]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/udp.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / udp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127
128 /* IPCB reference means this can not be used from early demux */
129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
132 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
133 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
134 return true;
135 #endif
136 return false;
137 }
138
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 const struct udp_hslot *hslot,
141 unsigned long *bitmap,
142 struct sock *sk, unsigned int log)
143 {
144 struct sock *sk2;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_for_each(sk2, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 inet_rcv_saddr_equal(sk, sk2, true)) {
155 if (sk2->sk_reuseport && sk->sk_reuseport &&
156 !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 uid_eq(uid, sock_i_uid(sk2))) {
158 if (!bitmap)
159 return 0;
160 } else {
161 if (!bitmap)
162 return 1;
163 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 bitmap);
165 }
166 }
167 }
168 return 0;
169 }
170
171 /*
172 * Note: we still hold spinlock of primary hash chain, so no other writer
173 * can insert/delete a socket with local_port == num
174 */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 struct udp_hslot *hslot2,
177 struct sock *sk)
178 {
179 struct sock *sk2;
180 kuid_t uid = sock_i_uid(sk);
181 int res = 0;
182
183 spin_lock(&hslot2->lock);
184 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 if (net_eq(sock_net(sk2), net) &&
186 sk2 != sk &&
187 (udp_sk(sk2)->udp_port_hash == num) &&
188 (!sk2->sk_reuse || !sk->sk_reuse) &&
189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 inet_rcv_saddr_equal(sk, sk2, true)) {
192 if (sk2->sk_reuseport && sk->sk_reuseport &&
193 !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 uid_eq(uid, sock_i_uid(sk2))) {
195 res = 0;
196 } else {
197 res = 1;
198 }
199 break;
200 }
201 }
202 spin_unlock(&hslot2->lock);
203 return res;
204 }
205
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 struct net *net = sock_net(sk);
209 kuid_t uid = sock_i_uid(sk);
210 struct sock *sk2;
211
212 sk_for_each(sk2, &hslot->head) {
213 if (net_eq(sock_net(sk2), net) &&
214 sk2 != sk &&
215 sk2->sk_family == sk->sk_family &&
216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 inet_rcv_saddr_equal(sk, sk2, false)) {
221 return reuseport_add_sock(sk, sk2,
222 inet_rcv_saddr_any(sk));
223 }
224 }
225
226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228
229 /**
230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
231 *
232 * @sk: socket struct in question
233 * @snum: port number to look up
234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235 * with NULL address
236 */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 unsigned int hash2_nulladdr)
239 {
240 struct udp_hslot *hslot, *hslot2;
241 struct udp_table *udptable = sk->sk_prot->h.udp_table;
242 int error = 1;
243 struct net *net = sock_net(sk);
244
245 if (!snum) {
246 int low, high, remaining;
247 unsigned int rand;
248 unsigned short first, last;
249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250
251 inet_get_local_port_range(net, &low, &high);
252 remaining = (high - low) + 1;
253
254 rand = prandom_u32();
255 first = reciprocal_scale(rand, remaining) + low;
256 /*
257 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 */
259 rand = (rand | 1) * (udptable->mask + 1);
260 last = first + udptable->mask + 1;
261 do {
262 hslot = udp_hashslot(udptable, net, first);
263 bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 spin_lock_bh(&hslot->lock);
265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 udptable->log);
267
268 snum = first;
269 /*
270 * Iterate on all possible values of snum for this hash.
271 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 * give us randomization and full range coverage.
273 */
274 do {
275 if (low <= snum && snum <= high &&
276 !test_bit(snum >> udptable->log, bitmap) &&
277 !inet_is_local_reserved_port(net, snum))
278 goto found;
279 snum += rand;
280 } while (snum != first);
281 spin_unlock_bh(&hslot->lock);
282 cond_resched();
283 } while (++first != last);
284 goto fail;
285 } else {
286 hslot = udp_hashslot(udptable, net, snum);
287 spin_lock_bh(&hslot->lock);
288 if (hslot->count > 10) {
289 int exist;
290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291
292 slot2 &= udptable->mask;
293 hash2_nulladdr &= udptable->mask;
294
295 hslot2 = udp_hashslot2(udptable, slot2);
296 if (hslot->count < hslot2->count)
297 goto scan_primary_hash;
298
299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 if (!exist && (hash2_nulladdr != slot2)) {
301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 sk);
304 }
305 if (exist)
306 goto fail_unlock;
307 else
308 goto found;
309 }
310 scan_primary_hash:
311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 goto fail_unlock;
313 }
314 found:
315 inet_sk(sk)->inet_num = snum;
316 udp_sk(sk)->udp_port_hash = snum;
317 udp_sk(sk)->udp_portaddr_hash ^= snum;
318 if (sk_unhashed(sk)) {
319 if (sk->sk_reuseport &&
320 udp_reuseport_add_sock(sk, hslot)) {
321 inet_sk(sk)->inet_num = 0;
322 udp_sk(sk)->udp_port_hash = 0;
323 udp_sk(sk)->udp_portaddr_hash ^= snum;
324 goto fail_unlock;
325 }
326
327 sk_add_node_rcu(sk, &hslot->head);
328 hslot->count++;
329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330
331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 spin_lock(&hslot2->lock);
333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 sk->sk_family == AF_INET6)
335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 &hslot2->head);
337 else
338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 &hslot2->head);
340 hslot2->count++;
341 spin_unlock(&hslot2->lock);
342 }
343 sock_set_flag(sk, SOCK_RCU_FREE);
344 error = 0;
345 fail_unlock:
346 spin_unlock_bh(&hslot->lock);
347 fail:
348 return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 unsigned int hash2_nulladdr =
355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 unsigned int hash2_partial =
357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358
359 /* precompute partial secondary hash */
360 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363
364 static int compute_score(struct sock *sk, struct net *net,
365 __be32 saddr, __be16 sport,
366 __be32 daddr, unsigned short hnum,
367 int dif, int sdif, bool exact_dif)
368 {
369 int score;
370 struct inet_sock *inet;
371 bool dev_match;
372
373 if (!net_eq(sock_net(sk), net) ||
374 udp_sk(sk)->udp_port_hash != hnum ||
375 ipv6_only_sock(sk))
376 return -1;
377
378 if (sk->sk_rcv_saddr != daddr)
379 return -1;
380
381 score = (sk->sk_family == PF_INET) ? 2 : 1;
382
383 inet = inet_sk(sk);
384 if (inet->inet_daddr) {
385 if (inet->inet_daddr != saddr)
386 return -1;
387 score += 4;
388 }
389
390 if (inet->inet_dport) {
391 if (inet->inet_dport != sport)
392 return -1;
393 score += 4;
394 }
395
396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 dif, sdif);
398 if (!dev_match)
399 return -1;
400 score += 4;
401
402 if (sk->sk_incoming_cpu == raw_smp_processor_id())
403 score++;
404 return score;
405 }
406
407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
408 const __u16 lport, const __be32 faddr,
409 const __be16 fport)
410 {
411 static u32 udp_ehash_secret __read_mostly;
412
413 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
414
415 return __inet_ehashfn(laddr, lport, faddr, fport,
416 udp_ehash_secret + net_hash_mix(net));
417 }
418
419 /* called with rcu_read_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 __be32 saddr, __be16 sport,
422 __be32 daddr, unsigned int hnum,
423 int dif, int sdif, bool exact_dif,
424 struct udp_hslot *hslot2,
425 struct sk_buff *skb)
426 {
427 struct sock *sk, *result;
428 int score, badness;
429 u32 hash = 0;
430
431 result = NULL;
432 badness = 0;
433 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 score = compute_score(sk, net, saddr, sport,
435 daddr, hnum, dif, sdif, exact_dif);
436 if (score > badness) {
437 if (sk->sk_reuseport) {
438 hash = udp_ehashfn(net, daddr, hnum,
439 saddr, sport);
440 result = reuseport_select_sock(sk, hash, skb,
441 sizeof(struct udphdr));
442 if (result)
443 return result;
444 }
445 badness = score;
446 result = sk;
447 }
448 }
449 return result;
450 }
451
452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
453 * harder than this. -DaveM
454 */
455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
456 __be16 sport, __be32 daddr, __be16 dport, int dif,
457 int sdif, struct udp_table *udptable, struct sk_buff *skb)
458 {
459 struct sock *result;
460 unsigned short hnum = ntohs(dport);
461 unsigned int hash2, slot2;
462 struct udp_hslot *hslot2;
463 bool exact_dif = udp_lib_exact_dif_match(net, skb);
464
465 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
466 slot2 = hash2 & udptable->mask;
467 hslot2 = &udptable->hash2[slot2];
468
469 result = udp4_lib_lookup2(net, saddr, sport,
470 daddr, hnum, dif, sdif,
471 exact_dif, hslot2, skb);
472 if (!result) {
473 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 slot2 = hash2 & udptable->mask;
475 hslot2 = &udptable->hash2[slot2];
476
477 result = udp4_lib_lookup2(net, saddr, sport,
478 htonl(INADDR_ANY), hnum, dif, sdif,
479 exact_dif, hslot2, skb);
480 }
481 if (unlikely(IS_ERR(result)))
482 return NULL;
483 return result;
484 }
485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
486
487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
488 __be16 sport, __be16 dport,
489 struct udp_table *udptable)
490 {
491 const struct iphdr *iph = ip_hdr(skb);
492
493 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
494 iph->daddr, dport, inet_iif(skb),
495 inet_sdif(skb), udptable, skb);
496 }
497
498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
499 __be16 sport, __be16 dport)
500 {
501 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
502 }
503 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
504
505 /* Must be called under rcu_read_lock().
506 * Does increment socket refcount.
507 */
508 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
509 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
510 __be32 daddr, __be16 dport, int dif)
511 {
512 struct sock *sk;
513
514 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
515 dif, 0, &udp_table, NULL);
516 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
517 sk = NULL;
518 return sk;
519 }
520 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
521 #endif
522
523 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
524 __be16 loc_port, __be32 loc_addr,
525 __be16 rmt_port, __be32 rmt_addr,
526 int dif, int sdif, unsigned short hnum)
527 {
528 struct inet_sock *inet = inet_sk(sk);
529
530 if (!net_eq(sock_net(sk), net) ||
531 udp_sk(sk)->udp_port_hash != hnum ||
532 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
533 (inet->inet_dport != rmt_port && inet->inet_dport) ||
534 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
535 ipv6_only_sock(sk) ||
536 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
537 return false;
538 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
539 return false;
540 return true;
541 }
542
543 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
544 void udp_encap_enable(void)
545 {
546 static_branch_inc(&udp_encap_needed_key);
547 }
548 EXPORT_SYMBOL(udp_encap_enable);
549
550 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
551 * through error handlers in encapsulations looking for a match.
