]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/udp.c
soreuseport: fast reuseport UDP socket selection
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2,
142 bool match_wildcard),
143 unsigned int log)
144 {
145 struct sock *sk2;
146 struct hlist_nulls_node *node;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_nulls_for_each(sk2, node, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 !uid_eq(uid, sock_i_uid(sk2))) &&
159 saddr_comp(sk, sk2, true)) {
160 if (!bitmap)
161 return 1;
162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 }
164 }
165 return 0;
166 }
167
168 /*
169 * Note: we still hold spinlock of primary hash chain, so no other writer
170 * can insert/delete a socket with local_port == num
171 */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 struct udp_hslot *hslot2,
174 struct sock *sk,
175 int (*saddr_comp)(const struct sock *sk1,
176 const struct sock *sk2,
177 bool match_wildcard))
178 {
179 struct sock *sk2;
180 struct hlist_nulls_node *node;
181 kuid_t uid = sock_i_uid(sk);
182 int res = 0;
183
184 spin_lock(&hslot2->lock);
185 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
186 if (net_eq(sock_net(sk2), net) &&
187 sk2 != sk &&
188 (udp_sk(sk2)->udp_port_hash == num) &&
189 (!sk2->sk_reuse || !sk->sk_reuse) &&
190 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 (!sk2->sk_reuseport || !sk->sk_reuseport ||
193 rcu_access_pointer(sk->sk_reuseport_cb) ||
194 !uid_eq(uid, sock_i_uid(sk2))) &&
195 saddr_comp(sk, sk2, true)) {
196 res = 1;
197 break;
198 }
199 }
200 spin_unlock(&hslot2->lock);
201 return res;
202 }
203
204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
205 int (*saddr_same)(const struct sock *sk1,
206 const struct sock *sk2,
207 bool match_wildcard))
208 {
209 struct net *net = sock_net(sk);
210 struct hlist_nulls_node *node;
211 kuid_t uid = sock_i_uid(sk);
212 struct sock *sk2;
213
214 sk_nulls_for_each(sk2, node, &hslot->head) {
215 if (net_eq(sock_net(sk2), net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 (*saddr_same)(sk, sk2, false)) {
223 return reuseport_add_sock(sk, sk2);
224 }
225 }
226
227 /* Initial allocation may have already happened via setsockopt */
228 if (!rcu_access_pointer(sk->sk_reuseport_cb))
229 return reuseport_alloc(sk);
230 return 0;
231 }
232
233 /**
234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
235 *
236 * @sk: socket struct in question
237 * @snum: port number to look up
238 * @saddr_comp: AF-dependent comparison of bound local IP addresses
239 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240 * with NULL address
241 */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 int (*saddr_comp)(const struct sock *sk1,
244 const struct sock *sk2,
245 bool match_wildcard),
246 unsigned int hash2_nulladdr)
247 {
248 struct udp_hslot *hslot, *hslot2;
249 struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 int error = 1;
251 struct net *net = sock_net(sk);
252
253 if (!snum) {
254 int low, high, remaining;
255 unsigned int rand;
256 unsigned short first, last;
257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258
259 inet_get_local_port_range(net, &low, &high);
260 remaining = (high - low) + 1;
261
262 rand = prandom_u32();
263 first = reciprocal_scale(rand, remaining) + low;
264 /*
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 */
267 rand = (rand | 1) * (udptable->mask + 1);
268 last = first + udptable->mask + 1;
269 do {
270 hslot = udp_hashslot(udptable, net, first);
271 bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 spin_lock_bh(&hslot->lock);
273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 saddr_comp, udptable->log);
275
276 snum = first;
277 /*
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
281 */
282 do {
283 if (low <= snum && snum <= high &&
284 !test_bit(snum >> udptable->log, bitmap) &&
285 !inet_is_local_reserved_port(net, snum))
286 goto found;
287 snum += rand;
288 } while (snum != first);
289 spin_unlock_bh(&hslot->lock);
290 } while (++first != last);
291 goto fail;
292 } else {
293 hslot = udp_hashslot(udptable, net, snum);
294 spin_lock_bh(&hslot->lock);
295 if (hslot->count > 10) {
296 int exist;
297 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
298
299 slot2 &= udptable->mask;
300 hash2_nulladdr &= udptable->mask;
301
302 hslot2 = udp_hashslot2(udptable, slot2);
303 if (hslot->count < hslot2->count)
304 goto scan_primary_hash;
305
306 exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 sk, saddr_comp);
308 if (!exist && (hash2_nulladdr != slot2)) {
309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 sk, saddr_comp);
312 }
313 if (exist)
314 goto fail_unlock;
315 else
316 goto found;
317 }
318 scan_primary_hash:
319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
320 saddr_comp, 0))
321 goto fail_unlock;
322 }
323 found:
324 inet_sk(sk)->inet_num = snum;
325 udp_sk(sk)->udp_port_hash = snum;
326 udp_sk(sk)->udp_portaddr_hash ^= snum;
327 if (sk_unhashed(sk)) {
328 if (sk->sk_reuseport &&
329 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
330 inet_sk(sk)->inet_num = 0;
331 udp_sk(sk)->udp_port_hash = 0;
332 udp_sk(sk)->udp_portaddr_hash ^= snum;
333 goto fail_unlock;
334 }
335
336 sk_nulls_add_node_rcu(sk, &hslot->head);
337 hslot->count++;
338 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
339
340 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
341 spin_lock(&hslot2->lock);
342 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347 error = 0;
348 fail_unlock:
349 spin_unlock_bh(&hslot->lock);
350 fail:
351 return error;
352 }
353 EXPORT_SYMBOL(udp_lib_get_port);
354
355 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
356 * match_wildcard == false: addresses must be exactly the same, i.e.
357 * 0.0.0.0 only equals to 0.0.0.0
358 */
359 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
360 bool match_wildcard)
361 {
362 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
363
364 if (!ipv6_only_sock(sk2)) {
365 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
366 return 1;
367 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
368 return match_wildcard;
369 }
370 return 0;
371 }
372
373 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
374 unsigned int port)
375 {
376 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
377 }
378
379 int udp_v4_get_port(struct sock *sk, unsigned short snum)
380 {
381 unsigned int hash2_nulladdr =
382 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
383 unsigned int hash2_partial =
384 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
385
386 /* precompute partial secondary hash */
387 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
388 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
389 }
390
391 static inline int compute_score(struct sock *sk, struct net *net,
392 __be32 saddr, unsigned short hnum, __be16 sport,
393 __be32 daddr, __be16 dport, int dif)
394 {
395 int score;
396 struct inet_sock *inet;
397
398 if (!net_eq(sock_net(sk), net) ||
399 udp_sk(sk)->udp_port_hash != hnum ||
400 ipv6_only_sock(sk))
401 return -1;
402
403 score = (sk->sk_family == PF_INET) ? 2 : 1;
404 inet = inet_sk(sk);
405
406 if (inet->inet_rcv_saddr) {
407 if (inet->inet_rcv_saddr != daddr)
408 return -1;
409 score += 4;
410 }
411
412 if (inet->inet_daddr) {
413 if (inet->inet_daddr != saddr)
414 return -1;
415 score += 4;
416 }
417
418 if (inet->inet_dport) {
419 if (inet->inet_dport != sport)
420 return -1;
421 score += 4;
422 }
423
424 if (sk->sk_bound_dev_if) {
425 if (sk->sk_bound_dev_if != dif)
426 return -1;
427 score += 4;
428 }
429 if (sk->sk_incoming_cpu == raw_smp_processor_id())
430 score++;
431 return score;
432 }
433
434 /*
435 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
436 */
437 static inline int compute_score2(struct sock *sk, struct net *net,
438 __be32 saddr, __be16 sport,
439 __be32 daddr, unsigned int hnum, int dif)
440 {
441 int score;
442 struct inet_sock *inet;
443
444 if (!net_eq(sock_net(sk), net) ||
445 ipv6_only_sock(sk))
446 return -1;
447
448 inet = inet_sk(sk);
449
450 if (inet->inet_rcv_saddr != daddr ||
451 inet->inet_num != hnum)
452 return -1;
453
454 score = (sk->sk_family == PF_INET) ? 2 : 1;
455
456 if (inet->inet_daddr) {
457 if (inet->inet_daddr != saddr)
458 return -1;
459 score += 4;
460 }
461
462 if (inet->inet_dport) {
463 if (inet->inet_dport != sport)
464 return -1;
465 score += 4;
466 }
467
468 if (sk->sk_bound_dev_if) {
469 if (sk->sk_bound_dev_if != dif)
470 return -1;
471 score += 4;
472 }
473
474 if (sk->sk_incoming_cpu == raw_smp_processor_id())
475 score++;
476
477 return score;
478 }
479
480 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
481 const __u16 lport, const __be32 faddr,
482 const __be16 fport)
483 {
484 static u32 udp_ehash_secret __read_mostly;
485
486 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
487
488 return __inet_ehashfn(laddr, lport, faddr, fport,
489 udp_ehash_secret + net_hash_mix(net));
490 }
491
492 /* called with read_rcu_lock() */
493 static struct sock *udp4_lib_lookup2(struct net *net,
494 __be32 saddr, __be16 sport,
495 __be32 daddr, unsigned int hnum, int dif,
496 struct udp_hslot *hslot2, unsigned int slot2)
497 {
498 struct sock *sk, *result;
499 struct hlist_nulls_node *node;
500 int score, badness, matches = 0, reuseport = 0;
501 u32 hash = 0;
502
503 begin:
504 result = NULL;
505 badness = 0;
506 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
507 score = compute_score2(sk, net, saddr, sport,
508 daddr, hnum, dif);
509 if (score > badness) {
510 result = sk;
511 badness = score;
512 reuseport = sk->sk_reuseport;
513 if (reuseport) {
514 struct sock *sk2;
515 hash = udp_ehashfn(net, daddr, hnum,
516 saddr, sport);
517 sk2 = reuseport_select_sock(sk, hash);
518 if (sk2) {
519 result = sk2;
520 goto found;
521 }
522 matches = 1;
523 }
524 } else if (score == badness && reuseport) {
525 matches++;
526 if (reciprocal_scale(hash, matches) == 0)
527 result = sk;
528 hash = next_pseudo_random32(hash);
529 }
530 }
531 /*
532 * if the nulls value we got at the end of this lookup is
533 * not the expected one, we must restart lookup.
