]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/udp.c
b4437c7db6cec846ef6b5055f9736f0bb236c896
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141 {
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144 kuid_t uid = sock_i_uid(sk);
145
146 sk_nulls_for_each(sk2, node, &hslot->head)
147 if (net_eq(sock_net(sk2), net) &&
148 sk2 != sk &&
149 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 (!sk2->sk_reuse || !sk->sk_reuse) &&
151 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 !uid_eq(uid, sock_i_uid(sk2))) &&
155 (*saddr_comp)(sk, sk2)) {
156 if (bitmap)
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 else
160 return 1;
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 (*saddr_comp)(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 spin_unlock(&hslot2->lock);
195 return res;
196 }
197
198 /**
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
200 *
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205 * with NULL address
206 */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 int (*saddr_comp)(const struct sock *sk1,
209 const struct sock *sk2),
210 unsigned int hash2_nulladdr)
211 {
212 struct udp_hslot *hslot, *hslot2;
213 struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 int error = 1;
215 struct net *net = sock_net(sk);
216
217 if (!snum) {
218 int low, high, remaining;
219 unsigned int rand;
220 unsigned short first, last;
221 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222
223 inet_get_local_port_range(net, &low, &high);
224 remaining = (high - low) + 1;
225
226 rand = net_random();
227 first = (((u64)rand * remaining) >> 32) + low;
228 /*
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 */
231 rand = (rand | 1) * (udptable->mask + 1);
232 last = first + udptable->mask + 1;
233 do {
234 hslot = udp_hashslot(udptable, net, first);
235 bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 spin_lock_bh(&hslot->lock);
237 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 saddr_comp, udptable->log);
239
240 snum = first;
241 /*
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
245 */
246 do {
247 if (low <= snum && snum <= high &&
248 !test_bit(snum >> udptable->log, bitmap) &&
249 !inet_is_reserved_local_port(snum))
250 goto found;
251 snum += rand;
252 } while (snum != first);
253 spin_unlock_bh(&hslot->lock);
254 } while (++first != last);
255 goto fail;
256 } else {
257 hslot = udp_hashslot(udptable, net, snum);
258 spin_lock_bh(&hslot->lock);
259 if (hslot->count > 10) {
260 int exist;
261 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262
263 slot2 &= udptable->mask;
264 hash2_nulladdr &= udptable->mask;
265
266 hslot2 = udp_hashslot2(udptable, slot2);
267 if (hslot->count < hslot2->count)
268 goto scan_primary_hash;
269
270 exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 sk, saddr_comp);
272 if (!exist && (hash2_nulladdr != slot2)) {
273 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 sk, saddr_comp);
276 }
277 if (exist)
278 goto fail_unlock;
279 else
280 goto found;
281 }
282 scan_primary_hash:
283 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 saddr_comp, 0))
285 goto fail_unlock;
286 }
287 found:
288 inet_sk(sk)->inet_num = snum;
289 udp_sk(sk)->udp_port_hash = snum;
290 udp_sk(sk)->udp_portaddr_hash ^= snum;
291 if (sk_unhashed(sk)) {
292 sk_nulls_add_node_rcu(sk, &hslot->head);
293 hslot->count++;
294 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295
296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 spin_lock(&hslot2->lock);
298 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 &hslot2->head);
300 hslot2->count++;
301 spin_unlock(&hslot2->lock);
302 }
303 error = 0;
304 fail_unlock:
305 spin_unlock_bh(&hslot->lock);
306 fail:
307 return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314
315 return (!ipv6_only_sock(sk2) &&
316 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 unsigned int port)
322 {
323 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 unsigned int hash2_nulladdr =
329 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 unsigned int hash2_partial =
331 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332
333 /* precompute partial secondary hash */
334 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 unsigned short hnum,
340 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 int score = -1;
343
344 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 !ipv6_only_sock(sk)) {
346 struct inet_sock *inet = inet_sk(sk);
347
348 score = (sk->sk_family == PF_INET ? 2 : 1);
349 if (inet->inet_rcv_saddr) {
350 if (inet->inet_rcv_saddr != daddr)
351 return -1;
352 score += 4;
353 }
354 if (inet->inet_daddr) {
355 if (inet->inet_daddr != saddr)
356 return -1;
357 score += 4;
358 }
359 if (inet->inet_dport) {
360 if (inet->inet_dport != sport)
361 return -1;
362 score += 4;
363 }
364 if (sk->sk_bound_dev_if) {
365 if (sk->sk_bound_dev_if != dif)
366 return -1;
367 score += 4;
368 }
369 }
370 return score;
371 }
372
373 /*
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375 */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 __be32 saddr, __be16 sport,
378 __be32 daddr, unsigned int hnum, int dif)
379 {
380 int score = -1;
381
382 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 struct inet_sock *inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr != daddr)
386 return -1;
387 if (inet->inet_num != hnum)
388 return -1;
389
390 score = (sk->sk_family == PF_INET ? 2 : 1);
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396 if (inet->inet_dport) {
397 if (inet->inet_dport != sport)
398 return -1;
399 score += 4;
400 }
401 if (sk->sk_bound_dev_if) {
402 if (sk->sk_bound_dev_if != dif)
403 return -1;
404 score += 4;
405 }
406 }
407 return score;
408 }
409
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 const __u16 lport, const __be32 faddr,
412 const __be16 fport)
413 {
414 return __inet_ehashfn(laddr, lport, faddr, fport,
415 inet_ehash_secret + net_hash_mix(net));
416 }
417
418
419 /* called with read_rcu_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 __be32 saddr, __be16 sport,
422 __be32 daddr, unsigned int hnum, int dif,
423 struct udp_hslot *hslot2, unsigned int slot2)
424 {
425 struct sock *sk, *result;
426 struct hlist_nulls_node *node;
427 int score, badness, matches = 0, reuseport = 0;
428 u32 hash = 0;
429
430 begin:
431 result = NULL;
432 badness = 0;
433 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
434 score = compute_score2(sk, net, saddr, sport,
435 daddr, hnum, dif);
436 if (score > badness) {
437 result = sk;
438 badness = score;
439 reuseport = sk->sk_reuseport;
440 if (reuseport) {
441 hash = udp_ehashfn(net, daddr, hnum,
442 saddr, sport);
443 matches = 1;
444 }
445 } else if (score == badness && reuseport) {
446 matches++;
447 if (((u64)hash * matches) >> 32 == 0)
448 result = sk;
449 hash = next_pseudo_random32(hash);
450 }
451 }
452 /*
453 * if the nulls value we got at the end of this lookup is
454 * not the expected one, we must restart lookup.
455 * We probably met an item that was moved to another chain.
456 */
457 if (get_nulls_value(node) != slot2)
458 goto begin;
459 if (result) {
460 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
461 result = NULL;
462 else if (unlikely(compute_score2(result, net, saddr, sport,
463 daddr, hnum, dif) < badness)) {
464 sock_put(result);
465 goto begin;
466 }
467 }
468 return result;
469 }
470
471 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
472 * harder than this. -DaveM
473 */
474 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
475 __be16 sport, __be32 daddr, __be16 dport,
476 int dif, struct udp_table *udptable)
477 {
478 struct sock *sk, *result;
479 struct hlist_nulls_node *node;
480 unsigned short hnum = ntohs(dport);
481 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
482 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
483 int score, badness, matches = 0, reuseport = 0;
484 u32 hash = 0;
485
486 rcu_read_lock();
487 if (hslot->count > 10) {
488 hash2 = udp4_portaddr_hash(net, daddr, hnum);
489 slot2 = hash2 & udptable->mask;
490 hslot2 = &udptable->hash2[slot2];
491 if (hslot->count < hslot2->count)
492 goto begin;
493
494 result = udp4_lib_lookup2(net, saddr, sport,
495 daddr, hnum, dif,
496 hslot2, slot2);
497 if (!result) {
498 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
499 slot2 = hash2 & udptable->mask;
500 hslot2 = &udptable->hash2[slot2];
501 if (hslot->count < hslot2->count)
502 goto begin;
503
504 result = udp4_lib_lookup2(net, saddr, sport,
505 htonl(INADDR_ANY), hnum, dif,
506 hslot2, slot2);
507 }
508 rcu_read_unlock();
509 return result;
510 }
511 begin:
512 result = NULL;
513 badness = 0;
514 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
515 score = compute_score(sk, net, saddr, hnum, sport,
516 daddr, dport, dif);
517 if (score > badness) {
518 result = sk;
519 badness = score;
520 reuseport = sk->sk_reuseport;
521 if (reuseport) {
522 hash = udp_ehashfn(net, daddr, hnum,
523 saddr, sport);
524 matches = 1;
525 }
526 } else if (score == badness && reuseport) {
527 matches++;
528 if (((u64)hash * matches) >> 32 == 0)
529 result = sk;
530 hash = next_pseudo_random32(hash);
531 }
532 }
533 /*
534 * if the nulls value we got at the end of this lookup is
535 * not the expected one, we must restart lookup.
