]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/udp.c
net/mlx5e: IPSec, Add IPSec ethtool stats
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 return true;
144 #endif
145 return false;
146 }
147
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 const struct udp_hslot *hslot,
150 unsigned long *bitmap,
151 struct sock *sk, unsigned int log)
152 {
153 struct sock *sk2;
154 kuid_t uid = sock_i_uid(sk);
155
156 sk_for_each(sk2, &hslot->head) {
157 if (net_eq(sock_net(sk2), net) &&
158 sk2 != sk &&
159 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 (!sk2->sk_reuse || !sk->sk_reuse) &&
161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 inet_rcv_saddr_equal(sk, sk2, true)) {
164 if (sk2->sk_reuseport && sk->sk_reuseport &&
165 !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 uid_eq(uid, sock_i_uid(sk2))) {
167 if (!bitmap)
168 return 0;
169 } else {
170 if (!bitmap)
171 return 1;
172 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 bitmap);
174 }
175 }
176 }
177 return 0;
178 }
179
180 /*
181 * Note: we still hold spinlock of primary hash chain, so no other writer
182 * can insert/delete a socket with local_port == num
183 */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 struct udp_hslot *hslot2,
186 struct sock *sk)
187 {
188 struct sock *sk2;
189 kuid_t uid = sock_i_uid(sk);
190 int res = 0;
191
192 spin_lock(&hslot2->lock);
193 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 if (net_eq(sock_net(sk2), net) &&
195 sk2 != sk &&
196 (udp_sk(sk2)->udp_port_hash == num) &&
197 (!sk2->sk_reuse || !sk->sk_reuse) &&
198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 inet_rcv_saddr_equal(sk, sk2, true)) {
201 if (sk2->sk_reuseport && sk->sk_reuseport &&
202 !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 uid_eq(uid, sock_i_uid(sk2))) {
204 res = 0;
205 } else {
206 res = 1;
207 }
208 break;
209 }
210 }
211 spin_unlock(&hslot2->lock);
212 return res;
213 }
214
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 struct net *net = sock_net(sk);
218 kuid_t uid = sock_i_uid(sk);
219 struct sock *sk2;
220
221 sk_for_each(sk2, &hslot->head) {
222 if (net_eq(sock_net(sk2), net) &&
223 sk2 != sk &&
224 sk2->sk_family == sk->sk_family &&
225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 inet_rcv_saddr_equal(sk, sk2, false)) {
230 return reuseport_add_sock(sk, sk2);
231 }
232 }
233
234 /* Initial allocation may have already happened via setsockopt */
235 if (!rcu_access_pointer(sk->sk_reuseport_cb))
236 return reuseport_alloc(sk);
237 return 0;
238 }
239
240 /**
241 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
242 *
243 * @sk: socket struct in question
244 * @snum: port number to look up
245 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
246 * with NULL address
247 */
248 int udp_lib_get_port(struct sock *sk, unsigned short snum,
249 unsigned int hash2_nulladdr)
250 {
251 struct udp_hslot *hslot, *hslot2;
252 struct udp_table *udptable = sk->sk_prot->h.udp_table;
253 int error = 1;
254 struct net *net = sock_net(sk);
255
256 if (!snum) {
257 int low, high, remaining;
258 unsigned int rand;
259 unsigned short first, last;
260 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
261
262 inet_get_local_port_range(net, &low, &high);
263 remaining = (high - low) + 1;
264
265 rand = prandom_u32();
266 first = reciprocal_scale(rand, remaining) + low;
267 /*
268 * force rand to be an odd multiple of UDP_HTABLE_SIZE
269 */
270 rand = (rand | 1) * (udptable->mask + 1);
271 last = first + udptable->mask + 1;
272 do {
273 hslot = udp_hashslot(udptable, net, first);
274 bitmap_zero(bitmap, PORTS_PER_CHAIN);
275 spin_lock_bh(&hslot->lock);
276 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
277 udptable->log);
278
279 snum = first;
280 /*
281 * Iterate on all possible values of snum for this hash.
282 * Using steps of an odd multiple of UDP_HTABLE_SIZE
283 * give us randomization and full range coverage.
284 */
285 do {
286 if (low <= snum && snum <= high &&
287 !test_bit(snum >> udptable->log, bitmap) &&
288 !inet_is_local_reserved_port(net, snum))
289 goto found;
290 snum += rand;
291 } while (snum != first);
292 spin_unlock_bh(&hslot->lock);
293 cond_resched();
294 } while (++first != last);
295 goto fail;
296 } else {
297 hslot = udp_hashslot(udptable, net, snum);
298 spin_lock_bh(&hslot->lock);
299 if (hslot->count > 10) {
300 int exist;
301 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
302
303 slot2 &= udptable->mask;
304 hash2_nulladdr &= udptable->mask;
305
306 hslot2 = udp_hashslot2(udptable, slot2);
307 if (hslot->count < hslot2->count)
308 goto scan_primary_hash;
309
310 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
311 if (!exist && (hash2_nulladdr != slot2)) {
312 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
313 exist = udp_lib_lport_inuse2(net, snum, hslot2,
314 sk);
315 }
316 if (exist)
317 goto fail_unlock;
318 else
319 goto found;
320 }
321 scan_primary_hash:
322 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
323 goto fail_unlock;
324 }
325 found:
326 inet_sk(sk)->inet_num = snum;
327 udp_sk(sk)->udp_port_hash = snum;
328 udp_sk(sk)->udp_portaddr_hash ^= snum;
329 if (sk_unhashed(sk)) {
330 if (sk->sk_reuseport &&
331 udp_reuseport_add_sock(sk, hslot)) {
332 inet_sk(sk)->inet_num = 0;
333 udp_sk(sk)->udp_port_hash = 0;
334 udp_sk(sk)->udp_portaddr_hash ^= snum;
335 goto fail_unlock;
336 }
337
338 sk_add_node_rcu(sk, &hslot->head);
339 hslot->count++;
340 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
341
342 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
343 spin_lock(&hslot2->lock);
344 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
345 sk->sk_family == AF_INET6)
346 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
347 &hslot2->head);
348 else
349 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
350 &hslot2->head);
351 hslot2->count++;
352 spin_unlock(&hslot2->lock);
353 }
354 sock_set_flag(sk, SOCK_RCU_FREE);
355 error = 0;
356 fail_unlock:
357 spin_unlock_bh(&hslot->lock);
358 fail:
359 return error;
360 }
361 EXPORT_SYMBOL(udp_lib_get_port);
362
363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
364 unsigned int port)
365 {
366 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
367 }
368
369 int udp_v4_get_port(struct sock *sk, unsigned short snum)
370 {
371 unsigned int hash2_nulladdr =
372 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
373 unsigned int hash2_partial =
374 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
375
376 /* precompute partial secondary hash */
377 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
378 return udp_lib_get_port(sk, snum, hash2_nulladdr);
379 }
380
381 static int compute_score(struct sock *sk, struct net *net,
382 __be32 saddr, __be16 sport,
383 __be32 daddr, unsigned short hnum, int dif,
384 bool exact_dif)
385 {
386 int score;
387 struct inet_sock *inet;
388
389 if (!net_eq(sock_net(sk), net) ||
390 udp_sk(sk)->udp_port_hash != hnum ||
391 ipv6_only_sock(sk))
392 return -1;
393
394 score = (sk->sk_family == PF_INET) ? 2 : 1;
395 inet = inet_sk(sk);
396
397 if (inet->inet_rcv_saddr) {
398 if (inet->inet_rcv_saddr != daddr)
399 return -1;
400 score += 4;
401 }
402
403 if (inet->inet_daddr) {
404 if (inet->inet_daddr != saddr)
405 return -1;
406 score += 4;
407 }
408
409 if (inet->inet_dport) {
410 if (inet->inet_dport != sport)
411 return -1;
412 score += 4;
413 }
414
415 if (sk->sk_bound_dev_if || exact_dif) {
416 if (sk->sk_bound_dev_if != dif)
417 return -1;
418 score += 4;
419 }
420 if (sk->sk_incoming_cpu == raw_smp_processor_id())
421 score++;
422 return score;
423 }
424
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 const __u16 lport, const __be32 faddr,
427 const __be16 fport)
428 {
429 static u32 udp_ehash_secret __read_mostly;
430
431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432
433 return __inet_ehashfn(laddr, lport, faddr, fport,
434 udp_ehash_secret + net_hash_mix(net));
435 }
436
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 __be32 saddr, __be16 sport,
440 __be32 daddr, unsigned int hnum, int dif, bool exact_dif,
441 struct udp_hslot *hslot2,
442 struct sk_buff *skb)
443 {
444 struct sock *sk, *result;
445 int score, badness, matches = 0, reuseport = 0;
446 u32 hash = 0;
447
448 result = NULL;
449 badness = 0;
450 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 score = compute_score(sk, net, saddr, sport,
452 daddr, hnum, dif, exact_dif);
453 if (score > badness) {
454 reuseport = sk->sk_reuseport;
455 if (reuseport) {
456 hash = udp_ehashfn(net, daddr, hnum,
457 saddr, sport);
458 result = reuseport_select_sock(sk, hash, skb,
459 sizeof(struct udphdr));
460 if (result)
461 return result;
462 matches = 1;
463 }
464 badness = score;
465 result = sk;
466 } else if (score == badness && reuseport) {
467 matches++;
468 if (reciprocal_scale(hash, matches) == 0)
469 result = sk;
470 hash = next_pseudo_random32(hash);
471 }
472 }
473 return result;
474 }
475
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477 * harder than this. -DaveM
478 */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 __be16 sport, __be32 daddr, __be16 dport,
481 int dif, struct udp_table *udptable, struct sk_buff *skb)
482 {
483 struct sock *sk, *result;
484 unsigned short hnum = ntohs(dport);
485 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 bool exact_dif = udp_lib_exact_dif_match(net, skb);
488 int score, badness, matches = 0, reuseport = 0;
489 u32 hash = 0;
490
491 if (hslot->count > 10) {
492 hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 slot2 = hash2 & udptable->mask;
494 hslot2 = &udptable->hash2[slot2];
495 if (hslot->count < hslot2->count)
496 goto begin;
497
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif,
500 exact_dif, hslot2, skb);
501 if (!result) {
502 unsigned int old_slot2 = slot2;
503 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 slot2 = hash2 & udptable->mask;
505 /* avoid searching the same slot again. */
506 if (unlikely(slot2 == old_slot2))
507 return result;
508
509 hslot2 = &udptable->hash2[slot2];
510 if (hslot->count < hslot2->count)
511 goto begin;
512
513 result = udp4_lib_lookup2(net, saddr, sport,
514 daddr, hnum, dif,
515 exact_dif, hslot2, skb);
516 }
517 return result;
518 }
519 begin:
520 result = NULL;
521 badness = 0;
522 sk_for_each_rcu(sk, &hslot->head) {
523 score = compute_score(sk, net, saddr, sport,
524 daddr, hnum, dif, exact_dif);
525 if (score > badness) {
526 reuseport = sk->sk_reuseport;
527 if (reuseport) {
528 hash = udp_ehashfn(net, daddr, hnum,
529 saddr, sport);
530 result = reuseport_select_sock(sk, hash, skb,
531 sizeof(struct udphdr));
532 if (result)
533 return result;
534 matches = 1;
535 }
536 result = sk;
537 badness = score;
538 } else if (score == badness && reuseport) {
539 matches++;
540 if (reciprocal_scale(hash, matches) == 0)
541 result = sk;
542 hash = next_pseudo_random32(hash);
543 }
544 }
545 return result;
546 }
547 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
548
549 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
550 __be16 sport, __be16 dport,
551 struct udp_table *udptable)
552 {
553 const struct iphdr *iph = ip_hdr(skb);
554
555 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
556 iph->daddr, dport, inet_iif(skb),
557 udptable, skb);
558 }
559
560 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
561 __be16 sport, __be16 dport)
562 {
563 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566
567 /* Must be called under rcu_read_lock().