552 */
553 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
554 {
555 int i;
556
557 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
558 int (*handler)(struct sk_buff *skb, u32 info);
559 const struct ip_tunnel_encap_ops *encap;
560
561 encap = rcu_dereference(iptun_encaps[i]);
562 if (!encap)
563 continue;
564 handler = encap->err_handler;
565 if (handler && !handler(skb, info))
566 return 0;
567 }
568
569 return -ENOENT;
570 }
571
572 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
573 * reversing source and destination port: this will match tunnels that force the
574 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
575 * lwtunnels might actually break this assumption by being configured with
576 * different destination ports on endpoints, in this case we won't be able to
577 * trace ICMP messages back to them.
578 *
579 * If this doesn't match any socket, probe tunnels with arbitrary destination
580 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
581 * we've sent packets to won't necessarily match the local destination port.
582 *
583 * Then ask the tunnel implementation to match the error against a valid
584 * association.
585 *
586 * Return an error if we can't find a match, the socket if we need further
587 * processing, zero otherwise.
588 */
589 static struct sock *__udp4_lib_err_encap(struct net *net,
590 const struct iphdr *iph,
591 struct udphdr *uh,
592 struct udp_table *udptable,
593 struct sk_buff *skb, u32 info)
594 {
595 int network_offset, transport_offset;
596 struct sock *sk;
597
598 network_offset = skb_network_offset(skb);
599 transport_offset = skb_transport_offset(skb);
600
601 /* Network header needs to point to the outer IPv4 header inside ICMP */
602 skb_reset_network_header(skb);
603
604 /* Transport header needs to point to the UDP header */
605 skb_set_transport_header(skb, iph->ihl << 2);
606
607 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
608 iph->saddr, uh->dest, skb->dev->ifindex, 0,
609 udptable, NULL);
610 if (sk) {
611 int (*lookup)(struct sock *sk, struct sk_buff *skb);
612 struct udp_sock *up = udp_sk(sk);
613
614 lookup = READ_ONCE(up->encap_err_lookup);
615 if (!lookup || lookup(sk, skb))
616 sk = NULL;
617 }
618
619 if (!sk)
620 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
621
622 skb_set_transport_header(skb, transport_offset);
623 skb_set_network_header(skb, network_offset);
624
625 return sk;
626 }
627
628 /*
629 * This routine is called by the ICMP module when it gets some
630 * sort of error condition. If err < 0 then the socket should
631 * be closed and the error returned to the user. If err > 0
632 * it's just the icmp type << 8 | icmp code.
633 * Header points to the ip header of the error packet. We move
634 * on past this. Then (as it used to claim before adjustment)
635 * header points to the first 8 bytes of the udp header. We need
636 * to find the appropriate port.
637 */
638
639 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
640 {
641 struct inet_sock *inet;
642 const struct iphdr *iph = (const struct iphdr *)skb->data;
643 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
644 const int type = icmp_hdr(skb)->type;
645 const int code = icmp_hdr(skb)->code;
646 bool tunnel = false;
647 struct sock *sk;
648 int harderr;
649 int err;
650 struct net *net = dev_net(skb->dev);
651
652 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
653 iph->saddr, uh->source, skb->dev->ifindex,
654 inet_sdif(skb), udptable, NULL);
655 if (!sk) {
656 /* No socket for error: try tunnels before discarding */
657 sk = ERR_PTR(-ENOENT);
658 if (static_branch_unlikely(&udp_encap_needed_key)) {
659 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
660 info);
661 if (!sk)
662 return 0;
663 }
664
665 if (IS_ERR(sk)) {
666 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
667 return PTR_ERR(sk);
668 }
669
670 tunnel = true;
671 }
672
673 err = 0;
674 harderr = 0;
675 inet = inet_sk(sk);
676
677 switch (type) {
678 default:
679 case ICMP_TIME_EXCEEDED:
680 err = EHOSTUNREACH;
681 break;
682 case ICMP_SOURCE_QUENCH:
683 goto out;
684 case ICMP_PARAMETERPROB:
685 err = EPROTO;
686 harderr = 1;
687 break;
688 case ICMP_DEST_UNREACH:
689 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
690 ipv4_sk_update_pmtu(skb, sk, info);
691 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
692 err = EMSGSIZE;
693 harderr = 1;
694 break;
695 }
696 goto out;
697 }
698 err = EHOSTUNREACH;
699 if (code <= NR_ICMP_UNREACH) {
700 harderr = icmp_err_convert[code].fatal;
701 err = icmp_err_convert[code].errno;
702 }
703 break;
704 case ICMP_REDIRECT:
705 ipv4_sk_redirect(skb, sk);
706 goto out;
707 }
708
709 /*
710 * RFC1122: OK. Passes ICMP errors back to application, as per
711 * 4.1.3.3.
712 */
713 if (tunnel) {
714 /* ...not for tunnels though: we don't have a sending socket */
715 goto out;
716 }
717 if (!inet->recverr) {
718 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
719 goto out;
720 } else
721 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
722
723 sk->sk_err = err;
724 sk->sk_error_report(sk);
725 out:
726 return 0;
727 }
728
729 int udp_err(struct sk_buff *skb, u32 info)
730 {
731 return __udp4_lib_err(skb, info, &udp_table);
732 }
733
734 /*
735 * Throw away all pending data and cancel the corking. Socket is locked.
736 */
737 void udp_flush_pending_frames(struct sock *sk)
738 {
739 struct udp_sock *up = udp_sk(sk);
740
741 if (up->pending) {
742 up->len = 0;
743 up->pending = 0;
744 ip_flush_pending_frames(sk);
745 }
746 }
747 EXPORT_SYMBOL(udp_flush_pending_frames);
748
749 /**
750 * udp4_hwcsum - handle outgoing HW checksumming
751 * @skb: sk_buff containing the filled-in UDP header
752 * (checksum field must be zeroed out)
753 * @src: source IP address
754 * @dst: destination IP address
755 */
756 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
757 {
758 struct udphdr *uh = udp_hdr(skb);
759 int offset = skb_transport_offset(skb);
760 int len = skb->len - offset;
761 int hlen = len;
762 __wsum csum = 0;
763
764 if (!skb_has_frag_list(skb)) {
765 /*
766 * Only one fragment on the socket.
767 */
768 skb->csum_start = skb_transport_header(skb) - skb->head;
769 skb->csum_offset = offsetof(struct udphdr, check);
770 uh->check = ~csum_tcpudp_magic(src, dst, len,
771 IPPROTO_UDP, 0);
772 } else {
773 struct sk_buff *frags;
774
775 /*
776 * HW-checksum won't work as there are two or more
777 * fragments on the socket so that all csums of sk_buffs
778 * should be together
779 */
780 skb_walk_frags(skb, frags) {
781 csum = csum_add(csum, frags->csum);
782 hlen -= frags->len;
783 }
784
785 csum = skb_checksum(skb, offset, hlen, csum);
786 skb->ip_summed = CHECKSUM_NONE;
787
788 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
789 if (uh->check == 0)
790 uh->check = CSUM_MANGLED_0;
791 }
792 }
793 EXPORT_SYMBOL_GPL(udp4_hwcsum);
794
795 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
796 * for the simple case like when setting the checksum for a UDP tunnel.
797 */
798 void udp_set_csum(bool nocheck, struct sk_buff *skb,
799 __be32 saddr, __be32 daddr, int len)
800 {
801 struct udphdr *uh = udp_hdr(skb);
802
803 if (nocheck) {
804 uh->check = 0;
805 } else if (skb_is_gso(skb)) {
806 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
807 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
808 uh->check = 0;
809 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
810 if (uh->check == 0)
811 uh->check = CSUM_MANGLED_0;
812 } else {
813 skb->ip_summed = CHECKSUM_PARTIAL;
814 skb->csum_start = skb_transport_header(skb) - skb->head;
815 skb->csum_offset = offsetof(struct udphdr, check);
816 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
817 }
818 }
819 EXPORT_SYMBOL(udp_set_csum);
820
821 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
822 struct inet_cork *cork)
823 {
824 struct sock *sk = skb->sk;
825 struct inet_sock *inet = inet_sk(sk);
826 struct udphdr *uh;
827 int err = 0;
828 int is_udplite = IS_UDPLITE(sk);
829 int offset = skb_transport_offset(skb);
830 int len = skb->len - offset;
831 __wsum csum = 0;
832
833 /*
834 * Create a UDP header
835 */
836 uh = udp_hdr(skb);
837 uh->source = inet->inet_sport;
838 uh->dest = fl4->fl4_dport;
839 uh->len = htons(len);
840 uh->check = 0;
841
842 if (cork->gso_size) {
843 const int hlen = skb_network_header_len(skb) +
844 sizeof(struct udphdr);
845
846 if (hlen + cork->gso_size > cork->fragsize) {
847 kfree_skb(skb);
848 return -EINVAL;
849 }
850 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
851 kfree_skb(skb);
852 return -EINVAL;
853 }
854 if (sk->sk_no_check_tx) {
855 kfree_skb(skb);
856 return -EINVAL;
857 }
858 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
859 dst_xfrm(skb_dst(skb))) {
860 kfree_skb(skb);
861 return -EIO;
862 }
863
864 skb_shinfo(skb)->gso_size = cork->gso_size;
865 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
866 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
867 cork->gso_size);
868 goto csum_partial;
869 }
870
871 if (is_udplite) /* UDP-Lite */
872 csum = udplite_csum(skb);
873
874 else if (sk->sk_no_check_tx) { /* UDP csum off */
875
876 skb->ip_summed = CHECKSUM_NONE;
877 goto send;
878
879 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
880 csum_partial:
881
882 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
883 goto send;
884
885 } else
886 csum = udp_csum(skb);
887
888 /* add protocol-dependent pseudo-header */
889 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
890 sk->sk_protocol, csum);
891 if (uh->check == 0)
892 uh->check = CSUM_MANGLED_0;
893
894 send:
895 err = ip_send_skb(sock_net(sk), skb);
896 if (err) {
897 if (err == -ENOBUFS && !inet->recverr) {
898 UDP_INC_STATS(sock_net(sk),
899 UDP_MIB_SNDBUFERRORS, is_udplite);
900 err = 0;
901 }
902 } else
903 UDP_INC_STATS(sock_net(sk),
904 UDP_MIB_OUTDATAGRAMS, is_udplite);
905 return err;
906 }
907
908 /*
909 * Push out all pending data as one UDP datagram. Socket is locked.