534 * We probably met an item that was moved to another chain.
535 */
536 if (get_nulls_value(node) != slot2)
537 goto begin;
538 if (result) {
539 found:
540 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
541 result = NULL;
542 else if (unlikely(compute_score2(result, net, saddr, sport,
543 daddr, hnum, dif) < badness)) {
544 sock_put(result);
545 goto begin;
546 }
547 }
548 return result;
549 }
550
551 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
552 * harder than this. -DaveM
553 */
554 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
555 __be16 sport, __be32 daddr, __be16 dport,
556 int dif, struct udp_table *udptable)
557 {
558 struct sock *sk, *result;
559 struct hlist_nulls_node *node;
560 unsigned short hnum = ntohs(dport);
561 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
562 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
563 int score, badness, matches = 0, reuseport = 0;
564 u32 hash = 0;
565
566 rcu_read_lock();
567 if (hslot->count > 10) {
568 hash2 = udp4_portaddr_hash(net, daddr, hnum);
569 slot2 = hash2 & udptable->mask;
570 hslot2 = &udptable->hash2[slot2];
571 if (hslot->count < hslot2->count)
572 goto begin;
573
574 result = udp4_lib_lookup2(net, saddr, sport,
575 daddr, hnum, dif,
576 hslot2, slot2);
577 if (!result) {
578 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
579 slot2 = hash2 & udptable->mask;
580 hslot2 = &udptable->hash2[slot2];
581 if (hslot->count < hslot2->count)
582 goto begin;
583
584 result = udp4_lib_lookup2(net, saddr, sport,
585 htonl(INADDR_ANY), hnum, dif,
586 hslot2, slot2);
587 }
588 rcu_read_unlock();
589 return result;
590 }
591 begin:
592 result = NULL;
593 badness = 0;
594 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
595 score = compute_score(sk, net, saddr, hnum, sport,
596 daddr, dport, dif);
597 if (score > badness) {
598 result = sk;
599 badness = score;
600 reuseport = sk->sk_reuseport;
601 if (reuseport) {
602 struct sock *sk2;
603 hash = udp_ehashfn(net, daddr, hnum,
604 saddr, sport);
605 sk2 = reuseport_select_sock(sk, hash);
606 if (sk2) {
607 result = sk2;
608 goto found;
609 }
610 matches = 1;
611 }
612 } else if (score == badness && reuseport) {
613 matches++;
614 if (reciprocal_scale(hash, matches) == 0)
615 result = sk;
616 hash = next_pseudo_random32(hash);
617 }
618 }
619 /*
620 * if the nulls value we got at the end of this lookup is
621 * not the expected one, we must restart lookup.
622 * We probably met an item that was moved to another chain.
623 */
624 if (get_nulls_value(node) != slot)
625 goto begin;
626
627 if (result) {
628 found:
629 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
630 result = NULL;
631 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
632 daddr, dport, dif) < badness)) {
633 sock_put(result);
634 goto begin;
635 }
636 }
637 rcu_read_unlock();
638 return result;
639 }
640 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
641
642 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
643 __be16 sport, __be16 dport,
644 struct udp_table *udptable)
645 {
646 const struct iphdr *iph = ip_hdr(skb);
647
648 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
649 iph->daddr, dport, inet_iif(skb),
650 udptable);
651 }
652
653 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
654 __be32 daddr, __be16 dport, int dif)
655 {
656 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif,
657 &udp_table);
658 }
659 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
660
661 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
662 __be16 loc_port, __be32 loc_addr,
663 __be16 rmt_port, __be32 rmt_addr,
664 int dif, unsigned short hnum)
665 {
666 struct inet_sock *inet = inet_sk(sk);
667
668 if (!net_eq(sock_net(sk), net) ||
669 udp_sk(sk)->udp_port_hash != hnum ||
670 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
671 (inet->inet_dport != rmt_port && inet->inet_dport) ||
672 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
673 ipv6_only_sock(sk) ||
674 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
675 return false;
676 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
677 return false;
678 return true;
679 }
680
681 /*
682 * This routine is called by the ICMP module when it gets some
683 * sort of error condition. If err < 0 then the socket should
684 * be closed and the error returned to the user. If err > 0
685 * it's just the icmp type << 8 | icmp code.
686 * Header points to the ip header of the error packet. We move
687 * on past this. Then (as it used to claim before adjustment)
688 * header points to the first 8 bytes of the udp header. We need
689 * to find the appropriate port.
690 */
691
692 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
693 {
694 struct inet_sock *inet;
695 const struct iphdr *iph = (const struct iphdr *)skb->data;
696 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
697 const int type = icmp_hdr(skb)->type;
698 const int code = icmp_hdr(skb)->code;
699 struct sock *sk;
700 int harderr;
701 int err;
702 struct net *net = dev_net(skb->dev);
703
704 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
705 iph->saddr, uh->source, skb->dev->ifindex, udptable);
706 if (!sk) {
707 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
708 return; /* No socket for error */
709 }
710
711 err = 0;
712 harderr = 0;
713 inet = inet_sk(sk);
714
715 switch (type) {
716 default:
717 case ICMP_TIME_EXCEEDED:
718 err = EHOSTUNREACH;
719 break;
720 case ICMP_SOURCE_QUENCH:
721 goto out;
722 case ICMP_PARAMETERPROB:
723 err = EPROTO;
724 harderr = 1;
725 break;
726 case ICMP_DEST_UNREACH:
727 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
728 ipv4_sk_update_pmtu(skb, sk, info);
729 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
730 err = EMSGSIZE;
731 harderr = 1;
732 break;
733 }
734 goto out;
735 }
736 err = EHOSTUNREACH;
737 if (code <= NR_ICMP_UNREACH) {
738 harderr = icmp_err_convert[code].fatal;
739 err = icmp_err_convert[code].errno;
740 }
741 break;
742 case ICMP_REDIRECT:
743 ipv4_sk_redirect(skb, sk);
744 goto out;
745 }
746
747 /*
748 * RFC1122: OK. Passes ICMP errors back to application, as per
749 * 4.1.3.3.
750 */
751 if (!inet->recverr) {
752 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
753 goto out;
754 } else
755 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
756
757 sk->sk_err = err;
758 sk->sk_error_report(sk);
759 out:
760 sock_put(sk);
761 }
762
763 void udp_err(struct sk_buff *skb, u32 info)
764 {
765 __udp4_lib_err(skb, info, &udp_table);
766 }
767
768 /*
769 * Throw away all pending data and cancel the corking. Socket is locked.
770 */
771 void udp_flush_pending_frames(struct sock *sk)
772 {
773 struct udp_sock *up = udp_sk(sk);
774
775 if (up->pending) {
776 up->len = 0;
777 up->pending = 0;
778 ip_flush_pending_frames(sk);
779 }
780 }
781 EXPORT_SYMBOL(udp_flush_pending_frames);
782
783 /**
784 * udp4_hwcsum - handle outgoing HW checksumming
785 * @skb: sk_buff containing the filled-in UDP header
786 * (checksum field must be zeroed out)
787 * @src: source IP address
788 * @dst: destination IP address
789 */
790 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
791 {
792 struct udphdr *uh = udp_hdr(skb);
793 int offset = skb_transport_offset(skb);
794 int len = skb->len - offset;
795 int hlen = len;
796 __wsum csum = 0;
797
798 if (!skb_has_frag_list(skb)) {
799 /*
800 * Only one fragment on the socket.
801 */
802 skb->csum_start = skb_transport_header(skb) - skb->head;
803 skb->csum_offset = offsetof(struct udphdr, check);
804 uh->check = ~csum_tcpudp_magic(src, dst, len,
805 IPPROTO_UDP, 0);
806 } else {
807 struct sk_buff *frags;
808
809 /*
810 * HW-checksum won't work as there are two or more
811 * fragments on the socket so that all csums of sk_buffs
812 * should be together
813 */
814 skb_walk_frags(skb, frags) {
815 csum = csum_add(csum, frags->csum);
816 hlen -= frags->len;
817 }
818
819 csum = skb_checksum(skb, offset, hlen, csum);
820 skb->ip_summed = CHECKSUM_NONE;
821
822 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
823 if (uh->check == 0)
824 uh->check = CSUM_MANGLED_0;
825 }
826 }
827 EXPORT_SYMBOL_GPL(udp4_hwcsum);
828
829 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
830 * for the simple case like when setting the checksum for a UDP tunnel.