568 * Does increment socket refcount.
569 */
570 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
571 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
572 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
573 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
574 __be32 daddr, __be16 dport, int dif)
575 {
576 struct sock *sk;
577
578 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
579 dif, &udp_table, NULL);
580 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
581 sk = NULL;
582 return sk;
583 }
584 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
585 #endif
586
587 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
588 __be16 loc_port, __be32 loc_addr,
589 __be16 rmt_port, __be32 rmt_addr,
590 int dif, unsigned short hnum)
591 {
592 struct inet_sock *inet = inet_sk(sk);
593
594 if (!net_eq(sock_net(sk), net) ||
595 udp_sk(sk)->udp_port_hash != hnum ||
596 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
597 (inet->inet_dport != rmt_port && inet->inet_dport) ||
598 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
599 ipv6_only_sock(sk) ||
600 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
601 return false;
602 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
603 return false;
604 return true;
605 }
606
607 /*
608 * This routine is called by the ICMP module when it gets some
609 * sort of error condition. If err < 0 then the socket should
610 * be closed and the error returned to the user. If err > 0
611 * it's just the icmp type << 8 | icmp code.
612 * Header points to the ip header of the error packet. We move
613 * on past this. Then (as it used to claim before adjustment)
614 * header points to the first 8 bytes of the udp header. We need
615 * to find the appropriate port.
616 */
617
618 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
619 {
620 struct inet_sock *inet;
621 const struct iphdr *iph = (const struct iphdr *)skb->data;
622 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
623 const int type = icmp_hdr(skb)->type;
624 const int code = icmp_hdr(skb)->code;
625 struct sock *sk;
626 int harderr;
627 int err;
628 struct net *net = dev_net(skb->dev);
629
630 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
631 iph->saddr, uh->source, skb->dev->ifindex, udptable,
632 NULL);
633 if (!sk) {
634 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
635 return; /* No socket for error */
636 }
637
638 err = 0;
639 harderr = 0;
640 inet = inet_sk(sk);
641
642 switch (type) {
643 default:
644 case ICMP_TIME_EXCEEDED:
645 err = EHOSTUNREACH;
646 break;
647 case ICMP_SOURCE_QUENCH:
648 goto out;
649 case ICMP_PARAMETERPROB:
650 err = EPROTO;
651 harderr = 1;
652 break;
653 case ICMP_DEST_UNREACH:
654 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
655 ipv4_sk_update_pmtu(skb, sk, info);
656 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
657 err = EMSGSIZE;
658 harderr = 1;
659 break;
660 }
661 goto out;
662 }
663 err = EHOSTUNREACH;
664 if (code <= NR_ICMP_UNREACH) {
665 harderr = icmp_err_convert[code].fatal;
666 err = icmp_err_convert[code].errno;
667 }
668 break;
669 case ICMP_REDIRECT:
670 ipv4_sk_redirect(skb, sk);
671 goto out;
672 }
673
674 /*
675 * RFC1122: OK. Passes ICMP errors back to application, as per
676 * 4.1.3.3.
677 */
678 if (!inet->recverr) {
679 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
680 goto out;
681 } else
682 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
683
684 sk->sk_err = err;
685 sk->sk_error_report(sk);
686 out:
687 return;
688 }
689
690 void udp_err(struct sk_buff *skb, u32 info)
691 {
692 __udp4_lib_err(skb, info, &udp_table);
693 }
694
695 /*
696 * Throw away all pending data and cancel the corking. Socket is locked.
697 */
698 void udp_flush_pending_frames(struct sock *sk)
699 {
700 struct udp_sock *up = udp_sk(sk);
701
702 if (up->pending) {
703 up->len = 0;
704 up->pending = 0;
705 ip_flush_pending_frames(sk);
706 }
707 }
708 EXPORT_SYMBOL(udp_flush_pending_frames);
709
710 /**
711 * udp4_hwcsum - handle outgoing HW checksumming
712 * @skb: sk_buff containing the filled-in UDP header
713 * (checksum field must be zeroed out)
714 * @src: source IP address
715 * @dst: destination IP address
716 */
717 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
718 {
719 struct udphdr *uh = udp_hdr(skb);
720 int offset = skb_transport_offset(skb);
721 int len = skb->len - offset;
722 int hlen = len;
723 __wsum csum = 0;
724
725 if (!skb_has_frag_list(skb)) {
726 /*
727 * Only one fragment on the socket.
728 */
729 skb->csum_start = skb_transport_header(skb) - skb->head;
730 skb->csum_offset = offsetof(struct udphdr, check);
731 uh->check = ~csum_tcpudp_magic(src, dst, len,
732 IPPROTO_UDP, 0);
733 } else {
734 struct sk_buff *frags;
735
736 /*
737 * HW-checksum won't work as there are two or more
738 * fragments on the socket so that all csums of sk_buffs
739 * should be together
740 */
741 skb_walk_frags(skb, frags) {
742 csum = csum_add(csum, frags->csum);
743 hlen -= frags->len;
744 }
745
746 csum = skb_checksum(skb, offset, hlen, csum);
747 skb->ip_summed = CHECKSUM_NONE;
748
749 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
750 if (uh->check == 0)
751 uh->check = CSUM_MANGLED_0;
752 }
753 }
754 EXPORT_SYMBOL_GPL(udp4_hwcsum);
755
756 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
757 * for the simple case like when setting the checksum for a UDP tunnel.
758 */
759 void udp_set_csum(bool nocheck, struct sk_buff *skb,
760 __be32 saddr, __be32 daddr, int len)
761 {
762 struct udphdr *uh = udp_hdr(skb);
763
764 if (nocheck) {
765 uh->check = 0;
766 } else if (skb_is_gso(skb)) {
767 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
768 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
769 uh->check = 0;
770 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
771 if (uh->check == 0)
772 uh->check = CSUM_MANGLED_0;
773 } else {
774 skb->ip_summed = CHECKSUM_PARTIAL;
775 skb->csum_start = skb_transport_header(skb) - skb->head;
776 skb->csum_offset = offsetof(struct udphdr, check);
777 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 }
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 struct sock *sk = skb->sk;
785 struct inet_sock *inet = inet_sk(sk);
786 struct udphdr *uh;
787 int err = 0;
788 int is_udplite = IS_UDPLITE(sk);
789 int offset = skb_transport_offset(skb);
790 int len = skb->len - offset;
791 __wsum csum = 0;
792
793 /*
794 * Create a UDP header
795 */
796 uh = udp_hdr(skb);
797 uh->source = inet->inet_sport;
798 uh->dest = fl4->fl4_dport;
799 uh->len = htons(len);
800 uh->check = 0;
801
802 if (is_udplite) /* UDP-Lite */
803 csum = udplite_csum(skb);
804
805 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
806
807 skb->ip_summed = CHECKSUM_NONE;
808 goto send;
809
810 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811
812 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 goto send;
814
815 } else
816 csum = udp_csum(skb);
817
818 /* add protocol-dependent pseudo-header */
819 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 sk->sk_protocol, csum);
821 if (uh->check == 0)
822 uh->check = CSUM_MANGLED_0;
823
824 send:
825 err = ip_send_skb(sock_net(sk), skb);
826 if (err) {
827 if (err == -ENOBUFS && !inet->recverr) {
828 UDP_INC_STATS(sock_net(sk),
829 UDP_MIB_SNDBUFERRORS, is_udplite);
830 err = 0;
831 }
832 } else
833 UDP_INC_STATS(sock_net(sk),
834 UDP_MIB_OUTDATAGRAMS, is_udplite);
835 return err;
836 }
837
838 /*
839 * Push out all pending data as one UDP datagram. Socket is locked.
840 */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 struct udp_sock *up = udp_sk(sk);
844 struct inet_sock *inet = inet_sk(sk);
845 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 struct sk_buff *skb;
847 int err = 0;
848
849 skb = ip_finish_skb(sk, fl4);
850 if (!skb)
851 goto out;
852
853 err = udp_send_skb(skb, fl4);
854
855 out:
856 up->len = 0;
857 up->pending = 0;
858 return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861
862 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
863 {
864 struct inet_sock *inet = inet_sk(sk);
865 struct udp_sock *up = udp_sk(sk);
866 struct flowi4 fl4_stack;
867 struct flowi4 *fl4;
868 int ulen = len;
869 struct ipcm_cookie ipc;
870 struct rtable *rt = NULL;
871 int free = 0;
872 int connected = 0;
873 __be32 daddr, faddr, saddr;
874 __be16 dport;
875 u8 tos;
876 int err, is_udplite = IS_UDPLITE(sk);
877 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
878 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
879 struct sk_buff *skb;
880 struct ip_options_data opt_copy;
881
882 if (len > 0xFFFF)
883 return -EMSGSIZE;
884
885 /*
886 * Check the flags.