536 * We probably met an item that was moved to another chain.
537 */
538 if (get_nulls_value(node) != slot)
539 goto begin;
540
541 if (result) {
542 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
543 result = NULL;
544 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
545 daddr, dport, dif) < badness)) {
546 sock_put(result);
547 goto begin;
548 }
549 }
550 rcu_read_unlock();
551 return result;
552 }
553 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
554
555 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
556 __be16 sport, __be16 dport,
557 struct udp_table *udptable)
558 {
559 struct sock *sk;
560 const struct iphdr *iph = ip_hdr(skb);
561
562 if (unlikely(sk = skb_steal_sock(skb)))
563 return sk;
564 else
565 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 iph->daddr, dport, inet_iif(skb),
567 udptable);
568 }
569
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 __be16 loc_port, __be32 loc_addr,
579 __be16 rmt_port, __be32 rmt_addr,
580 int dif, unsigned short hnum)
581 {
582 struct inet_sock *inet = inet_sk(sk);
583
584 if (!net_eq(sock_net(sk), net) ||
585 udp_sk(sk)->udp_port_hash != hnum ||
586 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 ipv6_only_sock(sk) ||
590 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 return false;
592 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 return false;
594 return true;
595 }
596
597 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
598 __be16 loc_port, __be32 loc_addr,
599 __be16 rmt_port, __be32 rmt_addr,
600 int dif)
601 {
602 struct hlist_nulls_node *node;
603 struct sock *s = sk;
604 unsigned short hnum = ntohs(loc_port);
605
606 sk_nulls_for_each_from(s, node) {
607 if (__udp_is_mcast_sock(net, s,
608 loc_port, loc_addr,
609 rmt_port, rmt_addr,
610 dif, hnum))
611 goto found;
612 }
613 s = NULL;
614 found:
615 return s;
616 }
617
618 /*
619 * This routine is called by the ICMP module when it gets some
620 * sort of error condition. If err < 0 then the socket should
621 * be closed and the error returned to the user. If err > 0
622 * it's just the icmp type << 8 | icmp code.
623 * Header points to the ip header of the error packet. We move
624 * on past this. Then (as it used to claim before adjustment)
625 * header points to the first 8 bytes of the udp header. We need
626 * to find the appropriate port.
627 */
628
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 struct inet_sock *inet;
632 const struct iphdr *iph = (const struct iphdr *)skb->data;
633 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 const int type = icmp_hdr(skb)->type;
635 const int code = icmp_hdr(skb)->code;
636 struct sock *sk;
637 int harderr;
638 int err;
639 struct net *net = dev_net(skb->dev);
640
641 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 iph->saddr, uh->source, skb->dev->ifindex, udptable);
643 if (sk == NULL) {
644 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
645 return; /* No socket for error */
646 }
647
648 err = 0;
649 harderr = 0;
650 inet = inet_sk(sk);
651
652 switch (type) {
653 default:
654 case ICMP_TIME_EXCEEDED:
655 err = EHOSTUNREACH;
656 break;
657 case ICMP_SOURCE_QUENCH:
658 goto out;
659 case ICMP_PARAMETERPROB:
660 err = EPROTO;
661 harderr = 1;
662 break;
663 case ICMP_DEST_UNREACH:
664 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 ipv4_sk_update_pmtu(skb, sk, info);
666 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 err = EMSGSIZE;
668 harderr = 1;
669 break;
670 }
671 goto out;
672 }
673 err = EHOSTUNREACH;
674 if (code <= NR_ICMP_UNREACH) {
675 harderr = icmp_err_convert[code].fatal;
676 err = icmp_err_convert[code].errno;
677 }
678 break;
679 case ICMP_REDIRECT:
680 ipv4_sk_redirect(skb, sk);
681 goto out;
682 }
683
684 /*
685 * RFC1122: OK. Passes ICMP errors back to application, as per
686 * 4.1.3.3.
687 */
688 if (!inet->recverr) {
689 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 goto out;
691 } else
692 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693
694 sk->sk_err = err;
695 sk->sk_error_report(sk);
696 out:
697 sock_put(sk);
698 }
699
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 __udp4_lib_err(skb, info, &udp_table);
703 }
704
705 /*
706 * Throw away all pending data and cancel the corking. Socket is locked.
707 */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 struct udp_sock *up = udp_sk(sk);
711
712 if (up->pending) {
713 up->len = 0;
714 up->pending = 0;
715 ip_flush_pending_frames(sk);
716 }
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719
720 /**
721 * udp4_hwcsum - handle outgoing HW checksumming
722 * @skb: sk_buff containing the filled-in UDP header
723 * (checksum field must be zeroed out)
724 * @src: source IP address
725 * @dst: destination IP address
726 */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 struct udphdr *uh = udp_hdr(skb);
730 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
731 int offset = skb_transport_offset(skb);
732 int len = skb->len - offset;
733 int hlen = len;
734 __wsum csum = 0;
735
736 if (!frags) {
737 /*
738 * Only one fragment on the socket.
739 */
740 skb->csum_start = skb_transport_header(skb) - skb->head;
741 skb->csum_offset = offsetof(struct udphdr, check);
742 uh->check = ~csum_tcpudp_magic(src, dst, len,
743 IPPROTO_UDP, 0);
744 } else {
745 /*
746 * HW-checksum won't work as there are two or more
747 * fragments on the socket so that all csums of sk_buffs
748 * should be together
749 */
750 do {
751 csum = csum_add(csum, frags->csum);
752 hlen -= frags->len;
753 } while ((frags = frags->next));
754
755 csum = skb_checksum(skb, offset, hlen, csum);
756 skb->ip_summed = CHECKSUM_NONE;
757
758 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
759 if (uh->check == 0)
760 uh->check = CSUM_MANGLED_0;
761 }
762 }
763 EXPORT_SYMBOL_GPL(udp4_hwcsum);
764
765 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
766 {
767 struct sock *sk = skb->sk;
768 struct inet_sock *inet = inet_sk(sk);
769 struct udphdr *uh;
770 int err = 0;
771 int is_udplite = IS_UDPLITE(sk);
772 int offset = skb_transport_offset(skb);
773 int len = skb->len - offset;
774 __wsum csum = 0;
775
776 /*
777 * Create a UDP header
778 */
779 uh = udp_hdr(skb);
780 uh->source = inet->inet_sport;
781 uh->dest = fl4->fl4_dport;
782 uh->len = htons(len);
783 uh->check = 0;
784
785 if (is_udplite) /* UDP-Lite */
786 csum = udplite_csum(skb);
787
788 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
789
790 skb->ip_summed = CHECKSUM_NONE;
791 goto send;
792
793 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
794
795 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
796 goto send;
797
798 } else
799 csum = udp_csum(skb);
800
801 /* add protocol-dependent pseudo-header */
802 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
803 sk->sk_protocol, csum);
804 if (uh->check == 0)
805 uh->check = CSUM_MANGLED_0;
806
807 send:
808 err = ip_send_skb(sock_net(sk), skb);
809 if (err) {
810 if (err == -ENOBUFS && !inet->recverr) {
811 UDP_INC_STATS_USER(sock_net(sk),
812 UDP_MIB_SNDBUFERRORS, is_udplite);
813 err = 0;
814 }
815 } else
816 UDP_INC_STATS_USER(sock_net(sk),
817 UDP_MIB_OUTDATAGRAMS, is_udplite);
818 return err;
819 }
820
821 /*
822 * Push out all pending data as one UDP datagram. Socket is locked.
823 */
824 int udp_push_pending_frames(struct sock *sk)
825 {
826 struct udp_sock *up = udp_sk(sk);
827 struct inet_sock *inet = inet_sk(sk);
828 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
829 struct sk_buff *skb;
830 int err = 0;
831
832 skb = ip_finish_skb(sk, fl4);
833 if (!skb)
834 goto out;
835
836 err = udp_send_skb(skb, fl4);
837
838 out:
839 up->len = 0;
840 up->pending = 0;
841 return err;
842 }
843 EXPORT_SYMBOL(udp_push_pending_frames);
844
845 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
846 size_t len)
847 {
848 struct inet_sock *inet = inet_sk(sk);
849 struct udp_sock *up = udp_sk(sk);
850 struct flowi4 fl4_stack;
851 struct flowi4 *fl4;
852 int ulen = len;
853 struct ipcm_cookie ipc;
854 struct rtable *rt = NULL;
855 int free = 0;
856 int connected = 0;
857 __be32 daddr, faddr, saddr;
858 __be16 dport;
859 u8 tos;
860 int err, is_udplite = IS_UDPLITE(sk);
861 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 struct sk_buff *skb;
864 struct ip_options_data opt_copy;
865
866 if (len > 0xFFFF)
867 return -EMSGSIZE;
868
869 /*
870 * Check the flags.