831 */
832 void udp_set_csum(bool nocheck, struct sk_buff *skb,
833 __be32 saddr, __be32 daddr, int len)
834 {
835 struct udphdr *uh = udp_hdr(skb);
836
837 if (nocheck)
838 uh->check = 0;
839 else if (skb_is_gso(skb))
840 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
841 else if (skb_dst(skb) && skb_dst(skb)->dev &&
842 (skb_dst(skb)->dev->features &
843 (NETIF_F_IP_CSUM | NETIF_F_HW_CSUM))) {
844
845 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
846
847 skb->ip_summed = CHECKSUM_PARTIAL;
848 skb->csum_start = skb_transport_header(skb) - skb->head;
849 skb->csum_offset = offsetof(struct udphdr, check);
850 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
851 } else {
852 __wsum csum;
853
854 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
855
856 uh->check = 0;
857 csum = skb_checksum(skb, 0, len, 0);
858 uh->check = udp_v4_check(len, saddr, daddr, csum);
859 if (uh->check == 0)
860 uh->check = CSUM_MANGLED_0;
861
862 skb->ip_summed = CHECKSUM_UNNECESSARY;
863 }
864 }
865 EXPORT_SYMBOL(udp_set_csum);
866
867 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
868 {
869 struct sock *sk = skb->sk;
870 struct inet_sock *inet = inet_sk(sk);
871 struct udphdr *uh;
872 int err = 0;
873 int is_udplite = IS_UDPLITE(sk);
874 int offset = skb_transport_offset(skb);
875 int len = skb->len - offset;
876 __wsum csum = 0;
877
878 /*
879 * Create a UDP header
880 */
881 uh = udp_hdr(skb);
882 uh->source = inet->inet_sport;
883 uh->dest = fl4->fl4_dport;
884 uh->len = htons(len);
885 uh->check = 0;
886
887 if (is_udplite) /* UDP-Lite */
888 csum = udplite_csum(skb);
889
890 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
891
892 skb->ip_summed = CHECKSUM_NONE;
893 goto send;
894
895 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
896
897 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
898 goto send;
899
900 } else
901 csum = udp_csum(skb);
902
903 /* add protocol-dependent pseudo-header */
904 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
905 sk->sk_protocol, csum);
906 if (uh->check == 0)
907 uh->check = CSUM_MANGLED_0;
908
909 send:
910 err = ip_send_skb(sock_net(sk), skb);
911 if (err) {
912 if (err == -ENOBUFS && !inet->recverr) {
913 UDP_INC_STATS_USER(sock_net(sk),
914 UDP_MIB_SNDBUFERRORS, is_udplite);
915 err = 0;
916 }
917 } else
918 UDP_INC_STATS_USER(sock_net(sk),
919 UDP_MIB_OUTDATAGRAMS, is_udplite);
920 return err;
921 }
922
923 /*
924 * Push out all pending data as one UDP datagram. Socket is locked.
925 */
926 int udp_push_pending_frames(struct sock *sk)
927 {
928 struct udp_sock *up = udp_sk(sk);
929 struct inet_sock *inet = inet_sk(sk);
930 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
931 struct sk_buff *skb;
932 int err = 0;
933
934 skb = ip_finish_skb(sk, fl4);
935 if (!skb)
936 goto out;
937
938 err = udp_send_skb(skb, fl4);
939
940 out:
941 up->len = 0;
942 up->pending = 0;
943 return err;
944 }
945 EXPORT_SYMBOL(udp_push_pending_frames);
946
947 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
948 {
949 struct inet_sock *inet = inet_sk(sk);
950 struct udp_sock *up = udp_sk(sk);
951 struct flowi4 fl4_stack;
952 struct flowi4 *fl4;
953 int ulen = len;
954 struct ipcm_cookie ipc;
955 struct rtable *rt = NULL;
956 int free = 0;
957 int connected = 0;
958 __be32 daddr, faddr, saddr;
959 __be16 dport;
960 u8 tos;
961 int err, is_udplite = IS_UDPLITE(sk);
962 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
963 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
964 struct sk_buff *skb;
965 struct ip_options_data opt_copy;
966
967 if (len > 0xFFFF)
968 return -EMSGSIZE;
969
970 /*
971 * Check the flags.
972 */
973
974 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
975 return -EOPNOTSUPP;
976
977 ipc.opt = NULL;
978 ipc.tx_flags = 0;
979 ipc.ttl = 0;
980 ipc.tos = -1;
981
982 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
983
984 fl4 = &inet->cork.fl.u.ip4;
985 if (up->pending) {
986 /*
987 * There are pending frames.
988 * The socket lock must be held while it's corked.
989 */
990 lock_sock(sk);
991 if (likely(up->pending)) {
992 if (unlikely(up->pending != AF_INET)) {
993 release_sock(sk);
994 return -EINVAL;
995 }
996 goto do_append_data;
997 }
998 release_sock(sk);
999 }
1000 ulen += sizeof(struct udphdr);
1001
1002 /*
1003 * Get and verify the address.
1004 */
1005 if (msg->msg_name) {
1006 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1007 if (msg->msg_namelen < sizeof(*usin))
1008 return -EINVAL;
1009 if (usin->sin_family != AF_INET) {
1010 if (usin->sin_family != AF_UNSPEC)
1011 return -EAFNOSUPPORT;
1012 }
1013
1014 daddr = usin->sin_addr.s_addr;
1015 dport = usin->sin_port;
1016 if (dport == 0)
1017 return -EINVAL;
1018 } else {
1019 if (sk->sk_state != TCP_ESTABLISHED)
1020 return -EDESTADDRREQ;
1021 daddr = inet->inet_daddr;
1022 dport = inet->inet_dport;
1023 /* Open fast path for connected socket.
1024 Route will not be used, if at least one option is set.
1025 */
1026 connected = 1;
1027 }
1028 ipc.addr = inet->inet_saddr;
1029
1030 ipc.oif = sk->sk_bound_dev_if;
1031
1032 sock_tx_timestamp(sk, &ipc.tx_flags);
1033
1034 if (msg->msg_controllen) {
1035 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
1036 sk->sk_family == AF_INET6);
1037 if (err)
1038 return err;
1039 if (ipc.opt)
1040 free = 1;
1041 connected = 0;
1042 }
1043 if (!ipc.opt) {
1044 struct ip_options_rcu *inet_opt;
1045
1046 rcu_read_lock();
1047 inet_opt = rcu_dereference(inet->inet_opt);
1048 if (inet_opt) {
1049 memcpy(&opt_copy, inet_opt,
1050 sizeof(*inet_opt) + inet_opt->opt.optlen);
1051 ipc.opt = &opt_copy.opt;
1052 }
1053 rcu_read_unlock();
1054 }
1055
1056 saddr = ipc.addr;
1057 ipc.addr = faddr = daddr;
1058
1059 if (ipc.opt && ipc.opt->opt.srr) {
1060 if (!daddr)
1061 return -EINVAL;
1062 faddr = ipc.opt->opt.faddr;
1063 connected = 0;
1064 }
1065 tos = get_rttos(&ipc, inet);
1066 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1067 (msg->msg_flags & MSG_DONTROUTE) ||
1068 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1069 tos |= RTO_ONLINK;
1070 connected = 0;
1071 }
1072
1073 if (ipv4_is_multicast(daddr)) {
1074 if (!ipc.oif)
1075 ipc.oif = inet->mc_index;
1076 if (!saddr)
1077 saddr = inet->mc_addr;
1078 connected = 0;
1079 } else if (!ipc.oif)
1080 ipc.oif = inet->uc_index;
1081
1082 if (connected)
1083 rt = (struct rtable *)sk_dst_check(sk, 0);
1084
1085 if (!rt) {
1086 struct net *net = sock_net(sk);
1087 __u8 flow_flags = inet_sk_flowi_flags(sk);
1088
1089 fl4 = &fl4_stack;
1090
1091 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1092 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1093 flow_flags,
1094 faddr, saddr, dport, inet->inet_sport);
1095
1096 if (!saddr && ipc.oif)
1097 l3mdev_get_saddr(net, ipc.oif, fl4);
1098
1099 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1100 rt = ip_route_output_flow(net, fl4, sk);
1101 if (IS_ERR(rt)) {
1102 err = PTR_ERR(rt);
1103 rt = NULL;
1104 if (err == -ENETUNREACH)
1105 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1106 goto out;
1107 }
1108
1109 err = -EACCES;
1110 if ((rt->rt_flags & RTCF_BROADCAST) &&
1111 !sock_flag(sk, SOCK_BROADCAST))
1112 goto out;
1113 if (connected)
1114 sk_dst_set(sk, dst_clone(&rt->dst));
1115 }
1116
1117 if (msg->msg_flags&MSG_CONFIRM)
1118 goto do_confirm;
1119 back_from_confirm:
1120
1121 saddr = fl4->saddr;
1122 if (!ipc.addr)
1123 daddr = ipc.addr = fl4->daddr;
1124
1125 /* Lockless fast path for the non-corking case. */
1126 if (!corkreq) {
1127 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1128 sizeof(struct udphdr), &ipc, &rt,
1129 msg->msg_flags);
1130 err = PTR_ERR(skb);
1131 if (!IS_ERR_OR_NULL(skb))
1132 err = udp_send_skb(skb, fl4);
1133 goto out;
1134 }
1135
1136 lock_sock(sk);
1137 if (unlikely(up->pending)) {
1138 /* The socket is already corked while preparing it. */
1139 /* ... which is an evident application bug. --ANK */
1140 release_sock(sk);
1141
1142 net_dbg_ratelimited("cork app bug 2\n");
1143 err = -EINVAL;
1144 goto out;
1145 }
1146 /*
1147 * Now cork the socket to pend data.