887 */
888
889 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
890 return -EOPNOTSUPP;
891
892 ipc.opt = NULL;
893 ipc.tx_flags = 0;
894 ipc.ttl = 0;
895 ipc.tos = -1;
896
897 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
898
899 fl4 = &inet->cork.fl.u.ip4;
900 if (up->pending) {
901 /*
902 * There are pending frames.
903 * The socket lock must be held while it's corked.
904 */
905 lock_sock(sk);
906 if (likely(up->pending)) {
907 if (unlikely(up->pending != AF_INET)) {
908 release_sock(sk);
909 return -EINVAL;
910 }
911 goto do_append_data;
912 }
913 release_sock(sk);
914 }
915 ulen += sizeof(struct udphdr);
916
917 /*
918 * Get and verify the address.
919 */
920 if (msg->msg_name) {
921 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
922 if (msg->msg_namelen < sizeof(*usin))
923 return -EINVAL;
924 if (usin->sin_family != AF_INET) {
925 if (usin->sin_family != AF_UNSPEC)
926 return -EAFNOSUPPORT;
927 }
928
929 daddr = usin->sin_addr.s_addr;
930 dport = usin->sin_port;
931 if (dport == 0)
932 return -EINVAL;
933 } else {
934 if (sk->sk_state != TCP_ESTABLISHED)
935 return -EDESTADDRREQ;
936 daddr = inet->inet_daddr;
937 dport = inet->inet_dport;
938 /* Open fast path for connected socket.
939 Route will not be used, if at least one option is set.
940 */
941 connected = 1;
942 }
943
944 ipc.sockc.tsflags = sk->sk_tsflags;
945 ipc.addr = inet->inet_saddr;
946 ipc.oif = sk->sk_bound_dev_if;
947
948 if (msg->msg_controllen) {
949 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
950 if (unlikely(err)) {
951 kfree(ipc.opt);
952 return err;
953 }
954 if (ipc.opt)
955 free = 1;
956 connected = 0;
957 }
958 if (!ipc.opt) {
959 struct ip_options_rcu *inet_opt;
960
961 rcu_read_lock();
962 inet_opt = rcu_dereference(inet->inet_opt);
963 if (inet_opt) {
964 memcpy(&opt_copy, inet_opt,
965 sizeof(*inet_opt) + inet_opt->opt.optlen);
966 ipc.opt = &opt_copy.opt;
967 }
968 rcu_read_unlock();
969 }
970
971 saddr = ipc.addr;
972 ipc.addr = faddr = daddr;
973
974 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
975
976 if (ipc.opt && ipc.opt->opt.srr) {
977 if (!daddr)
978 return -EINVAL;
979 faddr = ipc.opt->opt.faddr;
980 connected = 0;
981 }
982 tos = get_rttos(&ipc, inet);
983 if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 (msg->msg_flags & MSG_DONTROUTE) ||
985 (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 tos |= RTO_ONLINK;
987 connected = 0;
988 }
989
990 if (ipv4_is_multicast(daddr)) {
991 if (!ipc.oif)
992 ipc.oif = inet->mc_index;
993 if (!saddr)
994 saddr = inet->mc_addr;
995 connected = 0;
996 } else if (!ipc.oif)
997 ipc.oif = inet->uc_index;
998
999 if (connected)
1000 rt = (struct rtable *)sk_dst_check(sk, 0);
1001
1002 if (!rt) {
1003 struct net *net = sock_net(sk);
1004 __u8 flow_flags = inet_sk_flowi_flags(sk);
1005
1006 fl4 = &fl4_stack;
1007
1008 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1009 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1010 flow_flags,
1011 faddr, saddr, dport, inet->inet_sport,
1012 sk->sk_uid);
1013
1014 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1015 rt = ip_route_output_flow(net, fl4, sk);
1016 if (IS_ERR(rt)) {
1017 err = PTR_ERR(rt);
1018 rt = NULL;
1019 if (err == -ENETUNREACH)
1020 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1021 goto out;
1022 }
1023
1024 err = -EACCES;
1025 if ((rt->rt_flags & RTCF_BROADCAST) &&
1026 !sock_flag(sk, SOCK_BROADCAST))
1027 goto out;
1028 if (connected)
1029 sk_dst_set(sk, dst_clone(&rt->dst));
1030 }
1031
1032 if (msg->msg_flags&MSG_CONFIRM)
1033 goto do_confirm;
1034 back_from_confirm:
1035
1036 saddr = fl4->saddr;
1037 if (!ipc.addr)
1038 daddr = ipc.addr = fl4->daddr;
1039
1040 /* Lockless fast path for the non-corking case. */
1041 if (!corkreq) {
1042 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1043 sizeof(struct udphdr), &ipc, &rt,
1044 msg->msg_flags);
1045 err = PTR_ERR(skb);
1046 if (!IS_ERR_OR_NULL(skb))
1047 err = udp_send_skb(skb, fl4);
1048 goto out;
1049 }
1050
1051 lock_sock(sk);
1052 if (unlikely(up->pending)) {
1053 /* The socket is already corked while preparing it. */
1054 /* ... which is an evident application bug. --ANK */
1055 release_sock(sk);
1056
1057 net_dbg_ratelimited("cork app bug 2\n");
1058 err = -EINVAL;
1059 goto out;
1060 }
1061 /*
1062 * Now cork the socket to pend data.
1063 */
1064 fl4 = &inet->cork.fl.u.ip4;
1065 fl4->daddr = daddr;
1066 fl4->saddr = saddr;
1067 fl4->fl4_dport = dport;
1068 fl4->fl4_sport = inet->inet_sport;
1069 up->pending = AF_INET;
1070
1071 do_append_data:
1072 up->len += ulen;
1073 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1074 sizeof(struct udphdr), &ipc, &rt,
1075 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1076 if (err)
1077 udp_flush_pending_frames(sk);
1078 else if (!corkreq)
1079 err = udp_push_pending_frames(sk);
1080 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1081 up->pending = 0;
1082 release_sock(sk);
1083
1084 out:
1085 ip_rt_put(rt);
1086 if (free)
1087 kfree(ipc.opt);
1088 if (!err)
1089 return len;
1090 /*
1091 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1092 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1093 * we don't have a good statistic (IpOutDiscards but it can be too many
1094 * things). We could add another new stat but at least for now that
1095 * seems like overkill.
1096 */
1097 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1098 UDP_INC_STATS(sock_net(sk),
1099 UDP_MIB_SNDBUFERRORS, is_udplite);
1100 }
1101 return err;
1102
1103 do_confirm:
1104 if (msg->msg_flags & MSG_PROBE)
1105 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1106 if (!(msg->msg_flags&MSG_PROBE) || len)
1107 goto back_from_confirm;
1108 err = 0;
1109 goto out;
1110 }
1111 EXPORT_SYMBOL(udp_sendmsg);
1112
1113 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1114 size_t size, int flags)
1115 {
1116 struct inet_sock *inet = inet_sk(sk);
1117 struct udp_sock *up = udp_sk(sk);
1118 int ret;
1119
1120 if (flags & MSG_SENDPAGE_NOTLAST)
1121 flags |= MSG_MORE;
1122
1123 if (!up->pending) {
1124 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1125
1126 /* Call udp_sendmsg to specify destination address which
1127 * sendpage interface can't pass.
1128 * This will succeed only when the socket is connected.
1129 */
1130 ret = udp_sendmsg(sk, &msg, 0);
1131 if (ret < 0)
1132 return ret;
1133 }
1134
1135 lock_sock(sk);
1136
1137 if (unlikely(!up->pending)) {
1138 release_sock(sk);
1139
1140 net_dbg_ratelimited("udp cork app bug 3\n");
1141 return -EINVAL;
1142 }
1143
1144 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1145 page, offset, size, flags);
1146 if (ret == -EOPNOTSUPP) {
1147 release_sock(sk);
1148 return sock_no_sendpage(sk->sk_socket, page, offset,
1149 size, flags);
1150 }
1151 if (ret < 0) {
1152 udp_flush_pending_frames(sk);
1153 goto out;
1154 }
1155
1156 up->len += size;
1157 if (!(up->corkflag || (flags&MSG_MORE)))
1158 ret = udp_push_pending_frames(sk);
1159 if (!ret)
1160 ret = size;
1161 out:
1162 release_sock(sk);
1163 return ret;
1164 }
1165
1166 /* Copy as much information as possible into skb->dev_scratch to avoid
1167 * possibly multiple cache miss on dequeue();
1168 */
1169 #if BITS_PER_LONG == 64
1170
1171 /* we can store multiple info here: truesize, len and the bit needed to
1172 * compute skb_csum_unnecessary will be on cold cache lines at recvmsg
1173 * time.
1174 * skb->len can be stored on 16 bits since the udp header has been already
1175 * validated and pulled.