871 */
872
873 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 return -EOPNOTSUPP;
875
876 ipc.opt = NULL;
877 ipc.tx_flags = 0;
878 ipc.ttl = 0;
879 ipc.tos = -1;
880
881 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
882
883 fl4 = &inet->cork.fl.u.ip4;
884 if (up->pending) {
885 /*
886 * There are pending frames.
887 * The socket lock must be held while it's corked.
888 */
889 lock_sock(sk);
890 if (likely(up->pending)) {
891 if (unlikely(up->pending != AF_INET)) {
892 release_sock(sk);
893 return -EINVAL;
894 }
895 goto do_append_data;
896 }
897 release_sock(sk);
898 }
899 ulen += sizeof(struct udphdr);
900
901 /*
902 * Get and verify the address.
903 */
904 if (msg->msg_name) {
905 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
906 if (msg->msg_namelen < sizeof(*usin))
907 return -EINVAL;
908 if (usin->sin_family != AF_INET) {
909 if (usin->sin_family != AF_UNSPEC)
910 return -EAFNOSUPPORT;
911 }
912
913 daddr = usin->sin_addr.s_addr;
914 dport = usin->sin_port;
915 if (dport == 0)
916 return -EINVAL;
917 } else {
918 if (sk->sk_state != TCP_ESTABLISHED)
919 return -EDESTADDRREQ;
920 daddr = inet->inet_daddr;
921 dport = inet->inet_dport;
922 /* Open fast path for connected socket.
923 Route will not be used, if at least one option is set.
924 */
925 connected = 1;
926 }
927 ipc.addr = inet->inet_saddr;
928
929 ipc.oif = sk->sk_bound_dev_if;
930
931 sock_tx_timestamp(sk, &ipc.tx_flags);
932
933 if (msg->msg_controllen) {
934 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
935 if (err)
936 return err;
937 if (ipc.opt)
938 free = 1;
939 connected = 0;
940 }
941 if (!ipc.opt) {
942 struct ip_options_rcu *inet_opt;
943
944 rcu_read_lock();
945 inet_opt = rcu_dereference(inet->inet_opt);
946 if (inet_opt) {
947 memcpy(&opt_copy, inet_opt,
948 sizeof(*inet_opt) + inet_opt->opt.optlen);
949 ipc.opt = &opt_copy.opt;
950 }
951 rcu_read_unlock();
952 }
953
954 saddr = ipc.addr;
955 ipc.addr = faddr = daddr;
956
957 if (ipc.opt && ipc.opt->opt.srr) {
958 if (!daddr)
959 return -EINVAL;
960 faddr = ipc.opt->opt.faddr;
961 connected = 0;
962 }
963 tos = get_rttos(&ipc, inet);
964 if (sock_flag(sk, SOCK_LOCALROUTE) ||
965 (msg->msg_flags & MSG_DONTROUTE) ||
966 (ipc.opt && ipc.opt->opt.is_strictroute)) {
967 tos |= RTO_ONLINK;
968 connected = 0;
969 }
970
971 if (ipv4_is_multicast(daddr)) {
972 if (!ipc.oif)
973 ipc.oif = inet->mc_index;
974 if (!saddr)
975 saddr = inet->mc_addr;
976 connected = 0;
977 } else if (!ipc.oif)
978 ipc.oif = inet->uc_index;
979
980 if (connected)
981 rt = (struct rtable *)sk_dst_check(sk, 0);
982
983 if (rt == NULL) {
984 struct net *net = sock_net(sk);
985
986 fl4 = &fl4_stack;
987 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
988 RT_SCOPE_UNIVERSE, sk->sk_protocol,
989 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
990 faddr, saddr, dport, inet->inet_sport);
991
992 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
993 rt = ip_route_output_flow(net, fl4, sk);
994 if (IS_ERR(rt)) {
995 err = PTR_ERR(rt);
996 rt = NULL;
997 if (err == -ENETUNREACH)
998 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
999 goto out;
1000 }
1001
1002 err = -EACCES;
1003 if ((rt->rt_flags & RTCF_BROADCAST) &&
1004 !sock_flag(sk, SOCK_BROADCAST))
1005 goto out;
1006 if (connected)
1007 sk_dst_set(sk, dst_clone(&rt->dst));
1008 }
1009
1010 if (msg->msg_flags&MSG_CONFIRM)
1011 goto do_confirm;
1012 back_from_confirm:
1013
1014 saddr = fl4->saddr;
1015 if (!ipc.addr)
1016 daddr = ipc.addr = fl4->daddr;
1017
1018 /* Lockless fast path for the non-corking case. */
1019 if (!corkreq) {
1020 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1021 sizeof(struct udphdr), &ipc, &rt,
1022 msg->msg_flags);
1023 err = PTR_ERR(skb);
1024 if (!IS_ERR_OR_NULL(skb))
1025 err = udp_send_skb(skb, fl4);
1026 goto out;
1027 }
1028
1029 lock_sock(sk);
1030 if (unlikely(up->pending)) {
1031 /* The socket is already corked while preparing it. */
1032 /* ... which is an evident application bug. --ANK */
1033 release_sock(sk);
1034
1035 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1036 err = -EINVAL;
1037 goto out;
1038 }
1039 /*
1040 * Now cork the socket to pend data.
1041 */
1042 fl4 = &inet->cork.fl.u.ip4;
1043 fl4->daddr = daddr;
1044 fl4->saddr = saddr;
1045 fl4->fl4_dport = dport;
1046 fl4->fl4_sport = inet->inet_sport;
1047 up->pending = AF_INET;
1048
1049 do_append_data:
1050 up->len += ulen;
1051 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1052 sizeof(struct udphdr), &ipc, &rt,
1053 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1054 if (err)
1055 udp_flush_pending_frames(sk);
1056 else if (!corkreq)
1057 err = udp_push_pending_frames(sk);
1058 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1059 up->pending = 0;
1060 release_sock(sk);
1061
1062 out:
1063 ip_rt_put(rt);
1064 if (free)
1065 kfree(ipc.opt);
1066 if (!err)
1067 return len;
1068 /*
1069 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1070 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1071 * we don't have a good statistic (IpOutDiscards but it can be too many
1072 * things). We could add another new stat but at least for now that
1073 * seems like overkill.
1074 */
1075 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1076 UDP_INC_STATS_USER(sock_net(sk),
1077 UDP_MIB_SNDBUFERRORS, is_udplite);
1078 }
1079 return err;
1080
1081 do_confirm:
1082 dst_confirm(&rt->dst);
1083 if (!(msg->msg_flags&MSG_PROBE) || len)
1084 goto back_from_confirm;
1085 err = 0;
1086 goto out;
1087 }
1088 EXPORT_SYMBOL(udp_sendmsg);
1089
1090 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1091 size_t size, int flags)
1092 {
1093 struct inet_sock *inet = inet_sk(sk);
1094 struct udp_sock *up = udp_sk(sk);
1095 int ret;
1096
1097 if (!up->pending) {
1098 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1099
1100 /* Call udp_sendmsg to specify destination address which
1101 * sendpage interface can't pass.
1102 * This will succeed only when the socket is connected.
1103 */
1104 ret = udp_sendmsg(NULL, sk, &msg, 0);
1105 if (ret < 0)
1106 return ret;
1107 }
1108
1109 lock_sock(sk);
1110
1111 if (unlikely(!up->pending)) {
1112 release_sock(sk);
1113
1114 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1115 return -EINVAL;
1116 }
1117
1118 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1119 page, offset, size, flags);
1120 if (ret == -EOPNOTSUPP) {
1121 release_sock(sk);
1122 return sock_no_sendpage(sk->sk_socket, page, offset,
1123 size, flags);
1124 }
1125 if (ret < 0) {
1126 udp_flush_pending_frames(sk);
1127 goto out;
1128 }
1129
1130 up->len += size;
1131 if (!(up->corkflag || (flags&MSG_MORE)))
1132 ret = udp_push_pending_frames(sk);
1133 if (!ret)
1134 ret = size;
1135 out:
1136 release_sock(sk);
1137 return ret;
1138 }
1139
1140
1141 /**
1142 * first_packet_length - return length of first packet in receive queue
1143 * @sk: socket
1144 *
1145 * Drops all bad checksum frames, until a valid one is found.