1148 */
1149 fl4 = &inet->cork.fl.u.ip4;
1150 fl4->daddr = daddr;
1151 fl4->saddr = saddr;
1152 fl4->fl4_dport = dport;
1153 fl4->fl4_sport = inet->inet_sport;
1154 up->pending = AF_INET;
1155
1156 do_append_data:
1157 up->len += ulen;
1158 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1159 sizeof(struct udphdr), &ipc, &rt,
1160 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1161 if (err)
1162 udp_flush_pending_frames(sk);
1163 else if (!corkreq)
1164 err = udp_push_pending_frames(sk);
1165 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1166 up->pending = 0;
1167 release_sock(sk);
1168
1169 out:
1170 ip_rt_put(rt);
1171 if (free)
1172 kfree(ipc.opt);
1173 if (!err)
1174 return len;
1175 /*
1176 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1177 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1178 * we don't have a good statistic (IpOutDiscards but it can be too many
1179 * things). We could add another new stat but at least for now that
1180 * seems like overkill.
1181 */
1182 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1183 UDP_INC_STATS_USER(sock_net(sk),
1184 UDP_MIB_SNDBUFERRORS, is_udplite);
1185 }
1186 return err;
1187
1188 do_confirm:
1189 dst_confirm(&rt->dst);
1190 if (!(msg->msg_flags&MSG_PROBE) || len)
1191 goto back_from_confirm;
1192 err = 0;
1193 goto out;
1194 }
1195 EXPORT_SYMBOL(udp_sendmsg);
1196
1197 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1198 size_t size, int flags)
1199 {
1200 struct inet_sock *inet = inet_sk(sk);
1201 struct udp_sock *up = udp_sk(sk);
1202 int ret;
1203
1204 if (flags & MSG_SENDPAGE_NOTLAST)
1205 flags |= MSG_MORE;
1206
1207 if (!up->pending) {
1208 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1209
1210 /* Call udp_sendmsg to specify destination address which
1211 * sendpage interface can't pass.
1212 * This will succeed only when the socket is connected.
1213 */
1214 ret = udp_sendmsg(sk, &msg, 0);
1215 if (ret < 0)
1216 return ret;
1217 }
1218
1219 lock_sock(sk);
1220
1221 if (unlikely(!up->pending)) {
1222 release_sock(sk);
1223
1224 net_dbg_ratelimited("udp cork app bug 3\n");
1225 return -EINVAL;
1226 }
1227
1228 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1229 page, offset, size, flags);
1230 if (ret == -EOPNOTSUPP) {
1231 release_sock(sk);
1232 return sock_no_sendpage(sk->sk_socket, page, offset,
1233 size, flags);
1234 }
1235 if (ret < 0) {
1236 udp_flush_pending_frames(sk);
1237 goto out;
1238 }
1239
1240 up->len += size;
1241 if (!(up->corkflag || (flags&MSG_MORE)))
1242 ret = udp_push_pending_frames(sk);
1243 if (!ret)
1244 ret = size;
1245 out:
1246 release_sock(sk);
1247 return ret;
1248 }
1249
1250 /**
1251 * first_packet_length - return length of first packet in receive queue
1252 * @sk: socket
1253 *
1254 * Drops all bad checksum frames, until a valid one is found.
1255 * Returns the length of found skb, or 0 if none is found.
1256 */
1257 static unsigned int first_packet_length(struct sock *sk)
1258 {
1259 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1260 struct sk_buff *skb;
1261 unsigned int res;
1262
1263 __skb_queue_head_init(&list_kill);
1264
1265 spin_lock_bh(&rcvq->lock);
1266 while ((skb = skb_peek(rcvq)) != NULL &&
1267 udp_lib_checksum_complete(skb)) {
1268 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1269 IS_UDPLITE(sk));
1270 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1271 IS_UDPLITE(sk));
1272 atomic_inc(&sk->sk_drops);
1273 __skb_unlink(skb, rcvq);
1274 __skb_queue_tail(&list_kill, skb);
1275 }
1276 res = skb ? skb->len : 0;
1277 spin_unlock_bh(&rcvq->lock);
1278
1279 if (!skb_queue_empty(&list_kill)) {
1280 bool slow = lock_sock_fast(sk);
1281
1282 __skb_queue_purge(&list_kill);
1283 sk_mem_reclaim_partial(sk);
1284 unlock_sock_fast(sk, slow);
1285 }
1286 return res;
1287 }
1288
1289 /*
1290 * IOCTL requests applicable to the UDP protocol
1291 */
1292
1293 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1294 {
1295 switch (cmd) {
1296 case SIOCOUTQ:
1297 {
1298 int amount = sk_wmem_alloc_get(sk);
1299
1300 return put_user(amount, (int __user *)arg);
1301 }
1302
1303 case SIOCINQ:
1304 {
1305 unsigned int amount = first_packet_length(sk);
1306
1307 if (amount)
1308 /*
1309 * We will only return the amount
1310 * of this packet since that is all
1311 * that will be read.
1312 */
1313 amount -= sizeof(struct udphdr);
1314
1315 return put_user(amount, (int __user *)arg);
1316 }
1317
1318 default:
1319 return -ENOIOCTLCMD;
1320 }
1321
1322 return 0;
1323 }
1324 EXPORT_SYMBOL(udp_ioctl);
1325
1326 /*
1327 * This should be easy, if there is something there we
1328 * return it, otherwise we block.
1329 */
1330
1331 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1332 int flags, int *addr_len)
1333 {
1334 struct inet_sock *inet = inet_sk(sk);
1335 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1336 struct sk_buff *skb;
1337 unsigned int ulen, copied;
1338 int peeked, off = 0;
1339 int err;
1340 int is_udplite = IS_UDPLITE(sk);
1341 bool checksum_valid = false;
1342 bool slow;
1343
1344 if (flags & MSG_ERRQUEUE)
1345 return ip_recv_error(sk, msg, len, addr_len);
1346
1347 try_again:
1348 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1349 &peeked, &off, &err);
1350 if (!skb)
1351 goto out;
1352
1353 ulen = skb->len - sizeof(struct udphdr);
1354 copied = len;
1355 if (copied > ulen)
1356 copied = ulen;
1357 else if (copied < ulen)
1358 msg->msg_flags |= MSG_TRUNC;
1359
1360 /*
1361 * If checksum is needed at all, try to do it while copying the
1362 * data. If the data is truncated, or if we only want a partial
1363 * coverage checksum (UDP-Lite), do it before the copy.
1364 */
1365
1366 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1367 checksum_valid = !udp_lib_checksum_complete(skb);
1368 if (!checksum_valid)
1369 goto csum_copy_err;
1370 }
1371
1372 if (checksum_valid || skb_csum_unnecessary(skb))
1373 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1374 msg, copied);
1375 else {
1376 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1377 msg);
1378
1379 if (err == -EINVAL)
1380 goto csum_copy_err;
1381 }
1382
1383 if (unlikely(err)) {
1384 trace_kfree_skb(skb, udp_recvmsg);
1385 if (!peeked) {
1386 atomic_inc(&sk->sk_drops);
1387 UDP_INC_STATS_USER(sock_net(sk),
1388 UDP_MIB_INERRORS, is_udplite);
1389 }
1390 goto out_free;
1391 }
1392
1393 if (!peeked)
1394 UDP_INC_STATS_USER(sock_net(sk),
1395 UDP_MIB_INDATAGRAMS, is_udplite);
1396
1397 sock_recv_ts_and_drops(msg, sk, skb);
1398
1399 /* Copy the address. */
1400 if (sin) {
1401 sin->sin_family = AF_INET;
1402 sin->sin_port = udp_hdr(skb)->source;
1403 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1404 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1405 *addr_len = sizeof(*sin);
1406 }
1407 if (inet->cmsg_flags)
1408 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1409
1410 err = copied;
1411 if (flags & MSG_TRUNC)
1412 err = ulen;
1413
1414 out_free:
1415 skb_free_datagram_locked(sk, skb);
1416 out:
1417 return err;
1418
1419 csum_copy_err:
1420 slow = lock_sock_fast(sk);
1421 if (!skb_kill_datagram(sk, skb, flags)) {
1422 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1423 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1424 }
1425 unlock_sock_fast(sk, slow);
1426
1427 /* starting over for a new packet, but check if we need to yield */
1428 cond_resched();
1429 msg->msg_flags &= ~MSG_TRUNC;
1430 goto try_again;
1431 }
1432
1433 int udp_disconnect(struct sock *sk, int flags)
1434 {
1435 struct inet_sock *inet = inet_sk(sk);
1436 /*
1437 * 1003.1g - break association.