1176 */
1177 struct udp_dev_scratch {
1178 u32 truesize;
1179 u16 len;
1180 bool is_linear;
1181 bool csum_unnecessary;
1182 };
1183
1184 static void udp_set_dev_scratch(struct sk_buff *skb)
1185 {
1186 struct udp_dev_scratch *scratch;
1187
1188 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1189 scratch = (struct udp_dev_scratch *)&skb->dev_scratch;
1190 scratch->truesize = skb->truesize;
1191 scratch->len = skb->len;
1192 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1193 scratch->is_linear = !skb_is_nonlinear(skb);
1194 }
1195
1196 static int udp_skb_truesize(struct sk_buff *skb)
1197 {
1198 return ((struct udp_dev_scratch *)&skb->dev_scratch)->truesize;
1199 }
1200
1201 static unsigned int udp_skb_len(struct sk_buff *skb)
1202 {
1203 return ((struct udp_dev_scratch *)&skb->dev_scratch)->len;
1204 }
1205
1206 static bool udp_skb_csum_unnecessary(struct sk_buff *skb)
1207 {
1208 return ((struct udp_dev_scratch *)&skb->dev_scratch)->csum_unnecessary;
1209 }
1210
1211 static bool udp_skb_is_linear(struct sk_buff *skb)
1212 {
1213 return ((struct udp_dev_scratch *)&skb->dev_scratch)->is_linear;
1214 }
1215
1216 #else
1217 static void udp_set_dev_scratch(struct sk_buff *skb)
1218 {
1219 skb->dev_scratch = skb->truesize;
1220 }
1221
1222 static int udp_skb_truesize(struct sk_buff *skb)
1223 {
1224 return skb->dev_scratch;
1225 }
1226
1227 static unsigned int udp_skb_len(struct sk_buff *skb)
1228 {
1229 return skb->len;
1230 }
1231
1232 static bool udp_skb_csum_unnecessary(struct sk_buff *skb)
1233 {
1234 return skb_csum_unnecessary(skb);
1235 }
1236
1237 static bool udp_skb_is_linear(struct sk_buff *skb)
1238 {
1239 return !skb_is_nonlinear(skb);
1240 }
1241 #endif
1242
1243 /* fully reclaim rmem/fwd memory allocated for skb */
1244 static void udp_rmem_release(struct sock *sk, int size, int partial,
1245 bool rx_queue_lock_held)
1246 {
1247 struct udp_sock *up = udp_sk(sk);
1248 struct sk_buff_head *sk_queue;
1249 int amt;
1250
1251 if (likely(partial)) {
1252 up->forward_deficit += size;
1253 size = up->forward_deficit;
1254 if (size < (sk->sk_rcvbuf >> 2) &&
1255 !skb_queue_empty(&up->reader_queue))
1256 return;
1257 } else {
1258 size += up->forward_deficit;
1259 }
1260 up->forward_deficit = 0;
1261
1262 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1263 * if the called don't held it already
1264 */
1265 sk_queue = &sk->sk_receive_queue;
1266 if (!rx_queue_lock_held)
1267 spin_lock(&sk_queue->lock);
1268
1269
1270 sk->sk_forward_alloc += size;
1271 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1272 sk->sk_forward_alloc -= amt;
1273
1274 if (amt)
1275 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1276
1277 atomic_sub(size, &sk->sk_rmem_alloc);
1278
1279 /* this can save us from acquiring the rx queue lock on next receive */
1280 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1281
1282 if (!rx_queue_lock_held)
1283 spin_unlock(&sk_queue->lock);
1284 }
1285
1286 /* Note: called with reader_queue.lock held.
1287 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1288 * This avoids a cache line miss while receive_queue lock is held.
1289 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1290 */
1291 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1292 {
1293 prefetch(&skb->data);
1294 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1295 }
1296 EXPORT_SYMBOL(udp_skb_destructor);
1297
1298 /* as above, but the caller held the rx queue lock, too */
1299 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1300 {
1301 prefetch(&skb->data);
1302 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1303 }
1304
1305 /* Idea of busylocks is to let producers grab an extra spinlock
1306 * to relieve pressure on the receive_queue spinlock shared by consumer.
1307 * Under flood, this means that only one producer can be in line
1308 * trying to acquire the receive_queue spinlock.
1309 * These busylock can be allocated on a per cpu manner, instead of a
1310 * per socket one (that would consume a cache line per socket)
1311 */
1312 static int udp_busylocks_log __read_mostly;
1313 static spinlock_t *udp_busylocks __read_mostly;
1314
1315 static spinlock_t *busylock_acquire(void *ptr)
1316 {
1317 spinlock_t *busy;
1318
1319 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1320 spin_lock(busy);
1321 return busy;
1322 }
1323
1324 static void busylock_release(spinlock_t *busy)
1325 {
1326 if (busy)
1327 spin_unlock(busy);
1328 }
1329
1330 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1331 {
1332 struct sk_buff_head *list = &sk->sk_receive_queue;
1333 int rmem, delta, amt, err = -ENOMEM;
1334 spinlock_t *busy = NULL;
1335 int size;
1336
1337 /* try to avoid the costly atomic add/sub pair when the receive
1338 * queue is full; always allow at least a packet
1339 */
1340 rmem = atomic_read(&sk->sk_rmem_alloc);
1341 if (rmem > sk->sk_rcvbuf)
1342 goto drop;
1343
1344 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1345 * having linear skbs :
1346 * - Reduce memory overhead and thus increase receive queue capacity
1347 * - Less cache line misses at copyout() time
1348 * - Less work at consume_skb() (less alien page frag freeing)
1349 */
1350 if (rmem > (sk->sk_rcvbuf >> 1)) {
1351 skb_condense(skb);
1352
1353 busy = busylock_acquire(sk);
1354 }
1355 size = skb->truesize;
1356 udp_set_dev_scratch(skb);
1357
1358 /* we drop only if the receive buf is full and the receive
1359 * queue contains some other skb
1360 */
1361 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1362 if (rmem > (size + sk->sk_rcvbuf))
1363 goto uncharge_drop;
1364
1365 spin_lock(&list->lock);
1366 if (size >= sk->sk_forward_alloc) {
1367 amt = sk_mem_pages(size);
1368 delta = amt << SK_MEM_QUANTUM_SHIFT;
1369 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1370 err = -ENOBUFS;
1371 spin_unlock(&list->lock);
1372 goto uncharge_drop;
1373 }
1374
1375 sk->sk_forward_alloc += delta;
1376 }
1377
1378 sk->sk_forward_alloc -= size;
1379
1380 /* no need to setup a destructor, we will explicitly release the
1381 * forward allocated memory on dequeue
1382 */
1383 sock_skb_set_dropcount(sk, skb);
1384
1385 __skb_queue_tail(list, skb);
1386 spin_unlock(&list->lock);
1387
1388 if (!sock_flag(sk, SOCK_DEAD))
1389 sk->sk_data_ready(sk);
1390
1391 busylock_release(busy);
1392 return 0;
1393
1394 uncharge_drop:
1395 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1396
1397 drop:
1398 atomic_inc(&sk->sk_drops);
1399 busylock_release(busy);
1400 return err;
1401 }
1402 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1403
1404 void udp_destruct_sock(struct sock *sk)
1405 {
1406 /* reclaim completely the forward allocated memory */
1407 struct udp_sock *up = udp_sk(sk);
1408 unsigned int total = 0;
1409 struct sk_buff *skb;
1410
1411 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1412 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1413 total += skb->truesize;
1414 kfree_skb(skb);
1415 }
1416 udp_rmem_release(sk, total, 0, true);
1417
1418 inet_sock_destruct(sk);
1419 }
1420 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1421
1422 int udp_init_sock(struct sock *sk)
1423 {
1424 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1425 sk->sk_destruct = udp_destruct_sock;
1426 return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(udp_init_sock);
1429
1430 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1431 {
1432 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1433 bool slow = lock_sock_fast(sk);
1434
1435 sk_peek_offset_bwd(sk, len);
1436 unlock_sock_fast(sk, slow);
1437 }
1438
1439 consume_stateless_skb(skb);
1440 }
1441 EXPORT_SYMBOL_GPL(skb_consume_udp);
1442
1443 static struct sk_buff *__first_packet_length(struct sock *sk,
1444 struct sk_buff_head *rcvq,
1445 int *total)
1446 {
1447 struct sk_buff *skb;
1448
1449 while ((skb = skb_peek(rcvq)) != NULL) {
1450 if (udp_lib_checksum_complete(skb)) {
1451 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1452 IS_UDPLITE(sk));
1453 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1454 IS_UDPLITE(sk));
1455 atomic_inc(&sk->sk_drops);
1456 __skb_unlink(skb, rcvq);
1457 *total += skb->truesize;
1458 kfree_skb(skb);
1459 } else {
1460 /* the csum related bits could be changed, refresh
1461 * the scratch area
1462 */
1463 udp_set_dev_scratch(skb);
1464 break;
1465 }
1466 }
1467 return skb;
1468 }
1469
1470 /**
1471 * first_packet_length - return length of first packet in receive queue
1472 * @sk: socket
1473 *
1474 * Drops all bad checksum frames, until a valid one is found.
1475 * Returns the length of found skb, or -1 if none is found.
1476 */
1477 static int first_packet_length(struct sock *sk)
1478 {
1479 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1480 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1481 struct sk_buff *skb;
1482 int total = 0;
1483 int res;
1484
1485 spin_lock_bh(&rcvq->lock);
1486 skb = __first_packet_length(sk, rcvq, &total);
1487 if (!skb && !skb_queue_empty(sk_queue)) {
1488 spin_lock(&sk_queue->lock);
1489 skb_queue_splice_tail_init(sk_queue, rcvq);
1490 spin_unlock(&sk_queue->lock);
1491
1492 skb = __first_packet_length(sk, rcvq, &total);
1493 }
1494 res = skb ? skb->len : -1;
1495 if (total)
1496 udp_rmem_release(sk, total, 1, false);
1497 spin_unlock_bh(&rcvq->lock);
1498 return res;
1499 }
1500
1501 /*
1502 * IOCTL requests applicable to the UDP protocol
1503 */
1504
1505 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1506 {
1507 switch (cmd) {
1508 case SIOCOUTQ:
1509 {
1510 int amount = sk_wmem_alloc_get(sk);
1511
1512 return put_user(amount, (int __user *)arg);
1513 }
1514
1515 case SIOCINQ:
1516 {
1517 int amount = max_t(int, 0, first_packet_length(sk));
1518
1519 return put_user(amount, (int __user *)arg);
1520 }
1521
1522 default:
1523 return -ENOIOCTLCMD;
1524 }
1525
1526 return 0;
1527 }
1528 EXPORT_SYMBOL(udp_ioctl);
1529
1530 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1531 int noblock, int *peeked, int *off, int *err)
1532 {
1533 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1534 struct sk_buff_head *queue;
1535 struct sk_buff *last;
1536 long timeo;
1537 int error;
1538
1539 queue = &udp_sk(sk)->reader_queue;
1540 flags |= noblock ? MSG_DONTWAIT : 0;
1541 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1542 do {
1543 struct sk_buff *skb;
1544
1545 error = sock_error(sk);
1546 if (error)
1547 break;
1548
1549 error = -EAGAIN;
1550 *peeked = 0;
1551 do {
1552 spin_lock_bh(&queue->lock);
1553 skb = __skb_try_recv_from_queue(sk, queue, flags,
1554 udp_skb_destructor,
1555 peeked, off, err,
1556 &last);
1557 if (skb) {
1558 spin_unlock_bh(&queue->lock);
1559 return skb;
1560 }
1561
1562 if (skb_queue_empty(sk_queue)) {
1563 spin_unlock_bh(&queue->lock);
1564 goto busy_check;
1565 }
1566
1567 /* refill the reader queue and walk it again
1568 * keep both queues locked to avoid re-acquiring
1569 * the sk_receive_queue lock if fwd memory scheduling
1570 * is needed.