1146 * Returns the length of found skb, or 0 if none is found.
1147 */
1148 static unsigned int first_packet_length(struct sock *sk)
1149 {
1150 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1151 struct sk_buff *skb;
1152 unsigned int res;
1153
1154 __skb_queue_head_init(&list_kill);
1155
1156 spin_lock_bh(&rcvq->lock);
1157 while ((skb = skb_peek(rcvq)) != NULL &&
1158 udp_lib_checksum_complete(skb)) {
1159 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1160 IS_UDPLITE(sk));
1161 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1162 IS_UDPLITE(sk));
1163 atomic_inc(&sk->sk_drops);
1164 __skb_unlink(skb, rcvq);
1165 __skb_queue_tail(&list_kill, skb);
1166 }
1167 res = skb ? skb->len : 0;
1168 spin_unlock_bh(&rcvq->lock);
1169
1170 if (!skb_queue_empty(&list_kill)) {
1171 bool slow = lock_sock_fast(sk);
1172
1173 __skb_queue_purge(&list_kill);
1174 sk_mem_reclaim_partial(sk);
1175 unlock_sock_fast(sk, slow);
1176 }
1177 return res;
1178 }
1179
1180 /*
1181 * IOCTL requests applicable to the UDP protocol
1182 */
1183
1184 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1185 {
1186 switch (cmd) {
1187 case SIOCOUTQ:
1188 {
1189 int amount = sk_wmem_alloc_get(sk);
1190
1191 return put_user(amount, (int __user *)arg);
1192 }
1193
1194 case SIOCINQ:
1195 {
1196 unsigned int amount = first_packet_length(sk);
1197
1198 if (amount)
1199 /*
1200 * We will only return the amount
1201 * of this packet since that is all
1202 * that will be read.
1203 */
1204 amount -= sizeof(struct udphdr);
1205
1206 return put_user(amount, (int __user *)arg);
1207 }
1208
1209 default:
1210 return -ENOIOCTLCMD;
1211 }
1212
1213 return 0;
1214 }
1215 EXPORT_SYMBOL(udp_ioctl);
1216
1217 /*
1218 * This should be easy, if there is something there we
1219 * return it, otherwise we block.
1220 */
1221
1222 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1223 size_t len, int noblock, int flags, int *addr_len)
1224 {
1225 struct inet_sock *inet = inet_sk(sk);
1226 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1227 struct sk_buff *skb;
1228 unsigned int ulen, copied;
1229 int peeked, off = 0;
1230 int err;
1231 int is_udplite = IS_UDPLITE(sk);
1232 bool slow;
1233
1234 /*
1235 * Check any passed addresses
1236 */
1237 if (addr_len)
1238 *addr_len = sizeof(*sin);
1239
1240 if (flags & MSG_ERRQUEUE)
1241 return ip_recv_error(sk, msg, len);
1242
1243 try_again:
1244 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1245 &peeked, &off, &err);
1246 if (!skb)
1247 goto out;
1248
1249 ulen = skb->len - sizeof(struct udphdr);
1250 copied = len;
1251 if (copied > ulen)
1252 copied = ulen;
1253 else if (copied < ulen)
1254 msg->msg_flags |= MSG_TRUNC;
1255
1256 /*
1257 * If checksum is needed at all, try to do it while copying the
1258 * data. If the data is truncated, or if we only want a partial
1259 * coverage checksum (UDP-Lite), do it before the copy.
1260 */
1261
1262 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1263 if (udp_lib_checksum_complete(skb))
1264 goto csum_copy_err;
1265 }
1266
1267 if (skb_csum_unnecessary(skb))
1268 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1269 msg->msg_iov, copied);
1270 else {
1271 err = skb_copy_and_csum_datagram_iovec(skb,
1272 sizeof(struct udphdr),
1273 msg->msg_iov);
1274
1275 if (err == -EINVAL)
1276 goto csum_copy_err;
1277 }
1278
1279 if (unlikely(err)) {
1280 trace_kfree_skb(skb, udp_recvmsg);
1281 if (!peeked) {
1282 atomic_inc(&sk->sk_drops);
1283 UDP_INC_STATS_USER(sock_net(sk),
1284 UDP_MIB_INERRORS, is_udplite);
1285 }
1286 goto out_free;
1287 }
1288
1289 if (!peeked)
1290 UDP_INC_STATS_USER(sock_net(sk),
1291 UDP_MIB_INDATAGRAMS, is_udplite);
1292
1293 sock_recv_ts_and_drops(msg, sk, skb);
1294
1295 /* Copy the address. */
1296 if (sin) {
1297 sin->sin_family = AF_INET;
1298 sin->sin_port = udp_hdr(skb)->source;
1299 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1300 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1301 }
1302 if (inet->cmsg_flags)
1303 ip_cmsg_recv(msg, skb);
1304
1305 err = copied;
1306 if (flags & MSG_TRUNC)
1307 err = ulen;
1308
1309 out_free:
1310 skb_free_datagram_locked(sk, skb);
1311 out:
1312 return err;
1313
1314 csum_copy_err:
1315 slow = lock_sock_fast(sk);
1316 if (!skb_kill_datagram(sk, skb, flags)) {
1317 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1318 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1319 }
1320 unlock_sock_fast(sk, slow);
1321
1322 if (noblock)
1323 return -EAGAIN;
1324
1325 /* starting over for a new packet */
1326 msg->msg_flags &= ~MSG_TRUNC;
1327 goto try_again;
1328 }
1329
1330
1331 int udp_disconnect(struct sock *sk, int flags)
1332 {
1333 struct inet_sock *inet = inet_sk(sk);
1334 /*
1335 * 1003.1g - break association.
1336 */
1337
1338 sk->sk_state = TCP_CLOSE;
1339 inet->inet_daddr = 0;
1340 inet->inet_dport = 0;
1341 sock_rps_reset_rxhash(sk);
1342 sk->sk_bound_dev_if = 0;
1343 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1344 inet_reset_saddr(sk);
1345
1346 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1347 sk->sk_prot->unhash(sk);
1348 inet->inet_sport = 0;
1349 }
1350 sk_dst_reset(sk);
1351 return 0;
1352 }
1353 EXPORT_SYMBOL(udp_disconnect);
1354
1355 void udp_lib_unhash(struct sock *sk)
1356 {
1357 if (sk_hashed(sk)) {
1358 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1359 struct udp_hslot *hslot, *hslot2;
1360
1361 hslot = udp_hashslot(udptable, sock_net(sk),
1362 udp_sk(sk)->udp_port_hash);
1363 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1364
1365 spin_lock_bh(&hslot->lock);
1366 if (sk_nulls_del_node_init_rcu(sk)) {
1367 hslot->count--;
1368 inet_sk(sk)->inet_num = 0;
1369 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1370
1371 spin_lock(&hslot2->lock);
1372 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1373 hslot2->count--;
1374 spin_unlock(&hslot2->lock);
1375 }
1376 spin_unlock_bh(&hslot->lock);
1377 }
1378 }
1379 EXPORT_SYMBOL(udp_lib_unhash);
1380
1381 /*
1382 * inet_rcv_saddr was changed, we must rehash secondary hash
1383 */
1384 void udp_lib_rehash(struct sock *sk, u16 newhash)
1385 {
1386 if (sk_hashed(sk)) {
1387 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1388 struct udp_hslot *hslot, *hslot2, *nhslot2;
1389
1390 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1391 nhslot2 = udp_hashslot2(udptable, newhash);
1392 udp_sk(sk)->udp_portaddr_hash = newhash;
1393 if (hslot2 != nhslot2) {
1394 hslot = udp_hashslot(udptable, sock_net(sk),
1395 udp_sk(sk)->udp_port_hash);
1396 /* we must lock primary chain too */
1397 spin_lock_bh(&hslot->lock);
1398
1399 spin_lock(&hslot2->lock);
1400 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1401 hslot2->count--;
1402 spin_unlock(&hslot2->lock);
1403
1404 spin_lock(&nhslot2->lock);
1405 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1406 &nhslot2->head);
1407 nhslot2->count++;
1408 spin_unlock(&nhslot2->lock);
1409
1410 spin_unlock_bh(&hslot->lock);
1411 }
1412 }
1413 }
1414 EXPORT_SYMBOL(udp_lib_rehash);
1415
1416 static void udp_v4_rehash(struct sock *sk)
1417 {
1418 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1419 inet_sk(sk)->inet_rcv_saddr,
1420 inet_sk(sk)->inet_num);
1421 udp_lib_rehash(sk, new_hash);
1422 }
1423
1424 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1425 {
1426 int rc;
1427
1428 if (inet_sk(sk)->inet_daddr) {
1429 sock_rps_save_rxhash(sk, skb);
1430 sk_mark_napi_id(sk, skb);
1431 }
1432
1433 rc = sock_queue_rcv_skb(sk, skb);
1434 if (rc < 0) {
1435 int is_udplite = IS_UDPLITE(sk);
1436
1437 /* Note that an ENOMEM error is charged twice */
1438 if (rc == -ENOMEM)
1439 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1440 is_udplite);
1441 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1442 kfree_skb(skb);
1443 trace_udp_fail_queue_rcv_skb(rc, sk);
1444 return -1;
1445 }
1446
1447 return 0;
1448
1449 }
1450
1451 static struct static_key udp_encap_needed __read_mostly;
1452 void udp_encap_enable(void)
1453 {
1454 if (!static_key_enabled(&udp_encap_needed))
1455 static_key_slow_inc(&udp_encap_needed);
1456 }
1457 EXPORT_SYMBOL(udp_encap_enable);
1458
1459 /* returns:
1460 * -1: error
1461 * 0: success
1462 * >0: "udp encap" protocol resubmission
1463 *
1464 * Note that in the success and error cases, the skb is assumed to
1465 * have either been requeued or freed.