1438 */
1439
1440 sk->sk_state = TCP_CLOSE;
1441 inet->inet_daddr = 0;
1442 inet->inet_dport = 0;
1443 sock_rps_reset_rxhash(sk);
1444 sk->sk_bound_dev_if = 0;
1445 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1446 inet_reset_saddr(sk);
1447
1448 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1449 sk->sk_prot->unhash(sk);
1450 inet->inet_sport = 0;
1451 }
1452 sk_dst_reset(sk);
1453 return 0;
1454 }
1455 EXPORT_SYMBOL(udp_disconnect);
1456
1457 void udp_lib_unhash(struct sock *sk)
1458 {
1459 if (sk_hashed(sk)) {
1460 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1461 struct udp_hslot *hslot, *hslot2;
1462
1463 hslot = udp_hashslot(udptable, sock_net(sk),
1464 udp_sk(sk)->udp_port_hash);
1465 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1466
1467 spin_lock_bh(&hslot->lock);
1468 if (rcu_access_pointer(sk->sk_reuseport_cb))
1469 reuseport_detach_sock(sk);
1470 if (sk_nulls_del_node_init_rcu(sk)) {
1471 hslot->count--;
1472 inet_sk(sk)->inet_num = 0;
1473 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1474
1475 spin_lock(&hslot2->lock);
1476 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1477 hslot2->count--;
1478 spin_unlock(&hslot2->lock);
1479 }
1480 spin_unlock_bh(&hslot->lock);
1481 }
1482 }
1483 EXPORT_SYMBOL(udp_lib_unhash);
1484
1485 /*
1486 * inet_rcv_saddr was changed, we must rehash secondary hash
1487 */
1488 void udp_lib_rehash(struct sock *sk, u16 newhash)
1489 {
1490 if (sk_hashed(sk)) {
1491 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1492 struct udp_hslot *hslot, *hslot2, *nhslot2;
1493
1494 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1495 nhslot2 = udp_hashslot2(udptable, newhash);
1496 udp_sk(sk)->udp_portaddr_hash = newhash;
1497
1498 if (hslot2 != nhslot2 ||
1499 rcu_access_pointer(sk->sk_reuseport_cb)) {
1500 hslot = udp_hashslot(udptable, sock_net(sk),
1501 udp_sk(sk)->udp_port_hash);
1502 /* we must lock primary chain too */
1503 spin_lock_bh(&hslot->lock);
1504 if (rcu_access_pointer(sk->sk_reuseport_cb))
1505 reuseport_detach_sock(sk);
1506
1507 if (hslot2 != nhslot2) {
1508 spin_lock(&hslot2->lock);
1509 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1510 hslot2->count--;
1511 spin_unlock(&hslot2->lock);
1512
1513 spin_lock(&nhslot2->lock);
1514 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1515 &nhslot2->head);
1516 nhslot2->count++;
1517 spin_unlock(&nhslot2->lock);
1518 }
1519
1520 spin_unlock_bh(&hslot->lock);
1521 }
1522 }
1523 }
1524 EXPORT_SYMBOL(udp_lib_rehash);
1525
1526 static void udp_v4_rehash(struct sock *sk)
1527 {
1528 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1529 inet_sk(sk)->inet_rcv_saddr,
1530 inet_sk(sk)->inet_num);
1531 udp_lib_rehash(sk, new_hash);
1532 }
1533
1534 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1535 {
1536 int rc;
1537
1538 if (inet_sk(sk)->inet_daddr) {
1539 sock_rps_save_rxhash(sk, skb);
1540 sk_mark_napi_id(sk, skb);
1541 sk_incoming_cpu_update(sk);
1542 }
1543
1544 rc = sock_queue_rcv_skb(sk, skb);
1545 if (rc < 0) {
1546 int is_udplite = IS_UDPLITE(sk);
1547
1548 /* Note that an ENOMEM error is charged twice */
1549 if (rc == -ENOMEM)
1550 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1551 is_udplite);
1552 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1553 kfree_skb(skb);
1554 trace_udp_fail_queue_rcv_skb(rc, sk);
1555 return -1;
1556 }
1557
1558 return 0;
1559
1560 }
1561
1562 static struct static_key udp_encap_needed __read_mostly;
1563 void udp_encap_enable(void)
1564 {
1565 if (!static_key_enabled(&udp_encap_needed))
1566 static_key_slow_inc(&udp_encap_needed);
1567 }
1568 EXPORT_SYMBOL(udp_encap_enable);
1569
1570 /* returns:
1571 * -1: error
1572 * 0: success
1573 * >0: "udp encap" protocol resubmission
1574 *
1575 * Note that in the success and error cases, the skb is assumed to
1576 * have either been requeued or freed.
1577 */
1578 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1579 {
1580 struct udp_sock *up = udp_sk(sk);
1581 int rc;
1582 int is_udplite = IS_UDPLITE(sk);
1583
1584 /*
1585 * Charge it to the socket, dropping if the queue is full.
1586 */
1587 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1588 goto drop;
1589 nf_reset(skb);
1590
1591 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1592 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1593
1594 /*
1595 * This is an encapsulation socket so pass the skb to
1596 * the socket's udp_encap_rcv() hook. Otherwise, just
1597 * fall through and pass this up the UDP socket.
1598 * up->encap_rcv() returns the following value:
1599 * =0 if skb was successfully passed to the encap
1600 * handler or was discarded by it.
1601 * >0 if skb should be passed on to UDP.
1602 * <0 if skb should be resubmitted as proto -N
1603 */
1604
1605 /* if we're overly short, let UDP handle it */
1606 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1607 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1608 int ret;
1609
1610 /* Verify checksum before giving to encap */
1611 if (udp_lib_checksum_complete(skb))
1612 goto csum_error;
1613
1614 ret = encap_rcv(sk, skb);
1615 if (ret <= 0) {
1616 UDP_INC_STATS_BH(sock_net(sk),
1617 UDP_MIB_INDATAGRAMS,
1618 is_udplite);
1619 return -ret;
1620 }
1621 }
1622
1623 /* FALLTHROUGH -- it's a UDP Packet */
1624 }
1625
1626 /*
1627 * UDP-Lite specific tests, ignored on UDP sockets
1628 */
1629 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1630
1631 /*
1632 * MIB statistics other than incrementing the error count are
1633 * disabled for the following two types of errors: these depend
1634 * on the application settings, not on the functioning of the
1635 * protocol stack as such.
1636 *
1637 * RFC 3828 here recommends (sec 3.3): "There should also be a
1638 * way ... to ... at least let the receiving application block
1639 * delivery of packets with coverage values less than a value
1640 * provided by the application."
1641 */
1642 if (up->pcrlen == 0) { /* full coverage was set */
1643 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1644 UDP_SKB_CB(skb)->cscov, skb->len);
1645 goto drop;
1646 }
1647 /* The next case involves violating the min. coverage requested
1648 * by the receiver. This is subtle: if receiver wants x and x is
1649 * greater than the buffersize/MTU then receiver will complain
1650 * that it wants x while sender emits packets of smaller size y.
1651 * Therefore the above ...()->partial_cov statement is essential.
1652 */
1653 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1654 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1655 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1656 goto drop;
1657 }
1658 }
1659
1660 if (rcu_access_pointer(sk->sk_filter) &&
1661 udp_lib_checksum_complete(skb))
1662 goto csum_error;
1663
1664 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1665 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1666 is_udplite);
1667 goto drop;
1668 }
1669
1670 rc = 0;
1671
1672 ipv4_pktinfo_prepare(sk, skb);
1673 bh_lock_sock(sk);
1674 if (!sock_owned_by_user(sk))
1675 rc = __udp_queue_rcv_skb(sk, skb);
1676 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1677 bh_unlock_sock(sk);
1678 goto drop;
1679 }
1680 bh_unlock_sock(sk);
1681
1682 return rc;
1683
1684 csum_error:
1685 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1686 drop:
1687 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1688 atomic_inc(&sk->sk_drops);
1689 kfree_skb(skb);
1690 return -1;
1691 }
1692
1693 static void flush_stack(struct sock **stack, unsigned int count,
1694 struct sk_buff *skb, unsigned int final)
1695 {
1696 unsigned int i;
1697 struct sk_buff *skb1 = NULL;
1698 struct sock *sk;
1699
1700 for (i = 0; i < count; i++) {
1701 sk = stack[i];
1702 if (likely(!skb1))
1703 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1704
1705 if (!skb1) {
1706 atomic_inc(&sk->sk_drops);
1707 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1708 IS_UDPLITE(sk));
1709 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1710 IS_UDPLITE(sk));
1711 }
1712
1713 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1714 skb1 = NULL;
1715
1716 sock_put(sk);
1717 }
1718 if (unlikely(skb1))
1719 kfree_skb(skb1);
1720 }
1721
1722 /* For TCP sockets, sk_rx_dst is protected by socket lock
1723 * For UDP, we use xchg() to guard against concurrent changes.
1724 */
1725 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1726 {
1727 struct dst_entry *old;
1728
1729 dst_hold(dst);
1730 old = xchg(&sk->sk_rx_dst, dst);
1731 dst_release(old);
1732 }
1733
1734 /*
1735 * Multicasts and broadcasts go to each listener.