1571 */
1572 spin_lock(&sk_queue->lock);
1573 skb_queue_splice_tail_init(sk_queue, queue);
1574
1575 skb = __skb_try_recv_from_queue(sk, queue, flags,
1576 udp_skb_dtor_locked,
1577 peeked, off, err,
1578 &last);
1579 spin_unlock(&sk_queue->lock);
1580 spin_unlock_bh(&queue->lock);
1581 if (skb)
1582 return skb;
1583
1584 busy_check:
1585 if (!sk_can_busy_loop(sk))
1586 break;
1587
1588 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1589 } while (!skb_queue_empty(sk_queue));
1590
1591 /* sk_queue is empty, reader_queue may contain peeked packets */
1592 } while (timeo &&
1593 !__skb_wait_for_more_packets(sk, &error, &timeo,
1594 (struct sk_buff *)sk_queue));
1595
1596 *err = error;
1597 return NULL;
1598 }
1599 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1600
1601 static int copy_linear_skb(struct sk_buff *skb, int len, int off,
1602 struct iov_iter *to)
1603 {
1604 int n, copy = len - off;
1605
1606 n = copy_to_iter(skb->data + off, copy, to);
1607 if (n == copy)
1608 return 0;
1609
1610 return -EFAULT;
1611 }
1612
1613 /*
1614 * This should be easy, if there is something there we
1615 * return it, otherwise we block.
1616 */
1617
1618 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1619 int flags, int *addr_len)
1620 {
1621 struct inet_sock *inet = inet_sk(sk);
1622 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1623 struct sk_buff *skb;
1624 unsigned int ulen, copied;
1625 int peeked, peeking, off;
1626 int err;
1627 int is_udplite = IS_UDPLITE(sk);
1628 bool checksum_valid = false;
1629
1630 if (flags & MSG_ERRQUEUE)
1631 return ip_recv_error(sk, msg, len, addr_len);
1632
1633 try_again:
1634 peeking = off = sk_peek_offset(sk, flags);
1635 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1636 if (!skb)
1637 return err;
1638
1639 ulen = udp_skb_len(skb);
1640 copied = len;
1641 if (copied > ulen - off)
1642 copied = ulen - off;
1643 else if (copied < ulen)
1644 msg->msg_flags |= MSG_TRUNC;
1645
1646 /*
1647 * If checksum is needed at all, try to do it while copying the
1648 * data. If the data is truncated, or if we only want a partial
1649 * coverage checksum (UDP-Lite), do it before the copy.
1650 */
1651
1652 if (copied < ulen || peeking ||
1653 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1654 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1655 !__udp_lib_checksum_complete(skb);
1656 if (!checksum_valid)
1657 goto csum_copy_err;
1658 }
1659
1660 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1661 if (udp_skb_is_linear(skb))
1662 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1663 else
1664 err = skb_copy_datagram_msg(skb, off, msg, copied);
1665 } else {
1666 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1667
1668 if (err == -EINVAL)
1669 goto csum_copy_err;
1670 }
1671
1672 if (unlikely(err)) {
1673 if (!peeked) {
1674 atomic_inc(&sk->sk_drops);
1675 UDP_INC_STATS(sock_net(sk),
1676 UDP_MIB_INERRORS, is_udplite);
1677 }
1678 kfree_skb(skb);
1679 return err;
1680 }
1681
1682 if (!peeked)
1683 UDP_INC_STATS(sock_net(sk),
1684 UDP_MIB_INDATAGRAMS, is_udplite);
1685
1686 sock_recv_ts_and_drops(msg, sk, skb);
1687
1688 /* Copy the address. */
1689 if (sin) {
1690 sin->sin_family = AF_INET;
1691 sin->sin_port = udp_hdr(skb)->source;
1692 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1693 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1694 *addr_len = sizeof(*sin);
1695 }
1696 if (inet->cmsg_flags)
1697 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1698
1699 err = copied;
1700 if (flags & MSG_TRUNC)
1701 err = ulen;
1702
1703 skb_consume_udp(sk, skb, peeking ? -err : err);
1704 return err;
1705
1706 csum_copy_err:
1707 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1708 udp_skb_destructor)) {
1709 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1710 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1711 }
1712 kfree_skb(skb);
1713
1714 /* starting over for a new packet, but check if we need to yield */
1715 cond_resched();
1716 msg->msg_flags &= ~MSG_TRUNC;
1717 goto try_again;
1718 }
1719
1720 int __udp_disconnect(struct sock *sk, int flags)
1721 {
1722 struct inet_sock *inet = inet_sk(sk);
1723 /*
1724 * 1003.1g - break association.
1725 */
1726
1727 sk->sk_state = TCP_CLOSE;
1728 inet->inet_daddr = 0;
1729 inet->inet_dport = 0;
1730 sock_rps_reset_rxhash(sk);
1731 sk->sk_bound_dev_if = 0;
1732 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1733 inet_reset_saddr(sk);
1734
1735 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1736 sk->sk_prot->unhash(sk);
1737 inet->inet_sport = 0;
1738 }
1739 sk_dst_reset(sk);
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(__udp_disconnect);
1743
1744 int udp_disconnect(struct sock *sk, int flags)
1745 {
1746 lock_sock(sk);
1747 __udp_disconnect(sk, flags);
1748 release_sock(sk);
1749 return 0;
1750 }
1751 EXPORT_SYMBOL(udp_disconnect);
1752
1753 void udp_lib_unhash(struct sock *sk)
1754 {
1755 if (sk_hashed(sk)) {
1756 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1757 struct udp_hslot *hslot, *hslot2;
1758
1759 hslot = udp_hashslot(udptable, sock_net(sk),
1760 udp_sk(sk)->udp_port_hash);
1761 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1762
1763 spin_lock_bh(&hslot->lock);
1764 if (rcu_access_pointer(sk->sk_reuseport_cb))
1765 reuseport_detach_sock(sk);
1766 if (sk_del_node_init_rcu(sk)) {
1767 hslot->count--;
1768 inet_sk(sk)->inet_num = 0;
1769 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1770
1771 spin_lock(&hslot2->lock);
1772 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1773 hslot2->count--;
1774 spin_unlock(&hslot2->lock);
1775 }
1776 spin_unlock_bh(&hslot->lock);
1777 }
1778 }
1779 EXPORT_SYMBOL(udp_lib_unhash);
1780
1781 /*
1782 * inet_rcv_saddr was changed, we must rehash secondary hash
1783 */
1784 void udp_lib_rehash(struct sock *sk, u16 newhash)
1785 {
1786 if (sk_hashed(sk)) {
1787 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1788 struct udp_hslot *hslot, *hslot2, *nhslot2;
1789
1790 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1791 nhslot2 = udp_hashslot2(udptable, newhash);
1792 udp_sk(sk)->udp_portaddr_hash = newhash;
1793
1794 if (hslot2 != nhslot2 ||
1795 rcu_access_pointer(sk->sk_reuseport_cb)) {
1796 hslot = udp_hashslot(udptable, sock_net(sk),
1797 udp_sk(sk)->udp_port_hash);
1798 /* we must lock primary chain too */
1799 spin_lock_bh(&hslot->lock);
1800 if (rcu_access_pointer(sk->sk_reuseport_cb))
1801 reuseport_detach_sock(sk);
1802
1803 if (hslot2 != nhslot2) {
1804 spin_lock(&hslot2->lock);
1805 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1806 hslot2->count--;
1807 spin_unlock(&hslot2->lock);
1808
1809 spin_lock(&nhslot2->lock);
1810 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1811 &nhslot2->head);
1812 nhslot2->count++;
1813 spin_unlock(&nhslot2->lock);
1814 }
1815
1816 spin_unlock_bh(&hslot->lock);
1817 }
1818 }
1819 }
1820 EXPORT_SYMBOL(udp_lib_rehash);
1821
1822 static void udp_v4_rehash(struct sock *sk)
1823 {
1824 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1825 inet_sk(sk)->inet_rcv_saddr,
1826 inet_sk(sk)->inet_num);
1827 udp_lib_rehash(sk, new_hash);
1828 }
1829
1830 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1831 {
1832 int rc;
1833
1834 if (inet_sk(sk)->inet_daddr) {
1835 sock_rps_save_rxhash(sk, skb);
1836 sk_mark_napi_id(sk, skb);
1837 sk_incoming_cpu_update(sk);
1838 } else {
1839 sk_mark_napi_id_once(sk, skb);
1840 }
1841
1842 /* clear all pending head states while they are hot in the cache */
1843 skb_release_head_state(skb);
1844
1845 rc = __udp_enqueue_schedule_skb(sk, skb);
1846 if (rc < 0) {
1847 int is_udplite = IS_UDPLITE(sk);
1848
1849 /* Note that an ENOMEM error is charged twice */
1850 if (rc == -ENOMEM)
1851 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1852 is_udplite);
1853 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1854 kfree_skb(skb);
1855 trace_udp_fail_queue_rcv_skb(rc, sk);
1856 return -1;
1857 }
1858
1859 return 0;
1860 }
1861
1862 static struct static_key udp_encap_needed __read_mostly;
1863 void udp_encap_enable(void)
1864 {
1865 if (!static_key_enabled(&udp_encap_needed))
1866 static_key_slow_inc(&udp_encap_needed);
1867 }
1868 EXPORT_SYMBOL(udp_encap_enable);
1869
1870 /* returns:
1871 * -1: error
1872 * 0: success
1873 * >0: "udp encap" protocol resubmission
1874 *
1875 * Note that in the success and error cases, the skb is assumed to
1876 * have either been requeued or freed.