1466 */
1467 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1468 {
1469 struct udp_sock *up = udp_sk(sk);
1470 int rc;
1471 int is_udplite = IS_UDPLITE(sk);
1472
1473 /*
1474 * Charge it to the socket, dropping if the queue is full.
1475 */
1476 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1477 goto drop;
1478 nf_reset(skb);
1479
1480 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1481 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1482
1483 /*
1484 * This is an encapsulation socket so pass the skb to
1485 * the socket's udp_encap_rcv() hook. Otherwise, just
1486 * fall through and pass this up the UDP socket.
1487 * up->encap_rcv() returns the following value:
1488 * =0 if skb was successfully passed to the encap
1489 * handler or was discarded by it.
1490 * >0 if skb should be passed on to UDP.
1491 * <0 if skb should be resubmitted as proto -N
1492 */
1493
1494 /* if we're overly short, let UDP handle it */
1495 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1496 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1497 int ret;
1498
1499 ret = encap_rcv(sk, skb);
1500 if (ret <= 0) {
1501 UDP_INC_STATS_BH(sock_net(sk),
1502 UDP_MIB_INDATAGRAMS,
1503 is_udplite);
1504 return -ret;
1505 }
1506 }
1507
1508 /* FALLTHROUGH -- it's a UDP Packet */
1509 }
1510
1511 /*
1512 * UDP-Lite specific tests, ignored on UDP sockets
1513 */
1514 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1515
1516 /*
1517 * MIB statistics other than incrementing the error count are
1518 * disabled for the following two types of errors: these depend
1519 * on the application settings, not on the functioning of the
1520 * protocol stack as such.
1521 *
1522 * RFC 3828 here recommends (sec 3.3): "There should also be a
1523 * way ... to ... at least let the receiving application block
1524 * delivery of packets with coverage values less than a value
1525 * provided by the application."
1526 */
1527 if (up->pcrlen == 0) { /* full coverage was set */
1528 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1529 UDP_SKB_CB(skb)->cscov, skb->len);
1530 goto drop;
1531 }
1532 /* The next case involves violating the min. coverage requested
1533 * by the receiver. This is subtle: if receiver wants x and x is
1534 * greater than the buffersize/MTU then receiver will complain
1535 * that it wants x while sender emits packets of smaller size y.
1536 * Therefore the above ...()->partial_cov statement is essential.
1537 */
1538 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1539 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1540 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1541 goto drop;
1542 }
1543 }
1544
1545 if (rcu_access_pointer(sk->sk_filter) &&
1546 udp_lib_checksum_complete(skb))
1547 goto csum_error;
1548
1549
1550 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1551 goto drop;
1552
1553 rc = 0;
1554
1555 ipv4_pktinfo_prepare(sk, skb);
1556 bh_lock_sock(sk);
1557 if (!sock_owned_by_user(sk))
1558 rc = __udp_queue_rcv_skb(sk, skb);
1559 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1560 bh_unlock_sock(sk);
1561 goto drop;
1562 }
1563 bh_unlock_sock(sk);
1564
1565 return rc;
1566
1567 csum_error:
1568 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1569 drop:
1570 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1571 atomic_inc(&sk->sk_drops);
1572 kfree_skb(skb);
1573 return -1;
1574 }
1575
1576
1577 static void flush_stack(struct sock **stack, unsigned int count,
1578 struct sk_buff *skb, unsigned int final)
1579 {
1580 unsigned int i;
1581 struct sk_buff *skb1 = NULL;
1582 struct sock *sk;
1583
1584 for (i = 0; i < count; i++) {
1585 sk = stack[i];
1586 if (likely(skb1 == NULL))
1587 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1588
1589 if (!skb1) {
1590 atomic_inc(&sk->sk_drops);
1591 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1592 IS_UDPLITE(sk));
1593 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1594 IS_UDPLITE(sk));
1595 }
1596
1597 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1598 skb1 = NULL;
1599 }
1600 if (unlikely(skb1))
1601 kfree_skb(skb1);
1602 }
1603
1604 static void udp_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1605 {
1606 struct dst_entry *dst = skb_dst(skb);
1607
1608 dst_hold(dst);
1609 sk->sk_rx_dst = dst;
1610 }
1611
1612 /*
1613 * Multicasts and broadcasts go to each listener.
1614 *
1615 * Note: called only from the BH handler context.
1616 */
1617 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1618 struct udphdr *uh,
1619 __be32 saddr, __be32 daddr,
1620 struct udp_table *udptable)
1621 {
1622 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1623 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1624 int dif;
1625 unsigned int i, count = 0;
1626
1627 spin_lock(&hslot->lock);
1628 sk = sk_nulls_head(&hslot->head);
1629 dif = skb->dev->ifindex;
1630 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1631 while (sk) {
1632 stack[count++] = sk;
1633 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1634 daddr, uh->source, saddr, dif);
1635 if (unlikely(count == ARRAY_SIZE(stack))) {
1636 if (!sk)
1637 break;
1638 flush_stack(stack, count, skb, ~0);
1639 count = 0;
1640 }
1641 }
1642 /*
1643 * before releasing chain lock, we must take a reference on sockets
1644 */
1645 for (i = 0; i < count; i++)
1646 sock_hold(stack[i]);
1647
1648 spin_unlock(&hslot->lock);
1649
1650 /*
1651 * do the slow work with no lock held
1652 */
1653 if (count) {
1654 flush_stack(stack, count, skb, count - 1);
1655
1656 for (i = 0; i < count; i++)
1657 sock_put(stack[i]);
1658 } else {
1659 kfree_skb(skb);
1660 }
1661 return 0;
1662 }
1663
1664 /* Initialize UDP checksum. If exited with zero value (success),
1665 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1666 * Otherwise, csum completion requires chacksumming packet body,
1667 * including udp header and folding it to skb->csum.
1668 */
1669 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1670 int proto)
1671 {
1672 const struct iphdr *iph;
1673 int err;
1674
1675 UDP_SKB_CB(skb)->partial_cov = 0;
1676 UDP_SKB_CB(skb)->cscov = skb->len;
1677
1678 if (proto == IPPROTO_UDPLITE) {
1679 err = udplite_checksum_init(skb, uh);
1680 if (err)
1681 return err;
1682 }
1683
1684 iph = ip_hdr(skb);
1685 if (uh->check == 0) {
1686 skb->ip_summed = CHECKSUM_UNNECESSARY;
1687 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1688 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1689 proto, skb->csum))
1690 skb->ip_summed = CHECKSUM_UNNECESSARY;
1691 }
1692 if (!skb_csum_unnecessary(skb))
1693 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1694 skb->len, proto, 0);
1695 /* Probably, we should checksum udp header (it should be in cache
1696 * in any case) and data in tiny packets (< rx copybreak).
1697 */
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * All we need to do is get the socket, and then do a checksum.
1704 */
1705
1706 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1707 int proto)
1708 {
1709 struct sock *sk;
1710 struct udphdr *uh;
1711 unsigned short ulen;
1712 struct rtable *rt = skb_rtable(skb);
1713 __be32 saddr, daddr;
1714 struct net *net = dev_net(skb->dev);
1715
1716 /*
1717 * Validate the packet.
