This is same as datagram poll, except for the special case of
2706 * blocking sockets. If application is using a blocking fd
2707 * and a packet with checksum error is in the queue;
2708 * then it could get return from select indicating data available
2709 * but then block when reading it. Add special case code
2710 * to work around these arguably broken applications.
2711 */
2712 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2713 {
2714 __poll_t mask = datagram_poll(file, sock, wait);
2715 struct sock *sk = sock->sk;
2716
2717 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2718 mask |= EPOLLIN | EPOLLRDNORM;
2719
2720 /* Check for false positives due to checksum errors */
2721 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2722 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2723 mask &= ~(EPOLLIN | EPOLLRDNORM);
2724
2725 return mask;
2726
2727 }
2728 EXPORT_SYMBOL(udp_poll);
2729
2730 int udp_abort(struct sock *sk, int err)
2731 {
2732 lock_sock(sk);
2733
2734 sk->sk_err = err;
2735 sk->sk_error_report(sk);
2736 __udp_disconnect(sk, 0);
2737
2738 release_sock(sk);
2739
2740 return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(udp_abort);
2743
2744 struct proto udp_prot = {
2745 .name = "UDP",
2746 .owner = THIS_MODULE,
2747 .close = udp_lib_close,
2748 .pre_connect = udp_pre_connect,
2749 .connect = ip4_datagram_connect,
2750 .disconnect = udp_disconnect,
2751 .ioctl = udp_ioctl,
2752 .init = udp_init_sock,
2753 .destroy = udp_destroy_sock,
2754 .setsockopt = udp_setsockopt,
2755 .getsockopt = udp_getsockopt,
2756 .sendmsg = udp_sendmsg,
2757 .recvmsg = udp_recvmsg,
2758 .sendpage = udp_sendpage,
2759 .release_cb = ip4_datagram_release_cb,
2760 .hash = udp_lib_hash,
2761 .unhash = udp_lib_unhash,
2762 .rehash = udp_v4_rehash,
2763 .get_port = udp_v4_get_port,
2764 .memory_allocated = &udp_memory_allocated,
2765 .sysctl_mem = sysctl_udp_mem,
2766 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2767 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2768 .obj_size = sizeof(struct udp_sock),
2769 .h.udp_table = &udp_table,
2770 #ifdef CONFIG_COMPAT
2771 .compat_setsockopt = compat_udp_setsockopt,
2772 .compat_getsockopt = compat_udp_getsockopt,
2773 #endif
2774 .diag_destroy = udp_abort,
2775 };
2776 EXPORT_SYMBOL(udp_prot);
2777
2778 /* ------------------------------------------------------------------------ */
2779 #ifdef CONFIG_PROC_FS
2780
2781 static struct sock *udp_get_first(struct seq_file *seq, int start)
2782 {
2783 struct sock *sk;
2784 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2785 struct udp_iter_state *state = seq->private;
2786 struct net *net = seq_file_net(seq);
2787
2788 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2789 ++state->bucket) {
2790 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2791
2792 if (hlist_empty(&hslot->head))
2793 continue;
2794
2795 spin_lock_bh(&hslot->lock);
2796 sk_for_each(sk, &hslot->head) {
2797 if (!net_eq(sock_net(sk), net))
2798 continue;
2799 if (sk->sk_family == afinfo->family)
2800 goto found;
2801 }
2802 spin_unlock_bh(&hslot->lock);
2803 }
2804 sk = NULL;
2805 found:
2806 return sk;
2807 }
2808
2809 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2810 {
2811 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2812 struct udp_iter_state *state = seq->private;
2813 struct net *net = seq_file_net(seq);
2814
2815 do {
2816 sk = sk_next(sk);
2817 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2818
2819 if (!sk) {
2820 if (state->bucket <= afinfo->udp_table->mask)
2821 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2822 return udp_get_first(seq, state->bucket + 1);
2823 }
2824 return sk;
2825 }
2826
2827 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2828 {
2829 struct sock *sk = udp_get_first(seq, 0);
2830
2831 if (sk)
2832 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2833 --pos;
2834 return pos ? NULL : sk;
2835 }
2836
2837 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2838 {
2839 struct udp_iter_state *state = seq->private;
2840 state->bucket = MAX_UDP_PORTS;
2841
2842 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2843 }
2844 EXPORT_SYMBOL(udp_seq_start);
2845
2846 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2847 {
2848 struct sock *sk;
2849
2850 if (v == SEQ_START_TOKEN)
2851 sk = udp_get_idx(seq, 0);
2852 else
2853 sk = udp_get_next(seq, v);
2854
2855 ++*pos;
2856 return sk;
2857 }
2858 EXPORT_SYMBOL(udp_seq_next);
2859
2860 void udp_seq_stop(struct seq_file *seq, void *v)
2861 {
2862 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2863 struct udp_iter_state *state = seq->private;
2864
2865 if (state->bucket <= afinfo->udp_table->mask)
2866 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2867 }
2868 EXPORT_SYMBOL(udp_seq_stop);
2869
2870 /* ------------------------------------------------------------------------ */