1877 */
1878 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1879 {
1880 struct udp_sock *up = udp_sk(sk);
1881 int is_udplite = IS_UDPLITE(sk);
1882
1883 /*
1884 * Charge it to the socket, dropping if the queue is full.
1885 */
1886 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1887 goto drop;
1888 nf_reset(skb);
1889
1890 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1891 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1892
1893 /*
1894 * This is an encapsulation socket so pass the skb to
1895 * the socket's udp_encap_rcv() hook. Otherwise, just
1896 * fall through and pass this up the UDP socket.
1897 * up->encap_rcv() returns the following value:
1898 * =0 if skb was successfully passed to the encap
1899 * handler or was discarded by it.
1900 * >0 if skb should be passed on to UDP.
1901 * <0 if skb should be resubmitted as proto -N
1902 */
1903
1904 /* if we're overly short, let UDP handle it */
1905 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1906 if (encap_rcv) {
1907 int ret;
1908
1909 /* Verify checksum before giving to encap */
1910 if (udp_lib_checksum_complete(skb))
1911 goto csum_error;
1912
1913 ret = encap_rcv(sk, skb);
1914 if (ret <= 0) {
1915 __UDP_INC_STATS(sock_net(sk),
1916 UDP_MIB_INDATAGRAMS,
1917 is_udplite);
1918 return -ret;
1919 }
1920 }
1921
1922 /* FALLTHROUGH -- it's a UDP Packet */
1923 }
1924
1925 /*
1926 * UDP-Lite specific tests, ignored on UDP sockets
1927 */
1928 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1929
1930 /*
1931 * MIB statistics other than incrementing the error count are
1932 * disabled for the following two types of errors: these depend
1933 * on the application settings, not on the functioning of the
1934 * protocol stack as such.
1935 *
1936 * RFC 3828 here recommends (sec 3.3): "There should also be a
1937 * way ... to ... at least let the receiving application block
1938 * delivery of packets with coverage values less than a value
1939 * provided by the application."
1940 */
1941 if (up->pcrlen == 0) { /* full coverage was set */
1942 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1943 UDP_SKB_CB(skb)->cscov, skb->len);
1944 goto drop;
1945 }
1946 /* The next case involves violating the min. coverage requested
1947 * by the receiver. This is subtle: if receiver wants x and x is
1948 * greater than the buffersize/MTU then receiver will complain
1949 * that it wants x while sender emits packets of smaller size y.
1950 * Therefore the above ...()->partial_cov statement is essential.
1951 */
1952 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1953 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1954 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1955 goto drop;
1956 }
1957 }
1958
1959 prefetch(&sk->sk_rmem_alloc);
1960 if (rcu_access_pointer(sk->sk_filter) &&
1961 udp_lib_checksum_complete(skb))
1962 goto csum_error;
1963
1964 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1965 goto drop;
1966
1967 udp_csum_pull_header(skb);
1968
1969 ipv4_pktinfo_prepare(sk, skb);
1970 return __udp_queue_rcv_skb(sk, skb);
1971
1972 csum_error:
1973 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1974 drop:
1975 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1976 atomic_inc(&sk->sk_drops);
1977 kfree_skb(skb);
1978 return -1;
1979 }
1980
1981 /* For TCP sockets, sk_rx_dst is protected by socket lock
1982 * For UDP, we use xchg() to guard against concurrent changes.
1983 */
1984 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1985 {
1986 struct dst_entry *old;
1987
1988 if (dst_hold_safe(dst)) {
1989 old = xchg(&sk->sk_rx_dst, dst);
1990 dst_release(old);
1991 }
1992 }
1993
1994 /*
1995 * Multicasts and broadcasts go to each listener.
1996 *
1997 * Note: called only from the BH handler context.
1998 */
1999 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2000 struct udphdr *uh,
2001 __be32 saddr, __be32 daddr,
2002 struct udp_table *udptable,
2003 int proto)
2004 {
2005 struct sock *sk, *first = NULL;
2006 unsigned short hnum = ntohs(uh->dest);
2007 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2008 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2009 unsigned int offset = offsetof(typeof(*sk), sk_node);
2010 int dif = skb->dev->ifindex;
2011 struct hlist_node *node;
2012 struct sk_buff *nskb;
2013
2014 if (use_hash2) {
2015 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2016 udptable->mask;
2017 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2018 start_lookup:
2019 hslot = &udptable->hash2[hash2];
2020 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2021 }
2022
2023 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2024 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2025 uh->source, saddr, dif, hnum))
2026 continue;
2027
2028 if (!first) {
2029 first = sk;
2030 continue;
2031 }
2032 nskb = skb_clone(skb, GFP_ATOMIC);
2033
2034 if (unlikely(!nskb)) {
2035 atomic_inc(&sk->sk_drops);
2036 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2037 IS_UDPLITE(sk));
2038 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2039 IS_UDPLITE(sk));
2040 continue;
2041 }
2042 if (udp_queue_rcv_skb(sk, nskb) > 0)
2043 consume_skb(nskb);
2044 }
2045
2046 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2047 if (use_hash2 && hash2 != hash2_any) {
2048 hash2 = hash2_any;
2049 goto start_lookup;
2050 }
2051
2052 if (first) {
2053 if (udp_queue_rcv_skb(first, skb) > 0)
2054 consume_skb(skb);
2055 } else {
2056 kfree_skb(skb);
2057 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2058 proto == IPPROTO_UDPLITE);
2059 }
2060 return 0;
2061 }
2062
2063 /* Initialize UDP checksum. If exited with zero value (success),
2064 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2065 * Otherwise, csum completion requires chacksumming packet body,
2066 * including udp header and folding it to skb->csum.
2067 */
2068 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2069 int proto)
2070 {
2071 int err;
2072
2073 UDP_SKB_CB(skb)->partial_cov = 0;
2074 UDP_SKB_CB(skb)->cscov = skb->len;
2075
2076 if (proto == IPPROTO_UDPLITE) {
2077 err = udplite_checksum_init(skb, uh);
2078 if (err)
2079 return err;
2080 }
2081
2082 /* Note, we are only interested in != 0 or == 0, thus the
2083 * force to int.
2084 */
2085 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2086 inet_compute_pseudo);
2087 }
2088
2089 /*
2090 * All we need to do is get the socket, and then do a checksum.
2091 */
2092
2093 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2094 int proto)
2095 {
2096 struct sock *sk;
2097 struct udphdr *uh;
2098 unsigned short ulen;
2099 struct rtable *rt = skb_rtable(skb);
2100 __be32 saddr, daddr;
2101 struct net *net = dev_net(skb->dev);
2102
2103 /*
2104 * Validate the packet.
2105 */
2106 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2107 goto drop; /* No space for header. */
2108
2109 uh = udp_hdr(skb);
2110 ulen = ntohs(uh->len);
2111 saddr = ip_hdr(skb)->saddr;
2112 daddr = ip_hdr(skb)->daddr;
2113
2114 if (ulen > skb->len)
2115 goto short_packet;
2116
2117 if (proto == IPPROTO_UDP) {
2118 /* UDP validates ulen. */
2119 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2120 goto short_packet;
2121 uh = udp_hdr(skb);
2122 }
2123
2124 if (udp4_csum_init(skb, uh, proto))
2125 goto csum_error;
2126
2127 sk = skb_steal_sock(skb);
2128 if (sk) {
2129 struct dst_entry *dst = skb_dst(skb);
2130 int ret;
2131
2132 if (unlikely(sk->sk_rx_dst != dst))
2133 udp_sk_rx_dst_set(sk, dst);
2134
2135 ret = udp_queue_rcv_skb(sk, skb);
2136 sock_put(sk);
2137 /* a return value > 0 means to resubmit the input, but
2138 * it wants the return to be -protocol, or 0
2139 */
2140 if (ret > 0)
2141 return -ret;
2142 return 0;
2143 }
2144
2145 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2146 return __udp4_lib_mcast_deliver(net, skb, uh,
2147 saddr, daddr, udptable, proto);
2148
2149 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2150 if (sk) {
2151 int ret;
2152
2153 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2154 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2155 inet_compute_pseudo);
2156
2157 ret = udp_queue_rcv_skb(sk, skb);
2158
2159 /* a return value > 0 means to resubmit the input, but
2160 * it wants the return to be -protocol, or 0
2161 */
2162 if (ret > 0)
2163 return -ret;
2164 return 0;
2165 }
2166
2167 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2168 goto drop;
2169 nf_reset(skb);
2170
2171 /* No socket. Drop packet silently, if checksum is wrong */
2172 if (udp_lib_checksum_complete(skb))
2173 goto csum_error;
2174
2175 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2176 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2177
2178 /*
2179 * Hmm. We got an UDP packet to a port to which we
2180 * don't wanna listen. Ignore it.
2181 */
2182 kfree_skb(skb);
2183 return 0;
2184
2185 short_packet:
2186 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2187 proto == IPPROTO_UDPLITE ? "Lite" : "",
2188 &saddr, ntohs(uh->source),
2189 ulen, skb->len,
2190 &daddr, ntohs(uh->dest));
2191 goto drop;
2192
2193 csum_error:
2194 /*
2195 * RFC1122: OK. Discards the bad packet silently (as far as
2196 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2197 */
2198 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2199 proto == IPPROTO_UDPLITE ? "Lite" : "",
2200 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2201 ulen);
2202 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2203 drop:
2204 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2205 kfree_skb(skb);
2206 return 0;
2207 }
2208
2209 /* We can only early demux multicast if there is a single matching socket.
2210 * If more than one socket found returns NULL
2211 */
2212 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2213 __be16 loc_port, __be32 loc_addr,
2214 __be16 rmt_port, __be32 rmt_addr,
2215 int dif)
2216 {
2217 struct sock *sk, *result;
2218 unsigned short hnum = ntohs(loc_port);
2219 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2220 struct udp_hslot *hslot = &udp_table.hash[slot];
2221
2222 /* Do not bother scanning a too big list */
2223 if (hslot->count > 10)
2224 return NULL;
2225
2226 result = NULL;
2227 sk_for_each_rcu(sk, &hslot->head) {
2228 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2229 rmt_port, rmt_addr, dif, hnum)) {
2230 if (result)
2231 return NULL;
2232 result = sk;
2233 }
2234 }
2235
2236 return result;
2237 }
2238
2239 /* For unicast we should only early demux connected sockets or we can
2240 * break forwarding setups. The chains here can be long so only check
2241 * if the first socket is an exact match and if not move on.