910 */
911 int udp_push_pending_frames(struct sock *sk)
912 {
913 struct udp_sock *up = udp_sk(sk);
914 struct inet_sock *inet = inet_sk(sk);
915 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
916 struct sk_buff *skb;
917 int err = 0;
918
919 skb = ip_finish_skb(sk, fl4);
920 if (!skb)
921 goto out;
922
923 err = udp_send_skb(skb, fl4, &inet->cork.base);
924
925 out:
926 up->len = 0;
927 up->pending = 0;
928 return err;
929 }
930 EXPORT_SYMBOL(udp_push_pending_frames);
931
932 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
933 {
934 switch (cmsg->cmsg_type) {
935 case UDP_SEGMENT:
936 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
937 return -EINVAL;
938 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
939 return 0;
940 default:
941 return -EINVAL;
942 }
943 }
944
945 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
946 {
947 struct cmsghdr *cmsg;
948 bool need_ip = false;
949 int err;
950
951 for_each_cmsghdr(cmsg, msg) {
952 if (!CMSG_OK(msg, cmsg))
953 return -EINVAL;
954
955 if (cmsg->cmsg_level != SOL_UDP) {
956 need_ip = true;
957 continue;
958 }
959
960 err = __udp_cmsg_send(cmsg, gso_size);
961 if (err)
962 return err;
963 }
964
965 return need_ip;
966 }
967 EXPORT_SYMBOL_GPL(udp_cmsg_send);
968
969 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
970 {
971 struct inet_sock *inet = inet_sk(sk);
972 struct udp_sock *up = udp_sk(sk);
973 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
974 struct flowi4 fl4_stack;
975 struct flowi4 *fl4;
976 int ulen = len;
977 struct ipcm_cookie ipc;
978 struct rtable *rt = NULL;
979 int free = 0;
980 int connected = 0;
981 __be32 daddr, faddr, saddr;
982 __be16 dport;
983 u8 tos;
984 int err, is_udplite = IS_UDPLITE(sk);
985 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
986 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
987 struct sk_buff *skb;
988 struct ip_options_data opt_copy;
989
990 if (len > 0xFFFF)
991 return -EMSGSIZE;
992
993 /*
994 * Check the flags.
995 */
996
997 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
998 return -EOPNOTSUPP;
999
1000 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1001
1002 fl4 = &inet->cork.fl.u.ip4;
1003 if (up->pending) {
1004 /*
1005 * There are pending frames.
1006 * The socket lock must be held while it's corked.
1007 */
1008 lock_sock(sk);
1009 if (likely(up->pending)) {
1010 if (unlikely(up->pending != AF_INET)) {
1011 release_sock(sk);
1012 return -EINVAL;
1013 }
1014 goto do_append_data;
1015 }
1016 release_sock(sk);
1017 }
1018 ulen += sizeof(struct udphdr);
1019
1020 /*
1021 * Get and verify the address.
1022 */
1023 if (usin) {
1024 if (msg->msg_namelen < sizeof(*usin))
1025 return -EINVAL;
1026 if (usin->sin_family != AF_INET) {
1027 if (usin->sin_family != AF_UNSPEC)
1028 return -EAFNOSUPPORT;
1029 }
1030
1031 daddr = usin->sin_addr.s_addr;
1032 dport = usin->sin_port;
1033 if (dport == 0)
1034 return -EINVAL;
1035 } else {
1036 if (sk->sk_state != TCP_ESTABLISHED)
1037 return -EDESTADDRREQ;
1038 daddr = inet->inet_daddr;
1039 dport = inet->inet_dport;
1040 /* Open fast path for connected socket.
1041 Route will not be used, if at least one option is set.
1042 */
1043 connected = 1;
1044 }
1045
1046 ipcm_init_sk(&ipc, inet);
1047 ipc.gso_size = up->gso_size;
1048
1049 if (msg->msg_controllen) {
1050 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1051 if (err > 0)
1052 err = ip_cmsg_send(sk, msg, &ipc,
1053 sk->sk_family == AF_INET6);
1054 if (unlikely(err < 0)) {
1055 kfree(ipc.opt);
1056 return err;
1057 }
1058 if (ipc.opt)
1059 free = 1;
1060 connected = 0;
1061 }
1062 if (!ipc.opt) {
1063 struct ip_options_rcu *inet_opt;
1064
1065 rcu_read_lock();
1066 inet_opt = rcu_dereference(inet->inet_opt);
1067 if (inet_opt) {
1068 memcpy(&opt_copy, inet_opt,
1069 sizeof(*inet_opt) + inet_opt->opt.optlen);
1070 ipc.opt = &opt_copy.opt;
1071 }
1072 rcu_read_unlock();
1073 }
1074
1075 if (cgroup_bpf_enabled && !connected) {
1076 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1077 (struct sockaddr *)usin, &ipc.addr);
1078 if (err)
1079 goto out_free;
1080 if (usin) {
1081 if (usin->sin_port == 0) {
1082 /* BPF program set invalid port. Reject it. */
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086 daddr = usin->sin_addr.s_addr;
1087 dport = usin->sin_port;
1088 }
1089 }
1090
1091 saddr = ipc.addr;
1092 ipc.addr = faddr = daddr;
1093
1094 if (ipc.opt && ipc.opt->opt.srr) {
1095 if (!daddr) {
1096 err = -EINVAL;
1097 goto out_free;
1098 }
1099 faddr = ipc.opt->opt.faddr;
1100 connected = 0;
1101 }
1102 tos = get_rttos(&ipc, inet);
1103 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1104 (msg->msg_flags & MSG_DONTROUTE) ||
1105 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1106 tos |= RTO_ONLINK;
1107 connected = 0;
1108 }
1109
1110 if (ipv4_is_multicast(daddr)) {
1111 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1112 ipc.oif = inet->mc_index;
1113 if (!saddr)
1114 saddr = inet->mc_addr;
1115 connected = 0;
1116 } else if (!ipc.oif) {
1117 ipc.oif = inet->uc_index;
1118 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1119 /* oif is set, packet is to local broadcast and
1120 * and uc_index is set. oif is most likely set
1121 * by sk_bound_dev_if. If uc_index != oif check if the
1122 * oif is an L3 master and uc_index is an L3 slave.
1123 * If so, we want to allow the send using the uc_index.
1124 */
1125 if (ipc.oif != inet->uc_index &&
1126 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1127 inet->uc_index)) {
1128 ipc.oif = inet->uc_index;
1129 }
1130 }
1131
1132 if (connected)
1133 rt = (struct rtable *)sk_dst_check(sk, 0);
1134
1135 if (!rt) {
1136 struct net *net = sock_net(sk);
1137 __u8 flow_flags = inet_sk_flowi_flags(sk);
1138
1139 fl4 = &fl4_stack;
1140
1141 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1142 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1143 flow_flags,
1144 faddr, saddr, dport, inet->inet_sport,
1145 sk->sk_uid);
1146
1147 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1148 rt = ip_route_output_flow(net, fl4, sk);
1149 if (IS_ERR(rt)) {
1150 err = PTR_ERR(rt);
1151 rt = NULL;
1152 if (err == -ENETUNREACH)
1153 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1154 goto out;
1155 }
1156
1157 err = -EACCES;
1158 if ((rt->rt_flags & RTCF_BROADCAST) &&
1159 !sock_flag(sk, SOCK_BROADCAST))
1160 goto out;
1161 if (connected)
1162 sk_dst_set(sk, dst_clone(&rt->dst));
1163 }
1164
1165 if (msg->msg_flags&MSG_CONFIRM)
1166 goto do_confirm;
1167 back_from_confirm:
1168
1169 saddr = fl4->saddr;
1170 if (!ipc.addr)
1171 daddr = ipc.addr = fl4->daddr;
1172
1173 /* Lockless fast path for the non-corking case. */
1174 if (!corkreq) {
1175 struct inet_cork cork;
1176
1177 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1178 sizeof(struct udphdr), &ipc, &rt,
1179 &cork, msg->msg_flags);
1180 err = PTR_ERR(skb);
1181 if (!IS_ERR_OR_NULL(skb))
1182 err = udp_send_skb(skb, fl4, &cork);
1183 goto out;
1184 }
1185
1186 lock_sock(sk);
1187 if (unlikely(up->pending)) {
1188 /* The socket is already corked while preparing it. */
1189 /* ... which is an evident application bug. --ANK */
1190 release_sock(sk);
1191
1192 net_dbg_ratelimited("socket already corked\n");
1193 err = -EINVAL;
1194 goto out;
1195 }
1196 /*
1197 * Now cork the socket to pend data.
1198 */
1199 fl4 = &inet->cork.fl.u.ip4;
1200 fl4->daddr = daddr;
1201 fl4->saddr = saddr;
1202 fl4->fl4_dport = dport;
1203 fl4->fl4_sport = inet->inet_sport;
1204 up->pending = AF_INET;
1205
1206 do_append_data:
1207 up->len += ulen;
1208 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1209 sizeof(struct udphdr), &ipc, &rt,
1210 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1211 if (err)
1212 udp_flush_pending_frames(sk);
1213 else if (!corkreq)
1214 err = udp_push_pending_frames(sk);
1215 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1216 up->pending = 0;
1217 release_sock(sk);
1218
1219 out:
1220 ip_rt_put(rt);
1221 out_free:
1222 if (free)
1223 kfree(ipc.opt);
1224 if (!err)
1225 return len;
1226 /*
1227 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1228 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1229 * we don't have a good statistic (IpOutDiscards but it can be too many
1230 * things). We could add another new stat but at least for now that
1231 * seems like overkill.
1232 */
1233 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1234 UDP_INC_STATS(sock_net(sk),
1235 UDP_MIB_SNDBUFERRORS, is_udplite);
1236 }
1237 return err;
1238
1239 do_confirm:
1240 if (msg->msg_flags & MSG_PROBE)
1241 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1242 if (!(msg->msg_flags&MSG_PROBE) || len)
1243 goto back_from_confirm;
1244 err = 0;
1245 goto out;
1246 }
1247 EXPORT_SYMBOL(udp_sendmsg);
1248
1249 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1250 size_t size, int flags)
1251 {
1252 struct inet_sock *inet = inet_sk(sk);
1253 struct udp_sock *up = udp_sk(sk);
1254 int ret;
1255
1256 if (flags & MSG_SENDPAGE_NOTLAST)
1257 flags |= MSG_MORE;
1258
1259 if (!up->pending) {
1260 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1261
1262 /* Call udp_sendmsg to specify destination address which
1263 * sendpage interface can't pass.
1264 * This will succeed only when the socket is connected.