1718 */
1719 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1720 goto drop; /* No space for header. */
1721
1722 uh = udp_hdr(skb);
1723 ulen = ntohs(uh->len);
1724 saddr = ip_hdr(skb)->saddr;
1725 daddr = ip_hdr(skb)->daddr;
1726
1727 if (ulen > skb->len)
1728 goto short_packet;
1729
1730 if (proto == IPPROTO_UDP) {
1731 /* UDP validates ulen. */
1732 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1733 goto short_packet;
1734 uh = udp_hdr(skb);
1735 }
1736
1737 if (udp4_csum_init(skb, uh, proto))
1738 goto csum_error;
1739
1740 if (skb->sk) {
1741 int ret;
1742 sk = skb->sk;
1743
1744 if (unlikely(sk->sk_rx_dst == NULL))
1745 udp_sk_rx_dst_set(sk, skb);
1746
1747 ret = udp_queue_rcv_skb(sk, skb);
1748
1749 /* a return value > 0 means to resubmit the input, but
1750 * it wants the return to be -protocol, or 0
1751 */
1752 if (ret > 0)
1753 return -ret;
1754 return 0;
1755 } else {
1756 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1757 return __udp4_lib_mcast_deliver(net, skb, uh,
1758 saddr, daddr, udptable);
1759
1760 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1761 }
1762
1763 if (sk != NULL) {
1764 int ret;
1765
1766 ret = udp_queue_rcv_skb(sk, skb);
1767 sock_put(sk);
1768
1769 /* a return value > 0 means to resubmit the input, but
1770 * it wants the return to be -protocol, or 0
1771 */
1772 if (ret > 0)
1773 return -ret;
1774 return 0;
1775 }
1776
1777 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1778 goto drop;
1779 nf_reset(skb);
1780
1781 /* No socket. Drop packet silently, if checksum is wrong */
1782 if (udp_lib_checksum_complete(skb))
1783 goto csum_error;
1784
1785 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1786 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1787
1788 /*
1789 * Hmm. We got an UDP packet to a port to which we
1790 * don't wanna listen. Ignore it.
1791 */
1792 kfree_skb(skb);
1793 return 0;
1794
1795 short_packet:
1796 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1797 proto == IPPROTO_UDPLITE ? "Lite" : "",
1798 &saddr, ntohs(uh->source),
1799 ulen, skb->len,
1800 &daddr, ntohs(uh->dest));
1801 goto drop;
1802
1803 csum_error:
1804 /*
1805 * RFC1122: OK. Discards the bad packet silently (as far as
1806 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1807 */
1808 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1809 proto == IPPROTO_UDPLITE ? "Lite" : "",
1810 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1811 ulen);
1812 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1813 drop:
1814 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1815 kfree_skb(skb);
1816 return 0;
1817 }
1818
1819 /* We can only early demux multicast if there is a single matching socket.
1820 * If more than one socket found returns NULL
1821 */
1822 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1823 __be16 loc_port, __be32 loc_addr,
1824 __be16 rmt_port, __be32 rmt_addr,
1825 int dif)
1826 {
1827 struct sock *sk, *result;
1828 struct hlist_nulls_node *node;
1829 unsigned short hnum = ntohs(loc_port);
1830 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1831 struct udp_hslot *hslot = &udp_table.hash[slot];
1832
1833 rcu_read_lock();
1834 begin:
1835 count = 0;
1836 result = NULL;
1837 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1838 if (__udp_is_mcast_sock(net, sk,
1839 loc_port, loc_addr,
1840 rmt_port, rmt_addr,
1841 dif, hnum)) {
1842 result = sk;
1843 ++count;
1844 }
1845 }
1846 /*
1847 * if the nulls value we got at the end of this lookup is
1848 * not the expected one, we must restart lookup.
1849 * We probably met an item that was moved to another chain.
1850 */
1851 if (get_nulls_value(node) != slot)
1852 goto begin;
1853
1854 if (result) {
1855 if (count != 1 ||
1856 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1857 result = NULL;
1858 else if (unlikely(!__udp_is_mcast_sock(net, result,
1859 loc_port, loc_addr,
1860 rmt_port, rmt_addr,
1861 dif, hnum))) {
1862 sock_put(result);
1863 result = NULL;
1864 }
1865 }
1866 rcu_read_unlock();
1867 return result;
1868 }
1869
1870 /* For unicast we should only early demux connected sockets or we can
1871 * break forwarding setups. The chains here can be long so only check
1872 * if the first socket is an exact match and if not move on.
1873 */
1874 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1875 __be16 loc_port, __be32 loc_addr,
1876 __be16 rmt_port, __be32 rmt_addr,
1877 int dif)
1878 {
1879 struct sock *sk, *result;
1880 struct hlist_nulls_node *node;
1881 unsigned short hnum = ntohs(loc_port);
1882 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1883 unsigned int slot2 = hash2 & udp_table.mask;
1884 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1885 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1886 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1887
1888 rcu_read_lock();
1889 result = NULL;
1890 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1891 if (INET_MATCH(sk, net, acookie,
1892 rmt_addr, loc_addr, ports, dif))
1893 result = sk;
1894 /* Only check first socket in chain */
1895 break;
1896 }
1897
1898 if (result) {
1899 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1900 result = NULL;
1901 else if (unlikely(!INET_MATCH(sk, net, acookie,
1902 rmt_addr, loc_addr,
1903 ports, dif))) {
1904 sock_put(result);
1905 result = NULL;
1906 }
1907 }
1908 rcu_read_unlock();
1909 return result;
1910 }
1911
1912 void udp_v4_early_demux(struct sk_buff *skb)
1913 {
1914 const struct iphdr *iph = ip_hdr(skb);
1915 const struct udphdr *uh = udp_hdr(skb);
1916 struct sock *sk;
1917 struct dst_entry *dst;
1918 struct net *net = dev_net(skb->dev);
1919 int dif = skb->dev->ifindex;
1920
1921 /* validate the packet */
1922 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1923 return;
1924
1925 if (skb->pkt_type == PACKET_BROADCAST ||
1926 skb->pkt_type == PACKET_MULTICAST)
1927 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1928 uh->source, iph->saddr, dif);
1929 else if (skb->pkt_type == PACKET_HOST)
1930 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1931 uh->source, iph->saddr, dif);
1932 else
1933 return;
1934
1935 if (!sk)
1936 return;
1937
1938 skb->sk = sk;
1939 skb->destructor = sock_edemux;
1940 dst = sk->sk_rx_dst;
1941
1942 if (dst)
1943 dst = dst_check(dst, 0);
1944 if (dst)
1945 skb_dst_set_noref(skb, dst);
1946 }
1947
1948 int udp_rcv(struct sk_buff *skb)
1949 {
1950 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1951 }
1952
1953 void udp_destroy_sock(struct sock *sk)
1954 {
1955 struct udp_sock *up = udp_sk(sk);
1956 bool slow = lock_sock_fast(sk);
1957 udp_flush_pending_frames(sk);
1958 unlock_sock_fast(sk, slow);
1959 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1960 void (*encap_destroy)(struct sock *sk);
1961 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1962 if (encap_destroy)
1963 encap_destroy(sk);
1964 }
1965 }
1966
1967 /*
1968 * Socket option code for UDP
1969 */
1970 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1971 char __user *optval, unsigned int optlen,
1972 int (*push_pending_frames)(struct sock *))
1973 {
1974 struct udp_sock *up = udp_sk(sk);
1975 int val;
1976 int err = 0;
1977 int is_udplite = IS_UDPLITE(sk);
1978
1979 if (optlen < sizeof(int))
1980 return -EINVAL;
1981
1982 if (get_user(val, (int __user *)optval))
1983 return -EFAULT;
1984
1985 switch (optname) {
1986 case UDP_CORK:
1987 if (val != 0) {
1988 up->corkflag = 1;
1989 } else {
1990 up->corkflag = 0;
1991 lock_sock(sk);
1992 (*push_pending_frames)(sk);
1993 release_sock(sk);
1994 }
1995 break;
1996
1997 case UDP_ENCAP:
1998 switch (val) {
1999 case 0:
2000 case UDP_ENCAP_ESPINUDP:
2001 case UDP_ENCAP_ESPINUDP_NON_IKE:
2002 up->encap_rcv = xfrm4_udp_encap_rcv;
2003 /* FALLTHROUGH */
2004 case UDP_ENCAP_L2TPINUDP:
2005 up->encap_type = val;
2006 udp_encap_enable();
2007 break;
2008 default:
2009 err = -ENOPROTOOPT;
2010 break;
2011 }
2012 break;
2013
2014 /*
2015 * UDP-Lite's partial checksum coverage (RFC 3828).