2242 */
2243 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2244 __be16 loc_port, __be32 loc_addr,
2245 __be16 rmt_port, __be32 rmt_addr,
2246 int dif)
2247 {
2248 unsigned short hnum = ntohs(loc_port);
2249 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2250 unsigned int slot2 = hash2 & udp_table.mask;
2251 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2252 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2253 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2254 struct sock *sk;
2255
2256 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2257 if (INET_MATCH(sk, net, acookie, rmt_addr,
2258 loc_addr, ports, dif))
2259 return sk;
2260 /* Only check first socket in chain */
2261 break;
2262 }
2263 return NULL;
2264 }
2265
2266 void udp_v4_early_demux(struct sk_buff *skb)
2267 {
2268 struct net *net = dev_net(skb->dev);
2269 const struct iphdr *iph;
2270 const struct udphdr *uh;
2271 struct sock *sk = NULL;
2272 struct dst_entry *dst;
2273 int dif = skb->dev->ifindex;
2274 int ours;
2275
2276 /* validate the packet */
2277 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2278 return;
2279
2280 iph = ip_hdr(skb);
2281 uh = udp_hdr(skb);
2282
2283 if (skb->pkt_type == PACKET_BROADCAST ||
2284 skb->pkt_type == PACKET_MULTICAST) {
2285 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2286
2287 if (!in_dev)
2288 return;
2289
2290 /* we are supposed to accept bcast packets */
2291 if (skb->pkt_type == PACKET_MULTICAST) {
2292 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2293 iph->protocol);
2294 if (!ours)
2295 return;
2296 }
2297
2298 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2299 uh->source, iph->saddr, dif);
2300 } else if (skb->pkt_type == PACKET_HOST) {
2301 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2302 uh->source, iph->saddr, dif);
2303 }
2304
2305 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2306 return;
2307
2308 skb->sk = sk;
2309 skb->destructor = sock_efree;
2310 dst = READ_ONCE(sk->sk_rx_dst);
2311
2312 if (dst)
2313 dst = dst_check(dst, 0);
2314 if (dst) {
2315 /* set noref for now.
2316 * any place which wants to hold dst has to call
2317 * dst_hold_safe()
2318 */
2319 skb_dst_set_noref(skb, dst);
2320 }
2321 }
2322
2323 int udp_rcv(struct sk_buff *skb)
2324 {
2325 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2326 }
2327
2328 void udp_destroy_sock(struct sock *sk)
2329 {
2330 struct udp_sock *up = udp_sk(sk);
2331 bool slow = lock_sock_fast(sk);
2332 udp_flush_pending_frames(sk);
2333 unlock_sock_fast(sk, slow);
2334 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2335 void (*encap_destroy)(struct sock *sk);
2336 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2337 if (encap_destroy)
2338 encap_destroy(sk);
2339 }
2340 }
2341
2342 /*
2343 * Socket option code for UDP
2344 */
2345 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2346 char __user *optval, unsigned int optlen,
2347 int (*push_pending_frames)(struct sock *))
2348 {
2349 struct udp_sock *up = udp_sk(sk);
2350 int val, valbool;
2351 int err = 0;
2352 int is_udplite = IS_UDPLITE(sk);
2353
2354 if (optlen < sizeof(int))
2355 return -EINVAL;
2356
2357 if (get_user(val, (int __user *)optval))
2358 return -EFAULT;
2359
2360 valbool = val ? 1 : 0;
2361
2362 switch (optname) {
2363 case UDP_CORK:
2364 if (val != 0) {
2365 up->corkflag = 1;
2366 } else {
2367 up->corkflag = 0;
2368 lock_sock(sk);
2369 push_pending_frames(sk);
2370 release_sock(sk);
2371 }
2372 break;
2373
2374 case UDP_ENCAP:
2375 switch (val) {
2376 case 0:
2377 case UDP_ENCAP_ESPINUDP:
2378 case UDP_ENCAP_ESPINUDP_NON_IKE:
2379 up->encap_rcv = xfrm4_udp_encap_rcv;
2380 /* FALLTHROUGH */
2381 case UDP_ENCAP_L2TPINUDP:
2382 up->encap_type = val;
2383 udp_encap_enable();
2384 break;
2385 default:
2386 err = -ENOPROTOOPT;
2387 break;
2388 }
2389 break;
2390
2391 case UDP_NO_CHECK6_TX:
2392 up->no_check6_tx = valbool;
2393 break;
2394
2395 case UDP_NO_CHECK6_RX:
2396 up->no_check6_rx = valbool;
2397 break;
2398
2399 /*
2400 * UDP-Lite's partial checksum coverage (RFC 3828).
2401 */
2402 /* The sender sets actual checksum coverage length via this option.
2403 * The case coverage > packet length is handled by send module. */
2404 case UDPLITE_SEND_CSCOV:
2405 if (!is_udplite) /* Disable the option on UDP sockets */
2406 return -ENOPROTOOPT;
2407 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2408 val = 8;
2409 else if (val > USHRT_MAX)
2410 val = USHRT_MAX;
2411 up->pcslen = val;
2412 up->pcflag |= UDPLITE_SEND_CC;
2413 break;
2414
2415 /* The receiver specifies a minimum checksum coverage value. To make
2416 * sense, this should be set to at least 8 (as done below). If zero is
2417 * used, this again means full checksum coverage. */
2418 case UDPLITE_RECV_CSCOV:
2419 if (!is_udplite) /* Disable the option on UDP sockets */
2420 return -ENOPROTOOPT;
2421 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2422 val = 8;
2423 else if (val > USHRT_MAX)
2424 val = USHRT_MAX;
2425 up->pcrlen = val;
2426 up->pcflag |= UDPLITE_RECV_CC;
2427 break;
2428
2429 default:
2430 err = -ENOPROTOOPT;
2431 break;
2432 }
2433
2434 return err;
2435 }
2436 EXPORT_SYMBOL(udp_lib_setsockopt);
2437
2438 int udp_setsockopt(struct sock *sk, int level, int optname,
2439 char __user *optval, unsigned int optlen)
2440 {
2441 if (level == SOL_UDP || level == SOL_UDPLITE)
2442 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2443 udp_push_pending_frames);
2444 return ip_setsockopt(sk, level, optname, optval, optlen);
2445 }
2446
2447 #ifdef CONFIG_COMPAT
2448 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2449 char __user *optval, unsigned int optlen)
2450 {
2451 if (level == SOL_UDP || level == SOL_UDPLITE)
2452 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2453 udp_push_pending_frames);
2454 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2455 }
2456 #endif
2457
2458 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2459 char __user *optval, int __user *optlen)
2460 {
2461 struct udp_sock *up = udp_sk(sk);
2462 int val, len;
2463
2464 if (get_user(len, optlen))
2465 return -EFAULT;
2466
2467 len = min_t(unsigned int, len, sizeof(int));
2468
2469 if (len < 0)
2470 return -EINVAL;
2471
2472 switch (optname) {
2473 case UDP_CORK:
2474 val = up->corkflag;
2475 break;
2476
2477 case UDP_ENCAP:
2478 val = up->encap_type;
2479 break;
2480
2481 case UDP_NO_CHECK6_TX:
2482 val = up->no_check6_tx;
2483 break;
2484
2485 case UDP_NO_CHECK6_RX:
2486 val = up->no_check6_rx;
2487 break;
2488
2489 /* The following two cannot be changed on UDP sockets, the return is
2490 * always 0 (which corresponds to the full checksum coverage of UDP). */
2491 case UDPLITE_SEND_CSCOV:
2492 val = up->pcslen;
2493 break;
2494
2495 case UDPLITE_RECV_CSCOV:
2496 val = up->pcrlen;
2497 break;
2498
2499 default:
2500 return -ENOPROTOOPT;
2501 }
2502
2503 if (put_user(len, optlen))
2504 return -EFAULT;
2505 if (copy_to_user(optval, &val, len))
2506 return -EFAULT;
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(udp_lib_getsockopt);
2510
2511 int udp_getsockopt(struct sock *sk, int level, int optname,
2512 char __user *optval, int __user *optlen)
2513 {
2514 if (level == SOL_UDP || level == SOL_UDPLITE)
2515 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2516 return ip_getsockopt(sk, level, optname, optval, optlen);
2517 }
2518
2519 #ifdef CONFIG_COMPAT
2520 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2521 char __user *optval, int __user *optlen)
2522 {
2523 if (level == SOL_UDP || level == SOL_UDPLITE)
2524 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2525 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2526 }
2527 #endif
2528 /**
2529 * udp_poll - wait for a UDP event.
2530 * @file - file struct
2531 * @sock - socket
2532 * @wait - poll table
2533 *
2534 * This is same as datagram poll, except for the special case of
2535 * blocking sockets. If application is using a blocking fd
2536 * and a packet with checksum error is in the queue;
2537 * then it could get return from select indicating data available
2538 * but then block when reading it. Add special case code
2539 * to work around these arguably broken applications.