1265 */
1266 ret = udp_sendmsg(sk, &msg, 0);
1267 if (ret < 0)
1268 return ret;
1269 }
1270
1271 lock_sock(sk);
1272
1273 if (unlikely(!up->pending)) {
1274 release_sock(sk);
1275
1276 net_dbg_ratelimited("cork failed\n");
1277 return -EINVAL;
1278 }
1279
1280 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1281 page, offset, size, flags);
1282 if (ret == -EOPNOTSUPP) {
1283 release_sock(sk);
1284 return sock_no_sendpage(sk->sk_socket, page, offset,
1285 size, flags);
1286 }
1287 if (ret < 0) {
1288 udp_flush_pending_frames(sk);
1289 goto out;
1290 }
1291
1292 up->len += size;
1293 if (!(up->corkflag || (flags&MSG_MORE)))
1294 ret = udp_push_pending_frames(sk);
1295 if (!ret)
1296 ret = size;
1297 out:
1298 release_sock(sk);
1299 return ret;
1300 }
1301
1302 #define UDP_SKB_IS_STATELESS 0x80000000
1303
1304 static void udp_set_dev_scratch(struct sk_buff *skb)
1305 {
1306 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1307
1308 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1309 scratch->_tsize_state = skb->truesize;
1310 #if BITS_PER_LONG == 64
1311 scratch->len = skb->len;
1312 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1313 scratch->is_linear = !skb_is_nonlinear(skb);
1314 #endif
1315 /* all head states execept sp (dst, sk, nf) are always cleared by
1316 * udp_rcv() and we need to preserve secpath, if present, to eventually
1317 * process IP_CMSG_PASSSEC at recvmsg() time
1318 */
1319 if (likely(!skb_sec_path(skb)))
1320 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1321 }
1322
1323 static int udp_skb_truesize(struct sk_buff *skb)
1324 {
1325 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1326 }
1327
1328 static bool udp_skb_has_head_state(struct sk_buff *skb)
1329 {
1330 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1331 }
1332
1333 /* fully reclaim rmem/fwd memory allocated for skb */
1334 static void udp_rmem_release(struct sock *sk, int size, int partial,
1335 bool rx_queue_lock_held)
1336 {
1337 struct udp_sock *up = udp_sk(sk);
1338 struct sk_buff_head *sk_queue;
1339 int amt;
1340
1341 if (likely(partial)) {
1342 up->forward_deficit += size;
1343 size = up->forward_deficit;
1344 if (size < (sk->sk_rcvbuf >> 2))
1345 return;
1346 } else {
1347 size += up->forward_deficit;
1348 }
1349 up->forward_deficit = 0;
1350
1351 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1352 * if the called don't held it already
1353 */
1354 sk_queue = &sk->sk_receive_queue;
1355 if (!rx_queue_lock_held)
1356 spin_lock(&sk_queue->lock);
1357
1358
1359 sk->sk_forward_alloc += size;
1360 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1361 sk->sk_forward_alloc -= amt;
1362
1363 if (amt)
1364 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1365
1366 atomic_sub(size, &sk->sk_rmem_alloc);
1367
1368 /* this can save us from acquiring the rx queue lock on next receive */
1369 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1370
1371 if (!rx_queue_lock_held)
1372 spin_unlock(&sk_queue->lock);
1373 }
1374
1375 /* Note: called with reader_queue.lock held.
1376 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1377 * This avoids a cache line miss while receive_queue lock is held.
1378 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1379 */
1380 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1381 {
1382 prefetch(&skb->data);
1383 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1384 }
1385 EXPORT_SYMBOL(udp_skb_destructor);
1386
1387 /* as above, but the caller held the rx queue lock, too */
1388 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1389 {
1390 prefetch(&skb->data);
1391 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1392 }
1393
1394 /* Idea of busylocks is to let producers grab an extra spinlock
1395 * to relieve pressure on the receive_queue spinlock shared by consumer.
1396 * Under flood, this means that only one producer can be in line
1397 * trying to acquire the receive_queue spinlock.
1398 * These busylock can be allocated on a per cpu manner, instead of a
1399 * per socket one (that would consume a cache line per socket)
1400 */
1401 static int udp_busylocks_log __read_mostly;
1402 static spinlock_t *udp_busylocks __read_mostly;
1403
1404 static spinlock_t *busylock_acquire(void *ptr)
1405 {
1406 spinlock_t *busy;
1407
1408 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1409 spin_lock(busy);
1410 return busy;
1411 }
1412
1413 static void busylock_release(spinlock_t *busy)
1414 {
1415 if (busy)
1416 spin_unlock(busy);
1417 }
1418
1419 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1420 {
1421 struct sk_buff_head *list = &sk->sk_receive_queue;
1422 int rmem, delta, amt, err = -ENOMEM;
1423 spinlock_t *busy = NULL;
1424 int size;
1425
1426 /* try to avoid the costly atomic add/sub pair when the receive
1427 * queue is full; always allow at least a packet
1428 */
1429 rmem = atomic_read(&sk->sk_rmem_alloc);
1430 if (rmem > sk->sk_rcvbuf)
1431 goto drop;
1432
1433 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1434 * having linear skbs :
1435 * - Reduce memory overhead and thus increase receive queue capacity
1436 * - Less cache line misses at copyout() time
1437 * - Less work at consume_skb() (less alien page frag freeing)
1438 */
1439 if (rmem > (sk->sk_rcvbuf >> 1)) {
1440 skb_condense(skb);
1441
1442 busy = busylock_acquire(sk);
1443 }
1444 size = skb->truesize;
1445 udp_set_dev_scratch(skb);
1446
1447 /* we drop only if the receive buf is full and the receive
1448 * queue contains some other skb
1449 */
1450 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1451 if (rmem > (size + sk->sk_rcvbuf))
1452 goto uncharge_drop;
1453
1454 spin_lock(&list->lock);
1455 if (size >= sk->sk_forward_alloc) {
1456 amt = sk_mem_pages(size);
1457 delta = amt << SK_MEM_QUANTUM_SHIFT;
1458 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1459 err = -ENOBUFS;
1460 spin_unlock(&list->lock);
1461 goto uncharge_drop;
1462 }
1463
1464 sk->sk_forward_alloc += delta;
1465 }
1466
1467 sk->sk_forward_alloc -= size;
1468
1469 /* no need to setup a destructor, we will explicitly release the
1470 * forward allocated memory on dequeue
1471 */
1472 sock_skb_set_dropcount(sk, skb);
1473
1474 __skb_queue_tail(list, skb);
1475 spin_unlock(&list->lock);
1476
1477 if (!sock_flag(sk, SOCK_DEAD))
1478 sk->sk_data_ready(sk);
1479
1480 busylock_release(busy);
1481 return 0;
1482
1483 uncharge_drop:
1484 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1485
1486 drop:
1487 atomic_inc(&sk->sk_drops);
1488 busylock_release(busy);
1489 return err;
1490 }
1491 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1492
1493 void udp_destruct_sock(struct sock *sk)
1494 {
1495 /* reclaim completely the forward allocated memory */
1496 struct udp_sock *up = udp_sk(sk);
1497 unsigned int total = 0;
1498 struct sk_buff *skb;
1499
1500 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1501 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1502 total += skb->truesize;
1503 kfree_skb(skb);
1504 }
1505 udp_rmem_release(sk, total, 0, true);
1506
1507 inet_sock_destruct(sk);
1508 }
1509 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1510
1511 int udp_init_sock(struct sock *sk)
1512 {
1513 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1514 sk->sk_destruct = udp_destruct_sock;
1515 return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(udp_init_sock);
1518
1519 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1520 {
1521 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1522 bool slow = lock_sock_fast(sk);
1523
1524 sk_peek_offset_bwd(sk, len);
1525 unlock_sock_fast(sk, slow);
1526 }
1527
1528 if (!skb_unref(skb))
1529 return;
1530
1531 /* In the more common cases we cleared the head states previously,
1532 * see __udp_queue_rcv_skb().
1533 */
1534 if (unlikely(udp_skb_has_head_state(skb)))
1535 skb_release_head_state(skb);
1536 __consume_stateless_skb(skb);
1537 }
1538 EXPORT_SYMBOL_GPL(skb_consume_udp);
1539
1540 static struct sk_buff *__first_packet_length(struct sock *sk,
1541 struct sk_buff_head *rcvq,
1542 int *total)
1543 {
1544 struct sk_buff *skb;
1545
1546 while ((skb = skb_peek(rcvq)) != NULL) {
1547 if (udp_lib_checksum_complete(skb)) {
1548 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1549 IS_UDPLITE(sk));
1550 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1551 IS_UDPLITE(sk));
1552 atomic_inc(&sk->sk_drops);
1553 __skb_unlink(skb, rcvq);
1554 *total += skb->truesize;
1555 kfree_skb(skb);
1556 } else {
1557 /* the csum related bits could be changed, refresh
1558 * the scratch area
1559 */
1560 udp_set_dev_scratch(skb);
1561 break;
1562 }
1563 }
1564 return skb;
1565 }
1566
1567 /**
1568 * first_packet_length - return length of first packet in receive queue
1569 * @sk: socket
1570 *
1571 * Drops all bad checksum frames, until a valid one is found.
1572 * Returns the length of found skb, or -1 if none is found.
1573 */
1574 static int first_packet_length(struct sock *sk)
1575 {
1576 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1577 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1578 struct sk_buff *skb;
1579 int total = 0;
1580 int res;
1581
1582 spin_lock_bh(&rcvq->lock);
1583 skb = __first_packet_length(sk, rcvq, &total);
1584 if (!skb && !skb_queue_empty(sk_queue)) {
1585 spin_lock(&sk_queue->lock);
1586 skb_queue_splice_tail_init(sk_queue, rcvq);
1587 spin_unlock(&sk_queue->lock);
1588
1589 skb = __first_packet_length(sk, rcvq, &total);
1590 }
1591 res = skb ? skb->len : -1;
1592 if (total)
1593 udp_rmem_release(sk, total, 1, false);
1594 spin_unlock_bh(&rcvq->lock);
1595 return res;
1596 }
1597
1598 /*
1599 * IOCTL requests applicable to the UDP protocol
1600 */
1601
1602 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1603 {
1604 switch (cmd) {
1605 case SIOCOUTQ:
1606 {
1607 int amount = sk_wmem_alloc_get(sk);
1608
1609 return put_user(amount, (int __user *)arg);
1610 }
1611
1612 case SIOCINQ:
1613 {
1614 int amount = max_t(int, 0, first_packet_length(sk));
1615
1616 return put_user(amount, (int __user *)arg);
1617 }
1618
1619 default:
1620 return -ENOIOCTLCMD;
1621 }
1622
1623 return 0;
1624 }
1625 EXPORT_SYMBOL(udp_ioctl);
1626
1627 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1628 int noblock, int *off, int *err)
1629 {
1630 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1631 struct sk_buff_head *queue;
1632 struct sk_buff *last;
1633 long timeo;
1634 int error;
1635
1636 queue = &udp_sk(sk)->reader_queue;
1637 flags |= noblock ? MSG_DONTWAIT : 0;
1638 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1639 do {
1640 struct sk_buff *skb;
1641
1642 error = sock_error(sk);
1643 if (error)
1644 break;
1645
1646 error = -EAGAIN;
1647 do {
1648 spin_lock_bh(&queue->lock);
1649 skb = __skb_try_recv_from_queue(sk, queue, flags,
1650 udp_skb_destructor,
1651 off, err, &last);
1652 if (skb) {
1653 spin_unlock_bh(&queue->lock);
1654 return skb;
1655 }
1656
1657 if (skb_queue_empty(sk_queue)) {
1658 spin_unlock_bh(&queue->lock);
1659 goto busy_check;
1660 }
1661
1662 /* refill the reader queue and walk it again
1663 * keep both queues locked to avoid re-acquiring
1664 * the sk_receive_queue lock if fwd memory scheduling
1665 * is needed.