2016 */
2017 /* The sender sets actual checksum coverage length via this option.
2018 * The case coverage > packet length is handled by send module. */
2019 case UDPLITE_SEND_CSCOV:
2020 if (!is_udplite) /* Disable the option on UDP sockets */
2021 return -ENOPROTOOPT;
2022 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2023 val = 8;
2024 else if (val > USHRT_MAX)
2025 val = USHRT_MAX;
2026 up->pcslen = val;
2027 up->pcflag |= UDPLITE_SEND_CC;
2028 break;
2029
2030 /* The receiver specifies a minimum checksum coverage value. To make
2031 * sense, this should be set to at least 8 (as done below). If zero is
2032 * used, this again means full checksum coverage. */
2033 case UDPLITE_RECV_CSCOV:
2034 if (!is_udplite) /* Disable the option on UDP sockets */
2035 return -ENOPROTOOPT;
2036 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2037 val = 8;
2038 else if (val > USHRT_MAX)
2039 val = USHRT_MAX;
2040 up->pcrlen = val;
2041 up->pcflag |= UDPLITE_RECV_CC;
2042 break;
2043
2044 default:
2045 err = -ENOPROTOOPT;
2046 break;
2047 }
2048
2049 return err;
2050 }
2051 EXPORT_SYMBOL(udp_lib_setsockopt);
2052
2053 int udp_setsockopt(struct sock *sk, int level, int optname,
2054 char __user *optval, unsigned int optlen)
2055 {
2056 if (level == SOL_UDP || level == SOL_UDPLITE)
2057 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2058 udp_push_pending_frames);
2059 return ip_setsockopt(sk, level, optname, optval, optlen);
2060 }
2061
2062 #ifdef CONFIG_COMPAT
2063 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2064 char __user *optval, unsigned int optlen)
2065 {
2066 if (level == SOL_UDP || level == SOL_UDPLITE)
2067 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2068 udp_push_pending_frames);
2069 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2070 }
2071 #endif
2072
2073 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2074 char __user *optval, int __user *optlen)
2075 {
2076 struct udp_sock *up = udp_sk(sk);
2077 int val, len;
2078
2079 if (get_user(len, optlen))
2080 return -EFAULT;
2081
2082 len = min_t(unsigned int, len, sizeof(int));
2083
2084 if (len < 0)
2085 return -EINVAL;
2086
2087 switch (optname) {
2088 case UDP_CORK:
2089 val = up->corkflag;
2090 break;
2091
2092 case UDP_ENCAP:
2093 val = up->encap_type;
2094 break;
2095
2096 /* The following two cannot be changed on UDP sockets, the return is
2097 * always 0 (which corresponds to the full checksum coverage of UDP). */
2098 case UDPLITE_SEND_CSCOV:
2099 val = up->pcslen;
2100 break;
2101
2102 case UDPLITE_RECV_CSCOV:
2103 val = up->pcrlen;
2104 break;
2105
2106 default:
2107 return -ENOPROTOOPT;
2108 }
2109
2110 if (put_user(len, optlen))
2111 return -EFAULT;
2112 if (copy_to_user(optval, &val, len))
2113 return -EFAULT;
2114 return 0;
2115 }
2116 EXPORT_SYMBOL(udp_lib_getsockopt);
2117
2118 int udp_getsockopt(struct sock *sk, int level, int optname,
2119 char __user *optval, int __user *optlen)
2120 {
2121 if (level == SOL_UDP || level == SOL_UDPLITE)
2122 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2123 return ip_getsockopt(sk, level, optname, optval, optlen);
2124 }
2125
2126 #ifdef CONFIG_COMPAT
2127 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2128 char __user *optval, int __user *optlen)
2129 {
2130 if (level == SOL_UDP || level == SOL_UDPLITE)
2131 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2132 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2133 }
2134 #endif
2135 /**
2136 * udp_poll - wait for a UDP event.
2137 * @file - file struct
2138 * @sock - socket
2139 * @wait - poll table
2140 *
2141 * This is same as datagram poll, except for the special case of
2142 * blocking sockets. If application is using a blocking fd
2143 * and a packet with checksum error is in the queue;
2144 * then it could get return from select indicating data available
2145 * but then block when reading it. Add special case code
2146 * to work around these arguably broken applications.
2147 */
2148 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2149 {
2150 unsigned int mask = datagram_poll(file, sock, wait);
2151 struct sock *sk = sock->sk;
2152
2153 sock_rps_record_flow(sk);
2154
2155 /* Check for false positives due to checksum errors */
2156 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2157 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2158 mask &= ~(POLLIN | POLLRDNORM);
2159
2160 return mask;
2161
2162 }
2163 EXPORT_SYMBOL(udp_poll);
2164
2165 struct proto udp_prot = {
2166 .name = "UDP",
2167 .owner = THIS_MODULE,
2168 .close = udp_lib_close,
2169 .connect = ip4_datagram_connect,
2170 .disconnect = udp_disconnect,
2171 .ioctl = udp_ioctl,
2172 .destroy = udp_destroy_sock,
2173 .setsockopt = udp_setsockopt,
2174 .getsockopt = udp_getsockopt,
2175 .sendmsg = udp_sendmsg,
2176 .recvmsg = udp_recvmsg,
2177 .sendpage = udp_sendpage,
2178 .backlog_rcv = __udp_queue_rcv_skb,
2179 .release_cb = ip4_datagram_release_cb,
2180 .hash = udp_lib_hash,
2181 .unhash = udp_lib_unhash,
2182 .rehash = udp_v4_rehash,
2183 .get_port = udp_v4_get_port,
2184 .memory_allocated = &udp_memory_allocated,
2185 .sysctl_mem = sysctl_udp_mem,
2186 .sysctl_wmem = &sysctl_udp_wmem_min,
2187 .sysctl_rmem = &sysctl_udp_rmem_min,
2188 .obj_size = sizeof(struct udp_sock),
2189 .slab_flags = SLAB_DESTROY_BY_RCU,
2190 .h.udp_table = &udp_table,
2191 #ifdef CONFIG_COMPAT
2192 .compat_setsockopt = compat_udp_setsockopt,
2193 .compat_getsockopt = compat_udp_getsockopt,
2194 #endif
2195 .clear_sk = sk_prot_clear_portaddr_nulls,
2196 };
2197 EXPORT_SYMBOL(udp_prot);
2198
2199 /* ------------------------------------------------------------------------ */
2200 #ifdef CONFIG_PROC_FS
2201
2202 static struct sock *udp_get_first(struct seq_file *seq, int start)
2203 {
2204 struct sock *sk;
2205 struct udp_iter_state *state = seq->private;
2206 struct net *net = seq_file_net(seq);
2207
2208 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2209 ++state->bucket) {
2210 struct hlist_nulls_node *node;
2211 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2212
2213 if (hlist_nulls_empty(&hslot->head))
2214 continue;
2215
2216 spin_lock_bh(&hslot->lock);
2217 sk_nulls_for_each(sk, node, &hslot->head) {
2218 if (!net_eq(sock_net(sk), net))
2219 continue;
2220 if (sk->sk_family == state->family)
2221 goto found;
2222 }
2223 spin_unlock_bh(&hslot->lock);
2224 }
2225 sk = NULL;
2226 found:
2227 return sk;
2228 }
2229
2230 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2231 {
2232 struct udp_iter_state *state = seq->private;
2233 struct net *net = seq_file_net(seq);
2234
2235 do {
2236 sk = sk_nulls_next(sk);
2237 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2238
2239 if (!sk) {
2240 if (state->bucket <= state->udp_table->mask)
2241 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2242 return udp_get_first(seq, state->bucket + 1);
2243 }
2244 return sk;
2245 }
2246
2247 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2248 {
2249 struct sock *sk = udp_get_first(seq, 0);
2250
2251 if (sk)
2252 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2253 --pos;
2254 return pos ? NULL : sk;
2255 }
2256
2257 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 struct udp_iter_state *state = seq->private;
2260 state->bucket = MAX_UDP_PORTS;
2261
2262 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2263 }
2264
2265 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2266 {
2267 struct sock *sk;
2268
2269 if (v == SEQ_START_TOKEN)
2270 sk = udp_get_idx(seq, 0);
2271 else
2272 sk = udp_get_next(seq, v);
2273
2274 ++*pos;
2275 return sk;
2276 }
2277
2278 static void udp_seq_stop(struct seq_file *seq, void *v)
2279 {
2280 struct udp_iter_state *state = seq->private;