2540 */
2541 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2542 {
2543 unsigned int mask = datagram_poll(file, sock, wait);
2544 struct sock *sk = sock->sk;
2545
2546 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2547 mask |= POLLIN | POLLRDNORM;
2548
2549 sock_rps_record_flow(sk);
2550
2551 /* Check for false positives due to checksum errors */
2552 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2553 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2554 mask &= ~(POLLIN | POLLRDNORM);
2555
2556 return mask;
2557
2558 }
2559 EXPORT_SYMBOL(udp_poll);
2560
2561 int udp_abort(struct sock *sk, int err)
2562 {
2563 lock_sock(sk);
2564
2565 sk->sk_err = err;
2566 sk->sk_error_report(sk);
2567 __udp_disconnect(sk, 0);
2568
2569 release_sock(sk);
2570
2571 return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(udp_abort);
2574
2575 struct proto udp_prot = {
2576 .name = "UDP",
2577 .owner = THIS_MODULE,
2578 .close = udp_lib_close,
2579 .connect = ip4_datagram_connect,
2580 .disconnect = udp_disconnect,
2581 .ioctl = udp_ioctl,
2582 .init = udp_init_sock,
2583 .destroy = udp_destroy_sock,
2584 .setsockopt = udp_setsockopt,
2585 .getsockopt = udp_getsockopt,
2586 .sendmsg = udp_sendmsg,
2587 .recvmsg = udp_recvmsg,
2588 .sendpage = udp_sendpage,
2589 .release_cb = ip4_datagram_release_cb,
2590 .hash = udp_lib_hash,
2591 .unhash = udp_lib_unhash,
2592 .rehash = udp_v4_rehash,
2593 .get_port = udp_v4_get_port,
2594 .memory_allocated = &udp_memory_allocated,
2595 .sysctl_mem = sysctl_udp_mem,
2596 .sysctl_wmem = &sysctl_udp_wmem_min,
2597 .sysctl_rmem = &sysctl_udp_rmem_min,
2598 .obj_size = sizeof(struct udp_sock),
2599 .h.udp_table = &udp_table,
2600 #ifdef CONFIG_COMPAT
2601 .compat_setsockopt = compat_udp_setsockopt,
2602 .compat_getsockopt = compat_udp_getsockopt,
2603 #endif
2604 .diag_destroy = udp_abort,
2605 };
2606 EXPORT_SYMBOL(udp_prot);
2607
2608 /* ------------------------------------------------------------------------ */
2609 #ifdef CONFIG_PROC_FS
2610
2611 static struct sock *udp_get_first(struct seq_file *seq, int start)
2612 {
2613 struct sock *sk;
2614 struct udp_iter_state *state = seq->private;
2615 struct net *net = seq_file_net(seq);
2616
2617 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2618 ++state->bucket) {
2619 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2620
2621 if (hlist_empty(&hslot->head))
2622 continue;
2623
2624 spin_lock_bh(&hslot->lock);
2625 sk_for_each(sk, &hslot->head) {
2626 if (!net_eq(sock_net(sk), net))
2627 continue;
2628 if (sk->sk_family == state->family)
2629 goto found;
2630 }
2631 spin_unlock_bh(&hslot->lock);
2632 }
2633 sk = NULL;
2634 found:
2635 return sk;
2636 }
2637
2638 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2639 {
2640 struct udp_iter_state *state = seq->private;
2641 struct net *net = seq_file_net(seq);
2642
2643 do {
2644 sk = sk_next(sk);
2645 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2646
2647 if (!sk) {
2648 if (state->bucket <= state->udp_table->mask)
2649 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2650 return udp_get_first(seq, state->bucket + 1);
2651 }
2652 return sk;
2653 }
2654
2655 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2656 {
2657 struct sock *sk = udp_get_first(seq, 0);
2658
2659 if (sk)
2660 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2661 --pos;
2662 return pos ? NULL : sk;
2663 }
2664
2665 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2666 {
2667 struct udp_iter_state *state = seq->private;
2668 state->bucket = MAX_UDP_PORTS;
2669
2670 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2671 }
2672
2673 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2674 {
2675 struct sock *sk;
2676
2677 if (v == SEQ_START_TOKEN)
2678 sk = udp_get_idx(seq, 0);
2679 else
2680 sk = udp_get_next(seq, v);
2681
2682 ++*pos;
2683 return sk;
2684 }
2685
2686 static void udp_seq_stop(struct seq_file *seq, void *v)
2687 {
2688 struct udp_iter_state *state = seq->private;
2689
2690 if (state->bucket <= state->udp_table->mask)
2691 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2692 }
2693
2694 int udp_seq_open(struct inode *inode, struct file *file)
2695 {
2696 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2697 struct udp_iter_state *s;
2698 int err;
2699
2700 err = seq_open_net(inode, file, &afinfo->seq_ops,
2701 sizeof(struct udp_iter_state));
2702 if (err < 0)
2703 return err;
2704
2705 s = ((struct seq_file *)file->private_data)->private;
2706 s->family = afinfo->family;
2707 s->udp_table = afinfo->udp_table;
2708 return err;
2709 }
2710 EXPORT_SYMBOL(udp_seq_open);
2711
2712 /* ------------------------------------------------------------------------ */
2713 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2714 {
2715 struct proc_dir_entry *p;
2716 int rc = 0;
2717
2718 afinfo->seq_ops.start = udp_seq_start;
2719 afinfo->seq_ops.next = udp_seq_next;
2720 afinfo->seq_ops.stop = udp_seq_stop;
2721
2722 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2723 afinfo->seq_fops, afinfo);
2724 if (!p)
2725 rc = -ENOMEM;
2726 return rc;
2727 }
2728 EXPORT_SYMBOL(udp_proc_register);
2729
2730 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2731 {
2732 remove_proc_entry(afinfo->name, net->proc_net);
2733 }
2734 EXPORT_SYMBOL(udp_proc_unregister);
2735
2736 /* ------------------------------------------------------------------------ */
2737 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2738 int bucket)
2739 {
2740 struct inet_sock *inet = inet_sk(sp);
2741 __be32 dest = inet->inet_daddr;
2742 __be32 src = inet->inet_rcv_saddr;
2743 __u16 destp = ntohs(inet->inet_dport);
2744 __u16 srcp = ntohs(inet->inet_sport);
2745
2746 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2747 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2748 bucket, src, srcp, dest, destp, sp->sk_state,
2749 sk_wmem_alloc_get(sp),
2750 sk_rmem_alloc_get(sp),
2751 0, 0L, 0,
2752 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2753 0, sock_i_ino(sp),
2754 atomic_read(&sp->sk_refcnt), sp,
2755 atomic_read(&sp->sk_drops));
2756 }
2757
2758 int udp4_seq_show(struct seq_file *seq, void *v)
2759 {
2760 seq_setwidth(seq, 127);
2761 if (v == SEQ_START_TOKEN)
2762 seq_puts(seq, " sl local_address rem_address st tx_queue "
2763 "rx_queue tr tm->when retrnsmt uid timeout "
2764 "inode ref pointer drops");
2765 else {
2766 struct udp_iter_state *state = seq->private;
2767
2768 udp4_format_sock(v, seq, state->bucket);
2769 }
2770 seq_pad(seq, '\n');
2771 return 0;
2772 }
2773
2774 static const struct file_operations udp_afinfo_seq_fops = {
2775 .owner = THIS_MODULE,
2776 .open = udp_seq_open,
2777 .read = seq_read,
2778 .llseek = seq_lseek,
2779 .release = seq_release_net
2780 };
2781
2782 /* ------------------------------------------------------------------------ */
2783 static struct udp_seq_afinfo udp4_seq_afinfo = {
2784 .name = "udp",
2785 .family = AF_INET,
2786 .udp_table = &udp_table,
2787 .seq_fops = &udp_afinfo_seq_fops,
2788 .seq_ops = {
2789 .show = udp4_seq_show,
2790 },
2791 };
2792
2793 static int __net_init udp4_proc_init_net(struct net *net)
2794 {
2795 return udp_proc_register(net, &udp4_seq_afinfo);
2796 }
2797
2798 static void __net_exit udp4_proc_exit_net(struct net *net)
2799 {
2800 udp_proc_unregister(net, &udp4_seq_afinfo);
2801 }
2802
2803 static struct pernet_operations udp4_net_ops = {
2804 .init = udp4_proc_init_net,
2805 .exit = udp4_proc_exit_net,
2806 };
2807
2808 int __init udp4_proc_init(void)
2809 {
2810 return register_pernet_subsys(&udp4_net_ops);
2811 }
2812
2813 void udp4_proc_exit(void)
2814 {
2815 unregister_pernet_subsys(&udp4_net_ops);
2816 }
2817 #endif /* CONFIG_PROC_FS */
2818
2819 static __initdata unsigned long uhash_entries;
2820 static int __init set_uhash_entries(char *str)
2821 {
2822 ssize_t ret;
2823
2824 if (!str)
2825 return 0;
2826
2827 ret = kstrtoul(str, 0, &uhash_entries);
2828 if (ret)
2829 return 0;
2830
2831 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2832 uhash_entries = UDP_HTABLE_SIZE_MIN;
2833 return 1;
2834 }
2835 __setup("uhash_entries=", set_uhash_entries);
2836
2837 void __init udp_table_init(struct udp_table *table, const char *name)
2838 {
2839 unsigned int i;
2840
2841 table->hash = alloc_large_system_hash(name,
2842 2 * sizeof(struct udp_hslot),
2843 uhash_entries,
2844 21, /* one slot per 2 MB */
2845 0,
2846 &table->log,
2847 &table->mask,
2848 UDP_HTABLE_SIZE_MIN,
2849 64 * 1024);
2850
2851 table->hash2 = table->hash + (table->mask + 1);
2852 for (i = 0; i <= table->mask; i++) {
2853 INIT_HLIST_HEAD(&table->hash[i].head);
2854 table->hash[i].count = 0;
2855 spin_lock_init(&table->hash[i].lock);
2856 }
2857 for (i = 0; i <= table->mask; i++) {
2858 INIT_HLIST_HEAD(&table->hash2[i].head);
2859 table->hash2[i].count = 0;
2860 spin_lock_init(&table->hash2[i].lock);
2861 }
2862 }
2863
2864 u32 udp_flow_hashrnd(void)
2865 {
2866 static u32 hashrnd __read_mostly;
2867
2868 net_get_random_once(&hashrnd, sizeof(hashrnd));
2869
2870 return hashrnd;
2871 }
2872 EXPORT_SYMBOL(udp_flow_hashrnd);
2873
2874 void __init udp_init(void)
2875 {
2876 unsigned long limit;
2877 unsigned int i;
2878
2879 udp_table_init(&udp_table, "UDP");
2880 limit = nr_free_buffer_pages() / 8;
2881 limit = max(limit, 128UL);
2882 sysctl_udp_mem[0] = limit / 4 * 3;
2883 sysctl_udp_mem[1] = limit;
2884 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2885
2886 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2887 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2888
2889 /* 16 spinlocks per cpu */
2890 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2891 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2892 GFP_KERNEL);
2893 if (!udp_busylocks)
2894 panic("UDP: failed to alloc udp_busylocks\n");
2895 for (i = 0; i < (1U << udp_busylocks_log); i++)
2896 spin_lock_init(udp_busylocks + i);
2897 }