1666 */
1667 spin_lock(&sk_queue->lock);
1668 skb_queue_splice_tail_init(sk_queue, queue);
1669
1670 skb = __skb_try_recv_from_queue(sk, queue, flags,
1671 udp_skb_dtor_locked,
1672 off, err, &last);
1673 spin_unlock(&sk_queue->lock);
1674 spin_unlock_bh(&queue->lock);
1675 if (skb)
1676 return skb;
1677
1678 busy_check:
1679 if (!sk_can_busy_loop(sk))
1680 break;
1681
1682 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1683 } while (!skb_queue_empty(sk_queue));
1684
1685 /* sk_queue is empty, reader_queue may contain peeked packets */
1686 } while (timeo &&
1687 !__skb_wait_for_more_packets(sk, &error, &timeo,
1688 (struct sk_buff *)sk_queue));
1689
1690 *err = error;
1691 return NULL;
1692 }
1693 EXPORT_SYMBOL(__skb_recv_udp);
1694
1695 /*
1696 * This should be easy, if there is something there we
1697 * return it, otherwise we block.
1698 */
1699
1700 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1701 int flags, int *addr_len)
1702 {
1703 struct inet_sock *inet = inet_sk(sk);
1704 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1705 struct sk_buff *skb;
1706 unsigned int ulen, copied;
1707 int off, err, peeking = flags & MSG_PEEK;
1708 int is_udplite = IS_UDPLITE(sk);
1709 bool checksum_valid = false;
1710
1711 if (flags & MSG_ERRQUEUE)
1712 return ip_recv_error(sk, msg, len, addr_len);
1713
1714 try_again:
1715 off = sk_peek_offset(sk, flags);
1716 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1717 if (!skb)
1718 return err;
1719
1720 ulen = udp_skb_len(skb);
1721 copied = len;
1722 if (copied > ulen - off)
1723 copied = ulen - off;
1724 else if (copied < ulen)
1725 msg->msg_flags |= MSG_TRUNC;
1726
1727 /*
1728 * If checksum is needed at all, try to do it while copying the
1729 * data. If the data is truncated, or if we only want a partial
1730 * coverage checksum (UDP-Lite), do it before the copy.
1731 */
1732
1733 if (copied < ulen || peeking ||
1734 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1735 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1736 !__udp_lib_checksum_complete(skb);
1737 if (!checksum_valid)
1738 goto csum_copy_err;
1739 }
1740
1741 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1742 if (udp_skb_is_linear(skb))
1743 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1744 else
1745 err = skb_copy_datagram_msg(skb, off, msg, copied);
1746 } else {
1747 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1748
1749 if (err == -EINVAL)
1750 goto csum_copy_err;
1751 }
1752
1753 if (unlikely(err)) {
1754 if (!peeking) {
1755 atomic_inc(&sk->sk_drops);
1756 UDP_INC_STATS(sock_net(sk),
1757 UDP_MIB_INERRORS, is_udplite);
1758 }
1759 kfree_skb(skb);
1760 return err;
1761 }
1762
1763 if (!peeking)
1764 UDP_INC_STATS(sock_net(sk),
1765 UDP_MIB_INDATAGRAMS, is_udplite);
1766
1767 sock_recv_ts_and_drops(msg, sk, skb);
1768
1769 /* Copy the address. */
1770 if (sin) {
1771 sin->sin_family = AF_INET;
1772 sin->sin_port = udp_hdr(skb)->source;
1773 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1774 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1775 *addr_len = sizeof(*sin);
1776 }
1777
1778 if (udp_sk(sk)->gro_enabled)
1779 udp_cmsg_recv(msg, sk, skb);
1780
1781 if (inet->cmsg_flags)
1782 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1783
1784 err = copied;
1785 if (flags & MSG_TRUNC)
1786 err = ulen;
1787
1788 skb_consume_udp(sk, skb, peeking ? -err : err);
1789 return err;
1790
1791 csum_copy_err:
1792 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1793 udp_skb_destructor)) {
1794 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1795 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1796 }
1797 kfree_skb(skb);
1798
1799 /* starting over for a new packet, but check if we need to yield */
1800 cond_resched();
1801 msg->msg_flags &= ~MSG_TRUNC;
1802 goto try_again;
1803 }
1804
1805 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1806 {
1807 /* This check is replicated from __ip4_datagram_connect() and
1808 * intended to prevent BPF program called below from accessing bytes
1809 * that are out of the bound specified by user in addr_len.
1810 */
1811 if (addr_len < sizeof(struct sockaddr_in))
1812 return -EINVAL;
1813
1814 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1815 }
1816 EXPORT_SYMBOL(udp_pre_connect);
1817
1818 int __udp_disconnect(struct sock *sk, int flags)
1819 {
1820 struct inet_sock *inet = inet_sk(sk);
1821 /*
1822 * 1003.1g - break association.
1823 */
1824
1825 sk->sk_state = TCP_CLOSE;
1826 inet->inet_daddr = 0;
1827 inet->inet_dport = 0;
1828 sock_rps_reset_rxhash(sk);
1829 sk->sk_bound_dev_if = 0;
1830 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1831 inet_reset_saddr(sk);
1832
1833 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1834 sk->sk_prot->unhash(sk);
1835 inet->inet_sport = 0;
1836 }
1837 sk_dst_reset(sk);
1838 return 0;
1839 }
1840 EXPORT_SYMBOL(__udp_disconnect);
1841
1842 int udp_disconnect(struct sock *sk, int flags)
1843 {
1844 lock_sock(sk);
1845 __udp_disconnect(sk, flags);
1846 release_sock(sk);
1847 return 0;
1848 }
1849 EXPORT_SYMBOL(udp_disconnect);
1850
1851 void udp_lib_unhash(struct sock *sk)
1852 {
1853 if (sk_hashed(sk)) {
1854 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1855 struct udp_hslot *hslot, *hslot2;
1856
1857 hslot = udp_hashslot(udptable, sock_net(sk),
1858 udp_sk(sk)->udp_port_hash);
1859 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1860
1861 spin_lock_bh(&hslot->lock);
1862 if (rcu_access_pointer(sk->sk_reuseport_cb))
1863 reuseport_detach_sock(sk);
1864 if (sk_del_node_init_rcu(sk)) {
1865 hslot->count--;
1866 inet_sk(sk)->inet_num = 0;
1867 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1868
1869 spin_lock(&hslot2->lock);
1870 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1871 hslot2->count--;
1872 spin_unlock(&hslot2->lock);
1873 }
1874 spin_unlock_bh(&hslot->lock);
1875 }
1876 }
1877 EXPORT_SYMBOL(udp_lib_unhash);
1878
1879 /*
1880 * inet_rcv_saddr was changed, we must rehash secondary hash
1881 */
1882 void udp_lib_rehash(struct sock *sk, u16 newhash)
1883 {
1884 if (sk_hashed(sk)) {
1885 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1886 struct udp_hslot *hslot, *hslot2, *nhslot2;
1887
1888 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1889 nhslot2 = udp_hashslot2(udptable, newhash);
1890 udp_sk(sk)->udp_portaddr_hash = newhash;
1891
1892 if (hslot2 != nhslot2 ||
1893 rcu_access_pointer(sk->sk_reuseport_cb)) {
1894 hslot = udp_hashslot(udptable, sock_net(sk),
1895 udp_sk(sk)->udp_port_hash);
1896 /* we must lock primary chain too */
1897 spin_lock_bh(&hslot->lock);
1898 if (rcu_access_pointer(sk->sk_reuseport_cb))
1899 reuseport_detach_sock(sk);
1900
1901 if (hslot2 != nhslot2) {
1902 spin_lock(&hslot2->lock);
1903 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1904 hslot2->count--;
1905 spin_unlock(&hslot2->lock);
1906
1907 spin_lock(&nhslot2->lock);
1908 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1909 &nhslot2->head);
1910 nhslot2->count++;
1911 spin_unlock(&nhslot2->lock);
1912 }
1913
1914 spin_unlock_bh(&hslot->lock);
1915 }
1916 }
1917 }
1918 EXPORT_SYMBOL(udp_lib_rehash);
1919
1920 void udp_v4_rehash(struct sock *sk)
1921 {
1922 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1923 inet_sk(sk)->inet_rcv_saddr,
1924 inet_sk(sk)->inet_num);
1925 udp_lib_rehash(sk, new_hash);
1926 }
1927
1928 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1929 {
1930 int rc;
1931
1932 if (inet_sk(sk)->inet_daddr) {
1933 sock_rps_save_rxhash(sk, skb);
1934 sk_mark_napi_id(sk, skb);
1935 sk_incoming_cpu_update(sk);
1936 } else {
1937 sk_mark_napi_id_once(sk, skb);
1938 }
1939
1940 rc = __udp_enqueue_schedule_skb(sk, skb);
1941 if (rc < 0) {
1942 int is_udplite = IS_UDPLITE(sk);
1943
1944 /* Note that an ENOMEM error is charged twice */
1945 if (rc == -ENOMEM)
1946 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1947 is_udplite);
1948 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1949 kfree_skb(skb);
1950 trace_udp_fail_queue_rcv_skb(rc, sk);
1951 return -1;
1952 }
1953
1954 return 0;
1955 }
1956
1957 /* returns:
1958 * -1: error
1959 * 0: success
1960 * >0: "udp encap" protocol resubmission
1961 *
1962 * Note that in the success and error cases, the skb is assumed to
1963 * have either been requeued or freed.
1964 */
1965 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1966 {
1967 struct udp_sock *up = udp_sk(sk);
1968 int is_udplite = IS_UDPLITE(sk);
1969
1970 /*
1971 * Charge it to the socket, dropping if the queue is full.
1972 */
1973 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1974 goto drop;
1975 nf_reset(skb);
1976
1977 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1978 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1979
1980 /*
1981 * This is an encapsulation socket so pass the skb to
1982 * the socket's udp_encap_rcv() hook. Otherwise, just
1983 * fall through and pass this up the UDP socket.