2871 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2872 int bucket)
2873 {
2874 struct inet_sock *inet = inet_sk(sp);
2875 __be32 dest = inet->inet_daddr;
2876 __be32 src = inet->inet_rcv_saddr;
2877 __u16 destp = ntohs(inet->inet_dport);
2878 __u16 srcp = ntohs(inet->inet_sport);
2879
2880 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2881 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2882 bucket, src, srcp, dest, destp, sp->sk_state,
2883 sk_wmem_alloc_get(sp),
2884 udp_rqueue_get(sp),
2885 0, 0L, 0,
2886 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2887 0, sock_i_ino(sp),
2888 refcount_read(&sp->sk_refcnt), sp,
2889 atomic_read(&sp->sk_drops));
2890 }
2891
2892 int udp4_seq_show(struct seq_file *seq, void *v)
2893 {
2894 seq_setwidth(seq, 127);
2895 if (v == SEQ_START_TOKEN)
2896 seq_puts(seq, " sl local_address rem_address st tx_queue "
2897 "rx_queue tr tm->when retrnsmt uid timeout "
2898 "inode ref pointer drops");
2899 else {
2900 struct udp_iter_state *state = seq->private;
2901
2902 udp4_format_sock(v, seq, state->bucket);
2903 }
2904 seq_pad(seq, '\n');
2905 return 0;
2906 }
2907
2908 const struct seq_operations udp_seq_ops = {
2909 .start = udp_seq_start,
2910 .next = udp_seq_next,
2911 .stop = udp_seq_stop,
2912 .show = udp4_seq_show,
2913 };
2914 EXPORT_SYMBOL(udp_seq_ops);
2915
2916 static struct udp_seq_afinfo udp4_seq_afinfo = {
2917 .family = AF_INET,
2918 .udp_table = &udp_table,
2919 };
2920
2921 static int __net_init udp4_proc_init_net(struct net *net)
2922 {
2923 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2924 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2925 return -ENOMEM;
2926 return 0;
2927 }
2928
2929 static void __net_exit udp4_proc_exit_net(struct net *net)
2930 {
2931 remove_proc_entry("udp", net->proc_net);
2932 }
2933
2934 static struct pernet_operations udp4_net_ops = {
2935 .init = udp4_proc_init_net,
2936 .exit = udp4_proc_exit_net,
2937 };
2938
2939 int __init udp4_proc_init(void)
2940 {
2941 return register_pernet_subsys(&udp4_net_ops);
2942 }
2943
2944 void udp4_proc_exit(void)
2945 {
2946 unregister_pernet_subsys(&udp4_net_ops);
2947 }
2948 #endif /* CONFIG_PROC_FS */
2949
2950 static __initdata unsigned long uhash_entries;
2951 static int __init set_uhash_entries(char *str)
2952 {
2953 ssize_t ret;
2954
2955 if (!str)
2956 return 0;
2957
2958 ret = kstrtoul(str, 0, &uhash_entries);
2959 if (ret)
2960 return 0;
2961
2962 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2963 uhash_entries = UDP_HTABLE_SIZE_MIN;
2964 return 1;
2965 }
2966 __setup("uhash_entries=", set_uhash_entries);
2967
2968 void __init udp_table_init(struct udp_table *table, const char *name)
2969 {
2970 unsigned int i;
2971
2972 table->hash = alloc_large_system_hash(name,
2973 2 * sizeof(struct udp_hslot),
2974 uhash_entries,
2975 21, /* one slot per 2 MB */
2976 0,
2977 &table->log,
2978 &table->mask,
2979 UDP_HTABLE_SIZE_MIN,
2980 64 * 1024);
2981
2982 table->hash2 = table->hash + (table->mask + 1);
2983 for (i = 0; i <= table->mask; i++) {
2984 INIT_HLIST_HEAD(&table->hash[i].head);
2985 table->hash[i].count = 0;
2986 spin_lock_init(&table->hash[i].lock);
2987 }
2988 for (i = 0; i <= table->mask; i++) {
2989 INIT_HLIST_HEAD(&table->hash2[i].head);
2990 table->hash2[i].count = 0;
2991 spin_lock_init(&table->hash2[i].lock);
2992 }
2993 }
2994
2995 u32 udp_flow_hashrnd(void)
2996 {
2997 static u32 hashrnd __read_mostly;
2998
2999 net_get_random_once(&hashrnd, sizeof(hashrnd));
3000
3001 return hashrnd;
3002 }
3003 EXPORT_SYMBOL(udp_flow_hashrnd);
3004
3005 static void __udp_sysctl_init(struct net *net)
3006 {
3007 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3008 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3009
3010 #ifdef CONFIG_NET_L3_MASTER_DEV
3011 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3012 #endif
3013 }
3014
3015 static int __net_init udp_sysctl_init(struct net *net)
3016 {
3017 __udp_sysctl_init(net);
3018 return 0;
3019 }
3020
3021 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3022 .init = udp_sysctl_init,
3023 };
3024
3025 void __init udp_init(void)
3026 {
3027 unsigned long limit;
3028 unsigned int i;
3029
3030 udp_table_init(&udp_table, "UDP");
3031 limit = nr_free_buffer_pages() / 8;
3032 limit = max(limit, 128UL);
3033 sysctl_udp_mem[0] = limit / 4 * 3;
3034 sysctl_udp_mem[1] = limit;
3035 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3036
3037 __udp_sysctl_init(&init_net);
3038
3039 /* 16 spinlocks per cpu */
3040 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3041 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3042 GFP_KERNEL);
3043 if (!udp_busylocks)
3044 panic("UDP: failed to alloc udp_busylocks\n");
3045 for (i = 0; i < (1U << udp_busylocks_log); i++)
3046 spin_lock_init(udp_busylocks + i);
3047
3048 if (register_pernet_subsys(&udp_sysctl_ops))
3049 panic("UDP: failed to init sysctl parameters.\n");
3050 }