1736 *
1737 * Note: called only from the BH handler context.
1738 */
1739 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1740 struct udphdr *uh,
1741 __be32 saddr, __be32 daddr,
1742 struct udp_table *udptable,
1743 int proto)
1744 {
1745 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1746 struct hlist_nulls_node *node;
1747 unsigned short hnum = ntohs(uh->dest);
1748 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1749 int dif = skb->dev->ifindex;
1750 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1751 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1752 bool inner_flushed = false;
1753
1754 if (use_hash2) {
1755 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1756 udp_table.mask;
1757 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1758 start_lookup:
1759 hslot = &udp_table.hash2[hash2];
1760 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1761 }
1762
1763 spin_lock(&hslot->lock);
1764 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1765 if (__udp_is_mcast_sock(net, sk,
1766 uh->dest, daddr,
1767 uh->source, saddr,
1768 dif, hnum)) {
1769 if (unlikely(count == ARRAY_SIZE(stack))) {
1770 flush_stack(stack, count, skb, ~0);
1771 inner_flushed = true;
1772 count = 0;
1773 }
1774 stack[count++] = sk;
1775 sock_hold(sk);
1776 }
1777 }
1778
1779 spin_unlock(&hslot->lock);
1780
1781 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1782 if (use_hash2 && hash2 != hash2_any) {
1783 hash2 = hash2_any;
1784 goto start_lookup;
1785 }
1786
1787 /*
1788 * do the slow work with no lock held
1789 */
1790 if (count) {
1791 flush_stack(stack, count, skb, count - 1);
1792 } else {
1793 if (!inner_flushed)
1794 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1795 proto == IPPROTO_UDPLITE);
1796 consume_skb(skb);
1797 }
1798 return 0;
1799 }
1800
1801 /* Initialize UDP checksum. If exited with zero value (success),
1802 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1803 * Otherwise, csum completion requires chacksumming packet body,
1804 * including udp header and folding it to skb->csum.
1805 */
1806 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1807 int proto)
1808 {
1809 int err;
1810
1811 UDP_SKB_CB(skb)->partial_cov = 0;
1812 UDP_SKB_CB(skb)->cscov = skb->len;
1813
1814 if (proto == IPPROTO_UDPLITE) {
1815 err = udplite_checksum_init(skb, uh);
1816 if (err)
1817 return err;
1818 }
1819
1820 return skb_checksum_init_zero_check(skb, proto, uh->check,
1821 inet_compute_pseudo);
1822 }
1823
1824 /*
1825 * All we need to do is get the socket, and then do a checksum.
1826 */
1827
1828 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1829 int proto)
1830 {
1831 struct sock *sk;
1832 struct udphdr *uh;
1833 unsigned short ulen;
1834 struct rtable *rt = skb_rtable(skb);
1835 __be32 saddr, daddr;
1836 struct net *net = dev_net(skb->dev);
1837
1838 /*
1839 * Validate the packet.
1840 */
1841 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1842 goto drop; /* No space for header. */
1843
1844 uh = udp_hdr(skb);
1845 ulen = ntohs(uh->len);
1846 saddr = ip_hdr(skb)->saddr;
1847 daddr = ip_hdr(skb)->daddr;
1848
1849 if (ulen > skb->len)
1850 goto short_packet;
1851
1852 if (proto == IPPROTO_UDP) {
1853 /* UDP validates ulen. */
1854 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1855 goto short_packet;
1856 uh = udp_hdr(skb);
1857 }
1858
1859 if (udp4_csum_init(skb, uh, proto))
1860 goto csum_error;
1861
1862 sk = skb_steal_sock(skb);
1863 if (sk) {
1864 struct dst_entry *dst = skb_dst(skb);
1865 int ret;
1866
1867 if (unlikely(sk->sk_rx_dst != dst))
1868 udp_sk_rx_dst_set(sk, dst);
1869
1870 ret = udp_queue_rcv_skb(sk, skb);
1871 sock_put(sk);
1872 /* a return value > 0 means to resubmit the input, but
1873 * it wants the return to be -protocol, or 0
1874 */
1875 if (ret > 0)
1876 return -ret;
1877 return 0;
1878 }
1879
1880 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1881 return __udp4_lib_mcast_deliver(net, skb, uh,
1882 saddr, daddr, udptable, proto);
1883
1884 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1885 if (sk) {
1886 int ret;
1887
1888 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1889 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1890 inet_compute_pseudo);
1891
1892 ret = udp_queue_rcv_skb(sk, skb);
1893 sock_put(sk);
1894
1895 /* a return value > 0 means to resubmit the input, but
1896 * it wants the return to be -protocol, or 0
1897 */
1898 if (ret > 0)
1899 return -ret;
1900 return 0;
1901 }
1902
1903 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1904 goto drop;
1905 nf_reset(skb);
1906
1907 /* No socket. Drop packet silently, if checksum is wrong */
1908 if (udp_lib_checksum_complete(skb))
1909 goto csum_error;
1910
1911 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1912 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1913
1914 /*
1915 * Hmm. We got an UDP packet to a port to which we
1916 * don't wanna listen. Ignore it.
1917 */
1918 kfree_skb(skb);
1919 return 0;
1920
1921 short_packet:
1922 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1923 proto == IPPROTO_UDPLITE ? "Lite" : "",
1924 &saddr, ntohs(uh->source),
1925 ulen, skb->len,
1926 &daddr, ntohs(uh->dest));
1927 goto drop;
1928
1929 csum_error:
1930 /*
1931 * RFC1122: OK. Discards the bad packet silently (as far as
1932 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1933 */
1934 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1935 proto == IPPROTO_UDPLITE ? "Lite" : "",
1936 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1937 ulen);
1938 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1939 drop:
1940 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1941 kfree_skb(skb);
1942 return 0;
1943 }
1944
1945 /* We can only early demux multicast if there is a single matching socket.
1946 * If more than one socket found returns NULL
1947 */
1948 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1949 __be16 loc_port, __be32 loc_addr,
1950 __be16 rmt_port, __be32 rmt_addr,
1951 int dif)
1952 {
1953 struct sock *sk, *result;
1954 struct hlist_nulls_node *node;
1955 unsigned short hnum = ntohs(loc_port);
1956 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1957 struct udp_hslot *hslot = &udp_table.hash[slot];
1958
1959 /* Do not bother scanning a too big list */
1960 if (hslot->count > 10)
1961 return NULL;
1962
1963 rcu_read_lock();
1964 begin:
1965 count = 0;
1966 result = NULL;
1967 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1968 if (__udp_is_mcast_sock(net, sk,
1969 loc_port, loc_addr,
1970 rmt_port, rmt_addr,
1971 dif, hnum)) {
1972 result = sk;
1973 ++count;
1974 }
1975 }
1976 /*
1977 * if the nulls value we got at the end of this lookup is
1978 * not the expected one, we must restart lookup.
1979 * We probably met an item that was moved to another chain.
1980 */
1981 if (get_nulls_value(node) != slot)
1982 goto begin;
1983
1984 if (result) {
1985 if (count != 1 ||
1986 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1987 result = NULL;
1988 else if (unlikely(!__udp_is_mcast_sock(net, result,
1989 loc_port, loc_addr,
1990 rmt_port, rmt_addr,
1991 dif, hnum))) {
1992 sock_put(result);
1993 result = NULL;
1994 }
1995 }
1996 rcu_read_unlock();
1997 return result;
1998 }
1999
2000 /* For unicast we should only early demux connected sockets or we can
2001 * break forwarding setups. The chains here can be long so only check
2002 * if the first socket is an exact match and if not move on.