2281
2282 if (state->bucket <= state->udp_table->mask)
2283 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2284 }
2285
2286 int udp_seq_open(struct inode *inode, struct file *file)
2287 {
2288 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2289 struct udp_iter_state *s;
2290 int err;
2291
2292 err = seq_open_net(inode, file, &afinfo->seq_ops,
2293 sizeof(struct udp_iter_state));
2294 if (err < 0)
2295 return err;
2296
2297 s = ((struct seq_file *)file->private_data)->private;
2298 s->family = afinfo->family;
2299 s->udp_table = afinfo->udp_table;
2300 return err;
2301 }
2302 EXPORT_SYMBOL(udp_seq_open);
2303
2304 /* ------------------------------------------------------------------------ */
2305 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2306 {
2307 struct proc_dir_entry *p;
2308 int rc = 0;
2309
2310 afinfo->seq_ops.start = udp_seq_start;
2311 afinfo->seq_ops.next = udp_seq_next;
2312 afinfo->seq_ops.stop = udp_seq_stop;
2313
2314 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2315 afinfo->seq_fops, afinfo);
2316 if (!p)
2317 rc = -ENOMEM;
2318 return rc;
2319 }
2320 EXPORT_SYMBOL(udp_proc_register);
2321
2322 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2323 {
2324 remove_proc_entry(afinfo->name, net->proc_net);
2325 }
2326 EXPORT_SYMBOL(udp_proc_unregister);
2327
2328 /* ------------------------------------------------------------------------ */
2329 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2330 int bucket, int *len)
2331 {
2332 struct inet_sock *inet = inet_sk(sp);
2333 __be32 dest = inet->inet_daddr;
2334 __be32 src = inet->inet_rcv_saddr;
2335 __u16 destp = ntohs(inet->inet_dport);
2336 __u16 srcp = ntohs(inet->inet_sport);
2337
2338 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2339 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d%n",
2340 bucket, src, srcp, dest, destp, sp->sk_state,
2341 sk_wmem_alloc_get(sp),
2342 sk_rmem_alloc_get(sp),
2343 0, 0L, 0,
2344 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2345 0, sock_i_ino(sp),
2346 atomic_read(&sp->sk_refcnt), sp,
2347 atomic_read(&sp->sk_drops), len);
2348 }
2349
2350 int udp4_seq_show(struct seq_file *seq, void *v)
2351 {
2352 if (v == SEQ_START_TOKEN)
2353 seq_printf(seq, "%-127s\n",
2354 " sl local_address rem_address st tx_queue "
2355 "rx_queue tr tm->when retrnsmt uid timeout "
2356 "inode ref pointer drops");
2357 else {
2358 struct udp_iter_state *state = seq->private;
2359 int len;
2360
2361 udp4_format_sock(v, seq, state->bucket, &len);
2362 seq_printf(seq, "%*s\n", 127 - len, "");
2363 }
2364 return 0;
2365 }
2366
2367 static const struct file_operations udp_afinfo_seq_fops = {
2368 .owner = THIS_MODULE,
2369 .open = udp_seq_open,
2370 .read = seq_read,
2371 .llseek = seq_lseek,
2372 .release = seq_release_net
2373 };
2374
2375 /* ------------------------------------------------------------------------ */
2376 static struct udp_seq_afinfo udp4_seq_afinfo = {
2377 .name = "udp",
2378 .family = AF_INET,
2379 .udp_table = &udp_table,
2380 .seq_fops = &udp_afinfo_seq_fops,
2381 .seq_ops = {
2382 .show = udp4_seq_show,
2383 },
2384 };
2385
2386 static int __net_init udp4_proc_init_net(struct net *net)
2387 {
2388 return udp_proc_register(net, &udp4_seq_afinfo);
2389 }
2390
2391 static void __net_exit udp4_proc_exit_net(struct net *net)
2392 {
2393 udp_proc_unregister(net, &udp4_seq_afinfo);
2394 }
2395
2396 static struct pernet_operations udp4_net_ops = {
2397 .init = udp4_proc_init_net,
2398 .exit = udp4_proc_exit_net,
2399 };
2400
2401 int __init udp4_proc_init(void)
2402 {
2403 return register_pernet_subsys(&udp4_net_ops);
2404 }
2405
2406 void udp4_proc_exit(void)
2407 {
2408 unregister_pernet_subsys(&udp4_net_ops);
2409 }
2410 #endif /* CONFIG_PROC_FS */
2411
2412 static __initdata unsigned long uhash_entries;
2413 static int __init set_uhash_entries(char *str)
2414 {
2415 ssize_t ret;
2416
2417 if (!str)
2418 return 0;
2419
2420 ret = kstrtoul(str, 0, &uhash_entries);
2421 if (ret)
2422 return 0;
2423
2424 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2425 uhash_entries = UDP_HTABLE_SIZE_MIN;
2426 return 1;
2427 }
2428 __setup("uhash_entries=", set_uhash_entries);
2429
2430 void __init udp_table_init(struct udp_table *table, const char *name)
2431 {
2432 unsigned int i;
2433
2434 table->hash = alloc_large_system_hash(name,
2435 2 * sizeof(struct udp_hslot),
2436 uhash_entries,
2437 21, /* one slot per 2 MB */
2438 0,
2439 &table->log,
2440 &table->mask,
2441 UDP_HTABLE_SIZE_MIN,
2442 64 * 1024);
2443
2444 table->hash2 = table->hash + (table->mask + 1);
2445 for (i = 0; i <= table->mask; i++) {
2446 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2447 table->hash[i].count = 0;
2448 spin_lock_init(&table->hash[i].lock);
2449 }
2450 for (i = 0; i <= table->mask; i++) {
2451 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2452 table->hash2[i].count = 0;
2453 spin_lock_init(&table->hash2[i].lock);
2454 }
2455 }
2456
2457 void __init udp_init(void)
2458 {
2459 unsigned long limit;
2460
2461 udp_table_init(&udp_table, "UDP");
2462 limit = nr_free_buffer_pages() / 8;
2463 limit = max(limit, 128UL);
2464 sysctl_udp_mem[0] = limit / 4 * 3;
2465 sysctl_udp_mem[1] = limit;
2466 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2467
2468 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2469 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2470 }
2471
2472 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2473 netdev_features_t features)
2474 {
2475 struct sk_buff *segs = ERR_PTR(-EINVAL);
2476 int mac_len = skb->mac_len;
2477 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2478 __be16 protocol = skb->protocol;
2479 netdev_features_t enc_features;
2480 int outer_hlen;
2481
2482 if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2483 goto out;
2484
2485 skb->encapsulation = 0;
2486 __skb_pull(skb, tnl_hlen);
2487 skb_reset_mac_header(skb);
2488 skb_set_network_header(skb, skb_inner_network_offset(skb));
2489 skb->mac_len = skb_inner_network_offset(skb);
2490 skb->protocol = htons(ETH_P_TEB);
2491
2492 /* segment inner packet. */
2493 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2494 segs = skb_mac_gso_segment(skb, enc_features);
2495 if (!segs || IS_ERR(segs))
2496 goto out;
2497
2498 outer_hlen = skb_tnl_header_len(skb);
2499 skb = segs;
2500 do {
2501 struct udphdr *uh;
2502 int udp_offset = outer_hlen - tnl_hlen;
2503
2504 skb_reset_inner_headers(skb);
2505 skb->encapsulation = 1;
2506
2507 skb->mac_len = mac_len;
2508
2509 skb_push(skb, outer_hlen);
2510 skb_reset_mac_header(skb);
2511 skb_set_network_header(skb, mac_len);
2512 skb_set_transport_header(skb, udp_offset);
2513 uh = udp_hdr(skb);
2514 uh->len = htons(skb->len - udp_offset);
2515
2516 /* csum segment if tunnel sets skb with csum. */
2517 if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2518 struct iphdr *iph = ip_hdr(skb);
2519
2520 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2521 skb->len - udp_offset,
2522 IPPROTO_UDP, 0);
2523 uh->check = csum_fold(skb_checksum(skb, udp_offset,
2524 skb->len - udp_offset, 0));
2525 if (uh->check == 0)
2526 uh->check = CSUM_MANGLED_0;
2527
2528 } else if (protocol == htons(ETH_P_IPV6)) {
2529 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2530 u32 len = skb->len - udp_offset;
2531
2532 uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2533 len, IPPROTO_UDP, 0);
2534 uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2535 if (uh->check == 0)
2536 uh->check = CSUM_MANGLED_0;
2537 skb->ip_summed = CHECKSUM_NONE;
2538 }
2539
2540 skb->protocol = protocol;
2541 } while ((skb = skb->next));
2542 out:
2543 return segs;
2544 }