1984 * up->encap_rcv() returns the following value:
1985 * =0 if skb was successfully passed to the encap
1986 * handler or was discarded by it.
1987 * >0 if skb should be passed on to UDP.
1988 * <0 if skb should be resubmitted as proto -N
1989 */
1990
1991 /* if we're overly short, let UDP handle it */
1992 encap_rcv = READ_ONCE(up->encap_rcv);
1993 if (encap_rcv) {
1994 int ret;
1995
1996 /* Verify checksum before giving to encap */
1997 if (udp_lib_checksum_complete(skb))
1998 goto csum_error;
1999
2000 ret = encap_rcv(sk, skb);
2001 if (ret <= 0) {
2002 __UDP_INC_STATS(sock_net(sk),
2003 UDP_MIB_INDATAGRAMS,
2004 is_udplite);
2005 return -ret;
2006 }
2007 }
2008
2009 /* FALLTHROUGH -- it's a UDP Packet */
2010 }
2011
2012 /*
2013 * UDP-Lite specific tests, ignored on UDP sockets
2014 */
2015 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2016
2017 /*
2018 * MIB statistics other than incrementing the error count are
2019 * disabled for the following two types of errors: these depend
2020 * on the application settings, not on the functioning of the
2021 * protocol stack as such.
2022 *
2023 * RFC 3828 here recommends (sec 3.3): "There should also be a
2024 * way ... to ... at least let the receiving application block
2025 * delivery of packets with coverage values less than a value
2026 * provided by the application."
2027 */
2028 if (up->pcrlen == 0) { /* full coverage was set */
2029 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2030 UDP_SKB_CB(skb)->cscov, skb->len);
2031 goto drop;
2032 }
2033 /* The next case involves violating the min. coverage requested
2034 * by the receiver. This is subtle: if receiver wants x and x is
2035 * greater than the buffersize/MTU then receiver will complain
2036 * that it wants x while sender emits packets of smaller size y.
2037 * Therefore the above ...()->partial_cov statement is essential.
2038 */
2039 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2040 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2041 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2042 goto drop;
2043 }
2044 }
2045
2046 prefetch(&sk->sk_rmem_alloc);
2047 if (rcu_access_pointer(sk->sk_filter) &&
2048 udp_lib_checksum_complete(skb))
2049 goto csum_error;
2050
2051 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2052 goto drop;
2053
2054 udp_csum_pull_header(skb);
2055
2056 ipv4_pktinfo_prepare(sk, skb);
2057 return __udp_queue_rcv_skb(sk, skb);
2058
2059 csum_error:
2060 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2061 drop:
2062 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2063 atomic_inc(&sk->sk_drops);
2064 kfree_skb(skb);
2065 return -1;
2066 }
2067
2068 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 struct sk_buff *next, *segs;
2071 int ret;
2072
2073 if (likely(!udp_unexpected_gso(sk, skb)))
2074 return udp_queue_rcv_one_skb(sk, skb);
2075
2076 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2077 __skb_push(skb, -skb_mac_offset(skb));
2078 segs = udp_rcv_segment(sk, skb, true);
2079 for (skb = segs; skb; skb = next) {
2080 next = skb->next;
2081 __skb_pull(skb, skb_transport_offset(skb));
2082 ret = udp_queue_rcv_one_skb(sk, skb);
2083 if (ret > 0)
2084 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2085 }
2086 return 0;
2087 }
2088
2089 /* For TCP sockets, sk_rx_dst is protected by socket lock
2090 * For UDP, we use xchg() to guard against concurrent changes.
2091 */
2092 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2093 {
2094 struct dst_entry *old;
2095
2096 if (dst_hold_safe(dst)) {
2097 old = xchg(&sk->sk_rx_dst, dst);
2098 dst_release(old);
2099 return old != dst;
2100 }
2101 return false;
2102 }
2103 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2104
2105 /*
2106 * Multicasts and broadcasts go to each listener.
2107 *
2108 * Note: called only from the BH handler context.
2109 */
2110 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2111 struct udphdr *uh,
2112 __be32 saddr, __be32 daddr,
2113 struct udp_table *udptable,
2114 int proto)
2115 {
2116 struct sock *sk, *first = NULL;
2117 unsigned short hnum = ntohs(uh->dest);
2118 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2119 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2120 unsigned int offset = offsetof(typeof(*sk), sk_node);
2121 int dif = skb->dev->ifindex;
2122 int sdif = inet_sdif(skb);
2123 struct hlist_node *node;
2124 struct sk_buff *nskb;
2125
2126 if (use_hash2) {
2127 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2128 udptable->mask;
2129 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2130 start_lookup:
2131 hslot = &udptable->hash2[hash2];
2132 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2133 }
2134
2135 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2136 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2137 uh->source, saddr, dif, sdif, hnum))
2138 continue;
2139
2140 if (!first) {
2141 first = sk;
2142 continue;
2143 }
2144 nskb = skb_clone(skb, GFP_ATOMIC);
2145
2146 if (unlikely(!nskb)) {
2147 atomic_inc(&sk->sk_drops);
2148 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2149 IS_UDPLITE(sk));
2150 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2151 IS_UDPLITE(sk));
2152 continue;
2153 }
2154 if (udp_queue_rcv_skb(sk, nskb) > 0)
2155 consume_skb(nskb);
2156 }
2157
2158 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2159 if (use_hash2 && hash2 != hash2_any) {
2160 hash2 = hash2_any;
2161 goto start_lookup;
2162 }
2163
2164 if (first) {
2165 if (udp_queue_rcv_skb(first, skb) > 0)
2166 consume_skb(skb);
2167 } else {
2168 kfree_skb(skb);
2169 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2170 proto == IPPROTO_UDPLITE);
2171 }
2172 return 0;
2173 }
2174
2175 /* Initialize UDP checksum. If exited with zero value (success),
2176 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2177 * Otherwise, csum completion requires chacksumming packet body,
2178 * including udp header and folding it to skb->csum.
2179 */
2180 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2181 int proto)
2182 {
2183 int err;
2184
2185 UDP_SKB_CB(skb)->partial_cov = 0;
2186 UDP_SKB_CB(skb)->cscov = skb->len;
2187
2188 if (proto == IPPROTO_UDPLITE) {
2189 err = udplite_checksum_init(skb, uh);
2190 if (err)
2191 return err;
2192
2193 if (UDP_SKB_CB(skb)->partial_cov) {
2194 skb->csum = inet_compute_pseudo(skb, proto);
2195 return 0;
2196 }
2197 }
2198
2199 /* Note, we are only interested in != 0 or == 0, thus the
2200 * force to int.
2201 */
2202 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2203 inet_compute_pseudo);
2204 if (err)
2205 return err;
2206
2207 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2208 /* If SW calculated the value, we know it's bad */
2209 if (skb->csum_complete_sw)
2210 return 1;
2211
2212 /* HW says the value is bad. Let's validate that.
2213 * skb->csum is no longer the full packet checksum,
2214 * so don't treat it as such.
2215 */
2216 skb_checksum_complete_unset(skb);
2217 }
2218
2219 return 0;
2220 }
2221
2222 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2223 * return code conversion for ip layer consumption
2224 */
2225 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2226 struct udphdr *uh)
2227 {
2228 int ret;
2229
2230 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2231 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2232 inet_compute_pseudo);
2233
2234 ret = udp_queue_rcv_skb(sk, skb);
2235
2236 /* a return value > 0 means to resubmit the input, but
2237 * it wants the return to be -protocol, or 0
2238 */
2239 if (ret > 0)
2240 return -ret;
2241 return 0;
2242 }
2243
2244 /*
2245 * All we need to do is get the socket, and then do a checksum.
2246 */
2247
2248 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2249 int proto)
2250 {
2251 struct sock *sk;
2252 struct udphdr *uh;
2253 unsigned short ulen;
2254 struct rtable *rt = skb_rtable(skb);
2255 __be32 saddr, daddr;
2256 struct net *net = dev_net(skb->dev);
2257
2258 /*
2259 * Validate the packet.
2260 */
2261 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2262 goto drop; /* No space for header. */
2263
2264 uh = udp_hdr(skb);
2265 ulen = ntohs(uh->len);
2266 saddr = ip_hdr(skb)->saddr;
2267 daddr = ip_hdr(skb)->daddr;
2268
2269 if (ulen > skb->len)
2270 goto short_packet;
2271
2272 if (proto == IPPROTO_UDP) {
2273 /* UDP validates ulen. */
2274 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2275 goto short_packet;
2276 uh = udp_hdr(skb);
2277 }
2278
2279 if (udp4_csum_init(skb, uh, proto))
2280 goto csum_error;
2281
2282 sk = skb_steal_sock(skb);
2283 if (sk) {
2284 struct dst_entry *dst = skb_dst(skb);
2285 int ret;
2286
2287 if (unlikely(sk->sk_rx_dst != dst))
2288 udp_sk_rx_dst_set(sk, dst);
2289
2290 ret = udp_unicast_rcv_skb(sk, skb, uh);
2291 sock_put(sk);
2292 return ret;
2293 }
2294
2295 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2296 return __udp4_lib_mcast_deliver(net, skb, uh,
2297 saddr, daddr, udptable, proto);
2298
2299 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2300 if (sk)
2301 return udp_unicast_rcv_skb(sk, skb, uh);
2302
2303 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2304 goto drop;
2305 nf_reset(skb);
2306
2307 /* No socket. Drop packet silently, if checksum is wrong */
2308 if (udp_lib_checksum_complete(skb))
2309 goto csum_error;
2310
2311 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2312 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2313
2314 /*
2315 * Hmm. We got an UDP packet to a port to which we
2316 * don't wanna listen. Ignore it.
2317 */
2318 kfree_skb(skb);
2319 return 0;
2320
2321 short_packet:
2322 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2323 proto == IPPROTO_UDPLITE ? "Lite" : "",
2324 &saddr, ntohs(uh->source),
2325 ulen, skb->len,
2326 &daddr, ntohs(uh->dest));
2327 goto drop;
2328
2329 csum_error:
2330 /*
2331 * RFC1122: OK. Discards the bad packet silently (as far as
2332 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2333 */
2334 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2335 proto == IPPROTO_UDPLITE ? "Lite" : "",
2336 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2337 ulen);
2338 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2339 drop:
2340 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2341 kfree_skb(skb);
2342 return 0;
2343 }
2344
2345 /* We can only early demux multicast if there is a single matching socket.