2003 */
2004 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2005 __be16 loc_port, __be32 loc_addr,
2006 __be16 rmt_port, __be32 rmt_addr,
2007 int dif)
2008 {
2009 struct sock *sk, *result;
2010 struct hlist_nulls_node *node;
2011 unsigned short hnum = ntohs(loc_port);
2012 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2013 unsigned int slot2 = hash2 & udp_table.mask;
2014 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2015 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2016 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2017
2018 rcu_read_lock();
2019 result = NULL;
2020 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
2021 if (INET_MATCH(sk, net, acookie,
2022 rmt_addr, loc_addr, ports, dif))
2023 result = sk;
2024 /* Only check first socket in chain */
2025 break;
2026 }
2027
2028 if (result) {
2029 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
2030 result = NULL;
2031 else if (unlikely(!INET_MATCH(sk, net, acookie,
2032 rmt_addr, loc_addr,
2033 ports, dif))) {
2034 sock_put(result);
2035 result = NULL;
2036 }
2037 }
2038 rcu_read_unlock();
2039 return result;
2040 }
2041
2042 void udp_v4_early_demux(struct sk_buff *skb)
2043 {
2044 struct net *net = dev_net(skb->dev);
2045 const struct iphdr *iph;
2046 const struct udphdr *uh;
2047 struct sock *sk;
2048 struct dst_entry *dst;
2049 int dif = skb->dev->ifindex;
2050 int ours;
2051
2052 /* validate the packet */
2053 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2054 return;
2055
2056 iph = ip_hdr(skb);
2057 uh = udp_hdr(skb);
2058
2059 if (skb->pkt_type == PACKET_BROADCAST ||
2060 skb->pkt_type == PACKET_MULTICAST) {
2061 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2062
2063 if (!in_dev)
2064 return;
2065
2066 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2067 iph->protocol);
2068 if (!ours)
2069 return;
2070 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2071 uh->source, iph->saddr, dif);
2072 } else if (skb->pkt_type == PACKET_HOST) {
2073 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2074 uh->source, iph->saddr, dif);
2075 } else {
2076 return;
2077 }
2078
2079 if (!sk)
2080 return;
2081
2082 skb->sk = sk;
2083 skb->destructor = sock_efree;
2084 dst = READ_ONCE(sk->sk_rx_dst);
2085
2086 if (dst)
2087 dst = dst_check(dst, 0);
2088 if (dst) {
2089 /* DST_NOCACHE can not be used without taking a reference */
2090 if (dst->flags & DST_NOCACHE) {
2091 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2092 skb_dst_set(skb, dst);
2093 } else {
2094 skb_dst_set_noref(skb, dst);
2095 }
2096 }
2097 }
2098
2099 int udp_rcv(struct sk_buff *skb)
2100 {
2101 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2102 }
2103
2104 void udp_destroy_sock(struct sock *sk)
2105 {
2106 struct udp_sock *up = udp_sk(sk);
2107 bool slow = lock_sock_fast(sk);
2108 udp_flush_pending_frames(sk);
2109 unlock_sock_fast(sk, slow);
2110 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2111 void (*encap_destroy)(struct sock *sk);
2112 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2113 if (encap_destroy)
2114 encap_destroy(sk);
2115 }
2116 }
2117
2118 /*
2119 * Socket option code for UDP
2120 */
2121 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2122 char __user *optval, unsigned int optlen,
2123 int (*push_pending_frames)(struct sock *))
2124 {
2125 struct udp_sock *up = udp_sk(sk);
2126 int val, valbool;
2127 int err = 0;
2128 int is_udplite = IS_UDPLITE(sk);
2129
2130 if (optlen < sizeof(int))
2131 return -EINVAL;
2132
2133 if (get_user(val, (int __user *)optval))
2134 return -EFAULT;
2135
2136 valbool = val ? 1 : 0;
2137
2138 switch (optname) {
2139 case UDP_CORK:
2140 if (val != 0) {
2141 up->corkflag = 1;
2142 } else {
2143 up->corkflag = 0;
2144 lock_sock(sk);
2145 push_pending_frames(sk);
2146 release_sock(sk);
2147 }
2148 break;
2149
2150 case UDP_ENCAP:
2151 switch (val) {
2152 case 0:
2153 case UDP_ENCAP_ESPINUDP:
2154 case UDP_ENCAP_ESPINUDP_NON_IKE:
2155 up->encap_rcv = xfrm4_udp_encap_rcv;
2156 /* FALLTHROUGH */
2157 case UDP_ENCAP_L2TPINUDP:
2158 up->encap_type = val;
2159 udp_encap_enable();
2160 break;
2161 default:
2162 err = -ENOPROTOOPT;
2163 break;
2164 }
2165 break;
2166
2167 case UDP_NO_CHECK6_TX:
2168 up->no_check6_tx = valbool;
2169 break;
2170
2171 case UDP_NO_CHECK6_RX:
2172 up->no_check6_rx = valbool;
2173 break;
2174
2175 /*
2176 * UDP-Lite's partial checksum coverage (RFC 3828).
2177 */
2178 /* The sender sets actual checksum coverage length via this option.
2179 * The case coverage > packet length is handled by send module. */
2180 case UDPLITE_SEND_CSCOV:
2181 if (!is_udplite) /* Disable the option on UDP sockets */
2182 return -ENOPROTOOPT;
2183 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2184 val = 8;
2185 else if (val > USHRT_MAX)
2186 val = USHRT_MAX;
2187 up->pcslen = val;
2188 up->pcflag |= UDPLITE_SEND_CC;
2189 break;
2190
2191 /* The receiver specifies a minimum checksum coverage value. To make
2192 * sense, this should be set to at least 8 (as done below). If zero is
2193 * used, this again means full checksum coverage. */
2194 case UDPLITE_RECV_CSCOV:
2195 if (!is_udplite) /* Disable the option on UDP sockets */
2196 return -ENOPROTOOPT;
2197 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2198 val = 8;
2199 else if (val > USHRT_MAX)
2200 val = USHRT_MAX;
2201 up->pcrlen = val;
2202 up->pcflag |= UDPLITE_RECV_CC;
2203 break;
2204
2205 default:
2206 err = -ENOPROTOOPT;
2207 break;
2208 }
2209
2210 return err;
2211 }
2212 EXPORT_SYMBOL(udp_lib_setsockopt);
2213
2214 int udp_setsockopt(struct sock *sk, int level, int optname,
2215 char __user *optval, unsigned int optlen)
2216 {
2217 if (level == SOL_UDP || level == SOL_UDPLITE)
2218 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2219 udp_push_pending_frames);
2220 return ip_setsockopt(sk, level, optname, optval, optlen);
2221 }
2222
2223 #ifdef CONFIG_COMPAT
2224 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2225 char __user *optval, unsigned int optlen)
2226 {
2227 if (level == SOL_UDP || level == SOL_UDPLITE)
2228 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2229 udp_push_pending_frames);
2230 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2231 }
2232 #endif
2233
2234 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2235 char __user *optval, int __user *optlen)
2236 {
2237 struct udp_sock *up = udp_sk(sk);
2238 int val, len;
2239
2240 if (get_user(len, optlen))
2241 return -EFAULT;
2242
2243 len = min_t(unsigned int, len, sizeof(int));
2244
2245 if (len < 0)
2246 return -EINVAL;
2247
2248 switch (optname) {
2249 case UDP_CORK:
2250 val = up->corkflag;
2251 break;
2252
2253 case UDP_ENCAP:
2254 val = up->encap_type;
2255 break;
2256
2257 case UDP_NO_CHECK6_TX:
2258 val = up->no_check6_tx;
2259 break;
2260
2261 case UDP_NO_CHECK6_RX:
2262 val = up->no_check6_rx;
2263 break;
2264
2265 /* The following two cannot be changed on UDP sockets, the return is
2266 * always 0 (which corresponds to the full checksum coverage of UDP). */
2267 case UDPLITE_SEND_CSCOV:
2268 val = up->pcslen;
2269 break;
2270
2271 case UDPLITE_RECV_CSCOV:
2272 val = up->pcrlen;
2273 break;
2274
2275 default:
2276 return -ENOPROTOOPT;
2277 }
2278
2279 if (put_user(len, optlen))
2280 return -EFAULT;
2281 if (copy_to_user(optval, &val, len))
2282 return -EFAULT;
2283 return 0;
2284 }
2285 EXPORT_SYMBOL(udp_lib_getsockopt);
2286
2287 int udp_getsockopt(struct sock *sk, int level, int optname,
2288 char __user *optval, int __user *optlen)
2289 {
2290 if (level == SOL_UDP || level == SOL_UDPLITE)
2291 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2292 return ip_getsockopt(sk, level, optname, optval, optlen);
2293 }
2294
2295 #ifdef CONFIG_COMPAT
2296 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2297 char __user *optval, int __user *optlen)
2298 {
2299 if (level == SOL_UDP || level == SOL_UDPLITE)
2300 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2301 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2302 }
2303 #endif
2304 /**
2305 * udp_poll - wait for a UDP event.
2306 * @file - file struct
2307 * @sock - socket
2308 * @wait - poll table
2309 *
2310 * This is same as datagram poll, except for the special case of
2311 * blocking sockets. If application is using a blocking fd
2312 * and a packet with checksum error is in the queue;
2313 * then it could get return from select indicating data available
2314 * but then block when reading it. Add special case code
2315 * to work around these arguably broken applications.
2316 */
2317 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2318 {
2319 unsigned int mask = datagram_poll(file, sock, wait);
2320 struct sock *sk = sock->sk;
2321
2322 sock_rps_record_flow(sk);
2323
2324 /* Check for false positives due to checksum errors */
2325 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2326 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2327 mask &= ~(POLLIN | POLLRDNORM);
2328
2329 return mask;
2330
2331 }
2332 EXPORT_SYMBOL(udp_poll);
2333
2334 struct proto udp_prot = {
2335 .name = "UDP",
2336 .owner = THIS_MODULE,
2337 .close = udp_lib_close,
2338 .connect = ip4_datagram_connect,
2339 .disconnect = udp_disconnect,
2340 .ioctl = udp_ioctl,
2341 .destroy = udp_destroy_sock,
2342 .setsockopt = udp_setsockopt,
2343 .getsockopt = udp_getsockopt,
2344 .sendmsg = udp_sendmsg,
2345 .recvmsg = udp_recvmsg,
2346 .sendpage = udp_sendpage,
2347 .backlog_rcv = __udp_queue_rcv_skb,
2348 .release_cb = ip4_datagram_release_cb,
2349 .hash = udp_lib_hash,
2350 .unhash = udp_lib_unhash,
2351 .rehash = udp_v4_rehash,
2352 .get_port = udp_v4_get_port,
2353 .memory_allocated = &udp_memory_allocated,
2354 .sysctl_mem = sysctl_udp_mem,
2355 .sysctl_wmem = &sysctl_udp_wmem_min,
2356 .sysctl_rmem = &sysctl_udp_rmem_min,
2357 .obj_size = sizeof(struct udp_sock),
2358 .slab_flags = SLAB_DESTROY_BY_RCU,
2359 .h.udp_table = &udp_table,
2360 #ifdef CONFIG_COMPAT
2361 .compat_setsockopt = compat_udp_setsockopt,
2362 .compat_getsockopt = compat_udp_getsockopt,
2363 #endif
2364 .clear_sk = sk_prot_clear_portaddr_nulls,
2365 };
2366 EXPORT_SYMBOL(udp_prot);
2367
2368 /* ------------------------------------------------------------------------ */
2369 #ifdef CONFIG_PROC_FS
2370
2371 static struct sock *udp_get_first(struct seq_file *seq, int start)
2372 {
2373 struct sock *sk;
2374 struct udp_iter_state *state = seq->private;
2375 struct net *net = seq_file_net(seq);
2376
2377 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2378 ++state->bucket) {
2379 struct hlist_nulls_node *node;
2380 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2381
2382 if (hlist_nulls_empty(&hslot->head))
2383 continue;
2384
2385 spin_lock_bh(&hslot->lock);
2386 sk_nulls_for_each(sk, node, &hslot->head) {
2387 if (!net_eq(sock_net(sk), net))
2388 continue;
2389 if (sk->sk_family == state->family)
2390 goto found;
2391 }
2392 spin_unlock_bh(&hslot->lock);
2393 }
2394 sk = NULL;
2395 found:
2396 return sk;
2397 }
2398
2399 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2400 {
2401 struct udp_iter_state *state = seq->private;
2402 struct net *net = seq_file_net(seq);
2403
2404 do {
2405 sk = sk_nulls_next(sk);
2406 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2407
2408 if (!sk) {
2409 if (state->bucket <= state->udp_table->mask)
2410 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2411 return udp_get_first(seq, state->bucket + 1);
2412 }
2413 return sk;
2414 }
2415
2416 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2417 {
2418 struct sock *sk = udp_get_first(seq, 0);
2419
2420 if (sk)
2421 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2422 --pos;
2423 return pos ? NULL : sk;
2424 }
2425
2426 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2427 {
2428 struct udp_iter_state *state = seq->private;
2429 state->bucket = MAX_UDP_PORTS;
2430
2431 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2432 }
2433
2434 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2435 {
2436 struct sock *sk;
2437
2438 if (v == SEQ_START_TOKEN)
2439 sk = udp_get_idx(seq, 0);
2440 else
2441 sk = udp_get_next(seq, v);
2442
2443 ++*pos;
2444 return sk;
2445 }
2446
2447 static void udp_seq_stop(struct seq_file *seq, void *v)
2448 {
2449 struct udp_iter_state *state = seq->private;
2450
2451 if (state->bucket <= state->udp_table->mask)
2452 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2453 }
2454
2455 int udp_seq_open(struct inode *inode, struct file *file)
2456 {
2457 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2458 struct udp_iter_state *s;
2459 int err;
2460
2461 err = seq_open_net(inode, file, &afinfo->seq_ops,
2462 sizeof(struct udp_iter_state));
2463 if (err < 0)
2464 return err;
2465
2466 s = ((struct seq_file *)file->private_data)->private;
2467 s->family = afinfo->family;
2468 s->udp_table = afinfo->udp_table;
2469 return err;
2470 }
2471 EXPORT_SYMBOL(udp_seq_open);
2472
2473 /* ------------------------------------------------------------------------ */
2474 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2475 {
2476 struct proc_dir_entry *p;
2477 int rc = 0;
2478
2479 afinfo->seq_ops.start = udp_seq_start;
2480 afinfo->seq_ops.next = udp_seq_next;
2481 afinfo->seq_ops.stop = udp_seq_stop;
2482
2483 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2484 afinfo->seq_fops, afinfo);
2485 if (!p)
2486 rc = -ENOMEM;
2487 return rc;
2488 }
2489 EXPORT_SYMBOL(udp_proc_register);
2490
2491 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2492 {
2493 remove_proc_entry(afinfo->name, net->proc_net);
2494 }
2495 EXPORT_SYMBOL(udp_proc_unregister);
2496
2497 /* ------------------------------------------------------------------------ */
2498 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2499 int bucket)
2500 {
2501 struct inet_sock *inet = inet_sk(sp);
2502 __be32 dest = inet->inet_daddr;
2503 __be32 src = inet->inet_rcv_saddr;
2504 __u16 destp = ntohs(inet->inet_dport);
2505 __u16 srcp = ntohs(inet->inet_sport);
2506
2507 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2508 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2509 bucket, src, srcp, dest, destp, sp->sk_state,
2510 sk_wmem_alloc_get(sp),
2511 sk_rmem_alloc_get(sp),
2512 0, 0L, 0,
2513 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2514 0, sock_i_ino(sp),
2515 atomic_read(&sp->sk_refcnt), sp,
2516 atomic_read(&sp->sk_drops));
2517 }
2518
2519 int udp4_seq_show(struct seq_file *seq, void *v)
2520 {
2521 seq_setwidth(seq, 127);
2522 if (v == SEQ_START_TOKEN)
2523 seq_puts(seq, " sl local_address rem_address st tx_queue "
2524 "rx_queue tr tm->when retrnsmt uid timeout "
2525 "inode ref pointer drops");
2526 else {
2527 struct udp_iter_state *state = seq->private;
2528
2529 udp4_format_sock(v, seq, state->bucket);
2530 }
2531 seq_pad(seq, '\n');
2532 return 0;
2533 }
2534
2535 static const struct file_operations udp_afinfo_seq_fops = {
2536 .owner = THIS_MODULE,
2537 .open = udp_seq_open,
2538 .read = seq_read,
2539 .llseek = seq_lseek,
2540 .release = seq_release_net
2541 };
2542
2543 /* ------------------------------------------------------------------------ */
2544 static struct udp_seq_afinfo udp4_seq_afinfo = {
2545 .name = "udp",
2546 .family = AF_INET,
2547 .udp_table = &udp_table,
2548 .seq_fops = &udp_afinfo_seq_fops,
2549 .seq_ops = {
2550 .show = udp4_seq_show,
2551 },
2552 };
2553
2554 static int __net_init udp4_proc_init_net(struct net *net)
2555 {
2556 return udp_proc_register(net, &udp4_seq_afinfo);
2557 }
2558
2559 static void __net_exit udp4_proc_exit_net(struct net *net)
2560 {
2561 udp_proc_unregister(net, &udp4_seq_afinfo);
2562 }
2563
2564 static struct pernet_operations udp4_net_ops = {
2565 .init = udp4_proc_init_net,
2566 .exit = udp4_proc_exit_net,
2567 };
2568
2569 int __init udp4_proc_init(void)
2570 {
2571 return register_pernet_subsys(&udp4_net_ops);
2572 }
2573
2574 void udp4_proc_exit(void)
2575 {
2576 unregister_pernet_subsys(&udp4_net_ops);
2577 }
2578 #endif /* CONFIG_PROC_FS */
2579
2580 static __initdata unsigned long uhash_entries;
2581 static int __init set_uhash_entries(char *str)
2582 {
2583 ssize_t ret;
2584
2585 if (!str)
2586 return 0;
2587
2588 ret = kstrtoul(str, 0, &uhash_entries);
2589 if (ret)
2590 return 0;
2591
2592 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2593 uhash_entries = UDP_HTABLE_SIZE_MIN;
2594 return 1;
2595 }
2596 __setup("uhash_entries=", set_uhash_entries);
2597
2598 void __init udp_table_init(struct udp_table *table, const char *name)
2599 {
2600 unsigned int i;
2601
2602 table->hash = alloc_large_system_hash(name,
2603 2 * sizeof(struct udp_hslot),
2604 uhash_entries,
2605 21, /* one slot per 2 MB */
2606 0,
2607 &table->log,
2608 &table->mask,
2609 UDP_HTABLE_SIZE_MIN,
2610 64 * 1024);
2611
2612 table->hash2 = table->hash + (table->mask + 1);
2613 for (i = 0; i <= table->mask; i++) {
2614 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2615 table->hash[i].count = 0;
2616 spin_lock_init(&table->hash[i].lock);
2617 }
2618 for (i = 0; i <= table->mask; i++) {
2619 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2620 table->hash2[i].count = 0;
2621 spin_lock_init(&table->hash2[i].lock);
2622 }
2623 }
2624
2625 u32 udp_flow_hashrnd(void)
2626 {
2627 static u32 hashrnd __read_mostly;
2628
2629 net_get_random_once(&hashrnd, sizeof(hashrnd));
2630
2631 return hashrnd;
2632 }
2633 EXPORT_SYMBOL(udp_flow_hashrnd);
2634
2635 void __init udp_init(void)
2636 {
2637 unsigned long limit;
2638
2639 udp_table_init(&udp_table, "UDP");
2640 limit = nr_free_buffer_pages() / 8;
2641 limit = max(limit, 128UL);
2642 sysctl_udp_mem[0] = limit / 4 * 3;
2643 sysctl_udp_mem[1] = limit;
2644 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2645
2646 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2647 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2648 }