2346 * If more than one socket found returns NULL
2347 */
2348 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2349 __be16 loc_port, __be32 loc_addr,
2350 __be16 rmt_port, __be32 rmt_addr,
2351 int dif, int sdif)
2352 {
2353 struct sock *sk, *result;
2354 unsigned short hnum = ntohs(loc_port);
2355 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2356 struct udp_hslot *hslot = &udp_table.hash[slot];
2357
2358 /* Do not bother scanning a too big list */
2359 if (hslot->count > 10)
2360 return NULL;
2361
2362 result = NULL;
2363 sk_for_each_rcu(sk, &hslot->head) {
2364 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2365 rmt_port, rmt_addr, dif, sdif, hnum)) {
2366 if (result)
2367 return NULL;
2368 result = sk;
2369 }
2370 }
2371
2372 return result;
2373 }
2374
2375 /* For unicast we should only early demux connected sockets or we can
2376 * break forwarding setups. The chains here can be long so only check
2377 * if the first socket is an exact match and if not move on.
2378 */
2379 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2380 __be16 loc_port, __be32 loc_addr,
2381 __be16 rmt_port, __be32 rmt_addr,
2382 int dif, int sdif)
2383 {
2384 unsigned short hnum = ntohs(loc_port);
2385 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2386 unsigned int slot2 = hash2 & udp_table.mask;
2387 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2388 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2389 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2390 struct sock *sk;
2391
2392 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2393 if (INET_MATCH(sk, net, acookie, rmt_addr,
2394 loc_addr, ports, dif, sdif))
2395 return sk;
2396 /* Only check first socket in chain */
2397 break;
2398 }
2399 return NULL;
2400 }
2401
2402 int udp_v4_early_demux(struct sk_buff *skb)
2403 {
2404 struct net *net = dev_net(skb->dev);
2405 struct in_device *in_dev = NULL;
2406 const struct iphdr *iph;
2407 const struct udphdr *uh;
2408 struct sock *sk = NULL;
2409 struct dst_entry *dst;
2410 int dif = skb->dev->ifindex;
2411 int sdif = inet_sdif(skb);
2412 int ours;
2413
2414 /* validate the packet */
2415 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2416 return 0;
2417
2418 iph = ip_hdr(skb);
2419 uh = udp_hdr(skb);
2420
2421 if (skb->pkt_type == PACKET_MULTICAST) {
2422 in_dev = __in_dev_get_rcu(skb->dev);
2423
2424 if (!in_dev)
2425 return 0;
2426
2427 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2428 iph->protocol);
2429 if (!ours)
2430 return 0;
2431
2432 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2433 uh->source, iph->saddr,
2434 dif, sdif);
2435 } else if (skb->pkt_type == PACKET_HOST) {
2436 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2437 uh->source, iph->saddr, dif, sdif);
2438 }
2439
2440 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2441 return 0;
2442
2443 skb->sk = sk;
2444 skb->destructor = sock_efree;
2445 dst = READ_ONCE(sk->sk_rx_dst);
2446
2447 if (dst)
2448 dst = dst_check(dst, 0);
2449 if (dst) {
2450 u32 itag = 0;
2451
2452 /* set noref for now.
2453 * any place which wants to hold dst has to call
2454 * dst_hold_safe()
2455 */
2456 skb_dst_set_noref(skb, dst);
2457
2458 /* for unconnected multicast sockets we need to validate
2459 * the source on each packet
2460 */
2461 if (!inet_sk(sk)->inet_daddr && in_dev)
2462 return ip_mc_validate_source(skb, iph->daddr,
2463 iph->saddr, iph->tos,
2464 skb->dev, in_dev, &itag);
2465 }
2466 return 0;
2467 }
2468
2469 int udp_rcv(struct sk_buff *skb)
2470 {
2471 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2472 }
2473
2474 void udp_destroy_sock(struct sock *sk)
2475 {
2476 struct udp_sock *up = udp_sk(sk);
2477 bool slow = lock_sock_fast(sk);
2478 udp_flush_pending_frames(sk);
2479 unlock_sock_fast(sk, slow);
2480 if (static_branch_unlikely(&udp_encap_needed_key)) {
2481 if (up->encap_type) {
2482 void (*encap_destroy)(struct sock *sk);
2483 encap_destroy = READ_ONCE(up->encap_destroy);
2484 if (encap_destroy)
2485 encap_destroy(sk);
2486 }
2487 if (up->encap_enabled)
2488 static_branch_dec(&udp_encap_needed_key);
2489 }
2490 }
2491
2492 /*
2493 * Socket option code for UDP
2494 */
2495 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2496 char __user *optval, unsigned int optlen,
2497 int (*push_pending_frames)(struct sock *))
2498 {
2499 struct udp_sock *up = udp_sk(sk);
2500 int val, valbool;
2501 int err = 0;
2502 int is_udplite = IS_UDPLITE(sk);
2503
2504 if (optlen < sizeof(int))
2505 return -EINVAL;
2506
2507 if (get_user(val, (int __user *)optval))
2508 return -EFAULT;
2509
2510 valbool = val ? 1 : 0;
2511
2512 switch (optname) {
2513 case UDP_CORK:
2514 if (val != 0) {
2515 up->corkflag = 1;
2516 } else {
2517 up->corkflag = 0;
2518 lock_sock(sk);
2519 push_pending_frames(sk);
2520 release_sock(sk);
2521 }
2522 break;
2523
2524 case UDP_ENCAP:
2525 switch (val) {
2526 case 0:
2527 case UDP_ENCAP_ESPINUDP:
2528 case UDP_ENCAP_ESPINUDP_NON_IKE:
2529 up->encap_rcv = xfrm4_udp_encap_rcv;
2530 /* FALLTHROUGH */
2531 case UDP_ENCAP_L2TPINUDP:
2532 up->encap_type = val;
2533 lock_sock(sk);
2534 udp_tunnel_encap_enable(sk->sk_socket);
2535 release_sock(sk);
2536 break;
2537 default:
2538 err = -ENOPROTOOPT;
2539 break;
2540 }
2541 break;
2542
2543 case UDP_NO_CHECK6_TX:
2544 up->no_check6_tx = valbool;
2545 break;
2546
2547 case UDP_NO_CHECK6_RX:
2548 up->no_check6_rx = valbool;
2549 break;
2550
2551 case UDP_SEGMENT:
2552 if (val < 0 || val > USHRT_MAX)
2553 return -EINVAL;
2554 up->gso_size = val;
2555 break;
2556
2557 case UDP_GRO:
2558 lock_sock(sk);
2559 if (valbool)
2560 udp_tunnel_encap_enable(sk->sk_socket);
2561 up->gro_enabled = valbool;
2562 release_sock(sk);
2563 break;
2564
2565 /*
2566 * UDP-Lite's partial checksum coverage (RFC 3828).
2567 */
2568 /* The sender sets actual checksum coverage length via this option.
2569 * The case coverage > packet length is handled by send module. */
2570 case UDPLITE_SEND_CSCOV:
2571 if (!is_udplite) /* Disable the option on UDP sockets */
2572 return -ENOPROTOOPT;
2573 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2574 val = 8;
2575 else if (val > USHRT_MAX)
2576 val = USHRT_MAX;
2577 up->pcslen = val;
2578 up->pcflag |= UDPLITE_SEND_CC;
2579 break;
2580
2581 /* The receiver specifies a minimum checksum coverage value. To make
2582 * sense, this should be set to at least 8 (as done below). If zero is
2583 * used, this again means full checksum coverage. */
2584 case UDPLITE_RECV_CSCOV:
2585 if (!is_udplite) /* Disable the option on UDP sockets */
2586 return -ENOPROTOOPT;
2587 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2588 val = 8;
2589 else if (val > USHRT_MAX)
2590 val = USHRT_MAX;
2591 up->pcrlen = val;
2592 up->pcflag |= UDPLITE_RECV_CC;
2593 break;
2594
2595 default:
2596 err = -ENOPROTOOPT;
2597 break;
2598 }
2599
2600 return err;
2601 }
2602 EXPORT_SYMBOL(udp_lib_setsockopt);
2603
2604 int udp_setsockopt(struct sock *sk, int level, int optname,
2605 char __user *optval, unsigned int optlen)
2606 {
2607 if (level == SOL_UDP || level == SOL_UDPLITE)
2608 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2609 udp_push_pending_frames);
2610 return ip_setsockopt(sk, level, optname, optval, optlen);
2611 }
2612
2613 #ifdef CONFIG_COMPAT
2614 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2615 char __user *optval, unsigned int optlen)
2616 {
2617 if (level == SOL_UDP || level == SOL_UDPLITE)
2618 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2619 udp_push_pending_frames);
2620 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2621 }
2622 #endif
2623
2624 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2625 char __user *optval, int __user *optlen)
2626 {
2627 struct udp_sock *up = udp_sk(sk);
2628 int val, len;
2629
2630 if (get_user(len, optlen))
2631 return -EFAULT;
2632
2633 len = min_t(unsigned int, len, sizeof(int));
2634
2635 if (len < 0)
2636 return -EINVAL;
2637
2638 switch (optname) {
2639 case UDP_CORK:
2640 val = up->corkflag;
2641 break;
2642
2643 case UDP_ENCAP:
2644 val = up->encap_type;
2645 break;
2646
2647 case UDP_NO_CHECK6_TX:
2648 val = up->no_check6_tx;
2649 break;
2650
2651 case UDP_NO_CHECK6_RX:
2652 val = up->no_check6_rx;
2653 break;
2654
2655 case UDP_SEGMENT:
2656 val = up->gso_size;
2657 break;
2658
2659 /* The following two cannot be changed on UDP sockets, the return is
2660 * always 0 (which corresponds to the full checksum coverage of UDP). */
2661 case UDPLITE_SEND_CSCOV:
2662 val = up->pcslen;
2663 break;
2664
2665 case UDPLITE_RECV_CSCOV:
2666 val = up->pcrlen;
2667 break;
2668
2669 default:
2670 return -ENOPROTOOPT;
2671 }
2672
2673 if (put_user(len, optlen))
2674 return -EFAULT;
2675 if (copy_to_user(optval, &val, len))
2676 return -EFAULT;
2677 return 0;
2678 }
2679 EXPORT_SYMBOL(udp_lib_getsockopt);
2680
2681 int udp_getsockopt(struct sock *sk, int level, int optname,
2682 char __user *optval, int __user *optlen)
2683 {
2684 if (level == SOL_UDP || level == SOL_UDPLITE)
2685 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2686 return ip_getsockopt(sk, level, optname, optval, optlen);
2687 }
2688
2689 #ifdef CONFIG_COMPAT
2690 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2691 char __user *optval, int __user *optlen)
2692 {
2693 if (level == SOL_UDP || level == SOL_UDPLITE)
2694 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2695 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2696 }
2697 #endif
2698 /**
2699 * udp_poll - wait for a UDP event.
2700 * @file - file struct
2701 * @sock - socket
2702 * @wait - poll table
2703 *
2704 * This is same as datagram poll, except for the special case of
2705 * blocking sockets. If application is using a blocking fd
2706 * and a packet with checksum error is in the queue;
2707 * then it could get return from select indicating data available
2708 * but then block when reading it. Add special case code
2709 * to work around these arguably broken applications.
2710 */
2711 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2712 {
2713 __poll_t mask = datagram_poll(file, sock, wait);
2714 struct sock *sk = sock->sk;
2715
2716 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2717 mask |= EPOLLIN | EPOLLRDNORM;
2718
2719 /* Check for false positives due to checksum errors */
2720 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2721 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2722 mask &= ~(EPOLLIN | EPOLLRDNORM);
2723
2724 return mask;
2725
2726 }
2727 EXPORT_SYMBOL(udp_poll);
2728
2729 int udp_abort(struct sock *sk, int err)
2730 {
2731 lock_sock(sk);
2732
2733 sk->sk_err = err;
2734 sk->sk_error_report(sk);
2735 __udp_disconnect(sk, 0);
2736
2737 release_sock(sk);
2738
2739 return 0;
2740 }
2741 EXPORT_SYMBOL_GPL(udp_abort);
2742
2743 struct proto udp_prot = {
2744 .name = "UDP",
2745 .owner = THIS_MODULE,
2746 .close = udp_lib_close,
2747 .pre_connect = udp_pre_connect,
2748 .connect = ip4_datagram_connect,
2749 .disconnect = udp_disconnect,
2750 .ioctl = udp_ioctl,
2751 .init = udp_init_sock,
2752 .destroy = udp_destroy_sock,
2753 .setsockopt = udp_setsockopt,
2754 .getsockopt = udp_getsockopt,
2755 .sendmsg = udp_sendmsg,
2756 .recvmsg = udp_recvmsg,
2757 .sendpage = udp_sendpage,
2758 .release_cb = ip4_datagram_release_cb,
2759 .hash = udp_lib_hash,
2760 .unhash = udp_lib_unhash,
2761 .rehash = udp_v4_rehash,
2762 .get_port = udp_v4_get_port,
2763 .memory_allocated = &udp_memory_allocated,
2764 .sysctl_mem = sysctl_udp_mem,
2765 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2766 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2767 .obj_size = sizeof(struct udp_sock),
2768 .h.udp_table = &udp_table,
2769 #ifdef CONFIG_COMPAT
2770 .compat_setsockopt = compat_udp_setsockopt,
2771 .compat_getsockopt = compat_udp_getsockopt,
2772 #endif
2773 .diag_destroy = udp_abort,
2774 };
2775 EXPORT_SYMBOL(udp_prot);
2776
2777 /* ------------------------------------------------------------------------ */
2778 #ifdef CONFIG_PROC_FS
2779
2780 static struct sock *udp_get_first(struct seq_file *seq, int start)
2781 {
2782 struct sock *sk;
2783 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2784 struct udp_iter_state *state = seq->private;
2785 struct net *net = seq_file_net(seq);
2786
2787 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2788 ++state->bucket) {
2789 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2790
2791 if (hlist_empty(&hslot->head))
2792 continue;
2793
2794 spin_lock_bh(&hslot->lock);
2795 sk_for_each(sk, &hslot->head) {
2796 if (!net_eq(sock_net(sk), net))
2797 continue;
2798 if (sk->sk_family == afinfo->family)
2799 goto found;
2800 }
2801 spin_unlock_bh(&hslot->lock);
2802 }
2803 sk = NULL;
2804 found:
2805 return sk;
2806 }
2807
2808 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2809 {
2810 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2811 struct udp_iter_state *state = seq->private;
2812 struct net *net = seq_file_net(seq);
2813
2814 do {
2815 sk = sk_next(sk);
2816 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2817
2818 if (!sk) {
2819 if (state->bucket <= afinfo->udp_table->mask)
2820 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2821 return udp_get_first(seq, state->bucket + 1);
2822 }
2823 return sk;
2824 }
2825
2826 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2827 {
2828 struct sock *sk = udp_get_first(seq, 0);
2829
2830 if (sk)
2831 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2832 --pos;
2833 return pos ? NULL : sk;
2834 }
2835
2836 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2837 {
2838 struct udp_iter_state *state = seq->private;
2839 state->bucket = MAX_UDP_PORTS;
2840
2841 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2842 }
2843 EXPORT_SYMBOL(udp_seq_start);
2844
2845 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2846 {
2847 struct sock *sk;
2848
2849 if (v == SEQ_START_TOKEN)
2850 sk = udp_get_idx(seq, 0);
2851 else
2852 sk = udp_get_next(seq, v);
2853
2854 ++*pos;
2855 return sk;
2856 }
2857 EXPORT_SYMBOL(udp_seq_next);
2858
2859 void udp_seq_stop(struct seq_file *seq, void *v)
2860 {
2861 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2862 struct udp_iter_state *state = seq->private;
2863
2864 if (state->bucket <= afinfo->udp_table->mask)
2865 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2866 }
2867 EXPORT_SYMBOL(udp_seq_stop);
2868
2869 /* ------------------------------------------------------------------------ */
2870 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2871 int bucket)
2872 {
2873 struct inet_sock *inet = inet_sk(sp);
2874 __be32 dest = inet->inet_daddr;
2875 __be32 src = inet->inet_rcv_saddr;
2876 __u16 destp = ntohs(inet->inet_dport);
2877 __u16 srcp = ntohs(inet->inet_sport);
2878
2879 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2880 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2881 bucket, src, srcp, dest, destp, sp->sk_state,
2882 sk_wmem_alloc_get(sp),
2883 udp_rqueue_get(sp),
2884 0, 0L, 0,
2885 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2886 0, sock_i_ino(sp),
2887 refcount_read(&sp->sk_refcnt), sp,
2888 atomic_read(&sp->sk_drops));
2889 }
2890
2891 int udp4_seq_show(struct seq_file *seq, void *v)
2892 {
2893 seq_setwidth(seq, 127);
2894 if (v == SEQ_START_TOKEN)
2895 seq_puts(seq, " sl local_address rem_address st tx_queue "
2896 "rx_queue tr tm->when retrnsmt uid timeout "
2897 "inode ref pointer drops");
2898 else {
2899 struct udp_iter_state *state = seq->private;
2900
2901 udp4_format_sock(v, seq, state->bucket);
2902 }
2903 seq_pad(seq, '\n');
2904 return 0;
2905 }
2906
2907 const struct seq_operations udp_seq_ops = {
2908 .start = udp_seq_start,
2909 .next = udp_seq_next,
2910 .stop = udp_seq_stop,
2911 .show = udp4_seq_show,
2912 };
2913 EXPORT_SYMBOL(udp_seq_ops);
2914
2915 static struct udp_seq_afinfo udp4_seq_afinfo = {
2916 .family = AF_INET,
2917 .udp_table = &udp_table,
2918 };
2919
2920 static int __net_init udp4_proc_init_net(struct net *net)
2921 {
2922 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2923 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2924 return -ENOMEM;
2925 return 0;
2926 }
2927
2928 static void __net_exit udp4_proc_exit_net(struct net *net)
2929 {
2930 remove_proc_entry("udp", net->proc_net);
2931 }
2932
2933 static struct pernet_operations udp4_net_ops = {
2934 .init = udp4_proc_init_net,
2935 .exit = udp4_proc_exit_net,
2936 };
2937
2938 int __init udp4_proc_init(void)
2939 {
2940 return register_pernet_subsys(&udp4_net_ops);
2941 }
2942
2943 void udp4_proc_exit(void)
2944 {
2945 unregister_pernet_subsys(&udp4_net_ops);
2946 }
2947 #endif /* CONFIG_PROC_FS */
2948
2949 static __initdata unsigned long uhash_entries;
2950 static int __init set_uhash_entries(char *str)
2951 {
2952 ssize_t ret;
2953
2954 if (!str)
2955 return 0;
2956
2957 ret = kstrtoul(str, 0, &uhash_entries);
2958 if (ret)
2959 return 0;
2960
2961 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2962 uhash_entries = UDP_HTABLE_SIZE_MIN;
2963 return 1;
2964 }
2965 __setup("uhash_entries=", set_uhash_entries);
2966
2967 void __init udp_table_init(struct udp_table *table, const char *name)
2968 {
2969 unsigned int i;
2970
2971 table->hash = alloc_large_system_hash(name,
2972 2 * sizeof(struct udp_hslot),
2973 uhash_entries,
2974 21, /* one slot per 2 MB */
2975 0,
2976 &table->log,
2977 &table->mask,
2978 UDP_HTABLE_SIZE_MIN,
2979 64 * 1024);
2980
2981 table->hash2 = table->hash + (table->mask + 1);
2982 for (i = 0; i <= table->mask; i++) {
2983 INIT_HLIST_HEAD(&table->hash[i].head);
2984 table->hash[i].count = 0;
2985 spin_lock_init(&table->hash[i].lock);
2986 }
2987 for (i = 0; i <= table->mask; i++) {
2988 INIT_HLIST_HEAD(&table->hash2[i].head);
2989 table->hash2[i].count = 0;
2990 spin_lock_init(&table->hash2[i].lock);
2991 }
2992 }
2993
2994 u32 udp_flow_hashrnd(void)
2995 {
2996 static u32 hashrnd __read_mostly;
2997
2998 net_get_random_once(&hashrnd, sizeof(hashrnd));
2999
3000 return hashrnd;
3001 }
3002 EXPORT_SYMBOL(udp_flow_hashrnd);
3003
3004 static void __udp_sysctl_init(struct net *net)
3005 {
3006 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3007 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3008
3009 #ifdef CONFIG_NET_L3_MASTER_DEV
3010 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3011 #endif
3012 }
3013
3014 static int __net_init udp_sysctl_init(struct net *net)
3015 {
3016 __udp_sysctl_init(net);
3017 return 0;
3018 }
3019
3020 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3021 .init = udp_sysctl_init,
3022 };
3023
3024 void __init udp_init(void)
3025 {
3026 unsigned long limit;
3027 unsigned int i;
3028
3029 udp_table_init(&udp_table, "UDP");
3030 limit = nr_free_buffer_pages() / 8;
3031 limit = max(limit, 128UL);
3032 sysctl_udp_mem[0] = limit / 4 * 3;
3033 sysctl_udp_mem[1] = limit;
3034 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3035
3036 __udp_sysctl_init(&init_net);
3037
3038 /* 16 spinlocks per cpu */
3039 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3040 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3041 GFP_KERNEL);
3042 if (!udp_busylocks)
3043 panic("UDP: failed to alloc udp_busylocks\n");
3044 for (i = 0; i < (1U << udp_busylocks_log); i++)
3045 spin_lock_init(udp_busylocks + i);
3046
3047 if (register_pernet_subsys(&udp_sysctl_ops))
3048 panic("UDP: failed to init sysctl parameters.\n");
3049 }